
HP GlancePlus
for the Linux operating system

Software Version: 11.00

User's Guide

Document Release Date: October 2010

Software Release Date: October 2010

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.

Intel®, Itanium®, and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, and Windows Vista® are U.S. registered trademarks of Microsoft
Corporation.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Support

Visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp

Contents

WARRANTY...2

RESTRICTED RIGHTS LEGEND...2

TRADEMARK NOTICES..2

CONTENTS ..5

ABOUT GLANCEPLUS ...21

GLANCEPLUS CONCEPTS ..21

MANAGING SYSTEM RESOURCES...21

CPU INFORMATION..22

MEMORY INFORMATION ...23

DISK INFORMATION...24

NETWORK INFORMATION ...25

SYSTEM INFORMATION...26

MONITORING YOUR SYSTEM WITH THE ADVISER31

CONFIGURE COLORS ..33

CONFIGURE GRAPH LIMITS..37

CONFIGURE PROCESS FILTERS..37

GUIDED TOUR...38

GUIDED TOUR - GLANCEPLUS MAIN WINDOW ..39

GUIDED TOUR - CPU BOTTLENECK, PANEL 1..39

GUIDED TOUR - CPU BOTTLENECK, PANEL 2..40

GUIDED TOUR - MEMORY BOTTLENECK, PANEL 141

GUIDED TOUR - MEMORY BOTTLENECK, PANEL 242

GUIDED TOUR - CONFIGURING GLANCEPLUS...43

GUIDED TOUR - ALARMS & SYMPTOMS ...44

CUSTOMIZE GLANCEPLUS START-UP ..45

OVERRIDE CONFIGURATION UPDATES..46

CHANGE DISPLAY COLORS..50

SORT REPORT FIELDS ..53

SET FILTERS...54

HIGHLIGHT METRICS ...55

MODIFYING RUNTIME PARAMETERS ..56

FONT TYPE AND SIZE ..56

ICON SIZE..56

COLUMN WIDTH ...57

RESOURCES TABLE ..57

VERSION WINDOW DISPLAY TIME...57

TRUNCATION RULES ...58

DISPLAY TRUNCATED STRING DATA..58

SPEED KEYS...58

CMD..63

JAVAARG ..63

ARGV1 ...63

INTRODUCTION TO THE GLANCEPLUS ADVISER..64

ALARMS AND SYMPTOMS ..64

WHAT IS AN ALARM? ..64

WHAT IS A SYMPTOM?..65

EDITING ADVISER SYNTAX...65

USING THE GLANCEPLUS TEXT EDITOR ..65

USING YOUR OWN TEXT EDITOR...66

PRINTING CPU UTILIZATION DURING HIGH CPU USAGE............................67

SENDING EMAIL MESSAGES ..68

PRINTING PROCESS INFORMATION WITHIN A LOOP..................................68

PRINT TO A FILE...68

ADVISER SYNTAX STRUCTURE ...69

ADVISER SYNTAX REFERENCE ...70

SYNTAX CONVENTIONS ..70

COMMENTS...71

CONDITION EXAMPLES ...71

CONSTANTS ...71

EXPRESSIONS ..71

PRINTLIST ...71

PRINTLIST EXAMPLES...72

METRIC NAMES IN ADVISER SYNTAX ...72

VARIABLES ...73

ALARM STATEMENT ..73

ALARM EXAMPLES ..73

ALARM EXAMPLE: PROCESS TABLE ..74

ALARM EXAMPLE: SWAP SPACE ..74

ALARM EXAMPLE: YELLOW ALERT ..75

ALARM EXAMPLE: CPU PROBLEM ..75

ALERT STATEMENT...75

ALIAS STATEMENT ..76

ASSIGNMENT STATEMENT ...76

COMPOUND STATEMENT..76

EXEC STATEMENT ...77

GPM STATEMENT...77

IF STATEMENT..77

LOOP STATEMENT...78

TT LOOP EXAMPLE..82

TTBIN LOOP EXAMPLE..82

PRINT STATEMENT ..85

SYMPTOM STATEMENT...85

SYMPTOM EXAMPLE: GLOBAL CPU BOTTLENECK86

INTERVAL..87

GLANCEPLUS MESSAGES..87

ADVISER SYNTAX MESSAGES ...87

GENERAL MESSAGES (AS-101 THROUGH AS-131)87

ALARM MESSAGES (AS-201 THROUGH AS-212) ..90

SYMPTOM MESSAGES (AS-301 THROUGH AS-306).....................................91

STATEMENT MESSAGES (AS-401 THROUGH AS-410)91

ACTION MESSAGES (AS-501 THROUGH AS-504) ...92

LOOP MESSAGES (AS-601 THROUGH AS-636)...92

MESSAGE AS-613...94

MESSAGE AS-614...94

MESSAGE AS-615...94

MESSAGE AS-618...94

MESSAGE AS-619...94

MESSAGE AS-621...95

MESSAGE AS-622...95

MESSAGE AS-623...95

MESSAGE AS-624...95

MESSAGE AS-625...95

MESSAGE AS-626...95

MESSAGE AS-627...95

MESSAGE AS-628...95

MESSAGE AS-629...95

MESSAGE AS-630...95

MESSAGE AS-633...95

MESSAGE AS-634...95

MESSAGE AS-635...95

TROUBLESHOOTING ...96

INSTALLATION MESSAGES ..96

START-UP MESSAGES ..96

RUNNING IN BACKGROUND MODE..96

DURING INITIALIZATION START-UP...97

MESSAGES BEFORE CONNECTING TO DISPLAY ..97

MESSAGES WHILE CONNECTING TO DISPLAY..97

MESSAGES AFTER CONNECTING TO DISPLAY ...98

SUCCESSFUL INITIALIZATION..99

PERFORMANCE METRICS...99

About GlancePlus

GlancePlus is a real-time performance monitoring and diagnostic tool that helps you get the best possible performance
from your computer system. Real-time means that GlancePlus shows you, in words and pictures, exactly what's going
on inside your computer right now. You define the time interval yourself – “right now” can mean what your computer
was doing a second, a minute, or an hour ago.
Here are some of the features of GlancePlus:

• The rules-based adviser interprets performance data and identifies bottlenecks. You can use the default set of
rules or create your own rules.

• Graphical and tabular on-screen color reports show your system's performance and resource utilization in real-
time.

• You can view metrics at the global, application, or process level.

• You can use alarms to monitor your system. You can use the default alarm thresholds or define your own.

• You can define the order of the data columns and sort criteria. You can also define filters to see only information of
interest to you.

• There are a variety of display options, colors, and fonts. You can define the data sample intervals and durations
for graphs.

• You can enable/disable tooltips (click the “T” button in a row-column report window) to see the full text of truncated
string data.

• You can monitor system performance while tending to other tasks by using GlancePlus in icon mode.

• The online help facility provides quick answers to your questions about GlancePlus.

 GlancePlus Concepts

This section discusses some of the important concepts used in GlancePlus and explains how to manage system
resources and processes, monitor applications and use the Adviser to monitor your system.
Because the illustrations in the Concepts section are large, you may want to enlarge your help window before you
begin.
Click a highlighted topic for information about a specific concept.
Managing System Resources
Monitoring Applications
Managing Processes
Monitoring Your System with the Adviser
Configuring GlancePlus

 Managing System Resources

You can display the information in the GlancePlus Main window as horizontal bars, vertical bars, pie charts, or as a
resource history graph, which is shown here.

Select from the list below to display examples of graphs and reports.
CPU Information
Disk Information
Memory Information
Network Information
System Information
To select a graph style, see the Change Main Graph Style task.

 CPU Information

You can use several windows, available from the Reports menu in the GlancePlus main window, to monitor CPU
activity. You can also display the CPU graph by clicking the CPU button in the Main window.

 Memory Information

You can use several windows, available from the Reports menu in the GlancePlus Main window, to monitor memory
activity. You can also display the Memory graph by clicking the Memory button in the Main window.

 Disk Information

You can use several windows, available from the Reports menu in the GlancePlus Main window, to monitor disk
resources. You can also display the Disk graph by clicking the Disk button on the Main window.

For more information, click on any highlighted topic:
Network Information
Memory Information
CPU Information
System Information
Monitoring Applications

 Network Information

You can use several windows, available from the Reports menu in the GlancePlus Main window, to monitor network
activity. You can also display the Network graph by clicking the Network button in the Main window.

 System Information

The following windows display information about your system tables. If you notice a table reaching maximum
capacity, review its configuration.

 Monitoring Applications

Applications are groups of processes that do similar work. For example, you might have an application called "payroll"
for all the processes that perform payroll tasks. Use applications to easily monitor large groups of processes, and
when needed, drill down to the process information for more specific details.
You define applications in a file external to GlancePlus, the "parm" file. The file and format are described in detail in
Defining Applications. To display the Application List window, use the Reports menu in the Main window.

 Managing Processes

A process represents a program executing on the system, which might contain hundreds or thousands of processes.
GlancePlus provides you with the information you need to manage all the processes on your system. By using
different GlancePlus windows, you can review an entire list of the processes. From this list, you can also filter and
highlight specific interesting processes that require closer scrutiny.
To see a list of processes, select Process List from the Reports menu in the main window.

 Process Reports

The Reports menu provides more information about an individual process. Here are two of the available reports.

 More Process Reports

The following reports provide additional information about a process.

If, after reviewing the processes, you need to either kill a process or give it a new nice value, use the options on the
Admin menu, available in the Process List window.
When you kill a process, the process is removed from the system. When you assign a process a new nice value, the
rate at which its priority decays when being scheduled is altered.

 Monitoring Your System with the Adviser

The GlancePlus Adviser automates monitoring and response to the state of key performance indicators. At each
measurement interval, the Adviser executes a predefined set of instructions that examine performance metrics.
When a performance metric exceeds thresholds, the Adviser lights the ALARM button label or the CPU, Memory, Disk,
or Network button labels.

 Alarm Concepts

The ALARM statement is provided in the Adviser syntax to detect conditions that occur over a period of time, normally
longer than one interval. By using the ALARM statement, you can specify actions that are executed at the onset of the
alarm, actions that can be executed while the alarm condition remains true, and actions that can be performed when
the alarm condition subsides.

 Symptom Concepts

The SYMPTOM statement is provided in the Adviser to detect bottleneck situations that are influenced by more than
one metric.
By summing the probabilities of the conditions of each rule found to be true, a single value is derived that represents
the likelihood that a specific resource is OK, may be developing a problem, or is certainly experiencing a problem.
Each SYMPTOM statement in the Adviser generates a graph in the Symptom History Window to track the behavior of
each symptom over a series of intervals. By observing the symptom graphs, you can determine if the bottleneck
condition was isolated to one interval, or is a continuing trend that requires attention. You can also use the symptom
values to update the color of the graph buttons on the Main window, to signal when a bottleneck condition is present.
In the picture below you can see what happens when a bottleneck is encountered on your system.

 Configuring GlancePlus

You can customize your GlancePlus display by changing various display characteristics, rearranging report columns,
sorting report fields, and filtering processes.
Check Related Topics below for more information about configuring GlancePlus.
All configuration changes you make are saved for the next time you run GlancePlus, as long as you exit GlancePlus
through the file menu or double click on the window menu bar. If you do not exit through the file menu, configuration
changes are not saved. This includes sorting, filtering, column rearrangement, window size and location, and number
of active windows.
If you never want to save configuration changes when you exit GlancePlus normally, use the -nosave command line
option when you start GlancePlus.

 Configure Colors

You can change the colors used for the graphs and process filters. If desired, you can also change the Adviser colors.
Depending on the availability of colors, GlancePlus may not be able to reserve its own private colors. If this is the
case, and GlancePlus uses shared colors, you will not have access to the Configure Colors option.

 Configure Font

If you are viewing a report with many columns, decreasing the font size allows you to see more columns at one time.
Changing the font size does not affect the font used to label graphs.

 Configure Measurement

With GlancePlus you can define the length of the measurement interval and the number of these intervals to save into
the history buffers. The interval defines the time between each measurement update. The history buffers save the
pertinent interval information for use in graphs and the Application History window. For graphs that show history, the
history buffer dictates the number of points shown on the graph, with each point representing an interval.

 Configure Icon

 Configure Graph Limits

The Disk and Network graphs automatically scale up if a data point is measured that is higher than the current high
value (which is the highest value that GlancePlus has observed since it was installed). If the top point of these graphs
is an unusual spike, you may want to reset the limit to a lower value.

The limit value you enter must always be equal to or higher than the highest measured point found in the history
buffer. If a point in the history buffer is higher than the input value, the highest measured point is used as the limit
value.

 Configure Process Filters

 Rearrange Report Columns

 Sort Columns

Guided Tour

The GlancePlus Guided Tour is a quick introduction to the features of GlancePlus.
Because the illustrations in this tour are large, you may want to enlarge your help window before you begin.
Click one of the topics below to begin the tour.

Guided Tour - GlancePlus Main Window
Guided Tour - CPU Bottleneck, panel 1
Guided Tour - Memory Bottleneck, panel 1
Guided Tour - Configuring GlancePlus
Guided Tour - Alarms & Symptoms

Guided Tour - GlancePlus Main Window

The Main window is the first window you see when you run GlancePlus. Its menus provide access to all GlancePlus
features. If you wish, you can navigate using speed keys as an alternative to using the mouse.

Guided Tour - CPU Bottleneck, panel 1

The following panels walk you through a typical CPU bottleneck scenario, from the time you notice there's a potential
problem to the discovery of the cause of the bottleneck.

Guided Tour - CPU Bottleneck, panel 2

Applications are processes you group together to better organize your picture of system activity. In this example we'll
look for the application and the process using the majority of the CPU, causing a bottleneck.

Having identified the offending process, as system administrator, you can take the appropriate action.

Guided Tour - Memory Bottleneck, panel 1

This is the first of two panels that walk you through a typical memory bottleneck scenario, from the time you notice
there's a potential problem to the discovery of the cause of the bottleneck.

Let's look at the process level for further clues . . .

Guided Tour - Memory Bottleneck, panel 2

Next we'll look at the process level to find the processes using more than their share of memory. The process level is
where your search for bottlenecks will frequently end.

Having identified the offending processes, as system administrator, you can take the appropriate action.

Guided Tour - Configuring GlancePlus

Use the Configure menu on the Main window to set graph colors, font size, measurement interval, GlancePlus icon,
graph limits, and the main graph style. The windows below show some examples of the GlancePlus configuration
options.

Guided Tour - Alarms & Symptoms

The GlancePlus Adviser monitors your system. It works in two ways: by lighting an alarm button when conditions
occur that you specify, and notifying you of symptoms for potential CPU, disk, network, or memory bottlenecks.

Customize GlancePlus Start-Up

You can customize your operation of GlancePlus by adding command line options to the xglance command. You
can add as many parameters to the xglance command line as you like. Here are the three most commonly-used
command line options:

-nosave By default, when GlancePlus closes, it automatically saves all configuration changes
you made during that session, including sorting, filtering, column rearrangement,
window size and location, and number of active windows. If you don’t want to save
these options, start GlancePlus with the –nosave option.

xglance –nosave ...

-sharedclr If you will be running several versions of GlancePlus or just want to share colors with
another application, use the –sharedclr option. It causes GlancePlus to use a
color scheme that is shared by other X-window applications that are currently running.
While it disables the ability to configure colors within GlancePlus, it potentially solves
the problem of applications being unable to run because of a shortage of colors.

xglance –shareclr ...

-rpt Use the –rpt option to tell GlancePlus to open specific windows on startup (this is in
addition to the windows that were saved automatically the last time you ran
GlancePlus). For example:

xglance -rpt windowname1 windowname2 ...

where windowname1 and windowname2 are the GlancePlus
window names for the windows you want to display. Refer
to the Windows List for window names for all the
GlancePlus windows you can display at startup.

Override Configuration Updates

You can set up GlancePlus so that certain windows display when you open GlancePlus.
1. Arrange the windows on your screen in the order that you want to see them.

2. Exit GlancePlus. This saves the configuration you set up as your own control panel.

3. The configuration changes are saved in the .gpmhp <hostnamefile, where hostname is the name of the system
(uname -n) where xglance is running.

4. When you restart GlancePlus, use the -nosave option. This ensures that what was saved in your configuration
file will not be changed by anything you do in future sessions of GlancePlus and your control panel arrangement
will not change.

Windows List

Use the GlancePlus window name when you want to start GlancePlus with specific windows already open. Use the
following command:

xglance –rpt windowname1 windowname2 ...

where windowname1 and windowname2 are GlancePlus window names from the right-hand column of the list
below.
NOTE:
Some windows in the list are specific to particular platforms, as indicated in parentheses.

Window GlancePlus Window Name

GlancePlus Main Main

Alarm History AlarmHistory

Application CPU Graphs ApplicationCpuGraphs

Application List ApplicationList

CPU By Processor CpuByProcessor

CPU Graph CpuGraph

CPU Report CpuReport

Disk Graph DiskGraph

Disk Queue Graphs (Sun, SNI) DiskQueueGraphs

Disk Report DiskReport

File System Capacity (Sun, SNI) FileSystemCapacity

IO By Disk IOByDisk

IO By File System (N/A on SNI and Sun) IOByFileSystem

IO By Logical Volume (HP-UX 11, Sun) IOByLogicalVolume

IO By Virtual Disk (SNI only) IOByVirtualDisk

Memory Graph MemoryGraph

Memory Report MemoryReport

Memory Usage Graph MemoryUsageGraph

Network By Card Graph NetworkByCardGraph

Network By Interface NetworkByInterface

Network By LAN NetworkByLan

Network Graph NetworkGraph

NFS By Operation NfsByOperation

NFS By System (HP-UX) NfsBySystem

NFS Global Activity NfsGlobalActivity

PRM CPU Graphs (HP-UX 10.20, 11.x) PRMCPUGraphs

PRM Group List (HP-UX 10.20, 11.x) PRMGroupList

PRM Memory Graphs (HP-UX 10.20, 11.x) PRMMemgraphs

Process List ProcessList

Process Memory Regions ProcessMemoryRegions

Resource History ResourceHistory

Swap Space SwapSpace

Symptom History SymptomHistory

Symptom Status SymptomStatus

System Attributes SystemAttributes

System Calls (HP-UX 10.20, 11.x) SystemCalls

System Tables Graph SystemTablesGraph

System Tables Report SystemTablesReport

Transaction Tracking TransactionTracking

Virtual Memory Graph (AIX, NCR) VirtualMemoryGraph

Wait Queue Graphs (Sun, AIX) WaitQueueGraphs

Wait States (N/A on Sun) WaitStates

 Set GlancePlus Measurements

You can set the collection interval and the number of graph points displayed in a graph. For example, you might want
to monitor activity over a short period of time by setting a small interval. If you want to monitor a longer period of time,
you would set a longer collection interval.

Change Graph Limits

To adjust the scaling for the Disk and Network graphs on the Main and Resource History windows:

The new limit must be equal to or higher than the highest amount in the history buffer. If you set a lower limit,
GlancePlus automatically readjusts the limit to the High value to avoid clipping any data.

 Renice a Process

You can also renice a process from the Admin menu of any Process detail window.
Decreasing the nice value can increase a process' chance of acquiring CPU time. You make that process "not as
nice," since it leaves less CPU time for other processes. Increasing the nice value lessens the process' chance of
getting CPU time.
Adjusting the nice value has the biggest impact on processes that are CPU-bound. On non CPU-bound processes, it
may have little or no effect.

Reset Cumulative Values

To reset cumulative values to zero, choose one of the following options:

Terminate a Process

You can also terminate a process from any process detail window.
GlancePlus uses the SIGKILL (kill -15) signal to kill a process.

Update Metrics

You can update the metrics on the screen at any time. For example, even though the defined interval is 15 seconds,
you can request an update before 15 seconds has elapsed.

Change Display Colors

Change Font Size

Change Graph Icon

You can change the way the graph displays when GlancePlus is iconified. When iconified, GlancePlus continues to
report your system's activity through the icon. The icon border also changes color when either a red or a yellow alert
occurs.
If your GlancePlus icon displays too large or too small, you can override the default icon size by changing the
variables in the Gpm file. For more information on editing the Gpm file, see Modifying Runtime Parameters.

Change Main Graph Style

You can display the information in your main window in one of four ways:

Rearrange Report Columns

To rearrange report columns:

Click Cancel at any time to cancel your changes and return the columns to their original order.

Sort Report Fields

You can change the way information is sorted in a report window by adding or deleting columns from the sort area.
After you have selected sort columns, sorting is done from left to right as specified by the columns in the sort area,
with the left-most column sorted first.
To change the sort order:

If you'd like to arrange the columns differently, see Rearrange Report Columns.

Set Filters

To set filters so that a process displays in the Process List window only when certain conditions are met:

Click OR Logic to display processes in the Process List window that match any one or more of the criteria you specify.
Click AND Logic to display processes in the Process List window that match all of the criteria you specify.
Click Disable ALL Filters to turn off all process filters.
NOTE: If you are filtering and you have a process already highlighted in the Process List window, that process
continues to display even if you have set the filters to exclude it.

Highlight Metrics

To specify a metric to highlight:

Click Disable ALL Highlights to turn off all metric highlights.

Modifying Runtime Parameters

GlancePlus uses a defaults file, called Gpm, to control certain run-time parameters. The application defaults for
GlancePlus are stored in:

/var/opt/perf/app-defaults/C/Gpm

You can edit this file to:

• change the system-wide behavior of GlancePlus

• override the application defaults in your local X server database

Before you edit the file, save a copy in case you need to restore the original.
The parameters you can change are:
Font Type and Size
Icon Size
Column Width

If you just want to define these parameters for your own display, make the changes in your local .Xdefaults file.

Font Type and Size

You can override the default font types and sizes used in GlancePlus. Use the following lines to change the font type
or size:

GpmtinyFont

GpmsmallFont

GpmmediumFont

GpmlargeFont

GpmvariableTextFont

GpmwidgetButtonFont

The Gpm*widgetButton Font is the font used in the menus. The Gpm*variableTextFont is used for graph labels.
See the Gpm file for an example of each font's format.

Icon Size

If your GlancePlus icon is too large or too small, you can override the default icon size. Use the following two lines to
change the icon size:

GpmiconWindowHeight:nn

GpmiconWindowWidth:nn

Be aware, however, that GlancePlus only gives you the largest icon size permitted by your display.

Column Width

You can configure the width of certain columns that contain highly variable data widths. The default and maximum
column width vary for different types of columns. Column names that exceed the current width settings are truncated
to fit the column. As explained in the truncation rules, names may be truncated from the left, in the center, or on the
right, depending on the metric being represented.
NOTE: You can enable the tooltip feature to display the entire length of a truncated string. Refer to Display Truncated
String Data for more information.

Column width is controlled by various X resources provided as commented lines in the apps-defaults file, located
in:

/var/opt/perf/app-defaults/C/Gpm

To change a column width for all users, uncomment the appropriate resource in the app-defaults file and set
the column width as desired, within allowable ranges. For example, use Gpm*pathNameWidth to change the width
of the column for device names, directory names, swap space names, and logical volume names.

After the change, users entering xglance see the affected columns at the reconfigured width. Resources are
provided for path names, file names, transaction name, and logical volume group name.
To implement these changes for individual users, set these X resources locally, as explained in the man page for X.
Resource names, default width, minimum/maximum width, applicable metrics, and truncation rules are as shown in the
table.

Resources Table

Controlling
Resource

Defa
ult
Widt
h

Min/M
ax
Range

Metric
Name

Truncation
Rules

Gpm*pathNameWidth 20 15-40 BYDSK_DEVNAME center
 BYDSK_DIRNAME center
 FS_DEVNAME left
 FS_DIRNAME left
 LV_DIRNAME left
 BYSWP_SWAP_SPACE_NAME left
Gpm*openFileNameWidth 32 15-68 PROC_FILE_NAME center
 PROC_REGION_FILENAME center
Gpm*transactionNameWidth 20 15-128 TT_NAME center
 TT_USER_MEASUREMENT_NAME center
 TT_CLIENT_TRAN_NAME center
Gpm*transactionInfoWidth 20 15-128 TT_INFO center
Gpm*transactionAppNameWidth 20 15-128 TT_APP_NAME center
 TT_CLIENT_APP_NAME center
Gpm*transactionUserNameWidth 15 15-128 TT_UNAME center
 TT_CLIENT_USER_NAME center
Gpm*lvGroupNameWidth 11 10-20 LV_GROUP_NAME right

Version Window Display Time

You can set the number of seconds that the GlancePlus version window displays at startup. Use
Gpm*aboutWindowTime=n where n is the value in seconds. A value of 0 seconds will cause the window not to
display at all.
For example:

Gpm*aboutWindowTime=0 will give no display

Gpm*aboutWindowTime=5 will display the Version window for 5 seconds.

Truncation Rules

Names that are truncated on the left use * (asterisk) to replace the missing characters. The following names are
truncated on the left:

• file system device names

• directory names

• swap space names

• logical volume names

Names that are truncated in the middle use ... (three dots) to replace the missing characters. The following names
are truncated in the middle:

• process file names

• disk device names

• directory names

• transaction names

• transaction application names

• transaction user names

• transaction information

Names that are truncated on the right have no indicator of the missing characters. The following names are truncated
on the right:

• • logical volume group names

NOTE: You can enable the tooltip feature to display the entire length of a truncated string. Refer to Display Truncated
String Data for more information.

Display Truncated String Data

GlancePlus tooltips allow you to see the full text of string data that has been truncated in a row-column report window.
Tooltips are available in any GlancePlus window that displays data in a row-column format; they are not available in
graph windows. The text of a tooltip automatically updates as the data changes. Tooltips can be turned on and off;
they are turned on by default.
There are two ways to enable/disable tooltips:

1 Select the Configure menu from the top of the report window, then click Tooltips.
2 Click the "T" button in the top right corner of the window.

To display the tooltip:

• make sure tooltips are enabled,

• move the cursor over the truncated string and hold it there for about 1 second.

NOTE: When tooltips are turned on, the Tooltips item on the Configure menu displays Tooltips (on) and the T button
in the top right corner of the window appears to be pressed in (it’s a different color).

Speed Keys

You can navigate using the following speed keys as an alternative to using the mouse.

Speed Key Action

Alt + underlined character Open the menu. For example, Alt+F opens the File menu.

Arrow keys Navigate up and down through opened submenus. Open a

selected submenu by pressing [Enter].

<Ctrl>F Find in the Process List Window. Opens the Search List Dialog
Window to search for a process by Process Name or by Process
Command Line.

<Ctrl>M Raise Main Window -- Bring the GlancePlus Main Window to the
front

<Ctrl>N Find Next in the Process List Window. Search for each instance in
the list.

<Ctrl>Q Exit GlancePlus

<Ctrl>U Update Now -- Update the metrics on the screen.

<Ctrl>W Close Window – Close the active window

<Ctrl>Z Reset Cum to Zero -- Reset cumulative values to zero

Defining Applications

To define applications, you edit the parm file, an ASCII text file, located in this directory:
/var/opt/perf

GlancePlus uses the parm file to define applications. You can group related processes together into an application to
monitor the combined effect of those processes on such things as disk, memory, and CPU activity. Grouping your
processes in this way lets you quickly tune your system for maximum performance.
In GlancePlus, the Application List and Application History windows display metrics for applications defined on the
system you're monitoring.
Creating a Personal Parm File
Changing the Parm File
Parm File Syntax

Create a Personal Parm File

If you want to add or change applications, or make any other changes to the parm file (such as changing the system
ID) without affecting other performance products or users, you can use a personal parm file.

Simply copy the parm file to your home directory and rename it .parm. Then make any necessary changes.
GlancePlus always looks for a personal .parm file first.

Change the Parm File

You can use almost any text editor that produces standard ASCII files to create or modify the parm file. The result
must be a standard ASCII file. When you create or modify the parm file, the following rules and conventions apply:

You need only specify a parameter if you want to override a default.

The order in which the parameters are entered into the parm file is not important except as follows:

• If a parameter is entered more than once, the last one entered is used.

• The file, group, priority, argv1, cmd, or and user statements must follow the application
statement that they define.

You can use uppercase letters, lowercase letters, or a combination of both for all commands and parameter
statements.
You can use blanks or any other non-alphanumeric characters (such as semicolons and commas) to separate key
words in each statement. You can comment the parm file. Any line starting with a comment code (*) or pound sign
(#) is ignored.

Modify the Parm File

To modify the parm file:
1. Make a backup copy of the parm file.

2. Edit the parm file on any system. If you change existing application definitions in the parm file, GlancePlus running
on that system is affected.

3. Save the file.

4. Restart GlancePlus.

Parm File Syntax

ID =ID name

javaarg =true/false

Application=application name

argv1 =first command argument [,]

cmd =command line regular expression

File =list of files

User =list of user names

Group =list of user group names

Or =or

Priority =range

System ID

The system ID value is a string of characters that identifies your system. If you have multiple systems, use different ID
strings on each one.
You can specify a maximum of 40 characters.

The default ID is the nodename as returned by uname -n.

Log

Specifying global in the log parameter causes global records to be written to the logglob log file.

You must log global data in all cases. You must have global data records to view and analyze performance data on
your system.

Specifying application in the log parameter causes application records to be written to the logappl log file.

Specifying process in the log parameter causes interesting processes to be written to the logproc log file. (A
process becomes interesting when it is first created, when it terminates, or when it exceeds certain user-defined
thresholds.)

Specifying device=disk in the log parameter causes individual disk, volume, or LAN device records to be written
to the logdev file.

The default is log=global, process, device=disk

All of the log files are created automatically if logging to them is specified and they do not already exist. If a particular
type of logging is disabled, the corresponding log file is not removed.
NOTE:
If you specify log without options, the default global, process, and disk device data are logged.

Threshold

You can change interesting process thresholds by changing their values. The cpu option sets the percentage of CPU
utilization that a process must exceed to become interesting and be logged. It is used only if process logging is
enabled.

The value percent is a real number indicating overall CPU use. For example, cpu=7.5 indicates that a process is
logged if it exceeds 7.5 percent of CPU utilization in a 1-minute sample.

The disk option sets the rate of major page faults or block IOs that a process must exceed to become interesting and
be logged. The value rate is the disk IO rate in transfers per second, and is a real number. For example, disk=8.0
indicates that a process will be logged if it exceeds either 8 major page faults or 8 block IOs per second in a 1-minute
sample.
You can enter the statements for thresholds on the same parameter line (separated by commas) or on separate lines.
The default for threshold is:

threshold cpu=10.0,disk=10.0

The nonew option turns off logging of new processes if they have not exceeded any threshold.

The nokilled option turns off logging of exited processes if they did not exceed any threshold.

Size

Use the size parameter to set the maximum size in megabytes of any raw log file. By default, logglob (the global
file), logappl (the application file), and logdev (the device file) have a maximum size of 10 megabytes each. The
process file logproc has a maximum size of 20 megabytes. You cannot set the size to be less than one megabyte.

The scopeux collector reads these specifications when it is initiated from scope.start. If any of these log files
achieve their maximum size during collection, they are rolled back dynamically at the next maintenance time. During
the rollback, the oldest 25 percent of the data is removed from the logfile.

If the size specification in the parm file is changed, scopeux detects it during startup and takes appropriate action.
If the maximum log file size is decreased to the point where existing data does not fit, an automatic resize takes place.
If the existing data fits within the new maximum size specified, no action is taken.

Application

The application name defines an application or class that groups together multiple processes and reports on their
combined activities. The name is a string of up to 19 characters used to identify the application in the parm file.

application=application name

See the application parameter rules for additional details.

Application Parameter Rules

• The parm file is processed in the order entered and the first match of program name, group, and/or user login
defines the application to which a particular process belongs.

• The application statement must precede any combination of file, user, group, cmd, or, argv1, or
priority statements that refer to it, with all such statements applying against the last application workload
definition.

• Each statement can be up to <nobreak”170 characters” long including the carriage return, with no continuation
characters permitted. If your list of files, users, or groups is longer than 170 charactrers, continue the list on the next
line after another file, user, or group.

• If user, file, group, cmd, argv1, or, and priority parameters are specified for the same application, a
process must match one of the file name type parameters. The user login must match one of the user and group
parameters and fall within the specified priority range in order to belong to a particular application. A process cannot
belong to a particular application if it fails to match any of the four parameters.

• You can define up to 31 applications as needed. A predefined application called "other" collects all processes that
are not defined by application parameters in the parm file.

• Any process on the system belongs to one application only. Processes are based on name, not program path.
Therefore, two processes with the same name but different paths (file system location), are considered to be the
same process.

• If a program file (such as a process) is included in more than one application, the process belongs to the first
application that contains it.

For example:

application=Prog Dev

file=vi,cc,ccom,pc,pascomp,dbx,xdb

application=xyz

file=xyz*,startxyz

You can have a maximum of <nobreak”300 file”, <nobreak”300 user”, and <nobreak”300 group” specifications for all
applications combined. The previous example includes nine file specifications.

(xyz* counts as only one specification even though it can match more than one program file.)

By default, no user applications are defined.

File

The file parameter specifies which program files belong to an application. All interactive or background executions
of these programs are included. The parameter applies to the last application statement issued. An error is
generated if no application statement is found.

The file name can be any of the following:
• a single UNIX program file such as vi

• a group of UNIX program files (indicated with a wildcard) such as xyz

In this case, any program name that starts with the letters xyz is included. A file specification with wildcards counts as
only one specification toward the maximum of 300 for all file, user, and group specifications.

You can enter multiple file names on the same parameter line (separated by commas) or in separate file
statements. File names cannot be qualified by a path name.
For example:

application=payroll

file=account1,basepay,endreport

application=Prog Dev

file=vi,cc,ccom,pc

file=pascomp,xdb

If you do not specify a file parameter, all programs that satisfy the other parameters qualify.

User

The user parameter specifies which user names belong to an application.
For example:

application=Prog Dev Group 2

file=vi,xb,abb,ld,lint

user=ted,rebecca,test*

User specifications that include wildcards count as only one specification toward the maximum of 300 for all file, user,
and group specifications.

If you do not specify a user parameter, all programs that satisfy the other parameters qualify.

Group

The group parameter specifies which user group names belong to an application.
For example:

application=Prog Dev Group 2

file=vi,xb,abb,ld,lint

user=ted,rebecca,test*

group=lab,test

If you do not specify a group, all programs that satisfy the other parameters qualify.

Or

Use the or parameter to allow more than one application definition to apply to the same application. Within a single
application definition, a process must match at least one of each category of parameters. Parameters separated by
the or parameter are treated as independent definitions. If a process matches the conditions for any definition, it
belongs to the application. For example:

application=Term12

user=sysop

or
user=sysman

file=vi,store,dmp

This defines the application (Term12) that consists of any programs run by the user sysop plus other programs
(vi,store,dmp) if they are executed by the user sysman.

Priority

The priority of processes can range from 0 to 255 for the standard HPUX scheduler. (Other schedulers have different
priority ranges.) The list below specifies the range reserved for each process mode.
\0-127\Real Time
\128-177\System
\178-255\Time Share (User)

You can restrict processes in an application to those belonging to a specified range by using the priority
parameter. For example:

application=swapping

priority=128-131

This parameter groups all processors running at PSWP priority into one application. If you do not specify a priority, all
programs that satisfy the other parameters qualify.

The priority of a process can change over the life of the process. The scheduler adjusts the priority of time-share
processes. A user can also change priority programmatically or while the process is executing, with the nice and
rtprio commands.

The process priority is sampled at the end of each one-minute sample interval. If the process has changed priority, it
can change applications. All activity for a process during the one-minute interval is assumed to have occurred at the
new priority and is attributed to the application that matches the process at the end of each one-minute sample
interval.

Application Definition Examples

The following list shows application definition examples.
application=Real Time

priority=0-127

application=Prog Dev Group 1

file=vi,dbx,abb,ld,lint

user=bill,debbie

application=Prog Dev Group 2

file=vi,dbx,abb,ld,lint

user=ted,rebecca,test*

group=labmqa

application=Other Editors

file=ed,sed,awk

application=Compilers

file=cc,ccom,xlc,c++fe

application=Users

user=nelson,ted,rebecca,gene

cmd
The cmd parameter specifies processes for inclusion in an application by their command strings, which consists of the
program executed and its arguments (parameters). Unlike other selection parameters, this parameter allows extensive
wildcarding besides the use of the asterisk character.
Similar to regular expressions, extensive pattern matching is allowed. For a complete description of the pattern criteria,
see the UNIX man page for fnmatch. Unlike other parameters, you can have only one selection per line, however you
can have multiple lines.
The following shows use of the cmd parameter:

application = newbie
cmd = *java *[Hh]ello[Ww]orld*

javaarg

The javaarg parameter is a flag that can be set to true or false. It ONLY affects the value of the
proc_proc_argv1 metric.

When javaarg is set to false or is not defined in the parm file, the proc_proc_argv1 metric is always set to the
value of the first argument in the command string for the process.

When javaarg is set to true, the proc_proc_argv1 metric is overridden, for java processes only, with the class
or jar specification if that can be found in the command string. In other words, for processes whose file names are
java or jre, the proc_proc_argv1 metric is overridden with the first argument without a leading dash not following
a -classpath or a -cp, assuming the data can be found in the argument list provided by the OS.

While this sounds complex, it is very plain when you have java processes running on your system: set javaarg=true
and the proc_proc_argv1 metric is logged with the class or jar name. This can be very useful if you want to
define applications specific to java. When the class name is in proc_proc_argv1, then you can use the argv1=
application qualifier (explained below) to define your application by class name.

argv1

The argv1 parameter specifies which processes are selected for the application by the value of the
PROC_PROC_ARGV1 metric. This is normally the first argument of the command line, except when javaarg=true,

when this is the class or jar name for java processes. This parameter uses the same pattern matching syntax used
by parm parameters like file= and user=. Each selection criteria can have asterisks as a wildcard match character,
and you can have more than one selection on one line separated by commas.
For example, the following application definition buckets all processes whose first argument in the command line is
either -title, -fn, or -display:

application = xapps
argv1 = -title,-fn,-display

The following application definition buckets a specific java application (when javaarg=true):
application = JavaCollector
argv1 = com.*Collector

The following shows how the argv1 parameter can be combined with the file parameter:
application = sun-java
file = java
argv1 = com.sun*

Introduction to the GlancePlus Adviser

The GlancePlus Adviser monitors your system; it looks for performance metrics that are exceeding their defined
thresholds and notifies you when such a condition exists. It sends alarms when specified conditions occur, and notifies
you of symptoms of potential bottlenecks.
The Adviser gets its commands from a text file that you can customize to suit the needs of your organization. You can
modify the syntax of the Adviser text file to define performance metric thresholds, such as:

• when global swap space is nearly full,

• when the system process table is near capacity, and

• when your CPU has been running at 90% busy for more than 2 minutes.

The Adviser notifies you when it detects a condition that exceeds the specified thresholds. You can configure it to:

• display information to stdout,

• execute a UNIX mail command, such as mailx, to send a message,

• make the GlancePlus ALARM button turn yellow or red or, if you are running GlancePlus iconified, it can place a red
or yellow border around the GlancePlus icon, or

• display a specific GlancePlus window to help you analyze the problem.
You specify Adviser symptoms and alarms in the syntax of the Adviser text file. The syntax defines each of the specific
thresholds and rules as well as the actions that are triggered if certain conditions are present.

The Adviser syntax to be used is specified in a file that is identified at run time with the -syntax
<filenameoption. If no syntax file is specified, the Adviser looks for a user default file named adviser.syntax
in your home directory. If no user default is found, the Adviser looks for a system default syntax file named
adviser.syntax in the /var/opt/perf/ directory.

By default, the GlancePlus Adviser is turned on whenever you run glance or xglance. If you like, you can turn it off by
using the -adviser_off run-time parameter when you start glance or xglance.

Any output produced by the Adviser is sent to the file adviser.out in your local directory.

You can also specify that the Adviser run alone without the GlancePlus user interface. In this mode, Adviser sends its
messages to stdout. To run GlancePlus and the Adviser in this way, include the -adviser_only option when
you start glance or xglance.
A good way to learn how to customize the Adviser syntax is to make small modifications to the default Adviser syntax
file. The default Adviser file is /var/opt/perf/adviser.syntax.
Choose one of the topics below to learn more about the Adviser:

Adviser Syntax Structure
Adviser Syntax Reference
Editing Adviser Syntax

 Alarms and Symptoms

Alarms are simply a way to highlight metric conditions in GlancePlus. A symptom is a combination of conditions that
occurs during an interval and contributes to a bottleneck on your system.

 What is an Alarm?

An alarm can trigger whenever conditions that you specify are met. Alarms are based on any period of time you
specify, which can be one interval or longer. Conditions or events that you might want to set as Adviser alarms
include:

• when global swap space is nearly full

• when the page in rate is too high

• when your process table is near capacity

• when your CPU has been running at 75% utilization for the last two minutes

Several screens let you look at alarm status and history. The status of alarm conditions determines the color of the
main window's Alarm button. Several alarms are defined in the GlancePlus default Adviser syntax. (To see the default
syntax, open the Edit Adviser Syntax window in GlancePlus.)

