
HP Operations Agent

for the Windows®, Linux, HP-UX, Solaris, and AIX operating systems

Software Version: 11.00
User Guide
Document Release Date: August 2011
Software Release Date: October 2010

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2010 - 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Intel® and Itanium® are trademarks of Intel Corporation in the U.S. and other countries.

Java and Oracle are registered trademarks of Oracle Corporation and/or its affiliates.

Microsoft®, Windows®, Windows® XP and Windows Vista® are U.S. registered trademarks of Microsoft
Corporation.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.
2

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.
3

Support

Visit the HP Software Support Online web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer, you
can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

4

Contents
1 Introduction . 15

Documentation Map. 16
Related Documentation . 17

2 Managing Data Collection. 19

Collection Log Files . 19
logglob . 20
logappl . 20
logproc . 20
logpcmd . 20
logdev. 21
logtran . 21
logls . 21
logindx . 21

 Scope Status . 21
parm File . 21

Modify the parm File . 22
Configuring Data Collection on vMA Nodes. 40
Normalizing CPU Metrics on Hyper-Threading/Simultaneous Multi-Threading-Enabled Systems 42

 Logging Metrics Calculated with the Core-Based Normalization . 42
Stopping and Restarting Data Collection . 43

Stopping Data Collection . 44
Restarting Data Collection. 44
Daylight Savings. 45
Changing System Time Manually . 45

Effective Data Collection Management . 45
Controlling Disk Space Used by Log Files . 45
Data Archiving . 47

3 Working with the HP Operations Agent . 49

Configuring the Monitor Agent . 49
Persistence of Monitored Object. 51

Configuring the Event Interceptor . 51
Configuring the RTMA Component . 52
Configuring the Agent User . 54

Change the Default User on Windows. 55
Change the Default User on UNIX/Linux . 57
Change the Default User for Commands . 58

Configuring viserver for Monitoring vMA Nodes. 59
 5

viserver.properties . 59
VILog4j.xml. 60

Monitoring Applications and Services Logs on Windows . 62
Monitor Applications and Services Event Logs from HPOM for Windows . 62
Monitor Applications and Services Event Logs from HPOM on UNIX/Linux 9.1x. 63
Monitor Applications and Services Event Logs from HPOM for UNIX 8.35. 64

4 Using the Utility Program . 65

Running the Utility Program . 65
Using Interactive Mode . 66

Example of Using Interactive and Batch Mode . 66
Utility Command Line Interface . 67

Example of Using the Command Line Interface. 69
Utility Scan Report Details . 69
Scan Report Information . 70

Initial Values. 70
Initial Parm File Application Definitions . 71
Chronological Detail . 71
Summaries . 73

5 Utility Commands. 77

analyze . 78
checkdef . 79
detail . 80
exit . 81
guide . 81
help . 82
list . 82
logfile . 83
menu . 84
parmfile . 85
quit . 86
resize. 86
 scan . 90
sh. 91
show . 92
start. 93
stop . 94

6 Using the Extract Program . 97

Running the Extract Program. 98
Syntax . 98

Using Interactive Mode . 98
Extract Command Line Interface . 99
Overview of the Export Function . 103

How to Export Data . 103
Sample Export Tasks . 104
6

Export Data Files . 105
Export Template File Syntax . 106
Creating a Custom Graph or Report . 108
Output of Exported Files . 109
Notes on ASCII and Datafile Formats. 110
Notes on Binary Format . 110

7 Extract Commands. 117

application . 121
class. 122
configuration . 123
cpu. 123
disk . 124
exit . 125
export . 125
extract. 127
filesystem . 129
global. 129
guide . 130
help . 131
list . 131
logfile . 132
lvolume . 133
menu . 134
monthly. 135
netif . 137
output . 137
process . 139
quit . 140
report . 140
sh. 141
shift . 141
show . 142
start. 144
stop . 145
transaction . 146
weekdays . 148
weekly . 149
yearly . 151

8 Using the cpsh Program . 153

Using the Interactive Mode . 153
View Real-Time Metrics . 154
Modify a Metric Class . 154
View Metric Help . 155
View Summarized Metric Data . 155
7

9 Performance Alarms . 157

Processing Alarms . 157
Alarm Generator. 157
Sending SNMP Traps to Network Node Manager . 158
Sending Messages to HPOM . 158
Executing Local Actions . 158
Errors in Processing Alarms . 159
Analyzing Historical Data for Alarms . 159

Alarm Definition Components. 161
Alarm Syntax Reference . 162

Conventions. 162
Common Elements . 162
ALARM Statement . 165
ALERT Statement . 169
EXEC Statement. 170
PRINT Statement . 171
IF Statement . 172
LOOP Statement. 173
INCLUDE Statement . 174
USE Statement . 174
VAR Statement . 176
ALIAS Statement . 177
SYMPTOM Statement . 177

Alarm Definition Examples. 179
Customizing Alarm Definitions. 181

10 Adviser for the RTMA Component . 183

Alarms and Symptoms. 183
Working of the Adviser Script . 183
Using Adviser . 184

Run the Adviser Script on Multiple Systems . 184
Adviser Syntax . 185

Syntax Conventions . 185
Comments . 185
Conditions . 185
Constants . 186
Expressions . 186
Metric Names in Adviser Syntax . 186
Printlist . 187
Variables . 188
Adviser Syntax Statements . 188

11 Using the Performance Collection Component on Windows . 215
Data Types and Classes . 216

Summarization Levels . 217
Ranges of Data to Extract or Export. 217
Extracting Log File Data . 218
8

Exporting Log File Data . 219
File Attributes. 220
Export File Templates . 223
Default Export Files . 223

Making a Quick Export Template . 226
Configuring Export Templates . 228
Archiving Log File Data . 231

Archival Periods . 231
Appending Archived Data . 232
Archiving Tips. 232

Analyzing a Log File . 233
Range of Data to be Analyzed . 234
Analysis Report. 234

Scanning a Log File . 235
Resizing a Log File. 237
Configuring User Options . 239
Configuring Collection Parameters. 241
Configuring Alarm Definitions . 244
Configuring Data Sources . 247

Data Sources File Format. 247
Configuring Transactions . 250
Configuring Persistent DSI Collections . 252
Checking Performance Collection Component Status . 255
Building Collections of Performance Counters . 256

Building a Performance Counter Collection . 257
Managing a Performance Counter Collection . 257
Administering ECBM from the Command line. 258

12 Overview of Data Source Integration . 261

How DSI Works . 261
Creating the Class Specification . 262
Collecting and Logging the Data . 262
Using the Data . 263

13 Using Data Source Integration . 265

Planning Data Collection. 265
Defining the Log File Format . 266

How Log Files Are Organized . 266
Creating the Log File Set. 268

Testing the Class Specification File and the Logging Process (Optional) . 268
Logging Data to the Log File Set . 269
Using the Logged Data . 270

14 DSI Class Specification Reference . 271

Class Specifications . 271
Class Specification Syntax . 272
CLASS Description . 273
9

CLASS . 273
LABEL. 274
INDEX BY, MAX INDEXES, AND ROLL BY . 274

Controlling Log File Size . 279
RECORDS PER HOUR . 281
CAPACITY . 282
Metrics Descriptions . 283

METRICS . 283
LABEL. 284
Summarization Method . 285
PRECISION . 285
TYPE TEXT LENGTH . 286

Sample Class Specification . 287

15 DSI Program Reference. 289

sdlcomp Compiler. 290
Compiler Syntax . 290
Sample Compiler Output . 291

Configuration Files . 293
Defining Alarms for DSI Metrics . 293
Alarm Processing . 293

dsilog Logging Process . 294
How dsilog Processes Data. 297
Testing the Logging Process with Sdlgendata . 297

Creating a Format File . 300
Changing a Class Specification . 302
Exporting DSI Data . 303

Example of Using Extract to Export DSI Log File Data . 303
Viewing Data in Performance Manager . 303

Managing Data With sdlutil . 304
Syntax . 304

16 Examples of Data Source Integration . 307

Writing a dsilog Script . 308
Logging vmstat Data . 309

Creating a Class Specification File . 309
Compiling the Class Specification File . 309
Starting the dsilog Logging Process. 310
Accessing the Data . 310

Logging sar Data from One File . 311
Creating a Class Specification File . 311
Compiling the Class Specification File . 313
Starting the DSI Logging Process . 314

Logging sar Data from Several Files . 315
Creating Class Specification Files . 315
Compiling the Class Specification Files . 319
Starting the DSI Logging Process . 320
10

Logging sar Data for Several Options. 321
Logging the Number of System Users . 327

17 Error Message . 329

SDL Error Messages . 329
DSILOG Error Messages . 340
General Error Messages . 343

18 What is Transaction Tracking? . 345

Improving Performance Management . 345
Benefits of Transaction Tracking . 346

Client View of Transaction Times . 346
Transaction Data . 346
Service Level Objectives . 347

A Scenario: Real Time Order Processing . 347
Requirements for Real Time Order Processing. 347
Preparing the Order Processing Application. 348

Monitoring Transaction Data . 348
Guidelines for Using ARM. 349

19 How Transaction Tracking Works . 351

Support of ARM 2.0 . 352
Support of ARM API Calls. 352

arm_complete_transaction Call . 353
Sample ARM-Instrumented Applications . 353
Specifying Application and Transaction Names . 353

Transaction Tracking Daemon (ttd) . 355
ARM API Call Status Returns . 355

Measurement Interface Daemon (midaemon) . 356
Transaction Configuration File (ttd.conf) . 357

Adding New Applications . 357
Adding New Transactions . 357
Changing the Range or SLO Values . 357
Configuration File Keywords . 358
Configuration File Format . 359
Configuration File Examples . 360

Overhead Considerations for Using ARM . 361
Guidelines . 361
Disk I/O Overhead . 362
CPU Overhead . 362
Memory Overhead . 362

20 Getting Started with Transactions. 365
Before you start. 365

Setting Up Transaction Tracking . 365
Defining Service Level Objectives . 366
Modifying the Parm File. 366
Collecting Transaction Data. 367
11

Customizing the Configuration File (optional) . 368
Monitoring Performance Data. 369
Alarms . 370

21 Transaction Tracking Messages . 371

22 Transaction Metrics . 373

23 Transaction Tracking Examples. 375

Pseudocode for Real Time Order Processing . 375
Configuration File Examples. 377

Example 1 (for Order Processing Pseudocode Example) . 377
Example 2 . 377
Example 3 . 377
Example 4 . 378

24 Advanced Features. 379

How Data Types Are Used . 379
User-Defined Metrics . 380
scope Instrumentation . 381

25 Transaction Libraries . 383

ARM Library (libarm) . 383
C Compiler Option Examples by Platform . 388
ARM NOP Library . 390
Using the Java Wrappers . 390

Examples . 390
Setting Up an Application (arm_init) . 390

Setting Up a Transaction (arm_getid) . 390
Setting Up a Transaction With UDMs . 391
Adding the Metrics . 391

Setting Up a Transaction Without UDMs . 392
Setting Up a Transaction Instance . 392
Starting a Transaction Instance (arm_start) . 392

Starting the Transaction Instance Using Correlators . 392
Starting the Transaction Instance Without Using Correlators . 393

Updating Transaction Instance Data . 393
Updating Transaction Instance Data With UDMs . 394
Updating Transaction Instance Data Without UDMs . 394

Providing a Larger Opaque Application Private Buffer . 394
Stopping the Transaction Instance (arm_stop) . 394

Stopping the Transaction Instance With a Metric Update . 394
Stopping the Transaction Instance Without a Metric Update . 395

Using Complete Transaction . 395
Using Complete Transaction With UDMs: . 395
Using Complete Transaction Without UDMs: . 396

Further Documentation. 396
12

26 Logging and Tracing . 397

Logging . 397
Configure the Logging Policy . 398

Tracing . 398
Identify the Application . 398
Set the Tracing Type . 400
Introduction to the Trace Configuration File . 401
Create the Configuration File . 403

Enabling Tracing and Viewing Trace Messages with the Command-Line Tools 408
Enabling Tracing and Viewing Trace Messages with the Tracing GUI . 409

Enable the Tracing Mechanism . 409
View Trace Messages . 410
Filter Traces . 414

27 Troubleshooting Operation . 417

Operations Monitoring Component. 417
Performance Collection Component . 418
RTMA . 419

Index . 421
13

14

1 Introduction
The HP Operations agent helps you monitor a system by collecting metrics that indicate the
health, performance, and availability of essential elements of the system. The embedded data
collector of the HP Operations agent enables you to collect and log performance metrics of
systems in your environment.

The HP Operations agent uses log files to store the collected metrics and provides you with a
mechanism to generate alert messages when the collected metrics do not match with the
preset threshold values. You can view the collected metric data with the help of data analysis
tools like HP Reporter and HP Performance Manager. If you install and configure the agent to
work with an HP Operations Manager (HPOM) management server, you can monitor health
and performance of the agent node centrally from the HPOM console.
15

Documentation Map

The documentation map presents a list of all the major documents for the HP Operations
agent. You can use the map to identify the necessary document when you need assistance.

Figure 1 Documentation Map for the HP Operations Agent
16 Chapter 1

Related Documentation

You can find all the user documentation for the HP Operations agent inside the paperdocs
directory on the product media. To check for recent updates or to verify that you are using the
most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

Table 1 User Documentation for the HP Operations Agent

Document Use Key Topics

Release Notes Refer to this document for
information on the product
version, new features, and
known problems.

• New features
• Enhancements
• Fixes
• Known issues and

limitations

Concepts Guide The Concepts Guide helps
you understand the working
mechanism of the HP
Operations agent in different
environments.

• Introduction to the HP
Operations agent

• Major components of the
HP Operations agent
Introduction 17

Installation Guide With the help of the
Installation Guide, you can
install the HP Operations
agent in the following
environments:
• On an HPOM

management server (for
use in the
HPOM-managed
distributed management
environment)

• On a stand-alone server
(to collect system
performance metric of the
local server for use with
external data analysis
tools like HP Performance
Manager)

• Installing the HP
Operations agent from the
HPOM console

• Manually installing the
HP Operations agent

• Licensing

Deployment Guide Use this guide to deploy the
HP Operations agent in the
monitoring environment
from a central HPOM
management server.

• Setting up a secure
communication channel
between the HPOM
management server and
HP Operations agent.

• Configuring the HP
Operations agent to work
in a high-availability
cluster environment.

• Managing configuration of
the HP Operations agent
remotely from the HPOM
console.

Reference Guide The Reference Guide
presents a complete list of all
commands, processes, and
services available on the HP
Operations agent node.

• Command-line utilities
• Configuration variables

Table 1 User Documentation for the HP Operations Agent

Document Use Key Topics
18 Chapter 1

2 Managing Data Collection
The HP Operations agent provides you with a data collector to collect and log system
performance data of the monitored system. The data collector program—scope—enables you
to store the collected data on the system. You can view and analyze the stored data using HP
Performance Manager or HP Reporter.

The scope collector enables you to perform the following tasks on the system:

• Gather metric data that indicates health and performance of the monitored system

• Log the collected metric data into different log files

The configuration parameter file—the parm file—enables you to configure the default data
logging mechanism of the scope collector. By modifying parameters in the parm file, you can
control the following properties of the scope collector:

• Data logging interval

• Types of data

• Size of log files

After installing the HP Operations agent on the node, you must configure the data collection
mechanism of scope by modifying the parm file.

Collection Log Files

The scope data collector (scopeux on UNIX and Linux nodes; scopent on Windows nodes)
collects and summarizes performance measurements of system-resource utilization and
records the data into the following log files, depending on the data classes specified in the log
line of the parm file:

• logglob

• logappl

• logproc

• logpcmd

• logdev

• logtran

• logls

• logindx

Scope does not log the NFS data, but you can view the NFS data through HP GlancePlus on
the local file system.
 19

logglob

The logglob file contains measurements of system-wide (global) resource utilization
information. The scope collector summarizes the global data and periodically records the data
at intervals specified in the parm file.

logappl

The logappl file contains aggregate measurements of processes that run in applications
defined in the parm file. The scope collector summarizes the application data and periodically
records the data at intervals specified in the parm file.

logproc

The scope collector identifies processes that might be of your interest, and then records the
aggregate measurements of identified processes in the logproc file. Scope identifies
processes for based on the following conditions:

• Beginning of a process

• End of a process

• Configuration details specified in the parm file

logpcmd

The logpcmd file contains the details of command-line activities performed on the processes
that are logged into the logproc file.

The logpcmd file is stored into the following directory on the node:

• On Windows: %ovdatadir%\datafiles

• On UNIX (and Linux): /var/opt/perf/datafiles

The file can store a maximum of 25 MB of data. When the data collection mechanism starts,
the scope collector creates the first instance of the logpcmd file with the extension 0. When
the logpcmd0 file reaches the 25 MB limit, scope creates the second instance of the logpcmd
file—the logpcmd1 file.

If the logpcmd1 file exceeds the 25 MB limit, data starts to roll over from the logpcmd0 file.

The time-stamps of the records in the log files indicate the starting time of data collection.
The concept of interesting processes is a filter that helps minimize the volume of data logged
and is controlled from the parm file.

Scope does not log NFS data but you can view the NFS data through GlancePlus on the local
file system.

You cannot control the size, rollover, and logging interval for the logpcmd file.
20 Chapter 2

logdev

The logdev file contains measurements of individual device performance. The scope collector
summarizes the device data and periodically records the data at intervals specified in the
parm file.

logtran

The logtran file contains measurements of ARM transaction data. The scope collector
summarizes the transaction data and periodically records the data at intervals specified in
the parm file. For more information on collecting transaction data, see What is Transaction
Tracking? on page 345.

logls

The logls file contains information about the logical systems. The scope collector
summarizes the logical system data and periodically records the data at intervals specified in
the parm file.

The logls file is available only on the HP Operations agent for HPVM, Hyper-V Host,
vSphere Management Assistant (vMA), Solaris global zones, and AIX-LPAR.

logindx

The logindx file contains information needed to access data in the other log files.

 Scope Status

In addition to the log files, two other files are created when scope is started. They are the RUN
file that resides in the /var/opt/perf/datafiles/ directory and the status.scope file
that resides in the /var/opt/perf/ directory.

The RUN file is created to indicate that the scope process is running. Removing this file causes
scope to terminate.

The /var/opt/perf/status.scope file serves as a status/error log for the scope process.
New information is appended to this file each time the scope collector is started, stopped, or
when a warning or error is encountered. To view the most recent status and error information
from scope, use the perfstat -t command.

parm File

The parm file is a text file containing the instructions that tell scope to log specific
performance measurements.

During fresh installation, the HP Operations agent places the default parm file into two
different directories:
Managing Data Collection 21

• On Windows:

— %ovinstalldir%\newconfig

— %ovdatadir%

• On HP-UX, Solaris, and Linux:

— /opt/perf/newconfig

— /var/opt/perf

• On AIX:

— /usr/lpp/perf/newconfig

— /var/opt/perf

The data collection mechanism of scope is controlled by the settings in the parm file located
into the %ovdatadir% (for Windows) or /var/opt/perf (for UNIX or Linux) directory.

If you want to modify the default collection mechanism, you must modify the settings in the
parm file that is located into the %ovdatadir% (for Windows) or /var/opt/perf (for UNIX
or Linux) directory.

When you upgrade the HP Operations agent on a node (from an older version of the HP
Performance Agent), the upgrade process updates the copy of the parm file available in the
newconfig directory. The parm file that resides into the other directory remains unaffected
and continues to govern the data collection mechanism on the node. This method, in effect,
enables you to retain the configured data collection mechanism even after upgrade of the
product. You can, any time after the product upgrade, compare the existing configuration
settings of the parm file with the new version of the parm file available in the newconfig
directory, and then make necessary changes.

The parm file is set up to collect an average amount of log file data. The maximum amount
depends on your system. See the description of the parameter size in Parameter Descriptions
on page 26.

Modify the parm File

You can modify the parm file using any word processor or editor that can save a file in the
ASCII format.

When you modify the parm file, or create a new one, the following rules and conventions
apply:

• Any parameter you specify overrides the default values. See the parm file available in the
newconfig directory for the default values.

• The order in which the parameters are specified into the parm file is not important.

• If you specify a parameter more than once, the last instance of the parameter takes effect.

• The file, user, group, cmd, argv1, and or parameters must follow the application
statement that they define.

• Application parameters must be listed in order so that a process will be aggregated into
the application when it is first matched.

• You can use uppercase letters, lowercase letters, or a combination of both for all
commands and parameter statements.

On Windows, the parm file exists with the extension .mwc (parm.mwc).
22 Chapter 2

• You can use blank spaces or commas to separate key words in each statement.

• You can comment parameters in the parm file. Any line starting with a comment code (/*)
or pound sign (#) is ignored.

After modifying the parm file, you must restart the Performance Collection Component
component for the changes to take effect. To restart the Performance Collection Component,
run the following command:

On Windows

%ovinstalldir%bin\ovpacmd REFRESH COL

On HP-UX, Linux, or Solaris

/opt/perf/bin/ovpa -restart scope

On AIX

/usr/lpp/perf/bin/ovpa -restart scope

If you want to use the Real-Time Metric Access (RTMA) component, you must also restart the
perfd process:

On Windows

%ovinstalldir%bin\ovpacmd REFRESH RTMA

On HP-UX, Linux, or Solaris

/opt/perf/bin/pctl restart

On AIX

/usr/lpp/perf/bin/pctl restart

parm File Parameters

Scope is controlled by specific parameters in the collection parameters (parm) file that do the
following:

• Set maximum amount of disk space for the raw scope log files.

• Specify data types to be logged.

• Specify the interval at which data should be logged.

• Specify attributes of processes and metrics to be logged.

• Define types of performance data to be collected and logged.

• Specify the user-definable sets of applications that should be monitored. An application
can be one or more programs that are monitored as a group.

• Specify when scope should perform daily log file maintenance activities so that they do
not impact system availability.

You can modify these parameters to configure scope to log performance data that match the
requirements of the monitored system (see Modify the parm File on page 22).

The parm file parameters listed in Table 2 on page 24 are used by scope. Some of these
parameters are for specific systems as indicated in the table. For detailed descriptions of these
parameters, see Parameter Descriptions on page 26 and Application Definition Parameters on
page 35.
Managing Data Collection 23

Table 2 parm File Parameters Used by scope

Parameter Values or Options

id system ID

log • global

• application [=prm] [=all]
([=prm] on HP-UX only)

• process

• device=disk,lvm,cpu,filesystem,all
(lvm on HP-UX only,)

• transaction=correlator,resource
(resource on HP-UX only)

• logicalsystem
(For Solaris, logical system is supported on Solaris 10
operating environment or later)

In AIX, logical system is supported on LPAR on AIX 5L V5.3
ML3 and later and WPAR on AIX 6.1 TL2 Global environment
only.

For enabling lpar logging,
logicalsystems=lpar
logicalsystems

For enabling wpar logging,
logicalsystems=wpar

For enabling both lpar and wpar logging,
logicalsystems=lpar,wpar
logicalsystems=wpar,lpar
logicalsystems=all

mainttime hh:mm (24-hour time format)

scopetransactions on
off

subprocinterval value in seconds (not on HP-UX)

javaarg

NOTE: Only on UNIX/
Linux.

true
false

procthreshold

(same as threshold)
cpu=percent
disk=rate (not on Linux or Windows)
memory=nn (values in MBs)
nonew
nokilled
shortlived

appthreshold cpu=percent

diskthreshold util=rate
24 Chapter 2

bynetifthreshold iorate=rate

fsthreshold util=rate

lvthreshold iorate=rate

bycputhreshold cpu=percent

wait cpu=percent (HP-UX only)
disk=percent (HP-UX only)
mem=percent (HP-UX only)
sem=percent (HP-UX only)
lan=percent (HP-UX only)

application application name

file file name [, ...]

argv1 first command argument [,]

cmd command line regular expression

user user login name [,]

group groupname [,]

or

priority low value-high value
(range varies by platform)

size (values are in MBs)
process=nn (the maximum value is 4096)

The maximum value for all the below classes is 2048.

global=nn application=nn
device=nn
transaction=nn

logicalsystem=nn

days global=nn (values are in days)
application=nn
process=nn
device=nn
transaction=nn

logicalsystem=nn

maintweekday Sun|Mon|Tue|Wed|Thu|Fri|Sat

collectioninterval process=ss (values in seconds)

global=ss

gapapp blank

unassignedprocesses

existingapplicationname

other

Table 2 parm File Parameters Used by scope (cont’d)

Parameter Values or Options
Managing Data Collection 25

Parameter Descriptions

Following are descriptions of each of the parm file parameters.

• ID

• Log

• Thresholds

• scopetransactions

• subprocinterval

• gapapp

• wait

• Size

• Mainttime

• Days

• Maintweekday

• javaarg

• Flush

• zone_app

• proccmd

Flush ss(values in seconds)

0 (disables data flush)

zone_app true

false

(only on Solaris 10 and above)

proccmd

NOTE: Only on UNIX/
Linux.

0 (disables logging of process commands)

nnnn (refers to the numeric value of the length of a
process command. Maximum value is 1024)

ignore_mt true(CPU metrics of global class report values
normalized against the active number of cores in the
system)

false(CPU metrics of global class report values
normalized against active number of CPU threads in the
system)

ineffective(multithreading is turned off)

NOTE: This parameter has no effect on HP-UX. You must run
the midaemon -ignore_mt command on HP-UX to switch
between the above modes. For more information, see Logging
Metrics Calculated with the Core-Based Normalization on
page 42.

Table 2 parm File Parameters Used by scope (cont’d)

Parameter Values or Options
26 Chapter 2

• ignore_mt

ID

The system ID value is a string of characters that identifies your system. The default ID
assigned is the system’s hostname. If you want to modify the default ID assigned, make sure
all the systems have unique ID strings. This identifier is included in the log files to identify
the system on which the data was collected. You can specify a maximum of 39 characters.

Log

The log parameter specifies data types to be collected by scope.

• log global enables scope to record global records to the logglob file. You must have
global data records to view and analyze performance data on your system. Global metrics
are not affected by logging options or values of application or process data.

• log application enables scope to record active application records to the logappl file.
By default, scope logs only the applications that have active processes during an interval.

— log application=all in the parm file enables scope to log all applications to the
logappl file at every interval, regardless of whether the applications are active or
not.

The application=all option may be desirable in specific circumstances in relation to
the use of application alarms. For example, you can generate alarm when an
application becomes inactive (APP_ALIVE_PROC).

If you enable this option, the log file logappl grows in size at a faster rate since all
applications are logged at every interval. You can use the utility program’s scan
function to monitor the utilization of the scope log files.

— On HP-UX only, you can specify the parameter log application=prm to enable
scope to record active Process Resource Manager (PRM) groups to the logappl file. If
you specify this parameter, scope will not record user-defined application sets listed
in the parm file. In addition, all application metrics collected will reflect a PRM context
and will be grouped by the APP_NAME_PRM_GROUPNAME metric.

Application logging options do not affect global or process data.

• log process enables scope to record information about interesting processes to the
logproc file. A process may become interesting when it is first created, when it ends, and
when it exceeds a threshold specified in the parm file for an application. Process threshold
logging options have no effect on global or application data.

• log device=disk,lvm, cpu, filesystem enables scope to record information about
individual disks, logical volumes (HP-UX only), CPUs, and file systems to the logdev file.

By default, only disks, volumes, and interfaces that had I/O generated through them
during an interval are logged. netif (logical LAN device) records and disk records (on
HP-UX) are always logged regardless of the selected log device options.

For example, to request logging of records for individual disks, logical volumes, CPUs,
network interfaces, but not individual file systems, use the following setting:

 log device=disk,lvm,cpu.

— When filesystem is specified, all mounted local file systems are logged at every
interval, regardless of the activity.

Do not use lvm if the monitored system does not run with the HP-UX operating
system.
Managing Data Collection 27

— log device=all in the parm file enables scope to log all disk, logical volume, CPU,
and network interface devices to the logdev file at every interval, regardless of
whether the devices are active or not.

If you enable this option, the logdev file grows in size at a faster rate since all devices
are logged at every interval. Use the utility program’s scan function to monitor log
file utilization and sizing.

• log transaction enables scope to record ARM transaction records to the logtran file.
To enable scope to collect data, a process that is instrumented with the Application
Response Measurement (ARM) API must be running on your system. (For more
information, see What is Transaction Tracking? on page 345.)

The default values for the log transaction parameter are no resource and no
correlator.

To enable resource data collection (HP-UX only) or correlator data collection, specify log
transaction=resource or log transaction=correlator. Both can be logged by
specifying log transaction=resource, correlator.

• log logicalsystems enables scope to record information about the logical systems to
the logls file. Data for logical systems is summarized periodically at intervals specified
in the parm file.

On AIX 6.1 TL2, BYLS logging for LPAR and WPAR can be configured by using the
logicalsystems parameter in the parm file. See Table 2 on page 24.

The log files are created automatically irrespective of logging options. If a particular type of
logging is disabled, the corresponding log file will not removed automatically from the
monitored system.

If you specify log without options, scope logs only the global and process data.

Thresholds

The threshold parameters enable scope to record only critical information into the log files
and filter out unnecessary, non-critical details of the system.

The following parameters specify the thresholds for different classes of metrics. When the
threshold value specified is exceeded for a particular instance of a class of data, a record for
that instance is logged by scope.

You can specify lower values for the threshold, to enable scope to log more data or you can
specify higher values for the threshold, to enable scope to log lesser data so that you have
fewer records logged on average. Listed below are the threshold parameter available:

• Procthreshold

• appthreshold

• diskthreshold

• bynetifthreshold

• fsthreshold

• lvthreshold

• bycputhreshold
28 Chapter 2

Procthreshold

The procthreshold parameter is used to set activity levels to specify criteria for interesting
processes. To use this parameter, you must enable process logging. procthreshold affects
only processes that are logged and do not affect other classes of data.

You must specify threshold options on the same parameter line (separated by commas).

procthreshold Options for Process Data
cpu Sets the percentage of CPU utilization that a process must exceed to

become “interesting” and be logged.
The value percent is a real number indicating overall CPU use. For
example, cpu=7.5 indicates that a process is logged if it exceeds 7.5 percent
of CPU utilization in a 1-minute sample.

disk (Not available on Linux or Windows.) Sets the rate of physical disk I/O per
second that a process must exceed to become “interesting” and be logged.
The value is a real number. For example, disk=8.0 indicates that a process
will be logged if the average physical disk I/O rate exceeds 8 KBs per
second.

memory Sets the memory threshold that a process must exceed to become
“interesting” and be logged.
The value is in megabyte units and is accurate to the nearest 100 KB. If set,
the memory threshold is compared with the value of the PROC_MEM_VIRT
metric. Each process that exceeds the memory threshold will be logged,
similarly to the disk and CPU process logging thresholds.

nonew Disables logging of new processes if they have not exceeded any threshold.
If not specified, all new processes are logged. On HP-UX, if shortlived is
not specified, then only new processes that lasted more than one second are
logged.

nokilled Disables logging of exited processes if they did not exceed any threshold. If
not specified, all killed (exited) processes are logged. On HP-UX, if
shortlived is not specified, then only killed processes greater than one
second are logged.

shortlived Enables logging of processes that ran for less than one second in an
interval. (This often significantly increases the number of processes logged.)
If scope finds threshold shortlived in the parm file, it logs shortlived
processes, regardless of the cpu or disk threshold, as long as the nonew
and nokilled options are removed. The default is no shortlived processes
will be logged. (Do not specify shortlived in the threshold parameter if
you do not want shortlived processes logged.)

process procthreshold specifies the thresholds for the PROCESS class. The
default values are as follows:
• Processes that used more than 10% of a processor's worth of cpu during

the last interval
• Processes had a virtual memory set size over 900 MB
• Processes had an average physical disk I/O rate greater than 5 KB per

second
Managing Data Collection 29

appthreshold

The appthreshold parameter is used to specify threshold values for the APPLICATION data
class (APP_CPU_TOTAL_UTIL metric). The threshold criteria is based on the percentage of
CPU utilization that an application must exceed for the application to be recorded in the log
files.

The default setting in the parm file enables scope to record applications that use more than
0% of CPU.

diskthreshold

The diskthreshold parameter is used to specify the threshold values for DISK class. The
threshold criteria for DISK class is based on the percentage of time duration, a disk performs
I/Os (BYDSK_UTIL metric).

The default setting in the parm file enables scope to record the details of disks that are busy
performing I/Os for more than 10% of the time duration.

bynetifthreshold

The bynetifthreshold parameter specifies the thresholds for the NETIF class. Netif data
class threshold criteria is based on the number of packets transferred by the network
interface per second (BYNETIF_PACKET_RATE metric).

The default setting in the parm file enables scope to record the details of network interfaces
that transfer more than 60 packets per second. If the value for this parameter is not specified
or if the parameter is commented out, scope logs the details of all the network interfaces that
are not idle.

fsthreshold

The fsthreshold parameter specifies the thresholds for FILESYSTEM class. The file system
data class threshold criteria is based on the percentage of disk space utilized by the
filesystems (FS_SPACE_UTIL metric).

The default setting in the parm file enables scope to record the details of filesystems that
utilize more than 70% of disk space.

lvthreshold

The lvthreshold specifies the thresholds for the LOGICALVOLUME class. Logical volume data
class threshold values are based on I/Os per second (LV_READ_RATE + LV_WRITE_RATE).

The default setting in the parm file enables scope to record the details of logical volumes that
have more than 35 I/Os per second.

bycputhreshold

The bycputhreshold parameter specifies the thresholds for CPU class. CPU data class
thresholds criteria is based on percentage of time the cpu was busy (BYCPU_CPU_TOTAL_UTIL).

The default setting in the parm file enables scope to record the details of CPUs that are busy
more than 90% of the time.

scopetransactions

The scope collector itself is instrumented with ARM (Application Response Measurement)
API calls to log its own transactions. The scopetransactions flag determines whether or not
scope transactions will be logged. The default is scopetransactions=on; scope will log two
transactions: Scope_Get_Process_Metrics and Scope_Get_Global_Metrics. If you do not
30 Chapter 2

want these scope transactions to be logged, specify scopetransactions=off. A third
transaction, Scope_Log_Headers, will always be logged; it is not affected by
scopetransactions=off.

For more information about ARM, see What is Transaction Tracking? on page 345.

subprocinterval

The subprocinterval parameter, if specified, overrides the default that scope uses to sample
process data. Process data and global data are logged periodically at intervals specified in the
parm file. However, scope probes its instrumentation every few seconds to catch short-term
activities. This instrumentation sampling interval is 5 seconds by default. The process data
logging interval must be an even multiple of the subprocinterval. For more information, see
Configure Data Logging Intervals on page 39.

On some systems with thousands of active threads or processes, the subprocinterval should
be made longer to reduce overall scope overhead. On other systems with many short-lived
processes that you may wish to log, setting the subprocinterval lower could be considered,
although the effect on scope overhead should be monitored closely in this case. This setting
must take values that are factors of the process logging interval as specified in the parm file.

gapapp

The gapapp parameter in the parm file controls the modification of application class of data to
account for any difference between the global (system-wide) data and the sum of application
data.

Application data is derived from process-level instrumentation. Typically there is difference
between the global metrics and the sum of applications. In systems which have high process
creation rates the difference will be significant. You can choose from the following options:

• If gapapp is blank, an application named gapapp will be added to the application list.

• If gapapp = UnassignedProcesses, an application by the name UnassignedProcesses
will be added to the application list.

• If gapapp = ExistingApplicationName (or) gapapp = other, The difference to the
global values will be added to the specified application instead of being logged separately
and adding a new entry to the application list.

wait

You can use the wait parameter (HP-UX only) to capture details of processes which wait for
system resources. You can specify the value of the wait parameter in percentage. When a
process waits for system resources: cpu, disk, mem, sem, and lan for a percentage of
interval greater than the value specified for the wait parameter then the details of that
process are logged in the logproc file.

See parm File Parameters Used by scope for values and options.

For example, if process logging interval is defined as 60 seconds and the wait parameter for
the CPU is set to 50%, any process waiting for CPU for more than or equal to 30 seconds is
captured in the logproc file.

Lower values for the subprocinterval will decrease the gap between global metrics and the
sum of applications on all operating systems other than HP-UX.
Managing Data Collection 31

Size

The size parameter is used to set the maximum size (in megabytes) of any raw log file. You
cannot set the size to be less than one megabyte.

The scope collector reads these specifications when it is initiated. If any of these log files
achieve their maximum size during collection, they will continue to grow until mainttime,
when they will be rolled back automatically. During a roll back, the oldest 25 percent of the
data is removed from the log file. Raw log files are designed to only hold a maximum of one
year's worth of data if not limited by the size parameter. See Log File Contents Summary on
page 75 and Log File Empty Space Summary on page 76 in the Utility Scan Report Details
section in Chapter 3.

If the size specification in the parm file is changed, scope detects it during startup. If the
maximum log file size is decreased to the point where existing data does not fit, an automatic
resize will take place during the scope startup. If the existing data fits within the new
maximum size specified, no action is taken.

The resize command creates the new file scopelog in the directory set by TMPDIR
environment variable before deleting the original log file. See How to Use It.

Any changes you make to the maximum size of a log file take effect at the time specified in the
mainttime parameter.

Mainttime

Log files are rolled back if necessary by scope only at a specific time each day. The default
time can be changed using the mainttime parameter. For example, setting
mainttime=8:30, causes log file maintenance to be done at 8:30 am each day.

We suggest setting mainttime to a time when the system is at its lowest utilization.

Days

The days parameter specifies the maximum number of days of data, any raw data log file can
store at a given point of time. The value for this parameter must be in the range of 1 to 365.
This parameter enables scope data collector to maintain log files.

During data collection, if the number of days of data in the log file reaches the days specified
in the days parameter, data collection will continue till the day specified in the maintweekday
parameter is met. Once maintweekday is reached, the log file will be rolled back automatically
at maintime. During the roll back, data collected after days parameter reached its maximum
value will be removed from the log file.

Regardless of the size parameters, the maximum size of the scope log files
will be limited also by the amount of data stored over one year. Raw scope log
files cannot contain more than one year of data, so if logs extend back that
long, the data older than one year will be overwritten. See extract on page 127
for information about how to create archival log files if more than a year of
data is desired.

Log file maintenance only rolls out data older than one day, so if a log file such as logproc
grows very quickly and reaches its limit within 24 hours, its size can exceed the configured
size limit.

When the log files are rolled back during data collection, if the value specified in the size
parameter is reached on a specific day before the days parameter, then the size parameter
overrides the days parameter.
32 Chapter 2

Example, if "size global=20" and "days global=40" is used in parm file, and if the log files
reaches maximum size 20 MB before 40 days of data being logged in log file, then the log file
roll back is done based on the size parameter.

Maintweekday

The maintweekday parameter specifies the day of the week when the log file roll back
happens if the days parameter is met. The roll back will happen at maintime.

Example, if “maintweekday=Mon” is used in parm file, the log file roll back is done once the
value specified in the days parameter is met on “Monday” at maintime. It is recommended
that the value for maintweekday should be set to a day in the week when the system
utilization is low.

Example, if “daysglobal=30”, “application=20”, “process=30”, “device=20”,
“transaction=10”, “maintweekday=Wed” and if the log file reaches the number of days
specified in the days parameter, data collection will continue till the day specified in the
maintweekday. Once maintweekday is reached, log file roll back will happen removing the
exceeded number of days of data from the start of the log file. This maintenance will be done
at maintime.

javaarg

The javaarg parameter is a flag that can be set to true or false. It ONLY affects the value of
the proc_proc_argv1 metric.