 What is a Symptom?

Complex alarms can be built based on symptoms. The GlancePlus default Adviser syntax defines four bottleneck
symptoms for you, then defines alarms based on those symptoms. (Open the Edit Adviser Syntax window in
GlancePlus to see the default syntax.)

By observing different metrics with corresponding thresholds and adding values to the probability that these metrics
contribute to a bottleneck, the Adviser calculates one value that represents the combined probability that a bottleneck
is present.

Unlike the ALARM statement that monitors conditions over a period of time normally longer than one interval, the
SYMPTOM statement is evaluated and updated every interval. This is why you might see the CPU Bottleneck
Symptom indication prior to a CPU Bottleneck Alarm. Symptoms change rapidly and can become yellow, then red,
then go back to green. An alarm remains yellow or red until it is reviewed or reset.

You can also use the variables you defined in the SYMPTOM statements in the Alarm section. And you can link the
symptoms to the CPU, Disk, Network, and Memory buttons on the main GlancePlus window to notify you of possible
bottlenecks.

For every symptom that you define in the Adviser Syntax window, a graph appears on the Symptom History window to
show that particular symptom's probability over time.

Editing Adviser Syntax

Don't worry too much about making mistakes; you can always go back to the default Adviser syntax by selecting the
Default Syntax option from the Reset menu in the Edit Adviser Syntax Window.
You can edit the syntax in two ways:

• Using the GlancePlus Text Editor

• Using Your Own Text Editor

Using the GlancePlus Text Editor

You can edit the adviser syntax from within GlancePlus. Here's how you do it.

 Syntax Editing Commands

To edit text in the Adviser Syntax Window, you use various editing commands. You cannot use the mouse to move the
cursor in the Adviser Syntax window.

To replace text:

Each time you open the Adviser Syntax window, the editing function is in REPLACE MODE. You can overtype the
syntax with characters or blanks using the Replace Mode.

To return to REPLACE MODE after inserting text, press the Insert char key.

To insert text:

To insert information in the Adviser Syntax window, press the Insert char key. The message at the top of the
Adviser Syntax window changes to INSERT MODE.

To insert lines or characters, use the Insert line or Insert char key.

To delete text:

To delete lines or characters, use the Delete line key or the Delete char key.

Moving the cursor in the Adviser Syntax window:

To move the cursor one character at a time, use your keyboard arrow keys.

To page through text, use the prev and next keys, or use the vertical scroll bar on the right.

To scroll through text horizontally, use the shift key and the left or right arrow keys.

Using Your Own Text Editor

You can edit the adviser syntax using your favorite text editor. Here's how to do it.

Print CPU Total Utilization

Follow these steps to print metric values to the xglance window:
1. From the Main window, select Edit Adviser Syntax from the Adviser menu to open the Edit Adviser Syntax window.

2. In the Edit Adviser Syntax window, press the Insert (or Insert Char) key and then press Return a few times to insert
several blank lines at the top of the file.

3. Insert the following text in the space you just created at the top of the syntax:

print gbl_cpu_total_util

4. From the Syntax menu, select Install Syntax. The Edit Adviser Syntax window closes and the print statement
executes the next time GlancePlus updates its data.
When you select Install Syntax, GlancePlus checks your syntax for correctness. If an error is found, an error
message is displayed at the top of the window. For an explanation of any syntax error messages, see GlancePlus
Messages.

5. Look at the window from which you started GlancePlus. The numbers appearing in that window result from
GlancePlus printing the value of a global GlancePlus metric (your global CPU utilization) every update interval.

Printing CPU Utilization During High CPU Usage

Perhaps you want to print CPU utilization only when usage exceeds 90% busy.
1. 1. Go back to the Edit Adviser Syntax Window and replace the line you typed with the following:

IF gbl_cpu_total_util 90 THEN

print "total cpu utilization is high: ", gbl_cpu_total_util

2. 2. From the Syntax menu, select Install Syntax. The Edit Adviser Syntax window closes, and the print statement
executes the next time GlancePlus updates its data.
When you select Install Syntax, GlancePlus checks your syntax for correctness. If an error is found, an error
message is displayed at the top of the window. For an explanation of any syntax error messages, see GlancePlus
Messages.

3. 3. Look at the window from which you started GlancePlus. You may not see any numbers because data only
displays when your CPU is more than 90% busy.

4. 4. To start a program that uses a lot of CPU and view what happens, type the following at a shell prompt (sh or
ksh) to cause a loop:

while true

do

A=1

done

This makes the shell loop until you interrupt it with control-c. When the loop starts, the Adviser starts printing out
information.

Sending Email Messages

You can use metrics that are shown in different GlancePlus windows in your Adviser syntax. Rather than printing
metrics to stdout, you can send the same information to yourself in an email message.

1. Go to the Edit Adviser Syntax Window, and replace the line you typed with the following:

IF gbl_cpu_total_util 90 THEN

exec "echo 'cpu is too high' ", gbl_total_util, "% ' | mail root"

2. From the Syntax menu, select Install Syntax. The Edit Adviser Syntax window closes.

When you select Install Syntax, GlancePlus checks your syntax for correctness. If an error is found, an error message is
displayed at the top of the window. For an explanation of any syntax error messages, see GlancePlus Messages.

Printing Process Information Within a Loop

To customize your syntax further, you can combine metrics, define variables, and use looping constructs. This
example shows how you can:

• construct loops inside conditions which only execute when a potential problem situation arises

• use variables inside the adviser syntax to keep track of things inside loops. You could change the thresholds in this
example to isolate problems unique to your environment.

This example tests for an overall high global system mode CPU utilization. When GlancePlus encounters this
situation, it loops through all the active processes, printing out information about the process with the highest
percentage of time spent in system mode.

1. Go back to the Edit Adviser Syntax Window, and replace the line you typed with the following:

// check for high system-mode cpu utilization, and when it is high,

// print the highest sys cpu consuming process:

IF gbl_cpu_sys_mode_util 5 THEN {

highestsys = 0

process loop

IF proc_cpu_sys_mode_util highestsys THEN {

highestpid = proc_proc_id

highestname = proc_proc_name

highestsys = proc_cpu_sys_mode_util

}

print "--- High system cpu rate = ", gbl_cpu_sys_mode_util, " at ",

gbl_stattime, " ---"

print " Process with highest system cpu was pid ", highestpid " 5 " 0,

", name: ", highestname

print " which had", highestsys, " percent system mode cpu utilization"

}

2. From the Syntax menu, select Install Syntax. The Edit Adviser Syntax window closes, and the print statement
executes the next time GlancePlus updates its data.

Print to a File

You can print information to a file by using the PRINT statement in the Adviser Syntax and by rerouting stdout to a
file.

By using the PRINT statement, which sends its output to the defined stdout of GlancePlus, you can format metrics
with literal constants and user-defined variables. To reroute the stdout, start GlancePlus by appending a
>filename to the command line. This causes all output destined for stdout to be placed in the file specified by
filename.

The following example shows how to print global and process metrics to a file:

 Adviser Syntax Structure

The Adviser syntax is a simple script language that allows you to set alarms and define symptom conditions. These
alarms and symptoms monitor your system and notify you when selected performance metrics are exceeding
threshold limits.

A default syntax file is provided in /var/opt/perf/adviser.syntax. You can edit the syntax file to define
your own alarms and symptoms.

A specific syntax file can be requested at run time with the -syntax <filenameparameter. If no syntax file is
specified, the Adviser looks for a user default file, adviser.syntax in your home directory. If no user default is
found, the Adviser looks for the system default syntax file in /var/opt/perf/adviser.syntax

This section shows the structure for both the Alarm and Symptom syntax. To get more detailed information on the
elements of the syntax, click the desired element.

Alarm Syntax
ALARM condition [FOR duration{SECONDS, MINUTES, INTERVALS}]

[condition [FOR duration{SECONDS, MINUTES, INTERVALS}] ...

[START statement]

[REPEAT [EVERY duration {SECONDS, MINUTES, INTERVALS}] statement]

[END statement]

[(RED or CRITICAL), (YELLOW or WARNING), RESET] ALERTALERT_Statement printlist
ALIAS variable = " alias name "
[VAR] variable = expression

 {

 compound statements
 }
EXEC printlist
GPM rpt reportlist
IF condition
 THEN statement

 [ELSE statement]

{APPLICATION, APP, CPU, DISK, FILESYSTEM, FS, LAN, LOGICALVOLUME, LV, NETIF, NFS,
NFS_OP, PROCESS, PROC, PROC_FILE, PROC_REGION, SWAP, TRANSACTION, TT, TTBIN,
TT_CLIENT, TT_INSTANCE, TT_UDM, TT_INSTANCE_CLIENT, TT_INSTANCE_UDM, TT_CLIENT_UDM}
LOOP statement
PRINT printlist

Symptom Syntax
SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]
RULE measurement {>, <, <=, >=, ==, !=} value PROB probability

[RULE measurement {>, <, <=, >=, ==, !=} value PROB probability]

For detailed Adviser Syntax reference information, refer to Adviser Syntax Reference.

 Adviser Syntax Reference

Click any item below to learn more about the Adviser syntax and how to use it. Each statement definition includes an
example. For more complex examples, click Alarm Examples.

Syntax Elements

 Syntax Conventions
 Comments
 Conditions
 Constants
 Expressions
 Metric Names
 Printlist
 Variables

Statements

 ALARM Statement
 ALERT Statement
 ALIAS Statement
 ASSIGNMENT Statement
 COMPOUND Statement
 EXEC Statement
 GPM Statement
 IF Statement
 LOOP Statement
 PRINT Statement
 SYMPTOM Statement

Syntax Conventions

• Braces ({}) indicate that one of the choices is required.

• Brackets ([]) indicate an optional item.

• Items separated by commas within brackets or braces are options. Choose only one.

• Italics indicate a variable name that you will replace.

• All CAPS are Adviser syntax keywords.

Comments

Syntax:
[any text or characters]

or
// [any text or characters]

You can precede comments either by double forward slashes (//) or the pound sign (#). In both cases, the comment
ends at the end of the line.

 Conditions

A condition is defined as a comparison between two metric names, user variables, or numeric constants.

item1 {>, <, >=, <=, ==, !=} item2 [OR item3 {>, <, >=, <=, ==, !=} item4

or:
item1 {>, <, >=, <=, ==, !=} item2 [AND item3 {>, <, >=, <=, ==, !=} item4

 ("==" means "equal", and "!=" means "not equal".)

Conditions are used in the ALARM statement and the IF statement. They can be used to compare two numeric
metrics, variables or constants, and they can also be used between two string metric names, user variables or string
constants. For string conditions, only == or != can be used as operators.

You can use compound conditions by specifying the OR or AND operator between subconditions.

Condition Examples
gbl_swap_space_reserved_util 95

proc_proc_name == "test" OR proc_user_name == "tester"

proc_proc_name != "test" AND proc_cpu_sys_mode_util highest_proc_so_far

Constants

Constants can be either numeric or alphanumeric. An alphanumeric constant must be enclosed in double quotes.
There are two kinds of numeric constants: integer and real. Integer constants may contain only digits and an optional
sign indicator. Real constants may also include a decimal point.
Constants are useful in expressions, conditions, and statements. For example, you may want to compare a metric
against a constant numeric value inside a condition to generate an alarm if it is too high.

Constant Examples

345 Numeric integer

345.2 Numeric real

"Time is" Alphanumeric literal

 Expressions

Use expressions to evaluate numerical values. An expression can be used in a condition or an action.
An expression can contain:

• numeric constantsConstants>morehelp

• numeric metric namesMetric_Names>morehelp

• numeric variablesVariables>morehelp

• an arithmetic combination of the above

• a combination of the above grouped together using parentheses

Expression Examples
Iteration + 1

3.1416

gbl_cpu_total_util - gbl_cpu_user_mode_util

(100 - gbl_cpu_total_util) / 100.0

Printlist

The printlist is any combination of properly formatted expressions, Metric Names, user variables, or constants. See the
examples for the proper formatting.

Printlist Examples

Expressions
expression ["width["decimals]]

Metric Names or User Variables
metric names ["width["decimals]]

or
user variables ["width["decimals]]

The metric names or user variables must be alphanumeric.

Constants

No formatting is necessary for constants.

Formatted Examples

gbl_cpu_total_util"6"2 formats as '100.00'

(100.32 + 20)"6 formats as ' 120'

gbl_machine"5 formats as '7013/'

"User Label" formats as "User Label"

 Metric Names in Adviser Syntax

You can directly reference metrics anywhere in the Adviser syntax. You can use the following types of metrics in the
Adviser syntax:

• global metrics (prefixed with gbl_ or tbl_)

• application metrics (prefixed with app_)

• process metrics (prefixed with proc_)

• disk metrics (prefixed with bydsk_)

• by CPU metrics (prefixed with bycpu_)

• file system metrics (prefixed with fs_)

• logical volume metrics (prefixed with lv_)

• network interface metrics (prefixed with bynetif_)

• swap metrics (prefixed with byswp_)

• ARM metrics (prefixed with tt_ or ttbin_)

You can use global metric anywhere in the Adviser syntax, but you can only use process, logical volume, disk, file
system, LAN, and swap metrics within the context of a LOOP statement.

Metrics can contain alphanumeric (for example, gbl_machine or app_name) or numeric data and can reflect
several different kinds of measurement. For example, the metric ending of a metric name indicates what is being
measured:

• a _util metric measures utilization in percentages

• a _rate metric measures units per second

• a _queue metric measures the number of processes or threads waiting for a resource

If you are unsure of the unit of measure for a specific metric, refer to the metric definition in online help.

You must associate an application metric with a specific application, except when using the LOOP statement. To do
this, specify the application name followed by a colon, and then the metric name. For example,
other_apps:app_cpu_total_util specifies the total CPU utilization for the application other_apps.
Refer to the ALIAS statement description for more information on using application metrics in the syntax.

Application names, as defined by the parm file, may contain special characters and embedded blanks. To use these
names in the syntax (where application names must match the form of a variable name), the names are made case-

insensitive and embedded blanks are converted to underlines. This means that the application name defined as "Other
Apps" may be referenced in the syntax as "other_apps". For application names defined with special characters, you
must use the ALIAS statement to specify an alternate name.

When explicitly qualified, application metrics may be referenced anywhere in the syntax. Unqualified application
metrics may only be referenced within the context of the LOOP statement. This is an iterative statement which
implicitly qualifies application or process metrics.

You can only reference process metrics within the context of a LOOP statement. There is no way to explicitly
reference a process.

Variables

Variables must begin with a letter and can include letters, digits, and the underscore character. Variables are not case-
sensitive.

The following example defines the numeric variable highest_CPU_value by assigning it a value of zero.
highest_CPU_value = 0

The following example defines the alphanumeric variable my_name by assigning it a null string value.
my_name = ""

ALARM Statement

Use the ALARM statement to notify you when certain events, which you define, occur on your system. Using the
ALARM statement, the Adviser can notify you in a number of different ways:

• through messages to the Alarm History window

• through messages sent to your originating shell

• by automatically opening a GlancePlus window

Syntax:
ALARM condition [FOR duration {SECONDS, MINUTES, INTERVALS}]

[condition [FOR duration {SECONDS, MINUTES, INTERVALS}]] ...

[START statement]

[REPEAT [EVERY duration [SECONDS, MINUTES, INTERVAL, INTERVALS]] statement]

[END statement]

The ALARM statement must be a top-level statement. It cannot be nested within any other statement.
However, you can include several ALARM conditions in a single ALARM statement, in which case all conditions must
be true for the alarm to trigger. And you can also use a COMPOUND Statement, which is executed at the appropriate
time during the alarm cycle.
START, REPEAT, and END are ALARM statement keywords. Each of these keywords specifies a statement. You
must have a START, REPEAT, or END in an ALARM statement, and they must be listed in correct order.
The alarm cycle begins on the first interval that all of the alarm conditions have been true for at least the specified
duration. At that time, the Adviser executes the START statement, and on each subsequent interval checks the
REPEAT condition. If enough time has transpired, the statement for the REPEAT clause is executed. This continues
until one or more of the alarm conditions becomes false. This completes the alarm cycle and the END statement is
executed.
If you omit the EVERY specification from the REPEAT statement, the Adviser executes the REPEAT statement at
each interval.

 ALARM Examples

The following list contains examples of the ALARM syntax.

• ALARM Example: Typical ALARM Statement

• ALARM Example: Using COMPOUND Statements

• ALARM Example: Using Multiple Conditions

• ALARM Example: Process Table

• ALARM Example: Swap Space

• ALARM Example: CPU Problem

• ALARM Example: Yellow Alert

ALARM Example: Typical ALARM Statement

The following ALARM example sets a red alert when the semaphore table is almost full. It is similar to a predefined
Alarm in the default syntax. Do not add this to your syntax without removing the default, or your subsequent alert
messages may be confusing.

ALARM tbl_sem_table_util 90 FOR 1 MINUTE

START RED ALERT "Semaphore Table is nearly full"

REPEAT EVERY 30 SECONDS RED ALERT "Semaphore Table still nearly full"

END RESET ALERT "End of Semaphore Table full condition"

This ALARM example tests the metric tbl_sem_table_util to see if it is greater than 90. If it is, the RED ALERT
statement changes the ALARM button label on the Main window (or on the GlancePlus icon if you are running in
iconified mode) to red and places the "Semaphore Table is nearly full" message in the Alarm History window.
The REPEAT statement checks for the tbl_sem_table_util condition every 30 seconds. As long as the condition is
greater than 90, the REPEAT tells the Adviser to maintain a RED ALERT condition and sends the "Semaphore Table
still nearly full" message to the Alarm History window.
When the tbl_sem_table_util condition goes below 90, the RESET ALERT statement turns off the alert color and logs
the " End of Semaphore Table full condition" message in the Alarm History window.

ALARM Example: Using COMPOUND Statements

Use the following example to use a COMPOUND statement within the ALARM statement. This example shows you
how to make the Adviser open a window when an event occurs and how to print a statement to your originating
GlancePlus shell:

ALARM cpu_bottleneck 90 FOR 1 MINUTE

START {

RED ALERT "Your CPU is bottlenecked."

GPM rpt cpugraph

PRINT "CPU is running at: ", gbl_cpu_total_util

}

END

RESET ALERT "CPU crisis is over."

ALARM Example: Using Multiple Conditions

You can have more than one test condition in the ALARM statement. In this case, each statement must be true for the
alarm button to activate. For example:

ALARM gbl_cpu_total_util 90 FOR 2 MINUTES

gbl_cpu_sys_mode_util 50 FOR 1 MINUTES

START RED ALERT "The CPU is busy and System Mode CPU utilization is high."

END RESET ALERT "The CPU alert is now over."

This ALARM example tests the metric gbl_cpu_total_util and CPU_Bottleneck. If both conditions are true, the RED
ALERT statement sets a critical alert. When either test condition becomes false, the RESET is executed.

Alarm Example: Process Table
ALARM tbl_proc_table_util 90 FOR 1 MINUTES

START RED ALERT "Proc table is nearly full"

END RESET ALERT "End of Proc table full condition"

This alarm turns the Alarm button red when the process table is full. This red alert alarm also shows up in the Alarm
History window.

Alarm Example: Swap Space
//GLOBAL SWAP ALARM

symp_swap_util = gbl_swap_space_used / gbl_swap_space_avail

ALARM symp_swap_util 0.9

START

RED ALERT "GLOBAL SWAP space is nearly full"

END RESET ALERT "GLOBAL SWAP space crisis is over"

This example shows computing a new variable, symp_swap_util, which represents swap utilization. The Adviser
will send an alarm when the swap utilization exceeds 90%. On the next interval that symp_swap_util falls below
90%, the alarm condition becomes false, and the ALARM is reset.

Alarm Example: Yellow Alert
ALARM Symp_Global_Cpu_Bottleneck 50 FOR 2 MINUTES

START

YELLOW ALERT "CPU Bottleneck probability= ",

Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

REPEAT every 2 minutes

YELLOW ALERT "CPU Bottleneck probability= ",

Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

END

RESET ALERT " CPU Bottleneck Yellow Alert over, probability=",

Symp_Global_Cpu_Bottleneck, "%"

The ALARM tests the SYMPTOM variable, which is defined in the SYMPTOM Statement
Symp_Global_Cpu_Bottleneck. If the SYMPTOM variable is greater than 50 for 2 minutes the ALARM notifies
you with a YELLOW ALERT to your main GlancePlus window. The CPU Bottleneck probability message
is recorded in the Alarm History window.

The ALARM REPEATs every 2 minutes until the ALARM condition is false. At that time, END RESETs the ALERT and
posts the corresponding message to the Alarm History window. During each interval that the
Symp_Global_Cpu_Bottleneck is greater than 50%, the CPU Util global bar heading is highlighted.

Alarm Example: CPU Problem
ALARM

gbl_cpu_total_util 90 FOR 30 SECONDS

gbl_run_queue 3 FOR 30 SECONDS

START YELLOW ALERT "CPU AT ", gbl_cpu_total_util, "% at ", gbl_stattime

REPEAT EVERY 300 SECONDS {RED ALERT "CPU AT ", gbl_cpu_total_util

exec "/usr/bin/pager -n 555-3456"}

END ALERT "CPU at ", gbl_cpu_total_util, "% at ", gbl_stattime, " - RELAX"

This example lights a yellow alert on the ALARM button or icon and writes a message to the Alarm History window
whenever CPU utilization exceeds 90% for 30 seconds and the CPU run queue exceeds 3 for 30 seconds.
If both conditions remain true, xglance generates a red alert, writes another message to the Alarm History window and
runs a program to page the system administrator.
When either one of the alarm conditions fails to be true, the ALARM BUTTON or icon resumes its normal color and a
message is written to the Alarm History window giving the global CPU utilization, the time the alert ended, and a note
to RELAX.

ALERT Statement

The ALERT statement is used to place a message in the Alarm History Window. Whenever an ALARM detects a
problem it can execute an ALERT statement to activate the ALARM button label on the Main window or the icon
border to notify you of a problem. A user-customized message, specified by printlist, records the event in the Alarm
History window. You can use the ALERT statement in conjunction with an ALARM statement.

Syntax:
[(RED or CRITICAL), (YELLOW or WARNING), RESET] ALERT printlist

• RED and YELLOW, are synonymous with CRITICAL and WARNING. These keywords place the printlist in the Alarm
History window, along with the time and alarm level, in red or yellow characters. They also change the text color of
the ALARM button on the Main window to red or yellow, or if iconified, set the icon border to a flashing red or yellow
color. If you prefer, you can set a no priority alert (not red or yellow, just information to the Alarm History Window).

• RESET records the printlist in the Alarm History window and resets any colors on the icon or ALARM button to their
normal color.

See ALERT Example

ALERT Example

An example an ALERT statement is:
RED ALERT "CPU utilization = ", gbl_cpu_total_util, " at ", gbl_stattime

When executed this statement turns the ALARM button label red or, if GlancePlus is iconified, puts a flashing red
border in the icon and writes a message in the Alarm History window that reads, for example:

CPU utilization = 85.6 at 14:43:10

ALIAS Statement

Use the ALIAS statement to assign a variable to an application name that contains special characters or imbedded
blanks.

Syntax:
ALIAS variable = "alias name"

ALIAS Example

Because you cannot use special characters or imbedded blanks in the syntax, using the application name "other
user root" in the PRINT statement below would have caused an error. Using ALIAS, you can still use "other
user root" or other strings with blanks and special characters within the syntax.

ALIAS otherapp = "other user root"

PRINT "CPU for other root login processes is: ", otherapp:app_cpu_total_util

ASSIGNMENT Statement

Use the ASSIGNMENT statement to assign a numeric or alphanumeric value, expression, to the user variable.

Syntax:
[VAR] variable = expression

[VAR] variable = alphaitem

[VAR] variable = alphaitem

ASSIGNMENT Examples

A user variable is determined to be numeric or alphanumeric at the first assignment. You cannot mix variables of
different types in an assignment statement.

1. This example assigns an alphanumeric application name to a new user variable:

myapp_name = other:app_name

2. This example is incorrect because it assigns a numeric value to a user variable that was previously defined as
alphanumeric (in example 1):

myapp_name = 14

3. This example assigns a numeric value to a new user variable:

highest_cpu = gbl_cpu_total_util

4. This example is incorrect because it assigns an alphanumeric literal to a user variable that was previously defined as
numeric (in example 3):

highest_cpu = "Time is"

COMPOUND Statement

Use the COMPOUND statement with the IF Statement, the LOOP Statement, and the START, REPEAT, and END
clauses of the ALARM Statement. By using a COMPOUND statement, a list of statements can be executed.

Syntax:
{

statement

statement

}

Construct compound statements by grouping a list of statements inside braces ({}). The compound statement can then
be treated as a single statement within the syntax.
Compound statements cannot include ALARM and SYMPTOM statements. (Compound is a type of statement and not
a keyword.)

COMPOUND Example
highest_cpu = highest_cpu

IF gbl_cpu_total_util highest_cpu THEN

// Begin compound statement

{

highest_cpu = gbl_cpu_total_util

PRINT "Our new high CPU value is ", highest_cpu, "%"

}

// End compound statement

In this example, highest_cpu = highest_cpu defines a variable called highest_cpu. The Adviser saves
the highest_cpu value and notifies you only when that highest_cpu value is exceeded by a higher
highest_cpu value.

In the example, if you replaced highest_cpu = highest_cpu with highest_cpu = 0, then the
highest_cpu value would be reset to zero at each interval.

You would be notified at each interval what your highest_cpu value is.

EXEC Statement

Use the EXEC statement to execute a UNIX command from within your Adviser syntax. You could use the EXEC
command, for example, if you wanted to send a mail message to the MIS staff each time a certain condition is met.

Syntax:

EXEC printlist

The resulting printlist is submitted to your operating system for execution.
Because the EXEC command you specify may execute once every update interval, be careful when using the EXEC
statement with UNIX commands or scripts that have high overhead. For example, you would not want to rebuild the
kernel inside an xglance EXEC statement.

EXEC Examples

In the following example, EXEC executes the UNIX mailx command at every interval.
EXEC "echo 'xglance mailed you a message' | mailx root"

In the following example, EXEC executes the UNIX mailx command only when the gbl_disk_util_peak metric
exceeds 20.

IF gbl_disk_util_peak 20 THEN

EXEC "echo 'xglance detects high disk utilization' | mailx root"

GPM Statement

Use the GPM command to have selected GlancePlus windows display whenever conditions that you specify are met.

Syntax:

GPM -rpt reportlist

The reportlist contains the GlancePlus window names for the windows you want to display. In reportlist, the window
names should be separated by commas. Refer to the Windows List for GlancePlus windows.

GPM Example
IF gbl_run_queue 3 THEN

GPM rpt CpuGraph

IF Statement

Use the IF statement to test conditions you define in the Adviser syntax.

Syntax:

IF condition THEN statement [ELSE statement]
The IF statement tests the condition. If true, the statement after the THEN is executed. If the condition is false, then
the action depends on the optional ELSE clause.

If an ELSE clause has been specified, the statement following it is executed. Otherwise, the IF statement does
nothing. The statement can be a COMPOUND Statement which tells the Adviser to execute multiple statements.

IF Example
IF gbl_cpu_total_util 90 THEN

PRINT "The CPU is running hot at: ", gbl_cpu_total_util

ELSE IF gbl_cpu_total_util < 20 THEN

PRINT "The CPU is idling at: ", gbl_cpu_total_util

In this example, the IF statement is checking the condition (gbl_cpu_total_util 90). If the condition is true, then "The
CPU is running hot at: " is displayed on stdout along with the % of CPU used.

If the (gbl_cpu_total_util 90) condition is false, ELSE IF goes to the next line and checks the condition
(gbl_cpu_total_util < 20). If that condition is true, then "The CPU is idling at: " is displayed on stdout along with the %
of CPU used.

LOOP Statement

Use LOOP statements to find information about your system. For example, you can find the process that uses the
highest percentage of CPU or the swap area that is being utilized most. You find this information with the LOOP
statement and with corresponding statements that use metric names for the system conditions on which you are
gathering information. Check which LOOP statements are available on your system.

Syntax:
{APPLICATION, APP, CPU, DISK, FILESYSTEM, FS, LAN, LOGICALVOLUME, LV, NETIF, NFS,
NFS_OP, PROCESS, PROC, PROC_FILE, PROC_REGION, SWAP, TRANSACTION, TT, TTBIN,
TT_CLIENT, TT_INSTANCE, TT_UDM, TT_INSTANCE_CLIENT, TT_INSTANCE_UDM, TT_CLIENT_UDM }
LOOP statement

A LOOP can be nested within other syntax statements, but you can only nest up to five levels. The statement may be
a COMPOUND statement which contains a block of statements to be executed on each iteration of the loop. A BREAK
statement allows the escape from a LOOP statement.
If you have a LOOP statement in your syntax for collecting specific data and there is no corresponding metric data on
your system, the Adviser skips that LOOP and continues to the next syntax statement or instruction. For example, if
you have defined a LOGICAL VOLUME LOOP, but have no logical volumes on your system, the Adviser skips that
LOGICAL VOLUME LOOP and continues to the next syntax statement.
Loops that do not exist on your platform will generate a syntax error.
As LOOP statements iterate through each interval, the values for the metric used in the statement change. For
instance, the following LOOP statement executes the PRINT Statement once for each active application on the
system, causing the name of each application to be printed.

APP LOOP

PRINT app_name

On a threaded operating system such as HP_UX 11.0, the Adviser supports a THREAD LOOP. A thread loop can be
nested inside a process loop in order to examine each thread for a particular process, but the PROC_ (process)
metrics should not be referenced directly inside the thread loop. If you would like to use a PROC_ metric inside a
thread loop, you should first save it as a local variable in outside process loop. Inside the thread loop, use the local
variable. If you do reference a PROC_ metric inside a thread loop, it will return unexpected results (thread
information).
An example of this is as follows:

An example of this is:
process_to_examine = "glance"

process loop {

if PROC_PROC_NAME == process_to_examine then {

proccputime = PROC_CPU_TOTAL_UTIL

thread loop {

print "thread ID:",THREAD_THREAD_ID," Thread/proc name: ",

THREAD_PROC_NAME," Process total CPU=", proccputime

}

}

}

A thread loop can also exist outside a process loop. In this case, it will examine all threads active on the system. You
should not nest a process loop within a thread loop.
NOTE: THREAD metrics are not supported on Sun Solaris systems.
Because LOOP statements are initiated at each interval, use them with discretion due to possible performance
implications. This caution is especially appropriate with regards to using nested LOOP statements.

LOOP Statement Examples

To see examples and learn about the different LOOP statements available, select from the list:
APPLICATION LOOP Example
CPU LOOP Example
DISK LOOP Example
FILE SYSTEM LOOP example
NETWORK INTERFACE LOOP Example
NFS BY OPERATION LOOP Example
PROCESS LOOP Example
SWAP LOOP Example
TTBIN LOOP Example
TT LOOP Example
TT LOOP ARM Example

APPLICATION LOOP Example

Use the APPLICATION LOOP statement to cycle through all active applications.
You can use global (gbl), table(tbl), or application (app) metrics with the APPLICATION LOOP.
The following example uses an Application LOOP to find the application with the highest CPU for an interval.

big_app = ""

highest_cpu = 0

APPLICATION LOOP

IF (app_cpu_total_util highest_cpu) THEN

{

highest_cpu = app_cpu_total_util

big_app = app_name

}

IF (highest_cpu 20) THEN

YELLOW ALERT "The application ", big_app, " is the highest CPU user at",

highest_cpu, "%"

After finding the application, the Adviser writes a message to the Alarm History window with the app_name and CPU
value, if the CPU value is greater than 20.

CPU LOOP Example

Use the CPU LOOP statement to cycle through data about CPU use on your system. You can use global (gbl),
table(tbl), or by CPU metrics with the CPU LOOP.

The following example prints the CPU usage percentage for each CPU on your system.
Print "----------", glb_stattime, "----------"
CPU LOOP
PRINT "CPU # ", bycpu_id, " used ", bycpu_cpu_total_util, " % CPU"

On a system with two CPUs, the resulting output printed for two intervals is:
----------10:52:01----------
CPU # 0 used 0.6 % CPU
CPU # 1 used 3.4 % CPU
----------10:52:11----------
CPU # 0 used 0.4 % CPU
CPU # 1 used 2.3 % CPU

DISK LOOP Example

Use the DISK LOOP statement to loop through your configured disk devices. When you use this LOOP, the Adviser
checks for specific disk information that appears in the IO by Disk window. You can use global (gbl), table(tbl) or by
disk metrics with the DISK LOOP.

The following example prints the physical write rate for each disk on your system.
PRINT "---------------------", gbl_stattime, "------------------------"
DISK LOOP

PRINT bydsk_devname, " write rate: ", bydsk_phys_write_rate

On a system with three disks, the resulting output printed for two intervals is:
---------------------11:00:23------------------------
/dev/hdisk0 write rate: 2.4
/dev/hdisk1 write rate: 0.0
/dev/cd0 write rate: 0.0

---------------------11:00:33------------------------
/dev/hdisk0 write rate: 0.0
/dev/hdisk1 write rate: 0.0
/dev/cd0 write rate: 0.0

FILE SYSTEM LOOP Example

The FILE SYSTEM LOOP is designed to loop through configured file systems and allow the Adviser to report on
information accessible in the IO By File System Window. You can use global (gbl) , table (tbl) , or IO by file system (fs)
metrics with the FILE SYSTEM LOOP.

The following example reports the space utilized for each file system device on a system with three devices.
PRINT "---------------------", gbl_stattime, "------------------------"
FS LOOP

PRINT fs_devname, " is ", fs_space_util, "% full at ",fs_max_size," megabytes"

The resulting output for two intervals on a system with three file systems is:
---------------------11:11:28------------------------
/dev/hd4 is 77.9% full at 32 megabytes
/dev/hd2 is 94.9% full at 928 megabytes
/dev/hd9var is 93.9% full at 56 megabytes

---------------------11:11:38------------------------
/dev/hd4 is 77.9% full at 32 megabytes
/dev/hd2 is 94.9% full at 928 megabytes
/dev/hd9var is 93.6% full at 56 megabytes

NFS BY OPERATION LOOP Example

Use the NFS BY OPERATION LOOP to loop through NFS operations performed. When you use this LOOP, the
Adviser checks for specific NFS operations that appear in the NFS By Operation window. You can use either global
(gbl) , table (tbl) , or by operation metrics with the NFS_OP LOOP.
The following example prints the server and client operations performed:

 PRINT "---------------------", gbl_stattime, "----------------------"
NFS_OP LOOP

PRINT byop_server_count," server and ",byop_client_count," client ",byop_name,"
operations performed"

On a system performing no activity as an NFS server but with users doing directory listing on another NFS server, the
resulting output is:

---------------------14:55:41------------------------

 0 server and 0 client null operations performed
 0 server and 2 client getattr operations performed
 0 server and 0 client setattr operations performed
 0 server and 0 client root operations performed
 0 server and 886 client lookup operations performed
 0 server and 884 client readlink operations performed
 0 server and 0 client read operations performed
 0 server and 0 client writecache operations performed
 0 server and 0 client write operations performed
 0 server and 0 client create operations performed
 0 server and 0 client remove operations performed

 0 server and 0 client rename operations performed
 0 server and 0 client link operations performed
 0 server and 0 client symlink operations performed
 0 server and 0 client mkdir operations performed
 0 server and 0 client rmdir operations performed
 0 server and 28 client readdir operations performed
 0 server and 1 client statfs operations performed

NETWORK INTERFACE LOOP Example

Use the NETWORK INTERFACE LOOP to loop through configured LAN devices and to report on information from the
Network by Interface window. You can use global (gbl) ,table (tbl) , or by network interface (bynetif) metrics with the
LAN LOOP.

The following example reports on packets for specific LAN names.
 PRINT "---------------------", gbl_stattime, "------------------------"
 NETIF LOOP
 PRINT bynetif_name, " had ", bynetif_collision, " collisions and ", bynetif_error,
" errors"

The resulting output for two intervals on a system win two interfaces is:
---------------------11:40:00------------------------
lo0 had 0 collisions and 0 errors
en0 had 0 collisions and 0 errors

---------------------11:40:10------------------------
lo0 had 0 collisions and 0 errors
en0 had 0 collisions and 0 errors

PROCESS LOOP Example

Use the PROCESS LOOP statement to cycle through all active processes.

You can use either global (gbl) , table (tbl) , or process (proc) metrics with the PROCESS LOOP.

The following example uses a PROCESS LOOP to find the process with the highest CPU for an interval.
big_proc_id = 0

big_proc_name = ""

big_proc_cpu = 0

PROCESS LOOP

IF proc_cpu_total_util big_proc_cpu THEN

{

big_proc_cpu = proc_cpu_total_util

big_proc_name = proc_proc_name

big_proc_id = proc_proc_id

}

IF big_proc_cpu 10 THEN

YELLOW ALERT "Possible loop, process ", big_proc_name, " pid ", big_proc_id|6|0,

" using ", big_proc_cpu, " % CPU"

SWAP LOOP Example

Use the SWAP LOOP to LOOP through the configured swap areas and allow the Adviser to report on information from
the Swap Space Window. You can use table (tbl) or global (gbl) or by swap (byswp) metrics with the SWAP LOOP.

The following example reports on the swap space available on a system with two swap devices.
 PRINT "---------------------", gbl_stattime, "------------------------"
 SWAP LOOP
 PRINT BYSWP_SWAP_SPACE_NAME, " has ", BYSWP_SWAP_SPACE_USED, " used out of",
BYSWP_SWAP_SPACE_AVAIL, " megabytes"

On a system with one swap area, the output printed for two intervals is:
---------------------15:31:59------------------------
/dev/hd6 has 37 used out of 128 megabytes

---------------------15:32:09------------------------
/dev/hd6 has 37 used out of 128 megabytes

TT LOOP Example

Use the TT LOOP to loop through transaction information that has been recorded during the last interval. When you
use this LOOP, the Adviser checks for specific transaction information that appears in the Transaction Tracking
window. You can use global (GBL), table (TBL), or transaction tracking (TT) metrics with TT LOOP.

The following example prints the number of completed transactions and the average response time for each registered
transaction name on your system.

PRINT "-------------------------", gbl_stattime, "--------------------------"
TT LOOP
PRINT tt_name, " had ", tt_count, " transactions with response time "
, tt_wall_time_per_tran, " secs"

On a system with four transactions, the resulting output for two intervals is:
-------------------------13:24:44--------------------------

First_Transaction had 1 transactions with response time 1.000355 secs
Second_Transaction had 1 transactions with response time 2.000221 secs
Third_Transaction had 1 transactions with response time 3.000231 secs
Fourth_Transaction had 0 transactions with response time 0.000000 secs

-------------------------13:24:54--------------------------

First_Transaction had 3 transactions with response time 1.000383 secs
Second_Transaction had 1 transactions with response time 2.000216 secs
Third_Transaction had 0 transactions with response time 0.000000 secs
Fourth_Transaction had 0 transactions with response time 0.000000 secs

TTBIN LOOP Example

Use the TTBIN LOOP, which must be nested within a TT loop, to loop through the response time bins of each active
transaction on your system. When you use this LOOP, the Adviser checks for specific transaction information that
appears in the Transaction Graph window. You can use global (gbl), table (tbl) , transaction tracking, or transaction
tracking bin metrics with the TTBIN LOOP.
The following example prints the response time bins for each transaction name which had any completed transactions
during the interval.

PRINT "-------------------------", gbl_stattime, "--------------------------"

TT LOOP

IF (tt_count 0) THEN

{

print "Transaction ", tt_name, " had ", tt_count, " transactions"

lower_bin_limit = 0

TTBIN LOOP

{

IF (ttbin_trans_count 0) THEN

print " ", ttbin_trans_count, " were between ", lower_bin_limit, " and ",
ttbin_upper_range, " seconds"

lower_bin_limit = ttbin_upper_range

}

}

On a system with four transactions, the output printed for two intervals is:
-------------------------13:46:31--------------------------
Transaction First_Transaction had 4 transactions
 2 were between 1.00 and 2.000000 seconds
Transaction Second_Transaction had 1 transactions
 1 were between 2.00 and 3.000000 seconds
Transaction Third_Transaction had 1 transactions
 1 were between 3.00 and 5.000000 seconds

-------------------------13:46:41--------------------------
Transaction First_Transaction had 3 transactions
 1 were between 1.00 and 2.000000 seconds
Transaction Second_Transaction had 1 transactions

 1 were between 2.00 and 3.000000 seconds
Transaction Fourth_Transaction had 1 transactions
 1 were between 3.00 and 5.000000 seconds

TT LOOP ARM Example
With ARM 2.0, the TT_CLIENT, TT_INSTANCE and TT_UDM loops can be nested within a TT LOOP. The
TT_CLIENT loop lists the correlated transactions, the TT_INSTANCE loop lists up to 2048 transaction instances, and
the TT_UDM loop lists user measurements for a given transaction. . You can use global (gbl), table (tbl) or transaction
tracking metrics with the TT LOOP.
Within a TT_CLIENT loop a user can nest a TT_CLIENT_UDM loop to display user measurements on a per correlator
basis. A TT_INSTANCE_UDM loop, or TT_INSTANCE_CLIENT loop may be nested within the TT_INSTANCE loop to
see correlators or user measurements specific to a given instance.
The examples below show how multiple loops can be used to look at user measurements for any given transaction
instance.

Example 1: Look for SLO Violations

The following example loops thru all transactions looking for SLO # violations,
then prints the UDM information for all instances:

print "----------------------------", GBL_STATTIME, "----------------------------"

tt loop {

 IF tt_slo_count 0 THEN {

 print " "

 print "SLO violation count:", tt_slo_count,

 " for transaction:", tt_name, " user:", tt_uname,

 " app:", tt_app_name, " threshold: ", tt_slo_threshold

 tt_instance loop {

 starttime = gbl_stattime - gbl_interval

 IF tt_instance_stop_time starttime

 THEN {

 # found a completed instance in the transaction, print info:

 print "instance pid:", tt_instance_proc_id,

" wall time:", tt_instance_wall_time

 tt_instance_udm loop {

 print " ", tt_instance_user_measurement_name|44,

 " value= ", tt_instance_user_measurement_value

 }

 }

 }

 }

}

the following is the output for one interval:

----------------------------17:19:03----------------------------

SLO violation count: 1 for transaction:Client_tra00 user:gracel
app:Client_Appl0 threshold: 5.000000

instance pid: 12137 wall time: 13.0407

SLO violation count: 1 for transaction:Server_transaction user:joe
app:Server_Application threshold: 5.000000

instance pid: 12137 wall time: 13.0358

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 2.000

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0291

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0256

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 2.0201

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 1.0101

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

Example 2: ARM 2.0 syntax

The following example prints info for all completed transactions

during the interval.

print "-----------------------------------", GBL_STATTIME, "------------------------
-----------"

header_printed = 0

tt loop {

 tt_instance loop {

 starttime = GBL_STATTIME - GBL_INTERVAL

 IF TT_INSTANCE_STOP_TIME starttime

 THEN {

 IF header_printed == 0 THEN {

 print " "

 print "TranID StartTime StopTime TranName"

 header_printed = 1

 }

 print TT_TRAN_ID|6, " ", TT_INSTANCE_START_TIME, " ",

 TT_INSTANCE_STOP_TIME, " ", TT_NAME|40

 }

 }

}

the following is the output for one interval:

-----------------------------------17:21:24-----------------------------------

TranID StartTime StopTime TranName

 3 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998 Client_tra00

 7 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998 Server_transaction

 7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998 Server_transaction

 7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998 Server_transaction

 7 Wed Jun 3 17:21:18 1998 Wed Jun 3 17:21:20 1998 Server_transaction

 7 Wed Jun 3 17:21:19 1998 Wed Jun 3 17:21:20 1998 Server_transaction

PRINT Statement

Use the PRINT statement to print to stdout data you are collecting. You may want to use the PRINT Statement to log
metrics or calculated variables.

Syntax:

PRINT printlist

PRINT Example
PRINT "The Application OTHER has a total CPU of ", other:app_cpu_total_util, "%"

When executed, this statement prints a message to the window that initiated GlancePlus like the following:
The Application OTHER has a total CPU of 89%

SYMPTOM Statement

Syntax:
SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]

RULE measurement {>, <, >=, <=, ==, !=} value PROB probability

[RULE measurement {>, <, >=, <=, ==, !=} value PROB probability]

.

.

.

The keywords SYMPTOM and RULE are exclusive for the SYMPTOM statement and cannot be used in other syntax
statements. The SYMPTOM statement must be a top-level statement and cannot be nested within any other
statement.

variable is a variable name which will be the name of this symptom, as well as a graph title in the Symptom History
window. Variable names defined in the SYMPTOM statement can be used in other syntax statements, but the variable
value should not be changed in those statements.
TYPE defines the type of symptom and connects the SYMPTOM information to the CPU, Disk, Memory, or Network
button on the Main GlancePlus window. The symptom type can only be CPU, Disk, Memory, or Network. However,
you can define more than one CPU, Disk, Memory, or Network symptom. For example, if you have two TYPE = CPU
symptoms, each with their own set of RULEs, then the symptom with the highest probability determines the color of
the CPU button label.
RULE is an option of the SYMPTOM statement and cannot be used independently. You can use as many RULE
options within the SYMPTOM statement as you need.
The SYMPTOM variable is evaluated according to the RULEs at each interval.

• measurement is the name of a variable or metric that is evaluated as part of the RULE

• value is a constant, variable, or metric that is compared to the measurement

• probability is a numeric constant, variable, or metric

The probabilities for each true SYMPTOM RULE are added together to create a SYMPTOM value. The SYMPTOM
value then appears in bar graph form in the Symptom History window. The SYMPTOM value also appears in the
Symptom Status window and the Symptom Snapshot window alphanumerically, if the SYMPTOM evaluates to yellow
or red.
The sum of all probabilities where the condition between measurement and value is true is the probability that the
symptom is occurring.

SYMPTOM Example

Syntax:
SYMPTOM CPU_Bottleneck TYPE=CPU

RULE gbl_cpu_total_util 50 PROB 25

RULE gbl_cpu_total_util 85 PROB 25

RULE gbl_cpu_total_util 90 PROB 25

RULE gbl_run_queue 3 PROB 50

SYMPTOM CPU_Level TYPE=CPU

RULE gbl_cpu_sys_mode_util 40 PROB 25

RULE gbl_cpu_sys_mode_util 50 PROB 25

RULE gbl_cpu_sys_mode_util 60 PROB 25

RULE gbl_cpu_sys_mode_util 70 PROB 50

Whichever CPU symptom defined above has the highest total probability (PROB), is the symptom that determines the
label color of the CPU button on the GlancePlus Main window.

Symptom Example: Global CPU Bottleneck
SYMPTOM Symp_Global_Cpu_Bottleneck TYPE=CPU

RULE gbl_cpu_total_util 50 PROB 25

RULE gbl_cpu_total_util 85 PROB 25

RULE gbl_cpu_total_util 90 PROB 25

RULE gbl_run_queue 3 PROB 75

The SYMPTOM statement establishes a new variable called Symp_Global_Cpu_Bottleneck. TYPE=CPU links the
SYMPTOM to the CPU button on the Main window.
The new variable receives a probability every update interval which is computed by summing a value according to the
RULES below the SYMPTOM statement.
If the computed probability is between 51 and 90, the CPU button letters on the Main window are turned to yellow for
that interval.

• If the probability is 91 or more, then the CPU button letters are turned red.

• If the probability is 50 or less, the CPU button letters are turned to their normal color.

For example, if the CPU utilization (gbl_cpu_total_util) for the interval was 93% and the run queue was 2, then the first
three rules would all be true so that 25 would be added to the probability three times. Since the fourth rule would not
be true, 75 would NOT be added. Thus Symp_global_cpu_bottleneck variable would have a value of 75

(percent) that interval and the Main screen CPU button letters would be turned yellow (because the probability
between 51 and 90).
If there were several RULES which pertain to CPU in the Adviser Syntax and any of them were to achieve a sufficient
probability, the CPU button letters turn the appropriate color. If a RULE would cause the letters to turn yellow and
another RULE would cause them to turn red, the highest probability (turning red) is reflected on the CPU button.

Interval

An interval is the period of time since the last measurement. GlancePlus evaluates the Adviser SYMPTOMS and
ALARMS at each interval. The default interval is 15 seconds. To change the default interval, use the Configure
Measurement window.

GlancePlus Messages

This section contains information on various messages you may encounter while running GlancePlus.
Adviser Syntax Messages tells about messages GlancePlus may generate when you edit the Adviser syntax.
Troubleshooting tells where to look when GlancePlus is behaving unpredictably.
Installation Messages tells what to do when you have problems with GlancePlus installation.
Start-up Messages tells what to do when you have completed installation, but you are having problems running
GlancePlus.

Adviser Syntax Messages

To view the message, click the category below, then the message number.
General Messages (AS-101 through AS-131)
Alarm Messages (AS-201 through AS-212)
Symptom Messages (AS-301 through AS-306)
Statement Messages (AS-401 through AS-410)
Action Messages (AS-501 through AS-504)
Loop Messages (AS-601 through AS-636)

General Messages (AS-101 through AS-131)

Message AS-101
Message AS-102
Message AS-103
Message AS-104
Message AS-105
Message AS-106
Message AS-107
Message AS-108
Message AS-110
Message AS-111
Message AS-112
Message AS-113
Message AS-114
Message AS-115
Message AS-116
Message AS-117
Message AS-118
Message AS-119
Message AS-120
Message AS-123
Message AS-124
Message AS-125

Message AS-126
Message AS-127
Message AS-129
Message AS-130
Message AS-131

Message AS-101

Syntax checked OK.
The syntax has been checked and has no errors. You can now install the syntax.

Message AS-102

Syntax Error.
The parser has found a character or item it doesn't recognize, such as '@'.

Message AS-103

Expression syntax is not valid.
See Expressions in the help topic "The Adviser" for information on using expressions.

Message AS-104

Metric or variable name is undefined.
Check the metric name in the Help section 'Performance Metric Definitions', or verify that you have already declared
the variable used in the statement.

Message AS-105

Cannot assign to a predefined metric name.
You cannot change a metric value with an assignment statement.

Message AS-106

Application or data feed name variable name is undefined.
Check to see that you have correctly spelled the application name.

Message AS-107

Variable variable name is not defined within application or data feed.
You have entered an incorrect metric name.

Message AS-108

Variable variable name is not an application or data feed metric.
The metric name is valid, but not within the application's context.

Message AS-110

A number is expected.
Enter a number, or check your statement.

Message AS-111

A second variable name or constant is expected after compare operator.

The parser has found a compare operator, and expects to find a variable name or valid constant immediately
following the operator.

Message AS-112

Missing the right parenthesis.
Enter a right parenthesis to complete the statement.

Message AS-113

Comparison operator is illegal.
See Conditions in the help topic "The Adviser" for information on the valid operators for conditions.

Message AS-114

A condition is expected after the left parenthesis.

See Conditions in the help topic "The Adviser" for information on using conditions.

Message AS-115

An integer field width must follow the '"' formatting character.
See Printlist in the help topic "The Adviser" for information on formatting integers.

Message AS-116

Formatting specification is not valid.
See Printlist in the help topic "The Adviser" for an explanation of formatting.

Message AS-117

A condition is required.
See Conditions in the help topic "The Adviser" for information on using conditions.

Message AS-118

Quote expected to end literal.
See Constants in the help topic "The Adviser" for information on using literals.

Message AS-119

User variable variable name is numeric and cannot be assigned a string value.
See Variables in the help topic "The Adviser" for information on using variables.

Message AS-120

Operation is not allowed for string variable.
The operation specified cannot be performed on a string variable. For example, you may have tried to add (+) two
string variables.

Message AS-123

Cannot assign numeric value to string variable variable name.
You have defined a string variable and are trying to assign a numeric value to it. Either change the variable to a
numeric type or change the assignment value to a string.

Message AS-124

Cannot assign string value to numeric variable variable name.
You have defined a numeric variable and are trying to assign a string value to it. Either change the variable to a string
type or change the assignment value to a numeric.

Message AS-125

variable name is not a global metric.
A global metric is expected here.

Message AS-126

Cannot recognize statement.
See Adviser Syntax Structure in the help topic "The Adviser" for information on valid statements.

Message AS-127

A valid statement is expected here.
See Adviser Syntax Structure in the help topic "The Adviser" for information on valid statements.

Message AS-129

Report not valid on this platform.
You have tried to specify a window with the rpt option that is not available on this platform. See the rpt section of
Customizing GlancePlus Start-Up for a list of available windows.

Message AS-130

Cannot compare strings with numbers.
The condition statement you entered is not valid. See Conditions in the help topic "The Adviser" for more information.

Message AS-131

This LOOP option is not supported on this platform.
See LOOP Statement in the help topic "The Adviser" for information on appropriate LOOP syntax for this platform.

Alarm Messages (AS-201 through AS-212)

Message AS-201
Message AS-202
Message AS-203
Message AS-204
Message AS-205
Message AS-206
Message AS-207
Message AS-208
Message AS-209
Message AS-210
Message AS-211
Message AS-212

Message AS-201

An alarm condition is required.
See ALARM Statement in the help topic "The Adviser" for information on creating alarm statements.

Message AS-202

Alarm options or alarm actions must follow.
You did not specify an action (START, REPEAT, or END) after the last condition clause.

Message AS-203

At least one alarm action is required.
A valid ALARM and condition have been found, but no actions are specified. Add the action to the ALARM statement.
See ALARM Statement in the help topic "The Adviser" for more information.

Message AS-204

Nested ALARM statements are not allowed.
See ALARM Statement in the help topic "The Adviser" for information on creating alarm statements.

Message AS-205

Conditional ALARM statements are not allowed.
You have tried to put an ALARM statement as part of a condition. See ALARM Statement in the help topic "The
Adviser" for information on creating ALARM statements.

Message AS-206

Only one START clause is allowed for an ALARM statement.
See ALARM Statement in the help topic "The Adviser" for information on creating ALARM statements.

Message AS-207

Only one REPEAT clause is allowed for an ALARM statement.
See ALARM Statement in the help topic "The Adviser" for information on creating ALARM statements.

Message AS-208

Only one END clause is allowed for an ALARM statement.
See ALARM Statement in the help topic "The Adviser" for information on creating ALARM statements.

Message AS-209

START clause is out of order.
See ALARM Statement in the help topic "The Adviser" for information on correct ALARM syntax.

Message AS-210

REPEAT clause is out of order.

See ALARM Statement in the help topic "The Adviser" for information on correct ALARM syntax.

Message AS-211

END clause is out of order.
See ALARM Statement in the help topic "The Adviser" for information on correct ALARM syntax.

Message AS-212

A specification of time must follow EVERY keyword.
See ALARM Statement in the help topic "The Adviser" for information on correct ALARM syntax.

Symptom Messages (AS-301 through AS-306)

Message AS-301
Message AS-302
Message AS-303
Message AS-304
Message AS-305
Message AS-306

Message AS-301

Symptom type is not valid.
See SYMPTOM Statement in the help topic "The Adviser" for information on creating symptom statements. The TYPE
must be CPU, DISK, MEMORY, or NETWORK.

Message AS-302

Duplicate symptom variable variable name.

You must specify a unique variable name for the symptom. See SYMPTOM Statement in the help topic "The
Adviser" for more information.

Message AS-303

A user variable name is required for SYMPTOM value.

You have specified a metric name or a variable name that has already been defined.

Message AS-304

At least one RULE specification is required.
See SYMPTOM Statement in the help topic "The Adviser" for information on creating symptom statements.

Message AS-305

A PROBABILITY keyword is required.
See SYMPTOM Statement in the help topic "The Adviser" for information on creating symptom statements.

Message AS-306

Expected numeric probability value.
See SYMPTOM Statement in the help topic "The Adviser" for information on PROBABILITY.

Statement Messages (AS-401 through AS-410)

Message AS-401
Message AS-402
Message AS-403
Message AS-404
Message AS-405
Message AS-406
Message AS-407
Message AS-409
Message AS-410

Message AS-401

IF stack underflow - cannot interpret statement.

This is an internal error. Save the appropriate information and contact your support representative.

Message AS-402

An assignment must have an equal sign following the variable name.
This error is often caused by a misspelled statement, variable, or metric name. The system thinks that the statement is
an assignment statement rather than an intended statement.
It can also be caused by a missing comma in a printlist, and the cursor may appear one line below the line on which
the error clause is specified.

Message AS-403

Assignment value is not valid.
The right side of the assignment is invalid.

Message AS-404

ALIAS statement requires a variable name.
See ALIAS Statement in the help topic "The Adviser" for more information on creating ALIAS statements.

Message AS-405

An ALIAS must have an equal sign following the variable name.
See ALIAS Statement in the help topic "The Adviser" for more information on creating ALIAS statements.

Message AS-406

A LITERAL string value is expected for ALIAS value.
See ALIAS Statement in the help topic "The Adviser" for more information on creating ALIAS statements.

Message AS-407

IF statement requires a THEN.
See IF Statement in the help topic "The Adviser" for more information on creating IF statements.

Message AS-409

Duplicate ALIAS declaration for variable name.

You have specified a duplicate user variable name. Use a unique name.

Message AS-410

A condition is required for the IF statement.
See IF Statement in the help topic "The Adviser" for more information on creating IF statements.

Action Messages (AS-501 through AS-504)

Message AS-501
Message AS-502
Message AS-504

Message AS-501

A list of print specifications is expected here.
A list of items to display is expected. See PRINT Statement or ALERT Statement in the help topic "The Adviser" or for
more information.

Message AS-502

A print specification is expected next.
A list of items to display is expected. See PRINT Statement or ALERT Statement in the help topic "The Adviser" or for
more information.

Message AS-504

A print specification is expected here.
A list of items to display is expected. See See PRINT Statement or ALERT Statement in the help topic "The Adviser"
or for more information.

Loop Messages (AS-601 through AS-636)

Message AS-601

Message AS-602
Message AS-603
Message AS-604
Message AS-605
Message AS-606
Message AS-607
Message AS-608
Message AS-609
Message AS-610
Message AS-611
Message AS-612
Message AS-613
Message AS-614
Message AS-615
Message AS-616
Message AS-617
Message AS-618
Message AS-619
Message AS-620
Message AS-621
Message AS-622
Message AS-623
Message AS-624
Message AS-625
Message AS-626
Message AS-627
Message AS-628
Message AS-629
Message AS-630
Message AS-633
Message AS-634
Message AS-635
Message AS-636

Message AS-601

A LOOP keyword is expected following the class type.
See LOOP Statement in the help topic "The Adviser" for information on LOOP syntax.

Message AS-602

LOOP statements nested too deep.
You can only nest statements up to five levels. See LOOP Statement in the help topic "The Adviser" for information on
LOOP syntax.

Message AS-603

metric name is not an application or a global metric.
You can only use application or global metrics in an APPLICATION LOOP Statement.

Message AS-604

metric name is not a process or a global metric.
You can only use process or global metrics in a PROCESS LOOP Statement.

Message AS-605

metric name is not a by disk or a global metric.
You can only use by disk or global metrics in a DISK LOOP Statement.

Message AS-606

metric name is not a by CPU or a global metric.
You can only use by CPU or global metrics in a CPU LOOP Statement.

Message AS-607

metric name is not a by LAN or a global metric.
You can only use LAN or global metrics in a LAN LOOP Statement.

Message AS-608

metric name is not a by swap or a global metric.
You can only use by swap or global metrics in a SWAP LOOP Statement.

Message AS-609

metric name is not a by file system or a global metric.
You can only use file system or global metrics in a FILE SYSTEM LOOP Statement.

Message AS-610

metric name is not a by logical volume or a global metric.
You can only use logical volume or global metrics in a LOGICAL VOLUME LOOP Statement.

Message AS-611

metric name is not a by system calls or a global metric.
You can only use system call or global metrics in a SYSTEM CALL LOOP Statement.

Message AS-612

metric name is not a PRM or a global metric.
You can only use PRM or global metrics in a PRM LOOP Statement.

Message AS-613

metric name is not a by TT or a Global metric.
You can only use TT or global metrics in a TT LOOP Statement

Message AS-614

metric name is not a TT Bin, TT, or a Global metric.
You can only use TT BIN, TT or global metrics in a TTBIN LOOP Statement.

Message AS-615

TT Bin loop must be in a TT loop.
 A TT Bin loop can only be nested in a TT LOOP Statement.

Message AS-616

metric name is not a Process File, Process, or Global metric.
You can only use process or global metrics in a PROCESS LOOP Statement.

Message AS-617

Process File loop must be inside a Process loop.
A Process File loop can only be nested in a PROCESS LOOP Statement.

Message AS-618

metric name is not a Process Memory Region, Process, or a Global metric.
You can only use Process Memory Region, Process or global metrics in a PROC_REGION LOOP Statement.

Message AS-619

A Process Memory Region loop must be inside a Process loop.

A Process Memory Region loop can only be nested in a PROCESS LOOP Statement.

Message AS-620

metric name is not a by NFS, or a Global metric.
You can only use by NFS or global metrics in a FILE SYSTEM LOOP Statement.

Message AS-621

metric name is not a NFS by System Operation, NFS, or a Global metric.
You can only use NFS by System Operation, NFS or global metrics in a NFS_BYSYS_OP LOOP Statement.

Message AS-622

NFS by System Operations loop must be inside a NFS loop.
NFS by System Operations loop can only be nested in a NFS LOOP Statement.

Message AS-623

metric name is not a by NFS Operation or a Global metric.
You can only use by NFS Operation or global metrics in a NFS_OP LOOP Statement.

Message AS-624

metric name is not a by CNODE or a Global metric.
You can only use by CNODE or global metrics in a CNODE LOOP Statement.

Message AS-625

Disk Detail loop must be inside a Disk loop.
Disk Detail loop can only be nested inside a DISK LOOP Statement.

Message AS-626

metric name is not a Disk Detail, by Disk, or a Global metric.
You can only use Disk Detail, by Disk or global metrics in a DISK_DETAIL LOOP Statement.

Message AS-627

File System Detail loop must be inside a File System loop.
File System Detail loop can only be nested in a FILE SYSTEM LOOP Statement.

Message AS-628

metric name is not a File System Detail, by File System, or Global metric.
You can only use File System Detail, by File System or global metrics in a FS_DETAIL LOOP Statement.

Message AS-629

Logical Volume Detail loop must be inside a Logical Volume loop.
Logical Volume Detail loop can only be nested in a LOGICAL VOLUME LOOP Statement.

Message AS-630

metric name is not a Logical Volume Detail, by Logical Volume, or a Global metric.
You can only use Logical Volume Detail loop, by Logical Volume or global metrics in a LV_DETAIL LOOP Statement.

Message AS-633

metric name is not a Process System Call, Process, or a Global metric.
You can only use Process System Call, Process or global metrics in a PROC_SYSCALL LOOP Statement.

Message AS-634

Process System Call loop must be inside a Process loop.
Process System Call loop can only be nested in a PROCESS LOOP Statement.

Message AS-635

A BREAK keyword must be inside a LOOP statement.
See LOOP Statement for information on proper LOOP statement syntax.

Message AS-636

metric name is not a by LANIF, or a Global metric.
You can only use LANIF or global metrics in a LAN LOOP Statement.

Troubleshooting

The xglance program writes its error and status messages to stderr, which by default is the terminal window that
you ran xglance from. Error and status information may also be written to a file named:

/var/opt/perf/status.mi

If GlancePlus is behaving unexpectedly, this information can assist in troubleshooting problems.

Installation Messages

This section lists messages you may encounter when installing GlancePlus.

ERROR: This script must be run by superuser (root).

Your user id is: username

ERROR: Problem copying [app-defaults,parm,gkey] file to /var/opt/perf
Check that the files are in /opt/perf/newconfig/* and that they are readable for copying. Also,
check that /var/opt/perf is writable and has sufficient filespace.

ERROR: The midaemon process must be shut down prior to installation of the MI fileset. Use the command
/opt/perf/bin/midaemon -T to terminate performance tool processes and then reattempt swinstall
of this fileset.
The -T option should be used only before an MI fileset installation. Refer to the midaemon man
pages for details.

Start-up Messages

This section lists messages you may encounter when starting GlancePlus.
Running in Background Mode
During Initialization Start-up

Running in Background Mode

If you attempt to run GlancePlus in background mode from the command line, you may see a message similar to the
following

$ xglance &&

[1] 15080

$

[1] + Stopped (tty output)

$
This message indicates that the tty line discipline is set to tostop. This means that any background process atempting
to write to the associated standard output will be blocked. GlancePlus writes initialization messages to standard
output. You can verify the tty line discipline options by typing:

$ stty -a
Refer to man pages for details on stty.
Once you have determined the state of the line discipline, you have at least two options available:

1. 1. You can unset the tty blocking option and execute your GlancePlus background mode command by typing:

 $ stty -tostop

 $ xglance &&
2. 2. You can keep your tty blocking option and redirect the standard output of GlancePlus to /dev/null by typing:

 $ xglance 1>/dev/null &&
If GlancePlus is blocked on stderr because of the tty line discipline tostop blocking option, you can resume the blocked
xglance by moving the process to the foreground by typing:

 $ fg
Refer to man pages for shell-specific details.

During Initialization Start-up

As GlancePlus starts up, its progress through various phases of initialization is listed on your screen. Paying attention
to the phase in which warning or error messages occur is key to solving a problem that may occur during startup.
Following is an example of the messages that print to your workstation or terminal window on a successful GlancePlus
startup:

Connecting to Display...

Connected to X Display

Enabling Measurement...

Measurement Enabled

Loading Configuration (30)...

Configuration Loaded

Parse Adviser Syntax...

Syntax Parsed

Initialize Shells...

Shells Initialized
Typically, initialization warning or error messages occur in the step they are related to. For instance, if you have not
specified the export of your DISPLAY correctly, GlancePlus fails while Connecting to Display... and
you will see an abort message.

Messages Before Connecting to Display

You may see warnings during parsing of the parm file, which contains your application definitions. A message like this
is typically only a warning and should not keep GlancePlus from starting up. You can find information about proper
syntax for application definitions in online help in the Users Guide under the topic "Defining Applications."

Messages While Connecting to Display

You may encounter an initialization message such as

 Connecting to Display...

 Error: Can't open display: workstationid:0.0

This error is caused by the X software telling you it can't find the display with the name workstationid:0.0.
Possible problems could be:

• • You have miskeyed the workstation name.

• • You are using the export method for a different shell than the one you are running. Following are different
shell commands for connecting to a display.

 posix shell: export DISPLAY=workstationid:0.0

 c-shell: setenv DISPLAY workstationid:0.0

• • You need to qualify the name with a domain and organization (or even use the IP address of the workstation
instead of the name - just in case that system does not have your workstation or X-terminal configured in its
/etc/hosts file).

If you still can't open your display after checking the steps above, try starting GlancePlus with the -display parameter:

xglance -display workstationid:0.0

• • You may also see an initialization such as

Connecting to Display...

Xlib: connection to workstationid refused by server

Xlib: Client is not authorized to connect to Server

Error: Can't open display: workstationid
The error above is caused by your workstation or X-terminal software telling you that the system on which you are trying
to run GlancePlus is not allowed to export to your display.

To fix this error, enter xhost +, which allows any host to export GlancePlus to your display. For more information
about exporting displays, read the man page for xhost.

• • You may also see an initialization such as

Connecting to Display..

Warning: Cannot convert string "<Key>InsertChar" to type Virtual
Binding

Warning: Cannot convert string "<Key>DeleteChar" to type Virtual
Binding

Warning: Cannot convert string "<Key>InsertLine" to type Virtual
Binding

Warning: Cannot convert string "<Key>DeleteLine" to type Virtual
Binding
To fix this problem, make sure that the file /usr/lib/X11/XKeysymDB includes the following lines. The lines are typically
located at the end of the file.

hpInsertLine:1000FF70

hpDeleteLine:1000FF71

hpInsertChar:1000FF72

hpDeleteChar:1000FF73

• • Another initialization message you may see is

Connecting to Display...

Warning: translation table syntax error: Unknown keysym name:

 osfActivate:ManagerParentActivate()'

.

.

.

Connected to Display
This message is caused by the system being unable to either find or read the following file, which contains a keystroke
translation table:

 /usr/lib/X11/XKeysymDB
Check for existence of the file and proper permissions. This file is normally on every system.

Messages After Connecting to Display

• • You might see an error message pertaining to the midaemon after the following line:

Enabling Measurement...
If GlancePlus has trouble initiating the midaemon, you will see an error message that starts with "mi" displayed to the
stdout and placed in the /var/opt/perf/status.mi file. The midaemon error messages and work-arounds are
documented in the man page of midaemon.
If you encounter a midaemon error, logon as root , then try to run the midaemon on its own by entering midaemon at
the command line. Once the midaemon is running, try to run GlancePlus again.
To start the midamon so that exiting GlancePlus does not terminate it, enter:

/opt/perf/bin/midaemon -p .
To make sure the midaemon is running, enter perfstat .
Look for the following line in the resulting display to verify that midaemon is running:

/opt/perf/bin/midaemon
If it is running, enter xglance and see if GlancePlus starts successfully.

• • You may see the following message after Syntax Parsed...

***** FATAL ERROR *****

Module: wm.c Line: 141

Message: Could not load fontname font.

Use the resource Gpmfontname to select one.

***** FATAL ERROR *****
This happens when one of the fonts used by GlancePlus is not available on your system. Just add the following line to
your .Xdefaults file:
Gpmfontname:font description
fontname is the resource shown in the error message font description is the full font description, such as "-adobe-
helvetica-medium-r-normal--17-120-100-100-p-88-iso8859-1".
See the /var/opt/perf/Gpm file for an example of each font's format.

• • You may see the following messages as GlancePlus attempts to Initialize Shells...

 Initialize Shells...

 Could not load private color cells - trying shared cells
GlancePlus tries to obtain its own private colors so that you can modify them within GlancePlus. However, if that doesn't
work, it obtains colors that can be shared with other applications.

You can also use the xglance -sharedclr startup option. This option shares the color scheme with applications that are
already running and disables the GlancePlus Configure Color window.
For more information see -sharedclr in the man page for xglance.

Successful Initialization

Typically, once you see the Shells Initialized message no initialization errors occur. If you do see an error after this
message, it may be a problem that requires help from your system administrator or your support channel.

Performance Metrics

APP_ACTIVE_APP

The number of applications that had processes active (consuming cpu resources) during the interval.

APP_ACTIVE_PROC

An active process is one that exists and consumes some CPU time. APP_ACTIVE_PROC is the sum of the alive-
process-time/interval-time ratios of every process belonging to an application that is active (uses any CPU time) during
an interval.
The following diagram of a four second interval showing two processes, A and B, for an application should be used to
understand the above definition. Note the difference between active processes, which consume CPU time, and alive
processes which merely exist on the system.

 ----------- Seconds -----------

 1 2 3 4

Proc

---- ---- ---- ---- ----

A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval, but consumes no CPU. A's contribution to APP_ALIVE_PROC is
4*1/4. A contributes 0*1/4 to APP_ACTIVE_PROC. B's contribution to APP_ALIVE_PROC is 3*1/4. B contributes
2*1/4 to APP_ACTIVE_PROC. Thus, for this interval, APP_ACTIVE_PROC equals 0.5 and APP_ALIVE_PROC
equals 1.75.
Because a process may be alive but not active, APP_ACTIVE_PROC will always be less than or equal to
APP_ALIVE_PROC.
This metric indicates the number of processes in an application group that are competing for the CPU. This metric is
useful, along with other metrics, for comparing loads placed on the system by different groups of processes.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

APP_ALIVE_PROC

An alive process is one that exists on the system. APP_ALIVE_PROC is the sum of the alive-process-time/interval-
time ratios for every process belonging to a given application.
The following diagram of a four second interval showing two processes, A and B, for an application should be used to
understand the above definition. Note the difference between active processes, which consume CPU time, and alive
processes which merely exist on the system.

 ----------- Seconds -----------

 1 2 3 4

Proc

---- ---- ---- ---- ----

A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to APP_ALIVE_PROC is
4*1/4. A contributes 0*1/4 to APP_ACTIVE_PROC. B's contribution to APP_ALIVE_PROC is 3*1/4. B contributes
2*1/4 to APP_ACTIVE_PROC. Thus, for this interval, APP_ACTIVE_PROC equals 0.5 and APP_ALIVE_PROC
equals 1.75.
Because a process may be alive but not active, APP_ACTIVE_PROC will always be less than or equal to
APP_ALIVE_PROC.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

APP_COMPLETED_PROC

The number of processes in this group that completed during the interval.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

APP_CPU_SYS_MODE_TIME

The time, in seconds, during the interval that the CPU was in system mode for processes in this group.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_SYS_MODE_UTIL

The percentage of time during the interval that the CPU was used in system mode for processes in this group.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
High system CPU utilizations are normal for IO intensive groups. Abnormally high system CPU utilization can indicate
that a hardware problem is causing a high interrupt rate. It can also indicate programs that are not making efficient
system calls. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values
normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_TOTAL_TIME

The total CPU time, in seconds, devoted to processes in this group during the interval.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_TOTAL_UTIL

The percentage of the total CPU time devoted to processes in this group during the interval. This indicates the relative
CPU load placed on the system by processes in this group.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
Large values for this metric may indicate that this group is causing a CPU bottleneck. This would be normal in a
computation-bound workload, but might mean that processes are using excessive CPU time and perhaps looping.
If the “other” application shows significant amounts of CPU, you may want to consider tuning your parm file so that
process activity is accounted for in known applications.

 APP_CPU_TOTAL_UTIL =

 APP_CPU_SYS_MODE_UTIL +

 APP_CPU_USER_MODE_UTIL

NOTE: On Windows, the sum of the APP_CPU_TOTAL_UTIL metrics may not equal GBL_CPU_TOTAL_UTIL.
Microsoft states that “this is expected behavior” because the GBL_CPU_TOTAL_UTIL metric is taken from the NT
performance library Processor objects while the APP_CPU_TOTAL_UTIL metrics are taken from the Process objects.
Microsoft states that there can be CPU time accounted for in the Processor system objects that may not be seen in the
Process objects. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_TOTAL_UTIL_CUM

The average CPU time per interval for processes in this group over the cumulative collection time, or since the last
PRM configuration change on HP-UX.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_USER_MODE_TIME

The time, in seconds, that processes in this group were in user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_CPU_USER_MODE_UTIL

The percentage of time that processes in this group were using the CPU in user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
High user mode CPU percentages are normal for computation-intensive groups. Low values of user CPU utilization
compared to relatively high values for APP_CPU_SYS_MODE_UTIL can indicate a hardware problem or improperly
tuned programs in this group.

 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

APP_DISK_PHYS_IO_RATE

The number of physical IOs per second for processes in this group during the interval.

APP_DISK_PHYS_READ

The number of physical reads for processes in this group during the interval.

APP_DISK_PHYS_READ_RATE

The number of physical reads per second for processes in this group during the interval.

APP_DISK_PHYS_WRITE

The number of physical writes for processes in this group during the interval.

APP_DISK_PHYS_WRITE_RATE

The number of physical writes per second for processes in this group during the interval.

APP_INTERVAL

The amount of time in the interval.

APP_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

APP_IO_BYTE

The number of characters (in KB) transferred for processes in this group to all devices during the interval. This
includes IO to disk, terminal, tape and printers.

APP_IO_BYTE_RATE

The number of characters (in KB) per second transferred for processes in this group to all devices during the interval.
This includes IO to disk, terminal, tape and printers.

APP_MAJOR_FAULT

The number of major page faults that required a disk IO for processes in this group during the interval.

APP_MAJOR_FAULT_RATE

The number of major page faults per second that required a disk IO for processes in this group during the interval.

APP_MEM_RES

On Unix systems, this is the sum of the size (in MB) of resident memory for processes in this group that were alive at
the end of the interval. This consists of text, data, stack, and shared memory regions.
On HP-UX, since PROC_MEM_RES typically takes shared region references into account, this approximates the total
resident (physical) memory consumed by all processes in this group.
On all other Unix systems, this is the sum of the resident memory region sizes for all processes in this group. When
the resident memory size for processes includes shared regions, such as shared memory and library text and data,
the shared regions are counted multiple times in this sum. For example, if the application contains four processes that
are attached to a 500MB shared memory region that is all resident in physical memory, then 2000MB is contributed
towards the sum in this metric. As such, this metric can overestimate the resident memory being used by processes in
this group when they share memory regions.
Refer to the help text for PROC_MEM_RES for additional information.
On Windows, this is the sum of the size (in MB) of the working sets for processes in this group during the interval. The
working set counts memory pages referenced recently by the threads making up this group. Note that the size of the
working set is often larger than the amount of pagefile space consumed.

APP_MEM_UTIL

On Unix systems, this is the approximate percentage of the system's physical memory used as resident memory by
processes in this group that were alive at the end of the interval. This metric summarizes process private and shared
memory in each application.
On Windows, this is an estimate of the percentage of the system's physical memory allocated for working set memory
by processes in this group during the interval.
On HP-UX, this consists of text, data, stack, as well the process' portion of shared memory regions (such as, shared
libraries, text segments, and shared data). The sum of the shared region pages is typically divided by the number of
references.
On Unix systems, each application's total resident memory is summed. This value is then divided by the summed total
of all applications resident memory and then multiplied by the ratio of available user memory versus total physical
memory to arrive at a calculated percentage of the total physical memory. It must be remembered, however, that this
is a calculated metric that shows the approximate percentage of the physical memory used as resident memory by the
processes in this application during the interval.
On Windows, the sum of the working set sizes for each process in this group is kept as APP_MEM_RES. This value
is divided by the sum of APP_MEM_RES for all applications defined on the system to come up with a ratio of this
application's working set size to the total. This value is then multiplied by the ratio of available user memory versus
total physical memory to arrive at a calculated percent of total physical memory.

APP_MEM_VIRT

On Unix systems, this is the sum (in MB) of virtual memory for processes in this group that were alive at the end of the
interval. This consists of text, data, stack, and shared memory regions.
On HP-UX, since PROC_MEM_VIRT typically takes shared region references into account, this approximates the total
virtual memory consumed by all processes in this group.
On all other Unix systems, this is the sum of the virtual memory region sizes for all processes in this group. When the
virtual memory size for processes includes shared regions, such as shared memory and library text and data, the
shared regions are counted multiple times in this sum. For example, if the application contains four processes that are
attached to a 500MB shared memory region, then 2000MB is reported in this metric. As such, this metric can
overestimate the virtual memory being used by processes in this group when they share memory regions.
On Windows, this is the sum (in MB) of paging file space used for all processes in this group during the interval.
Groups of processes may have working set sizes (APP_MEM_RES) larger than the size of their pagefile space.

APP_MINOR_FAULT

The number of minor page faults satisfied in memory (a page was reclaimed from one of the free lists) for processes in
this group during the interval.

APP_MINOR_FAULT_RATE

The number of minor page faults per second satisfied in memory (pages were reclaimed from one of the free lists) for
processes in this group during the interval.

APP_NAME

The name of the application (up to 20 characters). This comes from the parm file where the applications are defined.
The application called “other” captures all processes not aggregated into applications specifically defined in the parm
file. In other words, if no applications are defined in the parm file, then all process data would be reflected in the
“other” application.

APP_NUM

The sequentially assigned number of this application.

APP_PRI

On Unix systems, this is the average priority of the processes in this group during the interval.
On Windows, this is the average base priority of the processes in this group during the interval.

APP_PROC_RUN_TIME

The average run time for processes in this group that completed during the interval.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

APP_SAMPLE

The number of samples of process data that have been averaged or accumulated during this sample.

APP_TIME

The end time of the measurement interval.

BYCPU_ACTIVE

Indicates whether or not this CPU is online. A CPU that is online is considered active.
For HP-UX and certain versions of Linux, the sar(1M) command allows you to check the status of the system CPUs.
For SUN and DEC, the commands psrinfo(1M) and psradm(1M) allow you to check or change the status of the system
CPUs.
For AIX, the pstat(1) command allows you to check the status of the system CPUs.

BYCPU_CPU_CLOCK

The clock speed of the CPU in the current slot. The clock speed is in MHz for the selected CPU.
 The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This means that there is no
way to find out types, speeds, as well as hardware IDs or any other information that is used to determine the number
of cores, the number of threads, the HyperThreading state, etc... If the agent (or Glance) is started while some of the
CPUs are disabled, some of these metrics will be “na”, some will be based on what is visible at startup time. All
information will be updated if/when additional CPUs are enabled and information about them becomes available. The
configuration counts will remain at the highest discovered level (i.e. if CPUs are then disabled, the maximum number
of CPUs/cores/etc... will remain at the highest observed level). It is recommended that the agent be started with all
CPUs enabled.
On Linux, this value is always rounded up to the next MHz.