When javaarg is set to false or is not defined in the parm file, the proc_proc_argv1 metric
is always set to the value of the first argument in the command string for the process.

When javaarg is set to true, the proc_proc_argv1 metric is overridden, for Java processes
only, with the class or jar specification if that can be found in the command string. In other
words, for processes whose file names are java or jre, the proc_proc_argv1 metric is
overridden with the first argument without a leading dash not following a -classpath or a
-cp, assuming the data can be found in the argument list provided by the OS.

While this sounds complex, it is very plain when you have Java processes running on your
system: set javaarg=true and the proc_proc_argv1 metric is logged with the class or jar
name. This can be very useful if you want to define applications specific to Java. When the
class name is in proc_proc_argv1, then you can use the argv1= application qualifier to
define your application by class name.

Flush

The flush parameter specifies the data logging intervals (in seconds) at which all instances of
application and device data will be logged. The flush intervals must be in the range 300-32700
and be an even multiple of 300.

The default value of flush interval is 3600 seconds for all instances of application and device
data.

The maintweekday parameter is an optional parameter. If maintweekday parameter is
specified in the parm file, it should be used along with the days parameter. This parameter
will not be considered, if it is not used with days parameter in the parm file. If maintweekday
is not specified in the parm file though days parameter is specified, then the default value is
“maintweekday=Sun”.

This parameter is valid only on UNIX/Linux.
Managing Data Collection 33

You can disable the flush parameter by specifying the value as 0 (zero). If the flush
parameter is set to 0, scope will not log application and the device data which does not meet
the thresholds specified in the parm file.

zone_app

The zone_app flag allows Performance Collection Component to collect Solaris zones specific
data. The zone_app flag, when set to true, will affect the collection of all application class
(APP_*) metrics. All the user-defined application sets listed in parm file will be ignored and
the application metrics will be collected based on zones running on the Performance
Collection Component installed machines.

For example, consider a Solaris machine running with two non-global zones: “zone1” and
“zone2”. Performance Collection Component will ignore parm file application sets and will
create three applications, named "global", "zone1", and "zone2". The performance
measurement for each application will be based on the measurement values obtained from the
processes running under respective zones. Example, APP_CPU_TOTAL_UTIL metric for zone
"zone1" will be calculated based on the cpu utilization values for all the processes running in
zone1.

When zone_app flag is not enabled or when Performance Collection Component is running on
Solaris 9 or lower version, APP_LS_ID metric will report a Not Available (na) value.
Application grouping will be done based on the user-defined application sets listed in parm
file.

proccmd

The proccmd parameter enables logging of process commands into HP Operations agent data
store. You can specify the length of the process command as a numeric value in this
parameter. The maximum numeric value is 1024. By default, the value for this parameter is
set to 0 and the logging of process commands is disabled.

ignore_mt

If you set this parameter to true, the Performance Collection Component logs all the
CPU-related metrics of the Global class after normalizing the metric values against the
number of active cores on the monitored system.

When this parameter is set to false, the Performance Collection Component logs all the
CPU-related metrics of the Global class after normalizing the metric values against the
number of threads on the monitored system.

This parameter has no effect on HP-UX. You must run the midaemon -ignore_mt command
on HP-UX to switch between the above modes. For more information, see Logging Metrics
Calculated with the Core-Based Normalization on page 42.

The Performance Collection Component ignores this parameter if the multithreading property
is disabled on the system. As a result, the value of the GBL_IGNORE_MT metric is logged as
true.

Zones are supported only on Solaris 10 and above versions.

This parameter is valid only on UNIX/Linux.

If you enable or disable Simultaneous Multi-Threading (SMT) on a Windows, Linux, or
Solaris system, you must restart the system.
34 Chapter 2

Application Definition Parameters

The following parameters pertain to application definitions: application, file, user, group,
cmd, argv1, and or.

The Performance Collection Component groups logically related processes together into an
application to log the combined effect of the processes on computing resources such as memory
and CPU.

An application can be a list of files (base program names), a list of commands, or a
combination of these also qualified by user names, group names, or argument selections. All
these application qualifiers can be used individually or in conjunction with each other. If, for
example, cmd and user qualifiers are both used then a process must meet the specification of
both the command string and the user name in order to belong to that application. Each
qualifier is discussed in detail below.

Application

The application name defines an application or class that groups together multiple processes
and reports on their combined activities.

• The application name is a string of up to 19 characters used to identify the application.

• Application names can be lowercase or uppercase and can contain letters, numbers,
underscores, and embedded blanks. Do not use the same application name more than once
in the parm file.

• An equal sign (=) is optional between the application keyword and the application name.

• The application parameter must precede any combination of file, user, group, cmd,
argv1, and or parameters that refer to it, with all such parameters applying against the
last application workload definition.

• Each parameter can be up to 170 characters long including the carriage return character,
with no continuation characters permitted. If your list of files is longer than 170
characters, continue the list on the next line after another file, user, group, cmd or
argv1 statement.

• You can define up to 998 applications. Performance Collection Component predefines an
application named other. The other application collects all processes not captured by
application statements in the parm file.

For example:

application Prog_Dev
file vi,cc,ccom,pc,pascomp,dbx,xdb

application xyz
file xyz*,startxyz

You can have a maximum of 4096 file, user, group, argv1, and cmd specifications for all
applications combined. The previous example includes nine file specifications. (xyz*
counts as only one specification even though it can match more than one program file.)

If a program file is included in more than one application, it is logged in the first
application that contains it.

In PRM mode (for HP-UX only), active PRM groups are logged and the user-defined
application sets listed in the parm file are ignored.

Any process on the system belongs to only one application. No process is counted into two or
more applications.
Managing Data Collection 35

The default parm file contains some sample applications that you can modify. The
examples directory also contains other samples (in a file called parm_apps) you can copy
into your parm file and modify as needed.

File

The file parameter specifies the program files that belong to an application. All interactive
or background executions of these programs are included. It applies to the last application
statement issued. An error is generated if no application statement is found.

The file name can be any of the following:

• A single UNIX program file such as vi.

• A group of UNIX program files (indicated with a wild card) such as xyz*. In this case, any
program name that starts with the letters xyz is included. A file specification with wild
cards counts as only one specification toward the maximum allowed.

The name in the file parameter is limited to 15 characters in length. An equal sign (=) is
optional between the file parameter and the file name.

You can enter multiple file names on the same parameter line (separated by commas) or in
separate file statements. File names cannot be qualified by a path name. The file
specifications are compared to the specific metric PROC_PROC_NAME, which is set to a process’s
argv[0] value (typically its base name). For example:

application = prog_dev
file = vi,vim,gvim,make,gmake,lint*,cc*,gcc,ccom*,cfront
file = cpp*,CC,cpass*,c++*
file = xdb*,adb,pxdb*,dbx,xlC,ld,as,gprof,lex,yacc,are,nm,gencat
file = javac,java,jre,aCC,ctcom*,awk,gawk

application Mail
file = sendmail,mail*,*mail,elm,xmh

If you do not specify a file parameter, all programs that satisfy the other parameters qualify.

argv1

The argv1 parameter specifies the processes that are selected for the application by the value
of the PROC_PROC_ARGV1 metric. This is normally the first argument of the command line,
except when javaarg=true, when this is the class or jar name for Java processes. This
parameter uses the same pattern matching syntax used by parm parameters like file= and
user=. Each selection criteria can have asterisks as a wildcard match character, and you can
have more than one selection on one line separated by commas.

For example, the following application definition buckets all processes whose first argument
in the command line is either -title, -fn, or -display:

application = xapps
argv1 = -title,-fn,-display

The following application definition buckets a specific Java application (when javaarg=true):

application = JavaCollector
argv1 = com.*Collector

The following shows how the argv1 parameter can be combined with the file parameter:

The asterisk (*) is the only wild card character supported for parm file application qualifiers
except for the cmd qualifier (see below).
36 Chapter 2

application = sun-java
file = java
argv1 = com.sun*

cmd

The cmd parameter specifies processes for inclusion in an application by their command
strings, which consists of the program executed and its arguments (parameters). Unlike other
selection parameters, this parameter allows extensive use of wildcard characters besides the
use of the asterisk character.

Similar to regular expressions, extensive pattern matching is allowed. For a complete
description of the pattern criteria, see the UNIX man page for fnmatch. Unlike other
parameters, you can have only one selection per line, however you can have multiple lines.

The following shows use of the cmd parameter:

application = newbie
cmd = *java *[Hh]ello[Ww]orld*

User

The user parameter specifies which users (login names) belong to the application. The format
is as below:

application <application_name>

file <file_name>

user [<Domain_Name>]\<User_Name

The domain name in the user parameter is optional. You must specify the domain name to
specify the user names of a non-local system.

For example:

application test_app

file test

user TestDomain\TestUser

If you specify the user name without the domain name in the user parameter, the user names
will be considered to be the user names of the local system.

For example:

application Prog_Dev

file vi,xb,abb,ld,lint

user ted,rebecca,test*

You can only use the wild card asterisk (*) to ensure the user names with a similar string of
characters prefixed before the asterisk (*) and suffixed after the asterisk (*) belong to the
application.If you do not specify a user parameter, all programs that satisfy the other
parameters qualify.

The name in the user parameter is limited to 15 characters in length.

Group

The group parameter specifies which user group names belong to an application.

For example:
Managing Data Collection 37

application Prog_Dev_Group2
file vi,xb,abb,ld,lint
user ted,rebecca,test*
group lab, test

If you do not specify a group parameter, all programs that satisfy the other parameters
qualify.

The name in the group parameter is limited to 15 characters in length.

Or

Use the or parameter to allow more than one application definition to apply to the same
application. Within a single application definition, a process must match at least one of each
category of parameters. Parameters separated by the or parameter are treated as
independent definitions. If a process matches the conditions for any definition, it will belong
to the application.

For example:

application = Prog_Dev_Group2
user julie
or
user mark
file vi, store, dmp

This defines the application (Prog_Dev_Group2) that consists of any programs run by the user
julie plus other programs (vi, store, dmp) if they are executed by the user mark.

Priority

You can restrict processes in an application to those belonging to a specified range by
specifying values in the priority parameter.

For example:

application = swapping
priority 128-131

Processes can range in priority from -511 to 255, depending on which platform Performance
Collection Component is running. The priority can be changed over the life of a process. The
scheduler adjusts the priority of time-share processes. You can also change priorities
programmatically or while executing.

Application Definition Examples

The following examples show application definitions.

application firstthreesvrs
cmd = *appserver* *-option[123]*
application oursvrs
cmd = *appserver*
user = xyz,abc

application othersvrs

The parm file is processed in the order entered and the first match of the qualifier will define
the application to which a particular process belongs. Therefore, it is normal to have more
specific application definitions prior to more general definitions.
38 Chapter 2

cmd = *appserver*
cmd = *appsvr*
or
argv1 = -xyz

The following is an example of how several of the programs would be logged using the
preceding parm file.

Configure Data Logging Intervals

The default collection intervals used by scope are 60 seconds for process data and 300 seconds
for global and all other classes of data. You can override this using the collectioninterval
parameter in the parm file. The values must satisfy the following conditions:

• The collection intervals for process data can be configured between 5 to 60 seconds in
steps of 5 seconds. The collection intervals for process data must be a multiple of the
subproc interval (see subprocinterval) and it must divide evenly into the global collection
interval.

• The collection interval for global data can be configured to one of the following values: 15,
30, 60 and 300 seconds. The global collection interval must be greater than or equal to
process interval, and a multiple of the process collection interval. The global collection
interval applies to the global metrics and all non-process metric classes such as filesystem
and application.

Example 1:

collectioninterval process=15, global=30
subprocinterval = 5

In this example, the collection interval for process data is set to 15 seconds, global and all
other classes of data to 30 seconds, and subprocinterval to 5 seconds:

The collection interval for process data is,

• is a valid value (this value is a multiple of 5)

• is a multiple of subprocinterval, 5 seconds (15%5 = 0)

• divides evenly into collection interval for global data, 30 seconds (30%15 = 0)

The collection interval for global data is,

Command String User Login Application

/opt/local/bin/appserver -xyz
-option1

xyz firstthreesvrs

./appserver -option5 root othersvrs

./appserver -xyz -option2 -abc root firstthreesvrs

./appsvr -xyz -option2 -abc xyz othersvrs

./appclient -abc root other

./appserver -mno -option4 xyz oursvrs

appserver -option3 -jkl xyz firstthreesvrs

/tmp/bleh -xyz -option1 xyz othersvrs
Managing Data Collection 39

• is a valid value (this value can be 15, 30, 60 or 300)

• is a multiple of process interval 15 seconds (30%15 = 0)

Hence these values for the collection intervals are valid.

Example 2:

collectioninterval process=15, global=30
subprocinterval = 10

In this example, the collection interval for process data is set to 15 seconds, global and all
other classes of data to 30 seconds, and subprocinterval to 10 seconds:

The collection interval for process data is

• is a valid value (this value is a multiple of 5)

• is NOT a multiple of subprocinterval 10 seconds (15%10 != 0)

• divides evenly into global collection interval 30 seconds (30%15 = 0)

The collection interval for global data is 30 seconds

• is a valid value (this value can be 15, 30, 60 or 300)

• is a multiple of process interval 15 seconds (30%15 = 0)

Hence these values for the collection intervals are invalid.

Configuring Data Collection on vMA Nodes

The HP Operations agent uses the viserver daemon to log data on the vMA system. You can
configure viserver settings in the following configuration files (available in /var/opt/
perf):

• viserver.properties

• VILog4j.xml

viserver.properties

The properties of viserver are specified in the viserver.properties file. This file
contains the following parameters:

• port

The port parameter is the loopback port through which viserver and clients communicate.
The port details is non-editable and it changes every time you restart viserver.

• hosts

The hosts parameter defines the number of hosts that viserver can support. The default
value is 20.

Note that if you have more hosts in your environment, you can edit this parameter to
specify your required settings. If the HP Operations agent is not able to collect data for
the number of hosts that you specified, you need to reduce the entries in vifp targets.

For Performance Collection Component on VMware ESX Server, the logging interval for
global data and all other classes of data other than process data, can be configured to 60 or
300 seconds.
40 Chapter 2

• instance

The instance parameter defines the number of instances viserver can support. The default
value is 200.

Note that if you have more instances in your environment, you can edit this parameter to
specify your required settings. If the HP Operations agent is not able to collect data for
the number of instances that you specified, you need to reduce the entries in vifp targets.

• jvmArgs

The jvmArgs parameter allows you to add jvm arguments and modify jvm as required in
your environment. The default configuration for jvmArgs is as follows:

jvmArgs=-Xms256m -Xmx512m -classpath /opt/perf/bin/java/activation.jar:/
opt/perf/bin/java/axis-ant.jar:/opt/perf/bin/java/axis.jar:/opt/perf/bin/
java/commons-discovery-0.2.jar:/opt/perf/bin/java/
commons-logging-1.0.4.jar:/opt/perf/bin/java/jaxrpc.jar:/opt/perf/bin/
java/log4j-1.2.8.jar:/opt/perf/bin/java/mailapi.jar:/opt/perf/bin/java/
saaj.jar:/opt/perf/bin/java/vifplib25.jar:/opt/perf/bin/java/vim25.jar:/
opt/perf/bin/java/viserver.jar:/opt/perf/bin/java/wsdl4j-1.5.1.jar
com.hp.perfagent.

You can add or remove the configuration settings as required.

• log4jInterval

The log4jInterval parameter specifies the interval at which viserver checks for
changes in VILog4j.xml file. The default value is 60000 milliseconds (1 minute). You can
modify this value as required.
Managing Data Collection 41

Normalizing CPU Metrics on Hyper-Threading/Simultaneous
Multi-Threading-Enabled Systems

On a system where hyper-threading/simultaneous multi-threading (HT/SMT) is enabled, the
physical CPU supports two or more hardware threads. As a result, multiple software
processes or threads can run on the hardware threads simultaneously. On a system with a
multi-core processor, multiple threads can run simultaneously on individual cores.

The Performance Collection Component provides you with several CPU-related metrics,
which help you analyze and understand the CPU utilization of the monitored system. By
default, on all HT/SMT-enabled systems, the Performance Collection Component calculates
the values of all CPU-related metrics by normalizing the gathered data against the number of
available threads on the monitored system. When a single thread completely utilizes the
entire CPU core, values calculated using the thread-based normalization do not always
represent the true picture of the CPU utilization.

This version of the HP Operations agent introduces a new configuration parameter,
ignore_mt, which enables you to configure the Performance Collection Component to log the
CPU-related data that has been calculated using the core-based normalization. Metric
values that are calculated with the core-based normalization present a more accurate status
of the CPU utilization, and therefore, help you make more effective decisions while analyzing
the system's performance.

 Logging Metrics Calculated with the Core-Based Normalization

On HP-UX, you can configure the Performance Collection Component to log all CPU-related
metrics with core-based normalization. On other platforms, you can configure the
Performance Collection Component to calculate the CPU-related metrics of the GLOBAL class
using the core-based normalization before logging.

To configure the Performance Collection Component to use the core-based normalization for
CPU-related metrics, follow these steps:

On HP-UX

1 Log on to the system with the root privileges.

2 Configure the parm file based on your requirement. Do not set the ignore_mt flag in the
parm file.

3 Define alarm rules as necessary.

4 Run the following command:

/opt/perf/bin/midaemon –ignore_mt

5 Start the HP Operations agent by running the following command:

/opt/OV/bin/opcagt –start

The Performance Collection Component starts logging all CPU-related metrics (for all
classes) using the core-based normalization.

The value of the ignore_mt flag in the parm file on HP-UX has no effect on the
operation of the Performance Collection Component.
42 Chapter 2

If you restart the HP Operations agent, the Performance Collection Component starts
logging the CPU data with the thread-based normalization again and you must configure
the Performance Collection Component once again by using the above steps. To enable the
agent to always use the core-based normalization, follow these steps:

a On the agent node, go to the following location:

/var/opt/perf

b Open the following file with a text editor:

vppa.env

c Set the MIPARMS parameter to ignore_mt.

d Save the file.

e Restart the agent by running the following command:

/opt/OV/bin/opcagt –start

On other platforms

1 Log on to the system with the root or administrative privileges.

2 Configure the parm file based on your requirement. Set the ignore_mt flag in the parm
file to true.

3 Define alarm rules as necessary.

4 Start the HP Operations agent using the following command:

On Windows

%ovinstalldir%bin\opcagt -start

On HP-UX, Linux, or Solaris

/opt/OV/bin/opcagt -start

On AIX

/usr/lpp/OV/bin/opcagt -start

The Performance Collection Component starts logging CPU-related metrics for the
GLOBAL class using the core-based normalization.

Stopping and Restarting Data Collection

The scope collector and the other associated processes are designed to run continuously. The
only time you should stop them are when any of the following occurs:

• You are updating Performance Collection Component software to a new release.

• You are adding or deleting transactions in the transaction configuration file, ttd.conf.
(For more information, see What is Transaction Tracking? on page 345.)

• You are modifying distribution ranges or service level objectives (SLOs) in the transaction
configuration file, ttd.conf. (For more information, see What is Transaction Tracking?
on page 345.)

• You are changing the parm file and want the changes to take effect. Changes made to the
parm file take effect only when scope is started.
Managing Data Collection 43

• You are using the utility program's resize command to resize a Performance
Collection Component log file.

• You are shutting down the system.

• You are adding the hardware or modifying the configuration changes. Changes made will
take effect only when scope is started.

Stopping Data Collection

The ovpa and mwa script's stop option ensures that no data is lost when scope and other
Performance Collection Component processes are stopped.

To manually stop data collection, type the following command:

• On Windows:

%ovinstalldir%bin\ovpacmd -stop

• On HP-UX, Linux, and Solaris:

/opt/perf/bin/ovpa -stop

• On AIX:

/usr/lpp/perf/bin/ovpa -stop

Restarting Data Collection

You have different options for restarting data collection after the Performance Collection
Component processes have stopped or configuration files have been changed and you want
these changes to take effect.

To start scope and the other Performance Collection Component processes after the system
has been down, or after you have stopped them, use <InstallDir>/ovpa start if you are
using coda. Here, InstallDir is the directory where Performance Collection Component is
installed.

To restart scope and the other processes while they are running, use <InstallDir>/ovpa
restart if you are using coda. Here, InstallDir is the directory where Performance
Collection Component is installed. This stops the currently running processes and starts them
again.

When you restart scope, the Performance Collection Component continues to use the same
log files (logglob, logappl, logproc, logdev, logtran, logls, and logindx) used before
stopping the program. New records are appended to the end of the existing files. If you want to
collect data to a new set of files, and not retain any historical information, you should rename
or archive, and remove all the scope log files together before you restart, because data is
synchronized among the files.

scope does not log NFS data but you can view the NFS data through GlancePlus on the local
file system.

The SEM_KEY_PATH entry in the ttd.conf configuration file is used for generating IPC keys
for the semaphores used in ttd and the midaemon process on UNIX platforms. The default
value used is /var/opt/perf/datafiles.
You can change the value of SEM_KEY_PATH if midaemon or ttd does not respond because of
sem id collisions.
44 Chapter 2

Daylight Savings

During daylight savings, the system time is set back by one hour in relevant time zones. At
this point, data collection stops for an hour until the system time synchronizes with the
timestamp of the last logged record.

When daylight savings is turned off, the system time advances by one hour, and therefore, the
timestamp of the next logged record advances by an hour. This introduces a one-hour gap
after the last logged record even though data collection does not stop.

Changing System Time Manually

When the system time is set back manually, data collection stops and commands (like
perfstat) do not work. These utilities hang when the system time is set back. To continue
logging data and to get responses from all commands, perform the following steps:

1 Run the following command:

ovc -stop coda

2 Back up the coda.* files in the <DataDir>\datafiles\ directory and remove them.

3 Run the following command:

ovc -start coda

Effective Data Collection Management

Efficient analysis of performance depends on how easy it is to access the performance data
you collect. This section discusses effective strategies for activities such as managing log files,
data archiving, and system analysis to make the data collection process easier, more effective,
and more useful.

Controlling Disk Space Used by Log Files

Performance Collection Component provides for automatic management of the log files it
creates. You can configure this automatic process or use alternate manual processes for
special purposes. The automatic log file management process works as follows:

• Each log file has a configured maximum size. Default maximum sizes are provided when
the Performance Collection Component is first installed. However, you can reconfigure
these values.

• As each log file reaches its maximum size, a “roll back” is performed at mainttime by the
scope data collector. During this roll back, the oldest 25 percent of the data in the log file
is removed to make room for new data to be added.

Automatic log file maintenance is similar, but not identical, for data collected by scope and by
the DSI logging process. For more information on DSI log file maintenance, see Overview of
Data Source Integration on page 261.
Managing Data Collection 45

Setting mainttime

Normally, scope will only perform log file roll backs at a specific time each day. This is to
ensure that the operation is performed at off peak hours and does not impact normal system
usage. The time the log files are examined for roll back is set by the mainttime parameter in
the parm file.

Setting the Maximum Log File Size

Choosing a maximum log file size should be a balance between how much disk space is used
and how much historical data is available for immediate analysis. Smaller log file sizes save
disk space, but limit how much time can be graphed by tools such as Performance Manager.
Some ways to reconfigure the scope log file sizes are discussed below.

scope logs different types of data into their own log files. This is to allow you to choose how
much disk space you want to dedicate to each type independently. For example, global data is
fairly compact, but you will often want to go back and graph data for a month at a time. This
allows a good statistical base for trending and capacity planning exercises.

Process data can consume more disk space than global data because it is possible to have
many interesting processes every minute. Also, the time-value of process data is not as high
as for global data. It may be very important to know details about which process was running
today and yesterday. You might occasionally need to know which processes were running last
week. However, it is unlikely that knowing exactly which processes were run last month
would be helpful.

A typical user might decide to keep the following data online:

• Three months of global data for trending purposes

• One month of process data for troubleshooting

• Three months of application data for trending and load balancing

• Two months of device data for disk load balancing

You can edit the parm file to set the size parameters for each different log file. The sizes are
specified in megabytes. For example:

SIZE GLOBAL=10.0 PROCESS=30.0 APPLICATION=20.0 DEVICE=5.0

The number of megabytes required to hold a given number of days of data can vary by data
type, system configuration, and system activity. The best way to determine how big to make
the log files on your system is to collect data for a week or so, then use the utility program's
resize command to change your log file size. The resize command scans the log files and
determines how much data is being logged each day. It then converts from days to megabytes
for you. This function also updates the parm file.

Managing Your Resizing Processes

No additional activities are required once automatic log file maintenance is set up. As log files
reach their configured maximum sizes, they will automatically be resized by scope.

scope rolls back log files at the mainttime specified in the parm file. If you edit the parm file
and restart scope, the log files will not be rolled to the new sizes until the mainttime occurs.
It is important to have scope running at the specified mainttime time or log files may never
be rolled back.

Log files may exceed their configured maximum size during the time between maintenance
times without causing an immediate roll back.
46 Chapter 2

A log file will never be resized so that it holds less than one full day’s data. That means that
the log file will be allowed to grow to hold at least one day's worth of data before it is rolled
back. Normally this is not an issue, but if you set the parm file parameters to collect a large
volume of process or application data or set the size to be too small, this can result in a log file
significantly exceeding its configured maximum size before it is rolled back.

The scope checks the available disk space on the file system where the log files reside,
periodically at intervals specified in the parm file for global data collection. If the available
disk space falls below one megabyte, scope takes steps to ensure that it does not use any more
available space by doing the following:

• Immediately performs the log file maintenance without waiting for the regular log file
maintenance time. If any log files exceed their maximum sizes (and have more than one
day's worth of data in them), they will be rolled back.

• If, following the log file maintenance, the available disk space is still not greater than one
megabyte, scope writes an appropriate error message to its status.scope file and stops
collecting data.

Data Archiving

Automatic log file management keeps the latest log file data available for analysis. Data from
the raw log files are archived. Process data and global data are logged periodically at intervals
specified in the parm file. For more information, see Configure Data Logging Intervals on
page 39. To make room for new data, older data is removed when the log files reach their
maximum sizes. If you want to maintain log file data for longer periods of time, you should
institute a data archiving process. The exact process you choose depends on your needs. Here
are a few possibilities:

• Size the raw log files to be very large and let automatic log file maintenance do the rest.
This is the easiest archiving method, but it can consume large amounts of disk space after
several months.

• Extract the data from the raw log files into extracted archive files before it is removed
from the raw log files. Formulate a procedure for copying the archive files to long term
storage such as tape until needed.

• Extract only a subset of the raw log files into extracted archive files. For example, you may
not want to archive process data due to its high volume and low time-value.

• Some combination of the preceding techniques can be used.

We recommend the following procedures for data archiving:

• Size the raw log files to accommodate the amount of detail data you want to keep online.

• Once a week, copy the detailed raw data into files that will be moved to offline storage.

Managing Your Archiving Processes

Resize your raw log files as described in the preceding section. Choose log file sizes that will
hold at least two week’s worth of data (assuming the archival processing will only be done
once a week).

Once a week, schedule a process that runs the extract program. The following example
shows a script that would perform the weekly processing:

#extract -gapdt -xm
Managing Data Collection 47

Each week during the month the data will be appended to the prior week's data. When a new
month starts, extract creates a new archive log file and splits that week's data into the
appropriate monthly archive log file. The log files are named rxmo followed by four digits for
the year and two more digits for the month. (For example, data for December 1999 would be
available in a file named rxmo199912.)

At the beginning of each month the previous month’s log file is completed and a new log file is
started. Therefore, whenever more than one rxmo log file is present, it is safe to copy all but
the latest one to offline storage until it is needed. When you need to access archived data,
restore the desired archival file and access it using the extract or utility programs.

Depending on your system configuration and activity levels, the amount of disk space
accumulated in one month may be large. If this is the case, you can break the detail archive
file into smaller files by substituting the weekly command -xw in place of -xm as shown in the
example.

Another alternative is to choose not to archive the detailed process data.

The detailed extraction discussed in the previous example preserves all of your collected
performance data. If ever you need to investigate a situation in depth, these files can be
restored to disk and analyzed.

You can use the extract program to combine data from multiple extracted files or to make a
subset of the data for easier transport and analysis.

For example, you can combine data from several yearly extracted files in order to do
multiple-year trending analysis.

Moving log files that were created on an HP Operations agent node to a system using an older
version of the HP Performance Agent is not supported.
48 Chapter 2

3 Working with the HP Operations Agent
After configuring the data collection mechanism, if you want to use the agent in conjunction
with HPOM, you can use different components of the Operations Monitoring Component by
deploying HPOM policies on the node. For example, if you deploy a measurement threshold
policy, the monitor agent component starts operating. Although you can provide most of the
monitoring details in the HPOM policies, some components might still require additional
configuration to be performed on the node.

Configuring the Monitor Agent

You can start and configure the monitor agent to monitor different sources. When you deploy a
measurement threshold policy on a node, the monitor agent component starts operating.
Based on the specification in the policies, the agent starts monitoring objects from the
following types of sources:

• External: An external program that can send numeric values to the agent.

• Embedded Performance Component: The data available in the agent’s data store.

• MIB: Entries in the Management Information Base (MIB).

• Real Time Performance Management: Windows performance logs and alerts.

• Program: An external program that is started by HPOM and sends numeric values to the
agent.

• WMI: The WMI database.

To use HPOM policies to monitor the objects from the above sources, see the following topics:

• For HPOM for Windows: The Event Policy Editors section in the HPOM for Windows
Online Help.

• For HPOM on UNIX/Linux: The Implementing Message Policies section in the HPOM for
UNIX 9.10 Concepts Guide.

Configure the Agent to Monitor MIB Objects

After you deploy the measurement threshold policies (with the Source type set to MIB) on the
node, the monitor agent starts querying the MIB objects that can be accessed with the public
community string. If you want to configure the monitor agent to use a non-default community
string, follow these steps:

1 Log on to the node with the root or administrative privileges.

2 Go to the command prompt (shell).

3 Go to the following directory:

Windows:
49

%ovinstalldir%bin

HP-UX, Solaris, or Linux:

/opt/OV/bin

AIX:

/usr/lpp/OV/bin

4 Run the following command:

• To use a non-default community string:

ovconfchg -ns eaagt SNMP_COMMUNITY <community_string>

In this instance, <community_string> is the non-default community string of your
choice.

• To use different community strings:

ovconfchg -ns eaagt SNMP_COMMUNITY_LIST <list_of_community_strings>

In this instance, <list_of_community_strings> is a comma-separated list of community
strings of your choice. The HP Operations agent processes the list of community
strings in the order you specified them with the above command.

For example:

ovconfchg -ns eaagt SNMP_COMMUNITY_LIST “C1,C2,C3”

The HP Operations agent first tries to establish an SNMP session with the nodes and
attempts to perform an SNMP Get operation for the OIDs using the community string
C1. If the operation is not successful, the HP Operations agent performs the same
operation with the community string C2, and so on.

Monitor Child OIDs

While creating a MIB measurement threshold policy, you must set the MIB ID field to the
OID of a MIB object that you want to monitor. If you want to monitor the underlying child
OIDs of the object, type the OID in the MIB ID field in the following format:

<parent_OID>.*

For example, if you want to monitor all the child OIDs of the object .1.3.6.1.2.1.2.2.1,
you must specify .1.3.6.1.2.1.2.2.1.* in the MIB ID field.

You can also specify the position of the name or description of the child instances in the
following format:

<parent_OID>.*:<n>

In this instance, <n> is the position of the name or description of the child instances.

For example, if you want to monitor all the child OIDs of the object .1.3.6.1.2.1.2.2.1
that are described by the second element in the MIB subtree for .1.3.6.1.2.1.2.2.1, you
must specify .1.3.6.1.2.1.2.2.1.*:2 in the MIB ID field.

If the HP Operations agent fails to use all the community strings
specified with SNMP_COMMUNITY_LIST, it tries to use the community
string specified with SNMP_COMMUNITY. If the agent fails to get data
with all the specified community string, it starts using the default
community string public.
50 Chapter 3

Persistence of Monitored Object

This version of the HP Operations agent periodically stores the values of monitored objects
and session variables to preserve the values in the event of an interruption or failure.
However, you can configure the agent to stop preserving the values of monitored objects and
session variables.

If you do not want to preserve the monitored values, follow these steps:

1 Log on to the node with the necessary privileges.

2 In the command prompt, run the following command:

ovconfchg -ns eaagt set OPC_MON_SAVE_STATE FALSE

From now on, the agent stops preserving the values of monitored objects and session
variables.

Configuring the Event Interceptor

By default, the event interceptor can collect SNMP traps originating from remote
management stations or SNMP-enabled devices, and then can generate appropriate events
based on the configuration. You can modify the default behavior of the event interceptor by
configuring the following properties:

• SNMP_TRAP_PORT: The default port is 162. You can modify this value to any available port
on the HP Operations agent node.

• SNMP_TRAP_FORWARD_DEST_LIST: With this property, you can set the address of the
remote management station where you want to forward all the available SNMP traps. You
can specify multiple system names (with port details) separated by commas.

• SNMP_TRAP_FORWARD_ENABLE: By default, this property is set to FALSE. By setting this
property to TRUE, you can enable the event interceptor to forward the SNMP traps
available on the HP Operations agent node to remote machines or management stations.

• SNMP_TRAP_FORWARD_COMMUNITY: With this property, you can specify the community
string of the source machines of the incoming traps and the target machine where you
want to forward the SNMP traps. The community strings of the source machines must
match with the community strings of the target machines.

• SNMP_TRAP_FORWARD_FILTER: With this property, you can filter the available SNMP traps
by their OIDs and forward only select traps to the remote machine. The filtering
mechanism takes effect with the wildcard (*) character. For example, if you set this
property to 1.2.3.*.*.*, the event interceptor will forward all the SNMP traps with the
OIDs that begin with 1.2.3. By default, all the available traps are forwarded when you
enable the event interceptor to forward traps.

To modify the default behavior of the event interceptor, follow these steps:

1 Log on to the node with the necessary privileges.

2 In the command prompt, run the following commands:

• To modify the port number, run the following command:

If the community string of the source machines do not match with the
community string of the target machines, the trap forwarding function
fails.
Working with the HP Operations Agent 51

ovconfchg -ns eaagt set SNMP_TRAP_PORT <port_number>

You must specify an integer value for <port_number>. Make sure the specified
<port_number> is available for use.

• To enable the event interceptor to forward SNMP traps to remote machines, run the
following command:

ovconfchg -ns eaagt set SNMP_TRAP_FORWARD_ENABLE TRUE

• If you enable the event interceptor to forward SNMP traps to a remote machine, run
the following command to specify the details of the target machine:

ovconfchg -ns eaagt set SNMP_TRAP_FORWARD_DEST_LIST
”<machinename>:<port>”

<machinename> is the fully-qualified domain name of the machine where you want to
forward the SNMP traps and <port> is the HTTPS port for the machine. If you want to
specify multiple targets, separate the machine details with commas.

• If you want to forward only select SNMP traps available on the node to the remote
machine, run the following command:

ovconfchg -ns eaagt set SNMP_TRAP_FORWARD_FILTER ”<OID Filter>”

<OID Filter> is an OID with the wildcard characters. The event interceptor filters the
traps that match the specified OID (with the wildcard characters) from the available
traps, and then forwards them to the target machine.

Configuring the RTMA Component

The Real-Time Metric Access (RTMA) component provides you with real-time access to
system performance metrics, locally or remotely. The perfd process, which is a part of the
RTMA component, starts running on the node with the default configuration after you install
the HP Operations agent. You can modify the configuration settings of the perfd process from
the perfd.ini file, which is available into the following directory on the node:

• On Windows: %ovdatadir%

• On UNIX (and Linux): /var/opt/perf

Parameter Description Default Value

interval The frequency of data collection in
seconds. This value must be a
multiple or factor of 60.

10

port The port used by perfd. 5227

depth The time duration for which global
metric values are retained in the
perfd cache. This data is used for
data summarization.

30
52 Chapter 3

maxrps The maximum number of session
requests per second accepted by
perfd. If the number of requests
exceeds the limit, perfd pauses for
one second, and then logs the
details of this event in the log file.
The log file, status-perfd.<port>, is
located into the following directory
on the node:

• On Windows: %ovdatadir%
• On UNIX (and Linux): /var/

opt/perf

20

maxtpc The maximum number of sessions
per client system accepted by
perfd. After the available number
of sessions reaches this limit, if an
additional request arrives, perfd
denies the additional request.

30

maxcps The maximum number of
simultaneous session requests
accepted by perfd at a given
instant. If the number of requests
exceeds the limit, the server will
pause for 3 seconds before
establishing the sessions.

2

Parameter Description Default Value
Working with the HP Operations Agent 53

To change the default settings, follow these steps:

1 On the node, open the perfd.ini file with a text editor.

2 Modify the settings.

3 Save the file.

4 Restart the HP Operations agent for the changes to take effect.

Configuring the Agent User

The HP Operations agent, after installation, starts running with the Local System account on
Windows nodes and with the root account on the UNIX/Linux nodes. You can, however,
configure the agent to run with a non-default account.

lightweight If this is set to true, perfd stops
collecting data for processes,
application, NFS operations,
logical systems, and ARM. In
addition, the HBA and LVM data
on HP-UX will not be collected.

false

localonly If this is set to true, perfd can be
configured only on the local
machine.

If set to true, perfd denies all
connection requests except those
coming from the host system
(localhost) through the loopback
interface. Details of the denied
connection requests are logged in
the status file.

false

ipv4 This option enables perfd to accept
only IPv4 connections. By default,
if perfd cannot create an IPv6
socket, it automatically switches
to the IPv4-only socket. Use this
option if you explicitly want to
disable any IPv6 communication.

false

Parameter Description Default Value

Although the Operations Monitoring Component can run under a non-root or non-privileged
user, the Performance Collection Component must always run under a root or administrative
user. If you configure the HP Operations agent to run under a user that does not have the root
or administrative privileges, you will not be able to use the Performance Collection
Component, and most importantly, you will not be able to collect any system performance
data.
54 Chapter 3

The agent starts automatic or operator-initiated commands under the user account that the
agent itself is currently running under. However, you can configure the agent to start
commands under a different user account.

Change the Default User on Windows

The agent user that you want to use on Windows must satisfy the following requirements:

• User rights to run the agent:

— Log on as a service

— Manage auditing and security log

• User rights to manage the node:

— Shut down the system

This enables the agent to shut down the system (for example, when a user starts the
shutdown tool in the console).

— Debug programs

This enables the agent to collect information about processes, and to kill processes (for
example, when a user starts the list processes or kill process tool in the console).

• User rights to allow the agent to start commands and tools as a user other than the agent
user:

— Act as part of the operating system.

— Adjust memory quotas for a process (also called Increase quotas in some versions of
Windows)

— Replace a process-level token.

• Permissions for registry entries:

— HKEY_LOCAL_MACHINE/Software/Hewlett-Packard/OpenView

The user must have full control for this registry key and all child objects.

— HKEY_LOCAL_MACHINE/Software/Microsoft/WindowsNT/CurrentVersion/Perflib

The user must have permission to read this registry key for the agent to access
performance data.

You may need to assign additional rights for the management tasks that you need to perform.
For example:

• If you want be able to monitor a log file using a policy, the agent user must have
permission to read that log file.

• If you want to be able to start a program using an automatic command, operator-initiated
command, tool, or scheduled task, the agent user must have permission to start that
program.