BYCPU_CPU_INTERRUPT_TIME

The time, in seconds, that this CPU was performing interrupt processing during the interval. On platforms other than
HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of
active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_INTERRUPT_TIME_CUM

The time, in seconds, that this CPU was performing interrupt processing over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_INTERRUPT_UTIL

The percentage of time that this CPU was performing interrupt processing during the interval. On platforms other than
HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of
active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_INTERRUPT_UTIL_CUM

The percentage of time that this CPU was performing interrupt processing over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_NICE_TIME

The time, in seconds, that this CPU was in user mode at a nice priority during the interval.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_NICE_TIME_CUM

The time, in seconds, that this CPU was in user mode at a nice priority over the cumulative collection time.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_NICE_UTIL

The percentage of time that this CPU was in user mode at a nice priority during the interval.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding

ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_NICE_UTIL_CUM

The average percentage of time that this CPU was in user mode at a nice priority over the cumulative collection time.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_SYS_MODE_TIME

The time, in seconds, that this CPU was in system mode during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode. On platforms other than HPUX, If the ignore_mt flag is set(true)
in parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_SYS_MODE_TIME_CUM

The time, in seconds, that this CPU was in system mode over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”

by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_SYS_MODE_UTIL

The percentage of time that this CPU was in system mode during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode. On platforms other than HPUX, If the ignore_mt flag is set(true)
in parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_SYS_MODE_UTIL_CUM

The percentage of time that this CPU was in system mode over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_TOTAL_TIME

The total time, in seconds, that this CPU was not idle during the interval. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_TOTAL_TIME_CUM

The total time, in seconds, that this CPU was not idle over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_TOTAL_UTIL

The percentage of time that this CPU was not idle during the interval. On platforms other than HPUX, If the ignore_mt
flag is set(true) in parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_TOTAL_UTIL_CUM

The average percentage of time that this CPU was not idle over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_TYPE

The type of processor in the current slot.
 The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This means that there is no
way to find out types, speeds, as well as hardware IDs or any other information that is used to determine the number
of cores, the number of threads, the HyperThreading state, etc... If the agent (or Glance) is started while some of the
CPUs are disabled, some of these metrics will be “na”, some will be based on what is visible at startup time. All

information will be updated if/when additional CPUs are enabled and information about them becomes available. The
configuration counts will remain at the highest discovered level (i.e. if CPUs are then disabled, the maximum number
of CPUs/cores/etc... will remain at the highest observed level). It is recommended that the agent be started with all
CPUs enabled.

BYCPU_CPU_USER_MODE_TIME

The time, in seconds, during the interval that this CPU was in user mode.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this
metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_USER_MODE_TIME_CUM

The time, in seconds, that this CPU was in user mode over the cumulative collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_USER_MODE_UTIL

The percentage of time that this CPU was in user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this
metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_CPU_USER_MODE_UTIL_CUM

The average percentage of time that this CPU was in user mode over the cumulative collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

BYCPU_ID

The ID number of this CPU. On some Unix systems, such as SUN, CPUs are not sequentially numbered.

BYCPU_INTERRUPT

The number of device interrupts for this CPU during the interval.
On HP-UX, a value of “na” is displayed on a system with multiple CPUs.

BYCPU_INTERRUPT_RATE

The average number of device interrupts per second for this CPU during the interval.
On HP-UX, a value of “na” is displayed on a system with multiple CPUs.

BYCPU_STATE

A text string indicating the current state of a processor.
On HP-UX, this is either “Enabled”, “Disabled” or “Unknown”. On AIX, this is either “Idle/Offline” or “Online”. On all
other systems, this is either “Offline”, “Online” or “Unknown”.

BYDSK_AVG_REQUEST_QUEUE

The average number of IO requests that were in the wait and service queues for this disk device over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example, if 4 intervals have passed with average queue lengths of 0, 2, 0, and 6, then the average number of IO
requests over all intervals would be 2.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_AVG_SERVICE_TIME

The average time, in milliseconds, that this disk device spent processing each disk request during the interval. For
example, a value of 5.14 would indicate that disk requests during the last interval took on average slightly longer than
five one-thousandths of a second to complete for this device.

 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.
This is a measure of the speed of the disk, because slower disk devices typically show a larger average service time.
Average service time is also dependent on factors such as the distribution of I/O requests over the interval and their
locality. It can also be influenced by disk driver and controller features such as I/O merging and command queueing.
Note that this service time is measured from the perspective of the kernel, not the disk device itself. For example, if a
disk device can find the requested data in its cache, the average service time could be quicker than the speed of the
physical disk hardware.
This metric can be used to help determine which disk devices are taking more time than usual to process requests.

BYDSK_DEVNAME

The name of this disk device.
On HP-UX, the name identifying the specific disk spindle is the hardware path which specifies the address of the
hardware components leading to the disk device.
On SUN, these names are the same disk names displayed by “iostat”.
On AIX, this is the path name string of this disk device. This is the fsname parameter in the mount(1M) command. If
more than one file system is contained on a device (that is, the device is partitioned), this is indicated by an asterisk
(“*”) at the end of the path name.
On OSF1, this is the path name string of this disk device. This is the file-system parameter in the mount(1M)
command.
On Windows, this is the unit number of this disk device.

BYDSK_DEVNO

Major / Minor number of the device.

BYDSK_DIRNAME

The name of the file system directory mounted on this disk device. If more than one file system is mounted on this
device, “Multiple FS” is seen.

BYDSK_ID

The ID of the current disk device.

BYDSK_INTERVAL

The amount of time in the interval.

BYDSK_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_BYTE

The number of KBs of physical IOs transferred to or from this disk device during the interval.
On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_BYTE_RATE

The average KBs per second transferred to or from this disk device during the interval.
On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_BYTE_RATE_CUM

The average number of KBs per second of physical reads and writes to or from this disk device over the cumulative
collection time.
On Unix systems, this includes all types of physical disk IOs including file system, virtual memory, and raw IOs.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_IO

The number of physical IOs for this disk device during the interval.
On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory, and raw reads.

BYDSK_PHYS_IO_RATE

The average number of physical IO requests per second for this disk device during the interval.
On Unix systems, all types of physical disk IOs are counted, including file system IO, virtual memory and raw IO.

BYDSK_PHYS_IO_RATE_CUM

The average number of physical reads and writes per second for this disk device over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_READ

The number of physical reads for this disk device during the interval.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw reads.
On AIX, this is an estimated value based on the ratio of read bytes to total bytes transferred. The actual number of
reads is not tracked by the kernel. This is calculated as

 BYDSK_PHYS_READ =

 BYDSK_PHYS_IO *

 (BYDSK_PHYS_READ_BYTE /

 BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_READ_BYTE

The KBs transferred from this disk device during the interval.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_READ_BYTE_RATE

The average KBs per second transferred from this disk device during the interval.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_READ_BYTE_RATE_CUM

The average number of KBs per second of physical reads from this disk device over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_READ_RATE

The average number of physical reads per second for this disk device during the interval.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw reads.
On AIX, this is an estimated value based on the ratio of read bytes to total bytes transferred. The actual number of
reads is not tracked by the kernel. This is calculated as

 BYDSK_PHYS_READ_RATE =

 BYDSK_PHYS_IO_RATE *

 (BYDSK_PHYS_READ_BYTE /

 BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_READ_RATE_CUM

The average number of physical reads per second for this disk device over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_WRITE

The number of physical writes for this disk device during the interval.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
On AIX, this is an estimated value based on the ratio of write bytes to total bytes transferred because the actual
number of writes is not tracked by the kernel. This is calculated as

 BYDSK_PHYS_WRITE =

 BYDSK_PHYS_IO *

 (BYDSK_PHYS_WRITE_BYTE /

 BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_WRITE_BYTE

The KBs transferred to this disk device during the interval.
On Unix systems, all types of physical disk writes are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_WRITE_BYTE_RATE

The average KBs per second transferred to this disk device during the interval.
On Unix systems, all types of physical disk writes are counted, including file system, virtual memory, and raw IO.

BYDSK_PHYS_WRITE_BYTE_RATE_CUM

The average number of KBs per second of physical writes to this disk device over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_PHYS_WRITE_RATE

The average number of physical writes per second for this disk device during the interval.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
On AIX, this is an estimated value based on the ratio of write bytes to total bytes transferred. The actual number of
writes is not tracked by the kernel. This is calculated as

 BYDSK_PHYS_WRITE_RATE =

 BYDSK_PHYS_IO_RATE *

 (BYDSK_PHYS_WRITE_BYTE /

 BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_WRITE_RATE_CUM

The average number of physical writes per second for this disk device over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYDSK_QUEUE_0_UTIL

The percentage of intervals during which there were no IO requests pending for this disk device over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for these intervals
was 0, 1.5, 0, and 3, then the value for this metric would be 50% since 50% of the intervals had a zero queue length.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_QUEUE_2_UTIL

The percentage of intervals during which there were 1 or 2 IO requests pending for this disk device over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for these intervals
was 0, 1, 0, and 2, then the value for this metric would be 50% since 50% of the intervals had a 1-2 queue length.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_QUEUE_4_UTIL

The percentage of intervals during which there were 3 or 4 IO requests waiting to use this disk device over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for these intervals
was 0, 3, 0, and 4, then the value for this metric would be 50% since 50% of the intervals had a 3-4 queue length.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_QUEUE_8_UTIL

The percentage of intervals during which there were between 5 and 8 IO requests pending for this disk device over the
cumulative collection time.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for these intervals
was 0, 8, 0, and 5, then the value for this metric would be 50% since 50% of the intervals had a 5-8 queue length.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_QUEUE_X_UTIL

The percentage of intervals during which there were more than 8 IO requests pending for this disk device over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for these intervals
was 0, 9, 0, and 10, then the value for this metric would be 50% since 50% of the intervals had queue length greater
than 8.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_REQUEST_QUEUE

The average number of IO requests that were in the wait queue for this disk device during the interval. These
requests are the physical requests (as opposed to logical IO requests).
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.

BYDSK_TIME

The time of day of the interval.

BYDSK_UTIL

On HP-UX, this is the percentage of the time during the interval that the disk device had IO in progress from the point
of view of the Operating System. In other words, the utilization or percentage of time busy servicing requests for this
device.
On the non-HP-UX systems, this is the percentage of the time that this disk device was busy transferring data during
the interval.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.
This is a measure of the ability of the IO path to meet the transfer demands being placed on it. Slower disk devices
may show a higher utilization with lower IO rates than faster disk devices such as disk arrays. A value of greater than
50% utilization over time may indicate that this device or its IO path is a bottleneck, and the access pattern of the
workload, database, or files may need reorganizing for better balance of disk IO load.

BYLS_BOOT_TIME

On vMA, for a host and logical system the metric is the date and time when the system was last booted. The value is
NA for resource pool. Note that this date is obtained from the VMware API as an already formatted string and may not
conform to the expected localization.

BYLS_CLUSTER_NAME

On vMA, for a host and resource pool it is the name of the cluster to which the host belongs to when it is managed by
virtual centre. For a logical system, the value is NA.

BYLS_CPU_CLOCK

On vMA, for a host and logical system, it is the clock speed of the CPUs in MHz if all of the processors have the same
clock speed. For a resource pool the value is NA.

BYLS_CPU_CYCLE_ENTL_MAX

On vMA, for a host, logical system and resource pool this value indicates the maximum processor capacity, in MHz,
configured for the entity. If the maximum processor capacity is not configured for the entity, a value of “-3” will be
displayed in PA and “ul”(unlimited) in other clients.
On HPUX, the maximum processor capacity, in MHz, configured for this logical system.

BYLS_CPU_CYCLE_ENTL_MIN

On vMA, for a host, logical system and resource pool this value indicates the minimum processor capacity, in MHz,
configured for the entity.
On HPUX, the minimum processor capacity, in MHz, configured for this logical system.

BYLS_CPU_CYCLE_TOTAL_USED

On vMA, for host, resource pool and logical system, it is the total time the physical CPUs were utilized during the
interval, represented in cpu cycles.

BYLS_CPU_ENTL_EMIN

On vMA, for host, logical system and resource pool the value is “na”.

BYLS_CPU_ENTL_MAX

The maximum CPU units configured for a logical system.
On HP-UX HPVM, this metric indicates the maximum percentage of physical CPU that a virtual CPU of this logical
system can get.
On AIX SPLPAR, this metric is equivalent to “Maximum Capacity“ field of 'lparstat -i' command.
For WPARs, it is the maximum percentage of CPU that a WPAR can have even if there is no contention for CPU.
WPAR shares CPU units of its global environment.
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, for a host, the metric is equivalent to total number of cores on the host. For a resource pool and a logical
system, this metrics indicates the maximum CPU units configured for it.

BYLS_CPU_ENTL_MIN

The minimum CPU units configured for this logical system.
On HP-UX HPVM, this metric indicates the minimum percentage of physical CPU that a virtual CPU of this logical
system is guaranteed.
On AIX SPLPAR, this metric is equivalent to “Minimum Capacity“ field of 'lparstat -i' command.
For WPARs, it is the minimum CPU share assigned to a WPAR that is guaranteed. WPAR shares CPU units of its
global environment.
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, for a host, the metric is equivalent to total number of cores on the host. For a resource pool and a logical
system, this metrics indicates the guranteed minimum CPU units configured for it.
On Solaris Zones, this metrics indicates the configured minimum CPU percentage reserved for a logical system.
For Solaris Zones, this metric is calculated as:
 BYLS_CPU_ENTL_MIN = (BYLS_CPU_SHARES_PRIO / Pool-Cpu-Shares)
 where, Pool-Cpu-Shares is the total CPU shares available with CPU pool the zone is associated with. Pool-Cpu-
Shares is addition of BYLS_CPU_SHARES_PRIO values for all active zones associated with this pool.

BYLS_CPU_ENTL_UTIL

Percentage of entitled processing units (guaranteed processing units allocated to this logical system) consumed by the
logical system.
On a HP-UX HPVM host the metric indicates the logical system's CPU utilization with respect to minimum CPU
entitlement.
On HP-UX HPVM host, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_PHYSC /
(BYLS_CPU_ENTL_MIN * BYLS_NUM_CPU)) * 100
On AIX, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_PHYSC / BYLS_CPU_ENTL) * 100
On WPAR, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_PHYSC / BYLS_CPU_ENTL_MAX) *
100 This metric matches “%Resc” of topas command (inside WPAR)
On Solaris Zones, the metric indicates the logical system's CPU utilization with respect to minimum CPU entitlement.
This metric is calculated as:
 BYLS_CPU_ENTL_UTIL = (BYLS_CPU_TOTAL_UTIL / BYLS_CPU_SHARES_PRIO) * 100
If a Solaris zone is not assigned a CPU entitlement value then a CPU entitlement value is derived for this zone based
on total CPU entitlement associated with the CPU pool this zone is attached to.
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, for a host the value is same as BYLS_CPU_PHYS_TOTAL_UTIL while for logical system and resource pool
the value is the percentage of processing units consumed w.r.t minimum CPU entitlement.

BYLS_CPU_MT_ENABLED

Indicates whether the CPU hardware threads are enabled(“On”) or not(“Off”) for a logical system. For AIX wpars, the
metric will be “na”.
On vMA, this metric indicates whether the CPU hardware threads are enabled or not for a host while for a resource
pool and a logical system the value is not available(“na”).

BYLS_CPU_PHYSC

This metric indicates the number of CPU units utilized by the logical system.
On an Uncapped logical system, this value will be equal to the CPU units capacity used by the logical system during
the interval. This can be more than the value entitled for a logical system.

BYLS_CPU_PHYS_READY_UTIL

On vMA, for a logical system it is the percentage of time, during the interval, that the CPU was in ready state. For a
host and resource pool the value is NA.

BYLS_CPU_PHYS_SYS_MODE_UTIL

The percentage of time the physical CPUs were in system mode (kernel mode) for the logical system during the
interval.
On AIX LPAR, this value is equivalent to “%sys” field reported by the “lparstat” command.
On Hyper-V host, this metric indicates the percentage of time spent in Hypervisor code.
On vMA, the metric indicates the percentage of time the physical CPUs were in system mode during the interval for
the host or logical system. On vMA, for a resource pool, this metric is “na”.

BYLS_CPU_PHYS_TOTAL_TIME

Total time in seconds, spent by the logical system on the physical CPUs.
On vMA, the value indicates the time spent in seconds on the physical CPU. by logical system or host or resource
pool,

BYLS_CPU_PHYS_TOTAL_UTIL

Percentage of total time the physical CPUs were utilized by this logical system during the interval.

On vMA, the value indicates percentage of total time the physical CPUs were utilized by logical system or host or
resource pool,

BYLS_CPU_PHYS_USER_MODE_UTIL

The percentage of time the physical CPUs were in user mode for the logical system during the interval.
On AIX LPAR, this value is equivalent to “%user” field reported by the “lparstat” command.
On Hyper-V host, this metric indicates the percentage of time spent in guest code.
On vMA, the metrics indicates the percentage of time the physical CPUs were in user mode during the interval for the
host or logical system. On vMA, for a resource pool, this metric is “na”.

BYLS_CPU_PHYS_WAIT_UTIL

On vMA, for a logical system it is the percentage of time, during the interval, that the virtual CPU was waiting for the
IOs to complete. For a host and resource pool the value is NA.

BYLS_CPU_SHARES_PRIO

This metric indicates the weightage/priority assigned to a Uncapped logical system. This value determines the
minimum share of unutilized processing units that this logical system can utilize.
On AIX SPLPAR this value is dependent on the available processing units in the pool and can range from 0 to 255.
For WPARs, this metric represents how much of a particular resource a WPAR receives relative to the other WPARs.
On vMA, for logical system and resource pool this value can range from 1 to 1000000 while for host the value is NA.
On Solaris Zones, this metric sets a limit on the number of fair share scheduler (FSS) CPU shares for a zone.
On Hyper-V host, this metric specifies allocation of CPU resources when more than one virtual machine is running and
competing for resources. This value can range from 0 to 10000. For Root partition, this metric is NA.

BYLS_CPU_SYS_MODE_UTIL

On vMA, for a host and a logical system, this metric indicates the percentage of time the CPU was in system mode.
On vMA, for a resource pool, this metric is “na”.
during the interval.

BYLS_CPU_TOTAL_UTIL

Percentage of total time the logical CPUs were not idle during this interval.
This metric is calculated against the number of logical CPUs configured for this logical system.
For AIX wpars, the metric represents the percentage of time the physical CPUs were not idle during this interval.

BYLS_CPU_UNRESERVED

On vMA, for host, it is the number of CPU cycles that are available for creating a new logical system. For a logical
system and resource pool the value is NA.

BYLS_CPU_USER_MODE_UTIL

On vMA, for a host and a logical system, this metric indicates the percentage of time the CPU was in user mode during
the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DATACENTER_NAME

On vMA, for a host it is the name of the datacenter to which the host belongs to when it is managed by virtual center.
To uniquely identify datacenter in a virtual center, datacenter name is appended with the folder names in bottom up
order.
For a logical system and resource pool, the value is NA.

BYLS_DISK_PHYS_BYTE

On vMA, for a host and a logical system, this metric indicates the number of KBs transferred to and from disks during
the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_BYTE_RATE

On vMA, for a host and a logical system, this metric indicates the average number of KBs per second at which data
was transferred to and from disks during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_READ

On vMA, for a host and a logical system this metric indicates the number of physical reads during the interval. On
vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_READ_BYTE_RATE

On vMA, for a host and a logical system, this metric indicates the average number of KBs transferred from the disk per
second during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_READ_RATE

On vMA, for a host and a logical system, this metric indicates the number of physical reads per second during the
interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_WRITE

On vMA, for a host and a logical system, this metric indicates the number of physical writes during the interval. On
vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_WRITE_BYTE_RATE

On vMA, for a host and a logical system, this metric indicates the average number of KBs transferred to the disk per
second during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_PHYS_WRITE_RATE

On vMA, for a host and a logical system, this metric indicates the number of physical writes per second during the
interval. On vMA, for a resource pool, this metric is “na”.

BYLS_DISK_UTIL

On vMA, for a host, it is the average percentage of time during the interval (average utilization) that all the disks had
IO in progress. For logical system and resource pool the value is NA.

BYLS_DISK_UTIL_PEAK

On vMA, for a host, it is the utilization of the busiest disk during the interval. For a logical system and resource pool
the value is NA.

BYLS_DISPLAY_NAME

On vMA, this metric indicates the name of the host or logical system or resource pool.
On HPVM, this metric indicates the Virtual Machine name of the logical systemand is equivalent to “Virtual Machine
Name” field of 'hpvmstatus' command.
On AIX the value is as returned by the command “uname -n” (that is, the string returned from the “hostname”
program).
On Solaris Zones, this metric indicates the zone name and is equivalent to 'NAME' field of 'zoneadm list -vc' command.
On Hyper-V host, this metric indicates the Virtual Machine name of the logical systemand is equivalent to the Name
displayed in Hyper-V Manager. For Root partition, the value is always “Root”.

BYLS_IP_ADDRESS

This metric indicates IP Address of the particular logical system.
On vMA, this metric indicates the IP Address for a host and a logical system while for a resource pool the value is NA.

BYLS_LS_HOSTNAME

This is the DNS registered name of the system.
On Hyper-V host, this metric is NA if the logical system is not active or Hyper-V Integration Components are not
installed on it.
On vMA, for a host and logical system the metric is the Fully Qualified Domain Name, while for resource pool the value
is NA.

BYLS_LS_HOST_HOSTNAME

On vMA, for logical system and resource pool, it is the FQDN of the host on which they are hosted. For a host, the
value is NA.

BYLS_LS_ID

An unique identifier of the logical system.
On HPVM, this metric is a numeric id and is equivalent to “VM # ” field of 'hpvmstatus' command.
On AIX LPAR, this metric indicates partition number and is equivalent to “Partition Number” field of 'lparstat -i'
command. For aix wpar, this metric represents the partition number and is equivalent to “uname -W” from inside wpar.
On Solaris Zones, this metric indicates the zone id and is equivalent to 'ID' field of 'zoneadm list -vc' command.
On Hyper-V host, this metric indicates the PID of the process corresponding to this logical system. For Root partition,
this metric is NA.
On vMA, this metric is a unique identifier for a host, resource pool and a logical system. The value of this metric may
change for an instance across collection intervals.

BYLS_LS_MODE

This metric indicates whether the CPU entitlement for the logical system is Capped or Uncapped.
On AIX SPLPAR, this metric is same as “Mode” field of 'lparstat -i' command.
For WPARs, this metric is always CAPPED.
On vMA, the value is Capped for a host and Uncapped for a logical system. For resource pool, the value is Uncapped
or Capped depending on whether the reservation is expandable or not for it.
On Solaris Zones, this metric is “Capped” when the zone is assigned CPU shares and is attached to a valid CPU pool.

BYLS_LS_NAME

This is the name of the computer.
On HPVM, this metric indicates the Virtual Machine name of the logical systemand is equivalent to “Virtual Machine
Name” field of 'hpvmstatus' command.
On AIX the value is as returned by the command “uname -n” (that is, the string returned from the “hostname”
program).
On vMA, this metric is a unique identifier for host, resource pool and a logical system. The value of this metric remains
the same, for an instance, across collection intervals.
On Solaris Zones, this metric indicates the zone name and is equivalent to 'NAME' field of 'zoneadm list -vc' command.
On Hyper-V host, this metric indicates the name of the XML file which has configuration information of the logical
system. This file will be present under the logical system's installation directory indicated by BYLS_LS_PATH. For
Root partition, the value is always “Root”.

BYLS_LS_OSTYPE

The Guest OS this logical system is hosting.
On HPVM, the metric can have following values: HP-UX Linux Windows OpenVMS Other Unknown
On Hyper-V host, the metric can have following values: Windows Other

On Hyper-V host, this metric is NA if the logical system is not active or Hyper-V Integration Components are not
installed on it.
On vMA, the metric can have the following values for host and logical system: ESX-Serv (applicable only for a host)
Linux Windows Solaris Unknown The value is NA for resource pool

BYLS_LS_PARENT_TYPE

On vMA, the metric indicates the type of parent entity. The value is HOST if the parent is a host, RESPOOL if the
parent is resource pool. For a host, the value is NA.

BYLS_LS_PARENT_UUID

On vMA, the metric indicates the UUID of the parent entity. For logical system and resource pool this metric could
indicate the UUID of a host or resource pool as as they can be created under a host or resource pool. For a host, the
value is NA.

BYLS_LS_PATH

This metric indicates the installation path for the logical system.
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, the metric indicates the installation path for host or logical system. On vMA, for a resource pool and a host,
this metric is “na”.

BYLS_LS_ROLE

On vMA, for a host the metric is HOST. For a logical system the value is GUEST and for a resource pool the value is
RESPOOL. For logical system which is a vMA, the value is PROXY.

BYLS_LS_SHARED

This metric indicates whether the physical CPUs are dedicated to this logical system or shared.
On HPUX HPVM, and Hyper-V host,this metric is always “Shared”.
On vMA, the value is “Dedicated” for host, and “Shared” for logical system and resource pool.
On AIX SPLPAR, this metric is equivalent to “Type” field of 'lparstat -i' command. For AIX wpars,this metric will be
always “Shared”.
On Solaris Zones, this metric is “Dedicated” when this zone is attached to a CPU pool not shared by any other zone.

BYLS_LS_STATE

The state of this logical system.
On HPVM, the logical systems can have one of the following states: Unknown Other invalid Up Down Boot Crash
Shutdown Hung
On vMA, this metric can have one of the following states for a host: on off The values for a logical system can be one
of the following: on off suspended The value is NA for resource pool.
On Solaris Zones, the logical systems can have one of the following states: configured incomplete installed ready
running shutting down mounted
On AIX lpars, the logical system will be always active. On AIX wpars, the logical systems can have one of the
following states: Broken Transitional Defined Active Loaded Paused Frozen Error
A logical system on a Hyper-V host can have the following states: unknown enabled disabled paused suspended
starting snapshtng migrating saving stopping deleted pausing resuming

BYLS_LS_TYPE

The type of this logical system. On AIX, the logical systems can have one of the following types: lpar sys wpar app
wpar
On vMA, the value of this metric is “VMware”.

BYLS_LS_UUID

UUID of this logical system. This Id uniquely identifies this logical system across multiple hosts.
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, for a logical system or a host, the value indicates the UUID of the system. For a resource pool the value is
hostname of the host where resource pool is hosted followed by the unique id of resource pool.

BYLS_MACHINE_MODEL

On vMA, for a host, it is the CPU model of the host system. For a logical system and resource pool the value is “na”.

BYLS_MEM_ACTIVE

On vMA, for a logical system it is the amount of memory, that is actively used. For a host and resource pool the value
is NA.

BYLS_MEM_AVAIL

On vMA, for a host, the amount of physical available memory in the host system (in MBs unless otherwise specified).
For a logical system and resource pool the value is NA.

BYLS_MEM_BALLOON_USED

On vMA, for logical system, it is the amount of memory held by memory control for ballooning. The value is
represented in KB. For a host and resource pool the value is NA.

BYLS_MEM_BALLOON_UTIL

On vMA, for logical system, it is the amount of memory held by memory control for ballooning. It is represented as a
percentage of BYLS_MEM_ENTL. For a host, and resource pool the value is NA.

BYLS_MEM_ENTL

The minimum memory configured for this logical system (in MB).
 On Hyper-V host, for Root partition, this metric is NA.
On vMA, for host the value is the physical memory available in the system and for logical system this metric indicates
the minimum memory configured while for resource pool the value is NA.

BYLS_MEM_ENTL_MAX

In a virtual environment, this metric indicates the maximum amount of memory configured for a logical system (in MB).
The value of this metric will be “-3” in PA and “ul” in other clients if entitlement is 'Unlimited' for a logical system. On
AIX LPARs, this metric will be “na”.
On vMA, this metric indicates the maximum amount of memory configured, in MB, for resource pool and a logical
system. For a host, the value is the amount of physical memory available in the system.

BYLS_MEM_ENTL_MIN

In a virtual environment, this metric indicates the minimum amount of memory configured for a logical system (in MB).
On AIX LPARs, this metric will be “na”.
On vMA, this metric indicates the reserved amount of memory configured, in MB, for a host, resource pool and a
logical system.

BYLS_MEM_ENTL_UTIL

The percentage of entitled memory in use during the interval. This includes system memory (occupied by the kernel),
buffer cache and user memory.
On vMA, for a logical system or a host, the value indicates percentage of entitled memory in use during the interval by
it. On vMA, for a resource pool, this metric is “na”.

BYLS_MEM_FREE

On vMA, for a host and logical system, it is the amount of memory not allocated (in MBs unless otherwise specified).
For a resource pool the value is NA.

BYLS_MEM_FREE_UTIL

On vMA, for a host and logical system, it is the percentage of physical memory that was free at the end of the interval.
For a resource pool the value is NA.

BYLS_MEM_HEALTH

On vMA, for a host, it is a number that indicates the state of the memory. Low number indicates system is not under
memory pressure. For a logical system and resource pool the value is “na”.
The possible free memory thresholds that are applicable are :
0 - High - indicates free memory is available and no memory pressure. 1 - Soft 2 - Hard 3 - Low - indicates there is a
pressure for free memory.

BYLS_MEM_OVERHEAD

The amount of memory associated with a logical system, that is currently consumed on the host system, due to
virtualization.
On vMA, this metric indicates the amount of overhead memory associated with a host, logical system and resource
pool.

BYLS_MEM_PHYS

On vMA, for host the value is the physical memory available in the system and for logical system this metric indicates
the minimum memory configured. On vMA, for a resource pool, this metric is “na”.

BYLS_MEM_PHYS_UTIL

On vMA, the metric indicates the percentage of physical memory used during the interval by a host, logical system.
On vMA, for a resource pool, this metric is “na”.

BYLS_MEM_SHARES_PRIO

The weightage/priority for memory assigned to this logical system. This value influences the share of unutilized
physical Memory that this logical system can utilize. On AIX LPARs, this metric will be “na”.
On vMA, this metric indicates the share of memory configured to a resource pool and a logical system. For a host the
value is NA.

BYLS_MEM_SWAPIN

On vMA, for a logical system the value indicates the amount of memory that is swapped in during the interval. For a
host and resource pool the value is NA.

BYLS_MEM_SWAPOUT

On vMA, for a logical system the value indicates the amount of memory that is swapped out during the interval. For a
host and resource pool the value is NA.

BYLS_MEM_SWAPPED

On vMA, for a host, logical system and resource pool, this metrics indicates the amount of memory that has been
transparently swapped to and from the disk.

BYLS_MEM_SWAPTARGET

On vMA, for a logical system the value indicates the amount of memory that can be swapped. For a host and resource
pool the value is “na”.

BYLS_MEM_SWAP_UTIL

On Solaris, this metric indicates the percentage of swap memory consumed by the zone with respect to total
configured swap memory (BYLS_MEM_SWAP). This metric is calculated as : BYLS_MEM_SWAP_UTIL =
(BYLS_MEM_SWAP_USED) / (BYLS_MEM_SWAP) * 100
On vMA, for a logical system, it is the percentage of swap memory utilized w.r.t the amount of swap memory available
for a logical system. For host and resource pool the value is NA. For a logical system this metric is calculated using
the below formula: (BYLS_MEM_SWAPPED * 100)/(BYLS_MEM_ENTL - BYLS_MEM_ENTL_MIN)

BYLS_MEM_SYS

On vMA, for a host, it is the amount of physical memory (in MBs unless otherwise specified) used by the system
(kernel) during the interval. For logical system and resource pool the value is NA.

BYLS_MEM_UNRESERVED

On vMA, for a host it is the amount of memory, that is unreserved. For a logical system and resource pool the value is
“na”.
Memory reservation not used by the Service Console, VMkernel, vSphere services and other powered on VMs user-
specified memory reservations and overhead memory.

BYLS_MEM_USED

On vMA, for host, resource pool and logical system the value indicates the amount of memory used represented in
MB. On vMA, for a resource pool, this metric is “na”.

BYLS_NET_BYTE_RATE

On vMA, for a host and logical system, it is the sum of data transmitted and received for all the NIC instances of the
host and virtual machine. It is represented in KBps. For a resource pool the value is NA.

BYLS_NET_IN_BYTE

On vMA, for a host and logical system, it is number of bytes, in MB, received during the interval. For a resource pool
the value is NA.

BYLS_NET_IN_PACKET

On vMA, for a host and a logical system, this metric indicates the number of successful packets received through all
network interfaces during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_NET_IN_PACKET_RATE

On vMA, for a host and a logical system, this metric indicates the number of successful packets per second received
through all network interfaces during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_NET_OUT_BYTE

On vMA, for a host and logical system, it is the number of bytes, in MB, transmitted during the interval. For a resource
pool the value is NA.

BYLS_NET_OUT_PACKET

On vMA, for a host and a logical system, it is the number of successful packets sent through all network interfaces
during the last interval. On vMA, for a resource pool, this metric is “na”.

BYLS_NET_OUT_PACKET_RATE

On vMA, for a host and a logical system, this metric indicates the number of successful packets per second sent
through the network interfaces during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_NET_PACKET_RATE

On vMA, for a host and a logical system, it is the number of successful packets per second, both sent and received,
for all network interfaces during the interval. On vMA, for a resource pool, this metric is “na”.

BYLS_NUM_ACTIVE_LS

On vMA, for a host, this indicates the number of logical systems hosted in a system that are active. For a logical
system and resource pool the value is NA.

BYLS_NUM_CPU

The number of virtual CPUs configured for this logical system. This metric is equivalent to GBL_NUM_CPU on the
corresponding logical system.
On HPVM, the maximum CPUs a logical system can have is 4 with respect to HPVM 3.x.
On AIX SPLPAR, the number of CPUs can be configured irrespective of the available physical CPUs in the pool this
logical system belongs to. For AIX wpars, this metric represents the logical CPUs of the global environment.
On vMA, for a host the metric is the number of physical CPU threads on the host. For a logical system, the metric is
the number of virtual cpus configured.For a resource pool the metric is NA.
On Solaris Zones, this metric represents number of CPUs in the CPU pool this zone is attached to. This metric value is
equivalent to GBL_NUM_CPU inside corresponding non-global zone.

BYLS_NUM_CPU_CORE

On vMA, for a host this metric provides the toal number of CPU cores on the system. For a logical system or a
resource pool the value is NA.

BYLS_NUM_DISK

The number of disks configured for this logical system. Only local disk devices and optical devices present on the
system are counted in this metric.
On vMA, for a host the metric is the number of disks configured for the host . For a logical system, the metric is the
number of logical disk devices present on the logical system. For a resource pool the metric is NA.
For AIX wpars, this metric will be “na”.
On Hyper-V host, this metric value is equivalent to GBL_NUM_DISK inside corresponding Hyper-V guest.
On Hyper-V host, this metric is NA if the logical system is not active.

BYLS_NUM_LS

On vMA, for a host, this indicates the number of logical systems hosted in a system. For a logical system and resource
pool the value is NA.

BYLS_NUM_NETIF

The number of network interfaces configured for this logical system.
On LPAR, this metric includes the loopback interface.
On Hyper-V host, this metric value is equivalent to GBL_NUM_NETWORK inside corresponding Hyper-V guest.
On Solaris Zones, this metric value is equivalent to GBL_NUM_NETWORK inside corresponding non-global zone.
On Hyper-V host, this metric is NA if the logical system is not active.
On vMA, for a host the metric is the number of network adapters on the host. For a logical system, the metric is the
number of network interfaces configured for the logical system. For a resource pool the metric is NA.

BYLS_NUM_SOCKET

On vMA, for a host, this metrics indicates the number of physical cpu sockets on the system. For a logical system or a
resource pool the value is NA.

BYLS_UPTIME_HOURS

On vMA, for a host and logical system the metrics is the time, in hours, since the last system reboot. For a resource
pool the value is NA.

BYLS_UPTIME_SECONDS

The uptime of this logical system in seconds.
On AIX LPARs, this metric will be “na”.
On vMA, for a host and logical system the metric is the uptime in seconds while for a resource pool the metric is NA.

BYLS_VC_IP_ADDRESS

On vMA, for a host, the metric indicates the IP address of the Virtual Centre that the host is managed by. For a
resource pool and logical system the value is NA.

BYNETIF_COLLISION

The number of physical collisions that occurred on the network interface during the interval. A rising rate of collisions
versus outbound packets is an indication that the network is becoming increasingly congested. This metric does not
currently include deferred packets.
This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.
For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision Frames“, ”Late
Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“ utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows
network activity on the logical level (IP) only.
For most other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i” command
(“collisions” from the “netstat -i -e” command on Linux) for a network device. See also netstat(1).
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_COLLISION_1_MIN_RATE

The number of physical collisions per minute on the network interface during the interval. A rising rate of collisions
versus outbound packets is an indication that the network is becoming increasingly congested. This metric does not
currently include deferred packets.
This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_COLLISION_RATE

The number of physical collisions per second on the network interface during the interval. A rising rate of collisions
versus outbound packets is an indication that the network is becoming increasingly congested. This metric does not
currently include deferred packets.
This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_COLLISION_RATE_CUM

The average number of physical collisions per second on the network interface over the cumulative collection time. A
rising rate of collisions versus outbound packets is an indication that the network is becoming increasingly congested.
This metric does not currently include deferred packets.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_ERROR

The number of physical errors that occurred on the network interface during the interval. An increasing number of
errors may indicate a hardware problem in the network.
On Unix systems, this data is not available for loop-back (lo) devices and is always zero.
For HP-UX, this will be the same as the sum of the “Inbound Errors” and “Outbound Errors” values from the output of
the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-
UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs” (TX-ERR on Linux)
from the “netstat -i” command for a network device. See also netstat(1).
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_ERROR_1_MIN_RATE

The number of physical errors per minute on the network interface during the interval.
On Unix systems, this data is not available for loop-back (lo) devices and is always zero.
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_ERROR_RATE

The number of physical errors per second on the network interface during the interval.
On Unix systems, this data is not available for loop-back (lo) devices and is always zero.
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_ERROR_RATE_CUM

The average number of physical errors per second on the network interface over the cumulative collection time.
On Unix systems, this data is not available for loop-back (lo) devices and is always zero.
If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_ID

The ID number of the network interface.

BYNETIF_IN_BYTE

The number of KBs received from the network via this interface during the interval. Only the bytes in packets that
carry data are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_IN_BYTE_RATE

The number of KBs per second received from the network via this interface during the interval. Only the bytes in
packets that carry data are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_IN_BYTE_RATE_CUM

The average number of KBs per second received from the network via this interface over the cumulative collection
time. Only the bytes in packets that carry data are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_IN_PACKET

The number of successful physical packets received through the network interface during the interval. Successful
packets are those that have been processed without errors or collisions.
For HP-UX, this will be the same as the sum of the “Inbound Unicast Packets“ and ”Inbound Non-Unicast Packets“
values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_IN_PACKET_RATE

The number of successful physical packets per second received through the network interface during the interval.
Successful packets are those that have been processed without errors or collisions.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface

(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_IN_PACKET_RATE_CUM

The average number of physical packets per second received through the network interface over the cumulative
collection time.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_NAME

The name of the network interface.
For HP-UX 11.0 and beyond, these are the same names that appear in the “Description” field of the “lanadmin”
command output.
On all other Unix systems, these are the same names that appear in the “Name” column of the “netstat -i” command.
Some examples of device names are:

 lo - loop-back driver

 ln - Standard Ethernet driver

 en - Standard Ethernet driver

 le - Lance Ethernet driver

 ie - Intel Ethernet driver

 tr - Token-Ring driver

 et - Ether Twist driver

 bf - fiber optic driver

All of the device names will have the unit number appended to the name. For example, a loop-back device in unit 0
will be “lo0”.
On vMA for Lan cards which are of type ESXVLan, this metric contains the vmnic<number> as first half and the
second half is the ESX host name.

BYNETIF_NET_TYPE

The type of network device the interface communicates through.

Lan - local area network card

Loop - software loopback

 interface (not tied to a

 hardware device)

Loop6 - software loopback

 interface IPv6 (not tied

 to a hardware device)

Serial - serial modem port

Vlan - virtual lan

Wan - wide area network card

Tunnel - tunnel interface

Apa - HP LinkAggregate Interface (APA)

Other - hardware network interface

 type is unknown.

ESXVLan - The card type belongs to network cards of ESX hosts which are

 monitored on vMA.

BYNETIF_OUT_BYTE

The number of KBs sent to the network via this interface during the interval. Only the bytes in packets that carry data
are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_OUT_BYTE_RATE

The number of KBs per second sent to the network via this interface during the interval. Only the bytes in packets that
carry data are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_OUT_BYTE_RATE_CUM

The average number of KBs per second sent to the network via this interface over the cumulative collection time. Only
the bytes in packets that carry data are included in this rate.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_OUT_PACKET

The number of successful physical packets sent through the network interface during the interval. Successful packets
are those that have been processed without errors or collisions.

For HP-UX, this will be the same as the sum of the “Outbound Unicast Packets“ and ”Outbound Non-Unicast Packets“
values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_OUT_PACKET_RATE

The number of successful physical packets per second sent through the network interface during the interval.
Successful packets are those that have been processed without errors or collisions.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_OUT_PACKET_RATE_CUM

The average number of successful physical packets per second sent through the network interface over the
cumulative collection time.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYNETIF_PACKET_RATE

The number of successful physical packets per second sent and received through the network interface during the
interval. Successful packets are those that have been processed without errors or collisions.
 If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the host.
 Physical statistics are packets recorded by the network drivers. These numbers most likely will not be the same as
the logical statistics. The values returned for the loopback interface will show “na” for the physical statistics since there
is no network driver activity.
Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking subsystem. Not all
packets seen by IP will go out and come in through a network driver. An example is the loopback interface
(127.0.0.1). Pings or other network generating commands (ftp, rlogin, and so forth) to 127.0.0.1 will not change
physical driver statistics. Pings to IP addresses on remote systems will change physical driver statistics.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

BYOP_CLIENT_COUNT

The number of current NFS operations that the local machine has processed as a NFS client during the interval.
A host on the network can act both as a client, or as a server at the same time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYOP_CLIENT_COUNT_CUM

The number of current NFS operations that the local machine has processed as a NFS client over the cumulative
collection time.
A host on the network can act both as a client, or as a server at the same time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYOP_INTERVAL

The amount of time in the interval.