Additionally, you must set the parameter OPC_PROC_ALWAYS_INTERACTIVE=NEVER in the
eaagt namespace. You can configure this parameter in the agent installation defaults or
using ovconfchg or ovconfpar at a command prompt. After you set this parameter,
processes that the agent starts do not have access to the default desktop. This setting
applies to logfile encapsulator pre-processing and scripts that the monitor agent invokes.
Working with the HP Operations Agent 55

• Some Smart Plug-ins may require additional configuration or user rights when the agent
runs under a user account that does not have administrative rights. For more details, see
the documentation for individual Smart Plug-ins.

To change the default agent user on Windows, follow these steps:

1 Optional. Create a new user for the agent to run under.

2 Optional. Create a new group, and add the user as a member of this group.

3 On the node, open a command prompt, and type the following command:

cscript "%OvInstallDir%bin\ovswitchuser.vbs"-existinguser
<DOMAIN\USER> -existinggroup <GROUP> -passwd <PASSWORD>

In this instance:

 <DOMAIN\USER> is the domain and user name.

<GROUP> is the name of the group that the user belongs to, for example AgentGroup.

<PASSWORD> is the user’s password.

4 To restart the agent, run the following commands:

a ovc -kill

b ovc -start

The control service and agent processes now run as the user that you specified.

Configure the Agent User to Start or Stop Services and Processes

During its course of operation, the agent might need to start or stop services and processes
(including agent’s own processes). You must configure the user, which has been configured to
run the agent, to obtain the privileges to start or stop services and processes.

If you want the agent user to start or stop services on the Windows node, follow these steps:

1 Log on to the node with the administrative privileges.

2 Go to the directory %ovinstalldir%lbin\xpl.

3 Run the following command:

ovsetscmpermissions.vbs -user <agent_user> -f

4 Restart the agent by running the following command:

• ovc -kill

• ovc -start

The command assigns the user rights required for basic agent
functionality at group level, not to the individual user. Therefore,
take care when you select the group to use. It is advisable to create
a new group specifically for the agent user, and add the agent user
as a member.
56 Chapter 3

Change the Default User on UNIX/Linux

By default on nodes with a UNIX or Linux operating system, the agent runs under the root
account. However, you can configure the agent to run under a different user account. For
example, you may want the agent to run under an account with fewer permissions than the
root account. Alternatively, you may want the agent to run under an account that has
permission to access remote systems over the network.

You must test whether the user account has appropriate rights to run the agent and manage
the node correctly. You may need to assign additional rights for the management tasks that
you need to perform. For example:

• If you want to be able to monitor a log file using a policy, the agent user must have
permission to read that log file.

• If you want to be able to start a program using an automatic command, operator-initiated
command, tool, or scheduled task, the agent user must have permission to start that
program.

• Some Smart Plug-ins may require additional configuration or user rights when the agent
runs under an alternative user. For more details, see the documentation for individual
Smart Plug-ins.

To change the default user on UNIX/Linux, follow these steps:

1 Optional. Create a new user for the agent to run under.

2 Optional. Create a new group, and then add the user as a member of this group.

3 On the node, log on as root and open a shell prompt.

4 Go to the following directory:

On HP-UX, Linux, or Solaris

/opt/OV/bin

On AIX

/usr/lpp/OV/bin

5 Stop the agent by running the following command:

ovc -kill

6 Change the agent user by running the following command:

ovswitchuser.sh -existinguser <USER> -existinggroup <GROUP>

In this instance:

 <USER> is the name of the user that the agent runs under.

<GROUP> is the name of the group that the user belongs to, for example AgentGroup.
The command gives this group full control of all files in the agent data directory, and also
full control of all installed packages. If you previously started the command and specified
a different group, the command removes control of the files for the previous group.
Working with the HP Operations Agent 57

The group ID flag is set on the agent's data directories. This flag means that the group
that you specify will also own any new files and subdirectories in the agent's base
directories.

7 The HP Operations agent includes communication brokers that listen for inbound
connections from management servers on port 383 by default. However, on UNIX and
Linux nodes, non-root users cannot open ports in the range 0 to 1023. Therefore, you must
configure the communication broker on the node to listen on a different port (above 1023).
You must also configure the management servers that connect to the node, so that their
outbound connections are destined for the correct port.

You must configure communication broker ports by setting the PORTS parameter in the
bbc.cb.ports name space. You can configure this parameter in the following ways:

• Configure the values in the agent installation defaults. This is recommended if you
need to configure communication broker ports for large numbers of nodes. You must
plan and configure the installation defaults before you create or migrate your nodes.

• Use ovconfchg or ovconfpar at a command prompt.

The value must contain one or more host names or IP addresses and have the
following format:

<host>:<port>[,<host>:<port>] ...

For example, to configure the communication broker port to 5000 on a node with the
host name node1.emea.example.com, use the following command on the node itself,
and also any management servers that open connections to it:

ovconfchg -ns bbc.cb.ports -set PORTS
node1.domain.example.com:5000

8 To start the agent, run the following commands:

a su <USER>

b ovc -start

The control service and agent processes now run as the user that you specified.

Change the Default User for Commands

By default, the agent starts automatic or operator-initiated commands under the user account
that the agent itself is currently running under. However, you can configure an HP Operations
agent to start commands under a different user account. You do this by setting the
OVO_STD_USER parameter in the eaagt name space on the nodes. You can configure this
parameter in the following ways:

• Configure the values in the HP Operations agent installation defaults. This is
recommended if you need to configure the user for large numbers of nodes. You must plan
and configure the installation defaults before you create or migrate your nodes.

• Use ovconfchg or ovconfpar at a command prompt.

Specify the value of OVO_STD_USER in the format <user>/|<encrypted password>

The command assigns the user rights required for basic agent
functionality at group level, not to the individual user. Therefore,
take care when you select the group to use. It is advisable to create
a new group specifically for the agent user, and add the agent user
as a member.
58 Chapter 3

• Replace <user> with the name of the user. For a domain user, specify the domain and user
name, for example, EXAMPLE\AgentUser. For a local user, specify just the name, for
example AgentUser.

• Replace <encrypted password> with output from the command opcpwcrpt <password>.
You can start this command from a command prompt on the management server.

It is also possible to use the OVO_STD_USER when you configure or launch a tool. Specify the
user name $OVO_STD_USER and leave the password blank.

You must test whether the user account has appropriate rights to run commands and tools
correctly.

Configuring viserver for Monitoring vMA Nodes

Skip this section if you do not want to monitor vMA nodes.

You can configure the viserver daemon by modifying the contents of two configuration files—
viserver.properties and VILog4j.xml. These files are available in /var/opt/perf.

viserver.properties

This file contains the following parameters:

• port

• hosts

• instance

• jvmArgs

• log4jInterval

You must restart viserver if you change the settings in the viserver.properties file. The
new settings are effective only after you restart viserver.

port

The port parameter is the loopback port through which viserver and clients communicate.
The port parameter is non-editable; the value of this parameter changes when you restart
viserver.

hosts

The hosts parameter defines the number of hosts that viserver daemon can support. The
default value is 20.

If you have more hosts in your environment, you can edit this parameter to specify your
required setting. If the HP Operations agent is not able to collect data for the number of hosts
that you specified, you must reduce vifp targets.

If the agent fails to start a command or tool as the OVO_STD_USER, the agent may start the
command or tool under the same user account that the agent is currently running under. This
can happen, for example, if you specify an incorrect user or password.
Working with the HP Operations Agent 59

instance

The instance parameter defines the number of instances viserver can support. The default
value is 200.

If you have more instances in your environment, you can edit this parameter to specify your
required setting. If the HP Operations agent is not able to collect data for the number of
instances that you specified, you must reduce vifp targets.

jvmArgs

The jvmArgs parameter enables you to add jvm arguments and modify jvm as required in
your environment.

The default configuration for jvmArgs is as follows:

jvmArgs=-Xms512m -Xmx1024m -classpath /opt/perf/bin/java/activation.jar\:/
opt/perf/bin/java/axis-ant.jar\:/opt/perf/bin/java/axis.jar\:/opt/perf/
bin/java/commons-discovery-0.2.jar\:/opt/perf/bin/java/
commons-logging-1.0.4.jar\:/opt/perf/bin/java/jaxrpc.jar\:/opt/perf/bin/
java/log4j-1.2.8.jar\:/opt/perf/bin/java/mailapi.jar\:/opt/perf/bin/java/
saaj.jar\:/opt/perf/bin/java/vim25.jar\:/opt/perf/bin/java/
viserver.jar\:/opt/perf/bin/java/wsdl4j-1.5.1.jar\:/opt/vmware/vma/lib64/
vmatargetlib25.jar\:/opt/vmware/vma/lib64/vifplib25.jar
com.hp.perfagent.VIdaemon

log4jInterval

The log4jInterval parameter specifies the interval at which viserver checks for changes in
VILog4j.xml file. The default value is 60000 milliseconds (1 minute). You can modify this
value as required.

VILog4j.xml

viserver uses VIlog4j.xml file, located in /var/opt/perf, to log status information in the
status.viserver file. The log4j.dtd file, available in /var/opt/perf, defines the
template for the VIlog4j.xml file. You can change the configuration settings in the
VIlog4j.xml file; the changes take effect after a specified time. The value of the specified
time is defined in the parameter log4jInterval.

The XML file consist of the following major elements:

• appender

• logger

You can change only the following item within the
[<logger name=”com.hp.perfagent”> ... </logger>] element:

<level value = ”info”/>

This entity determines the level of logging in the status.viserver file. You can set value to
one of the following non-default settings:

• fatal: Use this setting to log minimal information.

There are elements in the XML file that are required for the logging to work correctly. Do not
change or delete these elements. Only recommended change is the level of the
com.hp.perfagent logger.
60 Chapter 3

• debug: Use this setting to log information for debugging.

Use the debug setting only for troubleshooting purposes.
Working with the HP Operations Agent 61

Monitoring Applications and Services Logs on Windows

The Logfile Encapsulator component of the HP Operations agent enables you to monitor
Windows event logs. The Windows Event Log policies help you configure the agent to monitor
Windows event logs of your choice.

The following versions of Windows provide a new category of event logs—Applications and
Services logs:

• Windows Vista

• Windows Server 2008

• Windows Server 2008 R2

• Windows 7

You can monitor these Applications and Services logs with the HP Operations agent 11.00
with appropriately configured Windows Event Log policies.

The HP Operations agent cannot monitor the following types of event logs:

• Events originating from a remote system (collected by using the Event Subscription
feature of Windows)

• Saved event logs

• Events with the following event levels:

— LOG_ALWAYS

— VERBOSE

Monitor Applications and Services Event Logs from HPOM for Windows

To create a Windows Event Log policy for monitoring an Applications and Services log, follow
these steps:

1 Log on to the Windows node where the Windows event log exists.

2 Open the Event Viewer window.

3 In the console tree, select the event. In the details pane, the name of the event log appears
(next to the Log Name field).

4 Note down the name of the log file as it appears in the details pane.

5 Open the HPOM for Windows console.

6 In the console tree, under Agent Policies Grouped by Type, right-click Windows Event Log,
and then click New > policy.

7 The policy editor for the Windows Event Log policy opens.
62 Chapter 3

8 In the Source tab, type the name of the Windows event log (which you noted down in
step 4) in the Event Log Name field.

9 Follow the instructions in the HPOM for Windows online help to specify other details in
the policy.

10 Save the policy.

11 Deploy the policy on the Windows node.

Monitor Applications and Services Event Logs from HPOM on UNIX/Linux 9.1x

To create a Windows Event Log policy for monitoring an Applications and Services log, follow
these steps:

1 Log on to the Windows node where the Windows event log exists.

2 Open the Event Viewer window.

3 In the console tree, select the event. In the details pane, the name of the event log appears
(next to the Log Name field).

4 Note down the name of the log file as it appears in the details pane.

5 Log on to the HPOM for UNIX Administration UI.

6 Click OMU.

7 Click Browse > All Policy Types.

8 Click Windows Event Log. The Policy Type “Windows_Event_Log” page opens.

9 Click , and then click New Policy. The Add Windows_Event_Log Policy page opens.

10 In the Source tab, in the Event Log Name field, select Specify Name. A new text box
appears. Type the name of the Windows event log (which you noted down in step 4) in the
text box.

11 Follow the instructions in the HPOM for UNIX online help to specify other details in the
policy.

12 Save the policy.

13 Deploy the policy on the Windows node.
Working with the HP Operations Agent 63

Monitor Applications and Services Event Logs from HPOM for UNIX 8.35

To create a Windows Event Log policy for monitoring an Applications and Services log, follow
these steps:

1 Log on to the Windows node where the Windows event log exists.

2 Open the Event Viewer window.

3 In the console tree, select the event. In the details pane, the name of the event log appears
(next to the Log Name field).

4 Note down the name of the log file as it appears in the details pane.

5 Log on to the HPOM for UNIX console.

6 Go to the Message Source Template window and create a new Logfile template.

7 In the Logfile field (in the Add Logfile dialog box), type two % characters, and then, within
two % characters, type the name of the Windows event log (which you noted down in
step 4) with the suffix _LOG. For example, if the event log name is <event_log_name>, you
must type %<event_log_name>_LOG%.

8 Follow the instructions in the HPOM for UNIX online help to specify other details in the
policy.

9 Save the policy.

10 Deploy the policy on the Windows node.
64 Chapter 3

4 Using the Utility Program
The utility program is a tool for managing and reporting information on log files, the
collection parameters (parm) file, and the alarm definitions (alarmdef) file. You can use the
utility program interactively or in batch mode to perform the following tasks.

• Scan raw or extracted log files and produce a report showing:

— dates and times covered

— times when the scope collector was not running

— changes in scope parameter settings

— changes in system configuration

— log file disk space

— effects of application and process settings in the collection parameters (parm) file

• Resize raw log files

• Check the parm file for syntax warnings or errors

• Check the alarmdef file for syntax warnings or errors

• Process log file data against alarm definitions to detect alarm conditions in historical data

This chapter covers the following topics:

• Running the Utility Program

• Using Interactive Mode

• using the Utility Command Line Interface

• Utility Scan Report Details

Detailed descriptions of the utility program’s commands are in Chapter 5, Utility
Commands.

Running the Utility Program

There are three ways to run the utility program:

• Command line mode - You control the utility program using command options and
arguments in the command line.

• Interactive mode - You supply interactive commands and parameters while executing the
program with stdin set to an interactive terminal or workstation.
If you are an experienced user, you can quickly specify only those commands required for a
given task. If you are a new user, you may want to use the utility program’s guide
command to get some assistance in using the commands. In guided mode, you are asked to
65

select from a list of options to perform a task. While in guided mode, the interactive
commands that accomplish each task are listed as they are executed, so you can see how
they are used. You can quit and re-enter guided mode at any time.

• Batch mode - You can run the program and redirect stdin to a file that contains
interactive commands and parameters.

The syntax for the command line interface is similar to typical UNIX command line interfaces
on other programs and is described in detail in this chapter.

For interactive and batch mode the command syntax is the same. Commands can be entered
in any order; if a command has a parameter associated with it, the parameter must be entered
immediately after the corresponding command.

There are two types of parameters - required (for which there are no defaults) and optional
(for which defaults are provided). How utility handles these parameters depends on the
mode in which it is running.

• In interactive mode, if an optional parameter is missing, the program displays the default
argument and lets you either confirm it or override it. If a required parameter is missing,
the program prompts you to enter the argument.

• In batch mode, if an optional parameter is missing, the program uses the default values. If
a required parameter is missing, the program terminates.

Errors and missing data are handled differently for interactive mode than for command line
and batch mode. You can supply additional data or correct mistakes in interactive mode, but
not in command line and batch mode.

Using Interactive Mode

Using the utility program’s interactive mode requires you to issue a series of commands to
execute a specific task.

For example, if you want to check a log file to see if alarm conditions exist in data that was
logged during the current day, you issue the following commands after invoking the utility
program:

checkdef /var/opt/perf/alarmdef
detail off
start today-1
analyze

The checkdef command checks the alarm definitions syntax in the alarmdef file and then
sets and saves the file name for use with the analyze command. The detail off command
causes the analyze command to show only a summary of alarms. The start today-1
command specifies that only data logged yesterday is to be analyzed. The analyze command
analyzes the raw log files in the default SCOPE data source against the alarmdef file.

Example of Using Interactive and Batch Mode

The following example shows the differences between how the utility program’s resize
command works in batch mode and in interactive mode.

The resize command lets you set parameters for the following functions:

• Type of log file to be resized.
66 Chapter 4

• Size of the new file.

• Amount of empty space to be left in the file.

• An action specifying whether or not the resize is to be performed.

This example of the resize command resizes the global log file so that it contains a maximum
of 120 days of data with empty space equal to 45 days. The command and its parameters are:

resize global days=120 empty=45 yes

The results are the same whether you enter this command interactively or from a batch job.

The first parameter–global–indicates the log file to be resized. If you do not supply this
parameter, the consequent action for interactive and batch users would be the following:

• Batch users — the batch job would terminate because the logfile parameter has no
default.

• Interactive users — you would be prompted to choose which type of log file to resize to
complete the command.

The last parameter–yes–indicates that resizing will be performed unconditionally.

If you do not supply the yes parameter, the consequent action for interactive and batch users
would be the following:

• Batch users — resizing would continue since yes is the default action.

• Interactive users — you would be prompted to supply the action before resizing takes
place.

Utility Command Line Interface

In addition to the interactive and batch mode command syntax, command options and their
associated arguments can be passed to the utility program through the command line
interface. The command line interface fits into the typical UNIX environment by allowing the
utility program to be easily invoked by shell scripts and allowing its input and output to be
redirected to UNIX pipes.

For example, to use the command line equivalent of the example shown in the previous
section "Using Interactive Mode" enter:

utility -xr global days=120 empty=45 yes

Command line options and arguments are listed in the following table. The referenced
command descriptions can be found in Chapter 5, Utility Commands.

Before using the resize command in either batch mode or interactive mode, you must first
stop data collection. For details, see Stopping and Restarting Data Collection on page 43 in
Chapter 2.
Using the Utility Program 67

Table 3 Command Line Arguments

Command
Option Argument Description

-b date time Specifies the starting date and time of an analyze
or scan function. (See start command in Chapter
4.)

-e date time Specifies the ending date and time of an analyze
or scan function. (See stop command in Chapter
4.)

-l logfile Specifies which log file to open. (See logfile
command in Chapter 4.)

-f listfile Specifies an output listing file. (See list command
in Chapter 4.)

-D Enables details for analyze, scan and parm file
checking. (See detail command in Chapter 4.)

-d Disables details for analyze and parm file for
checking. (See detail command in Chapter 4.)

-v Echoes command line commands as they are
executed.

-xp parmfile Syntax checks a parm file. (See parmfile
command in Chapter 4.)

-xc alarmdef Syntax checks and sets the alarmdef file name to
use with -xa (or analyze command). (See
checkdef command in Chapter 4.)

-xa Analyzes log files against the alarmdef file. (See
analyze command in Chapter 4.)

-xs logfile Scans a log file and produces a report. (See scan
command in Chapter 4.)

-xr global
application
process
device
transaction

ls

EMPTY=nnn
SPACE=nnn

SIZE=nn
n
DAYS=nn
n

YES
NO
MAYBE

Resizes a log file. (See resize command in Chapter
4.)

-? or ? Displays command line syntax.
68 Chapter 4

Example of Using the Command Line Interface

The following situation applies when you enter command options and arguments on the
command line:

Errors and missing data are handled exactly as in the corresponding batch mode command.
That is, missing data is defaulted if possible and all errors cause the program to terminate
immediately.

Echoing of commands and command results is disabled. Utility does not read from its
stdin file. It terminates following the actions in the command line.

utility -xp -d -xs

Which translates into:

Utility Scan Report Details

The utility program's scan command reads a log file and writes a report on its contents.
The report's contents depend on the commands issued prior to issuing the scan command.
(For more information, see the description of the scan command in Chapter 5, Utility
Commands.

The following table summarizes the information contained in all scan reports and in reports
that are produced only when the detail on command is used (the default) with the scan
command

-xp Syntax checks the default parm file.

-d Disables details in the scan report.

-xs Performs the scan operation. No log file was
specified so the default log file is scanned.

Table 4 Information Contained in Scan Report

Initial Values

Initial parm file global information and
system configuration information

Printed only if detail on is specified.

Initial parm file application definitions Printed only if detail on is specified.

Chronological Detail

parm file global changes Printed only if detail on is specified.

parm file application changes Printed only if detail on is specified.

Collector off-time notifications Printed only if detail on is specified.

Application-specific summary reports Printed only if detail on is specified.
Using the Utility Program 69

Scan Report Information

The information in a utility scan report is divided into three types:

• Initial values

• Chronological details

• Summaries

Initial Values

This section describes the following initial values:

• Initial parm file global information

• Initial parm file application definitions

Initial Parm File Global Information

To obtain this report, use the scan command with its default detail on.

This report lists the configuration settings of the parm file at the time of the earliest global
record in the log file. Later global information change notifications are based on the values in
this report. If no change notification exists for a particular parameter, it means that the
parameter kept its original setting for the duration of the scan.

The following example shows a portion of a report listing the contents of the parm file.

06/03/99 15:28 System ID="Homer"
scopeux/UX A.10.00 SAMPLE INTERVAL = 300,300,60 Seconds, Log version=D
Configuration: 9000/855, O/S A.10.00 CPUs=1
Logging Global Process records
 Device= Disk FileSys records
Thresholds: CPU= 10.00%, Disk=10.0/sec, First=5.0 sec, Resp=30.0 sec,

 Trans=100 Nonew=FALSE, Nokilled=FALSE, Shortlived=FALSE
 (<1 sec)
HP-UX Parms: Buffer Cache Size = 16384KB, NPROC = 532
Wait Thresholds: CPU=100.00%, Memory=100.00%
Impede=100.00%
Memory: Physical = 84.0 MB, Swap = 124304.0 MB, Available to users = 66.5
MB. There are 2 LAN interfaces: 0, 1.

Summaries

Process summary report Always printed if process data was scanned.

Collector coverage summary Always printed.

Log file contents summary Always printed. Includes space and dates
covered.

Log file empty space summary Always printed.

Table 4 Information Contained in Scan Report
70 Chapter 4

06/03/99 15:28 There are 2 disk devices:
 Disk #1976 = "/dev/hdisk0"
 Disk #1987 = "/dev/hdisk1"

The date and time listed on the first line correspond to the first date and time in the global log
file and indicate when scope was started. Data records may have been rolled out of the global
log file so the date and time on this report do not necessarily indicate the first global record in
the log file.

Initial Parm File Application Definitions

To obtain this report, use the scan command with its default detail on and have application
data in the log file.

This report lists the name and definition of each application at the time the first application
record is listed in the log file. Any application addition or deletion notifications you receive are
based on this initial list of applications. For example:

06/01/99 08:39 Application(1) = "other"
Comment=all processes not in user-defined applications

06/01/99 08:39 Application(2) = "Real_TimeSystem"
 Priority range = 0-127

06/01/99 08:39 Application(3) = "Prog_Development"
 File=vi,ed,sed,xdb,ld,lint,cc,ccom,pc,pascomp

Chronological Detail

This section describes the following chronological details:

• parm file global change notifications

• parm file application addition and deletion notifications

• scope off-time notifications

• Application-specific summary report

Parm File Global Change Notifications

To obtain this report, use the scan command with its default detail on.

This report is generated any time a record is found that scope started.

The following example shows the change notifications that occur when two new disk drives
are added to the system.

During the scan, you are notified of applications that were added or deleted. Additions and
deletions are determined by comparing the spelling and case of the old application names to
the new set of logged application names. No attempt is made to detect a change in the
definition of an application. If an application with a new name is detected, it is listed along
with its new definition.
The date and time on this record is the last time scope was started before logging the first
application record currently in the log file.
Using the Utility Program 71

03/13/99 17:30 The number of disk drives changed from 9 to 11
03/13/99 17:30 New disk device scsi-4 = "c4d0s*"
03/13/99 17:30 New disk device scsi-3 = "c3d0s*"

Parm File Application Addition/Deletion Notifications

To obtain this report, use the scan command with its default detail on and have application
data in the log file.

User-defined applications can be added or deleted each time scope is started. If an application
name is found that does not match the last set of applications, an application addition,
deletion, or change notification is printed. If the name of an application has not changed, it is
not printed.

The following example shows that a new application was started.

03/13/99 17:30 Application 4 "Accounting_Users_1" was added
User=ted,rebecca,test*,mark,gene

scope Off-Time Notifications

To obtain this report, use the scan command with its default detail on.

If an extracted file contains only summary information, times are rounded to the nearest
hour. For example:

06/03/99 11:00 - 06/03/99 12:34 collector off (01:34:04)

The first date and time (06/03/99 11:00) indicates the last valid data record in the log file
before scope was restarted. The second date and time (06/03/99 12:34) indicates when
scope was restarted.

The last field (in parentheses) shows how long scope was not running. The format is ddd/
hh:mm:ss, where ddd are days and hh:mm:ss are hours, minutes, and seconds. Zeros to the
left are deleted.

In this example, scope was off on June 3, 1999 between 11:00 am and 12:34 pm. The
summary information shows that data was not collected for one hour, 34 minutes, and four
seconds.

Application-Specific Summary Report

To obtain this report, use the scan command with its default detail on and have application
data in the log file.

This report can help you define applications. Use the report to identify applications that are
accumulating either too many or too few system resources and those that could be
consolidated with other applications. Applications that accumulate too many system
resources might benefit by being split into multiple applications.

You should define applications in ways that help you make decisions about system
performance tuning. It is unlikely that system resources will accumulate evenly across
applications.

Application definitions are not checked for changes. They are listed when an application
name is changed, but any change to an existing application's definition without an
accompanying name change is not detected.
72 Chapter 4

The application-specific summary report is generated whenever the application definitions
change to allow you to access the data of the application definitions before and after the
change.

A final report is generated for all applications. This report covers only the time since the last
report and not the entire time covered by the log file. For example:

 PERCENT OF TOTAL
Application Records CPU DISK TRANS
------------------- --------- ------ ------- ------
OTHER 22385 45.7% 20.9% 63.0%
Resource_Sharing 7531 6.0% 2.2% 17.1%
SPOOLING 13813 2.4% 0.3% 0.0%
ON_LINE_COMPILES 13119 2.9% 1.7% 0.1%
BATCH_COMPILES 8429 2.9% 0.1% 2.2%
ORDER_ENTRY 387 0.1% 0.0% 0.0%
ELECTRONIC_MAIL 6251 3.8% 1.3% 9.6%
PROGRAM_DEVELOPMENT 3141 9.1% 2.4% 0.6%
RESEARCH_DEPARMENT 3968 8.7% 2.0% 6.0%
BILL_OF_MATERIALS 336 0.6% 1.5% 0.1%
FINANCIALS 1080 5.0% 1.5% 0.5%
MARKETING_DEPT 2712 12.9% 67.3% 0.0%
GAMES 103 0.1% 0.0% 0.0%
-------------------- --------- ------ ------ ------
All user applications 73.1% 54.3% 79.1% 37.0%

Summaries

This section describes the following summaries:

• Process log reason summary

• Scan start and stop actual dates and times

• Application overall summary

• scope coverage summary

• Log file contents summary

• Log file empty space summary

Process Log Reason Summary

To obtain this report, you must have process data in the log file.

This report helps you set the interesting process thresholds for scope. The report lists every
reason a process might be considered interesting and thus get logged, along with the total
number of processes logged that satisfied each condition.

The following example shows a process log reason summary report:

Process Summary Report: 04/13/99 3:32 PM to 05/04/99 6:36 PM
There were 93.8 hours of process data
Process records were logged for the following reasons:

Log Reason Records Percent Recs/hr
--------------- ------- ------- -------
New Processes 17619 53.9% 44.7
Using the Utility Program 73

Killed Processes 16047 49.1% 40.7
CPU Threshold 3169 9.7% 8.0
Disk Threshold 1093 3.3% 2.8

NOTE: A process can be logged for more than one reason at a time. Record
counts and percentages will not add up to 100% of the process records.

If the detail on command is issued, this report is generated each time a threshold value is
changed so you can evaluate the effects of that change. Each report covers the period since the
last report. A final report, generated when the scan is finished, covers the time since the last
report.

If the detail off command is issued, only one report is generated covering the entire
scanned period.

You can reduce the amount of process data logged by scope by modifying the parm file's
threshold parameter and raising the thresholds of the interest reasons that generate the
most process log records. To increase the amount of data logged, lower the threshold for the
area of interest.

In the previous example, you could decrease the amount of disk space used for the process
data (at the expense of having less information logged) by raising the CPU threshold or setting
the nonew threshold.

Scan Start and Stop

This summary report is printed if any valid data was scanned. It gives actual dates and times
that the scan was started and stopped. For example:

Scan started on 03/03/99 12:40 PM
Scan stopped on 03/11/99 1:25 PM

Application Overall Summary

To obtain this report, you must have application data in the log file.

This report is an overall indicator of how much system activity is accumulated in user-defined
applications, rather than in the other application. If a significant amount of a critical resource
is not being captured by user applications, you might consider scanning the process data for
processes that can be included in user applications.

For example:

OVERALL, USER DEFINED APPLICATIONS ACCOUNT FOR
 82534 OUT OF 112355 RECORDS (73.5%)
 218.2 OUT OF 619.4 CPU HOURS (35.2%)
 24.4 OUT OF 31.8 M DISC IOS (76.8%)
 0.2 OUT OF 0.6 M TRANS (27.3%)

Collector Coverage Summary

This report is printed if any valid global or application data was scanned. It indicates how
well scope is being used to collect system activity. If the percentage of time scope was off is
high, as in the example below, you should review your operational procedures for starting and
stopping scope.

The total time covered was 108/16:14:51 out of 128/00:45:02
Time lost when collector was off 19/08:30:11 15.12%
The scopeux collector was started 45 times
74 Chapter 4

This report will be more complete if global detail data is included in the scan. If only summary
data is available, you determine the time scope was stopped and started only to the nearest
hour. (An appropriate warning message is printed with the report if this is the case.)

The total time covered is determined by accumulating all the interval times from the logged
data.The "out of" time value is calculated by subtracting the starting date and time from the
ending date and time. This should represent the total time that could have been logged. The
"Time lost when collector was off" value is the total time less the covered time.

The formats for the three times mentioned are:

ddd/hh:mm:ss

where ddd are days and hh:mm:ss are hours, minutes, and seconds.

In the previous example, the total time collected was 108 days, 16 hours, 14 minutes, and 51
seconds.

Log File Contents Summary

The log file contents summary is printed if any valid data was scanned. It includes the log file
space and the dates covered. This summary is helpful when you are resizing your log files
with the resize command.

--------Total------- -----Each Full Day----- -------Dates-------- Full
Type Records MBytes Records MBytes Start Finish Days
Global 1376 0.27 288.9 0.057 05/23/99 to 05/28/99 4.8
Application 6931 0.72 1455.0 0.152 05/23/99 to 05/28/99 4.8
Process 7318 1.14 1533.6 0.239 05/23/99 to 05/28/99 4.8
Disk 2748 0.07 567.6 0.014 05/23/99 to 05/28/99 4.8
Transaction no data found
Overhead 0.29
 ----- ------ ------ -----
TOTAL 18373 2.49 3845.0 0.461

The columns are described as follows:

Column Explanation

Type The general type of data being logged. One special type, Overhead, exists:
Overhead is the amount of disk space occupied (or reserved) by the log file
versus the amount actually used by the scanned data records.
If less than the entire log file was scanned, Overhead includes the data records
that were not scanned. If the entire file was scanned, Overhead accounts for
any inefficiencies in blocking the data into the file plus any file-access support
structures. It is normal for extracted log files to have a higher overhead than
raw log files since they have additional support structures for quicker
positioning.

Total The total record count and disk space scanned for each type of data.

Each Full
Day

The number of records and amount of disk space used for each 24-hour period
that scope runs.

Dates The first and last valid dates for the data records of each data type scanned.

Full Day The number of full (24-hour) days of data scanned for this data type.
Full Days may not be equal to the difference between the start and stop dates
if scope coverage did not equal 100 percent of the scanned time.
Using the Utility Program 75

The TOTAL line (at the bottom of the listed data) gives you an idea of how much disk space is
being used and how much data you can expect to accumulate each day.

Log File Empty Space Summary

This summary is printed for each log file scanned. For example:

The Global file is now 13.9% full with room for 61 more full days
The Application file is now 15.1% full with room for 56 more full days
The Process file is now 23.5% full with room for 32 more full days
The Device file is now 1.4% full with room for 2896 more full days

The amount of room available for more data is calculated based on the following factors:

• The amount of unused space in the file

• The scanned value for the number of megabytes of data being logged on each 24-hour day

If the megabytes-scanned-per-day values appear unrealistically low, they are replaced with
default values for this calculation.

If you scan an extracted file, you get a single report line because all data types share the same
extracted file.
76 Chapter 4

5 Utility Commands
This chapter describes the utility program's commands. It includes a syntax summary and
a command reference section that lists the commands in alphabetical order.

Utility commands and parameters can be entered with any combination of uppercase and
lowercase letters. Only the first three letters of the command name are required. For example,
the logfile command can be entered as logfile or it can be abbreviated as log or LOG.

Examples of how these commands are used can be found in online help for the utility
program.

The table on the next pages contains a summary of utility command syntax and
parameters.

Table 5 Utility Commands: Syntax and Parameters

Command Parameter

analyze

checkdef alarmdef file

detail on
off

exit
e

guide

list filename or *

logfile logfile

menu
?

parmfile parmfile

quit
q

77

analyze

Use the analyze command to analyze the data in a log file against alarm definitions in an
alarm definitions (alarmdef) file and report resulting alarm status and activity. Before
issuing the analyze command, you should run the checkdef command to check the alarm
definitions syntax. Checkdef also sets and saves the alarm definitions file name to be used
with analyze. If you do not run checkdef before analyze, you are prompted for an alarm
definitions file name.

If you are using command line mode, the default alarm definitions file /var/opt/perf/
alarmdef is used.

For detailed information about alarm definitions, see Performance Alarms on page 157.

Syntax

analyze

How to Use It

resize global
application
process
device
transaction
days=maxdays
size=max MB
empty=days
space=MB
yes
no
maybe

scan logfile
(Operation is also affected by the list, start, stop, and detail
commands.

show all

sh
!

system command

start date [time]
today [-days] [time]
last [-days] [time]
first [+days] [time]

stop date [time]
today [-days] [time]
last [-days] [time]
first [+days] [time]

Table 5 Utility Commands: Syntax and Parameters (cont’d)

Command Parameter
78 Chapter 5

When you issue the analyze command, it analyzes the log files specified in the data sources
configuration file, datasources, against the alarm definitions in the alarmdef file.

The analyze command allows you to evaluate whether or not your alarm definitions are a
good match against the historical data collected on your system. It also lets you decide if your
alarm definitions will generate too many or too few alarms on your analysis workstation.

Also, you can perform data analysis with definitions (IF statements) set in the alarm
definitions file because you can get information output by PRINT statements when conditions
are met. For explanations of how to use the IF and PRINT statements in an alarm definition,
see Chapter 9, Performance Alarms.

You can optionally run the start, stop, and detail commands with analyze to customize
the analyze process. You specify these commands in the following order:

checkdef
start
stop
detail
analyze

Use the start and stop commands if you want to analyze log file data that was collected
during a specific period of time. (Descriptions of the start and stop commands appear later
in this chapter.)

While the analyze command is executing, it lists alarm events such as alarm start, end, and
repeat status plus any text in associated print statements. Also, any text in PRINT
statements is listed as conditions (in IF statements) become true. EXEC statements are not
executed but are listed so you can see what would have been executed. An alarm summary
report shows a count of the number of alarms and the amount of time each alarm was active
(on). The count includes alarm starts and repeats, but not alarm ends.

If you want to see the alarm summary report only, issue the detail off command. However,
if you are using command line mode, detail off is the default so you need to specify -D to
see the alarm events as well as the alarm summary.

Example

The checkdef command checks the alarm definitions syntax in the alarmdef file and saves
the name of the alarmdef file for later use with the analyze command. The start today
command specifies that only data logged today is to be analyzed. Lastly, the analyze
command analyzes the log file in the default SCOPE data source specified in the datasources
file against the alarm definitions in the alarmdef file.

utility>
checkdef /var/opt/perf/alarmdef
start today
analyze

To perform the above task using command line arguments, enter:

utility -xc -D -b today -xa

checkdef

Use the checkdef command to check the syntax of the alarm definitions in an alarm
definitions file and report any warnings or errors that are found. This command also sets and
saves the alarm definitions file name for use with the analyze command.
Utility Commands 79

For descriptions of the alarm definitions syntax and how to specify alarm definitions, see
Chapter 9, Performance Alarms.

Syntax

checkdef [/directorypath/alarmdef]

Parameters

How to Use It

When you have determined that the alarm definitions are correct, you can process them
against the data in a log file using the analyze command.

In batch mode, if no alarm definitions file is specified, the default alarmdef file is used.

In interactive mode, if no alarm definitions file is specified, you are prompted to specify one.

Example

The checkdef command checks the alarm definitions syntax in the alarmdef file and then
saves the name of the alarmdef file for later use with the analyze command.

utility>
checkdef /var/opt/perf/alarmdef

To perform the above task using command line arguments, enter:

utility -xc

detail

Use the detail command to control the level of detail printed in the analyze, parmfile, and
scan reports.

The default is detail on in interactive and batch modes and detail off in command line
mode.

Syntax

Parameters

alarmdef The name of any alarm definitions file. This can be a user-specified file or the
default alarmdef file. If no directory path is specified, the current directory
will be searched.

detail [on]

[off]
80 Chapter 5

How to Use It

For explanations of how to use the detail command with the analyze, scan, and parmfile
commands, see the analyze, parmfile, and scan command descriptions in this chapter.

Examples

For examples of using the detail command, see the descriptions of the analyze, parmfile, and
scan commands in this chapter.

exit

Use the exit command to terminate the utility program. The exit command is equivalent
to the utility program’s quit command.

Syntax

exit
e

guide

Use the guide command to enter guided commands mode. The guided command interface
leads you through the various utility commands and prompts you to perform the most
common tasks that are available.

Syntax

guide

How to Use It

• To enter guided commands mode from utility’s interactive mode, type guide and press
Return.

• To accept the default value for a parameter, press Return.

• To terminate guided commands mode and return to interactive mode, type q at the
guide> prompt.

This command does not provide all possible combinations of parameter settings. It selects
settings that should produce useful results for the majority of users.

on Prints the effective contents of the parm file as well as parm file errors. Prints
complete analyze and scan reports.

off In the parm file report, application definitions are not printed. In the scan report,
scope collection times, initial parm file global information, and application
definitions are not printed. In the analyze report, alarm events and alarm actions
are not printed.
Utility Commands 81

help

Use the help command to access the utility program's online help facility.

Syntax

help [keyword]

How to Use It

You can enter parameters to obtain information on utility commands and tasks, or on help
itself. You can navigate to different topics by entering a key word. If more than one page of
information is available, the display pauses and waits for you to press Return before
continuing. Type q or quit to exit the help system and return to the utility program.

You can also request help on a specific topic. For example,

help tasks

or

help resize parmfile

When you use this form of the help command, you receive the help text for the specified topic
and remain in the utility command entry context. Because you do not enter the help
subsystem interactively, you do not have to type quit before entering the next utility
command.

list

Use the list command to specify the output file for all utility reports. The contents of the
report depend on which other commands are issued after the list command. For example,
using the list command before the logfile, detail on, and scan commands produces the
list file for a detailed summary report of a log file.

Syntax

list [filename]|*

where * sets the output back to stdout.

How to Use It

There are two ways to specify the list file for reports:

• Redirect stdout when invoking the utility program by typing:

utility > utilrept

• Or, use the list command when utility is running by typing:

list utilrept

In either case, user interactions and errors are printed to stderr, and reports go to the file
specified.

The filename parameter in the list command must represent a valid filename to which you
have write access. Existing files have the new output appended to the end of existing contents.
If the file does not exist, it will be created.

To determine the current output file, issue the list command without parameters:
82 Chapter 5

If the output file is not stdout, most commands are echoed to the output file as they are
entered.

Example

The list command produces a summary report on the extracted log file rxlog. The list
utilrept command directs the scan report listing to a disk file. Detail off specifies less
than full detail in the report. The scan command reads rxlog and produces the report.

The list * command sets the list device back to the default stdout. !lp utilrept sends the
disk file to the system printer.

utility>
logfile rxlog
list utilrept
detail off
scan
list *
!lp utilrept

To perform the above task using command line arguments, enter:

utility -l rxlog -f utilrept -d -xs print utilrept

logfile

Use the logfile command to open a log file. For many utility program functions, a log file
must be opened. You do this explicitly by issuing the logfile command or implicitly by
issuing some other command. If you are in batch or command line mode and do not specify a
log file name, the default /var/opt/perf/datafiles/logglob file is used. If you are in
interactive mode and do not specify a log file name, you are prompted to provide one or accept
the default /var/opt/perf/datafiles/logglob file.

Syntax

logfile [logfile]

How to Use It

You can specify the name of either a raw or extracted log file. If you specify an extracted log
file name, all information is obtained from this single file. You do not need to specify any of the
raw log files other than the global log file, logglob. Opening logglob gives you access to all
of the data in the other logfiles.

Raw log files have the following names:

logglob global log file

logappl application log file

logproc process log file

logdev device log file

logtran transaction log file

logls logical systems log file

logindx index log file
Utility Commands 83

Once a log file is opened successfully, a report is printed or displayed showing the general
content of the log file (or log files), as shown in the example below.

Global file: /var/opt/perf/datafiles/logglob version D
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logtran
Index file: /var/opt/perf/datafiles/logindx
System ID: homer
System Type 9000/715 S/N 6667778899 O/S HP-UX B.10.20. A
Data Collector: SCOPE/UX C.02.30
File Created: 06/14/99
Data Covers: 27 days to 7/10/99
Shift is: All Day

Data records available are:
 Global Application Process Disk Volume Transaction

Maximum file sizes:
 Global=10.0 Application=10.0 Process=20.0 Device=10.0 Transaction=10.0 MB

The first GLOBAL record is on 06/14/99 at 12:00 AM
The first APPLICATION record is on 06/25/99 at 12:00 AM
The first PROCESS record is on 07/06/99 at 12:01 AM
The first DEVICE record is on 05/01/99 at 11:50 AM
The first TRANSACTION record is on 05/01/99 at 11:55 AM
The default starting date & time = 05/01/99 11:50 AM (FIRST + 0)
The default stopping date & time = 07/10/99 11:59 PM (LAST - 0)

You can verify the log file you opened with the show command, as described later.

You can open another log file at any time by entering another logfile command. Any
currently opened log file is closed before the new log file is opened.

The resize and scan commands require a log file to be open. If no log file is currently open,
an implicit logfile command is executed.

menu

Use the menu command to print a list of the available utility commands.

Syntax

menu

Example

Do not rename raw log files. Access to these files assumes that the standard log file names
are in effect.

If you must have more than one set of raw log files on the same system, create a separate
directory for each set of files. Although the log file names cannot be changed, different
directories may be used. If you want to resize the log files in any way, you must have read/
write access to all the log files.
84 Chapter 5

utility> menu
Command Parameters Function
HELP topic] Get information on commands and options
GUIDE Enter guided commands mode for novice users
LOGFILE [logname] Specify a log file to be processed
LIST [filename|*] Specify the listing file
START [startdate time] Set starting date & time for SCAN or ANALYZE
STOP [stopdate time] Set ending date & time for SCAN or ANALYZE
DETAIL [ON|OFF] Set report detail for SCAN, PARMFILE, or ANALYZE
SHOW [ALL] Show the current program settings
PARMFILE [parmfile] Check parsing of a parameter file
SCAN [logname] Read the log file and produce a summary report
RESIZE [GLOB|APPL|PROC|DEV|TRAN]
 [DAYS=][EMPTY=] Resize raw log files
CHECKDEF [alarmdef] Check parsing and set the alarmdef file
ANALYZE Analyze the log file using the alarmdef file
! or Sh [command] Execute a system command
MENU or ? List the commands menu (This listing)
EXIT or Q Terminate the program
utility>

parmfile

Use the parmfile command to view and syntax check the Performance Collection Component
parm file settings that are used for data collection.

Syntax

parmfile [/directorypath/parmfile]

How to Use It

You can use the parmfile command to do any of the following:

• Examine the parm file for syntax warnings and review the resulting settings. All
parameters are checked for correct syntax and errors are reported. After the syntax check
is completed, only the applicable settings are reported.

• Find out how much room is left for defining applications.

• If detail on is specified, print the effective contents of the parm file plus any default
settings that were not overridden, and print application definitions.

In batch mode, if no parm file name is specified, the default parm file is used.

In interactive mode, if no parm file name is supplied, you are prompted to supply one.

Example

The parmfile command checks the syntax of the current parm file and reports any warnings
or errors. Detail on lists the logging parameter settings.

utility>
detail on
parmfile parm

To perform the above task using command line arguments, enter:

utility -xp -D
Utility Commands 85

quit

Use the quit command to terminate the utility program. The quit command is equivalent
to the utility program’s exit command.

Syntax

quit
q

resize

Use the resize command to manage the space in your raw log file set. This is the only
program you should use to resize the raw log files in order to preserve coordination between
the files and their internal control structures. If you use other tools you might remove or
destroy the validity of these control structures.

The utility program cannot be used to resize extracted files. If you want to resize an
extracted file, use the extract program to create a new extracted log file.

Syntax

resize [global] [days=maxdays] [empty=days] [yes]
 [application] [size=maxMB] [space=MB] [no]
 [process] [maybe]
 [device]
 [transaction]

Parameters

log file type Specifies the type of raw data you want to resize: global, application,
process, device, or transaction, which correspond to the raw log files
logglob, logappl, logproc, logdev, and logtran. If you do not
specify a data type and are running utility in batch mode, the batch
job terminates. If you are running utility interactively, you are
prompted to supply the data type based on those log files that currently
exist.

days & size Specify the maximum size of the log file. The actual size depends on the
amount of data in the file.

empty & space Specify the minimum amount of room required in the file after the
resizing operation is complete. This value is used to determine if any of
the data currently in the log file must be removed in the resizing process.
86 Chapter 5

You might expect that a log file would not fill up until the specified number of days after a
resizing operation. You may want to use this feature of the resize command to minimize the
number of times a log file must be resized by the scope collector because resizing can occur
any time the file is filled. Using resize to force a certain amount of empty space in a log file
causes the log file to be resized when you want it to be.

The days and empty values are entered in units of days; the size and space values are
entered in units of megabytes. Days are converted to megabytes by using an average
megabytes-per-day value for the log file. This conversion factor varies depending on the type
of data being logged and the particular characteristics of your system.

More accurate average-megabytes-per-day conversion factors can be obtained if you issue the
scan command on the existing log file before you issue the resize command. A scan
measures the accumulation rates for your system. If no scan is done or if the measured
conversion factor seems unreasonable, the resize command uses a default conversion factor
for each type of data.

Default resizing parameters are shown in the following table.

yes Specifies that resizing should be unconditionally performed. This is the
default action if utility is not running interactively. If no action is specified
when utility is running interactively, you are prompted to supply the
action.

no Specifies that resizing should not be performed. This parameter can be
specified as an action if you want to see the resizing report but do not want to
perform the resizing at that time.

maybe Specifies that utility should decide whether or not to resize the file. This
parameter forces utility to make this decision based on the current amount
of empty space in the log file (before any resizing) and the amount of space
specified in the resize command. If the current log file contains at least as
much empty space as specified, resizing does not occur. If the current log file
contains less than the specified empty space, resizing occurs.

maybe
(continued)

If the resizing can be made without removing any data from the log file (for
example, increasing the maximum log file size, or reducing the maximum log
file size without having to remove any existing data), resizing occurs.
The maybe parameter is intended primarily for use by periodic batch
executions. See the “Examples” subsection below for an explanation of how to
use the resize command in this manner.

Table 6 Default Resizing Parameters

Parameter If Executed Interactively If Executed in Batch

log file
type

You are prompted for each available log file
type.

No default. This is a
required parameter.

days
size

The current file size. The current file size.

empty space The current amount of empty space or
enough empty space to retain all data
currently in the file, whichever is smaller.

The current amount of
empty space or enough
empty space to retain all
data currently in the file,
whichever is smaller.
Utility Commands 87

How to Use It

Before you resize a log file, you must stop Performance Collection Component using the steps
under Stopping and Restarting Data Collection on page 43 in Chapter 2.

A raw log file must be opened before resizing can be performed. Open the raw log file with the
logfile command before issuing the resize command. The files cannot be opened by any
other process.

The resize command creates the new file scopelog in the directory set by TMPDIR
environment variable before deleting the original log file. If the environment variable
TMPDIR is not set, then the /var/tmp directory (/tmp on IBM AIX 4.1 and later) will be used
as temporary location. Make sure there is sufficient disk space in the directory specified by
the TMPDIR or in the /var/tmp directory (/tmp on IBM AIX 4.1 and later) to hold the original
log file before doing the resizing procedure.

After resizing, a log file consists of data plus empty space. The data retained is calculated as
the maximum file size minus the required empty space. Any data removed during the resizing
operation is lost. To save log file data for longer periods, use extract to copy this data to an
extracted file before doing the resize operation.

Resize Command Reports

One standard report is produced when you resize a raw log file. It shows the three
interrelated disk space categories of maximum file size, data records, and empty space, before
and after resizing. For example:

resize global days=120;empty=10
empty space raised to match file size and data records
final resizing parameters:
file: logglob megabytes / day: 0.101199
 ---currently----- --after resizing---
maximum size: 65 days (6.6 mb) 120 days (12.1 mb) 83% increase
data records: 61 days (6.2 mb) 61 days (6.2 mb) no data removed
empty space: 4 days (0.5 mb) 59 days (6.0 mb) 1225% increase

The megabytes per day value is used to convert between days and megabytes. It is either the
value obtained during the scan function or a default for the type of data being resized.

The far right-hand column is a summary of the net change in each category of log file space.
Maximum size and empty space can increase, decrease, or remain unchanged. Data records
have either no data removed or a specified amount of data removed during resizing.

If the resize is done interactively and one or more parameters are defaults, you can get a
preliminary resizing report. This report summarizes the current log file contents and any
parameters that were provided. The report is provided to aid in answering questions on the
unspecified parameters. For example:

resize global days=20
file resizing parameters (based on average daily
space estimates and user resizing parameters)

yes
no
maybe

You are prompted following the reported disk
space results.

Yes. Resizing will occur.

Table 6 Default Resizing Parameters (cont’d)

Parameter If Executed Interactively If Executed in Batch
88 Chapter 5

file: logglob megabytes / day: 0.101199
 -----currently---- --after resizing--
maximum size: 65 days (6.6 mb) 20 days (2.0 mb)
data records: 61 days (6.2 mb) ??
empty space: 4 days (0.5 mb) ??

In this example, you are prompted to supply the amount of empty space for the file before the
final resizing report is given. If no action parameter is given for interactive resizing, you are
prompted for whether or not to resize the log file immediately following the final resizing
report.

Examples

The following commands are used to resize a raw process log file. The scan is performed before
the resize to increase the accuracy of the number-of-days calculations.

logfile /var/opt/perf/datafiles/logglob
detail off
scan
resize process days=60 empty=30 yes

days=60 specifies holding a maximum of 60 days of data. empty=30 specifies that 30 days of
this file are currently empty. That is, the file is resized with no more than 30 days of data in
the file to leave room for 30 more days out of a total of 60 days of space. yes specifies that the
resizing operation should take place regardless of current empty space.

The next example shows how you might use the resize command in batch mode to ensure
that log files do not fill up during the upcoming week (forcing scope to resize them). You could
schedule a cron script using the at command that specifies a minimum amount of space such
as 7 days - or perhaps 10 days, just to be safe.

The following shell script accomplishes this:

echo detail off > utilin
echo scan >> utilin
echo resize global empty=10 maybe >> utilin
echo resize application empty=10 maybe >> utilin
echo resize process empty=10 maybe >> utilin
echo resize device empty=10 maybe >> utilin
echo quit >> utilin
utility < utilin > utilout 2> utilerr
Utility Commands 89

Specifying maybe instead of yes avoids any resizing operations if 10 or more days of empty
space currently exist in any log files. Note that the maximum file size defaults to the current
maximum file size for each file. This allows the files to be resized to new maximum sizes
without affecting this script.

 scan

Use the scan command to read a log file and write a report on its contents. (For a detailed
description of the report, see Utility Scan Report Details on page 69 in Chapter 3.

Syntax

scan

How to Use It

The scan command requires a log file to be opened. The log file scanned is the first of one of
the following:

• The log file named in the scan command itself.

• The last log file opened by any previous command.

• The default log file.

In this case, interactive users are prompted to override the default log file name if desired.

The following commands affect the operation of the scan function:

For more information about the detail, list, start, and stop commands, see their
descriptions in this chapter.

The scan command report consists of 12 sections. You can control which sections are included
in the report by issuing the detail command prior to issuing scan.

detail Specifies the amount of detail in the report. The default, detail on, specifies
full detail.

list Redirects the output to another file. The default is to list to the standard list
device.

start Specifies the date and time of the first log file record you want to scan. The
default is the beginning of the log file.

stop Specifies the date and time of the last log file record you want to scan. The
default is the end of the log file.
90 Chapter 5

The following four sections are always printed (even if detail off is specified):

• Scan start and stop actual dates and times

• Collector coverage summary

• Log file contents summary

• Log file empty space summary

The following sections are printed if detail on (the default) is specified:

• Initial parm file global information and system configuration information

• Initial parm file application definitions

• parm file global changes

• parm file application addition/deletion notifications

• Collector off-time notifications

• Application-specific summary reports

The following section is always printed if application data was scanned (even if detail off is
specified):

• Application overall summary

The following section is always printed if process data was scanned (even if detail off is
specified):

• Process log reason summary

Example

The scan of the current default global log file starts with records logged from June 1, 1999 at
7:00 AM until the present date and time.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 6/1/99 7:00 am
scan

To perform the above task using command line arguments, enter:

utility -D -b 6/1/99 7:00 am -xs

sh

Use sh to enter a shell command without exiting utility by typing sh or an exclamation
point (!) followed by a shell command.

Syntax

sh or ! [shell command]

Parameters
Utility Commands 91

How to Use It

Following the execution of the single command, you automatically return to utility. If you
want to issue multiple shell commands without returning to utility after each one, you can
start a new shell. For example,

sh ksh

or

!ksh

show

Use the show command to list the names of the files that are open and the status of the
utility parameters that can be set.

Syntax

show [all]

Examples

Use show to produce a list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob
List: "stdout"
Detail: ON for ANALYZE, PARMFILE and SCAN functions
The default starting date & time = 10/08/99 08:17 AM (FIRST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12:00 AM

Use show all to produce a more detailed list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob
 Global file: /var/opt/perf/datafiles/logglob
 Application file: /var/opt/perf/datafiles/logappl
 Process file: /var/opt/perf/datafiles/logproc
 Device file: /var/opt/perf/datafiles/logdev
 Transaction file: /var/opt/perf/datafiles/logtran
 Index file: /var/opt/perf/datafiles/logindx
 System ID: homer
 System Type 9000/715 S/N 66677789 OS/ HP-UX B.10.20 A
 Data Collector: SCOPE/UX C.02.30
 File created: 10/08/99
 Data Covers: 44 days to 11/20/99
 Shift is: All Day
Data records available are:
 Global Application Process Disk Volume Transaction

sh ls Executes the ls command and returns to utility.

!ls Same as above.

The default shift time is shown for information only. Shift time cannot be changed in utility.
92 Chapter 5

Maximum file sizes:
 Global=10.0 Application=10.0 Process=20.0 Device=10.0 Transaction 10.0
MB
List "stdout"
Detail ON for ANALYZE, PARMFILE and SCAN functions
The default starting date & time = 10/08/99 11:50 AM (FIRST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12:00 AM

start

Use the start command to specify the beginning of the subset of a log file that you want to
scan or analyze. Start lets you start the scan or analyze process at data that was logged at a
specific date and time.

The default starting date and time is set to the date and time of the first record of any type in
a log file that has been currently opened with the logfile command.

Syntax

Parameters

How to Use It

start
[date
[today
[last
[first

[time]]
[-days]
[-days]
[+days]

[time]]
[time]]
[time]]

date The date format depends on the native language configured on the system being
used. If you do not use native languages or have the default language set to C,
the date format is mm/dd/yy (month/day/year) or 06/30/99 for June 30, 1999.

time The time format also depends on the native language being used. For C, the
format is hh:mm am or hh:mm pm (hour:minute in 12-hour format with the am/
pm suffix) such as 07:00 am for 7 o'clock in the morning. Twenty-four hour time
is accepted in all languages. For example, 23:30 would be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an example in the
correct format is shown.
If no start time is given, a midnight (12 am) is assumed. A starting time of
midnight for a given day starts at the beginning of that day (00:00 on a 24-hour
clock).

today Specifies the current day. The parameter today-days specifies the number of
days prior to today’s date. For example, today-1 indicates yesterday’s date and
today-2 indicates the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter
last-days specifies the number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.
Utility Commands 93

The start command is useful if you have a very large log file and do not want to scan or
analyze the entire file. You can also use it to specify a specific time period for which data is
scanned. For example, you can scan a log file for data that was logged for a period beginning
14 days before the present date by specifying today-14.

You can use the stop command to further limit the log file records you want to scan.

If you are not sure whether native language support is installed on your system, you can force
utility to use the C date and time formats by issuing the following statement before
running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of the default global log file starts with records logged from August 5, 1999 at 8:00
AM until the present date and time.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 8/5/99 8:00 AM
scan

To perform the above task using command line arguments, enter:

utility -D -b 8/5/99 8:00 am -xs

stop

Use the stop command to specify the end of a subset of a log file that you want to scan or
analyze. Stop lets you terminate the scan or analyze process at data that was logged at a
specific date and time.

The default stopping date and time is set to the date and time of the last record of any type in
a log file that has been currently opened with the logfile command.

Syntax

Parameters

stop
[date
[today
[last
[first

[time]]
[-days]
[-days]
[+days]

[time]]
[time]]
[time]]
94 Chapter 5

How to Use It

The stop command is useful if you have a very large log file and do not want to scan the entire
file. You can also use it to specify a specific time period for which data is scanned. For
example, you can scan a log file for seven-days worth of data that was logged starting a month
before the present date.

If you are not sure whether native language support is installed on your system, you can force
utility to use the C date and time formats by issuing the following statement before
running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of 14 days worth of data starts with records logged from July 5, 1999 at 8:00 AM and
stops at the last record logged July 18, 1999 at 11:59 pm.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 7/5/99 8:00 am
stop 7/18/99 11:59 pm
scan

To perform the above task using command line arguments, enter:

utility -D -b 7/5/99 8:00 am -e 7/18/99 11:59pm -xs

date The date format depends on the native language configured on the system being
used. If you do not use native languages or have the default language set to C,
the date format is mm/dd/yy (month/day/year) or 06/30/99 for June 30, 1999.

time The time format also depends on the native language being used. For C, the
format is hh:mm am or hh:mm pm (hour:minute in 12-hour format with the am/
pm suffix) such as 07:00 am for 7 o'clock in the morning. Twenty-four hour time
is accepted in all languages. For example, 23:30 would be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an example in the
correct format is shown.
If no stop time is given, one minute before midnight (11:59 pm) is assumed. A
stopping time of midnight (12 am) for a given day stops at the end of that day
(23:59 on a 24-hour clock).

today Specifies the current day. The parameter today-days specifies the number of
days prior to today’s date. For example, today-1 indicates yesterday’s date and
today-2, the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter
last-days specifies the number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.
Utility Commands 95

96 Chapter 5

6 Using the Extract Program
The extract program has two main functions: it lets you extract data from raw log files and
write it to extracted log files. Extract also lets you export log file data for use by analysis
products such as spreadsheets.

The extract and export functions copy data from a log file; no data is removed.

Three types of log files are used by Performance Collection Component:

• scope log files, which contain data collected in Performance Collection Component by the
scope collector.

• extracted log files, which contain data extracted from raw scope log files.

• DSI (data source integration) log files, which contain user-defined data collected by
external sources such as applications and databases. The data is subsequently logged by
Performance Collection Component’s DSI programs.

Use the extract program to perform the following tasks:

• Extract subsets of data from raw scope log files into an extracted log file format that is
suitable for placing in archives, for transport between systems, and for analysis by
Performance Manager. Data cannot be extracted from DSI log files.

• Manage archived log file data by extracting or exporting data from extracted format files,
appending data to existing extracted log files, and organizing data by type, date, and shift
(hour of day).

• Export data from raw or extracted scope log files and DSI log files into ASCII, binary,
datafile, or WK1 (spreadsheet) formats suitable for reporting and analysis or for
importing into spreadsheets or similar analysis packages.

Examples of how various tasks are performed and how extract commands are used can be
found in online help for the extract program.

This chapter covers the following topics:

• Running the Extract Program

• Using Interactive Mode

• Extract Command Line Interface

• Overview of the Export Function

After the initial installation of Performance Collection Component, services must be started
for file installation to complete, before extract will function.

• The extract function cannot produce summarized data. Summary data can only be
produced by the export function.

• The maximum limits for the extract and export functions are as follows:
— Output file from the extract function can not exceed 3.5 GB
— Output file from the export function can not exceed 4GB.
97

Running the Extract Program

There are three ways to run the extract program:

Command line mode

You control the extract program using command options and arguments in the command
line.

Interactive mode

You supply interactive commands and parameters while executing the program with stdin
set to an interactive terminal or workstation.
If you are an experienced user, you can quickly specify only those commands required for a
given task. If you are a new user, you may want to specify guided mode to receive more
assistance in using extract. In guided mode, you are asked to select from a list of options in
order to perform a task. While in guided mode, the interactive commands that accomplish
each task are listed as they are executed, so you can see how they are used. You can quit or
re-enter guided mode at any time.

Batch mode

You can run the program and redirect stdin to a file that contains interactive commands and
parameters.

Syntax

The syntax for the command line interface is similar to standard UNIX command line
interfaces on other programs and is described in detail in this chapter.

For interactive and batch mode the command syntax is the same: a command followed by one
or more parameters. Commands can be entered in any order; if a command has a parameter
associated with it, the parameter must be entered immediately after the corresponding
command.

There are two types of parameters - required (for which there are no defaults) and optional
(for which defaults are provided). How the extract program handles these parameters
depends on the mode in which it is running.

• In interactive mode, if an optional parameter is missing, the program displays the default
parameter and lets you either confirm it or override it. If a required parameter is missing,
the program prompts you to enter the parameter.

• In batch mode, if an optional parameter is missing, the program uses the default values.
If a required parameter is missing, the program terminates.

Errors and missing data are handled differently for interactive mode than for command line
and batch mode, because you can supply additional data or correct mistakes in interactive
mode, but not in command line and batch mode.

Using Interactive Mode

Using the extract program’s interactive mode requires you to issue a series of commands to
execute a specific task.
98 Chapter 6

For example, if you want to export application data collected starting May 15, 2003, from the
default global log file, you issue the following commands after invoking the extract program

logfile /var/opt/perf/datafiles/logglob
application detail
start 5/15/2003
export

The logfile command opens /var/opt/perf/datafiles/logglob, the default global log
file. The start command specifies that only data logged after 5/15/03 will be exported. The
export command starts the exporting of the data.

Extract Command Line Interface

In addition to the interactive and batch mode command syntax, command options and
arguments can be passed to the extract program through the command line interface. The
command line interface fits into the typical UNIX environment by allowing the extract
program to be easily invoked by shell scripts and allowing its input and output to be
redirected into UNIX pipes.

For example, the command line equivalent of the example shown in the previous section
Using Interactive Mode on page 98 is:

extract -l -a -b 5/15/02 -xp

In command line mode, the global log file /var/opt/perf/datafiles/logglob is the
default; you do not have to specify it.

Command line options and arguments are listed in the following table. The referenced
command descriptions can be found in Chapter 7, Extract Commands.

Table 7 Command Line Arguments

Command
Option Argument Description

-b date time Specifies starting date and time of an extract
or export function. (See start command in
Chapter 6.)

-B UNIX start
time

Specifies starting time in UNIX format for an
extract or export function.

-e date time Specifies ending date and time of an extract
or export function. (See stop command in
Chapter 6.)

-E UNIX stop
time

Specifies stopping time in UNIX format for an
extract or export function.

-s time-time noweekends Specifies start and end time for specific
periods excluding weekends. (See shift
command in Chapter 6.)

-l logfile Specifies input log file. (See logfile command
in Chapter 6.) /var/opt/perf/
datafiles/logglob is the default.
Using the Extract Program 99

-r export
template
file

Specifies an export template file for export
function. (See report command in Chapter 6.)

-C classname opt Specifies scope data to extract or export,
or self-describing (DSI) data to export. (See
class command in Chapter 6.)
opt =
 detail (default)
 summary
 both
 off

-i Specifies scope data to extract or export
data from logical systems.

-k Exports killed processes only. If you use this
option, include the PROC_INTEREST metric in
reptfile.

gapkcdzntuy
iGADZNTUYI

Specifies types of data to extract/export:

g = global detail. (See global command in
Chapter 6.) global detail is off by default.

a = application detail. (See application
command in Chapter 6.)

p = process detail (See process command in
Chapter 6.)

k = process killed. (See process command in
Chapter 6.)

c = configuration detail (See configuration
command in Chapter 6.)

d = disk device detail (See disk command in
Chapter 6.)

z = lvolume detail (See lvolume command in
Chapter 6.)

n = netif detail (See netif command in Chapter
6.)

Table 7 Command Line Arguments (cont’d)

Command
Option Argument Description
100 Chapter 6

gapkcdzntuy
iGADZNTUYI
(continued)

t = transaction detail

u = CPU detail

y = filesystem detail
i = logical systems detail

NOTE: The following summary options are for
export only; the extract function does not
support data summarization.

G = global summary
Global summary is off by default.

A = application summary

D = disk device summary (See disk command
in Chapter 6.)

Z=lvolume summary (See lvolume command in
Chapter 6.)

N = netif summary (See netif command in
Chapter 6.)
I = logical systems summary

gapkcdzntuy
GADZNTUY
(continued)

T = transaction summary

U = CPU summary (See cpu command in
Chapter 6.)

Y = filesystem summary (See filesystem
command in Chapter 6.)

-v Generates verbose output report formats.

-f filename ,new
,append
,purge

Sends extract or export data to a file. If no
filename, sends data to default output files.
(See output command in Chapter 6.)

-ut Shows date and time in UNIX format in
exported DSI log file data.

-we 1.....7 Specifies days to exclude from export;
1=Sunday. (See weekdays command
description.)

-xp xopt Exports data to external format files. (See
export command in Chapter 6.)

Table 7 Command Line Arguments (cont’d)

Command
Option Argument Description
Using the Extract Program 101

When you are evaluating arguments and entering command options on the command line, the
following rules apply:

• Errors and missing data are handled exactly as in the corresponding batch mode
command. That is, missing data will be defaulted if possible and all errors cause the
program to terminate immediately.

• Echoing of commands and command results is disabled unless the -v argument is used to
enable verbose mode.

• If no valid action is specified (-xp, -xw, -xm, -xy, or -xt), extract starts reading
commands from its stdin file after all parameters have been processed.

• If an action is specified (-xp, -xw, -xm, -xy, or -xt), the program will execute those
command options after all other parameters are evaluated, regardless of where they were
positioned in the list of parameters.

• If an action is specified in the command line, the extract program will not read from its
stdin file; instead it will terminate following the action:

extract -f rxdata -r /var/opt/perf/rept1 -xp d-1 -G

Which translates into:

Note that the actual exporting is not done until the end so the -G parameter is processed
before the export is done.

Also notice that the log file was not specified so it uses the default logglob file.

-xt xopt Extracts data in system internal format. (See
extract command in Chapter 6.)
xopt =
 dwmy (Day Week Month
 Year)
 dwmy-[offset]
 dwmy [absolute]

-xw week Extracts a calendar week's data. (See weekly
command in Chapter 6.)

-xm month Extracts a calendar month's data. (See
monthly command in Chapter 6.)

-xy year Extracts a calendar year's data. (See monthly
command in Chapter 6.)

-? or ? Displays command line syntax.

Table 7 Command Line Arguments (cont’d)

Command
Option Argument Description

-f rxdata Outputs to a file named rxdata in current directory

-r rept1 File /var/opt/perf/rept1 contains the desired export format

-xp d-1 Exports data for this day minus 1 (yesterday)

-G Exports global summary data.
102 Chapter 6

Because an action was specified (-xp), once the export is finished the extract program
terminates without reading from its stdin file. In addition, verbose mode was not set with the
-v command option so all extraneous output to stdout is eliminated.

Overview of the Export Function

The extract program's export command converts Performance Collection Component raw,
extracted, or DSI log file data into exported files. The export command writes files in any one
of four possible formats: ASCII, datafile, binary, and WK1 (spreadsheet). Exported files can be
used in a variety of ways, such as reports, custom graphics packages, databases, and
user-written analysis programs.

How to Export Data

In the simplest form, you can export data by:

• specifying the default global log file, /var/opt/perf/datafiles/logglob, from which
you want to export data

• specifying the default export template file, /var/opt/perf/reptfile, that defines the
format of the exported data

• starting the export function.

The exported data is placed in a default output file named xfrdGLOBAL.asc in your current
directory. The output file's ASCII format is suitable for printing.

If you want to export something other than this default set of data, you can use other
commands and files in conjunction with the export command.

You can export the following types of data:

• You can specify which data items (metrics) are needed for each type of data.

• You can specify starting and ending dates for the time period in which the data was
collected along with shift and weekend exclusion filters.

global 5-minute and hourly summaries

application 5-minute and hourly summaries

process One-minute details

disk device 5-minute and hourly summaries

lvolume 5-minute and hourly summaries

transaction 5-minute and hourly summaries

configuration One record containing parm file information, and system
configuration information, for each time the data collector started.

any DSI class Intervals and summaries for DSI log files

netif 5-minute and hourly summaries

cpu 5-minute and hourly summaries

filesystem 5-minute and hourly summaries
Using the Extract Program 103

• You can specify the desired format for the exported data in an export template file. This
file can be created using any text editor or word processor that lets you save a file in
ASCII (text) format.

• You can also use the default export template file, /var/opt/perf/reptfile. This file
specifies the following output format settings:

— ASCII file format

— a 0 (zero) for the missing value

— a blank space as the field separator

— 60-minute summaries

— column headings are included

— a recommended set of metrics for a given data type is included in the export

Sample Export Tasks

Two sample export template files, repthist and reptall, are furnished with Performance
Collection Component. These files are located in the /var/opt/perf/ directory. You can use
repthist and reptall to perform common export tasks or as a starting point for custom
tasks, such as the task described next.

Generating a Printable CPU Report

The repthist export template file contains the specifications to generate a character graph
of CPU and disk usage for the system over time. This graph consists of printable characters
that can be printed on any device capable of 132 column printing. For example, you could use
the following extract program commands to generate a graph of the last seven days and
should produce approximately two pages (34 pages if 5-minute detail is specified instead of
hourly summaries).

logfile /var/opt/perf/datafiles/logglob
report /var/opt/perf/repthist
global summary
start today-7
export

The exported data is in an export file named xfrsGLOBAL.asc. To print it, type:

lp xfrsGLOBAL.asc

Producing a Customized Export File

If you want to create a totally new export template file, copy the export template file and
customize it using the extract program's guide command. In guided mode, you copy the
reptall file from the /var/opt/perf/ directory and read the scope or DSI log file specified
to dynamically create the list of data types and metric names.

If you extracting or exporting data from log files which are created from a specific platform, it
is recommended that you use the reptall file from the same platform. This is because the
list of metric classes supported are different on different platforms.
104 Chapter 6

The reptall file contains every possible metric for each type of scope log file data so you
need only uncomment those metrics that are of interest to you. This is easier than retyping
the entire export template file.

Export Data Files

If you used the output command to specify the name of an output file prior to issuing the
export command, all exported data will be written to this single file. If you are running the
extract program interactively and want to export data directly to your workstation
(standard output file), specify the extract command output stdout prior to issuing the
export command.

If the output file is set to the default, the exported data is separated into as many as 14
different default output files depending on the type of data being exported.

The default export log file names are:

where ext= asc (ASCII), bin (binary), dat (datafile), or wk1 (spreadsheet).

xfrdGLOBAL.ext Global detail data file

xfrsGLOBAL.ext Global hourly summary data file

xfrdAPPLICATION.ext Application detail data file

xfrsAPPLICATION.ext Application hourly summary data file

xfrdPROCESS.ext Process detail data file

xfrdDISK.ext Disk device detail data file

xfrsDISK.ext Disk device hourly summary data file

xfrdVOLUME.ext Logical volume detail data file

xfrsVOLUME.ext Logical volume summary data file

xfrdNETIF.ext Netif detail data file

xfrsNETIF.ext Netif summary detail data file

xfrdCPU.ext CPU detail data file

xfrsCPU.ext CPU summary data file

xfrdFILESYSTEM.ext Filesystem detail data file

xfrsFILESYSTEM.ext Filesystem summary data file

xfrdTRANSACTION.ext Transaction detail data file

xfrsTRANSACTION.ext Transaction summary data file

xfrdCONFIGURATION.ext Configuration data file

No output file is created unless you specify the type and associated items that match the data
in the export template file prior to issuing the export command.
Using the Extract Program 105

Export Template File Syntax

The export template file can contain all or some of the following information, depending on
how you want your exported data to be formatted and what you want the export file to
contain:

report "export file title"
format [ASCII]
 [datafile]
 [binary]
 [WK1] or
 [spreadsheet]
headings [on]
 [off]
separator= "char"
summary=value
missing=value
layout=single | multiple
output=filename
data type datatype
items

Parameters

report Specifies the title for the export file. For more information, see the following
section, Export File Title on page 108.

format Specifies the format for the exported data.

ASCII

ASCII (or text) format is best for copying files to a printer or terminal. It does
not enclose fields with double quotes (").

Datafile

The datafile format is similar to ASCII format except that non-numerical
fields are enclosed in double quotes. Because double quotes prevent strict
column alignment, files in datafile format are not recommended for direct
printing. The datafile format is the easiest format to import into most
spreadsheets and graphics packages.

Binary

The binary format is more compact because numerical values are
represented as binary integers. It is the most suitable format for input into
user-written analysis programs because it needs the least conversion, and it
maintains the highest metric accuracy. It is not suitable for direct printing.

WK1 (spreadsheet)

The WK1 (spreadsheet) format is compatible with Microsoft Excel and other
spreadsheet and graphics programs.
106 Chapter 6

headings Specifies whether or not to include column headings for the metrics listed in
the export file. If headings off is specified, no column headings are
written to the file. The first record in the file is exported data. If headings
on is specified, ASCII and datafile formats place the export title plus
column headings for each column of metrics written before the first data
records. Column headings in binary format files contain the description of
the metrics in the file. WK1 formats always contain column headings.

separator Specifies the character that is printed between each field in ASCII or
datafile formatted data. The default separator character is a blank space.
Many programs prefer a comma as the field separator. You can specify the
separator as any printing or nonprinting character.

summary Specifies the number of minutes for each summary interval. The value
determines how much time is included in each record for summary records.
The default interval is 60 minutes. The summary value can be set between 5
and 1440 minutes (1 day).

missing Specifies the data value to be used in place of missing data. The default value
for missing data is zero. You can specify another value in order to
differentiate missing from zero data. A data item may be missing if it was:

• not logged by a particular version of the scope collector

• not logged by scope because the instance (application, disk,
transaction, netif) it belongs to was not active during the interval, or

• in the case of DSI log files, no data was provided to the dsilog program
during an interval, resulting in “missing records”.

Missing records are, by default, excluded from exported data.

layout Specifies either single or multiple layouts (output per record output) for
data types such as application, disk, transaction, lvolume, or netif.
• Single layout writes one instance per record, for every application that

was active during the time interval. Example: One disk exported in one
record.

• Multiple layout writes multiple instances in one record for each time
interval, with part of that record reserved for each configured application.
Example: All disks exported in one record.

output Specifies the name of the output file where the exported data will be written.
output can be specified for each class or data type exported by placing
output filename just after the line indicating the data type that starts the
list of exported data items. Any valid file name can be specified for output.
You can also specify the name interactively using the output command. Any
name you specify overrides the default output file name.

data type Specifies one of the exportable data types: global, application, process,
disk, transaction, lvolume, netif, configuration, or DSI class name.
This starts a section of the export template file that lists the data items to be
copied when this type of data is exported.

items Specifies the metrics to be included in the exported file. Metric names are
listed, one per line, in the order you want them listed in the resulting file. You
must specify the proper data type before listing items. The same export
template file can include item lists for as many data types as you want. Each
data type will be referenced only if you choose to export that type of data.
Using the Extract Program 107

The output and layout parameters can be used more than once within an export template
file. For example:

data type global
 output=myglobal
 gbl_cpu_total_util

data type application
 output=myapp
 layout=multiple
 app_cpu_total_util

You can have more than one export template file on your system. Each one can define a set of
exported file formats to suit a particular need. You use the report command to specify the
export template file to be used with the export function.

Export File Title

The following items can be substituted in the export file title string:

For example, the string

report "!system_id data from !logfile on !date !time"

generates an export file title similar to

barkley data from logglob on 02/02/99 08:30 AM

Creating a Custom Graph or Report

Suppose you want to create a custom graph or report containing exported global and
application data. You would do the following:

1 Determine which data items (metrics) are needed from each data type and in what format
you will access them.

For this example, you want an ASCII file without headings and with fields separated by
commas.

2 Create and save the following ASCII export template file in the /var/opt/perf/
directory. Name the file report1.

You cannot specify different layouts within a single data type. For example, you cannot
specify data type disk once with layout = multiple and again with layout = single
within the same export file.

!date The date the export function was performed.

!time The time the export function was performed.

!logfile The fully qualified name of the source log file.

!class The type of data requested.

!collector The name and version of the collector program. (Not valid with DSI log
files.)

!system_id The identifier of the system that collected the data. (Not valid with DSI log
files.)
108 Chapter 6

REPORT "sample export template file (report1)"
FORMAT ASCII
HEADINGS OFF

DATA TYPE GLOBAL
 GBL_CPU_TOTAL_UTIL
 GBL_DISK_PHYS_IO_RATE

DATA TYPE APPLICATION
 APP_CPU_TOTAL_UTIL
 APP_DISK_PHYS_IO_RATE
 APP_ALIVE_PROCESSES

3 Run the extract program.

4 Issue the report command to specify the export template file you created.

report /var/opt/perf/report1

5 Specify global summary data and application summary data using the global and
application commands.

global summary
application summary

6 Issue the export command to start the export.

export

7 Because you did not specify where the program should get the performance data from, you
are prompted to do so. In this example, since the default log file is correct, just press Enter.