BYOP_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYOP_NAME

String mnemonic for the NFS operation. One of the following:

For NFS Version 2

Name Operation/Action

getattr Return the current

 attributes of a file.

setattr Set the attributes of a

 file and returns the new

 attributes.

lookup Return the attributes of

 a file.

readlink Return the string in the

 symbolic link of a file.

read Return data from a file.

write Put data into a file.

create Create a file.

remove Remove a file.

rename Give a file a new name.

link Create a hard link to a

 file.

symlink Create a symbolic link

 to a file.

mkdir Create a directory.

rmdir Remove a directory.

readdir Read a directory entry.

statfs Return mounted file

 system information.

null Verify NFS service

 connections and timing.

 On HP-UX, no actual work

 done.

writecache Flush the server write

 cache if a special write

 cache exists. Most

 systems use the file

 buffer cache and not a

 special server cache.

 Not used on HP-UX.

root Find root file system

 handle (probably

 obsolete).

 Not used on HP-UX.

For NFS Version 3

Name Operation/Action

getattr Return the current

 attributes of a file.

setattr Set the attributes of a

 file and returns the new

 attributes.

lookup Return the attributes of

 a file.

access Check access permissions

 of a user.

readlink Return the string in the

 symbolic link of a file.

read Return data from a file.

write Put data into a file.

create Create a file.

mkdir Make a directory.

symlink Create a symbolic link

 to a file.

mknod Create a special device.

remove Remove a file.

rmdir Remove a directory.

rename Give a file a new name.

link Create a hard link to a

 file.

readdir Read a directory entry.

readdirplus Extended read of a

 directory entry.

fsstat Get dynamic file

 system information.

fsinfo Get static file

 system information.

pathconf Retrieve POSIX

 information.

commit Commit cached data on

 server to stable

 storage.

null Verify NFS services.

 No actual work done.

BYOP_SERVER_COUNT

The number of current NFS operations that the local machine has processed as a NFS server during the interval.
A host on the network can act both as a client, or as a server at the same time.

BYOP_SERVER_COUNT_CUM

The number of current NFS operations that the local machine has processed as a NFS server over the cumulative
collection time.
A host on the network can act both as a client, or as a server at the same time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

BYSWP_SWAP_PRI

The priority of this swap device. This value is set by either the swapon(1M) command, or by the “pri=” field in
/etc/fstab.
On HP-UX, swap space is used by the lower value priorities first. Since device swap is faster than file system swap, it
is advisable to have lower values for device swap. The legal values for priority range from 0 to 10.
On HP-UX, the “memory” swap area has no priority and will be shown as -1. This indicates that using memory as a
swap area is only done after all other swap resources have been exhausted. This is true in extreme cases of memory
pressure forcing the kernel to swap the entire process to disk. In cases of process deactivation, the memory pseudo
swap actually has the highest priority - deactivated pages are not moved - they are simply marked as deactivated and
the space they occupy is considered pseudo swap.
On Linux, swap space is used by the higher value priorities first. The legal values for priority range from 0 to 32767.
The system assigns negative priority values if no priority is specified during the creation of swap area. See swapon(8)
for details.

BYSWP_SWAP_SPACE_AVAIL

The capacity (in MB) for swapping in this swap area.
On HP-UX, for “device” type swap, this value is constant. However, for “filesys” swap this value grows as needed.
File system swap grows in units of “SWCHUNKS” x DEV_BSIZE bytes, which is typically 2MB. This metric is similar to
the “AVAIL” parameters returned from /usr/sbin/swapinfo. For “memory” type swap, this value also grows as needed
or as possible, given that any memory reserved for swap cannot be used for normal virtual memory. Note that this is
potential swap space. Since swap is allocated in fixed (SWCHUNK) sizes, not all of this space may actually be
usable. For example, on a 61 MB disk using 2 MB swap size allocations, 1 MB remains unusable and is considered
wasted space.
On SUN, this is the same as (blocks * .5)/1024, reported by the “swap -l” command.
On AIX, this metric is set to “na” for inactive swap devices.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

BYSWP_SWAP_SPACE_NAME

On Unix systems, this is the name of the device file or file system where the swap space is located.
On HP-UX, part of the system's physical memory may be allocated as a pseudo-swap device. It is enabled by setting
the “SWAPMEM_ON” kernel parameter to 1.
On SunOS 5.X, part of the system's physical memory may be allocated as a pseudo-swap device. Also note, “/tmp” is
usually configured as a memory based file system and is not used for swap space. Therefore, it will not be listed with
the swap devices. This is noted because “df” uses the label “swap” for the “/tmp” file system which may be confusing.
See tmpfs(7).

BYSWP_SWAP_SPACE_USED

The amount of swap space (in MB) used in this area.
On HP-UX, this value is similar to the “USED” column returned by the /usr/sbin/swapinfo command.
On SUN, “Used” indicates amount written to disk (or locked in memory), rather than reserved. Swap space is reserved
(by decrementing a counter) when virtual memory for a program is created. This is the same as (blocks - free) *
.5/1024, reported by the “swap -l” command.
 On SUN, global swap space is tracked through the operating system. Device swap space is tracked through the
devices. For this reason, the amount of swap space used may differ between the global and by-device metrics.
Sometimes pages that are marked to be swapped to disk by the operating system are never swapped. The operating
system records this as used swap space, but the devices do not, since no physical IOs occur. (Metrics with the prefix
“GBL” are global and metrics with the prefix “BYSWP” are by device.)
On AIX, this metric is set to “na” for inactive swap devices.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

BYSWP_SWAP_TYPE

The type of swap space allocated on the system.
On HP-UX and SUN, types of swap space are device, file system (“filesys”), or memory. “Device” swap is accessed
directly without going through the file system, and is therefore faster than “filesys” swap. “Filesys” swap can be to a
local or NFS mounted swap file. “Memory” swap is space in the system's physical memory reserved for pseudo-swap
for running processes. Using pseudo-swap means the pages are simply locked in memory rather than copied to a
swap area.
On SUN, note that “/tmp” is usually configured as a memory based file system and is not used for swap space.
Therefore, it will not be listed with the swap devices, and “swap” or “tmpfs” will not be swap types. This is noted
because “df” uses the label “swap” for the “/tmp” file system which may be confusing. See tmpfs(7).
On AIX, “Device” swap is accessed directly without going through the file system. For “Device” swap, the device is
specially allocated for swapping purpose only. The device can be logical volume, “lv” or remote file system, “remote
fs”. The swap is often referred as paging to paging space.

FS_BLOCK_SIZE

The maximum block size of this file system, in bytes.
A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.

FS_DEVNAME

On Unix systems, this is the path name string of the current device.
On Windows, this is the disk drive string of the current device.
On HP-UX, this is the “fsname” parameter in the mount(1M) command. For NFS devices, this includes the name of
the node exporting the file system. It is possible that a process may mount a device using the mount(2) system call.
This call does not update the “/etc/mnttab” and its name is blank. This situation is rare, and should be corrected by
syncer(1M). Note that once a device is mounted, its entry is displayed, even after the device is unmounted, until the
midaemon process terminates.
On SUN, this is the path name string of the current device, or “tmpfs” for memory based file systems. See tmpfs(7).

FS_DEVNO

On Unix systems, this is the major and minor number of the file system.
On Windows, this is the unit number of the disk device on which the logical disk resides.

FS_DIRNAME

On Unix systems, this is the path name of the mount point of the file system.
On Windows, this is the drive letter associated with the selected disk partition.
On HP-UX, this is the path name of the mount point of the file system if the logical volume has a mounted file system.
This is the directory parameter of the mount(1M) command for most entries. Exceptions are:

* For lvm swap areas, this field

 contains “lvm swap device”.

* For logical volumes with no

 mounted file systems, this field

 contains “Raw Logical Volume”

 (relevant only to Perf Agent).

On HP-UX, the file names are in the same order as shown in the “/usr/sbin/mount -p” command. File systems are not
displayed until they exhibit IO activity once the midaemon has been started. Also, once a device is displayed, it
continues to be displayed (even after the device is unmounted) until the midaemon process terminates.
On SUN, only “UFS”, “HSFS” and “TMPFS” file systems are listed. See mount(1M) and mnttab(4). “TMPFS” file
systems are memory based filesystems and are listed here for convenience. See tmpfs(7).
On AIX, see mount(1M) and filesystems(4). On OSF1, see mount(2).

FS_FRAG_SIZE

The fundamental file system block size, in bytes.
A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.

FS_INODE_UTIL

Percentage of this file system's inodes in use during the interval.
A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.

FS_MAX_INODES

Number of configured file system inodes.
A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.

FS_MAX_SIZE

Maximum number that this file system could obtain if full, in MB.
Note that this is the user space capacity - it is the file system space accessible to non root users. On most Unix
systems, the df command shows the total file system capacity which includes the extra file system space accessible to
root users only.
The equivalent fields to look at are “used” and “avail”. For the target file system, to calculate the maximum size in MB,
use

 FS Max Size = (used + avail)/1024

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.
On HP-UX, this metric is updated at 4 minute intervals to minimize collection overhead.

FS_PHYS_IO_RATE

The number of physical IOs per second directed to this file system during the interval.

FS_PHYS_IO_RATE_CUM

The average number of physical IOs per second directed to this file system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

FS_PHYS_READ_BYTE_RATE

The number of physical KBs per second read from this file system during the interval.

FS_PHYS_READ_BYTE_RATE_CUM

The average number of KBs per second of physical reads from this file system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

FS_PHYS_READ_RATE

The number of physical reads per second directed to this file system during the interval.
On Unix systems, physical reads are generated by user file access, virtual memory access (paging), file system
management, or raw device access.

FS_PHYS_READ_RATE_CUM

The average number of physical reads per second directed to this file system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

FS_PHYS_WRITE_BYTE_RATE

The number of physical KBs per second written to this file system during the interval.

FS_PHYS_WRITE_BYTE_RATE_CUM

The average number of KBs per second of physical writes to this file system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

FS_PHYS_WRITE_RATE

The number of physical writes per second directed to this file system during the interval.

FS_PHYS_WRITE_RATE_CUM

The average number of physical writes per second directed to this file system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

FS_SPACE_RESERVED

The amount of file system space in MBs reserved for superuser allocation.
On AIX, this metric is typically zero because by default AIX does not reserve any file system space for the superuser.

FS_SPACE_USED

The amount of file system space in MBs that is being used.

FS_SPACE_UTIL

Percentage of the file system space in use during the interval.
Note that this is the user space capacity - it is the file system space accessible to non root users. On most Unix
systems, the df command shows the total file system capacity which includes the extra file system space accessible to
root users only.
A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these unmounted file
systems are not displayed until remounted.
On HP-UX, this metric is updated at 4 minute intervals to minimize collection overhead.

FS_TYPE

A string indicating the file system type. On Unix systems, some of the possible types are:

 hfs - user file system

 ufs - user file system

 ext2 - user file system

 cdfs - CD-ROM file system

 vxfs - Veritas (vxfs) file system

 nfs - network file system

 nfs3 - network file system

 Version 3

On Windows, some of the possible types are:

 NTFS - New Technology File System

 FAT - 16-bit File Allocation

 Table

 FAT32 - 32-bit File Allocation

 Table

FAT uses a 16-bit file allocation table entry (216 clusters).
FAT32 uses a 32-bit file allocation table entry. However, Windows 2000 reserves the first 4 bits of a FAT32 file
allocation table entry, which means FAT32 has a theoretical maximum of 228 clusters. NTFS is native file system of
Windows NT and beyond.

GBL_ACTIVE_CPU

The number of CPUs online on the system.
For HP-UX and certain versions of Linux, the sar(1M) command allows you to check the status of the system CPUs.
For SUN and DEC, the commands psrinfo(1M) and psradm(1M) allow you to check or change the status of the system
CPUs.
For AIX, the pstat(1) command allows you to check the status of the system CPUs.
On AIX System WPARs, this metric value is identical to the value on AIX Global Environment if RSET is not configured
for the System WPAR. If RSET is configured for the System WPAR, this metric value will report the number of CPUs in
the RSET.
 On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_ACTIVE_CPU_CORE

This metric provides the total number of active CPU cores on a physical system.

GBL_ACTIVE_PROC

An active process is one that exists and consumes some CPU time. GBL_ACTIVE_PROC is the sum of the alive-
process-time/interval-time ratios of every process that is active (uses any CPU time) during an interval.
The following diagram of a four second interval during which two processes exist on the system should be used to
understand the above definition. Note the difference between active processes, which consume CPU time, and alive
processes which merely exist on the system.

 ----------- Seconds -----------

 1 2 3 4

Proc

---- ---- ---- ---- ----

A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to GBL_ALIVE_PROC is
4*1/4. A contributes 0*1/4 to GBL_ACTIVE_PROC. B's contribution to GBL_ALIVE_PROC is 3*1/4. B contributes
2*1/4 to GBL_ACTIVE_PROC. Thus, for this interval, GBL_ACTIVE_PROC equals 0.5 and GBL_ALIVE_PROC
equals 1.75.
Because a process may be alive but not active, GBL_ACTIVE_PROC will always be less than or equal to
GBL_ALIVE_PROC.
This metric is a good overall indicator of the workload of the system. An unusually large number of active processes
could indicate a CPU bottleneck.
To determine if the CPU is a bottleneck, compare this metric with GBL_CPU_TOTAL_UTIL and GBL_RUN_QUEUE.
If GBL_CPU_TOTAL_UTIL is near 100 percent and GBL_RUN_QUEUE is greater than one, there is a bottleneck.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

GBL_ALIVE_PROC

An alive process is one that exists on the system. GBL_ALIVE_PROC is the sum of the alive-process-time/interval-
time ratios for every process.
The following diagram of a four second interval during which two processes exist on the system should be used to
understand the above definition. Note the difference between active processes, which consume CPU time, and alive
processes which merely exist on the system.

 ----------- Seconds -----------

 1 2 3 4

Proc

---- ---- ---- ---- ----

A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to GBL_ALIVE_PROC is
4*1/4. A contributes 0*1/4 to GBL_ACTIVE_PROC. B's contribution to GBL_ALIVE_PROC is 3*1/4. B contributes
2*1/4 to GBL_ACTIVE_PROC. Thus, for this interval, GBL_ACTIVE_PROC equals 0.5 and GBL_ALIVE_PROC
equals 1.75.
Because a process may be alive but not active, GBL_ACTIVE_PROC will always be less than or equal to
GBL_ALIVE_PROC.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

GBL_BLANK

A string of blanks.

GBL_BOOT_TIME

The date and time when the system was last booted.

GBL_COLLECTOR

ASCII field containing collector name and version. The collector name will appear as either “SCOPE/xx V.UU.FF.LF”
or “Coda RV.UU.FF.LF”. xx identifies the platform; V = version, UU = update level, FF = fix level, and LF = lab fix id.
For example, SCOPE/UX C.04.00.00; or Coda A.07.10.04.

GBL_COMPLETED_PROC

The number of processes that terminated during the interval.
 On non HP-UX systems, this metric is derived from sampled process data. Since the data for a process is not
available after the process has died on this operating system, a process whose life is shorter than the sampling
interval may not be seen when the samples are taken. Thus this metric may be slightly less than the actual value.
Increasing the sampling frequency captures a more accurate count, but the overhead of collection may also rise.

GBL_CPU_CLOCK

The clock speed of the CPUs in MHz if all of the processors have the same clock speed. Otherwise, “na” is shown if
the processors have different clock speeds. Note that Linux supports dynamic frequency scaling and if it is enabled
then there can be a change in CPU speed with varying load.

GBL_CPU_CYCLE_ENTL_MAX

On a recognized VMware ESX guest, where VMware guest SDK is enabled,, this value indicates the maximum
processor capacity, in MHz, configured for this logical system. The value is -3 if entitlement is 'Unlimited' for this
logical system.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”.
On a standalone system, the value is the sum of clock speed of individual CPUs.

GBL_CPU_CYCLE_ENTL_MIN

On a recognized VMware ESX guest, where VMware guest SDK is enabled,, this value indicates the minimum
processor capacity, in MHz, configured for this logical system.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”.
On a standalone system, the value is the sum of clock speed of individual CPUs.

GBL_CPU_ENTL_MAX

In a virtual environment, this metric indicates the maximum number of processing units configured for this logical
system.
On AIX SPLPAR, this metric is equivalent to “Maximum Capacity“ field of 'lparstat -i' command.
On a recognized VMware ESX guest the value is equivalent to GBL_CPU_CYCLE_ENTL_MAX represented in CPU
units.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”.
On a standalone system the value is same as GBL_NUM_CPU.

GBL_CPU_ENTL_MIN

In a virtual environment, this metric indicates the minimum number of processing units configured for this Logical
system.
On AIX SPLPAR, this metric is equivalent to “Minimum Capacity“ field of 'lparstat -i' command.

On a recognized VMware ESX guest, where VMware guest SDK is enabled, the value is equivalent to
GBL_CPU_CYCLE_ENTL_MIN represented in CPU units.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”.
On a standalone system the value is same as GBL_NUM_CPU.

GBL_CPU_ENTL_UTIL

Percentage of entitled processing units (guaranteed processing units allocated to this logical system) consumed by the
logical system.
On AIX, this metric is calculated as:
 GBL_CPU_ENTL_UTIL = (GBL_CPU_PHYSC / GBL_CPU_ENTL) * 100
On a recognized VMware ESX guest, where VMware guest SDK is enabled, this metric is calculated as:
 GBL_CPU_ENTL_UTIL = (GBL_CPU_PHYSC / GBL_CPU_ENTL_MIN) * 100
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”.
On a standalone system, the value is same as GBL_CPU_TOTAL_UTIL.

GBL_CPU_IDLE_TIME

The time, in seconds, that the CPU was idle during the interval. This is the total idle time, including waiting for I/O.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online.
On AIX System WPARs, this metric value is calculated against physical cpu time.
 On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_IDLE_TIME_CUM

The time, in seconds, that the CPU was idle over the cumulative collection time. This is the total idle time, including
waiting for I/O.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this
metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_IDLE_UTIL

The percentage of time that the CPU was idle during the interval. This is the total idle time, including waiting for I/O.
On Unix systems, this is the same as the sum of the “%idle” and “%wio” fields reported by the “sar -u” command.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online.
 On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_IDLE_UTIL_CUM

The percentage of time that the CPU was idle over the cumulative collection time. This is the total idle time, including
waiting for I/O.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this
metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_IDLE_UTIL_HIGH

The highest percentage of time that the CPU was idle during any one interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_INTERRUPT_TIME

The time, in seconds, that the CPU spent processing interrupts during the interval.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On Hyper-V host, this metric is NA.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_INTERRUPT_TIME_CUM

The time, in seconds, that the CPU spent processing interrupts over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_INTERRUPT_UTIL

The percentage of time that the CPU spent processing interrupts during the interval.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On Hyper-V host, this metric is NA.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_INTERRUPT_UTIL_CUM

The percentage of time that the CPU spent processing interrupts over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_INTERRUPT_UTIL_HIGH

The highest percentage of time that the CPU spent processing interrupts during any one interval over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_MT_ENABLED

On AIX, this metric indicates if this (Logical) System has SMT enabled or not.
Other platforms, this metric shows either HyperThreading(HT) is Enabled or Disabled/Not Supported.
On Linux, this state is dynamic: if HyperThreading is enabled but all the CPUs have only one logical processor
enabled, this metric will report that HT is disabled.
 On AIX System WPARs, this metric is NA.
On Windows, this metric will be “na” on Windows Server 2003 Itanium systems.

GBL_CPU_NICE_TIME

The time, in seconds, that the CPU was in user mode at a nice priority during the interval.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.

 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_NICE_TIME_CUM

The time, in seconds, that the CPU was in user mode at a nice priority over the cumulative collection time.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_NICE_UTIL

The percentage of time that the CPU was in user mode at a nice priority during the interval.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_NICE_UTIL_CUM

The percentage of time that the CPU was in user mode at a nice priority over the cumulative collection time.

 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_NICE_UTIL_HIGH

The highest percentage of time during any one interval that the CPU was in user mode at a nice priority over the
cumulative collection time.
 On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU is broken out into
NNICE (negative nice) metrics. Positive nice values range from 20 to 39. Negative nice values range from 0 to 19.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_NUM_THREADS

The number of active CPU threads supported by the CPU architecture.
 The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This means that there is no
way to find out types, speeds, as well as hardware IDs or any other information that is used to determine the number
of cores, the number of threads, the HyperThreading state, etc... If the agent (or Glance) is started while some of the
CPUs are disabled, some of these metrics will be “na”, some will be based on what is visible at startup time. All
information will be updated if/when additional CPUs are enabled and information about them becomes available. The
configuration counts will remain at the highest discovered level (i.e. if CPUs are then disabled, the maximum number
of CPUs/cores/etc... will remain at the highest observed level). It is recommended that the agent be started with all
CPUs enabled.
 On AIX System WPARs, this metric is NA.

GBL_CPU_PHYSC

The number of physical processors utilized by the logical system.

On an Uncapped logical system (partition), this value will be equal to the physical processor capacity used by the
logical system during the interval. This can be more than the value entitled for a logical system.
On a standalone system the value is calculated based on GBL_CPU_TOTAL_UTIL

GBL_CPU_PHYS_TOTAL_UTIL

The percentage of time the available physical CPUs were not idle for this logical system during the interval.
On AIX, this metric is calculated as :
GBL_CPU_PHYS_TOTAL_UTIL = GBL_CPU_PHYS_USER_MODE_UTIL + GBL_CPU_PHYS_SYS_MODE_UTIL ;
GBL_CPU_PHYS_TOTAL_UTIL + GBL_CPU_PHYS_WAIT_UTIL + GBL_CPU_PHYS_IDLE_UTIL = 100%
On Power5 based systems, traditional sample based calculations cannot be made because the dispatch cycle for
each of the virtual CPUs is not same. So Power5 processor maintains a per-thread register PURR. The thread is
dispatching instructions or the thread that last dispatched an instruction will be incremented at every processor clock
cycle. This makes the value to be distributed between the two threads. Power5 processor also maintains two more
registers, one is timebase - which gets incremented at every tick and decrementer - that provided periodic interrupts.
On a Shared LPAR environment, PURR is equal to the time that a virtual processor has spent on a physical
processor. Hypervisor maintains a virtual timebase which is same as the sum of two PURRs.
On a Capped Shared logical system (partition), the calculations for the metric GBL_CPU_PHYS_USER_MODE_UTIL
is as follows:
 (delta PURR in user mode/entitlement) * 100 On an Uncapped Shared logical system (partition): (delta PURR
in user mode/entitlement consumed) * 100
The calculations for the other utilizations such as GBL_CPU_PHYS_USER_MODE_UTIL,
GBL_CPU_PHYS_SYS_MODE_UTIL, and GBL_CPU_PHYS_WAIT_UTIL are also similar.
On a standalone system, the value will be equivalent to GBL_CPU_TOTAL_UTIL.
On AIX System WPARs, this metric value is calculated against physical cpu time.

GBL_CPU_SHARES_PRIO

The weightage/priority assigned to a Uncapped logical system. This value determines the minimum share of unutilized
processing units that this logical system can utilize.
On AIX SPLPAR this value is dependent on the available processing units in the pool and can range from 0 to 255
On recognized VMware ESX guest, this value can range from 1 to 100000
On a standalone system the value will be “na”.

GBL_CPU_SYS_MODE_TIME

The time, in seconds, that the CPU was in system mode during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.
On Hyper-V host, this metric indicates the time spent in Hypervisor code.

GBL_CPU_SYS_MODE_TIME_CUM

The time, in seconds, that the CPU was in system mode since over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.

GBL_CPU_SYS_MODE_UTIL

Percentage of time the CPU was in system mode during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
This metric is a subset of the GBL_CPU_TOTAL_UTIL percentage.
This is NOT a measure of the amount of time used by system daemon processes, since most system daemons spend
part of their time in user mode and part in system calls, like any other process.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

High system mode CPU percentages are normal for IO intensive applications. Abnormally high system mode CPU
percentages can indicate that a hardware problem is causing a high interrupt rate. It can also indicate programs that
are not calling system calls efficiently. On a logical system, this metric indicates the percentage of time the logical
processor was in kernel mode during this interval.
On Hyper-V host, this metric indicates the percentage of time spent in Hypervisor code.

GBL_CPU_SYS_MODE_UTIL_CUM

The percentage of time that the CPU was in system mode over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_SYS_MODE_UTIL_HIGH

The highest percentage of time during any one interval that the CPU was in system mode over the cumulative
collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_TOTAL_TIME

The total time, in seconds, that the CPU was not idle in the interval.
This is calculated as

 GBL_CPU_TOTAL_TIME =

 GBL_CPU_USER_MODE_TIME +

 GBL_CPU_SYS_MODE_TIME

 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.

GBL_CPU_TOTAL_TIME_CUM

The total time that the CPU was not idle over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.

GBL_CPU_TOTAL_UTIL

Percentage of time the CPU was not idle during the interval.
This is calculated as

 GBL_CPU_TOTAL_UTIL =

 GBL_CPU_USER_MODE_UTIL +

 GBL_CPU_SYS_MODE_UTIL

 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.

 GBL_CPU_TOTAL_UTIL +

 GBL_CPU_IDLE_UTIL = 100%

This metric varies widely on most systems, depending on the workload. A consistently high CPU utilization can
indicate a CPU bottleneck, especially when other indicators such as GBL_RUN_QUEUE and GBL_ACTIVE_PROC
are also high. High CPU utilization can also occur on systems that are bottlenecked on memory, because the CPU
spends more time paging and swapping.
NOTE: On Windows, this metric may not equal the sum of the APP_CPU_TOTAL_UTIL metrics. Microsoft states that
“this is expected behavior“ because this GBL_CPU_TOTAL_UTIL metric is taken from the performance library
Processor objects while the APP_CPU_TOTAL_UTIL metrics are taken from the Process objects. Microsoft states
that there can be CPU time accounted for in the Processor system objects that may not be seen in the Process
objects. On a logical system, this metric indicates the logical utilization with respect to number of processors available
for the logical system (GBL_NUM_CPU).
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.

This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_TOTAL_UTIL_CUM

The percentage of total CPU time that the processor was not idle over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_TOTAL_UTIL_HIGH

The highest percentage of total CPU time during any one interval that the processor was not idle over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_USER_MODE_TIME

The time, in seconds, that the CPU was in user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.

 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.
On Hyper-V host, this metric indicates the time spent in guest code.

GBL_CPU_USER_MODE_TIME_CUM

The time, in seconds, that the CPU was in user mode over the cumulative collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

On AIX System WPARs, this metric value is calculated against physical cpu time.

GBL_CPU_USER_MODE_UTIL

The percentage of time the CPU was in user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
This metric is a subset of the GBL_CPU_TOTAL_UTIL percentage.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

High user mode CPU percentages are normal for computation-intensive applications. Low values of user CPU
utilization compared to relatively high values for GBL_CPU_SYS_MODE_UTIL can indicate an application or
hardware problem. On a logical system, this metric indicates the percentage of time the logical processor was in user
mode during this interval.
On Hyper-V host, this metric indicates the percentage of time spent in guest code.

GBL_CPU_USER_MODE_UTIL_CUM

The percentage of time that the CPU was in user mode over the cumulative collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_USER_MODE_UTIL_HIGH

The highest percentage of time during any one interval that the CPU was in user mode over the cumulative collection
time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

GBL_CPU_WAIT_TIME

The time, in seconds, that the CPU was idle and there were processes waiting for physical IOs to complete during the
interval.

 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
On AIX System WPARs, this metric value is calculated against physical cpu time.
 On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

 On Linux, this includes CPU steal time (shown as '%steal' in 'sar' and 'st' in 'vmstat').

GBL_CPU_WAIT_UTIL

The percentage of time during the interval that the CPU was idle and there were processes waiting for physical IOs to
complete.
 On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all processors is divided by
the number of processors online. This represents the usage of the total processing capacity available.
 On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

 On Linux, this includes CPU steal time (shown as '%steal' in 'sar' and 'st' in 'vmstat').

GBL_CSWITCH_RATE

The average number of context switches per second during the interval.
 On HP-UX, this includes context switches that result in the execution of a different process and those caused by a
process stopping, then resuming, with no other process running in the meantime.
On Windows, this includes switches from one thread to another either inside a single process or across processes. A
thread switch can be caused either by one thread asking another for information or by a thread being preempted by
another higher priority thread becoming ready to run.
 On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_CSWITCH_RATE_CUM

The average number of context switches per second over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, this includes context switches that result in the execution of a different process and those caused by a
process stopping, then resuming, with no other process running in the meantime.

GBL_CSWITCH_RATE_HIGH

The highest number of context switches per second during any interval over the cumulative collection time.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, this includes context switches that result in the execution of a different process and those caused by a
process stopping, then resuming, with no other process running in the meantime.

GBL_DISK_PHYS_BYTE

The number of KBs transferred to and from disks during the interval. The bytes for all types of physical IOs are
counted. Only local disks are counted in this measurement. NFS devices are excluded.
It is not directly related to the number of IOs, since IO requests can be of differing lengths.
On Unix systems, this includes file system IO, virtual memory IO, and raw IO.
On Windows, all types of physical IOs are counted.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_BYTE_RATE

The average number of KBs per second at which data was transferred to and from disks during the interval. The bytes
for all types physical IOs are counted. Only local disks are counted in this measurement. NFS devices are excluded.
This is a measure of the physical data transfer rate. It is not directly related to the number of IOs, since IO requests
can be of differing lengths.
This is an indicator of how much data is being transferred to and from disk devices. Large spikes in this metric can
indicate a disk bottleneck.
On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory, and raw reads.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_IO

The number of physical IOs during the interval. Only local disks are counted in this measurement. NFS devices are
excluded.
On Unix systems, all types of physical disk IOs are counted, including file system IO, virtual memory IO and raw IO.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_IO =

 GBL_DISK_FS_IO +

 GBL_DISK_VM_IO +

 GBL_DISK_SYSTEM_IO +

 GBL_DISK_RAW_IO

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_IO_CUM

The total number of physical IOs over the cumulative collection time. Only local disks are counted in this
measurement. NFS devices are excluded.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_IO_RATE

The number of physical IOs per second during the interval. Only local disks are counted in this measurement. NFS
devices are excluded.
On Unix systems, all types of physical disk IOs are counted, including file system IO, virtual memory IO and raw IO.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_IO_RATE =

 GBL_DISK_FS_IO_RATE +

 GBL_DISK_VM_IO_RATE +

 GBL_DISK_SYSTEM_IO_RATE +

 GBL_DISK_RAW_IO_RATE

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_IO_RATE_CUM

The number of physical IOs per second over the cumulative collection time. Only local disks are counted in this
measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ

The number of physical reads during the interval. Only local disks are counted in this measurement. NFS devices are
excluded.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw reads.
On HP-UX, there are many reasons why there is not a direct correlation between the number of logical IOs and
physical IOs. For example, small sequential logical reads may be satisfied from the buffer cache, resulting in fewer
physical IOs than logical IOs. Conversely, large logical IOs or small random IOs may result in more physical than
logical IOs. Logical volume mappings, logical disk mirroring, and disk striping also tend to remove any correlation.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_READ =

 GBL_DISK_FS_READ +

 GBL_DISK_VM_READ +

 GBL_DISK_SYSTEM_READ +

 GBL_DISK_RAW_READ

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_READ_BYTE

The number of KBs physically transferred from the disk during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw reads.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_BYTE_CUM

The number of KBs (or MBs if specified) physically transferred from the disk over the cumulative collection time. Only
local disks are counted in this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_BYTE_RATE

The average number of KBs transferred from the disk per second during the interval. Only local disks are counted in
this measurement. NFS devices are excluded.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_READ_CUM

The total number of physical reads over the cumulative collection time. Only local disks are counted in this
measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_PCT

The percentage of physical reads of total physical IO during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_READ_PCT_CUM

The percentage of physical reads of total physical IO over the cumulative collection time. Only local disks are counted
in this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_RATE

The number of physical reads per second during the interval. Only local disks are counted in this measurement. NFS
devices are excluded.
On Unix systems, all types of physical disk reads are counted, including file system, virtual memory, and raw reads.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_READ_RATE =

 GBL_DISK_FS_READ_RATE +

 GBL_DISK_VM_READ_RATE +

 GBL_DISK_SYSTEM_READ_RATE +

 GBL_DISK_RAW_READ_RATE

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_READ_RATE_CUM

The average number of physical reads per second over the cumulative collection time. Only local disks are counted in
this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE

The number of physical writes during the interval. Only local disks are counted in this measurement. NFS devices are
excluded.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
On HP-UX, there are many reasons why there is not a direct correlation between logical IOs and physical IOs. For
example, small logical writes may end up entirely in the buffer cache, and later generate fewer physical IOs when
written to disk due to the larger IO size. Or conversely, small logical writes may require physical prefetching of the
corresponding disk blocks before the data is merged and posted to disk. Logical volume mappings, logical disk
mirroring, and disk striping also tend to remove any correlation.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_WRITE =

 GBL_DISK_FS_WRITE +

 GBL_DISK_VM_WRITE +

 GBL_DISK_SYSTEM_WRITE +

 GBL_DISK_RAW_WRITE

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.

 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_BYTE

The number of KBs (or MBs if specified) physically transferred to the disk during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_BYTE_CUM

The number of KBs (or MBs if specified) physically transferred to the disk over the cumulative collection time. Only
local disks are counted in this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_BYTE_RATE

The average number of KBs transferred to the disk per second during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_CUM

The total number of physical writes over the cumulative collection time. Only local disks are counted in this
measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_PCT

The percentage of physical writes of total physical IO during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.

GBL_DISK_PHYS_WRITE_PCT_CUM

The percentage of physical writes of total physical IO over the cumulative collection time. Only local disks are counted
in this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_RATE

The number of physical writes per second during the interval. Only local disks are counted in this measurement. NFS
devices are excluded.
On Unix systems, all types of physical disk writes are counted, including file system IO, virtual memory IO, and raw
writes.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
On HP-UX, this is calculated as

 GBL_DISK_PHYS_WRITE_RATE =

 GBL_DISK_FS_WRITE_RATE +

 GBL_DISK_VM_WRITE_RATE +

 GBL_DISK_SYSTEM_WRITE_RATE +

 GBL_DISK_RAW_WRITE_RATE

 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_RATE_CUM

The number of physical writes per second over the cumulative collection time. Only local disks are counted in this
measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.

GBL_DISK_REQUEST_QUEUE

The total length of all of the disk queues at the end of the interval.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.
 On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the operating system does not
provide performance data for that device. This can be determined by checking the “by-disk” data when provided in a
product. If the CD drive has an entry in the list of active disks on a system, then data for that device is being collected.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_TIME_PEAK

The time, in seconds, during the interval that the busiest disk was performing IO transfers. This is for the busiest disk
only, not all disk devices. This counter is based on an end-to-end measurement for each IO transfer updated at queue
entry and exit points.
 Only local disks are counted in this measurement. NFS devices are excluded.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_UTIL

On HP-UX, this is the average percentage of time during the interval that all disks had IO in progress from the point of
view of the Operating System. This is the average utilization for all disks.
On all other Unix systems, this is the average percentage of disk in use time of the total interval (that is, the average
utilization).
 Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_UTIL_PEAK

The utilization of the busiest disk during the interval.
On HP-UX, this is the percentage of time during the interval that the busiest disk device had IO in progress from the
point of view of the Operating System.
On all other systems, this is the percentage of time during the interval that the busiest disk was performing IO
transfers.
It is not an average utilization over all the disk devices. Only local disks are counted in this measurement. NFS
devices are excluded.
 Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to provide values for
this metric. This metric will be “na” on the affected kernels. The “sar -d” command will also not be present on these
systems. Distributions and OS releases that are known to be affected include: TurboLinux 7, SuSE 7.2, and Debian
3.0.
A peak disk utilization of more than 50 percent often indicates a disk IO subsystem bottleneck situation. A bottleneck
may not be in the physical disk drive itself, but elsewhere in the IO path.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_DISK_UTIL_PEAK_CUM

The average utilization of the busiest disk in each interval over the cumulative collection time. Utilization is the
percentage of time in use versus the time in the measurement interval. For each interval a different disk may be the
busiest. Only local disks are counted in this measurement. NFS devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_DISK_UTIL_PEAK_HIGH

The highest utilization of any disk during any interval over the cumulative collection time. Utilization is the percentage
of time in use versus the time in the measurement interval. Only local disks are counted in this measurement. NFS
devices are excluded.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_DISTRIBUTION

The software distribution, if available.

GBL_FS_SPACE_UTIL_PEAK

The percentage of occupied disk space to total disk space for the fullest file system found during the interval. Only
locally mounted file systems are counted in this metric.
This metric can be used as an indicator that at least one file system on the system is running out of disk space.
On Unix systems, CDROM and PC file systems are also excluded. This metric can exceed 100 percent. This is
because a portion of the file system space is reserved as a buffer and can only be used by root. If the root user has
made the file system grow beyond the reserved buffer, the utilization will be greater than 100 percent. This is a
dangerous situation since if the root user totally fills the file system, the system may crash.
On Windows, CDROM file systems are also excluded.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_GMTOFFSET

The difference, in minutes, between local time and GMT (Greenwich Mean Time).

GBL_IGNORE_MT

This boolean value indicates whether the CPU normalization is on or off. If the metric value is “true”, CPU related
metrics in the global class will report values which are normalized against the number of active cores on the system.
If the metric value is “false”, CPU related metrics in the global class will report values which are normalized against the
number of CPU threads on the system.
If CPU MultiThreading is turned off this configuration option is a no-op and the metric value will be “true”.
On Linux, this metric will only report “true” if this configuration is on and if the kernel provides enough information to
determine whether MultiThreading is turned on.
On HPUX, this metric will report “na” if the processor doesn't support the feature.

GBL_INTERRUPT

The number of IO interrupts during the interval.
 On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_INTERRUPT_RATE

The average number of IO interrupts per second during the interval.
On HPUX and SUN this value includes clock interrupts. To get non-clock device interrupts, subtract clock interrupts
from the value.
 On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_INTERRUPT_RATE_CUM

The average number of IO interrupts per second over the cumulative collection time.
On HPUX and SUN this value includes clock interrupts. To get non-clock device interrupts, subtract clock interrupts
from the value.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_INTERRUPT_RATE_HIGH

The highest number of IO interrupts per second during any one interval over the cumulative collection time.
On HPUX and SUN this value includes clock interrupts. To get non-clock device interrupts, subtract clock interrupts
from the value.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_INTERVAL

The amount of time in the interval.

This measured interval is slightly larger than the desired or configured interval if the collection program is delayed by a
higher priority process and cannot sample the data immediately.

GBL_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_JAVAARG

This boolean value indicates whether the java class overloading mechanism is enabled or not. This metric will be set
when the javaarg flag in the parm file is set. The metric affected by this setting is PROC_PROC_ARGV1. This setting
is useful to construct parm file java application definitions using the argv1= keyword.

GBL_LOADAVG

The 1 minute load average of the system obtained at the time of logging.
On windows this is the load average of the system over the interval. Load average on windows is the average number
of threads that have been waiting in ready state during the interval. This is obtained by checking the number of threads
in ready state every sub proc interval, accumulating them over the interval and averaging over the interval.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_LOADAVG15

The 15 minute load average of the system obtained at the time of logging.

GBL_LOADAVG5

The 5 minute load average of the system obtained at the time of logging.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_LOADAVG_CUM

The average load average of the system over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_LOADAVG_HIGH

The highest value of the load average during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_LOST_MI_TRACE_BUFFERS

The number of trace buffers lost by the measurement processing daemon.
On HP-UX systems, if this value is > 0, the measurement subsystem is not keeping up with the system events that
generate traces.
For other Unix systems, if this value is > 0, the measurement subsystem is not keeping up with the ARM API calls that
generate traces.
Note: The value reported for this metric will roll over to 0 once it crosses INTMAX.

GBL_LS_MODE

Indicates whether the CPU entitlement for the logical system is Capped or Uncapped.

On a recognized VMware ESX guest, where VMware guest SDK is enabled, the value is “Uncapped” if maximum CPU
entitlement (GBL_CPU_ENTL_MAX) is unlimited.
Else, the value is always “Capped”.

GBL_LS_ROLE

Indicates whether Perf Agent is installed on Logical system or host or standalone system. This metric will be either
“GUEST”, “HOST” or “STAND”.

GBL_LS_SHARED

In a virtual environment, this metric indicates whether the physical CPUs are dedicated to this Logical system or
shared.
On AIX SPLPAR, this metric is equivalent to “Type” field of 'lparstat -i' command.
On a recognized VMware ESX guest, where VMware guest SDK is enabled, the value is “Shared”.
On a standalone system the value of this metrics is “Dedicated”.
 On AIX System WPARs, this metric is NA.