8 The output looks like this:

exporting global data50%......100%
exporting application data50%......100%
The exported file contains 31 days of data from 01/01/99 to 01/31/99
 examined exported
data type records records space
----------------------- --------- --------- ---------
global summaries 736 0.20 Mb
application summaries 2560 0.71 Mb

 0.91 Mb

The two files you have just created — xfrsGLOBAL.asc and xfrsAPPLICATION.asc —
contain the global and application summary data in the specified format.

Output of Exported Files

The contents of each exported file are:

export tittle line If export title and headings on were specified.

Names (application, netif,
lvolume, or transaction)

If headings on was specified along with a multiple layout
file.

Heading line1 If headings on was specified.

Heading line2 If headings on was specified.

first data record
Using the Extract Program 109

Report title and heading lines are not repeated in the file.

Notes on ASCII and Datafile Formats

The data in these format files is printable ASCII format. ASCII and datafile formats are
identical except that in the latter, all non-numeric fields are enclosed with double quotes.
Even the datafile header information is enclosed with double quotes.

The ASCII file format does not enclose fields with double quotes. Therefore, the data in ASCII
files will be properly aligned when printed.

Numerical values are formatted based on their range and internal accuracy. Since all fields
will not be the same length, be sure to specify the separator you want to use to start each field.

The user-specified separator character (or the default blank space) separates the individual
fields in ASCII and datafile formats. Blank spaces, used as separators, can be visually more
attractive if you plan to print the report. Other characters can be more useful as separators if
you plan to read the export template file with another program.

Using the comma as a separator is acceptable to many applications, but some data items may
contain commas that are not separators. These commas can confuse analysis programs. The
date and time formats can contain different special characters based on the native language
specified when you execute the extract program.

Notes on Binary Format

In binary format files, numerical values are written as 32-bit integers. This can save space by
reducing the overall file size, but your program must be able to read binary files. We do not
recommend copying a binary format file to a printer or a terminal.

In binary format, non-numerical data is written the same as it was in the ASCII format
except separator characters are not used. To properly use a binary format file, you should use
the record layout report printed by extract when you specify report reportfile,show. This
report gives you the starting byte for each item specified.

second data record

...

last data record

To use a nonprinting special character as a separator, enter it into your export template file
immediately following the first double quote in the separator parameter.

• Most spreadsheets accept files in datafile format using separator=",".
• Many spreadsheet packages accept a maximum of 256 columns in a single sheet. Use care

when exporting multiple layout types of data because it is easy to generate more than 256
total items. You can use the output of the report reportfile, show command to determine if
you are likely to see this problem.

• If you have a printer that supports underlining, you can create a more attractive printout
by specifying ASCII format and the vertical bar character (separator=|) and then printing
the file with underlining turned on.
110 Chapter 6

To maintain maximum precision and avoid nonstandard, binary floating-point
representations, all numerical values are written as scaled, 32-bit integers. Some items might
be multiplied by a constant before they are truncated into integer format.

For example, the number of seconds the CPU was used is multiplied by 1000 before being
truncated. To convert the value in the exported file back to the actual number of seconds,
divide it by 1000. For ease in conversion, specify headings on to write the scale factors to
the exported file. The report title and special header records are written to binary format files
to assist in programmatic interpretation.

Binary integers are written in the format that is native to the system on which the extract
program is being run. For example, Intel systems write “little endian” integers while HP-UX,
IBM AIX, and Sun systems write “big endian” integers. Use care when transporting binary
exported files to systems that use different “"endians”.

Binary Header Record Layout

Each record in a binary format exported file contains a special 16-byte record header
preceding any user-specified data. The report reportfile,show command includes the
following four fields that make up this record header:

Binary Record Header Metrics

The Record ID metric uniquely identifies the type of data contained in the record. Current
Record ID values are:

 1 Global Data Record (5 minute detail record)
101 Global Data Record (60 minute summary record)
 2 Application Data Record (5 minute detail record)
102 Application Data Record (60 minute summary record)
 3 Process Data Record (1 minute detail record)
 4 Configuration Data Record

Record Length Number of bytes in the record, including the 16 byte record header.

Record ID A number to identify the type of record (see below).

Date_Seconds Time since January 1, 1970 (in seconds).

Number_of_vars Number of repeating entries in this record.

-1 Title Record

-2 First header Record (Contains Item Numbers)

-3 Second header Record (Contains Item Scale Factors)

-4 Application Name Record (for Multiple Instance Application Files)

-5 Transaction Name Record (for Multiple Instance Transaction Files)

-7 Disk Device Name Record (for Multiple Instance Disk Device Files)

-8 Logical Volume Name Record (for Multiple Instance Lvolume Files)

-9 Netif Name Record (for Multiple Instance Netif Files)

-10 Filesystem Name Record (for Multiple Instance Netif Files)

-11 CPU Name Record (for Multiple Instance Netif Files)
Using the Extract Program 111

 7 Disk Device Data Record (5 minute detail record)
107 Disk Device Data Record (60 minute summary record)
 8 Logical Volume Data Record (5 minute detail record)
108 Logical Volume Data Record (60 minute summary record)
 9 Filesystem Data Record (5 minute detail record)
109 Filesystem Data Record (60 minute summary record)
11 Netif Data Record (5 minute detail record)
111 Netif Data Record (60 minute summary record)
12 Transaction Data Record (5 minute detail record)
112 Transaction Data Record (60 minute summary record)
13 CPU Data Record (5 minute detail record)
113 CPU Data Record (60 minute summary record)
ClassID +1,000,000 Class Data Record (5 minute detail record)
ClassID +1,000,000+100 Class Data Record (60 minute summary record)

The Date_Seconds metric is identical to the user selectable Date_Seconds metric and is
provided to ensure that records can be scanned easily for desired dates and times.

The Number_of_vars metric indicates how many groups of repeating fields are contained in
the record. For single instance data types, this value is zero.

For Multiple Instance application records, the Number_of_vars metric is the number of
applications configured. For Multiple Instance disk device records, the Number_of_vars
metric is the number of disk devices configured. For all header records, this metric is the
maximum number of repeating groups allowed.

Binary format files have special formats for the title and header records. These records
contain the information needed to describe the contents of the file so that a program can
properly interpret it. If headings off is specified, only data records will be in the file. If
headings on is specified, the following records will precede all data records.
112 Chapter 6

Binary Header Records

Title Record This record (Record ID -1) is written whenever headings on,
regardless of whether the user specified a report title. It contains
information about the log file and its source.

First Header Record The first header record (Record ID -2) contains a list of unique
item identification numbers corresponding to the items contained
in the log file. The position of the item ID numbers can be used to
determine the position and size of each exported item in the file.

Second Header Record The second header record (Record ID -3) contains a list of scale
factors which correspond to the exported items. For more details,
see the discussion of “Scale Factors” later in this section.

Application Name Record This record (Record ID -4) will only be present in application data
files that utilize the Multiple Layout format. It lists the names of
the applications that correspond to the groups of application
metrics in the rest of the file.

Transaction Name
Record

This record (Record ID -5) will only be present in transaction
tracking data files that utilize the Multiple Layout format. It lists
the names of the transactions that correspond to the groups of
transaction metrics in the rest of the file.

Disk Device Name
Record

This record (Record ID -7) will only be present in disk device data
files that utilize the Multiple Layout format. It lists the names of
disk devices that correspond to the groups of disk device metrics in
the rest of the file.

Logical Volume Name
Record

This record (Record ID -8) will only be present in logical volume
data files that utilize the Multiple Layout format. It lists the
names of logical volumes that correspond to the groups of logical
volume metrics in the rest of the file.

Netif Name Record This record (Record ID -9) will only be present in netif (LAN) data
files that utilize the Multiple Layout format. It lists the names of
netif devices that correspond to the groups of netif device
metrics in the rest of the file.

Filesystem Name Record This record (Record ID -12) will only be present in filesystem data
files that utilize the Multiple Layout format. It lists the names of
filesystems that correspond to the groups of filesystem metrics in
the rest of the file.

Cpu Name Record This record (Record ID -13) will only be present in CPU data files
that utilize the Multiple Layout format. It lists the names of CPUs
that correspond to the groups of CPU metrics in the rest of the file.
Using the Extract Program 113

Binary Title Record

The Title Record for BINARY files contains information designed to assist programmatic
interpretation of the exported file's contents. This record will be written to the exported file
whenever headings on is specified.

The contents of the Binary Title Record are:

Record Length 4 byte Int Length of Title Record
Record ID 4 byte Int -1
Date_Seconds 4 byte Int Date exported file was created
Number_of_vars 4 byte Int Maximum number of repeating
 variables
Size of Fixed Area 4 byte Int Bytes in nonvariable part of
 record
Size of Variable Entry 4 byte Int Bytes in each variable entry
GMT Time Offset 4 byte Int Seconds offset from Greenwich
 Mean Time
Daylight Savings Time 4 byte Int =1 indicates Daylight Savings
 Time
System ID 40 Characters, System Identification
Collector Version 16 Characters, Name & version of the data
 collector
Log File Name 72 Characters, Name of the source log file
Report Title 100 Characters, User specified report title

The Date_Seconds, GMT Time Offset, and Daylight Savings Time metrics in the Binary
Title Record apply to the system and time when the export file was created. If this is not the
same system that logged the data, these fields cannot properly reflect the data in the file.

Binary Item Identification Record

The first header record (record ID -2) in the binary file contains the unique item numbers for
each item exported. Each Item ID is a 4-byte integer number that can be cross referenced
using the rxitemid file supplied with this product. The Item ID fields are aligned with the
data fields they represent in the rest of the file. All binary exported data items will occupy a
multiple of 4 bytes in the exported file and each will start on a 4-byte boundary. If a data item
requires more then 4 bytes of space, its corresponding item ID field will be zero filled on the
left.

For example, the process metric Program requires 16 bytes. Its data and item ID records
would be:

Header 1 (Item Id Record) ...| 0| 0| 0|12012|
Process Data Record |Prog|ram_|name| _aaa|

Binary Scale Factor Record

The second header record (record ID -3) in the binary file contains the scale factors for each of
the exported items. Numeric items are exported to binary files as 32-bit (4-byte) integers in
order to minimize problems with the way in which different computer architectures
implement floating point. Before being truncated to fit into the integer format, most items are
multiplied by a fixed scale factor. This allows floating point numbers to be expressed as a
fraction, using the scale factor as a denominator.
114 Chapter 6

Each scale factor is a 32-bit (4-byte) integer to match the majority of data items. Special
values for the scale factors are used to indicate non-numeric and other special valued metrics.

Special Scale Factors

Non-numeric metrics, such as ASCII fields, have zero scale factors. A negative 1 scale factor
should not occur, but if it does it indicates an internal error in the extract program and should
be reported.

The DATE format is MPE CALENDAR format in the least significant 16 bits of the field (the 16
bits farthest right). The scale factor for date is 512. Scaling this as a 32-bit integer (dividing
by 512) isolates the year as the integer part of the date and the day of the year (divided by
512) as the fractional part.

TIME is a 4-byte binary field (hour, minute, second, tenths of seconds). The scale factor for time
is 65536. Dividing it by 65536 forms a number where the integer part is the (hour * 256) +
minute.

It is easier to handle a Date_Seconds value in a binary file.

Application Name Record

When application data is exported in the Multiple Layout format, a special Application Name
Record is written to identify the application groups. For binary format files, this record has
record ID -4. It consists of the binary record 16-byte header and a 20-byte application name
for each application which was defined at the starting date of the exported data.

If applications are added or deleted during the time covered in the data extraction, the
Application Name Record is repeated with the new application names.

Transaction Name Record

When transaction data is exported in the Multiple Layout format, a special Transaction Name
Record is written to identify the application-transaction name. For binary format files, this
record has a record ID -5. It consists of the binary record 16-byte header and a 60-byte
truncated application-transaction name for each transaction that was configured at the
starting date of the exported data. If transactions are added during the time covered in the
data extraction, the Transaction Name Record will be repeated with the new
application-transaction name appended to the end of the original list. Transactions that are
deleted after the start of the data extraction will not be removed from the Multiple Layout
data record.

Disk Device Name Record

When disk device data is exported in the Multiple Layout format, a special Disk Device Name
Record is written to identify the disk device name. For binary format files, this record has a
record ID -7. It consists of the binary record 16-byte header and a 20-byte disk device name for
each disk device that was configured at the starting date of the exported data.

If disk devices are added during the time covered in the data extraction, the Disk Device
Name Record will be repeated with the new disk device name appended to the end of the
original list. Disk devices that are deleted after the start of the data extraction will not be
removed from the Multiple Layout data record.
Using the Extract Program 115

Logical Volume Name Record

When logical volume data is exported in the Multiple Layout format, a special Logical Volume
Name Record is written to identify the logical volume name. For binary format files, this
record has a record ID -8. It consists of the binary record 16-byte header and a 20-byte disk
device name for each logical volume that was configured at the starting date of the exported
data.

If logical volumes are added during the time covered in the data extraction, the Logical
Volume Name Record will be repeated with the new logical volume name appended to the end
of the original list. Logical volumes that are deleted after the start of the data extraction will
not be removed from the Multiple Layout data record.

Netif Name Record

When netif data is exported in the Multiple Layout format, a special Netif Name Record is
written to identify the netif device name. For binary format files, this record has a record ID
-11. It consists of the binary record 16-byte header and a 20-byte netif device name for each
netif device that was configured at the starting date of the exported data.

If netif devices are added during the time covered in the data extraction, the Netif Name
Record will be repeated with the new device name appended to the end of the original list.
Netif devices that are deleted after the start of the data extraction will not be removed from
the Multiple Layout data record.
116 Chapter 6

7 Extract Commands
This chapter describes the extract program’s commands. It includes a table showing
command syntax, a table of commands for extracting and exporting data, and a command
reference section describing the commands in alphabetical order.

Commands and parameters for extract can be entered with any combination of uppercase
and lowercase letters. Only the first three letters of the command's name are required, except
for the weekdays and weekly commands that require you to enter the whole name. For
example, the command application detail can be abbreviated as app det.

Examples of how these commands are used can be found in online help for the extract
program.

The table on the following pages summarizes the syntax of the extract commands and their
parameters.

The extract function cannot produce summarized data. Summary data can only be produced
by the export function.

Table 8 Extract Commands: Syntax and Parameters

Command Parameter

application on
detail
summary (export only)
both (export only)
off (default)

class detail (default)
summary (export only)
both (export only)
off

cpu detail
summary (export only)
both (export only)
off (default)

configuration on
detail
off (default)

disk on
detail
summary (export only)
both (export only)
off (default)
117

exit
e

export day[ddd] [-days]
week [ww] [-weeks]
month[mm] [-months]
year [yy] [-years]

extract day[ddd] [-days]
week [ww] [-weeks]
month[mm] [-months]
year [yy] [-years]

filesystem detail
summary (export only)
both (export only)
off (default)

global on
detail (default)
summary (export only)
both (export only)
off

guide

help

list filename
*

logfile logfile

lvolume on
detail
summary (export only)
both (export only)
off (default)

menu

monthl

y yyymm
mm

netif on
detail
summary (export only)
both (export only)
off (default)

output outputfile
,new
,purgeboth
,append

Table 8 Extract Commands: Syntax and Parameters (cont’d)

Command Parameter
118 Chapter 7

process on
detail [app#[-#],...]
off (default)
killed

quit
q

report [export template file], show

shift starttime - stoptime
all day
noweekends

sh
!

shell command

show all

start date[time]
today[-days][time]
last[-days][time]
first[+days][time]

stop date[time]
today[-days][time]
last[-days][time]
first[+days][time]

transaction on
detail
summary (export only)
both (export only)
off (default)

weekdays 1.....7

weekly yyww
ww

yearly yyyy
yy

Table 8 Extract Commands: Syntax and Parameters (cont’d)

Command Parameter
Extract Commands 119

The following table lists the commands that are used for extracting and exporting data and
the types of log files used (scope log files or DSI log files).

Table 9 Extract Commands: Extracting and Exporting Data

Command
Extract
Data

Export
Data

scope Log
Files

DSI Log
Files

application x x x

class x x x x

configuration x x

cpu x x x

disk x x x

export x x x

extract x x

filesystem x x x

global x x x

logfile x x x x

lvolume x x x

monthly x x

netif x x

output x x x x

process x x x

report x x x

shift x x x

start x x x x

stop x x x x

transaction x x x x

weekdays x x x

weekly x x

yearly x x

logicalsystems x x x
120 Chapter 7

application

Use the application command to specify the type of application data that is being extracted
or exported.

The default is application off

Syntax

Parameters

Example

In this example, the application command causes detailed application log file data to be
exported: The output export file contains the application metrics specified in the myrept
export template file.

logfile /var/opt/perf/datafiles/logglob
global off
application detail
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -a -r /var/opt/perf/myrept -xp

application

[on]
[detail]
[summary]
[both]
[off]

on or detail Specifies that raw, 5-minute detail data should be extracted or
exported.

summary
(export only)

Specifies that data should be summarized by:
• the number of minutes specified with the summary parameter in

the specified export template file (export only)
• the default summary interval of one hour (export or extract)
Summarization can significantly reduce the size of the resulting
extracted or exported data, depending on the summarization interval
used. For example, hourly summary data is about one-tenth the size
of 5-minute detail data.

both
(export only)

Specifies that detail data and summary data are to be extracted or
exported.

off Specifies that no data of this type is to be extracted or exported.

If you are using Performance Manager, detail data must be included in an extracted file
before drawing application graphs with points every 5 minutes.
Extract Commands 121

class

Use the class command to specify the class of DSI data to be exported, or scope data to be
extracted or exported.

The default is class detail.

Syntax

Parameters

Examples

To export summary data in a DSI log file that contains a class named acctg_info, issue the
following command:

class acctg_info summary

Once the log file is specified by the user and opened by the extract program, the
acctg_info class is verified to exist in the log file and can subsequently be exported.

Other variations of this command are:

CLASS ACCTG_INFO SUMMARY
class ACCTG_INFO summary
class acctg_info sum

Commands can be either uppercase or lowercase. Class names are always upshifted and then
compared.

In the following example, summary data in a class named fin_info is exported.

extract>
class fin_info summary
export

To perform the above task using command line arguments, enter:

extract -l dsi.log -C fin_info summary -xp

 [detail]

class [classname] [summary]

[both]

[off]

classname Name of a group similarly classified metrics.

detail For DSI log files, specifies how much detail data is exported according to the
time set in DSI log file. For more information, see Overview of Data Source
Integration on page 261.
For scope log files, specifies that raw, 5-minute detail should be extracted or
exported.

summary
bothoff

See “Parameters” in the description of the command application on page 121.
Summary and both can only be exported.
122 Chapter 7

configuration

Use the configuration command to specify whether or not to export system configuration
information.

The default is configuration off.

Syntax

Parameters

All configuration information available in the log file is exported. Any begin, end, shift,
start, stop or noweekends commands that are used with the configuration command are
ignored.

Example

In this example, the configuration command causes system configuration information to be
exported. The output export file contains the configuration metrics specified in the myrept
export template file.

logfile /var/opt/perf/datafiles/logglob
configuration on
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -c -r /var/opt/perf/myrept -xp

cpu

Use the cpu command to specify the summarization level of CPU.

The default is cpu off.

Syntax

Parameters

configuration
[on]
[detail]
[off]

on or detail Specifies that all configuration records should be exported.

off Specifies that no configuration data is to be exported.

The configuration command affects only the export function. The extract function is not
affected because it always extracts system configuration information.

cpu
[detail]
[summary]
[both][off]
Extract Commands 123

Example

In this example, the cpu command causes CPU detail data that was collected starting July
26, 2001 to be exported. Because no export template file is specified, the default export
template file, reptfile, is used. All disk metrics are included in the output file as specified
by reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
cpu detail
start 7/26/01
export

To perform the above task using command line arguments, enter:

extract -u -b 7/26/01 -xp

disk

Use the disk command to specify the type of disk device data that is being extracted or
exported.

The default is disk off.

Syntax

Parameters

Example

In this example, the disk command causes disk detail data that was collected starting July
5, 1999 to be exported. Because no export template file is specified, the default export
template file, reptfile, is used. All disk metrics are included in the output file as specified
by reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
disk detail
start 7/5/99
export

detail Extracts or exports 5-minute detail records.

summary Exports summary records.

both Exports both detail and summary records.

off Extracts or exports no CPU data.

disk

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
bothoff

See “Parameters” in the description of the application
command at the beginning of this chapter. Summary and
both can only be exported.
124 Chapter 7

To perform the above task using command line arguments, enter:

extract -D -b 7/5/99 -xp

exit

Use the exit command to terminate the extract program. The exit command is equivalent
to the extract program’s quit command.

Syntax

exit
e

export

Use the export command to start the process of copying data into an exported file format.

Syntax

Parameters

Use one of the following parameters to export data for a particular interval.

If no parameters are used with the export command, the interval used for the exported data
is set by the start and stop commands.

How to Use It

There are four ways to specify a particular interval (day, week, month, year).

• Current interval - Specify the parameter only. For example, month means the current
month.

• Previous interval - Specify the parameter, a minus, and the number of intervals before the
current one desired. For example, day-1 is yesterday, week-2 is two weeks prior to the
current week.

export
[day
[week
[month
[year

[ddd] [yyddd] [-days]]
[ww] [yyww] [-weeks]]
[mm] [yymm] [-months]]
[yy] [yyyy] [-years]]

day Represents a single day

week Represents a single week, Monday through
Sunday

month Represents a single month, first through last
calendar day

year Represents a single year, first through last
calendar day
Extract Commands 125

• Absolute interval - Specify the parameter and a positive number. The number indicates
the absolute interval desired in the current year. For example, day 2 is January 2 of the
current year.

• Absolute interval plus year - Specify the parameter and a large positive number. The
number should consist of the last two digits of the year and the absolute interval number
in that year. In this format the absolute day would have 5 digits (99002 means January 2,
1999) and all other parameters would have four digits (month 9904 means April of 1999).

If you have not previously specified a log file or an export template file, the logfile command
uses the default global log file logglob and the report command uses the default export
template file reptfile.

The settings or defaults for all other parameters are used. For details on their actions, see
descriptions of the application, configuration, global, process, disk, lvolume, netif,
CPU, filesystem, transaction, output, shift, start, and stop commands.

The export command creates up to 16 different default output files based on the types of data
and level of summarization specified.

where ext = asc, dat, bin, or wk1

The default file names are created from the data type name. The prefix is either xfrd or xfrs
depending if the data is detailed or summary data. The extension is the specified asc (ASCII),
bin (binary), dat (datafile), or wk1 (spreadsheet) data format.

For example, classname = ACCTG_INFO would have export file names of:

xfrdGLOBAL.ext Global detail data file

xfrsGLOBAL.ext Global hourly summary data file

xfrdAPPLICATION.ext Application detail data file

xfrsAPPLICATION.ext Application hourly summary data file

xfrdPROCESS.ext Process detail data file

xfrdDISK.ext Disk device detail data file

xfrsDISK.ext Disk device summary data file

xfrdVOLUME.ext Logical volume detail data file

xfrsVOLUME.ext Logical volume summary data file

xfrdNETIF.ext Netif detail data file

xfrsNETIF.ext Netif summary data file

xfrdCPU.ext CPU detail data type

xfrsCPU.ext CPU summary data type

xfrdFILESYSTEM.ext Filesystem detail data type

xfrsFILESYSTEM.ext Filesystem summary data type

xfrdTRANSACTION.ext Transaction detail data file

xfrsTRANSACTION.ext Transaction summary data file

xfrdCONFIGURATION.ext Configuration detail data file

xfrdACCTG_INFO.wk1 detailed spreadsheet data for ACCT_INFO

xfrsACCTG_INFO.asc summarized ASCII data for ACCT_INFO
126 Chapter 7

For more information about exporting data, see Overview of the Export Function on page 103
in Chapter 5.

Example

In this example, the export command causes log file data collected yesterday from 8:00 am to
5 pm to be exported. Because no export template file is specified, the default export template
file, reptfile, is used. All global metrics are included in the output file as specified by
reptfile

logfile /var/opt/perf/datafiles/logglob
start today-1 8:00 am
stop today-1 5:00 pm
global both
export

To perform the above task using command line arguments, enter:

extract -gG -b today-1 8:00 am -e today-1 5:00 pm -xp

extract

Use the extract command to start the process of copying data from raw log files into an
extracted file format. Extracted files can be used for archiving or for analysis by analyzer
programs such as Performance Manager. You can extract data from raw log files and from
extracted files.

The extract command cannot be used to process data from DSI log files.

Syntax

Parameters

Use one of the following parameters to extract data for a particular interval:

If no parameters are used with the extract command, the interval used for data extraction is
set by the start and stop commands.

How to Use It

There are four ways to specify a particular interval (day, week, month, year).

• Current interval - Specify the parameter only. For example, month means the current
month.

extract
[day
[week
[month
[year

[ddd] [yyddd] [-days]]
[ww] [yyww] [-weeks]]
[mm] [yymm][-months]]
[yy] [yyyy] [-years]]

day Represents a single day

week Represents a single week, Monday through Sunday

month Represents a single month, first through last calendar day

year Represents a single year, first through last calendar day
Extract Commands 127

• Previous interval - Specify the parameter, a minus, and the number of intervals before the
current one desired. For example, day-1 is yesterday, week-2 is two weeks prior to the
current week.

• Absolute interval - Specify the parameter and a positive number. The number indicates
the absolute interval desired in the current year. For example, day 2 is January 2 of the
current year.

• Absolute interval plus year - Specify the parameter and a large positive number. The
number should consist of the last two digits of the year and the absolute interval number
in that year. In this format, the absolute day would have five digits (99002 means January
2, 1999) and all other parameters would have four digits (month 99904 means April of
1999).

The extract command starts data extraction. If not previously specified, the logfile and
output commands assume the following defaults when the extract command is executed:

log file = /var/opt/perf/datafiles/logglob
output file = rxlog,new

The settings or defaults for all other parameters are used. For details on their actions, see
descriptions of the application, global, process, disk, lvolume, netif, CPU, filesystem,
transaction, shift, start, and stop commands.

The size of an extracted log file cannot exceed 3.5 gigabytes.

Example

In the first example, data collected from March 1, 2000 to June 30, 2000 during the hours 8:00
am to 5:00 pm on weekdays is extracted. Only global and application detail data is extracted.

logfile /var/opt/perf/datafiles/logglob
start 03/01/00
stop 06/30/00
shift 8:00 am - 5:00 pm noweekends
global detail
application detail
extract

To perform the above task using command line arguments, enter:

extract -ga -b 03/01/00 -e 6/30/00 -s 8:00 am - 5:00 noweekends -xt

In the second example, a new extracted log file named rxjan00 is created. Any existing file
that has this name is purged. All raw log file data collected from January 1, 2000 through
January 31, 2000 is extracted:

logfile /var/opt/perf/datafiles/logglob
output rxjan00,purge
start 01/01/00
stop 01/31/00
global detail
application detail
transaction detail
process detail
disk detail
lvolume detail
netif detail
filesystem detail
cpu detail
extract
128 Chapter 7

To perform the above task using command line arguments, enter:

extract -f rxjan00,purge -gatpdznyu -b 01/01/00 -e 01/31/00 -xt

filesystem

Use this command to specify the summarization level of filesystem data to extract or
export.

The default is filesystem off.

Syntax

Parameters

Example

In this example, the filesystem command causes filesystem detail data that was collected
starting July 26, 2001 to be exported. Because no export template file is specified, the default
export template file, reptfile, is used. All filesystem metrics are included in the output file
as specified by reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
filesystem detail
start 7/26/01
export

To perform the above task using command line arguments, enter:

extract -y -b 7/26/01 -xp

global

Use the global command to specify the amount of global data to be extracted or exported.

The default is global detail. (In command line mode, the default is global off.)

filesystem
[detail]
[summary]
[both]
[off]

detail Extracts or exports 5-minute detail records.

summary Exports summary records.

both Exports both detail and summary records.

off Extracts or exports no filesystem data.
Extract Commands 129

Syntax

Parameters

How to Use It

Detail data must be extracted if you want to draw Performance Manager global graphs with
points every 5 minutes.

Summarized data is graphed by Performance Manager more quickly since fewer data records
are needed to produce a graph. If only global summaries are extracted, Performance Manager
global graphs cannot be drawn with data points every 5 minutes.

The both option maintains the access speed gained with the hourly summary records while
permitting you to draw Performance Manager global graphs with points every 5 minutes.

The off parameter is not recommended if you are using Performance Manager because you
must have global data to properly understand overall system behavior. Performance Manager
global graphs cannot be drawn unless the extracted file contains at least one type of global
data.

Example

The global command is used here to specify that no global data is to be exported (global
detail is the default). Only detailed transaction data is exported. The output export file
contains the transaction metrics specified in the myrept export template file.

extract>
logfile /var/opt/perf/datafiles/logglob
global off
transaction detail
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -l -t -r /var/opt/perf/myrept -xp

guide

Use the guide command to enter guided commands mode. The guided command interface
leads you through various extract commands and prompts you to perform some of the most
common tasks that are available.

Syntax

guide

global

[on]
[detail]
[summary]
[both]
[off]

detail or on
summary
both
off

See “Parameters” in the description of the application
command at the beginning of this chapter. Summary and both
can only be exported.
130 Chapter 7

How to Use It

• To enter guided commands mode from extract‘s interactive mode, type guide.

• To accept the default value for a parameter, press Return.

• To terminate guided commands mode and return to interactive mode, type q at the
guide> prompt.

This command does not provide all possible combinations of parameter settings. It selects
settings that should produce useful results for the majority of users. You can obtain full
control over extract‘s functions through extract‘s interactive command mode.

help

Use the help command to access online help.

Syntax

help [keyword]

How to Use It

You can enter parameters to obtain information on extract commands and tasks, or on help
itself. You can navigate to different topics by entering a key word. If more than one page of
information is available, the display pauses and waits for you to press Return before
continuing. Type q or quit to exit the help system and return to the extract program.

You can also request help on a specific topic. For example,

help tasks

or

help resize parms

When you use this form of the help command, you receive the help text for the specified topic
and remain in the extract command entry context. Because you do not enter the help
subsystem interactively, you do not have to type quit before entering the next extract
command.

list

Use the list command to specify the list file for all extract program reports.

Syntax

How to Use It

If you are exporting DSI log file data, we recommend using guided commands mode to create
a customized export template file and export the data.

list [file]
[*]
Extract Commands 131

You can use list at any time while using extract to specify the list device. It uses a file
name or list device name to output the user-specified settings. If the list file already exists, the
output is appended to it.

The data that is sent to the list device is also displayed on your screen.

While extract is running, type:

list outfilename

To return the listing device to the user terminal, type:

list stdout

or

list *

To determine the current list device, type the list command without parameters as follows:

list

If the list file is not stdout, most commands are echoed to the list file as they are entered.

Example

The following example, the list device is set to mylist. The results of the next commands are
printed to mylist and displayed on your screen.

extract>
logfile /var/opt/perf/datafiles/logglob
list mylist
global detail
shift 8:00 AM - 5:00 PM
extract

logfile

Use the logfile command to open a log file. You must open a log file for all extract program
functions. You can do this explicitly by issuing the logfile command, or implicitly by issuing
the extract command or export command. If you do not specify a log file name, the
extract program prompts you for a log file name and displays the default global log file /
var/opt/perf/datafiles/logglob. You can either accept the default or specify a different
log file.

Syntax

logfile [logfile]

How to Use It

To open a log file, you can specify the name of either a raw or extracted log file. You cannot
specify the name of a file created by the export command. If you specify an extracted log file
name, all information is obtained from this single file. If you specify a raw log file name, you
must specify the name of the global log file before you can access the raw log file. This is the
only raw log file name you should specify.

If the log file is not in your current working directory, you must provide its path.
132 Chapter 7

The global log file and other raw log files must be in the same directory. They have the
following names:

The general contents of the log file are displayed when the log file is opened.

Example

This is a typical listing of the default global log file.

Global file: /var/opt/perf/datafiles/logglob, version D
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logdev
Index file: /var/opt/perf/datafiles/logindx
System ID: homer
System Type 9000/715/ S/N 2223334442 O/S HP-UX B.10.20 A
Data collector: SCOPE/UX C.02.30
File Created: 10/08/99
Data Covers: 44 days to 11/20/99
Shift is: All Day
Data records available are:
Global Application Process Disk Volume Transaction
Maximum file sizes:
Global=10.0 Application=10.0 Process=20.0 Device=10.0 Transaction=10.0 MB
The first GLOBAL record is on 10/08/99 at 08:17 AM
The first NETIF record is on 10/08/99 at 08:17 AM
The first APPLICATION record is on 11/17/99 at 12:15 PM
The first PROCESS record is on 10/08/99 at 08:17 AM
The first DEVICE record is on 10/31/99 at 10:45 AM
The Transaction data file is empty
The default starting date & time = 10/08/99 11:50 AM (LAST -30)
The default stopping date & time = 11/20/99 11:59 PM (LAST -0)

lvolume

Use the lvolume command to specify the type of logical volume data that is being extracted or
exported. (This command is used only on HP-UX systems.)

The default is lvolume off.

Syntax

logglob
logappl
logproc
logdev
logtran
logindx

global log file
application log file
process log file
device log file
transaction log file
index log file

Do not rename raw log files! When accessing these files, the program assumes that the
standard log file names are in effect. If you must rename log files to place log files from
multiple systems on the same system for analysis, you should first extract the data and then
rename the extracted log files.
Extract Commands 133

Parameters

Example

In this example, a new extracted log file named rx899 is created and any existing file that
has that name is purged. All logical volume data collected from August 1 through August 31 is
extracted.

logfile /var/opt/perf/datafiles/logglob
output rx899,purge
start 08/01/99
stop 08/31/99
global detail
lvolume detail
month 9908

To perform the above task using command line arguments, enter:

extract -f rx899,purge -gz -xm 9908

menu

Use the menu command to print a list of the available extract commands.

Syntax

menu

Example

Command Parameters Function

HELP [topic] Get information on commands and options

GUIDE Enter guided commands mode for novice users

LOGFILE [logname] Specify a log file to be processed

LIST [filename|*] Specify the listing file

OUTPUT [filename]
 [,NEW/PURGE/APPEND] Specify a destination file

REPORT [filename][,SHOW] Specify an Export Format file for EXPORT"

GLOBAL [DETAIL/SUMMARY/BOTH/OFF] Extract GLOBAL records

APPLICATION [DETAIL/SUMMARY/BOTH/OFF] Extract APPLICATION records

PROCESS [DETAIL/OFF/KILLED][APP=] Extract PROCESS records

lvolume

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” in the description of the application
command at the beginning of this chapter. Summary and
both can only be exported.
134 Chapter 7

DISK [DETAIL/SUMMARY/BOTH/OFF] Extract DISK DEVICE records

LVOLUME [DETAIL/SUMMARY/BOTH/OFF] Extract Logical VOLUME records

NETIF [DETAIL/SUMMARY/BOTH/OFF] Extract Logical NETIF records

CPU [DETAIL/SUMMARY/BOTH/OFF] Extract CPU records

FILESYSTEM [DETAIL/SUMMARY/BOTH/OFF] Extract FILESYSTEM records

CONFIG [DETAIL/OFF] Export CONFIGURATION records

CLASS classname[DETAIL/SUMMARY/BOTH/OFF] Export classname records

TRANSACTION [DETAIL/SUMMARY/BOTH/OFF] Extract TRANSACTION records

START [startdate time] Specify a starting date and time for SCAN

STOP [stopdate time] Specify an ending date and time for SCAN

SHIFT [starttime - stoptime] [NOWEEKENDS] Specify daily shift times

SHOW [ALL] Show the current program settings

EXPORT [d/w/m/y][-offset] Copy log file records to HOST format files

EXTRACT [d/w/m/y][-offset] Copy selected records to output (or append)
file

WEEKLY [ww/yyww] Extract one calendar week's data with auto file names

MONTHLY [mm/yymm] Extract one calendar month's data with auto file names

YEARLY [yy/yyyy] Extract one calendar year's data with auto file names

WEEKDAYS [1...7] Set days to exclude from export 1=Sunday ! or SH
 [command] Execute a system command

MENU or ? List the command menu (this listing)

EXIT or Q Terminate the program

monthly

Use the monthly command to specify data extraction based on a calendar month. During
execution, this command sets the start and stop dates to the proper dates, based on the month
and year of the data extracted.

The name of the output file consists of the letters rxmo followed by the four digits of the year
and the two-digit number of the month being extracted. For example, data extracted in March
1999 would be output to a file named rxmo199903.

Syntax

Parameters

monthly [yymm]
[mm]
Extract Commands 135

If you do not specify the log file before executing the monthly command, the default logglob
file is used.

How to Use It

Use the monthly command when you are extracting data for archiving on a monthly basis.

The type of data extracted and summarized follows the normal rules for the extract
command and can be set before executing the monthly command. These settings are honored
unless a monthly output file already exists. If it does, data is appended to it based on the type
of data that was originally specified.

The monthly command has a feature that opens the previous month's extracted file and
checks to see if it is filled--whether it contains data extracted up to the last day of the month.
If not, the monthly command appends data to this file to complete the previous month's
extraction.

For example, a monthly command is executed on May 7, 1999. This creates a log file named
rxmo199905 containing data from May 1 through the current date (May 7).

On June 4, 1999, another monthly command is executed. Before the rxmo199906 file is
created for the current month, the rxmo199905 file from the previous month is opened and
checked. When it is found to be incomplete, data is appended to it to complete the extraction
through May 31, 1999. Then, the rxmo199906 file is created to hold data from June 1, 1999 to
the current date (June 4).

As long as you execute the monthly command at least once a month, this feature will complete
each month's file before creating the next month's file. When you see two adjacent monthly
files--for example, rxmo199905 (May) and rxmo199906 (June)--you can assume that the first
file is complete for that month and it can be archived and purged.

Example

In this example, detail application data logged during May 1999 is extracted.

logfile /var/opt/perf/datafiles/logglob
global off
application detail
monthly 9905

To perform the above task using command line arguments, enter:

extract -a -xm 9905

monthly Extracts data from the current (default) month.

monthly mm Extracts data for a specific month from the current year’s data (where
mm is a number from 01 to 12).

monthly yymm Extracts data for a specific month and year (where yymm is a single
number consisting of the last two digits of the year and two-digit month
number). For example, to extract data for February 1999, specify
monthly 9902.

The monthly and extract month commands are similar in that they both extract one
calendar month's data. The monthly command ignores the setting of the output command,
using instead predefined output file names. It also attempts to append missing data to the
previous month's extracted log file if it is still present on the system. The extract month
command, on the other hand, uses the settings of the output command. It cannot append
data to the previous month's extracted file since it does not know its name.
136 Chapter 7

netif

Use the netif command to specify the type of logical network interface (LAN) data to
extract or export. Netif data is logged in the logdev file.

The default is netif off.

Syntax

Parameters

Example

In this example, netif detail data collected from March 1, 2000 to June 30, 2000 during the
hours 8:00 am to 5:00 pm on weekdays is extracted.

logfile /var/opt/perf/datafiles/logglob
start 03/01/00
stop 06/30/00
shift 8:00 AM - 5:00 PM noweekends
netif detail
extract

To perform the above task using command line arguments, enter:

extract -n -b 03/01/00 -e 6/30/00 -s 8:00 am - 5:00 noweekends -xt

output

Use the output command to specify the name of an output file for the extract or export
functions.

The optional second parameter specifies the action to be taken if an output file with the same
name exists.

Syntax

Parameters

netif

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” in the description of the application
command at the beginning of this chapter. Summary and
both can only be exported.

output [filename]
[,new]
[,purge]
[,append]
Extract Commands 137

How to Use It

If you do not specify an action in batch mode, the default action,new is used. In interactive
mode, you are prompted to enter an action if a duplicate file is found.

If you do not specify an output file, default output files are created. The default output file
names are:

For extract: rxlog

For export:

xfrdGLOBAL.ext
xfrsGLOBAL.ext
xfrdAPPLICATION.ext
xfrsAPPLICATION.ext
xfrdPROCESS.ext
xfrdDISK.ext
xfrsDISK.ext
xfrdLVOLUME.ext
xfrsLVOLUME.ext
xfrdNETIF.ext
xfrsNETIF.ext
xfrdCPU.ext
xfrsCPU.ext
xfrdFILESYSTEM.ext
xfrsFILESYSTEM.ext
xfrdTRANSACTION.ext
xfrsTRANSACTION.ext
xfrdCONFIGURATION.ext

where ext = asc (ASCII), dat (datafile), bin (binary), or wk1 (spreadsheet).

A special file name, stdout (or *), can be used with the export operation to direct the output
to the stdout file (normally your terminal or workstation, although this can be redirected
using shell commands).

output stdout

or

output *

To return the output to its default settings, type:

output default

or

output -

,new Specifies that the output file must be a new file. This is the default action in
batch mode. If a file with the same name exists, the batch job terminates.

,purge Specifies that any existing file should be purged to make room for the new
output file.

,append Specifies that an existing extracted file should have data appended to it. If no
file exists with the output file name specified, a new file is created.
138 Chapter 7

Example

In this example, no output file is specified so the default output file, rxlog is used for the
application summary data being extracted. The ,purge option specifies that any existing
output file should be purged.

extract>
logfile /var/opt/perf/datafiles/logglob
output rxlog,purge
global off
application detail
extract month 9905

To perform the above task using command line arguments, enter:

extract -f rxlog,purge -a -xm 9905

process

Use the process command to specify whether or not to extract or export process data.

The default is process off.

Syntax

Parameters

You can override the default output file names for exported files using the output parameter
in the export template file.
You should not output extract operation files to stdout, because they are incompatible with
ASCII devices. You should also not output binary or WK1 formats of the export operation to
the stdout file for the same reason.
Care should be taken to avoid appending extracted data to an existing exported data file and
to avoid appending exported data to an existing extracted file. Attempts to append the wrong
data type will result in an error condition.

[on]

process [detail] [application=#[-#] ,...]

[off]

[killed]

on Specifies that process data should be extracted or exported.

detail Specifying process detail is the same as specifying process on.
Extract Commands 139

Example

In this example, the process command specifies processes that terminated during an interval
and belong to applications 1, 4, 6, 7, 8, or 10. Use the utility program’s scan command to
find the application numbers for specific applications.

process killed applications=1,4,6-8,10

quit

Use the quit command to terminate the extract program. The quit command is equivalent
to the extract program’s exit command.

Syntax

quit

q

report

Use the report command to specify the export template file to be used by the export
function. If no export template file is specified, the default export template file, reptfile, is
used. The export template file is used to specify various output format attributes used in the
export function. It also specifies which metrics will be exported.

If you are in interactive mode and specify no export template file, all metrics for the data
types requested will be exported in ASCII format.

Syntax

report [exporttemplatefile] [,show]

Parameters

off Specifies that process data should not be extracted or exported.

killed Specifies only processes that have an interest reason that includes killed.
(Processes that terminated in the measurement interval.)

application Specifies only processes that belong to selected applications. An application
can be entered as a single number or as a range of application numbers (7-9
means applications 7, 8, and 9). The application number is determined by
the order of the application definition in the parm file when the data was
collected. If you are specifying multiple applications, separate each one
with a comma.

Process data can increase the size of an extracted log file significantly. If you plan to copy the
log file to a workstation for analysis, you might want to limit the amount of process data
extracted.
140 Chapter 7

How to Use It

When you issue this command, you are prompted by a message that asks whether or not you
want to validate metrics in the export template with the previously specified log file.
Validation ensures that the metrics specified in the export template file exist in the log file.
This allows you to check for possible errors in the export template file. If no validation is
performed, this action is deferred until you perform an export.

sh

Use sh to enter a shell command without exiting extract by typing sh or an exclamation
point(!) followed by a UNIX shell command.

Syntax

sh or ! [shell command]

Parameters

How to Use It

Following the execution of the single command, you automatically return to extract. If you
want to issue multiple shell commands without returning to extract after each one, you can
start a new shell.

If you issue the sh command without the name of the shell command, you are prompted to
supply it. For example,

sh

enter SYSTEM command: ls

shift

Use the shift command to limit data extraction to certain hours of the day corresponding to
work shifts and to exclude weekends (Saturday and Sunday).

The default is shift all day to extract data for all day, every day including weekends.

,show Specifies that the field positions and starting columns should be listed for all
metrics specified in the export template file. This listing can be used when export
files are processed by other programs.

The ,show parameter of the report command discussed here is different from the show
command discussed later.

sh ls Executes the ls command and returns to extract. The shell command is any
system command.

!ls Same as above.

!ksh Starts a Korn shell. Does not return immediately to extract. Type exit or
CTRL-d Return to return to the extract program.
Extract Commands 141

Syntax

Parameters

The starttime and stoptime parameters are entered in the same format as the time in the
start command. Shifts that span midnight are permitted. If starttime is scheduled after
the stoptime, the shift will start at the start time and proceed past midnight, ending at the
stoptime of the next day.

Example

In this example, disk detail data collected between 10:00 am and 4:00 pm every day starting
June 15, 1999 is extracted.

extract>
logfile /var/opt/perf/datafiles/logglob
global off
disk detail
shift 10:00 am - 4:00 PM
start 6/15/99
extract

To perform the above task using command line arguments, enter:

 extract -d -b 6/15/99 -s 10:00 AM-4:00 PM -xt

show

Use the show command to list the names of the opened files and the status of the extract
parameters that can be set.

Syntax

show [all]

Examples

Use show by itself to produce a list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob
Output: Default
Report: Default
List: "stdout"

shift
[starttime-stoptime]
[all day]
[noweekends]

all day Specifies the default shift of 12:00 am - 12:00 am (or 00:00 -00:00 on a
24-hour clock).

noweekends Specifies the exclusion of data which was logged on Saturdays and Sundays.
If noweekends is entered in conjunction with a shift that spans midnight,
the weekend will consist of those shifts that start on Saturday or Sunday.

The show command discussed here is different from the ,show parameter of the report
command discussed earlier.
142 Chapter 7

The default starting date & time = 10/08/99 12:00 AM (LAST -30)
The default stopping date & time = 11/20/99 11:59 PM (LAST -0)
The default shift = 12:00 AM - 12:00 PM
GLOBAL DETAIL records will be processed
APPLICATION. NO records will be processed
PROCESS NO records will be processed
DISK DEVICE. NO records will be processed
LVOLUME. NO records will be processed
TRANSACTION. NO records will be processed
NETIFNO records will be processed
CPUNO records will be processed
FILESYSTEM.NO records will be processed
ConfigurationNO records will be processed
Use show all to produce a more detailed list that may look like this:
Logfile: /var/opt/perf/datafiles/logglob
Global file: /var/opt/perf/datafiles/logglob,version D
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logdev
Index file: /var/opt/perf/datafiles/logindx
System ID: homer
System Type 9000/715/ S/N 2223334442 O/S HP-UX B.10.20 A
Data collector: SCOPE/UX C.02.30
File Created: 10/08/99
Data Covers: 44 days to 11/20/99
Shift is: All Day
Data records available are:
 Global Application Process Disk Volume Transaction
Maximum file sizes:
 Global=10.0 Application=10.0 Process=20.0 Device=10.0
 Transaction=10.0 MB
Output: Default
Report: Default
List: "stdout"
The default starting date & time = 10/08/99 11:50 AM (LAST -30)
The default stopping date & time = 11/20/99 11:59 PM(LAST - 0)
The default shift = 12:00 AM - 12:00 PM
GLOBAL...........DETAIL...........records will be processed
APPLICATION....................NO records will be processed
PROCESS........................NO records will be processed
DISK DEVICE....................NO records will be processed
LVOLUME........................NO records will be processed
TRANSACTION....................NO records will be processed
NETIF..........................NO records will be exported
CPU............................NO records will be processed
FILESYSTEM.....................NO records will be processed
ConfigurationNO records will be exported
Export Report Specifications:
 Interval = 3600, Separator = " "
 Missing data will not be displayed
 Headings will be displayed
 Date/time will be formatted
 Days to exclude: None
Extract Commands 143

start

Use the start command to set a starting date and time for the extract and export
functions. The default starting date is the date 30 full days before the last date in the log file,
or if less than 30 days are present, the date of the earliest record in the log file.

Syntax

Parameters

How to Use It

The following commands override the starting date set by the start command.

• weekly

• monthly

• yearly

• extract (If day, week, month, or year parameter is used)

• export (If day, week, month, or year parameter is used)

Example

In this example, the start command specifies June 5, 1999 8:00 am as the start time of the
first interval to be extracted. The output command specifies an output file named myout.

logfile /var/opt/perf/datafiles/logglob

start
[date [time]]
[today [-day][time]]
[last [-days][time]]
[first [+days][time]]

date The date format depends on the native language that is configured for your
system. If you do not use native languages or you have set C as the default
language, the data format is mm/dd/yy (month/day/year) such as 09/30/99 for
September 30, 1999, for the extract or export function.

time The time format also depends on the native language used. For the C language,
the format is hh:mm am or hh:mm pm (hour:minute in a 12-hour format with
the am or pm suffix). For example, 07:00 am is 7 o'clock in the morning.
Twenty-four hour time is accepted in all languages. For example, 23:30 would be
accepted for 11:30 pm.
If the format of the date or time is unacceptable, you are prompted with an
example in the correct format.
If no start time is given, midnight (12:00 am) is assumed. A starting time of
midnight for a given day starts at the beginning of that day (00:00 on a 24-hour
clock).

today Specifies the current day. The qualification of the parameter, such as
today-days, specifies the number of days prior to today's date. For example,
today-1 indicates yesterday's date and today-2, the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter
last-days specifies the number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.
144 Chapter 7

start 6/5/99 8:00 am
output myout
global detail
extract

To perform the above task using command line arguments, enter:

extract -g -b 06/05/99 8:00 AM -f myout -xt

stop

Use the stop command to terminate an extract or export function at a specified date and
time.

The default stopping date and time is the last date and time recorded in the log file.

Syntax

Parameters

How to Use It

The following commands override the stopping date set by the stop command.

• weekly

start
[date [time]]
[today [-day][time]]
[last [-days][time]]
[first [+days][time]]

date The date format depends on the native language that is configured for your
system. If you do not use native languages or you have set C as the default
language, the data format is mm/dd/yy (month/day/year) such as 09/30/99 for
September 30, 1999, for the extract or export function.

time The time format also depends on the native language used. For the C language,
the format is hh:mm am or hh:mm pm (hour:minute in a 12-hour format with
the am or pm suffix). For example, 07:00 am is 7 o'clock in the morning.
Twenty-four hour time is accepted in all languages. For example, 23:30 would be
accepted for 11:30 pm.
If the format of the date of time is unacceptable, you are prompted with an
example in the correct format.
If no stop time is given, one minute before midnight (11:59 pm) is assumed. A
stopping time of midnight (12:00 am) for a given day stops at the end of that day
(23:59 on a 24-hour clock).

today Specifies the current day. The qualification of the parameter, such as
today-days, specifies the number of days prior to today's date. For example,
today-1 indicates yesterday's date and today-2 the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter
last-days specifies the number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.
Extract Commands 145

• monthly

• yearly

• extract (If day, week, month, or year parameter is used)

• export (If day, week, month, or year parameter is used)

Example

In this example, the stop command specifies June 5, 1999 5:00 pm as the stopping time of the
last interval to be extracted. The output command specifies an output file named myout.

extract>
logfile /var/opt/perf/datafiles/logglob
start 6/5/99 8:00 AM
stop 6/5/99 5:00 PM
output myout
global detail
extract

To perform the above task using command line arguments, enter:

extract -g -b 6/5/99 8:00 AM -e 6/5/99 5:00 PM -f myout -xt

transaction

Use the transaction command to specify the type of transaction data that is being extracted
or exported.

Syntax

Parameters

Example

A new extracted log file called rxmay99 is created on June 1, 1999. Any existing file that has
this name is purged. All raw transaction log file data collected from May 1, 1999 to May 31,
1999 is extracted.

extract>
logfile /var/opt/perf/datafiles/logglob
output rxmay99,purge
global detail
transaction detail
month 9905

To perform the above task using command line arguments, enter:

transaction

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” in the description of the application command at the
beginning of this chapter. Summary and both can only be exported.
146 Chapter 7

extract -gt -f rxmay99,purge -xm 9905
Extract Commands 147

weekdays

Use the weekdays command to exclude data for specific days from being exported (day 1 =
Sunday).

Syntax

weekdays [1|2.....7]

How to Use It

If you want to export data from only certain days of the week, use this command to exclude
the days from which you do not want data. Days have the following values:

Sunday =1
Monday =2
Tuesday =3
Wednesday =4
Thursday =5
Friday =6
Saturday =7

For example, if you want to export data that was logged only on Monday through Thursday,
exclude data from Friday, Saturday, and Sunday from your export.

Example

In this example, any detailed global data logged on Tuesdays and Thursdays is excluded from
the export. The output export file contains the global metrics specified in the myrept export
template file.

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
report myrept
weekdays 35
export
148 Chapter 7

weekly

Use the weekly command to specify data extraction based on a calendar week. A week is
defined as seven days starting on Monday and ending on Sunday.

During execution, this command sets the start and stop dates to the proper dates, based on
the week and year of the extracted data.

Syntax

Parameters

If you do not specify the log file before executing the weekly command, the default logglob
file in the datafiles directory is used.

How to Use It

Use the weekly command when you are extracting data for archiving on a weekly basis.

The name of the output file consists of the letters rxwe followed by the last two digits of the
year, and the two-digit week number for the week being extracted. For example, the 12th
week of 1999 (from Monday, March 22 to Sunday, March 29) would be output to a file named
rxwe9912.

The type of data extracted and summarized follow the normal rules for the extract command
and can be set before executing the weekly command. These settings are honored unless a
weekly output file already exists. If it does, data is appended to it, based on the type of data
selected originally.

The weekly command has a feature that opens the previous week's extracted file and checks
to see if it is filled--whether it contains data extracted up to the last day of the week. If not,
the weekly command appends data to this file to complete the previous week's extraction.

For example, a weekly command is executed on Thursday, May 20, 1999. This creates a log
file named rxwe199920 containing data from Monday, May 17 through the current date
(May 20).

On Wednesday, May 26, 1999, another weekly command is executed. Before the rxwe199921
file is created for the current week, the rxwe199920 file from the previous week is opened
and checked. When it is found to be incomplete, data is appended to it to complete the
extraction through Sunday, May 23, 1999. Then, the rxwe199921 file is created to hold data
from Monday, May 24, 1999 to the current date (May 26).

As long as you execute the weekly command at least once a week, this feature will complete
each week's file before creating the next week's file. When you see two adjacent weekly files
(for example, rxwe199920 and rxwe199921), you can assume that the first file is complete
for that week, and it can be archived and purged.

weekly [yyww]
[ww]

weekly Extracts the current week's data (the default).

weekly ww Extracts data for a specific week from this year's data (where ww is any
number from 01 to 53).

weekly yyww Extracts data for a specific week and year (where yyww is a single number
consisting of the last two digits of the year and the two-digit
week-of-the-year number). For example, the 20th week of 1999 would be
weekly 9920.
Extract Commands 149

Example

In this example, the weekly command causes the current week’s data to be extracted and
complete the previous week’s extracted file, if it is present.

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
application detail
process detail
weekly

To perform the above task using command line arguments, enter:

extract -gap -xw

The weeks are numbered based on their starting day. Thus, the first week of the year (week
01) is the week starting on the first Monday of that year. Any days before that Monday belong
to the last week of the previous year. The weekly and extract week commands are similar in
that they both extract one calendar week's data. The weekly command ignores the setting of
the output command, using instead predefined output file names. It also attempts to append
missing data to the previous week's extracted log file if it is still present on the system. The
extract week command, on the other hand, uses the settings of the output command. It
cannot append data to the previous week's extracted file because it does not know its name.
The output file is named rxwe followed by the current year (yyyy) and week of the year (ww).
150 Chapter 7

yearly

Use the yearly command to specify data extraction based on a calendar year.

During execution, the command sets the start and stop dates to the proper dates, based on the
year being extracted.

Syntax

Parameters

If you do not specify the log file before executing the yearly command, the default logglob
file is used.

How to Use It

Use the yearly command when you are extracting data for archiving on a yearly basis.

The name of the output file consists of the letters rxyr followed by the four digits of the year
being extracted. Thus, data from 1999 would be output to a file named rxyr1999.

The type of data extracted and summarized follow the normal rules for the extract
command and can be set before executing the yearly command. These settings are honored
unless a yearly output file already exists. If it does, data is appended to it, based upon the type
of data selected originally.

The yearly command has a feature that opens the previous year's extracted file and checks to
see if it is filled--whether it contains data extracted up to the last day of the year. If not, the
yearly command appends data to this file to complete the previous year's extraction.

For example, a yearly command was executed on December 15, 1998. This created a log file
named rxyr1998 containing data from January 1, 1998 to the current date (December 15).

On January 5, 1999, another yearly command is executed. Before the rxyr1999 file is
created for the current year, the rxyr1998 file from the previous year is opened and checked.
When it is found to be incomplete, data is appended to it to complete its extraction until
December 31, 1998. Then, the rxyr1999 file is created to hold data from January 1, 1999 to
the current date (January 5).

As long as you execute the yearly command at least once a year, this feature will complete
each year's file before creating the next year's file. When you see two adjacent yearly files (for
example, rxyr1998 and rxyr1999), you can assume that the first file is complete for that
year, and it can be archived and purged.

The previous paragraph is true only if the raw log files are sized large enough to hold one full
year of data. It would be more common to size the raw log files smaller and execute the yearly
command more often (such as once a month).

yearly [yyyy]
[yy]

yearly Extracts the current year's data (the default).

yearly yy Extracts a specific year's data (where yy is a number from 00 to 99).
The specifications 00 to 27 assume the years 2000 to 2027, whereas 71 to 99
assume the years 1971 to 1999.

yearly yyyy Extracts a specific year's data (where yyyy is the full-year numbered 1971 to
2027).
Extract Commands 151

Example

In this example, application and global detail data is appended to the existing yearly
summary file (or creates it, if necessary). The output file is rxyryyyy (where yyyy represents
the current year).

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
application detail
process off
yearly

To perform the above task using command line arguments, enter:

extract -ga -xy

The yearly and extract year commands are similar in that they both extract one calendar
year's data. The yearly command ignores the setting of the output command, using instead
predefined output file names. It also attempts to append missing data to the previous year's
extracted log file if it is still present on the system. The extract year command, on the other
hand, will use the settings of the output command. It cannot append data to the previous
year's extracted file since it does not know its name.
152 Chapter 7

8 Using the cpsh Program
You can use the cpsh program only if you enable the HP Ops OS Inst to Realtime Inst LTU or
Glance Pak Software LTU .

The cpsh program presents a new command-line prompt, which enables you to view the
real-time metric data collected from the monitored system.

Using the Interactive Mode

You can use the cpsh program in the interactive mode. If you run cpsh command without any
options, the cpsh program opens a new command prompt. At this prompt, you can perform
different tasks to view the details of the real-time metrics.

To open the cpsh prompt, follow these steps:

1 Log on to a system (with the root/administrative privileges) where the HP Operations
agent is installed.

2 Run the following command to open the cpsh prompt of the local system:

cpsh

Run the following command to open the cpsh prompt of a remote system:

cpsh -n <system_name>

where <system_name> is the fully-qualified domain name of the remote system.

or

cpsh -n <ip_address>

where <ip_address> is the IP address of the remote system.

The cpsh prompt opens.

3 To view the details of the available commands for use with the cpsh prompt, type help.

While opening the cpsh prompt of a remote system, make sure that the perfd
process runs on the remote system.

To view metric data in a well-structured table format, run the cpsh command with
the -t option.

For example:

cpsh -t

or

cpsh -n <system_name> -t
153

View Real-Time Metrics

You can view the real-time values of the available metrics from the cpsh prompt. Before you
perform any operation at the cpsh prompt, you must set the metric context. The perfd daemon
and associated utilities process the available data based on metric classes. Therefore, while
using the cpsh utility to view real-time data, you must always set the metric class before
performing any operations to view the available data.

To view the real-time values of the metrics of a metric class, follow these steps:

1 At the cpsh prompt, type class <metric_class>.

2 list of currently set metrics for the given class, type list. The list of all default metrics
for the specified metric class appears.

3 To view values of the metrics that belong to the specified class, type push at the cpsh
prompt. The cpsh program displays real-time values of the metrics in a tabular format.

4 To go back to the cpsh prompt, press Ctrl+C.

Modify a Metric Class

You can add additional available metrics to the list of default metrics for a metric class. To add
or delete a metrics from a metric class at the cpsh prompt, follow these steps:

1 Open the cpsh prompt.

2 At the cpsh prompt, type class <metric_class>.

3 Type list. The list of all default metrics for the specified metric class appears.

4 To delete a metric, follow these steps:

a At the cpsh prompt, type delete <metric_name>.

b Type list. The list of metrics for the specified metric class does not include the
deleted metric.

5 To add a metric to the metric class, follow these steps:

a At the cpsh prompt, type add <metric_name>.

b Type list. The list of metrics for the specified metric class includes the newly added
metric.

View All the Available Metrics

To view all the available metrics that belong to a metric class, follow these steps:

1 Open the cpsh prompt.

2 At the cpsh prompt, type class <metric_class>.

3 Type list all. The list of all available metrics that belong to the specified metric class
appears.

Organize a Metric Class

You can reorganize a metric class without performing sequential add and delete operation on
the class. To reorganize a metric class to include the metrics of your choice, follow these steps:

1 Open the cpsh prompt.
154 Chapter 8

2 At the cpsh prompt, type class <metric_class>.

3 Type init <metric_name> <metric_name> <metric_name>

The specified metric class incorporates only the metrics specified with the init
command.

View Metric Help

You can view the description of every real-time metric from the cpsh prompt. To view the
metric description, follow these steps:

1 Open the cpsh prompt.

2 Type class <metric_class>.

3 Type help <metric_name> at the cpsh prompt. The details description of the metric
appears.

View Summarized Metric Data

For the metrics of the GLOBAL and TABLE classes, you can view summarized data from the cpsh
prompt. To view the summarized data, follow these steps:

1 Open the cpsh prompt.

2 At the cpsh prompt, type class gbl or class tbl.

3 Type summ <interval>. In this instance, <interval> is the summarization interval specified
in seconds. <interval> must be a multiple of collection interval of perfd server to which
cpsh is connected

The cpsh utility displays the following measurements of the values of metrics that belong
to the selected metric class:

• Maximum

• Minimum

• Average

• Standard deviation
Using the cpsh Program 155

156 Chapter 8

9 Performance Alarms
You can use the Performance Collection Component to define alarms. These alarms notify you
when scope or DSI metrics meet or exceed conditions that you have defined.

To define alarms, you must specify conditions on each monitored system that, when met,
trigger an alert or action. You can define alarms in the alarm definitions text file, alarmdef.

As data is logged by scope or other collectors, it is compared to the alarm definitions to
determine if a condition is met. When this occurs, an alert or action is triggered.

With the real-time alarm generator, you can perform the following tasks:

• Send alert notifications to the HPOM console

• Create an SNMP trap when an alert notification is generated

• Forward the SNMP trap to an SNMP trap listener

• Perform local actions on the monitored systems

You can analyze historical log file data against the alarm definitions and report the results
using the utility program's analyze command.

Processing Alarms

As performance data is collected by the Performance Collection Component, the collected data
is compared to the alarm conditions defined in the alarmdef file to determine whether the
conditions were met. When a condition is met, an alarm is generated and the actions defined
for alarms (ALERTs, PRINTs, and EXECs) are performed.

As data is collected in the log files, it is compared to the alarm definitions in the alarmdef
file. When an alarm condition is met, the actions defined in the alarm definition are carried
out. However, if data is not logged into the log files (for instance, when the threshold
parameters are set to a high value), alarms are not generated even if the alarm conditions in
the alarmdef file are met. See Thresholds on page 28 for the thresholds of different classes of
metrics.

Actions defined in the alarm definition can include:

• local actions performed by using operating system commands

• messages sent to Network Node Manager (NNM) and HPOM

Alarm Generator

The Performance Collection Component alarm generator handles the communication of alarm
notifications. The alarm generator consists of the alarm generator server (perfalarm), the
alarm generator database (agdb), and the utility program agsysdb.
157

The agdb contains a list of SNMP nodes. The agsysdb program is used for displaying and
changing the actions taken by alarm events.

When you start up Performance Collection Component, perfalarm starts and reads the agdb
at startup to determine where and whether to send alarm notifications.

Use the following command line option to see a list showing where alert notifications are
being sent:

agsysdb -l

Sending SNMP Traps to Network Node Manager

To send SNMP traps to Network Node Manager, you must add your system name to agdb in
Performance Collection Component using the command:

agsysdb -add systemname

Every ALERT generated will cause an SNMP trap to be sent to the system you defined. The
trap text will contain the same message as the ALERT.

To stop sending SNMP traps to a system, you must delete the system name from agdb using
the command:

agsysdb -delete systemname

Sending Messages to HPOM

You can have alert notifications sent to HPOM. By default, the alarm generator does not
execute local actions that are defined in any alarms in the EXEC statement. Instead, it sends
a message to HPOM’s event browser.

You can change the default to stop sending information to HPOM using the following
command:

agsysdb -ovo OFF

To send Performance Collection Component traps to another node, add the following entries to
/etc/services file.

snmp-trap 162/tcp # SNMPTRAP

snmp-trap 162/udp # SNMPTRAP

In this instance, 162 specifies port number. If you want Performance Collection Component to
send traps to another node, it checks the /etc/services file for the snmp-trap string. If this
entry is not available, the traps will not be sent to another node.

Executing Local Actions

By default, the Performance Collection Component does not run the local commands specified
in the EXEC statements.

You can change the default to enable local actions as follows:

agsysdb -actions always

The following table lists the settings for sending information to HP Operations Manager
(HPOM) and for executing local actions:
158 Chapter 9

Errors in Processing Alarms

The last error that occurred when sending an alarm is logged in agdb. To view the contents of
agdb, type:

agsysdb -l

The following information is displayed:

PA alarming status:

OVO messages : on Last Error : none
Exec Actions : on
Analysis system: <hostname>, Key=<ip address>
PerfView : no Last Error : <error number>
SNMP : yes Last Error : <error number>

Analyzing Historical Data for Alarms

You can use the utility program's analyze command to find alarm conditions in log file
data (see Chapter 5, Utility Commands). This is different from the processing of real-time
alarms explained earlier because you are comparing historical data in the log file to the alarm
definitions in the alarmdef file to determine what alarm conditions would have been
triggered.

Examples of Alarm Information in Historical Data

The following examples show what is reported when you analyze alarm conditions in
historical data.

Table 10 Settings for sending information to HPOM and executing local actions

Flags
Operations Monitoring
Component Running

Operations Monitoring
Component Not Running

HPOM Flag

off No alert notifications sent to
HPOM.

No alert notifications sent to HPOM.

on Alert notifications sent to
HPOM.

No alert notifications sent to HPOM.

Local Actions Flag

off No local actions executed. No local actions executed.

always Local actions executed even
if the Operations Monitoring
Component is running.

Local actions executed.

on Local actions sent to HPOM. Local actions executed.
Performance Alarms 159

For the first example, START, END, and REPEAT statements have been defined in the alarm
definition. An alarm-start event is listed every time an alarm has met all of its conditions for
the specified duration. When these conditions are no longer satisfied, an alarm-end event is
listed. If an alarm condition is satisfied for a period long enough to generate another alarm
without having first ended, a repeat event is listed.

Each event listed shows the date and time, alarm number, and the alarm event. EXEC actions
are not performed, but they are listed with any requested parameter substitutions in place.

05/10/99 11:15 ALARM [1] START
CRITICAL: CPU test 99.97%
05/10/99 11:20 ALARM [1] REPEAT
WARNING: CPU test 99.997%
05/10/99 11:25 ALARM [1] END
RESET: CPU test 22.86%
EXEC: end.script

If you are using a color workstation, the following output is highlighted:

CRITICAL statements are RED
MAJOR statements are MAGENTA
MINOR statements are YELLOW
WARNING statements are CYAN
NORMAL statements are GREEN

The next example shows an alarm summary that is displayed after alarm events are listed.
The first column lists the alarm number, the second column lists the number of times the
alarm condition occurred, and the third column lists the total duration of the alarm condition.

Performance Alarm Summary:

 Alarm Count Minutes
 1 574 2865
 2 0 0

Analysis coverage using "alarmdef":
Start: 05/04/99 08:00 Stop: 05/06/99 23:59
Total time analyzed: Days: 2 Hours: 15 Minutes: 59
160 Chapter 9

Alarm Definition Components

An alarm occurs when one or more of the conditions you define continues over a specified
duration. The alarm definition can include an action to be performed at the start or end of the
alarm.

A condition is a comparison between two or more items. The compared items can be metric
names, constants, or variables. For example:

ALARM gbl_cpu_total_util > 95 FOR 5 MINUTES

An action can be specified to be performed when the alarm starts, ends, or repeats. The action
can be one of the following:

• an ALERT, which sends a message to HPOM or an SNMP trap to NNM

• an EXEC, which performs an operating system command, or

• a PRINT, which sends a message to stdout when processed using the utility program.

For example:

ALARM gbl_swap_space_util > 95 FOR 5 MINUTES
 START
 RED ALERT "Global swap space is nearly full"
 END
 RESET ALERT "End of global swap space full condition"

You can create more complex actions using Boolean logic, loops through multiple-instance
data such as applications, and variables. (For more information, see the next section, Alarm
Syntax Reference).

You can also use the INCLUDE statement to identify additional alarm definition files you
want used. For example, you may want to break up your alarm definitions into smaller files.
Performance Alarms 161

Alarm Syntax Reference

This section describes the statements that are available in the alarm syntax. You may want to
look at the alarmdef file for examples of how the syntax is used to create useful alarm
definitions.

Alarm Syntax

ALARM condition [[AND,OR]condition]
 FOR duration [SECONDS, MINUTES]
 [TYPE="string"]
 [SERVICE="string"]
 [SEVERITY=integer]
 [START action]
 [REPEAT EVERY duration [SECONDS, MINUTES] action]
 [END action]
[RED, CRITICAL, ORANGE, MAJOR, YELLOW, MINOR, CYAN, WARNING,
 GREEN, NORMAL, RESET] ALERT message
EXEC "UNIX command"
PRINT message
IF condition
 THEN action
 [ELSE action]
{APPLICATION, PROCESS, DISK, LVOLUME, TRANSACTION, NETIF, CPU,
 FILESYSTEM} LOOP action
INCLUDE "filename"
USE "data source name"
[VAR] name = value
ALIAS name = "replaced-name"
SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]
 RULE condition PROB probability
 [RULE condition PROB probability]
 .
 .

Conventions

• Braces ({ }) indicate that one of the choices is required.

• Brackets ([]) indicate an optional item.

• Items separated by commas within brackets or braces are options. Choose only one.

• Italics indicate a variable name that you replace.

• All syntax keywords are in uppercase.

Common Elements

The following elements are used in several statements in the alarm syntax and are described
below.

• comments

• compound statements
162 Chapter 9

• conditions

• constants

• expressions

• metric names

• messages

Comments

You can precede comments either by double forward slashes (//) or the pound sign (#). In both
cases, the comment ends at the end of the line. For example:

any text or characters

or

 // any text or characters

Compound Statements

Compound statements allow a list of statements to be executed as a single statement. A
compound statement is a list of statements inside braces ({}). Use the compound statement
with the IF statement, the LOOP statement, and the START, REPEAT, and END clauses of
the ALARM statement. Compound statements cannot include ALARM and SYMPTOM
statements.

{
 statement
 statement
}

In the example below, highest_cpu defines a variable. The highest_cpu value is saved and
notifies you only when that highest_cpu value is exceeded by a higher highest_cpu value.

highest_cpu = highest_cpu
IF gbl_cpu_total_util > highest_cpu THEN
 // Begin compound statement
 {
 highest_cpu = gbl_cpu_total_util
 ALERT "Our new high CPU value is ", highest_cpu, "%"
 }
 // End compound statement

Conditions

A condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal".

Conditions are used in the ALARM, IF, and SYMPTOM statements. An item can be a metric
name, a numeric constant, an alphanumeric string enclosed in quotes, an alias, or a variable.
When comparing alphanumeric items, only == or != can be used as operators.
Performance Alarms 163

Constants

Constants can be either numeric or alphanumeric. An alphanumeric constant must be
enclosed in double quotes. For example:

345
345.2
"Time is"

Constants are useful in expressions and conditions. For example, you may want to compare a
metric against a constant numeric value inside a condition to generate an alarm if it is too
high, such as

gbl_cpu_total_util > 95

Expressions

Arithmetic expressions perform one or more arithmetic operations on two or more operands.
You can use an expression anywhere you would use a numeric value. Legal arithmetic
operators are:

+, -, *, /

Parentheses can be used to control which parts of an expression are evaluated first.

For example:

Iteration + 1
gbl_cpu_total_util - gbl_cpu_user_mode_util
(100 - gbl_cpu_total_util) / 100.0

Metric Names

When you specify a metric name in an alarm definition, the current value of the metric is
substituted. Metric names must be typed exactly as they appear in the metric definition,
except for case sensitivity. Metrics definitions can be found in the Performance Collection
Component Dictionary of Operating Systems Performance Metrics.

It is recommended that you use fully-qualified metric names if the metrics are from a data
source other than the SCOPE data source (such as DSI metrics).

The format for specifying a fully qualified metric is:

data_source:instance(class):metric_name

A global metric in the SCOPE data source requires no qualification. For example:

metric_1

An application metric, which is available for each application defined in the SCOPE data
source, requires the application name. For example,

application_1:metric_1

For multi-instance data types such as application, process, disk, netif, transaction,
lvolume, cpu, and filesystem, you must associate the metric with the data type name,
except when using the LOOP statement. To do this, specify the data type name followed by a
colon, and then the metric name. For example, other_apps:app_cpu_total_util specifies
the total CPU utilization for the application other_apps.
164 Chapter 9

If you use an application name that has an embedded space, you must replace the space with
an underscore (_). For example, application 1 must be changed to application_1. For more
information on using names that contain special characters, or names where case is
significant, see ALIAS Statement on page 177.

If you had a disk named “other” and an application named “other”, you would need to specify
the class as well as the instance:

other (disk):metric_1

A global metric in an extracted log file (where scope_extract is the data source name) would
be specified this way:

scope_extract:application_1:metric_1

A DSI metric would be specified this way:

dsi_data_source:dsi_class:metric_name

Messages

A message is the information sent by a PRINT or ALERT statement. It can consist of any
combination of quoted alphanumeric strings, numeric constants, expressions, and variables.
The elements in the message are separated by commas. For example:

RED ALERT "cpu utilization=", gbl_cpu_total_util

Numeric constants, metrics, and expressions can be formatted for width and number of
decimals. Width specifies how wide the field should be formatted; decimals specifies how
many decimal places to use. Numeric values are right-justified. The - (minus sign) specifies
left-justification. Alphanumeric strings are always left-justified. For example:

metric names [|[-]width[|decimals]]
gbl_cpu_total_util|6|2 formats as '100.00'
(100.32 + 20)|6 formats as ' 120'
gbl_cpu_total_util|-6|0 formats as '100 '
gbl_cpu_total_util|10|2 formats as ' 99.13'
gbl_cpu_total_util|10|4 formats as ' 99.1300'

ALARM Statement

The ALARM statement defines a condition or set of conditions and a duration for the
conditions to be true. Within the ALARM statement, you can define actions to be performed
when the alarm condition starts, repeats, and ends. Conditions or events that you might want
to define as alarms include:

• when global swap space has been nearly full for 5 minutes

When specifying fully qualified multi-instance metrics and using aliases within aliases, if one
of the aliases has a class identifier, we recommend you use the syntax shown in this example:

alias my_fs="/dev/vg01/lvol1(LVOLUME)"
alarm my_fs:LV_SPACE_UTIL > 50 for 5 minutes

Any metric names containing special characters (such as asterisks) must be aliased before
they are specified.
Performance Alarms 165

• when the memory paging rate has been too high for 1 interval

• when your CPU has been running at 75 percent utilization for the last ten minutes

Syntax

ALARM condition [[AND,OR]condition]
 FOR duration{SECONDS, MINUTES}
 [TYPE="string"]
 [SERVICE="string"]
 [SEVERITY=integer]
 [START action]
 [REPEAT EVERY duration {SECONDS, MINUTES} action]
 [END action]

• The ALARM statement must be a top-level statement. It cannot be nested within any other
statement. However, you can include several ALARM conditions in a single ALARM
statement. If the conditions are linked by AND, all conditions must be true to trigger the
alarm. If they are linked by OR, any one condition will trigger the alarm.

• TYPE is a quoted string of up to 38 characters. If you are sending alarms, you can use
TYPE to categorize alarms and to specify the name of a graph template to use.

• SERVICE is a quoted string of up to 200 characters. If you are using ServiceNavigator, you
can link your Performance Collection Component alarms with the services you defined in
ServiceNavigator (see the HP Operations ServiceNavigator Concepts and Configuration
Guide).

SERVICE="Service_id"

• SEVERITY is an integer from 0 to 32767.

• START, REPEAT, and END are keywords used to specify what action to take when alarm
conditions are met, met again, or stop. You should always have at least one of START,
REPEAT, or END in an ALARM statement. Each of these keywords is followed by an action.

• action – The action most often used with an ALARM START, REPEAT, or END is the
ALERT statement. However, you can also use the EXEC statement to mail a message or
run a batch file, or a PRINT statement if you are analyzing historical log files with the
utility program. Any syntax statement is legal except another ALARM.

START, REPEAT, and END actions can be compound statements. For example, you can
use compound statements to provide both an ALERT and an EXEC.

• Conditions – A condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal"

An item can be a metric name, a numeric constant, an alphanumeric string enclosed in
quotes, an alias, or a variable. When comparing alphanumeric items, only == or != can be
used as operators.

You can use compound conditions by specifying the “OR” and “AND” operator between
subconditions. For example:

ALARM gbl_cpu_total_util > 90 AND
gbl_pri_queue > 1 for 5 minutes

• You also can use compound conditions without specifying the “OR” and “AND” operator
between subconditions. For example:
166 Chapter 9

ALARM gbl_cpu_total_util > 90
gbl_cpu_sys_mode_util > 50 for 5 minutes

will cause an alarm when both conditions are true.

FOR duration SECONDS, MINUTES specifies the time period the condition must remain
true to trigger an alarm.

Use caution when specifying durations of less than one minute, particularly when there
are multiple data sources on the system. Performance can be seriously degraded if each
data source must be polled for data at very small intervals. The duration must be a
multiple of the longest collection interval of the metrics mentioned in the alarm condition.

For scope data, the duration is five minutes; however, the duration for process data is one
minute. For DSI data, the duration is five seconds or longer.

• REPEAT EVERY duration SECONDS, MINUTES specifies the time period before the alarm
is repeated.

How It Is Used

The alarm cycle begins on the first interval that all of the ANDed, or one of the ORed alarm
conditions have been true for at least the specified duration. At that time, the alarm generator
executes the START action, and on each subsequent interval checks the REPEAT condition. If
enough time has transpired, the action for the REPEAT clause is executed. (This continues
until one or more of the alarm conditions becomes false.) This completes the alarm cycle and
the END statement is executed if there is one.