GBL_LS_TYPE

The virtulization technology if applicable. The value of this metric is “HPVM” on HP-UX host, “LPAR” on AIX LPAR,
“Sys WPAR” on system WPAR, “Zone” on Solaris Zones, “VMware” on recognized VMware ESX guest and VMware
ESX Server console, “Hyper-V” on Hyper-V host, else “NoVM”.
In conjunction with GBL_LS_ROLE this metric could be used to identify the environment in which Perf Agent/Glance is
running. For example, if GBL_LS_ROLE is “Guest” and GBL_LS_TYPE is “VMware” then PA/Glance is running on a
VMware Guest.

GBL_MACHINE

An ASCII string representing the Processor Architecture. And machine hardware model is represented by
GBL_MACHINE_MODEL metric.

GBL_MACHINE_MEM_USED

The amount of physical host memory currently consumed for this logical system's physical memory. On a standalone
system, the value will be (GBL_MEM_UTIL * GBL_MEM_PHYS) / 100

GBL_MACHINE_MODEL

The CPU model. This is similar to the information returned by the GBL_MACHINE metric and the uname
command(except for Solaris 10 x86/x86_64). However, this metric returns more information on some processors.
On HP-UX, this is the same information returned by the model command.

GBL_MEM_AVAIL

The amount of physical available memory in the system (in MBs unless otherwise specified).
On Windows, memory resident operating system code and data is not included as available memory.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_CACHE

The amount of physical memory (in MBs unless otherwise specified) used by the buffer cache during the interval.
On HP-UX 11i v2 and below, the buffer cache is a memory pool used by the system to stage disk IO data for the
driver.
On HP-UX 11i v3 and above this metric value represents the usage of the file system buffer cache which is still being
used for file system metadata.
On SUN, this value is obtained by multiplying the system page size times the number of buffer headers (nbuf). For
example, on a SPARCstation 10 the buffer size is usually (200 (page size buffers) * 4096 (bytes/page) = 800 KB).

 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.
On AIX, this value should be minimal since most disk IOs are done through memory mapped files.

GBL_MEM_CACHE_UTIL

The percentage of physical memory used by the buffer cache during the interval.
On HP-UX 11i v2 and below, the buffer cache is a memory pool used by the system to stage disk IO data for the
driver.
On HP-UX 11i v3 and above this metric value represents the usage of the file system buffer cache which is still being
used for file system metadata.
On SUN, this percentage is based on calculating the buffer cache size by multiplying the system page size times the
number of buffer headers (nbuf). For example, on a SPARCstation 10 the buffer size is usually (200 (page size
buffers) * 4096 (bytes/page) = 800 KB).
 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.
On AIX, this value should be minimal since most disk IOs are done through memory mapped files. On Windows the
value reports 'copy read hit %' and 'Pin read hit %'.

GBL_MEM_ENTL_MAX

In a virtual environment, this metric indicates the maximum amount of memory configured for this logical system. The
value is -3 if entitlement is 'Unlimited' for this logical system.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”
On Solaris non-global zones, this metric value is equivalent to 'capped-memory' value for 'zonecfg -z zonename info'
command.
On a standalone system this metric is equivalent to GBL_MEM_PHYS.

GBL_MEM_ENTL_MIN

In a virtual environment, this metric indicates the minimum amount of memory configured for this logical system.
On a recognized VMware ESX guest, where VMware guest SDK is disabled, the value is “na”
On a standalone system, this metrics is equivalent to GBL_MEM_PHYS.

GBL_MEM_FILE_PAGEIN_RATE

The number of page ins from the file system per second during the interval.
On Solaris, this is the same as the “fpi” value from the “vmstat -p” command, divided by page size in KB.
On Linux, the value is reported in kilobytes and matches the 'io/bi' values from vmstat.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_FILE_PAGEOUT_RATE

The number of page outs to the file system per second during the interval.
On Solaris, this is the same as the “fpo” value from the “vmstat -p” command, divided by page size in KB.
On Linux, the value is reported in kilobytes and matches the 'io/bo' values from vmstat.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_FILE_PAGE_CACHE

The amount of physical memory (in MBs unless otherwise specified) used by the file cache during the interval. File
cache is a memory pool used by the system to stage disk IO data for the driver.
 This metric is supported on HP-UX 11iv3 and above. The filecache_min and filecache_max tunables control the
filecache memory usage on the system. The filecache_min tunable specifies the amount of physical memory that is
guaranteed to be available for filecache on the system. The filecache memory usage can grow beyond filecache_min,
up to the limit set by the filecache_max tunable. The Virtual Memory(VM) subsystem always pre reserves
'filecache_min' tunable value worth of pages on the system for filecache, even in the case of filecache under utilization
(actual filecache utilization < filecache_min value). This preserved memory by the VM is not available for the user. In
this scenario, this metric will show the 'filecache_min' as the filecache value, rather than showing the actual filecache
utilization.
On Linux, this metric is equal to 'cached' value of 'free -m' command output.

GBL_MEM_FILE_PAGE_CACHE_UTIL

The percentage of physical_memory used by the file cache during the interval. File cache is a memory pool used by
the system to stage disk IO data for the driver.
 This metric is supported on HP-UX 11iv3 and above. The filecache_min and filecache_max tunables control the
filecache memory usage on the system. The filecache_min tunable specifies the amount of physical memory that is
guaranteed to be available for filecache on the system. The filecache memory usage can grow beyond filecache_min,
up to the limit set by the filecache_max tunable. The Virtual Memory(VM) subsystem always pre reserves
'filecache_min' tunable value worth of pages on the system for filecache, even in the case of filecache under utilization
(actual filecache utilization < filecache_min value). This preserved memory by the VM is not available for the user. In
this scenario, this metric will show the 'filecache_min' as the filecache value, rather than showing the actual filecache
utilization.
On Linux, this metric is derived from 'cached' value of 'free -m' command output.

GBL_MEM_FREE

The amount of memory not allocated (in MBs unless otherwise specified). As this value drops, the likelihood
increases that swapping or paging out to disk may occur to satisfy new memory requests.
On SUN, low values for this metric may not indicate a true memory shortage. This metric can be influenced by the
VMM (Virtual Memory Management) system. On Linux, this metric is sum of 'free' and 'cached' memory.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.
 Locality Domain metrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and LDOM_MEM_FREE, as
well as the memory utilization metrics derived from them, may not always fully match. GBL_MEM_FREE represents
free memory in the kernel's reservation layer while LDOM_MEM_FREE shows actual free pages. If memory has been
reserved but not actually consumed from the Locality Domains, the two values won't match. Because
GBL_MEM_FREE includes pre-reserved memory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

GBL_MEM_FREE_UTIL

The percentage of physical memory that was free at the end of the interval.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_OVERHEAD

The amount of “overhead” memory associated with this logical system that is currently consumed on the host system.
On VMware ESX Server console, the value is equivalent to sum of the current overhead memory for all running virtual
machines On a standalone system, the value will be 0. On a recognized VMware ESX guest, where VMware guest
SDK is disabled, the value is “na”.

GBL_MEM_PAGEIN

The total number of page ins from the disk during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
On HP-UX, this is the same as the “page ins” value from the “vmstat -s” command. On AIX, this is the same as the
“paging space page ins” value. Remember that “vmstat -s” reports cumulative counts.

 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEIN_BYTE

The number of KBs (or MBs if specified) of page ins during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_CUM

The number of KBs (or MBs if specified) of page ins over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE

The number of KBs per second of page ins during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE_CUM

The average number of KBs per second of page ins over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE_HIGH

The highest number of KBs per second of page ins during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_CUM

The total number of page ins from the disk over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_RATE

The total number of page ins per second from the disk during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
On HP-UX and AIX, this is the same as the “pi” value from the vmstat command.
On Solaris, this is the same as the sum of the “epi” and “api” values from the “vmstat -p” command, divided by the
page size in KB.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEIN_RATE_CUM

The average number of page ins per second over the cumulative collection time. This includes pages paged in from
paging space and, except for AIX, from the file system.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_RATE_HIGH

The highest number of page ins per second from disk during any interval over the cumulative collection time.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT

The total number of page outs to the disk during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
On HP-UX, this is the same as the “page outs” value from the “vmstat -s” command. On HP-UX 11iv3 and above this
includes filecache page outs also. On AIX, this is the same as the “paging space page outs” value. Remember that
“vmstat -s” reports cumulative counts.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEOUT_BYTE

The number of KBs (or MBs if specified) of page outs during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEOUT_BYTE_CUM

The number of KBs (or MBs if specified) of page outs over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_BYTE_RATE

The number of KBs (or MBs if specified) per second of page outs during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEOUT_BYTE_RATE_CUM

The average number of KBs per second of page outs over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_BYTE_RATE_HIGH

The highest number of KBs per second of page outs during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_CUM

The total number of page outs to the disk over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_RATE

The total number of page outs to the disk per second during the interval.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.
On HP-UX and AIX, this is the same as the “po” value from the vmstat command.
On Solaris, this is the same as the sum of the “epo” and “apo” values from the “vmstat -p” command, divided by the
page size in KB.
On Windows, this counter also includes paging traffic on behalf of the system cache to access file data for applications
and so may be high when there is no memory pressure.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGEOUT_RATE_CUM

The average number of page outs to the disk per second over the cumulative collection time. This includes pages
paged out to paging space and, except for AIX, to the file system.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_RATE_HIGH

The highest number of page outs per second to disk during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, Solaris, Linux and AIX, this reflects paging activity between memory and paging space. It does not
include activity between memory and file systems.
On Windows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGE_FAULT

The number of page faults that occurred during the interval.
On Linux this metric is available only on 2.6 and above kernel versions.

GBL_MEM_PAGE_FAULT_CUM

The number of page faults that occurred over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_MEM_PAGE_FAULT_RATE

The number of page faults per second during the interval.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGE_FAULT_RATE_CUM

The average number of page faults per second over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_MEM_PAGE_FAULT_RATE_HIGH

The highest page fault per second during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_MEM_PAGE_REQUEST

The number of page requests to or from the disk during the interval.
On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to the file system.
On Windows, this includes pages paged to or from both paging space and the file system.
On HP-UX, this is the same as the sun of the “page ins” and “page outs” values from the “vmstat -s” command. On
AIX, this is the same as the sum of the “paging space page ins” and “paging space page outs” values. Remember that
“vmstat -s” reports cumulative counts.
On Windows, this counter also includes paging traffic on behalf of the system cache to access file data for applications
and so may be high when there is no memory pressure.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGE_REQUEST_CUM

The total number of page requests to or from the disk over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or from the file system.
On Windows, this includes pages paged to or from both paging space and the file system.
On Windows, this counter also includes paging traffic on behalf of the system cache to access file data for applications
and so may be high when there is no memory pressure.

GBL_MEM_PAGE_REQUEST_RATE

The number of page requests to or from the disk per second during the interval.
On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or from the file system.
On Windows, this includes pages paged to or from both paging space and the file system.
On HP-UX and AIX, this is the same as the sum of the “pi” and “po” values from the vmstat command.
On Solaris, this is the same as the sum of the “epi”, “epo”, “api”, and “apo” values from the “vmstat -p” command,
divided by the page size in KB.
Higher than normal rates can indicate either a memory or a disk bottleneck. Compare GBL_DISK_UTIL_PEAK and
GBL_MEM_UTIL to determine which resource is more constrained. High rates may also indicate memory thrashing
caused by a particular application or set of applications. Look for processes with high major fault rates to identify the
culprits.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PAGE_REQUEST_RATE_CUM

The average number of page requests to or from the disk per second over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or from the file system.
On Windows, this includes pages paged to or from both paging space and the file system.

GBL_MEM_PAGE_REQUEST_RATE_HIGH

The highest number of page requests per second during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or from the file system.
On Windows, this includes pages paged to or from both paging space and the file system.

GBL_MEM_PHYS

The amount of physical memory in the system (in MBs unless otherwise specified).
On HP-UX, banks with bad memory are not counted. Note that on some machines, the Processor Dependent Code
(PDC) code uses the upper 1MB of memory and thus reports less than the actual physical memory of the system.
Thus, on a system with 256MB of physical memory, this metric and dmesg(1M) might only report 267,386,880 bytes
(255MB). This is all the physical memory that software on the machine can access.
On Windows, this is the total memory available, which may be slightly less than the total amount of physical memory
present in the system. This value is also reported in the Control Panel's About Windows NT help topic.
On Linux, this is the amount of memory given by dmesg(1M). If the value is not available in kernel ring buffer, then the
sum of system memory and available memory will be reported as physical memory.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_PHYS_SWAPPED

On a recognized VMware ESX guest, where VMware guest SDK is enabled, this metrics indicates the amount of
memory that has been reclaimed by ESX Server from this logical system by transparently swapping logical system's
memory to disk. The value is “na” otherwise.

GBL_MEM_SHARES_PRIO

The weightage/priority for memory assigned to this logical system. This value influences the share of unutilized
physical Memory that this logical system can utilize. On a recognized VMware ESX guest, where VMware guest SDK
is enabled, this value can range from 0 to 100000. The value will be “na” otherwise.

GBL_MEM_SWAPIN_BYTE

The number of KBs transferred in from disk due to swap ins (or reactivations on HP-UX) during the interval.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_SWAPIN_BYTE_CUM

The number of KBs transferred in from disk due to swap ins (or reactivations on HP-UX) over the cumulative collection
time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_BYTE_RATE

The number of KBs per second transferred from disk due to swap ins (or reactivations on HP-UX) during the interval.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller

than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_SWAPIN_BYTE_RATE_CUM

The number of KBs per second transferred from disk due to swap ins (or reactivations on HP-UX) over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_BYTE_RATE_HIGH

The highest number of KBs per second transferred from disk due to swap ins (or reactivations on HP-UX) during any
interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE

The number of KBs (or MBs if specified) transferred out to disk due to swap outs (or deactivations on HP-UX) during
the interval.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,

swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_SWAPOUT_BYTE_CUM

The number of KBs (or MBs if specified) transferred out to disk due to swap outs (or deactivations on HP-UX) over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE_RATE

The number of KBs (or MBs if specified) per second transferred out to disk due to swap outs (or deactivations on HP-
UX) during the interval.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.
 On Solaris non-global zones with Uncapped Memory scenario, this metric value is same as seen in global zone.

GBL_MEM_SWAPOUT_BYTE_RATE_CUM

The average number of KBs (or MBs if specified) per second transferred out to disk due to swap outs (or deactivations
on HP-UX) over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,

swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE_RATE_HIGH

The highest number of KBs (or MBs if specified) per second transferred out to disk due to swap outs (or deactivations
on HP-UX) during any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Linux and AIX, swap metrics are equal to the corresponding page metrics.
 On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process deactivation
occurs when the system is thrashing or when the amount of free memory falls below a critical level. The swapper then
marks certain processes for deactivation and removes them from the run queue. Pages within the associated memory
regions are reused or paged out by the memory management vhand process in favor of pages belonging to processes
that are not deactivated. Unlike traditional process swapping, deactivated memory pages may or may not be written
out to the swap area, because a process could be reactivated before the paging occurs.
To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a reactivation of a deactivated
process. Swap metrics that report swap-out bytes now represent bytes paged out to swap areas from deactivated
regions. Because these pages are pushed out over time based on memory demands, these counts are much smaller
than HP-UX 9.x counts where the entire process was written to the swap area when it was swapped-out. Likewise,
swap-in bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in any pages
that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SYS

The amount of physical memory (in MBs unless otherwise specified) used by the system (kernel) during the interval.
System memory does not include the buffer cache. On HP-UX and Linux this does not include filecache also.
 On HP-UX 11.0, this metric does not include some kinds of dynamically allocated kernel memory. This has always
been reported in the GBL_MEM_USER* metrics.
On HP-UX 11.11 and beyond, this metric includes some kinds of dynamically allocated kernel memory.
 On Solaris non-global zones, this metric shows value as 0.

GBL_MEM_SYS_UTIL

The percentage of physical memory used by the system during the interval.
System memory does not include the buffer cache. On HP-UX and Linux this does not include filecache also.
 On HP-UX 11.0, this metric does not include some kinds of dynamically allocated kernel memory. This has always
been reported in the GBL_MEM_USER* metrics.
On HP-UX 11.11 and beyond, this metric includes some kinds of dynamically allocated kernel memory.
 On Solaris non-global zones, this metric shows value as 0.

GBL_MEM_USER

The amount of physical memory (in MBs unless otherwise specified) allocated to user code and data at the end of the
interval. User memory regions include code, heap, stack, and other data areas including shared memory. This does
not include memory for buffer cache. On HP-UX and Linux this does not include filecache also.
 On HP-UX 11.0, this metric includes some kinds of dynamically allocated kernel memory.
On HP-UX 11.11 and beyond, this metric does not include some kinds of dynamically allocated kernel memory. This
is now reported in the GBL_MEM_SYS* metrics.
Large fluctuations in this metric can be caused by programs which allocate large amounts of memory and then either
release the memory or terminate. A slow continual increase in this metric may indicate a program with a memory leak.

GBL_MEM_USER_UTIL

The percent of physical memory allocated to user code and data at the end of the interval. This metric shows the
percent of memory owned by user memory regions such as user code, heap, stack and other data areas including
shared memory. This does not include memory for buffer cache. On HP-UX and Linux this does not include filecache
also. On HP-UX 11.0, this metric includes some kinds of dynamically allocated kernel memory.

On HP-UX 11.11 and beyond, this metric does not include some kinds of dynamically allocated kernel memory. This
is now reported in the GBL_MEM_SYS* metrics.
Large fluctuations in this metric can be caused by programs which allocate large amounts of memory and then either
release the memory or terminate. A slow continual increase in this metric may indicate a program with a memory leak.

GBL_MEM_UTIL

The percentage of physical memory in use during the interval. This includes system memory (occupied by the kernel),
buffer cache and user memory.
On HP-UX 11iv3 and above, this includes file cache also.
On HP-UX, this calculation is done using the byte values for physical memory and used memory, and is therefore
more accurate than comparing the reported kilobyte values for physical memory and used memory.
On SUN, high values for this metric may not indicate a true memory shortage. This metric can be influenced by the
VMM (Virtual Memory Management) system.
 Locality Domain metrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and LDOM_MEM_FREE, as
well as the memory utilization metrics derived from them, may not always fully match. GBL_MEM_FREE represents
free memory in the kernel's reservation layer while LDOM_MEM_FREE shows actual free pages. If memory has been
reserved but not actually consumed from the Locality Domains, the two values won't match. Because
GBL_MEM_FREE includes pre-reserved memory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

GBL_MEM_UTIL_CUM

The average percentage of physical memory in use over the cumulative collection time. This includes system memory
(occupied by the kernel), buffer cache and user memory.
On HP-UX 11iv3 and above, this includes file cache also.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_MEM_UTIL_HIGH

The highest percentage of physical memory in use in any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_NET_COLLISION

The number of collisions that occurred on all network interfaces during the interval. A rising rate of collisions versus
outbound packets is an indication that the network is becoming increasingly congested. This metric does not include
deferred packets.
This does not include data for loopback interface.
For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision Frames“, ”Late
Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“ utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows
network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i” command (“collisions”
from the “netstat -i -e” command on Linux) for a network device. See also netstat(1).
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_COLLISION_1_MIN_RATE

The number of collisions per minute on all network interfaces during the interval. This metric does not include deferred
packets.
This does not include data for loopback interface.
Collisions occur on any busy network, but abnormal collision rates could indicate a hardware or software problem.

 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_COLLISION_CUM

The number of collisions that occurred on all network interfaces over the cumulative collection time. A rising rate of
collisions versus outbound packets is an indication that the network is becoming increasingly congested. This metric
does not include deferred packets.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision Frames“, ”Late
Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“ utility for the network interface.
Remember that “lanadmin” reports cumulative counts. For this release and beyond, “netstat -i” shows network activity
on the logical level (IP) only.
For other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i” command (“collisions”
from the “netstat -i -e” command on Linux) for a network device. See also netstat(1).
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_COLLISION_PCT

The percentage of collisions to total outbound packet attempts during the interval. Outbound packet attempts include
both successful packets and collisions.
This does not include data for loopback interface.
A rising rate of collisions versus outbound packets is an indication that the network is becoming increasingly
congested.
This metric does not currently include deferred packets.
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_COLLISION_PCT_CUM

The percentage of collisions to total outbound packet attempts over the cumulative collection time. Outbound packet
attempts include both successful packets and collisions.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
A rising rate of collisions versus outbound packets is an indication that the network is becoming increasingly
congested.
This metric does not currently include deferred packets.
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_COLLISION_RATE

The number of collisions per second on all network interfaces during the interval. This metric does not include
deferred packets.
This does not include data for loopback interface.
A rising rate of collisions versus outbound packets is an indication that the network is becoming increasingly
congested.
 AIX does not support the collision count for the ethernet interface. The collision count is supported for the token ring
(tr) and loopback (lo) interfaces. For more information, please refer to the netstat(1) man page.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_ERROR

The number of errors that occurred on all network interfaces during the interval.
This does not include data for loopback interface.
For HP-UX, this will be the same as the sum of the “Inbound Errors” and “Outbound Errors” values from the output of
the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-
UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs” (TX-ERR on Linux)
from the “netstat -i” command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_ERROR_1_MIN_RATE

The number of errors per minute on all network interfaces during the interval. This rate should normally be zero or
very small. A large error rate can indicate a hardware or software problem.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_ERROR_CUM

The number of errors that occurred on all network interfaces over the cumulative collection time.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For HP-UX, this will be the same as the total sum of the “Inbound Errors” and “Outbound Errors” values from the
output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of
the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs” (TX-ERR on Linux)
from the “netstat -i” command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_ERROR_RATE

The number of errors per second on all network interfaces during the interval.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR

The number of inbound errors that occurred on all network interfaces during the interval.
A large number of errors may indicate a hardware problem on the network.
This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Inbound Errors” values from the output of the “lanadmin” utility for
the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and
beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs” (TX-ERR on Linux)
from the “netstat -i” command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_IN_ERROR_CUM

The number of inbound errors that occurred on all network interfaces over the cumulative collection time.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
A large number of errors may indicate a hardware problem on the network.
For HP-UX, this will be the same as the total sum of the “Inbound Errors” values from the output of the “lanadmin”
utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release
and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs” (TX-ERR on Linux)
from the “netstat -i” command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_IN_ERROR_PCT

The percentage of inbound network errors to total inbound packet attempts during the interval. Inbound packet
attempts include both packets successfully received and those that encountered errors.
This does not include data for loopback interface.
A large number of errors may indicate a hardware problem on the network. The percentage of inbound errors to total
packets attempted should remain low.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR_PCT_CUM

The percentage of inbound network errors to total inbound packet attempts over the cumulative collection time.
Inbound packet attempts include both packets successfully received and those that encountered errors.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
A large number of errors may indicate a hardware problem on the network. The percentage of inbound errors to total
packets attempted should remain low.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_IN_ERROR_RATE

The number of inbound errors per second on all network interfaces during the interval.
This does not include data for loopback interface.
A large number of errors may indicate a hardware problem on the network. The percentage of inbound errors to total
packets attempted should remain low.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR_RATE_CUM

The average number of inbound errors per second on all network interfaces over the cumulative collection time.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_IN_PACKET

The number of successful packets received through all network interfaces during the interval. Successful packets are
those that have been processed without errors or collisions.
This does not include data for loopback interface.
For HP-UX, this will be the same as the sum of the “Inbound Unicast Packets“ and ”Inbound Non-Unicast Packets“
values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_PACKET_CUM

The number of successful packets received through all network interfaces over the cumulative collection time.
Successful packets are those that have been processed without errors or collisions.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For HP-UX, this will be the same as the total sum of the “Inbound Unicast Packets“ and ”Inbound Non-Unicast
Packets“ values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports
cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level
(IP) only.
For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_IN_PACKET_RATE

The number of successful packets per second received through all network interfaces during the interval. Successful
packets are those that have been processed without errors or collisions.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_ERROR

The number of outbound errors that occurred on all network interfaces during the interval.
This does not include data for loopback interface.
For HP-UX, this will be the same as the sum of the “Outbound Errors” values from the output of the “lanadmin” utility
for the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and
beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Oerrs” (TX-ERR on Linux) from the “netstat -i” command for
a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_OUT_ERROR_CUM

The number of outbound errors that occurred on all network interfaces over the cumulative collection time.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For HP-UX, this will be the same as the total sum of the “Outbound Errors” values from the output of the “lanadmin”
utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release
and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of “Oerrs” (TX-ERR on Linux) from the “netstat -i” command for
a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_OUT_ERROR_PCT

The percentage of outbound network errors to total outbound packet attempts during the interval. Outbound packet
attempts include both packets successfully sent and those that encountered errors.
This does not include data for loopback interface.
The percentage of outbound errors to total packets attempted to be transmitted should remain low.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_ERROR_PCT_CUM

The percentage of outbound network errors to total outbound packet attempts over the cumulative collection time.
Outbound packet attempts include both packets successfully sent and those that encountered errors.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
The percentage of outbound errors to total packets attempted to be transmitted should remain low.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_OUT_ERROR_RATE

The number of outbound errors per second on all network interfaces during the interval.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_ERROR_RATE_CUM

The number of outbound errors per second on all network interfaces over the cumulative collection time.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_OUT_PACKET

The number of successful packets sent through all network interfaces during the last interval. Successful packets are
those that have been processed without errors or collisions.
This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Outbound Unicast Packets“ and ”Outbound Non-Unicast Packets“
values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.
For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_PACKET_CUM

The number of successful packets sent through all network interfaces over the cumulative collection time. Successful
packets are those that have been processed without errors or collisions.
This does not include data for loopback interface.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
For HP-UX, this will be the same as the total sum of the “Outbound Unicast Packets“ and ”Outbound Non-Unicast
Packets“ values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports
cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level
(IP) only.
For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux) from the “netstat -i”
command for a network device. See also netstat(1).
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.

GBL_NET_OUT_PACKET_RATE

The number of successful packets per second sent through the network interfaces during the interval. Successful
packets are those that have been processed without errors or collisions.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_PACKET

The total number of successful inbound and outbound packets for all network interfaces during the interval. These are
the packets that have been processed without errors or collisions.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.

GBL_NET_PACKET_RATE

The number of successful packets per second (both inbound and outbound) for all network interfaces during the
interval. Successful packets are those that have been processed without errors or collisions.
This does not include data for loopback interface.
 This metric is updated at the sampling interval, regardless of the number of IP addresses on the system.
 On Windows system, the packet size for NBT connections is defined as 1 Kbyte.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_NFS_CALL

The number of NFS calls the local system has made as either a NFS client or server during the interval.
This includes both successful and unsuccessful calls. Unsuccessful calls are those that cannot be completed due to
resource limitations or LAN packet errors.

 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.
 On AIX System WPARs, this metric is NA.

GBL_NFS_CALL_RATE

The number of NFS calls per second the system made as either a NFS client or NFS server during the interval.
Each computer can operate as both a NFS server, and as an NFS client.
This metric includes both successful and unsuccessful calls. Unsuccessful calls are those that cannot be completed
due to resource limitations or LAN packet errors.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.
 On AIX System WPARs, this metric is NA.

GBL_NFS_CLIENT_BAD_CALL

The number of failed NFS client calls during the interval. Calls fail due to lack of system resources (lack of virtual
memory) as well as network errors.

GBL_NFS_CLIENT_BAD_CALL_CUM

The number of failed NFS client calls over the cumulative collection time. Calls fail due to lack of system resources
(lack of virtual memory) as well as network errors.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_NFS_CLIENT_CALL

The number of NFS calls the local machine has processed as a NFS client during the interval. Calls are the system
calls used to initiate physical NFS operations. These calls are not always successful due to resource constraints or
LAN errors, which means that the call rate should exceed the IO rate. This metric includes both successful and
unsuccessful calls.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_CALL_CUM

The number of NFS calls the local machine has processed as a NFS client over the cumulative collection time. Calls
are the system calls used to initiate physical NFS operations. These calls are not always successful due to resource
constraints or LAN errors, which means that the call rate should exceed the IO rate. This metric includes both
successful and unsuccessful calls.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_CALL_RATE

The number of NFS calls the local machine has processed as a NFS client per second during the interval. Calls are
the system call used to initiate physical NFS operations. These calls are not always successful due to resource
constraints or LAN errors, which means that the call rate should exceed the IO rate. This metric includes both
successful and unsuccessful calls.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_IO

The number of NFS IOs the local machine has completed as an NFS client during the interval. This number
represents physical IOs sent by the client in contrast to a call which is an attempt to initiate these operations.
Each computer can operate as both an NFS server, and as a NFS client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_IO_CUM

The number of NFS IOs the local machine has completed as an NFS client over the cumulative collection time. This
number represents physical IOs sent by the client in contrast to a call which is an attempt to initiate these operations.
Each computer can operate as both an NFS server, and as a NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_IO_PCT

The percentage of NFs IOs the local machine has completed as an NFS client versus total NFS IOs completed during
the interval. This number represents physical IOs sent by the client in contrast to a call which is an attempt to initiate
these operations.
Each computer can operate as both an NFS server, and as a NFS client.
A percentage greater than 50 indicates that this machine is acting more as a client. A percentage less than 50
indicates this machine is acting more as a server for others.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_IO_PCT_CUM

The percentage of NFS IOs the local machine has completed as an NFS client versus total NFS IOs completed over
the cumulative collection time. This number represents physical IOs sent by the client in contrast to a call which is an
attempt to initiate these operations.
Each computer can operate as both an NFS server, and as a NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
A percentage greater than 50 indicates that this machine is acting more as a client. A percentage less than 50
indicates this machine is acting more as a server for others.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_IO_RATE

The number of NFS IOs per second the local machine has completed as an NFS client during the interval. This
number represents physical IOs sent by the client in contrast to a call which is an attempt to initiate these operations.
Each computer can operate as both an NFS server, and as a NFS client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_IO_RATE_CUM

The number of NFS IOs per second the local machine has completed as an NFS client over the cumulative collection
time. This number represents physical IOs sent by the client in contrast to a call which is an attempt to initiate these
operations.
Each computer can operate as both an NFS server, and as a NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_CLIENT_READ_RATE

The number of NFS “read” operations per second the system generated as an NFS client during the interval.
 NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and read.
NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir, readdirplus, fsstat, fsinfo, and
null.

GBL_NFS_CLIENT_READ_RATE_CUM

The average number of NFS “read” operations per second the system generated as an NFS client over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and read.
NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir, readdirplus, fsstat, fsinfo, and
null.

GBL_NFS_CLIENT_WRITE_RATE

The number of NFS “write” operations per second the system generated as an NFS client during the interval.
 NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link, symlink, mkdir, and
rmdir.
NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove, rmdir, rename, link,
pathconf, and commit.

GBL_NFS_CLIENT_WRITE_RATE_CUM

The average number of NFS “write” operations per second the system generated as an NFS client over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link, symlink, mkdir, and
rmdir.
NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove, rmdir, rename, link,
pathconf, and commit.

GBL_NFS_SERVER_BAD_CALL

The number of failed NFS server calls during the interval. Calls fail due to lack of system resources (lack of virtual
memory) as well as network errors.

GBL_NFS_SERVER_BAD_CALL_CUM

The number of failed NFS server calls over the cumulative collection time. Calls fail due to lack of system resources
(lack of virtual memory) as well as network errors.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_NFS_SERVER_CALL

The number of NFS calls the local machine has processed as a NFS server during the interval.
Calls are the system calls used to initiate physical NFS operations. These calls are not always successful due to
resource constraints or LAN errors, which means that the call rate could exceed the IO rate. This metric includes both
successful and unsuccessful calls.

 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_SERVER_CALL_CUM

The number of NFS calls the local machine has processed as a NFS server over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
Calls are the system calls used to initiate physical NFS operations. These calls are not always successful due to
resource constraints or LAN errors, which means that the call rate could exceed the IO rate. This metric includes both
successful and unsuccessful calls.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_SERVER_CALL_RATE

The number of NFS calls the local machine has processed per second as a NFS server during the interval.
Calls are the system calls used to initiate physical NFS operations. These calls are not always successful due to
resource constraints or LAN errors, which means that the call rate could exceed the IO rate. This metric includes both
successful and unsuccessful calls.
 NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr, lookup, read, readdir,
readlink, write, writecache, null and root operations.

GBL_NFS_SERVER_IO

The number of NFS IOs the local machine has completed as an NFS server during the interval. This number
represents physical IOs received by the serverein contrast to a call which is an attempt to initiate these operations.
Each computer can operate as both a NFS server, and as an NFS client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_IO_CUM

The number of NFS IOs the local machine has completed as an NFS server over the cumulative collection time. This
number represents physical IOs received by the server n contrast to a call which is an attempt to initiate these
operations.
Each computer can operate as both a NFS server, and as an NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_IO_PCT

The percentage of NFS IOs the local machine has completed as an NFS server versus total NFS IOs completed
during the interval. This number represents physical IOs received by the server in contrast to a call which is an
attempt to initiate these operations.
Each computer can operate as both a NFS server, and as an NFS client.
A percentage greater than 50 indicates that this machine is acting more as a server for others. A percentage less than
50 indicates this machine is acting more as a client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_IO_PCT_CUM

The percentage of NFs IOs the local machine has completed as an NFS server versus total NFS IOs completed over
the cumulative collection time. This number represents physical IOs received by the server in contrast to a call which
is an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
A percentage greater than 50 indicates that this machine is acting more as a server for others. A percentage less than
50 indicates this machine is acting more as a client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_IO_RATE

The number of NFS IOs per second the local machine has completed as an NFS server during the interval. This
number represents physical IOs received by the server in contrast to a call which is an attempt to initiate these
operations.
Each computer can operate as both a NFS server, and as an NFS client.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_IO_RATE_CUM

The number of NFS IOs per second the local machine has completed as an NFS server over the cumulative collection
time. This number represents physical IOs received by the server in contrast to a call which is an attempt to initiate
these operations.
Each computer can operate as both a NFS server, and as an NFS client.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir, readlink, write, and
writecache.

GBL_NFS_SERVER_READ_RATE

The number of NFS “read” operations per second the system processed as an NFS server during the interval.
 NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and read.
NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir, readdirplus, fsstat, fsinfo, and
null.

GBL_NFS_SERVER_READ_RATE_CUM

The average number of NFS “read” operations per second the system processed as an NFS server over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and read.
NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir, readdirplus, fsstat, fsinfo, and
null.

GBL_NFS_SERVER_WRITE_RATE

The number of NFS “write” operations per second the system processed as an NFS server during the interval.
 NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link, symlink, mkdir, and
rmdir.
NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove, rmdir, rename, link,
pathconf, and commit.

GBL_NFS_SERVER_WRITE_RATE_CUM

The average number of NFS “write” operations per second the system processed as an NFS server over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link, symlink, mkdir, and
rmdir.
NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove, rmdir, rename, link,
pathconf, and commit.

GBL_NODENAME

On Unix systems, this is the name of the computer as returned by the command “uname -n” (that is, the string returned
from the “hostname” program).
On Windows, this is the name of the computer as returned by GetComputerName.

GBL_NUM_ACTIVE_LS

This indicates the number of LS hosted in a system that are active . If Perf Agent is installed in a guest or in a
standalone system this value will be 0.
 On Solaris non-global zones, this metric shows value as 0.

GBL_NUM_APP

The number of applications defined in the parm file plus one (for “other”).
The application called “other” captures all other processes not defined in the parm file.
You can define up to 999 applications.

GBL_NUM_CPU

The number of physical CPUs on the system. This includes all CPUs, either online or offline. For HP-UX and certain
versions of Linux, the sar(1M) command allows you to check the status of the system CPUs. For SUN and DEC, the
commands psrinfo(1M) and psradm(1M) allow you to check or change the status of the system CPUs. For AIX, this
metric indicates the maximum number of CPUs the system ever had.
On a logical system, this metric indicates the number of virtual CPUs configured. When hardware threads are
enabled, this metric indicates the number of logical processors.
 On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.
 On AIX System WPARs, this metric value is identical to the value on AIX Global Environment.
 The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This means that there is no
way to find out types, speeds, as well as hardware IDs or any other information that is used to determine the number
of cores, the number of threads, the HyperThreading state, etc... If the agent (or Glance) is started while some of the
CPUs are disabled, some of these metrics will be “na”, some will be based on what is visible at startup time. All
information will be updated if/when additional CPUs are enabled and information about them becomes available. The
configuration counts will remain at the highest discovered level (i.e. if CPUs are then disabled, the maximum number
of CPUs/cores/etc... will remain at the highest observed level). It is recommended that the agent be started with all
CPUs enabled.

GBL_NUM_CPU_CORE

This metric provides the total number of CPU cores on a physical system. On VMs, this metric shows information
according to resources available on that VM. On non HP-UX system, this metric is equivalent to active CPU cores.
On AIX System WPARs, this metric value is identical to the value on AIX Global Environment. On Windows, this
metric will be “na” on Windows Server 2003 Itanium systems.
 The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This means that there is no
way to find out types, speeds, as well as hardware IDs or any other information that is used to determine the number
of cores, the number of threads, the HyperThreading state, etc... If the agent (or Glance) is started while some of the
CPUs are disabled, some of these metrics will be “na”, some will be based on what is visible at startup time. All
information will be updated if/when additional CPUs are enabled and information about them becomes available. The
configuration counts will remain at the highest discovered level (i.e. if CPUs are then disabled, the maximum number
of CPUs/cores/etc... will remain at the highest observed level). It is recommended that the agent be started with all
CPUs enabled.

GBL_NUM_DISK

The number of disks on the system. Only local disk devices are counted in this metric.
On HP-UX, this is a count of the number of disks on the system that have ever had activity over the cumulative
collection time.
 On Solaris non-global zones, this metric shows value as 0.
 On AIX System WPARs, this metric shows value as 0.

GBL_NUM_LS

This indicates the number of LS hosted in a system. If Perf Agent is installed in a guest or in a standalone system this
value will be 0.
 On Solaris non-global zones, this metric shows value as 0.

GBL_NUM_NETWORK

The number of network interfaces on the system. This includes the loopback interface. On certain platforms, this also
include FDDI, Hyperfabric, ATM, Serial Software interfaces such as SLIP or PPP, and Wide Area Network interfaces
(WAN) such as ISDN or X.25. The “netstat -i” command also displays the list of network interfaces on the system.

GBL_NUM_SOCKET

The number of physical cpu sockets on the system. On VMs, this metric shows information according to resources
available on that VM.
On Windows, this metric will be “na” on Windows Server 2003 Itanium systems.

GBL_NUM_SWAP

The number of configured swap areas.

GBL_NUM_TT

The number of unique Transaction Tracker (TT) transactions that have been registered on this system.

GBL_NUM_USER

The number of users logged in at the time of the interval sample. This is the same as the command “who | wc -l”.
For Unix systems, the information for this metric comes from the utmp file which is updated by the login command.
For more information, read the man page for utmp. Some applications may create users on the system without using
login and updating the utmp file. These users are not reflected in this count.
This metric can be a general indicator of system usage. In a networked environment, however, users may maintain
inactive logins on several systems.
On Windows, the information for this metric comes from the Server Sessions counter in the Performance Libraries
Server object. It is a count of the number of users using this machine as a file server.

GBL_OSKERNELTYPE

This indicates the word size of the current kernel on the system. Some hardware can load the 64-bit kernel or the 32-
bit kernel.

GBL_OSKERNELTYPE_INT

This indicates the word size of the current kernel on the system. Some hardware can load the 64-bit kernel or the 32-
bit kernel.

GBL_OSNAME

A string representing the name of the operating system. On Unix systems, this is the same as the output from the
“uname -s” command.

GBL_OSRELEASE

The current release of the operating system.
On most Unix systems, this is same as the output from the “uname -r” command.
On AIX, this is the actual patch level of the operating system. This is similar to what is returned by the command “lslpp
-l bos.rte” as the most recent level of the COMMITTED Base OS Runtime. For example, “5.2.0”.

GBL_OSVERSION

A string representing the version of the operating system. This is the same as the output from the “uname -v”
command. This string is limited to 20 characters, and as a result, the complete version name might be truncated.
On Windows, this is a string representing the service pack installed on the operating system.

GBL_PROC_SAMPLE

The number of process data samples that have been averaged into global metrics (such as GBL_ACTIVE_PROC) that
are based on process samples.