In order to be notified of the alarm, use the ALERT statement within the START and END
statements. If you do not specify an END ALERT, the alarm generator automatically sends
an alarm to HPOM and sends an SNMP trap to NNM.

Examples

The following ALARM example sends a red alert when the swap utilization is high for 5
minutes. It is similar to an alarm condition in the default alarmdef file. Do not add this
example to your alarmdef file without removing the default alarm condition, or your
subsequent alert messages may be confusing.

ALARM gbl_swap_space_util > 90 FOR 5 MINUTES
 START
 RED ALERT "swap utilization is very high "
 REPEAT EVERY 15 MINUTES
 RED ALERT "swap utilization is still very high "
 END
 RESET ALERT "End of swap utilization condition"

This ALARM example tests the metric gbl_swap_space_util to see if it is greater than 90.
Depending on how you configured the alarm generator, the ALERT can be sent to NNM via an
SNMP trap or as a message to Operations Manager.

The REPEAT statement checks for the gbl_swap_space_util condition every 15 minutes. As
long as the metric remains greater than 90, the REPEAT statement will send the message
“swap utilization is still very high” every 15 minutes.

When the gbl_swap_space_util condition goes below 90, the RESET ALERT statement
with the “End of swap utilization condition” message is sent.

The following example defines a compound action within the ALARM statement. This
example shows you how to cause a message to be mailed when an event occurs.
Performance Alarms 167

ALARM gbl_cpu_total_util > 90 FOR 5 MINUTES
 START
 {
 RED ALERT "Your CPU is busy."
 EXEC "echo 'cpu is too high'| mailx root"
 }
 END
 RESET ALERT "CPU no longer busy."

The ALERT can trigger an SNMP trap to be sent to NNM or a message to be sent to HPOM.
The EXEC can trigger a mail message to be sent as a local action on your node, depending on
how you configured your alarm generator.

The following two examples show the use of multiple conditions. You can have more than one
test condition in the ALARM statement. In this case, each statement must be true for the
ALERT to be sent.

The following ALARM example tests the metric gbl_cpu_total_util and the metric
gbl_cpu_sys_mode_util. If both conditions are true, the RED ALERT statement sends a red
alert. When either test condition becomes false, the RESET is sent.

ALARM gbl_cpu_total_util > 90
 AND gbl_cpu_sys_mode_util > 50 FOR 5 MINUTES
START
 RED ALERT "CPU busy and Sys Mode CPU util is high."
END
 RESET ALERT "The CPU alert is now over."

The next ALARM example tests the metric gbl_cpu_total_util and the metric
gbl_cpu_sys_mode_util. If either condition is true, the RED ALERT statement sends a red
alert.

ALARM gbl_cpu_total_util > 90
 OR
 gbl_cpu_sys_mode_util > 50 FOR 10 MINUTES
START
 RED ALERT "Either total CPU util or sys mode CPU high"

Do not use metrics that are logged at different intervals in the same alarm. For example, you
should not loop on a process (logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

IF global_metric THEN
 PROCESS LOOP...

The different intervals cannot be synchronized as you might expect, so results will not be
valid.

For GlancePlus, use the process metrics inside a process loop in order to sent alarm for all the
processes.
168 Chapter 9

ALERT Statement

The ALERT statement allows a message to be sent to Network Node Manager or Operations
Manager. The ALERT statement is most often used as an action within an ALARM. It could
also be used within an IF statement to send a message as soon as a condition is detected
instead of after the duration has passed. If an ALERT is used outside of an ALARM or IF
statement, the message will be sent at every interval.

Syntax

[RED, CRITICAL, ORANGE, MAJOR, YELLOW, MINOR, CYAN,
WARNING, GREEN, NORMAL, RESET] ALERT message

• RED is synonymous with CRITICAL, ORANGE is synonymous with MAJOR, YELLOW is
synonymous with MINOR, CYAN is synonymous with WARNING, and GREEN is synonymous
with NORMAL. These keywords turn the alarm symbol to the color associated with the
alarm condition.

• RESET — Sends a RESET ALERT with a message when the ALARM condition ends. If you
have not defined a reset in the alarm definition, sends a RESET ALERT without a message
when the ALARM condition ends.

• message — A combination of strings and numeric values used to create a message.
Numeric values can be formatted with the parameters [|[-]width[|decimals]]. Width
specifies how wide the field should be formatted; decimals specifies how many decimal
places to use. Numeric values are right-justified. The - (minus sign) specifies
left-justification. Alphanumeric strings are always left-justified.

How It Is Used

The ALERT can also trigger an SNMP trap to be sent to NNM or a message to be sent to
HPOM, depending on how you configured your alarm generator. For alert messages sent to
HPOM, the WARNINGS will be displayed in blue in the message browser.

Example

An typical ALERT statement is:

RED ALERT "CPU utilization = ", gbl_cpu_total_util

If you have Network Node Manager, this statement creates a critical severity alarm in the
Alarm Browser window in Network Node Manager.
Performance Alarms 169

EXEC Statement

The EXEC statement allows you to specify a system (UNIX or Windows) command to be
performed on the local system. For example, you could use the EXEC statement to send mail
to an IT administrator each time a certain condition is met.

EXEC should be used within an ALARM or IF statement so the command is performed only
when specified conditions are met. If an EXEC statement is used outside of an ALARM or IF
statement, the action will be performed at unpredictable intervals.

Syntax

EXEC "system command"

system command — a command to be performed on the local system.

Do not use embedded double quotes (") in EXEC statements. Doing so causes perfalarm to
fail to send the alarm to HPOM. Use embedded single (') quotes instead. For example:

EXEC "echo 'performance problem detected' "

EXEC "mkdir c:\\directory\\filename"

The syntax of the EXEC statement requires the path name of the file to be enclosed within
double quotes. However, if a path name contains spaces, the path name must be enclosed
within single quotes, which must be again enclosed within double quotes.

Example:

EXEC "'C:\\Program Files\\Mail Program\\SendMail.exe'"

If any arguments to the system command of the EXEC statement contains single quotes, the
program must be enclosed within single quotes as the first pair of single quotes (') are
converted into double quotes (") while you run the command with the EXEC statement.

Example:

EXEC "'echo' 'test execution'"

In the above example, echo is the program enclosed within single quotes as it contains an
argument (in this case, test execution) with single quotes. Furthermore, as per the syntax of
the EXEC statement, the entire string of the command must be enclosed in double quotes.

Do not use embedded double quotes (") in EXEC statements; perfalarm will fail to send the
alarm to the HPOM. Use embedded single quotes (') instead.

For example:

EXEC "'echo' 'dialog performance problem'"

In the above example, echo is the program enclosed within single quotes as it contains an
argument (in this case, dialog performance problem) with single quotes. Further, as per the
syntax of the EXEC statement, the entire string of the command must be enclosed in double
quotes.

How It Is Used

The EXEC can trigger a local action on your local system, depending on how you configured
your alarm generator. For example, you can turn local actions on or off. If you configured your
alarm generator to send information to HPOM local actions will not usually be performed.
170 Chapter 9

Examples

In the following example, the EXEC statement performs the UNIX mailx command when the
gbl_disk_util_peak metric exceeds 20.

IF gbl_disk_util_peak > 20 THEN
 EXEC "echo 'high disk utilization detected'| mailx root"

The next example shows the EXEC statement sending mail to the system administrator when
the network packet rate exceeds 1000 per second average for 15 minutes.

ALARM gbl_net_packet_rate > 1000 for 15 minutes
 TYPE = "net busy"
 SEVERITY = 5
 START
 {
 RED ALERT "network is busy"
 EXEC "echo 'network busy condition detected'| mailx root"
 }
 END
 RESET ALERT "NETWORK OK"

PRINT Statement

The PRINT statement allows you to print a message from the utility program using its
analyze function. The alarm generator ignores the PRINT statement.

Syntax

PRINT message

• message — A combination of strings and numeric values that create a message. Numeric
values can be formatted with the parameters [|[-]width[|decimals]]. Width specifies
how wide the field should be formatted; decimals specifies how many decimal places to
use. Alphanumeric components of a message must be enclosed in quotes. Numeric values
are right-justified. The - (minus sign) specifies left-justification. Alphanumeric strings
are always left-justified.

Example

PRINT "The total time the CPU was not idle is",
 gbl_cpu_total_time |6|2, "seconds"

When executed, this statement prints a message such as the following:

The total time the CPU was not idle is 95.00 seconds

Be careful when using the EXEC statement with commands or scripts that have high
overhead if it will be performed often.
The alarm generator executes the command and waits until it completes before continuing.
We recommend that you not specify commands that take a long time to complete.
Performance Alarms 171

IF Statement

Use the IF statement to define a condition using IF-THEN logic. The IF statement should be
used within the ALARM statement. However, it can be used by itself or any place in the
alarmdef file where IF-THEN logic is needed.

If you specify an IF statement outside of an ALARM statement, you do not have control over
how frequently it gets executed.

Syntax

IF condition THEN action [ELSE action]

• IF condition — A condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal".

An item can be a metric name, a numeric constant, an alphanumeric string enclosed in
quotes, an alias, or a variable. When comparing alphanumeric strings, only == or != can be
used as operators.

• action — Any action, or set a variable. (ALARM is not valid in this case.)

How It Is Used

The IF statement tests the condition. If the condition is true, the action after the THEN is
executed. If the condition is false, the action depends on the optional ELSE clause. If an ELSE
clause has been specified, the action following it is executed; otherwise the IF statement does
nothing.

Example

In this example, a CPU bottleneck symptom is calculated and the resulting bottleneck
probability is used to define cyan or red ALERTs. Depending on how you configured your
alarm generator, the ALERT triggers an SNMP trap to NNM or the message “End of CPU
Bottleneck Alert” to Operations Manager along with the percentage of CPU used.

SYMPTOM CPU_Bottleneck > type=CPU
 RULE gbl_cpu_total_util > 75 prob 25
 RULE gbl_cpu_total_util > 85 prob 25
 RULE gbl_cpu_total_util > 90 prob 25
 RULE gbl_cpu_total_util > 4 prob 25
 ALARM CPU_Bottleneck > 50 for 5 minutes
 TYPE="CPU"
 START
 IF CPU_Bottleneck > 90 then
 RED ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 ELSE
 CYAN ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 REPEAT every 10 minutes
 IF CPU_Bottleneck > 90 then
 RED ALERT "CPU Bottleneck probability= ",
172 Chapter 9

 CPU_Bottleneck, "%"
 ELSE
 CYAN ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 END
 RESET ALERT "End of CPU Bottleneck Alert"

Do not use metrics that are logged at different intervals in the same statement. For instance,
you should not loop on a process (logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

IF global_metric THEN
 PROCESS LOOP ...

The different intervals cannot be synchronized as you might expect, so results will not be
valid.

LOOP Statement

The LOOP statement goes through multiple-instance data types and performs the action
defined for each instance.

Syntax

{APPLICATION, PROCESS, LVOLUME, DISK, CPU, FILESYSTEM, TRANSACTION,
NETIF, LOGICAL}
LOOP
 action

• APPLICATION, PROCESS, LVOLUME, DISK, CPU, FILESYSTEM, TRANSACTION, NETIF,
LOGICAL — Performance Collection Component data types that contain multi-instance
data.

• action — PRINT, EXEC, ALERT, set variables.

How It Is Used

As LOOP statements iterate through each instance of the data type, metric values change. For
instance, the following LOOP statement prints the name of each application to stdout if you
are using the utility program's analyze command.

APPLICATION LOOP
 PRINT app_name

A LOOP can be nested within another LOOP statement up to a maximum of five levels.

In order for the LOOP to execute, the LOOP statement must refer to one or more metrics of the
same data type as the type defined in the LOOP statement.

Example

You can use the LOOP statement to cycle through all active applications.

The following example shows how to determine which application has the highest CPU at
each interval.
Performance Alarms 173

highest_cpu = 0
 APPLICATION loop
 IF app_cpu_total_util > highest_cpu THEN
 {
 highest_cpu = app_cpu_total_util
 big_app = app_name
 }
 ALERT "Application ", app_name, " has the highest cpu util at
",highest_cpu_util|5|2, "%"
 ALARM highest_cpu > 50
 START
 RED ALERT big_app, " is the highest CPU user at ", highest_cpu, "%"
 REPEAT EVERY 15 minutes
 CYAN ALERT big_app, " is the highest CPU user at ", highest_cpu, "%"
 END
 RESET ALERT "No applications using excessive cpu"

INCLUDE Statement

Use the INCLUDE statement to include another alarm definitions file along with the default
alarmdef file.

Syntax

INCLUDE "filename"

where filename is the name of another alarm definitions file. The file name must always be
fully qualified.

How It Is Used

The INCLUDE statement could be used to separate logically distinct sets of alarm definitions
into separate files.

Example

For example, if you have some alarm definitions in a separate file for your transaction metrics
and it is named

trans_alarmdef1

You can include it by adding the following line to the alarm definitions in your alarmdef1
file:

INCLUDE "/var/opt/perf/trans_alarmdef1"

USE Statement

You can add the USE statement to simplify the use of metric names in the alarmdef file when
data sources other than the default SCOPE data source are referenced. This allows you to
specify a metric name without having to include the data source name.

The data source name must be defined in the datasources file. The alarmdef file will fail
its syntax check if an invalid or unavailable data source name is encountered.
174 Chapter 9

Syntax

USE "datasourcename"

How It Is Used

As the alarm generator checks the alarmdef file for valid syntax, it builds an ordered search
list of all data sources that are referenced in the file. Perfalarm sequentially adds entries to
this data source search list as it encounters fully-qualified metric names or USE statements.
This list is subsequently used to match metric names that are not fully qualified with the
appropriate data source name. The USE statement provides a convenient way to add data
sources to perfalarm's search list, which then allows for shortened metric names in the
alarmdef file. For a discussion of metric name syntax, see Metric Names on page 164 earlier
in this chapter.

Perfalarm's default behavior for matching metric names to a data source is to look first in the
SCOPE data source for the metric name. This implied USE "SCOPE" statement is executed
when perfalarm encounters the first metric name in the alarmdef file. This feature enables
a default search path to the SCOPE data source so that SCOPE metrics can be referenced in the
alarmdef file without the need to fully qualify them. This is shown in the following example
on the next page.

ALARM gbl_cpu_total_util > 80 FOR 10 MINUTES
 START RED ALERT "CPU utilization too high"
USE "ORACLE7"
ALARM ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for ORACLE7"

When perfalarm checks the syntax of the alarmdef file containing the above statements, it
encounters the metric "gbl_cpu_total_util" and then tries to find its data source.
Perfalarm does not yet have any data sources in its search list of data sources, so it executes
an implied USE "SCOPE" statement and then searches the SCOPE data source to find the metric
name. A match is found and perfalarm continues checking the rest of the alarmdef file.

When perfalarm encounters the USE "ORACLE7" statement, it adds the ORACLE7 data source
to the search list of data sources. When the "ActiveTransactions" metric name is
encountered, perfalarm sequentially searches the list of data sources starting with the SCOPE
data source. SCOPE does not contain that metric name, so the ORACLE7 data source is searched
next and a match is found.

If perfalarm does not find a match in any data source for a metric name, an error message is
printed and perfalarm terminates.

To change the default search behavior, a USE statement can be added to the beginning of the
alarmdef file before any references to metric names. This will cause the data source specified
in the USE statement to be added to the search list of data sources before the SCOPE data
source. The data source(s) in the USE statement(s) will be searched before the SCOPE data
source to find matches to the metrics names. This is shown in the following example.

Once a data source has been referenced with a USE statement, there is no way to change its
order or to remove it from the search list.

USE "ORACLE7"

The appearance of a USE statement in the alarmdef file does not imply that all metric
names that follow will be from the specified data source.
Performance Alarms 175

ALARM gbl_cpu_total_util > 80 FOR 10 MINUTES
 START RED ALERT "CPU utilization too high"
ALARM ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of
 transactions for ORACLE7"

In the example above, the order of the statements in the alarmdef file has changed. The USE
"ORACLE7" statement is defined before any metric names are referenced, therefore the
ORACLE7 data source is added as the first data source in the search list of data sources. The
implied USE "SCOPE" statement is executed when perfalarm encounters the first metric
name "gbl_cpu_total_util." Because the "gbl_cpu_total_util" metric name is not
fully-qualified, perfalarm sequentially searches through the list of data sources starting with
ORACLE7. ORACLE7 does not contain that metric name so the SCOPE data source is searched
next and a match is found.

Perfalarm continues checking the rest of the alarmdef file. When perfalarm encounters the
"ActiveTransactions" metric, it sequentially searches the list of data sources starting with
ORACLE7. A match is found and perfalarm continues searching the rest of the alarmdef file.
If perfalarm does not find a match in any data source for a metric name (that is not
fully-qualified), an error message will be printed and perfalarm terminates.

Be careful how you use the USE statement when multiple data sources contain the same
metric names. Perfalarm sequentially searches the list of data sources. If you are defining
alarm conditions from different data sources that use the same metric names, you must
qualify the metric names with their data source names to guarantee that the metric value is
retrieved from the correct data source. This is shown in the following example where the
metric names in the alarm statements each include their data sources.

ALARM ORACLE7:ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for ORACLE7"
ALARM FINANCE:ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for FINANCE"

VAR Statement

The VAR statement allows you to define a variable and assign a value to it.

Syntax

[VAR] name = value

• name — Variable names must begin with a letter and can include letters, digits, and the
underscore character. Variable names are not case-sensitive.

• value — If the value is an alphanumeric string, it must be enclosed in quotes.

How It Is Used

VAR assigns a value to the user variable. If the variable did not previously exist, it is created.

Once defined, variables can be used anywhere in the alarmdef file.

Examples

You can define a variable by assigning something to it. The following example defines the
numeric variable highest_CPU_value by assigning it a value of zero.
176 Chapter 9

highest_CPU_value = 0

The next example defines the alphanumeric variable my_name by assigning it an empty
string value.

my_name = ""

ALIAS Statement

The ALIAS statement allows you to substitute an alias if any part of a metric name (class,
instance, or metric) has a case-sensitive name or a name that includes special characters.
These are the only circumstances where the ALIAS statement should be used.

Syntax

ALIAS name = "replaced-name"

• name — The name must begin with a letter and can include letters, digits, and the
underscore character.

• replaced-name — The name that must be replaced by the ALIAS statement to make it
uniquely recognizable to the alarm generator.

How It Is Used

Because of the way the alarmdef file is processed, if any part of a metric name (class,
instance, or metric name) can be identified uniquely only by recognizing uppercase and
lowercase, you will need to create an alias. You will also need to create an alias for any name
that includes special characters. For example, if you have applications called "BIG" and "big,"
you'll need to alias "big" to ensure that they are viewed as different applications. You must
define the alias somewhere in the alarmdef file before the first instance of the name you
want substituted.

Examples

Because you cannot use special characters or upper and lower case in the syntax, using the
application name "AppA" and "appa" could cause errors because the processing would be
unable to distinguish between the two. You would alias "AppA" to give it a uniquely
recognizable name. For example:

ALIAS appa_uc = "AppA"
ALERT "CPU alert for AppA.util is",appa_uc:app_cpu_total_util

If you are using an alias for an instance with a class identifier, include both the instance name
and the class name in the alias. The following example shows the alias for the instance name
'other' and the class name 'APPLICATION.'

ALIAS my_app="other(APPLICATION)"
 ALERT my_app:app_cpu_total_util > 50 for 5 minutes

SYMPTOM Statement

A SYMPTOM provides a way to set a single variable value based on a set of conditions. Whenever
any of the conditions is true, its probability value is added to the value of the SYMPTOM
variable.
Performance Alarms 177

Syntax

SYMPTOM variable
 RULE condition PROB probability
 [RULE condition PROB probability]
 .
 .
 .

• The keywords SYMPTOM and RULE are used exclusively in the SYMPTOM statement and
cannot be used in other syntax statements. The SYMPTOM statement must be a top-level
statement and cannot be nested within any other statement. No other statements can
follow SYMPTOM until all its corresponding RULE statements are finished.

• variable is a variable name that will be the name of this symptom. Variable names defined
in the SYMPTOM statement can be used in other syntax statements, but the variable value
should not be changed in those statements.

• RULE is an option of the SYMPTOM statement and cannot be used independently. You can
use as many RULE options as needed within the SYMPTOM statement. The SYMPTOM variable
is evaluated according to the rules at each interval.

• condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
[item3 {>, <, >=, <=, ==, !=}item4]

where "==" means "equal" and "!=" means "not equal".

An item can be a metric name, a numeric constant, an alphanumeric string enclosed in
quotes, an alias, or a variable. When comparing alphanumeric items, only == or != can be
used as operators.

• probability is a numeric constant. The probabilities for each true SYMPTOM RULE are
added together to create a SYMPTOM value.

How It Is Used

The sum of all probabilities where the condition between measurement and value is true is
the probability that the symptom is occurring.

Example

SYMPTOM CPU_Bottleneck
RULE gbl_cpu_total_util > 75 PROB 25
RULE gbl_cpu_total_util > 85 PROB 25
RULE gbl_cpu_total_util > 90 PROB 25
RULE gbl_run_queue > 3 PROB 50
IF CPU bottleneck > 50 THEN
CYAN ALERT "The CPU symptom is: ", CPU_bottleneck
178 Chapter 9

Alarm Definition Examples

The following examples show typical uses of alarm definitions.

Example of a CPU Problem

Depending on how you configured the alarm generator, this example triggers an SNMP trap
to Network Node Manager or a message to Operations Manager whenever CPU utilization
exceeds 90 percent for 5 minutes and the CPU run queue exceeds 3 for 5 minutes.

ALARM gbl_cpu_total_util > 90 AND
 gbl_run_queue > 3 FOR 5 MINUTES
START
 CYAN ALERT "CPU too high at", gbl_cpu_total_util, "%"
REPEAT EVERY 20 MINUTES
{
 RED ALERT "CPU still to high at ", gbl_cpu_total_util, "%"
 EXEC "/usr/bin/pager -n 555-3456"
}
END
 RESET ALERT "CPU at ", gbl_cpu_total_util, "% - RELAX"

If both conditions continue to hold true after 20 minutes, a critical severity alarm can be
created in NNM. A program is then run to page the system administrator.

When either one of the alarm conditions fails to be true, the alarm symbol is deleted and a
message is sent showing the global CPU utilization, the time the alert ended, and a note to
RELAX.

Example of Swap Utilization

In this example, depending on how you configured the alarm generator, the ALERT can
trigger an SNMP trap to be sent to NNM or a message to be sent to HPOM, whenever swap
space utilization exceeds 95 percent for 5 minutes.

ALARM gbl_swap_space_util > 95 FOR 5 MINUTES
 START
 RED ALERT "GLOBAL SWAP space is nearly full "
 END
 RESET ALERT "End of GLOBAL SWAP full condition"

Example of Time-Based Alarms

You can specify a time interval during which alarm conditions can be active. For example, if
you are running system maintenance jobs that are scheduled to run at regular intervals, you
can specify alarm conditions for normal operating hours and a different set of alarm
conditions for system maintenance hours.

In this example, the alarm will only be triggered during the day from 8:00AM to 5:00PM.

start_shift = "08:00"
end_shift = "17:00"
ALARM gbl_cpu_total_util > 80
 TIME > start_shift
 TIME < end_shift for 10 minutes
 TYPE = "cpu"
Performance Alarms 179

 START
 CYAN ALERT "cpu too high at ", gbl_cpu_total_util, "%"
 REPEAT EVERY 10 minutes
 RED ALERT"cpu still too high at ", gbl_cpu_total_util, "%"
 END
 IF time == end_shift then
 {
 IF gbl_cpu_total_util > 80 then
 RESET ALERT "cpu still too high, but at the end of shift"
 ELSE
 RESET ALERT "cpu back to normal"
 ELSE

Example of Disk Instance Alarms

Alarms can be generated for a particular disk by identifying the specific disk instance name
and corresponding metric name.

The following example of alarm syntax generates alarms for a specific disk instance. Aliasing
is required when special characters are used in the disk instance.

ALIAS diskname=""
ALARM diskname:bydsk_phys_read > 1000 for 5 minutes
TYPE="Disk"
 START
 RED ALERT "Disk "
 REPEAT EVERY 10 MINUTES
 CYAN ALERT "Disk cyan alert"
 END
 RESET ALERT "Disk reset alert"
180 Chapter 9

Customizing Alarm Definitions

You specify the conditions that generate alarms in the alarm definitions file alarmdef. When
Performance Collection Component is first installed, the alarmdef file contains a set of
default alarm definitions. You can use these default alarm definitions or customize them to
suit your needs.

You can customize your alarmdef file as follows:

1 Revise your alarm definition(s) as necessary. You can look at examples of the alarm
definition syntax elsewhere in this chapter.

2 Save the file.

3 Validate the alarm definitions using the Performance Collection Component utility
program:

a Type utility

b At the prompt, type

checkdef

This checks the alarm syntax and displays errors or warnings if there any problems
with the file.

4 In order for the new alarm definitions to take affect, type:

ovpa restart alarm

or

mwa restart alarm

This causes the alarm generator to stop, restart, and read the customized alarmdef file.

You can use a unique set of alarm definitions for each Performance Collection Component
system, or you can choose to standardize monitoring of a group of systems by using the same
set of alarm definitions across the group.

If the alarmdef file is very large, the Performance Collection Component alarm generator
and utility programs may not work as expected. This problem may or may not occur based
on the availability of system resources.

The best way to learn about performance alarms is to experiment with adding new alarm
definitions or changing the default alarm definitions.
Performance Alarms 181

182 Chapter 9

10 Adviser for the RTMA Component
You can use the adviser feature only if you enable the HP Ops OS Inst to Realtime Inst LTU or
Glance Pak Software LTU .

The adviser feature enables you to generate and view alarms when values of certain metrics,
collected by the RTMA component, exceed (or fall below) the set threshold. The adviser
script and padv utility build up the adviser feature. The adviser script helps you create the
rules to generate alarms when the performance of the monitored system shows signs of
degradation. The padv utility helps you run the adviser script on a system of your interest.

Alarms and Symptoms

Alarms enable you to highlight metric conditions. The adviser script enables you to define
threshold values for metrics that are monitored by the RTMA component. When the metric
value traverses beyond the set threshold, the RTMA component generates an alarm in the
form of an alert message. This message is sent in the form of stdout to the padv utility.

An alarm can be triggered whenever conditions that you specify are met. Alarms are based on
any period of time you specify, which can be one interval or longer.

A symptom is a combination of conditions that affects the performance your system.

By observing different metrics with corresponding thresholds and adding values to the
probability that these metrics contribute to a bottleneck, the adviser calculates one value that
represents the combined probability that a bottleneck is present.

Working of the Adviser Script

When you run the padv command, the HP Operations agent scans the script specified with
the command and takes necessary actions. If you do not specify any script file with the padv
command, the adviser utility retrieves necessary information from the following default script
file:

• On Windows: %ovdatadir%\perf\perfd

• On UNIX and Linux: /var/opt/perf/perfd

If you want to run the script that includes operating system-specific diagnosis and actions,
use the following default scripts:

This topic focuses on the adviser feature that can be used with the RTMA component. The
GlancePlus software offers additional features that can be used with the adviser utility. For
information on using the adviser feature with the GlancePlus software, see online help for
GlancePlus.
183

• On Windows: %ovdatadir%\perf\perfd\os\<os_type>\adv

• On UNIX and Linux: /var/opt/perf/perfd/os/<os_type>/adv

In this instance, <os_type> is the type of operating system of node where you want to run the
script.

As a result of running the adviser script, you can achieve the following:

• Print the system status based on generated alarms into a text file

• View the real-time status of the system in the command console from where you ran the
padv command.

Using Adviser

To use the adviser component to monitor the real-time health of the system, follow these
steps:

1 Configure the adviser script according to your requirements. Sample scripts are available
into the following directory:

• On Windows: %ovinstalldir%\examples\adviser

• On UNIX or Linux: /opt/perf/examples/adviser

2 Identify the node where you want to run the script.

3 Make sure the perfd process runs on the identified system.

4 Run the following command:

padv -s <script_name> -n <system_name>

The adviser script starts running on the specified system and creates results based on the
configuration of the script file.

Run the Adviser Script on Multiple Systems

You can use the mpadv command to run the adviser script on multiple systems. To use the
mpadv command, follow these steps:

1 Identify the nodes where you want to run the script.

2 Create a text file listing the names of all the identified systems.

3 Save the text file on the local system.

4 Configure the adviser script according to your requirements. Sample scripts are available
into the following directory:

• On Windows: %ovinstalldir%\examples\adviser

• On UNIX or Linux: /opt/perf/examples/adviser

5 Make sure the perfd process runs on the identified system.

6 Run the following command:

mpadv -l <system_list_text_file> -s <script_name>

The adviser script starts running on the systems specified in the <system_list_text_file>
file and creates results based on the configuration of the script file.
184 Chapter 10

Adviser Syntax

The adviser syntax is a simple script language that enables you to set alarms and define
symptom conditions.

A default syntax file— adviser.syntax— is provided in the following directory:

• On Windows: %ovdatadir%\perf

• On UNIX and Linux: /var/opt/perf

You can edit the syntax file to define your own alarms and symptoms.

Syntax Conventions

• Braces ({ }) indicate that one of the choices is required.

• Brackets ([]) indicate an optional item.

• Items separated by commas within brackets or braces are options. Choose only one.

• Italics indicate a variable name that you will replace.

• Adviser syntax keywords must always be written in the capital case.

Comments

Syntax:

[any text or characters]

or

// [any text or characters]

You can precede comments either by double forward slashes (//) or the # sign. In both cases,
the comment ends at the end of the line.

Conditions

A condition is defined as a comparison between two metric names, user variables, or numeric
constants.

 item1 {>, <, >=, <=, ==, !=} item2 [OR item3 \

 {>, <, >=, <=, ==, !=} item4]

or:

 item1 {>, <, >=, <=, ==, !=} item2 [AND item3 \

 {>, <, >=, <=, ==, !=} item4]

 ("==" means "equal", and "!=" means "not equal".)

Conditions are used in the ALARM statement and the IF statement. They can be used to
compare two numeric metrics, variables or constants, and they can also be used between two
string metric names, user variables or string constants. For string conditions, only == or !=
can be used as operators.
Adviser for the RTMA Component 185

You can use compound conditions by specifying the OR or AND operator between
subconditions.

Examples:

gbl_swap_space_reserved_util > 95

proc_proc_name == "test" OR proc_user_name == "tester"

proc_proc_name != "test" AND

 proc_cpu_sys_mode_util > highest_proc_so_far

Constants

Constants can be either alphanumeric or numeric. An alphanumeric constant must be
enclosed in double quotes. There are two kinds of numeric constants: integer and real. Integer
constants may contain only digits and an optional sign indicator. Real constants may also
include a decimal point.

Examples:

Expressions

Use expressions to evaluate numerical values. An expression can be used in a condition or an
action.

An expression can contain:

• Numeric constants

• Numeric metric names

• Numeric variables

• An arithmetic combination of the above

• A combination of the above grouped together using parentheses

Examples:

Iteration + 1

3.1416

gbl_cpu_total_util - gbl_cpu_user_mode_util

(100 - gbl_cpu_total_util) / 100.0

Metric Names in Adviser Syntax

You can directly reference metrics anywhere in the Adviser syntax. You can use the following
types of metrics in the Adviser syntax:

345 Numeric integer

345.2 Numeric real

“Time is” Alphanumeric literal
186 Chapter 10

• Global metrics (prefixed with gbl_ or tbl_)

• Application metrics (prefixed with app_)

• Process metrics (prefixed with proc_)

• Disk metrics (prefixed with bydsk_)

• By CPU metrics (prefixed with bycpu_)

• File system metrics (prefixed with fs_)

• Logical volume metrics (prefixed with lv_)

• Network interface metrics (prefixed with bynetif_)

• Swap metrics (prefixed with byswp_)

• ARM metrics (prefixed with tt_ or ttbin_)

• PRM metrics (prefixed with prm_)

• Locality Domain metrics (prefixed by ldom_)

You can only use process, logical volume, disk, file system, LAN, and swap metrics within the
context of a LOOP statement.

Metrics can contain alphanumeric (for example, gbl_machine or app_name) or numeric data
and can reflect several different kinds of measurement. For example, the metric ending of a
metric name indicates what is being measured:

• a _util metric measures utilization in percentages

• a _rate metric measures units per second

• a _queue metric measures the number of processes or threads waiting for a resource

If you are unsure of the unit of measure for a specific metric, refer to the metric definition
document.

You must associate an application metric with a specific application, except when using the
LOOP statement. To do this, specify the application name followed by a colon, and then the
metric name. For example, other_apps:app_cpu_total_util specifies the total CPU utilization
for the application other_apps. Refer to the ALIAS statement description for more information
on using application metrics in the syntax.

Application names, as defined by the parm file, may contain special characters and embedded
blanks. To use these names in the syntax (where application names must match the form of a
variable name), the names are made case-insensitive and embedded blanks are converted to
underlines. This means that the application name defined as "Other Apps" may be referenced
in the syntax as other_apps. For application names defined with special characters, you must
use the ALIAS statement to specify an alternate name.

When explicitly qualified, application metrics may be referenced anywhere in the syntax.
Unqualified application metrics may only be referenced within the context of the LOOP
statement. This is an iterative statement which implicitly qualifies application or process
metrics.

You can only reference process metrics within the context of a LOOP statement. There is no
way to explicitly reference a process.

Printlist

The printlist is any combination of properly formatted expressions, Metric Names, user
variables, or constants. See the examples for the proper formatting.
Adviser for the RTMA Component 187

Expression examples:

expression [|width[|decimals]]

Metric Names or User Variable examples:

metric names [|width[|decimals]]

or

user variables [|width[|decimals]]

The metric names or user variables must be alphanumeric.

Constant examples:

No formatting is necessary for constants.

Formatted Examples:

gbl_cpu_total_util|6|2 formats as '100.00'

(100.32 + 20)|6 formats as ' 120'

gbl_machine|5 formats as '7013/'

"User Label" formats as "User Label"

Variables

Variables must begin with a letter and can include letters, digits, and the underscore
character. Variables are not case-sensitive.

Define a variable by assigning something to it. The following example defines the numeric
variable highest_CPU_value by assigning it a value of zero.

highest_CPU_value = 0

The following example defines the alphanumeric variable my_name by assigning it a null
string value.

my_name = ""

Adviser Syntax Statements

ALARM Statement

Use the ALARM statement to notify you when certain events, which you define, occur on your
system. Using the ALARM statement, the adviser script can notify you through messages
sent to the originating console of the padv command.

Syntax:

ALARM condition [FOR duration {SECONDS, MINUTES, INTERVALS}]

 [condition [FOR duration {SECONDS, MINUTES, INTERVALS}]] ...

[START statement]
188 Chapter 10

[REPEAT [EVERY duration [SECONDS, MINUTES, INTERVAL, INTERVALS]]

 statement]

[END statement]

The ALARM statement must be a top-level statement. It cannot be nested within any other
statement.

However, you can include several ALARM conditions in a single ALARM statement, in which
case all conditions must be true for the alarm to trigger. And you can also use a COMPOUND
Statement, which is executed at the appropriate time during the alarm cycle.

START, REPEAT, and END are ALARM statement keywords. Each of these keywords
specifies a statement. You must have a START, REPEAT, or END in an ALARM statement,
and they must be listed in correct order.

The alarm cycle begins on the first interval that all of the alarm conditions have been true for
at least the specified duration. At that time, the adviser script executes the START statement,
and on each subsequent interval checks the REPEAT condition. If enough time has
transpired, the statement for the REPEAT clause is executed. This continues until one or
more of the alarm conditions becomes false. This completes the alarm cycle and the END
statement is executed.

If you omit the EVERY specification from the REPEAT statement, the adviser script executes
the REPEAT statement at each interval.

ALARM Example: Typical ALARM Statement

The following ALARM example sets a red alert when the semaphore table is almost full. It is
similar to a predefined Alarm in the default syntax. Do not add this to your syntax without
removing the default, or your subsequent alert messages may be confusing.

ALARM tbl_sem_table_util > 90 FOR 1 MINUTE

 START RED ALERT "Semaphore Table is nearly full"

 REPEAT EVERY 30 SECONDS

 RED ALERT "Semaphore Table still nearly full"

 END RESET ALERT "End of Semaphore Table full condition"

This ALARM example tests the metric tbl_sem_table_util to see if it is greater than 90. If it is,
the RED ALERT statement sends the message with the severity RED to the originating
console of the padv command.

The REPEAT statement checks for the tbl_sem_table_util condition every 30 seconds. As long
as the condition is greater than 90, the REPEAT tells the adviser to maintain a RED ALERT
condition and sends the Semaphore Table still nearly full message to the originating
console of the padv command.

When the tbl_sem_table_util condition goes below 90, the RESET ALERT statement
displays the message End of Semaphore Table full condition in the originating console
of the padv command.
Adviser for the RTMA Component 189

ALARM Example: Using Multiple Conditions

You can have more than one test condition in the ALARM statement. In this case, each
statement must be true for the alarm button to activate. For example:

ALARM gbl_cpu_total_util > 90 FOR 2 MINUTES

 gbl_cpu_sys_mode_util > 50 FOR 1 MINUTES

 START RED ALERT

 "The CPU is busy and System Mode CPU utilization is high."

 END RESET ALERT "The CPU alert is now over."

This ALARM example tests the metric gbl_cpu_total_util and CPU_Bottleneck. If both
conditions are true, the RED ALERT statement sets a critical alert. When either test
condition becomes false, the RESET statement is executed.

ALARM Example: Swap Space

//GLOBAL SWAP ALARM

symp_swap_util = gbl_swap_space_used / gbl_swap_space_avail

ALARM symp_swap_util > 0.9

 START

 RED ALERT "GLOBAL SWAP space is nearly full"

 END RESET ALERT "GLOBAL SWAP space crisis is over"

The new variable, symp_swap_util, represents swap utilization. The adviser script creates an
alarm when the swap utilization exceeds 90%. On the next interval, if symp_swap_util falls
below 90%, the alarm condition becomes false, and the ALARM is reset.

ALARM Example: Yellow Alert

ALARM Symp_Global_Cpu_Bottleneck > 50 FOR 2 MINUTES

 START YELLOW ALERT "CPU Bottleneck probability= ",

 Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

 REPEAT every 2 minutes

 YELLOW ALERT "CPU Bottleneck probability= ",

 Symp_Global_Cpu_Bottleneck, "% for the last 2 minutes"

 END

 RESET ALERT " CPU Bottleneck Yellow Alert over, probability=",

 Symp_Global_Cpu_Bottleneck, "%"

The ALARM tests the SYMPTOM variable, which is defined in the SYMPTOM Statement
Symp_Global_Cpu_Bottleneck. If the SYMPTOM variable is greater than 50 for two
minutes, the ALARM notifies you with a YELLOW ALERT to the padv command console.

The ALARM repeats every 2 minutes until the ALARM condition is false. At that time, the
END statement resets the ALERT.
190 Chapter 10

ALARM Example: CPU Problem

ALARM

 gbl_cpu_total_util > 90 FOR 30 SECONDS

 gbl_run_queue > 3 FOR 30 SECONDS

 START YELLOW ALERT "CPU AT ", gbl_cpu_total_util,

 "% at ", gbl_stattime

 REPEAT EVERY 300 SECONDS {

 RED ALERT "CPU AT ", gbl_cpu_total_util

 exec "/usr/bin/pager -n 555-3456"

 }

 END ALERT "CPU at ", gbl_cpu_total_util, "% at ",

 gbl_stattime, " - RELAX"

This example generates a yellow alert in the padv command console whenever CPU
utilization exceeds 90% for 30 seconds and the CPU run queue exceeds 3 for 30 seconds.