GBL_RUN_QUEUE

On UNIX systems except Linux, this is the average number of threads waiting in the runqueue over the interval. The
average is computed against the number of times the run queue is occupied instead of time. The average is updated
by the kernel at a fine grain interval, only when the run queue is occupied. It is not averaged against the interval and
can therefore be misleading for long intervals when the run queue is empty most or part of the time. This value
matches runq-sz reported by the “sar -q” command. The GBL_LOADAVG* metrics are better indicators of run queue
pressure.
On Linux and Windows, this is instantaneous value obtained at the time of logging. On Linux, it shows the number of
threads waiting in the runqueue. On Windows, it shows the Processor Queue Length.
On Unix systems, GBL_RUN_QUEUE will typically be a small number. Larger than normal values for this metric
indicate CPU contention among threads. This CPU bottleneck is also normally indicated by 100 percent
GBL_CPU_TOTAL_UTIL. It may be OK to have GBL_CPU_TOTAL_UTIL be 100 percent if no other threads are
waiting for the CPU. However, if GBL_CPU_TOTAL_UTIL is 100 percent and GBL_RUN_QUEUE is greater than the
number of processors, it indicates a CPU bottleneck.
On Windows, the Processor Queue reflects a count of process threads which are ready to execute. A thread is ready
to execute (in the Ready state) when the only resource it is waiting on is the processor. The Windows operating
system itself has many system threads which intermittently use small amounts of processor time. Several low priority
threads intermittently wake up and execute for very short intervals. Depending on when the collection process
samples this queue, there may be none or several of these low-priority threads trying to execute. Therefore, even on
an otherwise quiescent system, the Processor Queue Length can be high. High values for this metric during intervals
where the overall CPU utilization (gbl_cpu_total_util) is low do not indicate a performance bottleneck. Relatively high
values for this metric during intervals where the overall CPU utilization is near 100% can indicate a CPU performance
bottleneck.
 HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:
For example, let's assume we're using a system with eight processors. We start eight CPU intensive threads that
consume almost all of the CPU resources. The approximate values shown for the CPU related queue metrics would
be:

 GBL_RUN_QUEUE = 1.0

 GBL_PRI_QUEUE = 0.1

 GBL_CPU_QUEUE = 1.0

Assume we start an additional eight CPU intensive threads. The approximate values now shown are:

 GBL_RUN_QUEUE = 2.0

 GBL_PRI_QUEUE = 8.0

 GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the definitions of the
three queue metrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8 (only half of the threads can be
active at any given time); and the cpu queue is 16 (half of the threads waiting in the cpu queue that are ready to run,
plus one for each active thread).

This illustrates that the run queue is the average of number of threads waiting in the runqueue for all processors; the
pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu queue is the number of threads in
the cpu queue that are ready to run, including the threads using the CPU.
 On Solaris non-global zones, this metric shows data from the global zone.

GBL_RUN_QUEUE_CUM

On UNIX systems except Linux, this is the average number of threads waiting in the runqueue over the cumulative
collection time.
On Linux, this is approximately the number of threads waiting in the runqueue over the cumulative collection time.
On Windows, this is approximately the average Processor Queue Length over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
In this case, this metric is a cumulative average of data that was collected as an average. This metric is derived from
GBL_RUN_QUEUE.

 HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:
For example, let's assume we're using a system with eight processors. We start eight CPU intensive threads that
consume almost all of the CPU resources. The approximate values shown for the CPU related queue metrics would
be:

 GBL_RUN_QUEUE = 1.0

 GBL_PRI_QUEUE = 0.1

 GBL_CPU_QUEUE = 1.0

Assume we start an additional eight CPU intensive threads. The approximate values now shown are:

 GBL_RUN_QUEUE = 2.0

 GBL_PRI_QUEUE = 8.0

 GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the definitions of the
three queue metrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8 (only half of the threads can be
active at any given time); and the cpu queue is 16 (half of the threads waiting in the cpu queue that are ready to run,
plus one for each active thread).
This illustrates that the run queue is the average of number of threads waiting in the runqueue for all processors; the
pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu queue is the number of threads in
the cpu queue that are ready to run, including the threads using the CPU.

GBL_RUN_QUEUE_HIGH

On UNIX systems except Linux, this is the highest value of average number of threads waiting in the runqueue during
any interval over the cumulative collection time.
On Linux, this is the highest value of number of threads waiting in the runqueue during any interval over the
cumulative collection time.

GBL_SAMPLE

The number of data samples (intervals) that have occurred over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

GBL_SERIALNO

On HP-UX, this is the ID number of the computer as returned by the command “uname -i”. If this value is not
available, an empty string is returned.
On SUN, this is the ASCII representation of the hardware-specific serial number. This is printed in hexadecimal as
presented by the “hostid” command when possible. If that is not possible, the decimal format is provided instead.

On AIX, this is the machine ID number as returned by the command “uname -m”. This number has the form
xxyyyyyymmss. For the RISC System/6000, “xx” position is always 00. The “yyyyyy” positions contain the unique ID
number for the central processing unit (cpu). While “mm” represents the model number, and “ss” is the submodel
number (always 00).
On Linux, this is the ASCII representation of the hardware-specific serial number, as returned by the command
“hostid”.

GBL_STARTDATE

The date that the collector started.

GBL_STARTED_PROC

The number of processes that started during the interval.

GBL_STARTED_PROC_RATE

The number of processes that started per second during the interval.

GBL_STARTTIME

The time of day that the collector started.

GBL_STATDATE

The date at the end of the interval, based on local time.

GBL_STATTIME

An ASCII string representing the time at the end of the interval, based on local time.

GBL_SWAP_SPACE_AVAIL

The total amount of potential swap space, in MB.
On HP-UX, this is the sum of the device swap areas enabled by the swapon command, the allocated size of any file
system swap areas, and the allocated size of pseudo swap in memory if enabled. Note that this is potential swap
space. This is the same as (AVAIL: total) as reported by the “swapinfo -mt” command.
On SUN, this is the total amount of swap space available from the physical backing store devices (disks) plus the
amount currently available from main memory. This is the same as (used + available) /1024, reported by the “swap -s”
command.
On Linux, this is same as (Swap: total) as reported by the “free -m” command.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_SWAP_SPACE_AVAIL_KB

The total amount of potential swap space, in KB.
On HP-UX, this is the sum of the device swap areas enabled by the swapon command, the allocated size of any file
system swap areas, and the allocated size of pseudo swap in memory if enabled. Note that this is potential swap
space. Since swap is allocated in fixed (SWCHUNK) sizes, not all of this space may actually be usable. For example,
on a 61MB disk using 2 MB swap size allocations, 1 MB remains unusable and is considered wasted space.
On HP-UX, this is the same as (AVAIL: total) as reported by the “swapinfo -t” command.
On SUN, this is the total amount of swap space available from the physical backing store devices (disks) plus the
amount currently available from main memory. This is the same as (used + available)/1024, reported by the “swap -s”
command.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.

 On AIX System WPARs, this metric is NA.

GBL_SWAP_SPACE_DEVICE_AVAIL

The amount of swap space configured on disk devices exclusively as swap space (in MB).
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_DEVICE_UTIL

On HP-UX, this is the percentage of device swap space currently in use of the total swap space available. This does
not include file system or remote swap space.
On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed (SWCHUNK) sizes,
not all of this space may actually be usable. For example, on a 61 MB disk using 2 MB swap size allocations, 1 MB
remains unusable and is considered wasted space. Consequently, 100 percent utilization on a single device is not
always obtainable. The wasted swap space, and the remainder of allocated SWCHUNKs that have not been used is
what is reported in the hold field of the /usr/sbin/swapinfo command.
On HP-UX, when compared to the “swapinfo -mt” command results, this is calculated as:

 Util = ((USED: dev) sum

 / (AVAIL: total)) * 100

On SUN, this is the percentage of total system device swap space currently in use. This metric only gives the
percentage of swap space used from the available physical swap device space, and does not include the memory that
can be used for swap. (On SunOS 5.X, the virtual swap swapfs can allocate swap space from memory.)
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_USED

The amount of swap space used, in MB.
On HP-UX, “Used” indicates written to disk (or locked in memory), rather than reserved. This is the same as (USED:
total - reserve) as reported by the “swapinfo -mt” command.
On SUN, “Used” indicates amount written to disk (or locked in memory), rather than reserved. Swap space is reserved
(by decrementing a counter) when virtual memory for a program is created. This is the same as (bytes
allocated)/1024, reported by the “swap -s” command.
On Linux, this is same as (Swap: used) as reported by the “free -m” command.
 On AIX System WPARs, this metric is NA.
 On Solaris non-global zones, this metric is N/A. On Unix systems, this metric is updated every 30 seconds or the
sampling interval, whichever is greater.

GBL_SWAP_SPACE_USED_UTIL

This is the percentage of swap space used.
On HP-UX, “Used %” indicates percentage of swap space written to disk (or locked in memory), rather than reserved.
This is the same as percentage of ((USED: total - reserve)/total)*100, as reported by the “swapinfo -mt” command.
On SUN, “Used %” indicates percentage of swap space written to disk (or locked in memory), rather than reserved.
Swap space is reserved (by decrementing a counter) when virtual memory for a program is created. This is the same
as percentage of ((bytes allocated)/total)*100, reported by the “swap -s” command.
 On SUN, global swap space is tracked through the operating system. Device swap space is tracked through the
devices. For this reason, the amount of swap space used may differ between the global and by-device metrics.
Sometimes pages that are marked to be swapped to disk by the operating system are never swapped. The operating
system records this as used swap space, but the devices do not, since no physical IOs occur. (Metrics with the prefix
“GBL” are global and metrics with the prefix “BYSWP” are by device.)
On Linux, this is same as percentage of ((Swap: used)/total)*100, as reported by the “free -m” command.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_UTIL

The percent of available swap space that was being used by running processes in the interval.
On Windows, this is the percentage of virtual memory, which is available to user processes, that is in use at the end of
the interval. It is not an average over the entire interval. It reflects the ratio of committed memory to the current
commit limit. The limit may be increased by the operating system if the paging file is extended. This is the same as
(Committed Bytes / Commit Limit) * 100 when comparing the results to Performance Monitor.
On HP-UX, swap space must be reserved (but not allocated) before virtual memory can be created. If all of available
swap is reserved, then no new processes or virtual memory can be created. Swap space locations are actually
assigned (used) when a page is actually written to disk or locked in memory (pseudo swap in memory). This is the
same as (PCT USED: total) as reported by the “swapinfo -mt” command.
On Unix systems, this metric is a measure of capacity rather than performance. As this metric nears 100 percent,
processes are not able to allocate any more memory and new processes may not be able to run. Very low swap
utilization values may indicate that too much area has been allocated to swap, and better use of disk space could be
made by reallocating some swap partitions to be user filesystems.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.
 On AIX System WPARs, this metric is NA.

GBL_SWAP_SPACE_UTIL_CUM

The average percentage of available swap space currently in use (has memory belonging to processes paged or
swapped out on it) over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed (SWCHUNK) sizes,
not all of this space may actually be usable. For example, on a 61 MB disk using 2 MB swap size allocations, 1 MB
remains unusable and is considered wasted space. Consequently, 100 percent utilization on a single device is not
always obtainable.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

GBL_SWAP_SPACE_UTIL_HIGH

The highest average percentage of available swap space currently in use (has memory belonging to processes paged
or swapped out on it) in any interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed (SWCHUNK) sizes,
not all of this space may actually be usable. For example, on a 61 MB disk using 2 MB swap size allocations, 1 MB
remains unusable and is considered wasted space. Consequently, 100 percent utilization on a single device is not
always obtainable.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

GBL_SYSTEM_ID

The network node hostname of the system. This is the same as the output from the “uname -n” command.
On Windows, the name obtained from GetComputerName.

GBL_SYSTEM_TYPE

On Unix systems, this is either the model of the system or the instruction set architecture of the system.
On Windows, this is the processor architecture of the system.

GBL_SYSTEM_UPTIME_HOURS

The time, in hours, since the last system reboot.

GBL_SYSTEM_UPTIME_SECONDS

The time, in seconds, since the last system reboot.

GBL_THRESHOLD_PROCCPU

The process CPU threshold specified in the parm file.

GBL_THRESHOLD_PROCDISK

The process disk threshold specified in the parm file.

GBL_THRESHOLD_PROCIO

The process IO threshold specified in the parm file.

GBL_THRESHOLD_PROCMEM

The process memory threshold specified in the parm file.

GBL_TT_OVERFLOW_COUNT

The number of new transactions that could not be measured because the Measurement Processing Daemon's
(midaemon) Measurement Performance Database is full. If this happens, the default Measurement Performance
Database size is not large enough to hold all of the registered transactions on this system. This can be remedied by
stopping and restarting the midaemon process using the -smdvss option to specify a larger Measurement
Performance Database size. The current Measurement Performance Database size can be checked using the
midaemon -sizes option.

PROC_APP_ID

The ID number of the application to which the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
belonged during the interval.
Application “other” always has an ID of 1. There can be up to 999 user-defined applications, which are defined in the
parm file.

PROC_APP_NAME

The application name of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above).
Processes (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) are assigned into application groups based upon
rules in the parm file. If a process does not fit any rules in this file, it is assigned to the application “other.”
The rules include decisions based upon pathname, user ID, priority, and so forth. As these values change during the
life of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above), it is re-assigned to another application. This
re-evaluation is done every measurement interval.

PROC_CHILD_CPU_SYS_MODE_UTIL

The percentage of system time accumulated by this process's children processes during the interval.
 On Unix systems, when a process terminates, its CPU counters (user and system) are accumulated in the parent's
“children times” counters. This occurs when the parent waits for (or reaps) the child. See getrusage(2). If the process
is an orphan process, its parent becomes the init(1m) process, and its CPU times will be accumulated to the init
process upon termination. The PROC*_CHILD_* metrics attempt to report these counters in a meaningful way. If
these counters were reported unconditionally as they are incremented, they would be misleading. For example,
consider a shell process that forks another process and that process accumulates 100 minutes of CPU time. When
that process terminates, the shell would report a huge child time utilization for that interval even though it was
generally idle, waiting for that child to terminate. The child process was most likely already reported in previous
intervals as it used the CPU time, and therefore it would be confusing to report this time in the parent. If, on the other
hand, a process was continuously forking short-lived processes during the interval, it would be useful to report the
CPU time used by those children processes. The simple algorithm chosen is to only report children times when their
total CPU time is less than the process alive interval, and zero otherwise. It is not fool-proof but it generally yields the
right results, i.e., if a process reports high child time utilization for several intervals in a row, it could be a runaway
forking process. An example of such a runaway process (or “fork bomb“) is:

 while true ; do ps -ef | grep something done
Moderate children times are also a useful way to identify daemons that rely on child processes, or, in the case of the
init process it may indicate that many short-lived orphan processes are being created.
Note that this metric is only valid at the process level. It reports CPU time of processes forked and does not report on
threads created by processes. The PROC*_CHILD* metrics have no meaning at the thread level, therefore the thread
metric of the same name, on systems that report per-thread data, will show “na”.

PROC_CHILD_CPU_TOTAL_UTIL

The percentage of system + user time accumulated by this process's children processes during the interval.
 On Unix systems, when a process terminates, its CPU counters (user and system) are accumulated in the parent's
“children times” counters. This occurs when the parent waits for (or reaps) the child. See getrusage(2). If the process
is an orphan process, its parent becomes the init(1m) process, and its CPU times will be accumulated to the init
process upon termination. The PROC*_CHILD_* metrics attempt to report these counters in a meaningful way. If
these counters were reported unconditionally as they are incremented, they would be misleading. For example,
consider a shell process that forks another process and that process accumulates 100 minutes of CPU time. When
that process terminates, the shell would report a huge child time utilization for that interval even though it was
generally idle, waiting for that child to terminate. The child process was most likely already reported in previous
intervals as it used the CPU time, and therefore it would be confusing to report this time in the parent. If, on the other
hand, a process was continuously forking short-lived processes during the interval, it would be useful to report the
CPU time used by those children processes. The simple algorithm chosen is to only report children times when their
total CPU time is less than the process alive interval, and zero otherwise. It is not fool-proof but it generally yields the
right results, i.e., if a process reports high child time utilization for several intervals in a row, it could be a runaway
forking process. An example of such a runaway process (or “fork bomb“) is:
 while true ; do ps -ef | grep something done
Moderate children times are also a useful way to identify daemons that rely on child processes, or, in the case of the
init process it may indicate that many short-lived orphan processes are being created.
Note that this metric is only valid at the process level. It reports CPU time of processes forked and does not report on
threads created by processes. The PROC*_CHILD* metrics have no meaning at the thread level, therefore the thread
metric of the same name, on systems that report per-thread data, will show “na”.

PROC_CHILD_CPU_USER_MODE_UTIL

The percentage of user time accumulated by this process's children processes during the interval.
 On Unix systems, when a process terminates, its CPU counters (user and system) are accumulated in the parent's
“children times” counters. This occurs when the parent waits for (or reaps) the child. See getrusage(2). If the process
is an orphan process, its parent becomes the init(1m) process, and its CPU times will be accumulated to the init
process upon termination. The PROC*_CHILD_* metrics attempt to report these counters in a meaningful way. If
these counters were reported unconditionally as they are incremented, they would be misleading. For example,
consider a shell process that forks another process and that process accumulates 100 minutes of CPU time. When
that process terminates, the shell would report a huge child time utilization for that interval even though it was
generally idle, waiting for that child to terminate. The child process was most likely already reported in previous
intervals as it used the CPU time, and therefore it would be confusing to report this time in the parent. If, on the other
hand, a process was continuously forking short-lived processes during the interval, it would be useful to report the
CPU time used by those children processes. The simple algorithm chosen is to only report children times when their
total CPU time is less than the process alive interval, and zero otherwise. It is not fool-proof but it generally yields the
right results, i.e., if a process reports high child time utilization for several intervals in a row, it could be a runaway
forking process. An example of such a runaway process (or “fork bomb“) is:
 while true ; do ps -ef | grep something done
Moderate children times are also a useful way to identify daemons that rely on child processes, or, in the case of the
init process it may indicate that many short-lived orphan processes are being created.
Note that this metric is only valid at the process level. It reports CPU time of processes forked and does not report on
threads created by processes. The PROC*_CHILD* metrics have no meaning at the thread level, therefore the thread
metric of the same name, on systems that report per-thread data, will show “na”.

PROC_CPU_ALIVE_SYS_MODE_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) in system mode
as a percentage of the time it is alive during the interval. On platforms other than HPUX, If the ignore_mt flag is
set(true) in parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_ALIVE_TOTAL_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) as a percentage
of the time it is alive during the interval. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file,
this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_ALIVE_USER_MODE_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) in user mode as a
percentage of the time it is alive during the interval. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_LAST_USED

The ID number of the processor that last ran the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above). For
uni-processor systems, this value is always zero.
 On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel thread
characteristic. If this metric is reported for a process, the value for its last executing kernel thread is given. For
example, if a process has multiple kernel threads and kernel thread one is the last to execute during the interval, the
metric value for kernel thread one is assigned to the process.

PROC_CPU_SYS_MODE_TIME

The CPU time in system mode in the context of the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric
will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_SYS_MODE_TIME_CUM

The CPU time in system mode in the context of the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric
will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_SYS_MODE_UTIL

The percentage of time that the CPU was in system mode in the context of the process (or kernel thread, if HP-
UX/Linux Kernel 2.6 and above) during the interval.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
High system mode CPU utilizations are normal for IO intensive programs. Abnormally high system CPU utilization can
indicate that a hardware problem is causing a high interrupt rate. It can also indicate programs that are not using
system calls efficiently.
A classic “hung shell” shows up with very high system mode CPU because it gets stuck in a loop doing terminal reads
(a system call) to a device that never responds.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_SYS_MODE_UTIL_CUM

The average percentage of time that the CPU was in system mode in the context of the process (or kernel thread, if
HP-UX/Linux Kernel 2.6 and above) over the cumulative collection time.
 A process operates in either system mode (also called kernel mode on Unix or privileged mode on Windows) or user
mode. When a process requests services from the operating system with a system call, it switches into the machine's
privileged protection mode and runs in system mode.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_TOTAL_TIME

The total CPU time, in seconds, consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
during the interval.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
On HP-UX, the total CPU time is the sum of the CPU time components for a process or kernel thread, including
system, user, context switch, interrupts processing, realtime, and nice utilization values.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_TOTAL_TIME_CUM

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) over the
cumulative collection time. CPU time is in seconds unless otherwise specified.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
This is calculated as

 PROC_CPU_TOTAL_TIME_CUM =

 PROC_CPU_SYS_MODE_TIME_CUM +

 PROC_CPU_USER_MODE_TIME_CUM

 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric
will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_TOTAL_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) as a percentage
of the total CPU time available during the interval.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
On HP-UX, the total CPU utilization is the sum of the CPU utilization components for a process or kernel thread,
including system, user, context switch, interrupts processing, realtime, and nice utilization values.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online.
 On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_TOTAL_UTIL_CUM

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) as a percentage
of the total CPU time available over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
On HP-UX, the total CPU utilization is the sum of the CPU utilization components for a process or kernel thread,
including system, user, context switch, interrupts processing, realtime, and nice utilization values.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_USER_MODE_TIME

The time, in seconds, the process (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) was using the CPU in user
mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric
will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”

by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_USER_MODE_TIME_CUM

The time, in seconds, the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was using the CPU in user
mode over the cumulative collection time. collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric
will report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_USER_MODE_UTIL

The percentage of time the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was using the CPU in
user mode during the interval.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_CPU_USER_MODE_UTIL_CUM

The average percentage of time the process (or kernel thread, if HP_UX/Linux Kernel 2.6 and above) was using the
CPU in user mode over the cumulative collection time.
 User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX, and Windows
systems), and at a nice priority.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 Unlike the global and application CPU metrics, process CPU is not averaged over the number of processors on
systems with multiple CPUs. Single-threaded processes can use only one CPU at a time and never exceed 100%
CPU utilization.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 On multi-processor HP-UX systems, processes which have component kernel threads executing simultaneously on
different processors could have resource utilization sums over 100%. The maximum percentage is 100% times the
number of CPUs online. On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will
report values normalized against the number of active cores in the system.
If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against the number of
threads in the system.
This flag will be a no-op if Multithreading is turned off.
On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the midaemon(1m). To change
normalization from core-based to logical-cpu-based, or vice-versa, all performance components (scopeux, glance,
perfd) must be shut down and the midaemon restarted in the desired mode. To start the midaemon with “-ignore_mt”
by default, this option should be added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding
ovpa startup. Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and thread metrics.

PROC_DISK_PHYS_IO_RATE

The average number of physical disk IOs per second made by the process or kernel thread during the interval.
 For processes which run for less than the measurement interval, this metric is normalized over the measurement
interval. For example, a process ran for 1 second and did 50 IOs during its life. If the measurement interval is 5
seconds, it is reported as having done 10 IOs per second. If the measurement interval is 60 seconds, it is reported as
having done 50/60 or 0.83 IOs per second.
 “Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that may hold file systems
and/or swap. NFS mounted disks are not included in this list.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_IO_RATE_CUM

The number of physical disk IOs per second made by the selected process or kernel thread over the cumulative
collection time.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 “Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that may hold file systems
and/or swap. NFS mounted disks are not included in this list.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_READ

The number of physical reads made by (or for) a process or kernel thread during the last interval.
 “Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition occupies the entire
physical disk). NFS mounted disks are not included in this list.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_READ_CUM

The number of physical reads made by (or for) a process or kernel thread over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 “Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition occupies the entire
physical disk). NFS mounted disks are not included in this list.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_READ_RATE

The number of physical reads per second made by (or for) a process or kernel thread during the interval.
 “Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition occupies the entire
physical disk). NFS mounted disks are not included in this list.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_WRITE

The number of physical writes made by (or for) a process or kernel thread during the last interval.
 “Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that may hold file systems
and/or swap. NFS mounted disks are not included in this list.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_WRITE_CUM

The number of physical writes made by (or for) a process or kernel thread over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 “Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that may hold file systems
and/or swap. NFS mounted disks are not included in this list.
 On HP-UX, since this value is reported by the drivers, multiple physical requests that have been collapsed to a single
physical operation (due to driver IO merging) are only counted once.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.

 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_DISK_PHYS_WRITE_RATE

The number of physical writes per second made by (or for) a process or kernel thread during the interval.
 “Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition occupies the entire
physical disk). NFS mounted disks are not included in this list.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_EUID

The Effective User ID of a process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above).
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_FILE_MODE

A text string summarizing the type of open mode:

 rd/wr Opened for input & output

 read Opened for input only

 write Opened for output only

PROC_FILE_NAME

The path name or identifying information about the open file descriptor. If the path name string exceeds 40 characters
in length, the beginning and the end of the path is shown and the middle of the name is replaced by “...”.
An attempt is made to obtain the file path name by either searching the current cylinder group to find directory entries
that point to the currently opened inode, or by searching the kernel name cache. Since looking up file path names
would require high disk overhead, some names may not be resolved. If the path name can not be resolved, a string is
returned indicating the type and inode number of the file.
For the string format including an inode number, you may use the ncheck(1M) program to display the file path name
relative to the mount point. Sometimes files may be deleted before they are closed. In these cases, the process file
table may still have the inode even though the file is not actually present and as a result, ncheck will fail.

PROC_FILE_NUMBER

The file number of the current open file.

PROC_FILE_OPEN

Number of files the current process has remaining open as of the end of the interval.

PROC_FILE_TYPE

A text string describing the type of the current file. This is one of:

 block Block special device

 char Character device

 dir Directory

 fifo A pipe or named pipe

 file Simple file

 link Symbolic file link

 other An unknown file type

PROC_GROUP_ID

On most systems, this is the real group ID number of the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above). On AIX, this is the effective group ID number of the process.
On HP-UX, this is the effective group ID number of the process if not in setgid mode.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_GROUP_NAME

The group name (from /etc/group) of a process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above).
The group identifier is obtained from searching the /etc/passwd file using the user ID (uid) as a key. Therefore, if more
than one account is listed in /etc/passwd with the same user ID (uid) field, the first one is used. If no entry can be
found for the user ID in /etc/passwd, the group name is the uid number. If no matching entry in /etc/group can be
found, the group ID is returned as the group name.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_INTEREST

A string containing the reason(s) why the process or thread is of interest, based on the thresholds specified in the
parm file.
An 'A' indicates that the process or thread exceeds the process CPU threshold, computed using the actual time the
process or thread was alive during the interval.
A 'C' indicates that the process or thread exceeds the process CPU threshold, computed using the collection interval.
Currently, the same CPU threshold is used for both CPU interest reasons.
A 'D' indicates that the process or thread exceeds the process disk IO threshold.
An 'I' indicates that the process or thread exceeds the IO threshold.
An 'M' indicates that the process exceeds the process memory threshold. This interest reason is only meaningful for
processes and therefore not shown for threads.
New processes or threads are identified with an 'N', terminated processes or threads are identified with a 'K'.
Note that the parm file 'nonew', 'nokill' and 'shortlived' settings are logging only options and therefore ignored in Glance
components.

PROC_INTERVAL

The amount of time in the interval. This is the same value for all processes (and kernel threads, if HP-UX/Linux Kernel
2.6 and above), regardless of whether they were alive for the entire interval.

Note, calculations such as utilizations or rates are calculated using this standardized process interval
(PROC_INTERVAL), rather than the actual alive time during the interval (PROC_INTERVAL_ALIVE). Thus, if a
process was only alive for 1 second and used the CPU during its entire life (1 second), but the process sample interval
was 5 seconds, it would be reported as using 1/5 or 20% CPU utilization, rather than 100% CPU utilization.

PROC_INTERVAL_ALIVE

The number of seconds that the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was alive during the
interval. This may be less than the time of the interval if the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) was new or died during the interval.

PROC_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On SUN, AIX, and OSF1, this differs from PROC_RUN_TIME in that PROC_RUN_TIME may not include all of the first
and last sample interval times and PROC_INTERVAL_CUM does.

PROC_IO_BYTE

On HP-UX, this is the total number of physical IO KBs (unless otherwise specified) that was used by this process or
kernel thread, either directly or indirectly, during the interval.
On all other systems, this is the total number of physical IO KBs (unless otherwise specified) that was used by this
process during the interval. IOs include disk, terminal, tape and network IO.
On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on behalf of the
process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but exclude all NFS traffic.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
On SUN, counts in the MB ranges in general can be attributed to disk accesses and counts in the KB ranges can be
attributed to terminal IO. This is useful when looking for processes with heavy disk IO activity. This may vary
depending on the sample interval length.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_IO_BYTE_CUM

On HP-UX, this is the total number of physical IO KBs (unless otherwise specified) that was used by this process or
kernel thread, either directly or indirectly, over the cumulative collection time.
On all other systems, this is the total number of physical IO KBs (unless otherwise specified) that was used by this
process over the cumulative collection time. IOs include disk, terminal, tape and network IO.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on behalf of the
process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but exclude all NFS traffic.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the

resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_IO_BYTE_RATE

On HP-UX, this is the number of physical IO KBs per second that was used by this process or kernel thread, either
directly or indirectly, during the interval.
On all other systems, this is the number of physical IO KBs per second that was used by this process during the
interval. IOs include disk, terminal, tape and network IO.
On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on behalf of the
process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but exclude all NFS traffic.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
On SUN, counts in the MB ranges in general can be attributed to disk accesses and counts in the KB ranges can be
attributed to terminal IO. This is useful when looking for processes with heavy disk IO activity. This may vary
depending on the sample interval length.
Certain types of disk IOs are not counted by AIX at the process level, so they are excluded from this metric.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).
When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_IO_BYTE_RATE_CUM

On HP-UX, this is the average number of physical IO KBs per second that was used by this process or kernel thread,
either directly or indirectly, over the cumulative collection time.
On all other systems, this is the average number of physical IO KBs per second that was used by this process over the
cumulative collection time. IOs include disk, terminal, tape and network IO.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on behalf of the
process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but exclude all NFS traffic.
 On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is calculated by
summing the usage of that resource by its kernel threads. If this metric is reported for a kernel thread, the value is the
resource usage by that single kernel thread. If this metric is reported for a process, the value is the sum of the
resource usage by all of its kernel threads. Alive kernel threads and kernel threads that have died during the interval
are included in the summation.
On SUN, counts in the MB ranges in general can be attributed to disk accesses and counts in the KB ranges can be
attributed to terminal IO. This is useful when looking for processes with heavy disk IO activity. This may vary
depending on the sample interval length.
 Linux release versions vary with regards to the amount of process-level IO statistics that are available. Some kernels
instrument only disk IO, while some provide statistics for all devices together (including tty and other devices with disk
IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will report pages of disk IO
specifically. The PROC_IO* metrics will report the sum of all types of IO including disk IO, in Kilobytes or KB rates.
These metrics will have “na” values on kernels that do not support the instrumentation.
For multi-threaded processes, some Linux kernels only report IO statistics for the main thread. In that case, patches
are available that will allow the process instrumentation to report the sum of all thread's IOs, and will also enable per-
thread reporting.

PROC_MAJOR_FAULT

Number of major page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) during the
interval.
 On HP-UX, major page faults and minor page faults are a subset of vfaults (virtual faults). Stack and heap accesses
can cause vfaults, but do not result in a disk page having to be loaded into memory.

PROC_MAJOR_FAULT_CUM

Number of major page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, major page faults and minor page faults are a subset of vfaults (virtual faults). Stack and heap accesses
can cause vfaults, but do not result in a disk page having to be loaded into memory.

PROC_MEM_DATA_VIRT

On SUN, this is the virtual set size (in KB) of the heap memory for this process. Note that heap can reside partially in
BSS and partially in the data segment, so its value will not be the same as PROC_REGION_VIRT of the data segment
or PROC_REGION_VIRT_DATA, which is the sum of all data segments for the process.
On the other non HP-UX systems, this is the virtual set size (in KB) of the data segment for this process(or kernel
thread, if Linux Kernel 2.6 and above).
A value of “na” is displayed when this information is unobtainable.
On AIX, this is the same as the SIZE value reported by “ps v”.
On Linux this value is rounded to PAGESIZE.

PROC_MEM_RES

The size (in KB) of resident memory allocated for the process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above).
On HP-UX, the calculation of this metric differs depending on whether this process has used any CPU time since the
midaemon process was started. This metric is less accurate and does not include shared memory regions in its
calculation when the process has been idle since the midaemon was started.
On HP-UX, for processes that use CPU time subsequent to midaemon startup, the resident memory is calculated as

RSS = sum of private region pages +

 (sum of shared region pages /

 number of references)

 The number of references is a count of the number of attachments to the memory region. Attachments, for shared
regions, may come from several processes sharing the same memory, a single process with multiple attachments, or
combinations of these.
This value is only updated when a process uses CPU. Thus, under memory pressure, this value may be higher than
the actual amount of resident memory for processes which are idle because their memory pages may no longer be
resident or the reference count for shared segments may have changed.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.
A value of “na” is displayed when this information is unobtainable. This information may not be obtainable for some
system (kernel) processes. It may also not be available for <defunct> processes.
On AIX, this is the same as the RSS value shown by “ps v”.

On Windows, this is the number of KBs in the working set of this process. The working set includes the memory
pages touched recently by the threads of the process. If free memory in the system is above a threshold, then pages
are left in the working set even if they are not in use. When free memory falls below a threshold, pages are trimmed
from the working set, but not necessarily paged out to disk from memory. If those pages are subsequently referenced,
they will be page faulted back into the working set. Therefore, the working set is a general indicator of the memory
resident set size of this process, but it will vary depending on the overall status of memory on the system. Note that
the size of the working set is often larger than the amount of pagefile space consumed (PROC_MEM_VIRT).

PROC_MEM_RES_HIGH

The largest value of resident memory (in KB) during its lifetime.
See the description for PROC_MEM_RES for details about how resident memory is determined.
A value of “na” is displayed when this information is unobtainable.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_MEM_SHARED_RES

The size (in KB) of resident memory of shared regions only, such as shared text, shared memory, and shared libraries.
On HP-UX, this value is not affected by the reference count. A value of “na” is displayed when this information is
unobtainable.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_MEM_STACK_VIRT

Size (in KB) of the stack for this process(or kernel thread, if Linux Kernel 2.6 and above).
On SUN, the stack is initialized to 8K bytes.
On Linux this value is rounded to PAGESIZE.

PROC_MEM_TEXT_VIRT

Size (in KB) of the private text for this process(or kernel thread, if Linux Kernel 2.6 and above).
On AIX, this is the same as the TSIZ field shown by “ps v”.
On Linux this value is rounded to PAGESIZE.

PROC_MEM_VIRT

The size (in KB) of virtual memory allocated for the process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above).
On HP-UX, this consists of the sum of the virtual set size of all private memory regions used by this process, plus this
process' share of memory regions which are shared by multiple processes. For processes that use CPU time, the
value is divided by the reference count for those regions which are shared.
On HP-UX, this metric is less accurate and does not reflect the reference count for shared regions for processes that
were started prior to the midaemon process and have not used any CPU time since the midaemon was started.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.
On all other Unix systems, this consists of private text, private data, private stack and shared memory. The reference
count for shared memory is not taken into account, so the value of this metric represents the total virtual size of all
regions regardless of the number of processes sharing access.
Note also that lazy swap algorithms, sparse address space malloc calls, and memory-mapped file access can result in
large VSS values. On systems that provide Glance memory regions detail reports, the drilldown detail per memory
region is useful to understand the nature of memory allocations for the process.
A value of “na” is displayed when this information is unobtainable. This information may not be obtainable for some
system (kernel) processes. It may also not be available for <defunct> processes.
On Windows, this is the number of KBs the process has used in the paging file(s). Paging files are used to store
pages of memory used by the process, such as local data, that are not contained in other files. Examples of memory
pages which are contained in other files include pages storing a program's .EXE and .DLL files. These would not be
kept in pagefile space. Thus, often programs will have a memory working set size (PROC_MEM_RES) larger than the
size of its pagefile space.

On Linux this value is rounded to PAGESIZE.

PROC_MINOR_FAULT

Number of minor page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) during the
interval.
 On HP-UX, major page faults and minor page faults are a subset of vfaults (virtual faults). Stack and heap accesses
can cause vfaults, but do not result in a disk page having to be loaded into memory.

PROC_MINOR_FAULT_CUM

Number of minor page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On HP-UX, major page faults and minor page faults are a subset of vfaults (virtual faults). Stack and heap accesses
can cause vfaults, but do not result in a disk page having to be loaded into memory.

PROC_NICE_PRI

The nice priority for the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) when it was last dispatched.
The value is a bias used to adjust the priority for the process.
On AIX, the nice user value, makes a process less favored than it otherwise would be, has a range of 0-40 with a
default value of 20. The value of PUSER is always added to the value of nice to weight the user process down below
the range of priorities expected to be in use by system jobs like the scheduler and special wait queues.
On all other Unix systems, the value ranges from 0 to 39. A higher value causes a process (or kernel thread, if HP-
UX/Linux Kernel 2.6 and above) to be dispatched less.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_PAGEFAULT

The number of page faults that occurred during the interval for the process(or kernel threads, if HP-UX/Linux Kernel
2.6 and above).

PROC_PAGEFAULT_RATE

The number of page faults per second that occurred during the interval for the process(or kernel threads, if HP-
UX/Linux Kernel 2.6 and above).

PROC_PAGEFAULT_RATE_CUM

The average number of page faults per second that occurred over the cumulative collection time for the process(or
kernel threads, if HP-UX/Linux Kernel 2.6 and above).

PROC_PARENT_PROC_ID

The parent process' PID number.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_PRI

On Unix systems, this is the dispatch priority of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) at
the end of the interval. The lower the value, the more likely the process is to be dispatched.
On Windows, this is the current base priority of this process.
On HP-UX, whenever the priority is changed for the selected process or kernel thread, the new value will not be
reflected until the process or kernel thread is reactivated if it is currently idle (for example, SLEEPing).

On HP-UX, the lower the value, the more the process or kernel thread is likely to be dispatched. Values between zero
and 127 are considered to be “real-time” priorities, which the kernel does not adjust. Values above 127 are normal
priorities and are modified by the kernel for load balancing. Some special priorities are used in the HP-UX kernel and
subsystems for different activities. These values are described in /usr/include/sys/param.h. Priorities less than
PZERO 153 are not signalable.
Note that on HP-UX, many network-related programs such as inetd, biod, and rlogind run at priority 154 which is
PPIPE. Just because they run at this priority does not mean they are using pipes. By examining the open files, you
can determine if a process or kernel thread is using pipes.
For HP-UX 10.0 and later releases, priorities between -32 and -1 can be seen for processes or kernel threads using
the Posix Real-time Schedulers. When specifying a Posix priority, the value entered must be in the range from 0
through 31, which the system then remaps to a negative number in the range of -1 through -32. Refer to the rtsched
man pages for more information.
 On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel thread
characteristic. If this metric is reported for a process, the value for its last executing kernel thread is given. For
example, if a process has multiple kernel threads and kernel thread one is the last to execute during the interval, the
metric value for kernel thread one is assigned to the process.
On AIX, values for priority range from 0 to 127. Processes running at priorities less than PZERO (40) are not
signalable.
On Windows, the higher the value the more likely the process or thread is to be dispatched. Values for priority range
from 0 to 31. Values of 16 and above are considered to be “realtime” priorities. Threads within a process can raise
and lower their own base priorities relative to the process's base priority.

PROC_PROC_ARGV1

The first argument (argv[1]) of the process argument list or the second word of the command line, if present. (For
kernel threads, if HP-UX/Linux Kernel 2.6 and above this metric returns the value of the associated process). The HP
Performance Agent logs the first 32 characters of this metric.
For releases that support the parm file javaarg flag, this metric may not be the first argument. When javaarg=true, the
value of this metric is replaced (for java processes only) by the java class or jar name. This can then be useful to
construct parm file java application definitions using the argv1= keyword.

PROC_PROC_CMD

The full command line with which the process was initiated. (For kernel threads, if HP-UX/Linux Kernel 2.6 and above
this metric returns the value of the associated process).
On HP-UX, the maximum length returned depends upon the version of the OS, but typically up to 1020 characters are
available.
On other Unix systems, the maximum length is 4095 characters.
On Linux, if the command string exceeds 4096 characters, the kernel instrumentation may not report any value.
If the command line contains special characters, such as carriage return and tab, these characters will be converted to
, , and so on.

PROC_PROC_ID

The process ID number (or PID) of this process(or associated process for kernel threads, if HPUX/LInux Kernel 2.6
and above) that is used by the kernel to uniquely identify the process. Process numbers are reused, so they only
identify a process for its lifetime.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_PROC_NAME

The process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above) program name. It is limited to 16 characters.
On Unix systems, this is derived from the 1st parameter to the exec(2) system call.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.
On Windows, the “System Idle Process” is not reported by Perf Agent since Idle is a process that runs to occupy the
processors when they are not executing other threads. Idle has one thread per processor.

PROC_REGION_FILENAME

The file path that corresponds to the front store file of a memory region. For text and data regions, this is the name of
the program; for shared libraries it is the library name.
Certain “special” names are displayed if there is no actual “front store” for a memory region. These special names
correspond to the region type (for example, <stack>). If the name is “<mmap>”, then this is a memory region without
“front store,” created by the system call mmap(2).
If the file format includes an inode number, use the program ncheck (1M) to display the filename relative to the mount
point. Sometimes files may be deleted before they are closed. In these cases, the process file table may still have the
inode even though the file is not actually present and as a result, ncheck will fail.

PROC_REGION_PRIVATE_SHARED_FLAG

A text indicator of either private memory (Priv) or shared (Shared) for this memory region. Private memory is only
being used by the current process. Shared memory is mapped into the address space of other processes.

PROC_REGION_PROT_FLAG

The protection mode of the process memory segment. It represents Read/Write/eXecute permissions in the same way
as ls(1) does for files. This metric is available only for regions that have global protection mode. It is not available
(“na”) for regions that use per-page protection.

PROC_REGION_TYPE

A text name for the type of this memory region. It can be one of the following:

DATA Data region

LIBDAT Shared Library data

LIBTXT Shared Library text

STACK Stack region

TEXT Text (that is, code)

On HP-UX, it can also be one of the following:

GRAPH Frame buffer lock page

IOMAP IO region (iomap)

MEMMAP Memory-mapped file,

 which includes shared

 libraries (text and

 data), or memory

 created by calls to

 mmap(2)

NULLDR Null pointer dereference

 shared page (see below)

RSESTA Itanium Registered stack

 engine region

SIGSTK Signal stack region

UAREA User Area region

UNKNWN Region of unknown type

On HP-UX, a whole page is allocated for NULL pointer dereferencing, which is reported as the NULLDR area. If the
program is compiled with the “-z” option (which disallows NULL dereferencing), this area is missing. Shared libraries
are accessed as memory mapped files, so that the code will show up as “MEMMAP/Shared” and data will show up as
“MEMMAP/Priv”.
On SUN, it can also be one of the following:

BSS Static initialized data

MEMMAP Memory mapped files

NULLDR Null pointer dereference

 shared page (see below).

SHMEM Shared memory

UNKNWN Region of unknown type

On SUN, programs might have an area for NULL pointer dereferencing, which is reported as the NULLDR area.
Special segment types that are supported by the kernel that are used for frame buffer devices or other purposes are
typed as UNKNWN. The following kernel processes are examples of this: sched, pageout, and fsflush.
On AIX, as of mid-2010, the OS only provides information for text and data.

PROC_REGION_VIRT

The size (in KBs unless otherwise indicated) of the virtual memory occupied by this memory region.
This value is not affected by the reference count.
 The number of references is a count of the number of attachments to the memory region. Attachments, for shared
regions, may come from several processes sharing the same memory, a single process with multiple attachments, or
combinations of these.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_REGION_VIRT_ADDRS

The virtual address of this memory region displayed in hexadecimal showing the space and offset of the region.
On HP-UX, this is a 64-bit (96-bit on a 64-bit OS) hexadecimal value indicating the space and space offset of the
region.

PROC_REGION_VIRT_DATA

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by data regions of this process. This
value is not affected by the reference count since all data regions are private.
 This metric is specific to the process as a whole and will not change its value. If this metric is used in a glance adviser
script, only pick up one value. Do not sum the values since the same value is shown for all regions.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_REGION_VIRT_OTHER

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by regions of this process that are
not text, data, stack, or shared memory.
This value is not affected by the reference count.
 This metric is specific to the process as a whole and will not change its value. If this metric is used in a glance adviser
script, only pick up one value. Do not sum the values since the same value is shown for all regions.
 The number of references is a count of the number of attachments to the memory region. Attachments, for shared
regions, may come from several processes sharing the same memory, a single process with multiple attachments, or
combinations of these.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_REGION_VIRT_SHMEM

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by shared memory regions of this
process.
Note that this memory is shared by other processes and this figure is reported in their metrics also.
This value is not affected by the reference count.
 This metric is specific to the process as a whole and will not change its value. If this metric is used in a glance adviser
script, only pick up one value. Do not sum the values since the same value is shown for all regions.

 The number of references is a count of the number of attachments to the memory region. Attachments, for shared
regions, may come from several processes sharing the same memory, a single process with multiple attachments, or
combinations of these.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_REGION_VIRT_STACK

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by stack regions of this process.
Stack regions are always private and will have a reference count of one.
 This metric is specific to the process as a whole and will not change its value. If this metric is used in a glance adviser
script, only pick up one value. Do not sum the values since the same value is shown for all regions.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_REGION_VIRT_TEXT

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by text regions of this process. This
value is not affected by the reference count.
 This metric is specific to the process as a whole and will not change its value. If this metric is used in a glance adviser
script, only pick up one value. Do not sum the values since the same value is shown for all regions.
 On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always be zero. Note also
that the total virtual size may not match the sum of the regions due to inconsistencies in the AIX measurement
interfaces.

PROC_RUN_TIME

The elapsed time since a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) started, in seconds.
This metric is less than the interval time if the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was not
alive during the entire first or last interval.
 On a threaded operating system such as HP-UX 11.0 and beyond, this metric is available for a process or kernel
thread.

PROC_STARTTIME

The creation date and time of the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above).

PROC_STATE

A text string summarizing the current state of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above),
either:

new This is the first interval

 the process has been

 displayed.

active Process is continuing.

died Process expired during

 the interval.

PROC_STATE_FLAG

The Unix STATE flag of the process(or kernel thread, if Linux Kernel 2.6 and above) during the interval.

PROC_STOP_REASON

A text string describing what caused the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) to stop
executing. For example, if the process is waiting for a CPU while higher priority processes are executing, then its
block reason is PRI. A complete list of block reasons follows:

String Reason for Process Block

died Process terminated during

 the interval.

new Process was created (via the

 exec() system call) during

 the interval.

NONE Process is ready to run. It

 is not apparent that the

 process is blocked.

OTHER Waiting for a reason not

 decipherable by the

 measurement software.

PRI Process is on the run queue.

SLEEP Waiting for an event to

 complete.

TRACE Received a signal to stop

 because parent is tracing

 this process.

ZOMB Process has terminated and

 the parent is not waiting.

PROC_STOP_REASON_FLAG

A numeric value for the stop reason. This is used by scopeux instead of the ASCII string returned by
PROC_STOP_REASON in order to conserve space in the log file.
 On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel thread
characteristic. If this metric is reported for a process, the value for its last executing kernel thread is given. For
example, if a process has multiple kernel threads and kernel thread one is the last to execute during the interval, the
metric value for kernel thread one is assigned to the process.

PROC_THREAD_COUNT

The total number of kernel threads for the current process.
On Linux systems with Kernel 2.5 and below, every thread has its own process ID so this metric will always be 1.
On Solaris systems, this metric reflects the total number of Light Weight Processes (LWPs) associated with the
process.

PROC_THREAD_ID

The thread ID number of this kernel thread, used to uniquely identify it. On Linux systems this metric shall be
available from Linux Kernel 2.6 onwards.

PROC_TIME

The time the data for the process (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) was collected, in local time.

PROC_TOP_CPU_INDEX

The index of the process which consumed the most CPU during the interval. From this index, the process PID,
process name, and CPU utilization can be obtained. (Even for kernel threads if HPUX/Linux Kernel 2.6 and above this
metric returns the index of the process)
This metric is used by the Performance Tools to index into the Data collection interface's internal table. This is not a
metric that will be interesting to Tool users.

PROC_TOP_DISK_INDEX

The index of the process which did the most physical IOs during the last interval.
On HP-UX, note that NFS mounted disks are not considered in this calculation.
With this index, the PID, process name, and IOs per second can be obtained.
This metric is used by the Performance Tools to index into the Data collection interface's internal table. This is not a
metric that will be interesting to Tool's users.

PROC_TTY

The controlling terminal for a process(or kernel threads, if HP-UX/Linux Kernel 2.6 and above). This field is blank if
there is no controlling terminal. On HP-UX, Linux, and AIX, this is the same as the “TTY” field of the ps command.
On all other Unix systems, the controlling terminal name is found by searching the directories provided in the
/etc/ttysrch file. See man page ttysrch(4) for details. The matching criteria field (“M”, “F” or “I” values) of the ttysrch file
is ignored. If a terminal is not found in one of the ttysrch file directories, the following directories are searched in the
order here: “/dev”, “/dev/pts”, “/dev/term” and “dev/xt”. When a match is found in one of the “/dev” subdirectories,
“/dev/” is not displayed as part of the terminal name. If no match is found in the directory searches, the major and
minor numbers of the controlling terminal are displayed. In most cases, this value is the same as the “TTY” field of the
ps command.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_TTY_DEV

The device number of the controlling terminal for a process(or kernel threads, if HP-UX/Linux Kernel 2.6 and above).
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_UID

The real UID (user ID number) of a process(or kernel threads, if HP-UX/Linux Kernel 2.6 and above). This is the UID
returned from the getuid system call.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

PROC_USER_NAME

On Unix systems, this is real user name of a process or the login account (from /etc/passwd) of a process (or kernel
thread, if HP-UX/Linux Kernel 2.6 and above). If more than one account is listed in /etc/passwd with the same user ID
(uid) field, the first one is used. If an account cannot be found that matches the uid field, then the uid number is
returned. This would occur if the account was removed after a process was started.
On Windows, this is the process owner account name, without the domain name this account resides in.
 On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the value for its associated
process is given.

TBL_BUFFER_HEADER_AVAIL

This is the maximum number of headers pointing to buffers in the file system buffer cache.
On HP-UX, this is the configured number, not the maximum number. This can be set by the “nbuf” kernel
configuration parameter. nbuf is used to determine the maximum total number of buffers on the system.
On HP-UX, these are used to manage the buffer cache, which is used for all block IO operations. When nbuf is zero,
this value depends on the “bufpages” size of memory (see System Administration Tasks manual). A value of “na”
indicates either a dynamic buffer cache configuration, or the nbuf kernel parameter has been left unconfigured and

allowed to “float” with the bufpages parameter. This is not a maximum available value in a fixed buffer cache
configuration. Instead, it is the initial configured value. The actual number of used buffer headers can grow beyond
this initial value.
On SUN, this value is “nbuf”.
 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.

TBL_BUFFER_HEADER_USED

The number of buffer headers currently in use.
On HP-UX, this dynamic value will rarely change once the system boots. During the system bootup, the kernel
allocates a large number of buffer headers and the count is likely to stay at that value after the bootup completes. If
the value increases beyond the initial boot value, it will not decrease. Buffer headers are allocated in kernel memory,
not user memory, and therefore, will not decrease. This value can exceed the available or configured number of buffer
headers in a fixed buffer cache configuration.
 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_BUFFER_HEADER_USED_HIGH

The largest number of buffer headers used in any one interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_BUFFER_HEADER_UTIL

The percentage of buffer headers currently used.
On HP-UX, a value of “na” indicates either a dynamic buffer cache configuration, or the nbuf kernel parameter has
been left unconfigured and allowed to “float” with the bufpages parameter.
 On SUN, the buffer cache is a memory pool used by the system to cache inode, indirect block and cylinder group
related disk accesses. This is different from the traditional concept of a buffer cache that also holds file system data.
On Solaris 5.X, as file data is cached, accesses to it show up as virtual memory IOs. File data caching occurs through
memory mapping managed by the virtual memory system, not through the buffer cache. The “nbuf” value is dynamic,
but it is very hard to create a situation where the memory cache metrics change, since most systems have more than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more heavily utilized on NFS
file servers.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_BUFFER_HEADER_UTIL_HIGH

The highest percentage of buffer header used in any one interval over the cumulative collection time.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
On HP-UX, a value of “na” indicates either a dynamic buffer cache configuration, or the nbuf kernel parameter has
been left unconfigured and allowed to “float” with the bufpages parameter.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_LOCK_AVAIL

The configured number of file or record locks that can be allocated on the system. Files and/or records are locked by
calls to lockf(2). On Linux kernel versions 2.4 and above, available file orrecord locks is a dynamic value which can
grow upto max unsigned long.

TBL_FILE_LOCK_USED

The number of file or record locks currently in use. One file can have multiple locks. Files and/or records are locked
by calls to lockf(2).
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.
 On Solaris non-global zones, this metric is N/A.

TBL_FILE_LOCK_USED_HIGH

The highest number of file locks used by the file system in any one interval over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_LOCK_UTIL

The percentage of configured file or record locks currently in use. On Linux 2.4 and above kernel versions, this may
not give correct picture as file or record locks available may change dynamically and can grow upto max unsigned
long.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_LOCK_UTIL_HIGH

The highest percentage of configured file or record locks that have been in use during any one interval over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_TABLE_AVAIL

The number of entries in the file table.
On HP-UX and AIX, this is the configured maximum number of the file table entries used by the kernel to manage
open file descriptors.
On HP-UX, this is the sum of the “nfile” and “file_pad” values used in kernel generation.
On SUN, this is the number of entries in the file cache. This is a size. All entries are not always in use. The cache
size is dynamic. Entries in this cache are used to manage open file descriptors. They are reused as files are closed
and new ones are opened. The size of the cache will go up or down in chunks as more or less space is required in the
cache.
On AIX, the file table entries are dynamically allocated by the kernel if there is no entry available. These entries are
allocated in chunks.

TBL_FILE_TABLE_USED

The number of entries in the file table currently used by file descriptors.
On SUN, this is the number of file cache entries currently used by file descriptors.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_TABLE_USED_HIGH

The highest number of entries in the file table that is used by file descriptors in any one interval over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_TABLE_UTIL

The percentage of file table entries currently used by file descriptors.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_FILE_TABLE_UTIL_HIGH

The highest percentage of entries in the file table used by file descriptors in any one interval over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_INODE_CACHE_AVAIL

On HP-UX, this is the configured total number of entries for the incore inode tables on the system. For HP-UX
releases prior to 11.2x, this value reflects only the HFS inode table. For subsequent HP-UX releases, this value is the
sum of inode tables for both HFS and VxFS file systems (ninode plus vxfs_ninode).
 On HP-UX, file system directory activity is done through inodes that are stored on disk. The kernel keeps a memory
cache of active and recently accessed inodes to reduce disk IOs. When a file is opened through a pathname, the
kernel converts the pathname to an inode number and attempts to obtain the inode information from the cache based
on the filesystem type. If the inode entry is not in the cache, the inode is read from disk into the inode cache.
On HP-UX, the number of used entries in the inode caches are usually at or near the capacity. This does not
necessarily indicate that the configured sizes are too small because the tables may contain recently used inodes and
inodes referenced by entries in the directory name lookup cache. When a new inode cache entry is required and a
free entry does not exist, inactive entries referenced by the directory name cache are used. If after freeing inode
entries only referenced by the directory name cache does not create enough free space, the message “inode: table is
full” message may appear on the console. If this occurs, increase the size of the kernel parameter, ninode. Low
directory name cache hit ratios may also indicate an underconfigured inode cache.
On HP-UX, the default formula for the ninode size is:

 ninode = ((nproc+16+maxusers)+32+

 (2*npty)+(4*num_clients))

On all other Unix systems, this is the number of entries in the inode cache. This is a size. All entries are not always in
use. The cache size is dynamic.
Entries in this cache are reused as files are closed and new ones are opened. The size of the cache will go up or
down in chunks as more or less space is required in the cache.
 Inodes are used to store information about files within the file system. Every file has at least two inodes associated
with it (one for the directory and one for the file itself). The information stored in an inode includes the owners,
timestamps, size, and an array of indices used to translate logical block numbers to physical sector numbers. There is
a separate inode maintained for every view of a file, so if two processes have the same file open, they both use the
same directory inode, but separate inodes for the file.

TBL_INODE_CACHE_HIGH

On HP-UX and OSF1, this is the highest number of inodes that have been used in any one interval over the
cumulative collection time.
 On HP-UX, file system directory activity is done through inodes that are stored on disk. The kernel keeps a memory
cache of active and recently accessed inodes to reduce disk IOs. When a file is opened through a pathname, the
kernel converts the pathname to an inode number and attempts to obtain the inode information from the cache based
on the filesystem type. If the inode entry is not in the cache, the inode is read from disk into the inode cache.
On HP-UX, the number of used entries in the inode caches are usually at or near the capacity. This does not
necessarily indicate that the configured sizes are too small because the tables may contain recently used inodes and
inodes referenced by entries in the directory name lookup cache. When a new inode cache entry is required and a
free entry does not exist, inactive entries referenced by the directory name cache are used. If after freeing inode
entries only referenced by the directory name cache does not create enough free space, the message “inode: table is
full” message may appear on the console. If this occurs, increase the size of the kernel parameter, ninode. Low
directory name cache hit ratios may also indicate an underconfigured inode cache.
On HP-UX, the default formula for the ninode size is:

 ninode = ((nproc+16+maxusers)+32+

 (2*npty)+(4*num_clients))

On all other Unix systems, this is the largest size of the inode cache in any one interval over the cumulative collection
time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_INODE_CACHE_USED

The number of inode cache entries currently in use.
On HP-UX, this is the number of “non-free” inodes currently used. Since the inode table contains recently closed
inodes as well as open inodes, the table often appears to be fully utilized. When a new entry is needed, one can
usually be found by reusing one of the recently closed inode entries.
 On HP-UX, file system directory activity is done through inodes that are stored on disk. The kernel keeps a memory
cache of active and recently accessed inodes to reduce disk IOs. When a file is opened through a pathname, the
kernel converts the pathname to an inode number and attempts to obtain the inode information from the cache based
on the filesystem type. If the inode entry is not in the cache, the inode is read from disk into the inode cache.
On HP-UX, the number of used entries in the inode caches are usually at or near the capacity. This does not
necessarily indicate that the configured sizes are too small because the tables may contain recently used inodes and
inodes referenced by entries in the directory name lookup cache. When a new inode cache entry is required and a
free entry does not exist, inactive entries referenced by the directory name cache are used. If after freeing inode
entries only referenced by the directory name cache does not create enough free space, the message “inode: table is
full” message may appear on the console. If this occurs, increase the size of the kernel parameter, ninode. Low
directory name cache hit ratios may also indicate an underconfigured inode cache.
On HP-UX, the default formula for the ninode size is:

 ninode = ((nproc+16+maxusers)+32+

 (2*npty)+(4*num_clients))

 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_BUFFER_ACTIVE

The current active total size (in KBs unless otherwise specified) of all IPC message buffers. These buffers are created
by msgsnd(2) calls and released by msgrcv(2) calls. This metric only counts the active message queue buffers, which
means that a msgsnd(2) call has been made and the msgrcv(2) has not yet been done on the queue entry or a
msgrcv(2) call is waiting on a message queue entry.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_BUFFER_AVAIL

The maximum achievable size (in KBs unless otherwise specified) of the message queue buffer pool on the system.
Each message queue can contain many buffers which are created whenever a program issues a msgsnd(2) call.
Each of these buffers is allocated from this buffer pool.
Refer to the ipcs(1) man page for more information.
This value is determined by taking the product of the three kernel configuration variables “msgseg”, “msgssz” and
“msgmni”. If the value adds up to a value > 2048GB, “o/f” may be reported on some platforms.
 On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount available is zero, this
facility was not loaded when data collection began, and its data is not obtainable. The data collector is unable to
determine that a facility has been loaded once data collection has started. If you know a new facility has been loaded,
restart the data collection, and the data for that facility will be collected. See ipcs(1) to report on interprocess
communication resources.

TBL_MSG_BUFFER_HIGH

The largest size (in KBs unless otherwise specified) of the message queues in any one interval over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_BUFFER_USED

The current total size (in KBs unless otherwise specified) of all IPC message buffers. These buffers are created by
msgsnd(2) calls and released by msgrcv(2) calls.
On HP-UX and OSF1, this field corresponds to the CBYTES field of the “ipcs -qo” command.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_TABLE_ACTIVE

The number of message queues currently active. A message queue is allocated by a program using the msgget(2)
call. This metric returns only the entries in the message queue currently active.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_TABLE_AVAIL

The configured maximum number of message queues that can be allocated on the system. A message queue is
allocated by a program using the msgget(2) call.
Refer to the ipcs(1) man page for more information.
 On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount available is zero, this
facility was not loaded when data collection began, and its data is not obtainable. The data collector is unable to
determine that a facility has been loaded once data collection has started. If you know a new facility has been loaded,
restart the data collection, and the data for that facility will be collected. See ipcs(1) to report on interprocess
communication resources.

TBL_MSG_TABLE_USED

On HP-UX, this is the number of message queues currently in use.
On all other Unix systems, this is the number of message queues that have been built.
A message queue is allocated by a program using the msgget(2) call. See ipcs(1) to list the message queues.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_TABLE_UTIL

The percentage of configured message queues currently in use.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_MSG_TABLE_UTIL_HIGH

The highest percentage of configured message queues that have been in use during any one interval over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_NUM_NFSDS

The number of NFS servers configured. This is the value “nservers” passed to nfsd (the NFS daemon) upon startup.
If no value is specified, the default is one. This value determines the maximum number of concurrent NFS requests
that the server can handle. See man page for “nfsd”.

TBL_SEM_TABLE_ACTIVE

The number of semaphore identifiers currently active. This means that the semaphores are currently locked by
processes. Any new process requesting this semaphore is blocked if IPC_NOWAIT flag is not set.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SEM_TABLE_AVAIL

The configured number of semaphore identifiers (sets) that can be allocated on the system.
 On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount available is zero, this
facility was not loaded when data collection began, and its data is not obtainable. The data collector is unable to
determine that a facility has been loaded once data collection has started. If you know a new facility has been loaded,
restart the data collection, and the data for that facility will be collected. See ipcs(1) to report on interprocess
communication resources.

TBL_SEM_TABLE_USED

On HP-UX, this is the number of semaphore identifiers currently in use.
On all other Unix systems, this is the number of semaphore identifiers that have been built.
A semaphore identifier is allocated by a program using the semget(2) call. See ipcs(1) to list semaphores.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SEM_TABLE_UTIL

The percentage of configured semaphores identifiers currently in use.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SEM_TABLE_UTIL_HIGH

The highest percentage of configured semaphore identifiers that have been in use during any one interval over the
cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_ACTIVE

The size (in KBs unless otherwise specified) of the shared memory segments that have running processes attached to
them. This may be less than the amount of shared memory used on the system because a shared memory segment
may exist and not have any process attached to it.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_AVAIL

The maximum achievable size (in MB unless otherwise specified) of the shared memory pool on the system.

This is a theoretical maximum determined by multiplying the configured maximum number of shared memory entries
(shmmni) by the maximum size of each shared memory segment (shmmax). Your system may not have enough
virtual memory to actually reach this theoretical limit - one cannot allocate more shared memory than the available
reserved space configured for virtual memory.
It should be noted that this value does not include any architectural limitations. (For example, on a 32-bit kernel, there
is an addressing limit of 1.75 GB.). If the value adds up to a value > 2048TB, “o/f” may be reported on some platforms.
 On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount available is zero, this
facility was not loaded when data collection began, and its data is not obtainable. The data collector is unable to
determine that a facility has been loaded once data collection has started. If you know a new facility has been loaded,
restart the data collection, and the data for that facility will be collected. See ipcs(1) to report on interprocess
communication resources.

TBL_SHMEM_HIGH

The highest size (in KBs unless otherwise specified) of shared memory used in any one interval over the cumulative
collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_TABLE_ACTIVE

The number of shared memory segments that have running processes attached to them. This may be less than the
number of shared memory segments that have been allocated.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_TABLE_AVAIL

The configured number of shared memory segments that can be allocated on the system.
 On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount available is zero, this
facility was not loaded when data collection began, and its data is not obtainable. The data collector is unable to
determine that a facility has been loaded once data collection has started. If you know a new facility has been loaded,
restart the data collection, and the data for that facility will be collected. See ipcs(1) to report on interprocess
communication resources.

TBL_SHMEM_TABLE_USED

On HP-UX, this is the number of shared memory segments currently in use.
On all other Unix systems, this is the number of shared memory segments that have been built. This includes shared
memory segments with no processes attached to them.
A shared memory segment is allocated by a program using the shmget(2) call. Also refer to ipcs(1).
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_TABLE_UTIL

The percentage of configured shared memory segments currently in use.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_TABLE_UTIL_HIGH

The highest percentage of configured shared memory segments that have been in use during any one interval over
the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TBL_SHMEM_USED

The size (in KBs unless otherwise specified) of the shared memory segments.
Additionally, it includes memory segments to which no processes are attached. If a shared memory segment has zero
attachments, the space may not always be allocated in memory. See ipcs(1) to list shared memory segments.
 On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is greater.

TTBIN_TRANS_COUNT
TT_CLIENT_BIN_TRANS_COUNT

The number of completed transactions in this range during the last interval.

TTBIN_TRANS_COUNT_CUM
TT_CLIENT_BIN_TRANS_COUNT_CUM

The number of completed transactions in this range over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TTBIN_UPPER_RANGE

The upper range (transaction time) for this TT bin.
 There are a maximum of nine user-defined transaction response time bins (TTBIN_UPPER_RANGE). The last bin,
which is not specified in the transaction configuration file (ttdconf.mwc on Windows or ttd.conf on UNIX platforms), is
the overflow bin and will always have a value of -2 (overflow). Note that the values specified in the transaction
configuration file cannot exceed 2147483.6, which is the number of seconds in 24.85 days. If the user specifies any
values greater than 2147483.6, the numbers reported for those bins or Service Level Objectives (SLO) will be -2.

TT_ABORT
TT_CLIENT_ABORT

The number of aborted transactions during the last interval for this transaction.

TT_ABORT_CUM
TT_CLIENT_ABORT_CUM

The number of aborted transactions over the cumulative collection time for this transaction.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_ABORT_WALL_TIME
TT_CLIENT_ABORT_WALL_TIME

The total time, in seconds, of all aborted transactions during the last interval for this transaction.

TT_ABORT_WALL_TIME_CUM
TT_CLIENT_ABORT_WALL_TIME_CUM

The total time, in seconds, of all aborted transactions over the cumulative collection time for this transaction class.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_APPNO

The registered ARM Application/User ID for this transaction class.

TT_APP_NAME

The registered ARM Application name.

TT_CLIENT_ADDRESS
TT_INSTANCE_CLIENT_ADDRESS

The correlator address. This is the address where the child transaction originated.

TT_CLIENT_ADDRESS_FORMAT
TT_INSTANCE_CLIENT_ADDRESS_FORMAT

The correlator address format. This shows the protocol family for the client network address. Refer to the ARM API
Guide for the list and description of supported address formats.

TT_CLIENT_CORRELATOR_COUNT

The number of client or child transaction correlators this transaction has started over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_CLIENT_TRAN_ID
TT_INSTANCE_CLIENT_TRAN_ID

A numerical ID that uniquely identifies the transaction class in this correlator.

TT_COUNT
TT_CLIENT_COUNT

The number of completed transactions during the last interval for this transaction.

TT_COUNT_CUM
TT_CLIENT_COUNT_CUM

The number of completed transactions over the cumulative collection time for this transaction.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_FAILED
TT_CLIENT_FAILED

The number of Failed transactions during the last interval for this transaction name.

TT_FAILED_CUM
TT_CLIENT_FAILED_CUM

The number of failed transactions over the cumulative collection time for this transaction name.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_FAILED_WALL_TIME
TT_CLIENT_FAILED_WALL_TIME

The total time, in seconds, of all failed transactions during the last interval for this transaction name.

TT_FAILED_WALL_TIME_CUM
TT_CLIENT_FAILED_WALL_TIME_CUM

The total time, in seconds, of all failed transactions over the cumulative collection time for this transaction name.

 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_INFO

The registered ARM Transaction Information for this transaction.

TT_INPROGRESS_COUNT

The number of transactions in progress (started, but not stopped) at the end of the interval for this transaction class.

TT_INSTANCE_ID

A numerical ID that uniquely identifies this transaction instance at the end of the interval.

TT_INSTANCE_PROC_ID

The ID of the process that started or last updated the transaction instance.

TT_INSTANCE_START_TIME

The time this transaction instance started.

TT_INSTANCE_STOP_TIME

The time this transaction instance stopped. If the transaction instance is currently active, the value returned will be -1.
It will be shown as “na” in Glance and GPM to indicate that the transaction instance did not stop during the interval.

TT_INSTANCE_THREAD_ID

The ID of the kernel thread that started or last updated the transaction instance.

TT_INSTANCE_UPDATE_COUNT

The number of times this transaction instance called update since the start of this transaction instance.

TT_INSTANCE_UPDATE_TIME

The time this transaction instance last called update. If the transaction instance is currently active, the value returned
will be -1. It will be shown as “na” in Glance and GPM to indicate that a call to update did not occur during the interval.

TT_INSTANCE_WALL_TIME

The elapsed time since this transaction instance was started.

TT_INTERVAL
TT_CLIENT_INTERVAL

The amount of time in the collection interval.

TT_INTERVAL_CUM
TT_CLIENT_INTERVAL_CUM

The amount of time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_MEASUREMENT_COUNT

The number of user defined measurements for this transaction class.

TT_NAME

The registered transaction name for this transaction.

TT_SLO_COUNT
TT_CLIENT_SLO_COUNT

The number of completed transactions that violated the defined Service Level Objective (SLO) by exceeding the SLO
threshold time during the interval.

TT_SLO_COUNT_CUM
TT_CLIENT_SLO_COUNT_CUM

The number of completed transactions that violated the defined Service Level Objective by exceeding the SLO
threshold time over the cumulative collection time.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_SLO_PERCENT

The percentage of transactions which violate service level objectives.

TT_SLO_THRESHOLD

The upper range (transaction time) of the Service Level Objective (SLO) threshold value. This value is used to count
the number of transactions that exceed this user-supplied transaction time value.

TT_TRAN_1_MIN_RATE

For this transaction name, the number of completed transactions calculated to a 1 minute rate. For example, if you
completed five of these transactions in a 5 minute window, the rate is one transaction per minute.

TT_TRAN_ID

The registered ARM Transaction ID for this transaction class as returned by arm_getid(). A unique transaction id is
returned for a unique application id (returned by arm_init), tran name, and meta data buffer contents.

TT_UID

The registered ARM Transaction User ID for this transaction name.

TT_UNAME

The registered ARM Transaction User Name for this transaction.
If the arm_init function has NULL for the appl_user_id field, then the user name is blank. Otherwise, if “*” was
specified, then the user name is displayed.
For example, to show the user name for the armsample1 program, use:

appl_id = arm_init(“armsample1”,“*”,0,0,0);

To ignore the user name for the armsample1 program, use:

appl_id = arm_init(“armsample1”,NULL,0,0,0);

TT_UPDATE
TT_CLIENT_UPDATE

The number of updates during the last interval for this transaction class. This count includes update calls for
completed and in progress transactions.

TT_UPDATE_CUM
TT_CLIENT_UPDATE_CUM

The number of updates over the cumulative collection time for this transaction class. This count includes update calls
for completed and in progress transactions.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_USER_MEASUREMENT_AVG
TT_INSTANCE_USER_MEASUREMENT_AVG
TT_CLIENT_USER_MEASUREMENT_AVG

If the measurement type is a numeric or a string, this metric returns “na”.
If the measurement type is a counter, this metric returns the average counter differences of the transaction or
transaction instance during the last interval. The counter value is the difference observed from a counter between the
start and the stop (or last update) of a transaction.
If the measurement type is a gauge, this returns the average of the values passed on any ARM call for the transaction
or transaction instance during the last interval.

TT_USER_MEASUREMENT_MAX
TT_INSTANCE_USER_MEASUREMENT_MAX
TT_CLIENT_USER_MEASUREMENT_MAX

If the measurement type is a numeric or a string, this metric returns “na”.
If the measurement type is a counter, this metric returns the highest measured counter value over the life of the
transaction or transaction instance. The counter value is the difference observed from a counter between the start and
the stop (or last update) of a transaction.
If the measurement type is a gauge, this metric returns the highest value passed on any ARM call over the life of the
transaction or transaction instance.

TT_USER_MEASUREMENT_MIN
TT_INSTANCE_USER_MEASUREMENT_MIN
TT_CLIENT_USER_MEASUREMENT_MIN

If the measurement type is a numeric or a string, this metric returns “na”.
If the measurement type is a counter, this metric returns the lowest measured counter value over the life of the
transaction or transaction instance. The counter value is the difference observed from a counter between the start and
the stop (or last update) of a transaction.
If the measurement type is a gauge, this metric returns the lowest value passed on any ARM call over the life of the
transaction or transaction instance.

TT_USER_MEASUREMENT_NAME
TT_INSTANCE_USER_MEASUREMENT_NAME
TT_CLIENT_USER_MEASUREMENT_NAME

The name of the user defined transactional measurement. The length of the string complies with the ARM 2.0
standard, which is 44 characters long (there are 43 usable characters since this is a NULL terminated character
string).

TT_USER_MEASUREMENT_STRING1024_VALUE
TT_INSTANCE_USER_MEASUREMENT_STRING1024_VALUE
TT_CLIENT_USER_MEASUREMENT_STRING1024_VALUE

The last value of the user defined measurement of type string 1024. This type is not implemented and the value is
always “na”.

TT_USER_MEASUREMENT_STRING32_VALUE
TT_INSTANCE_USER_MEASUREMENT_STRING32_VALUE
TT_CLIENT_USER_MEASUREMENT_STRING32_VALUE

The last value of the user defined measurement of type string 32.

TT_USER_MEASUREMENT_TYPE
TT_INSTANCE_USER_MEASUREMENT_TYPE
TT_CLIENT_USER_MEASUREMENT_TYPE

The type of the user defined transactional measurement.

 1 = ARM_COUNTER32

 2 = ARM_COUNTER64

 3 = ARM_CNTRDIVR32

 4 = ARM_GAUGE32

 5 = ARM_GAUGE64

 6 = ARM_GAUGEDIVR32

 7 = ARM_NUMERICID32

 8 = ARM_NUMERICID64

 9 = ARM_STRING8 (max 8 chars)

 10 = ARM_STRING32 (max 32 chars)

 11 = ARM_STRING1024 (max 1024 char -- not implemented)

TT_USER_MEASUREMENT_VALUE
TT_INSTANCE_USER_MEASUREMENT_VALUE
TT_CLIENT_USER_MEASUREMENT_VALUE

The last value of the user defined measurement of type counter, gauge, numeric ID, or string 8. Both 32 and 64 bit
numeric types are returned as 64 bit values.

TT_WALL_TIME
TT_CLIENT_WALL_TIME

The total time, in seconds, of all transactions completed during the last interval for this transaction.

TT_WALL_TIME_CUM
TT_CLIENT_WALL_TIME_CUM

The total time, in seconds, of all transactions completed over the cumulative collection time for this transaction.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

TT_WALL_TIME_PER_TRAN
TT_CLIENT_WALL_TIME_PER_TRAN

The average transaction time, in seconds, during the last interval for this transaction.

TT_WALL_TIME_PER_TRAN_CUM
TT_CLIENT_WALL_TIME_PER_TRAN_CUM

The average transaction time, in seconds, over the cumulative collection time for this transaction.
 The cumulative collection time is defined from the point in time when either: a) the process (or kernel thread, if HP-
UX) was first started, or b) the performance tool was first started, or c) the cumulative counters were reset (relevant
only to GlancePlus, if available for the given platform), whichever occurred last.

	 About GlancePlus
	 GlancePlus Concepts
	 Managing System Resources
	 CPU Information
	 Memory Information
	 Disk Information
	 Network Information
	 System Information
	 Monitoring Applications
	 Managing Processes
	 Process Reports
	 More Process Reports
	 Monitoring Your System with the Adviser
	 Alarm Concepts
	 Symptom Concepts
	 Configuring GlancePlus
	 Configure Colors
	 Configure Font
	 Configure Measurement
	 Configure Icon
	 Configure Graph Limits
	 Configure Process Filters
	 Rearrange Report Columns
	 Sort Columns
	Guided Tour
	Guided Tour - GlancePlus Main Window
	Guided Tour - CPU Bottleneck, panel 1
	Guided Tour - CPU Bottleneck, panel 2
	Guided Tour - Memory Bottleneck, panel 1
	Guided Tour - Memory Bottleneck, panel 2
	Guided Tour - Configuring GlancePlus
	Guided Tour - Alarms & Symptoms
	Customize GlancePlus Start-Up
	Override Configuration Updates
	Windows List
	 Set GlancePlus Measurements
	 Change Graph Limits
	 Renice a Process
	Reset Cumulative Values
	 Terminate a Process
	Update Metrics

	Change Display Colors
	 Change Font Size
	 Change Graph Icon
	 Change Main Graph Style
	 Rearrange Report Columns
	Sort Report Fields
	Set Filters
	Highlight Metrics
	Modifying Runtime Parameters
	Font Type and Size
	Icon Size
	Column Width
	Resources Table
	Version Window Display Time
	Truncation Rules
	Display Truncated String Data
	Speed Keys
	Defining Applications
	Create a Personal Parm File
	Change the Parm File
	Modify the Parm File
	Parm File Syntax
	System ID
	Log
	Threshold
	Size
	Application
	Application Parameter Rules
	File
	User
	Group
	Or
	Priority
	Application Definition Examples

	cmd
	javaarg
	argv1
	Introduction to the GlancePlus Adviser
	 Alarms and Symptoms
	 What is an Alarm?
	 What is a Symptom?
	Editing Adviser Syntax
	Using the GlancePlus Text Editor
	 Syntax Editing Commands
	Using Your Own Text Editor
	 Print CPU Total Utilization
	Printing CPU Utilization During High CPU Usage
	Sending Email Messages
	Printing Process Information Within a Loop
	Print to a File
	 Adviser Syntax Structure
	 Adviser Syntax Reference
	Syntax Conventions
	Comments
	 Conditions

	Condition Examples
	Constants
	Constant Examples

	 Expressions
	Expression Examples

	Printlist
	Printlist Examples
	 Metric Names in Adviser Syntax
	Variables
	ALARM Statement
	 ALARM Examples
	ALARM Example: Typical ALARM Statement
	ALARM Example: Using COMPOUND Statements
	ALARM Example: Using Multiple Conditions

	Alarm Example: Process Table
	Alarm Example: Swap Space
	Alarm Example: Yellow Alert
	Alarm Example: CPU Problem
	ALERT Statement
	ALERT Example

	ALIAS Statement
	ALIAS Example

	ASSIGNMENT Statement
	ASSIGNMENT Examples

	COMPOUND Statement
	COMPOUND Example

	EXEC Statement
	EXEC Examples

	GPM Statement
	GPM Example

	IF Statement
	IF Example

	LOOP Statement
	LOOP Statement Examples
	APPLICATION LOOP Example
	CPU LOOP Example
	DISK LOOP Example
	FILE SYSTEM LOOP Example
	NFS BY OPERATION LOOP Example
	NETWORK INTERFACE LOOP Example
	PROCESS LOOP Example
	SWAP LOOP Example

	TT LOOP Example
	TTBIN LOOP Example
	TT LOOP ARM Example

	PRINT Statement
	PRINT Example

	SYMPTOM Statement
	SYMPTOM Example

	Symptom Example: Global CPU Bottleneck
	Interval
	GlancePlus Messages
	Adviser Syntax Messages
	General Messages (AS-101 through AS-131)
	Message AS-101
	Message AS-102
	Message AS-103
	Message AS-104
	Message AS-105
	Message AS-106
	Message AS-107
	Message AS-108
	Message AS-110
	Message AS-111
	Message AS-112
	Message AS-113
	Message AS-114
	Message AS-115
	Message AS-116
	Message AS-117
	Message AS-118
	Message AS-119
	Message AS-120
	Message AS-123
	Message AS-124
	Message AS-125
	Message AS-126
	Message AS-127
	Message AS-129
	Message AS-130
	Message AS-131

	Alarm Messages (AS-201 through AS-212)
	Message AS-201
	Message AS-202
	Message AS-203
	Message AS-204
	Message AS-205
	Message AS-206
	Message AS-207
	Message AS-208
	Message AS-209
	Message AS-210
	Message AS-211
	Message AS-212

	Symptom Messages (AS-301 through AS-306)
	Message AS-301
	Message AS-302
	Message AS-303
	Message AS-304
	Message AS-305
	Message AS-306

	Statement Messages (AS-401 through AS-410)
	Message AS-401
	Message AS-402
	Message AS-403
	Message AS-404
	Message AS-405
	Message AS-406
	Message AS-407
	Message AS-409
	Message AS-410

	Action Messages (AS-501 through AS-504)
	Message AS-501
	Message AS-502
	Message AS-504

	Loop Messages (AS-601 through AS-636)
	Message AS-601
	Message AS-602
	Message AS-603
	Message AS-604
	Message AS-605
	Message AS-606
	Message AS-607
	Message AS-608
	Message AS-609
	Message AS-610
	Message AS-611
	Message AS-612

	Message AS-613
	Message AS-614
	Message AS-615
	Message AS-616
	Message AS-617

	Message AS-618
	Message AS-619
	Message AS-620

	Message AS-621
	Message AS-622
	Message AS-623
	Message AS-624
	Message AS-625
	Message AS-626
	Message AS-627
	Message AS-628
	Message AS-629
	Message AS-630
	Message AS-633
	Message AS-634
	Message AS-635
	Message AS-636

	Troubleshooting
	Installation Messages
	Start-up Messages
	Running in Background Mode
	During Initialization Start-up
	Messages Before Connecting to Display
	Messages While Connecting to Display
	Messages After Connecting to Display
	Successful Initialization
	Performance Metrics