If both conditions remain true, a red alert is generated and a program to page the system
administrator is invoked.

ALERT Statement

The ALERT statement is used to place a message in padv command console. Whenever an
ALARM detects a problem, it can run an ALERT statement to send a message with the
specified severity to the padv command console.

You can use the ALERT statement in conjunction with an ALARM statement.

Syntax:

[(RED or CRITICAL), (YELLOW or WARNING), RESET] ALERT printlist

RED and YELLOW, are synonymous with CRITICAL and WARNING.

ALERT Example

An example an ALERT statement is:

RED ALERT "CPU utilization = ", gbl_cpu_total_util,

 " at ", gbl_stattime

When you run this statement, a message is written in the padv command console that shows,
for example:

CPU utilization = 85.6 at 14:43:10
Adviser for the RTMA Component 191

ALIAS Statement

Use the ALIAS statement to assign a variable to an application name that contains special
characters or imbedded blanks.

Syntax:

ALIAS variable = "alias name"

ALIAS Example

Because you cannot use special characters or embedded blanks in the syntax, using the
application name "other user root" in the PRINT statement below would have caused an error.
Using ALIAS, you can still use "other user root" or other strings with blanks and special
characters within the syntax.

ALIAS otherapp = "other user root"

PRINT "CPU for other root login processes is: ",

 otherapp:app_cpu_total_util

ASSIGNMENT Statement

Use the ASSIGNMENT statement to assign a numeric or alphanumeric value, expression, to
the user variable.

Syntax:

[VAR] variable = expression

[VAR] variable = alphaitem

[VAR] variable = alphaitem

ASSIGNMENT Examples

A user variable is determined to be numeric or alphanumeric at the first assignment. You
cannot mix variables of different types in an assignment statement.

This example assigns an alphanumeric application name to a new user variable:

myapp_name = other:app_name

This example is incorrect because it assigns a numeric value to a user variable that was
previously defined as alphanumeric (in example 1):

myapp_name = 14

This example assigns a numeric value to a new user variable:

highest_cpu = gbl_cpu_total_util

This example is incorrect because it assigns an alphanumeric literal to a user variable that
was previously defined as numeric (in example 3):

highest_cpu = "Time is"

COMPOUND Statement

Use the COMPOUND statement with the IF statement, the LOOP statement, and the
START, REPEAT, and END clauses of the ALARM statement. By using a COMPOUND
statement, a list of statements can be executed.
192 Chapter 10

Syntax

{

statement

statement

}

Construct compound statements by grouping a list of statements inside braces ({}). The
compound statement can then be treated as a single statement within the syntax.

Compound statements cannot include ALARM and SYMPTOM statements. (Compound is a
type of statement and not a keyword.)

COMPOUND Example

highest_cpu = highest_cpu

IF gbl_cpu_total_util > highest_cpu THEN

 // Begin compound statement

 {

 highest_cpu = gbl_cpu_total_util

 PRINT "Our new high CPU value is ", highest_cpu, "%"

 }

 // End compound statement

In this example, highest_cpu = highest_cpu defines a variable called highest_cpu. The
adviser script saves the highest_cpu value and notifies you only when that highest_cpu
value is exceeded by a higher value.

In the example, if you replaced highest_cpu = highest_cpu with highest_cpu = 0, then the
highest_cpu value would be reset to zero at each interval.

At every interval, you would be notified what the highest_cpu value is.

EXEC Statement

Use the EXEC statement to execute a UNIX command from within your Adviser syntax. You
could use the EXEC command, for example, if you wanted to send a mail message to the MIS
staff each time a certain condition is met.

Syntax

EXEC printlist

The resulting printlist is submitted to your operating system for execution.

Because the EXEC command you specify may execute once every update interval, be careful
when using the EXEC statement with operating system commands or scripts that have high
overhead.

EXEC Examples

In the following example, EXEC executes the UNIX mailx command at every interval.

EXEC "echo 'gpm mailed you a message' | mailx root"
Adviser for the RTMA Component 193

In the following example, EXEC executes the UNIX mailx command only when the
gbl_disk_util_peak metric exceeds 20.

IF gbl_disk_util_peak > 20 THEN

 EXEC "echo 'gpm detects high disk utilization' | mailx root"

IF Statement

Use the IF statement to test conditions you define in the adviser script syntax.

Syntax:

IF condition THEN statement [ELSE statement]

The IF statement tests the condition. If true, the statement after the THEN is executed. If the
condition is false, then the action depends on the optional ELSE clause.

If an ELSE clause has been specified, the statement following it is executed. Otherwise, the IF
statement does nothing. The statement can be a COMPOUND statement which tells the
adviser script to execute multiple statements.

IF Example

IF gbl_cpu_total_util > 90 THEN

 PRINT "The CPU is running hot at: ", gbl_cpu_total_util

ELSE IF gbl_cpu_total_util < 20 THEN

 PRINT "The CPU is idling at: ", gbl_cpu_total_util

In this example, the IF statement is checking the condition (gbl_cpu_total_util > 90). If the
condition is true, then "The CPU is running hot at: " is displayed in the padv command
console along with the % of CPU used.

If the (gbl_cpu_total_util > 90) condition is false, ELSE IF goes to the next line and checks the
condition (gbl_cpu_total_util < 20). If that condition is true, then "The CPU is idling at: "
is displayed in the padv command console along with the % of CPU used.

LOOP Statement

Use LOOP statements to find information about your system. For example, you can find the
process that uses the highest percentage of CPU or the swap area that is being utilized most.
You find this information with the LOOP statement and with corresponding statements that
use metric names for the system conditions on which you are gathering information.

Syntax:

{APPLICATION, APP, CPU, DISK, DISK_DETAIL, FILESYSTEM, FS, FS_DETAIL, LAN,
LOGICALVOLUME, LV, LV_DETAIL, NETIF, NFS, NFS_BYSYS_OPS, NFS_OP, PRM,
PRM_BYVG, PROCESS, PROC, PROC_FILE, PROC_REGION, PROC_SYSCALL, SWAP,
SYSTEMCALL, SC, THREAD, TRANSACTION, TT, TTBIN, TT_CLIENT, TT_INSTANCE,
TT_UDM, TT_RESOURCE, TT_INSTANCE_CLIENT, TT_INSTANCE_UDM, TT_CLIENT_UDM,
LDOM, PROC_LDOM}

LOOP statement

A LOOP can be nested within other syntax statements, but you can only nest up to five levels.
The statement may be a COMPOUND statement which contains a block of statements to be
executed on each iteration of the loop. A BREAK statement allows the escape from a LOOP
statement.
194 Chapter 10

If you have a LOOP statement in your syntax for collecting specific data and there is no
corresponding metric data on your system, the adviser script skips that LOOP and continues
to the next syntax statement or instruction. For example, if you have defined a LOGICAL
VOLUME LOOP, but have no logical volumes on your system, the adviser script skips that
LOGICAL VOLUME LOOP and continues to the next syntax statement.

Loops that do not exist on your platform generate a syntax error.

As LOOP statement iterates through each interval, the values for the metric used in the
statement change. For example, the following LOOP statement executes the PRINT
statement once for each active application on the system, causing the name of each
application to be printed.

APP LOOP

 PRINT app_name

On a threaded operating system such as HP_UX 11.23, the adviser script supports a
THREAD LOOP. A thread loop can be nested inside a process loop in order to examine each
thread for a particular process. If you do reference a PROC_ metric inside a thread loop, it
could return unexpected results (thread information).

A thread loop can also exist outside a process loop. In this case, it examines all threads active
on the system. You should not nest a process loop within a thread loop.

Because LOOP statements are initiated at each interval, use them with discretion due to
possible performance implications. This caution is especially appropriate with regards to
using nested LOOP statements.

APPLICATION LOOP Example

Use the APPLICATION LOOP statement to cycle through all active applications.

You can use global (gbl_), table (tbl_), or application (app_) metrics with the APPLICATION
LOOP.

The following example uses an Application LOOP to find the application with the highest
CPU for an interval.

big_app = ""

highest_cpu = 0

APPLICATION LOOP

 IF (app_cpu_total_util > highest_cpu) THEN

 {

 highest_cpu = app_cpu_total_util

 big_app = app_name

 }

 IF (highest_cpu > 20) THEN

 YELLOW ALERT "The application ", big_app,

 " is the highest CPU user at", highest_cpu, "%"

After finding the application, the adviser script writes a message to the padv command
console with the app_name and CPU value, if the CPU value is greater than 20.
Adviser for the RTMA Component 195

CPU LOOP Example

Use the CPU LOOP statement to cycle through data about CPU use on your system. You can
use global (gbl_), table (tbl_), or by CPU (bycpu_ metrics with the CPU LOOP.

This example prints CPU usage percentage for each CPU on your system.

Print "----------", glb_stattime, "----------"

CPU LOOP

 PRINT "CPU # ", bycpu_id, " used ", bycpu_cpu_total_util, " % CPU"

On a system with two CPUs, the resulting output for two intervals:

----------10:52:01----------

CPU # 0 used 0.6 % CPU

CPU # 1 used 3.4 % CPU

----------10:52:11----------

CPU # 0 used 0.4 % CPU

CPU # 1 used 2.3 % CPU

DISK LOOP Example

Use the DISK LOOP statement to loop through your configured disk devices. When you use
this LOOP, the adviser script checks for specific disk information that appears in the IO by
Disk window. You can use global (gbl_), table (tbl_) or by disk metrics with the DISK LOOP.

This example prints the physical write rate for each disk on your system.

PRINT "---------------------", gbl_stattime, "--------------------"

DISK LOOP

 PRINT bydsk_devname, " write rate: ", bydsk_phys_write_rate

On a system with three disks, the resulting output for two intervals:

---------------------11:00:23------------------------

/dev/hdisk0 write rate: 2.4

/dev/hdisk1 write rate: 0.0

/dev/cd0 write rate: 0.0

---------------------11:00:33------------------------

/dev/hdisk0 write rate: 0.0

/dev/hdisk1 write rate: 0.0

/dev/cd0 write rate: 0.0
196 Chapter 10

FILE SYSTEM LOOP Example

The FILE SYSTEM LOOP is designed to loop through configured file systems and allow the
adviser script to report on information accessible in the IO By File System window. You can
use global (gbl_), table (tbl_), or IO by file system (fs_) metrics with the FILE SYSTEM LOOP.

The following example reports the space utilized for each file system device on a system with
three devices.

PRINT "-------------------", gbl_stattime, "----------------------"

FS LOOP

 PRINT fs_devname, " is ", fs_space_util, "% full at ",

 fs_max_size," megabytes"

The output for two intervals on a system with three file systems is:

---------------------11:11:28------------------------

/dev/hd4 is 77.9% full at 32 megabytes

/dev/hd2 is 94.9% full at 928 megabytes

/dev/hd9var is 93.9% full at 56 megabytes

---------------------11:11:38------------------------

/dev/hd4 is 77.9% full at 32 megabytes

/dev/hd2 is 94.9% full at 928 megabytes

/dev/hd9var is 93.6% full at 56 megabytes

NFS BY OPERATION LOOP Example

Use the NFS BY OPERATION LOOP to loop through NFS operations performed. When you
use this LOOP, the adviser script checks for specific NFS operations. You can use either global
(gbl_), table (tbl_), or by operation metrics with the NFS_OP LOOP.

The following example prints the server and client operations performed:

PRINT "--------------------", gbl_stattime, "---------------------"

NFS_OP LOOP

 PRINT byop_server_count," server and ",byop_client_count,

 " client ",byop_name," operations performed"

On a system performing no activity as an NFS server but with users doing directory listing on
another NFS server, the resulting output is:

---------------------14:55:41------------------------

 0 server and 0 client null operations performed

 0 server and 2 client getattr operations performed

 0 server and 0 client setattr operations performed

 0 server and 0 client root operations performed

 0 server and 886 client lookup operations performed
Adviser for the RTMA Component 197

 0 server and 884 client readlink operations performed

 0 server and 0 client read operations performed

 0 server and 0 client writecache operations performed

 0 server and 0 client write operations performed

 0 server and 0 client create operations performed

 0 server and 0 client remove operations performed

 0 server and 0 client rename operations performed

 0 server and 0 client link operations performed

 0 server and 0 client symlink operations performed

 0 server and 0 client mkdir operations performed

 0 server and 0 client rmdir operations performed

 0 server and 28 client readdir operations performed

 0 server and 1 client statfs operations performed

NETWORK INTERFACE LOOP Example

Use the NETWORK INTERFACE LOOP to loop through configured LAN devices.

This version will only work with hp-ux 11.x.If you want it to

work for 10.20 you need to remove the "BYNETIF_QUEUE," string

below as that metric is only available from 11.x glance.

The following string variable should be changed to the interface

of interest. For example:

netif_to_examine = "lan0"

If you want to see all interfaces, leave it an empty string (""):

netif_to_examine = ""

initialize variables:

headers_printed = headers_printed

netif loop {

print information for the selected interface or if null then all:

IF (BYNETIF_NAME == netif_to_examine) or

 (netif_to_examine == "") THEN

 {

print headers the first time through the loop:

 IF headers_printed == 0 THEN

 {

 print "Time Interface InPkts OutPkts OutQ Colls Errs"

 print " "
198 Chapter 10

 headers_printed = 1

 }

print one line per interface reported:

 print GBL_STATTIME, " ", BYNETIF_NAME|8,

 BYNETIF_IN_PACKET, BYNETIF_OUT_PACKET,

 BYNETIF_QUEUE, BYNETIF_COLLISION, BYNETIF_ERROR

 # (note that some interface types do not report collisions or

 # errors)

}

}

print " "

The resulting output:

Time Interface InPkts OutPkts OutQ Colls Errs

22:43:42 lan3 49 3 0 0 0

22:43:42 lan0 0 0 0 0 0

22:43:42 lan1 0 0 0 0 0

22:43:42 lan2 0 0 0 0 0

22:43:42 lo0 0 0 0 0 0

22:43:47 lan3 329 2 0 0 0

22:43:47 lan0 0 0 0 0 0

22:43:47 lan1 0 0 0 0 0

22:43:47 lan2 0 0 0 0 0

22:43:47 lo0 0 0 0 0 0

LOGICAL VOLUME Example

Use LOGICAL VOLUME loops to loop through your configured logical volumes. You can use
either global (gbl_), table (tbl_), or logical volume metrics with the LOGICAL VOLUME
LOOP.

 PRINT "-----------------", gbl_stattime, "-------------------"

 LV LOOP

 PRINT "Volume ", lv_dirname, " was read at a rate of ",

 lv_read_rate, " per second"

The resulting output for two intervals on a system with logical volumes:

----------------------------11:46:50------------------------------
Adviser for the RTMA Component 199

Volume /dev/vg00 was read at a rate of 0.0 per second

Volume /dev/vg00/group was read at a rate of 0.0 per second

Volume /dev/vg00/1vol3 was read at a rate of 314.3 per second

----------------------------11:47:00------------------------------

Volume /dev/vg00 was read at a rate of 0.0 per second

Volume /dev/vg00/group was read at a rate of 0.0 per second

Volume /dev/vg00/1vol3 was read at a rate of 70.6 per second

PRM LOOP Example

HP-UX only. Use the PRM LOOP to cycle through information found in the Process Resource
Manager (PRM) groups. You can use global (gbl_), table (tbl_), or application metrics with the
PRM LOOP.

The following PRM LOOP example checks for high run queue and any PRM groups exceeding
their CPU entitlements.

IF gbl_run_queue > 3 THEN {

 print " "

 print "--- High run queue = ", gbl_run_queue, " at ", gbl_stattime,

 " ---"

 prm loop {

 IF app_prm_state > 2 THEN

 IF app_cpu_total_util > app_prm_cpu_entitlement THEN

 print " Note PRM group ", app_name_prm_groupname,

 " exceeds entitlement."

 }

}

The output printed at each interval is:

--- High run queue = 3.4 at 15:53:29 ---

 Note PRM group Testing exceeds entitlement.

PRM_BYVG LOOP Example

HP-UX only. Use the PRM_BYVG loop to loop through PRM groups for a volume group. (Note
that PRM information is only available for volume groups that are specified in the PRM
configuration file.) The PRM_BYVG loop must be nested within a LV loop. The following
example displays disk resource usage statistics by PRM group.

PRM loop {

 disk_state = app_prm_disk_state

}

200 Chapter 10

IF disk_state == 0 THEN{

 print " Disk manager state: Not Installed"

}

else IF disk_state == 1 THEN {

 print " Disk manager state: Reset"

}

else IF disk_state == 2 THEN {

 print " Disk manager state: Disabled"

}

else IF disk_state == 3 THEN {

 print " Disk manager state: Enabled"

 lv loop {

 IF lv_type == "G" THEN {

 print " Volume Group: ", lv_dirname

 print " % % KB"

 print "PRM Group PRMID entitled achieved transferred"

 print "---"

 prm_byvg loop {

 print prm_byvg_prm_groupname|13, prm_byvg_prm_groupid|5,

 prm_byvg_group_entitlement|8, prm_byvg_group_util|8,

 prm_byvg_transfer

 }

 print " "

 }

 }

}

The output at each interval is:
Adviser for the RTMA Component 201

Disk manager state: Enabled

Volume Group: /dev/vg00

 % % KB

PRM Group PRMID entitled achieved transferred

PRM_SYS 0 0 100 8

OTHERS 1 50 0 0

tools 2 50 0 0

PROCESS LOOP Example

Use the PROCESS LOOP statement to cycle through all active processes. You can use either
global (gbl_), table (tbl_), or process (proc_) metrics with the PROCESS LOOP. The following
example uses a PROCESS LOOP to find the process with the highest CPU for an interval.

big_proc_id = 0

big_proc_name = ""

big_proc_cpu = 0

PROCESS LOOP

IF proc_cpu_total_util > big_proc_cpu THEN {

 big_proc_cpu = proc_cpu_total_util

 big_proc_name = proc_proc_name

 big_proc_id = proc_proc_id

}

IF big_proc_cpu > 10 THEN

 YELLOW ALERT "Possible loop, process ", big_proc_name,

 " pid ", big_proc_id|6|0, " using ", big_proc_cpu, " % CPU"

SWAP LOOP Example

Use the SWAP LOOP to LOOP through the configured swap areas and allow the adviser
script to report on information from the Swap Space window. You can use table (tbl_) or global
(gbl_) or by swap (byswp_) metrics with the SWAP LOOP.

The following example reports on the swap space available on a system with two swap
devices.

PRINT "-------------------", gbl_stattime, "----------------------"

SWAP LOOP

 PRINT BYSWP_SWAP_SPACE_NAME, " has ", BYSWP_SWAP_SPACE_USED,

 " used out of", BYSWP_SWAP_SPACE_AVAIL, " megabytes "

On a system with one swap area, the output printed for two intervals is:
202 Chapter 10

---------------------15:31:59------------------------

/dev/hd6 has 37 used out of 128 megabytes

---------------------15:32:09------------------------

/dev/hd6 has 37 used out of 128 megabytes

SYSTEM CALL LOOP Example

Use the SYSTEM CALL LOOP to cycle through calls on your system. When you use the
SYSTEM CALL LOOP, the adviser script checks for information available in the System Call
window. You can use global (gbl_), table (tbl_), or system call (syscall_) metrics with the
SYSTEM CALL LOOP.

The following example checks for a high system call rate, then prints the most frequent call.

IF gbl_syscall_rate > 6000 THEN {

 print " "

 print "--- High syscall rate = ", gbl_syscall_rate, " at ",

 gbl_stattime, " ---"

 highestrate = 0

 systemcall loop {

 IF syscall_call_rate > highestrate THEN {

 highestrate = syscall_call_rate

 highestcall = syscall_call_name

 }

 }

 print " Most frequent syscall was ", highestcall, " at",

 highestrate, " per second"

}

The output is:

--- High syscall rate = 6750.6 at 15:50:27 ---

 Most frequent syscall was gettimeofday at 6632.90 per second

TT LOOP Example

Use the TT LOOP to loop through transaction information that has been recorded during the
last interval. When you use this LOOP, the adviser script checks for specific transaction
information that appears in the Transaction Tracking window. You can use global (gbl_), table
(tbl_), or transaction tracking (tt_) metrics with TT LOOP.
Adviser for the RTMA Component 203

The following example prints the number of completed transactions and the average response
time for each registered transaction name on your system.

PRINT "-------------------", gbl_stattime, "----------------------"

TT LOOP

 PRINT tt_name, " had ", tt_count, " transactions; ",

 "response time ", tt_wall_time_per_tran, " secs"

On a system with four transactions, the resulting output for two intervals is:

-------------------------13:24:44--------------------------

First_Transaction had 1 transactions; response time 1.000355 secs

Second_Transaction had 1 transactions; response time 2.000221 secs

Third_Transaction had 1 transactions; response time 3.000231 secs

Fourth_Transaction had 0 transactions; response time 0.000000 secs

-------------------------13:24:54--------------------------

First_Transaction had 3 transactions; response time 1.000383 secs

Second_Transaction had 1 transactions; response time 2.000216 secs

Third_Transaction had 0 transactions; response time 0.000000 secs

Fourth_Transaction had 0 transactions; response time 0.000000 secs

TTBIN LOOP Example

Use the TTBIN LOOP, which must be nested within a TT loop, to loop through the response
time bins of each active transaction on your system. When you use this LOOP, the adviser
script checks for specific transaction information that appears in the Transaction Graph
window. You can use global (gbl_), table (tbl_), transaction tracking, or transaction tracking
bin metrics with the TTBIN LOOP.

The following example prints the response time bins for each transaction name which had any
completed transactions during the interval.

PRINT "--------------------", gbl_stattime, "---------------------"

TT LOOP

 IF (tt_count > 0) THEN

 {

 print "Transaction ", tt_name, " had ", tt_count, " transactions"

 lower_bin_limit = 0

 TTBIN LOOP

 {

 IF (ttbin_trans_count > 0) THEN {

 print " ", ttbin_trans_count, " were between ",
204 Chapter 10

 lower_bin_limit, " and ", ttbin_upper_range, " seconds"

 lower_bin_limit = ttbin_upper_range

 }

 }

 }

On a system with four transactions, the printed output for two intervals is:

-------------------------13:46:31--------------------------

Transaction First_Transaction had 4 transactions

 2 were between 1.00 and 2.000000 seconds

Transaction Second_Transaction had 1 transactions

 1 were between 2.00 and 3.000000 seconds

Transaction Third_Transaction had 1 transactions

 1 were between 3.00 and 5.000000 seconds

-------------------------13:46:41--------------------------

Transaction First_Transaction had 3 transactions

 1 were between 1.00 and 2.000000 seconds

Transaction Second_Transaction had 1 transactions

 1 were between 2.00 and 3.000000 seconds

Transaction Fourth_Transaction had 1 transactions

 1 were between 3.00 and 5.000000 seconds

TT LOOP ARM Example

With ARM 2.0, the TT_CLIENT, TT_INSTANCE and TT_UDM loops can be nested within a
TT LOOP. The TT_CLIENT loop lists the correlated transactions, the TT_INSTANCE loop
lists up to 2048 transaction instances, and the TT_UDM loop lists user measurements for a
given transaction. You can use global (gbl_), table (tbl_) or transaction tracking metrics with
the TT LOOP.

The examples below show how multiple loops can be used to look at user measurements for
any given transaction instance.

Example 1: Look for SLO Violations

The following example loops through all transactions looking for

SLO violations, then prints the UDM information for all

instances:

print "---------------------", GBL_STATTIME, "--------------------"
Adviser for the RTMA Component 205

tt loop {

 IF tt_slo_count > 0 THEN {

 print " "

 print "SLO violation count:", tt_slo_count,

 " for transaction:", tt_name, " user:", tt_uname,

 " app:", tt_app_name, " threshold: ", tt_slo_threshold

 tt_instance loop {

 starttime = gbl_stattime - gbl_interval

 IF tt_instance_stop_time > starttime THEN {

 # found a completed instance in the transaction, print info:

 print "instance pid:", tt_instance_proc_id,

 " wall time:", tt_instance_wall_time

 tt_instance_udm loop {

 print " ", tt_instance_user_measurement_name|44,

 " value= ", tt_instance_user_measurement_value

 }

 }

 }

 }

}

The following is the output for one interval:

----------------------------17:19:03----------------------------

SLO violation count: 1 for transaction:Client_tra00 user:gracel
app:Client_Appl0 threshold: 5.000000

instance pid: 12137 wall time: 13.0407

SLO violation count: 1 for transaction:Server_transaction user:joe
app:Server_Application threshold: 5.000000

instance pid: 12137 wall time: 13.0358

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 2.000
206 Chapter 10

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0291

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 3.0256

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 2.0201

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

instance pid: 12137 wall time: 1.0101

 Metric #1 - Type 1 is a COUNTER32 value= 32

 Metric #2 - Type 4 is a GAUGE32 value= 37

 Metric #3 - Type 2 is a COUNTER64 value= 19088743

 Metric #4 - Type 9 is a STRING8 value= String 8

 Metric #5 - Type 3 is a COUNTER32/DIVISOR32 value= 21.333

 Metric #6 - Type 8 is a NUMERICID64 value= 19088434

 The last field is always a STRING32 value= 0

Example 2: ARM 2.0 syntax

The following example prints info for all completed transactions
Adviser for the RTMA Component 207

during the interval.

print "-------------------", GBL_STATTIME, "--------------------"

header_printed = 0

tt loop {

 tt_instance loop {

 starttime = GBL_STATTIME - GBL_INTERVAL

 IF TT_INSTANCE_STOP_TIME > starttime THEN {

 IF header_printed == 0 THEN {

 print " "

 print "TranID StartTime StopTime",

 " "

 header_printed = 1

 }

 print TT_TRAN_ID|6, " ", TT_INSTANCE_START_TIME, " ",

 TT_INSTANCE_STOP_TIME

 print " TranName: ",TT_NAME|40

 }

 }

}

The following is the output for one interval:

-----------------------------17:21:24-----------------------------

TranID StartTime StopTime

 3 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998

 TranName: Client_tra00

 7 Wed Jun 3 17:21:07 1998 Wed Jun 3 17:21:20 1998

 TranName: Server_transaction

 7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998

 TranName: Server_transaction
208 Chapter 10

 7 Wed Jun 3 17:21:17 1998 Wed Jun 3 17:21:20 1998

 TranName: Server_transaction

 7 Wed Jun 3 17:21:18 1998 Wed Jun 3 17:21:20 1998

 TranName: Server_transaction

 7 Wed Jun 3 17:21:19 1998 Wed Jun 3 17:21:20 1998

 TranName: Server_transaction

LDOM Loop Example

HP-UX 11iv2 and above only. Use the LDOM Loop statement to cycle through the data on the
Locality Domain on your system. You can use global (gbl_), table (tbl_), or ldom (ldom_)
metrics with the LDOM LOOP.

This example prints the LDOM memory usage for each Locality Domain on your system:

print " "

PRINT "----------------------", gbl_stattime, "-----------------------"

print "LDOM Phys Num Mem Mem Mem"

print " ID ID Active CPUs Type Avail Free Used %"

PRINT "---"

LDOM LOOP

{

 print LDOM_ID, " ", LDOM_PHYS_ID, " ", LDOM_ACTIVE, " ", LDOM_NUM_CPU, " ",
LDOM_MEM_TYPE, " ", LDOM_MEM_AVAIL, " ", LDOM_MEM_FREE, " ", LDOM_MEM_UTIL

}

PRINT "---"

On a system with three LDOMs, resulting output for two intervals.

----------------------03:30:27-----------------------

LDOM Phys Num Mem Mem Mem

 ID ID Active CPUs Type Avail Free Used %

 0 0 1 4 LOCAL 0mb 0mb 0.0

 1 2 1 4 LOCAL 0mb 0mb 0.0

 na na 1 0 GLOBAL 8.0gb 5.5gb 30.5

----------------------03:30:32-----------------------

LDOM Phys Num Mem Mem Mem

 ID ID Active CPUs Type Avail Free Used %
Adviser for the RTMA Component 209

 0 0 1 4 LOCAL 0mb 0mb 0.0

 1 2 1 4 LOCAL 0mb 0mb 0.0

 na na 1 0 GLOBAL 8.0gb 5.5gb 30.5

PROC_LDOM LOOP Example

HP-UX 11iv2 and above only. Use the PROC_LDOM loop to loop through the Locality Domains
from which the process can obtain memory.

The PROC_LDOM loop must be nested within a PROCESS loop.

The following example displays the scopeux process that can obtain memory from different
LDOMs:

print " "

PRINT "------------------------------------", gbl_stattime,
"-------------------------------------"

print "Process LDOM LDOM RSS RSS RSS RSS
LDOM"

print "Name ID Type Total Shared Private Weighted
Mem %"

PRINT
"--
-----"

PROCESS LOOP

{

if PROC_PROC_NAME == "scopeux" then

{

PROC_LDOM LOOP

{

print PROC_PROC_NAME," ",PROC_LDOM_ID," ", PROC_LDOM_TYPE," ",
PROC_LDOM_TOTAL," ", PROC_LDOM_SHARED," ", PROC_LDOM_PRIVATE," ",
PROC_LDOM_WEIGHTED," ", PROC_LDOM_PCT

}

}

}

PRINT
"--
-----"

Output for two intervals on a system with three LDOMs filtered for the scopeux process:

------------------------------------04:53:50---------------------------------

210 Chapter 10

Process LDOM LDOM RSS RSS RSS RSS LDOM

Name ID Type Total Shared Private Weighted Mem %

scopeux 0 LOCAL 0kb 0kb 0kb 0kb 0.0

scopeux 1 LOCAL 0kb 0kb 0kb 0kb 0.0

scopeux na GLOBAL 31.9mb 23.7mb 8.2mb 13.4mb 0.2

------------------------------------04:53:55---------------------------------

Process LDOM LDOM RSS RSS RSS RSS LDOM

Name ID Type Total Shared Private Weighted Mem %

scopeux 0 LOCAL 0kb 0kb 0kb 0kb 0.0

scopeux 1 LOCAL 0kb 0kb 0kb 0kb 0.0

scopeux na GLOBAL 31.9mb 23.7mb 8.2mb 13.4mb 0.2

PRINT Statement

Use the PRINT statement to print to stdout (the padv command console) the data you are
collecting. You may want to use the PRINT statement to log metrics or calculated variables.

Syntax:

PRINT printlist

PRINT Example

PRINT "The Application OTHER has a total CPU of ",

 other:app_cpu_total_util, "%"

When invoked, this statement prints a message to the padv command console like the
following:

The Application OTHER has a total CPU of 89%

SYMPTOM Statement

Syntax:

SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]

RULE measurement {>, <, >=, <=, ==, !=} value PROB probability

[RULE measurement {>, <, >=, <=, ==, !=} value PROB probability]
Adviser for the RTMA Component 211

 .

 .

 .

The keywords SYMPTOM and RULE are exclusive for the SYMPTOM statement and cannot
be used in other syntax statements. The SYMPTOM statement must be a top-level statement
and cannot be nested within any other statement.

variable is a variable name that will be the name of this symptom. Variable names defined
in the SYMPTOM statement can be used in other syntax statements, but the variable value
should not be changed in those statements.

RULE is an option of the SYMPTOM statement and cannot be used independently. You can
use as many RULE options within the SYMPTOM statement as you need.

The SYMPTOM variable is evaluated according to the RULEs at each interval.

• Measurement is the name of a variable or metric that is evaluated as part of the RULE

• Value is a constant, variable, or metric that is compared to the measurement

• Probability is a numeric constant, variable, or metric

The probabilities for all true SYMPTOM RULEs are added together to create a SYMPTOM
value. The SYMPTOM value then appears in the message in the padv command console.

The sum of all probabilities where the condition between measurement and value is true is
the probability that the symptom is occurring.

SYMPTOM Example

Syntax:

SYMPTOM CPU_Bottleneck TYPE=CPU

RULE gbl_cpu_total_util > 50 PROB 25

RULE gbl_cpu_total_util > 85 PROB 25

RULE gbl_cpu_total_util > 90 PROB 25

RULE gbl_run_queue > 3 PROB 50

SYMPTOM CPU_Level TYPE=CPU

RULE gbl_cpu_sys_mode_util > 40 PROB 25

RULE gbl_cpu_sys_mode_util > 50 PROB 25

RULE gbl_cpu_sys_mode_util > 60 PROB 25

RULE gbl_cpu_sys_mode_util > 70 PROB 50

Whichever CPU symptom defined above has the highest total probability (PROB), is the
symptom that determines the severity level of the message in the padv command console.

SYMPTOM Example: Global CPU Bottleneck

SYMPTOM Symp_Global_Cpu_Bottleneck TYPE=CPU

RULE gbl_cpu_total_util > 50 PROB 25

RULE gbl_cpu_total_util > 85 PROB 25

RULE gbl_cpu_total_util > 90 PROB 25
212 Chapter 10

RULE gbl_run_queue > 3 PROB 75

For example, if the CPU utilization (gbl_cpu_total_util) for the interval was 93% and the
run queue was 2, then the first three rules would all be true so that 25 would be added to the
probability three times. Since the fourth rule would not be true, 75 would not be added. Thus
the Symp_Global_Cpu_Bottleneck variable would have a value of 75 (percent) that interval.
Adviser for the RTMA Component 213

214 Chapter 10

11 Using the Performance Collection
Component on Windows
To access the Performance Collection Component graphical user interface
click the HP Operations Agent Software icon in the following folder:

Start→Programs→HP→Operations Agent→ Performance Collection Component

Figure 2 Performance Collection Component Main Window

This chapter describes the following tasks that you perform using the
Performance Collection Component graphical interface:

• Data Types and Classes

• Summarization Levels

• Ranges of Data to Extract or Export

• Extracting Log File Data and Exporting Log File Data

• Archiving Log File Data

• Resizing a Log File
 215

• Scanning a Log File for information

• Analyzing a Log File

• Configuring Export Templates

• Configuring User Options

• Configuring Collection Parameters

• Configuring Alarm Definitions

• Checking Performance Collection Component Status

• Building Collections of Performance Counters

Before you start using Performance Collection Component for tasks that
involve extracting, exporting, or archiving data, read the following sections.
These sections discuss the selection of data types, summarization levels, and
ranges of the data to be extracted, exported, or archived.

Data Types and Classes

The following types of scopent log file data can be selected for extraction or
exporting:

Type of Data Type of Measurement

global system-wide, or global information

application processes in each user-defined application

configuration system configuration usage

process selected interesting processes

disk disk devices usage

filesystem logical disks usage

logicalsystem logical system usage

cpu CPU usage

netif network interface devices usage

transaction transaction tracking data
216 Chapter 11

DSI log file data can be selected for exporting according to class. Each class
represents one source of incoming data and consists of a group of related data
items (metrics) that are logged together.

Summarization Levels

To export data, you must specify the level of summarization you want – detail,
summary, or both – when exporting log file data.

• Detail specifies that detail data from a 5-minute period is exported from
all data types except process, from which detail data from a 1-minute
period is exported.

• Summary specifies that data summarized over a 1-hour period is
exported.

• Detail and summary together provide a maximum amount of exported
data.

Summarization affects the size of the exported data. For example, hourly
summary data is about one-tenth the size of 5-minute detail data.

Ranges of Data to Extract or Export

You can select specific data to extract or export depending on the date and
time it was logged. For example, you might want data that was logged every
day (Monday through Sunday) from 8:00 am to 8:00 pm during a 30-day period
starting at a specific date.

If you do not specify a specific range of data to be exported, data is extracted or
exported using the default starting date – the date 30 days before the last date
in the log file. Or, if less than 30 days of data is present, the date of the earliest
record in the log file.

You can also limit extraction or export to data that was logged during specific
hours of the day that correspond to work shifts (such as 8:00 am to 5:00 pm)
from Monday through Friday. If no shift is specified, the default is extraction
or export of 24-hours’ worth of data for every day including weekends.
Using the Performance Collection Component on Windows 217

Extracting Log File Data

The data collector, scopent, continuously collects data and logs it into raw log
files. You can extract specific data from the default global log file set,
logglob, into extracted log files that can later be used for archiving or for
analyzing by analysis programs such as HP Performance Manager. You can
also extract data from existing extracted log files. You cannot extract DSI log
file data.

When you specify logglob, all other raw log files in the log file set
automatically open. For example, it is not necessary to open the logproc log
file to extract process data; opening logglob enables you to access all data
types in the raw log file set.

Figure 3 Extract Log File Data Dialog Box
218 Chapter 11

To Extract Log File Data

To extract log file data, perform the following steps:

1 Click Extract from the Logfile menu on the main window. The Extract Log
File Data dialog box appears, showing the names of the currently active
log file and the currently selected output file. You can easily specify a
different log file and output file.

2 After selecting the type of data to be extracted, select the range of log file
data to be extracted and shifts to include. Click the Extract Data button to
start the extract process.

For step-by-step instructions for extracting log file data, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Extract log file data."

Exporting Log File Data

You can export specific data from raw or extracted scopent log files or from
DSI log files into formatted export files that can be used by spreadsheets and
other reporting tools.

The export function does not remove any data from the log file.

The following sections discuss:

• File attributes that you can specify for the exported data

• Export templates you can use to simplify the export task.

• Default export file

• Overview of the export task

When you display the Extract Log File Data or Export Log File Data dialog
boxes after starting Performance Collection Component, the name of the
default global log file, logglob, appears in the Log File box to indicate the
currently active log file. Logglob remains active until you close Performance
Collection Component or select a different log file. When you select a different
log file, that file's name appears in the Log File box as the currently active log
file.
Using the Performance Collection Component on Windows 219

Figure 4 Export Log File Data Dialog Box

File Attributes

You can assign various file attributes to your exported data, including file
formats, values that represent missing data, field separators, column
headings, number of minutes for summary intervals, layout, data types, and
specific metrics to be included in the export file. These attributes can be saved
in export template files or specified directly using the Make Quick Template
dialog box. (For more information, see Making a Quick Export Template on
page 226.)
220 Chapter 11

File Format

The output format for an exported file can be ASCII, datafile, binary, or WK1
(spreadsheet):

• ASCII format is printable character data, suitable for printed reports or
post-processing by user-written programs or batch files.

• Datafile format is similar to ASCII except that all non-numeric items are
enclosed in double quotes (" "). Datafile format is useful for transferring
data to most spreadsheets and graphic packages.

• Binary format is not printable. It is more compact because numeric values
are represented as binary integers. It is the most suitable format for input
into user-written analysis programs because it needs the least conversion
and maintains the highest metric accuracy.

• WK1 (spreadsheet) format is compatible with Microsoft Excel, and other
spreadsheet, database, and graphing products.

Missing Value

An exported file can contain the data value that replaces data missing from
the source log file. Missing data can occur when a metric is not available for
certain versions of the scopent collector. In addition, the multiple layout
export formats for applications, disks, and transactions reserve space in the
output record for every application, disk, or transaction. If no data was logged
for a particular entry during an interval, its data will be “missing”.

Field Separators

A field separator character can be inserted between each metric in ASCII and
datafile format exported files. Separator characters can be printable or
non-printable (such as a tab character).

The default separator character is a blank space, but many programs require
a comma as a field separator.

Summary Minutes

The number of minutes for each summary interval can be specified. The
number of minutes can range from five to 1440 minutes (one day).
Using the Performance Collection Component on Windows 221

Headings

Column headings can be included in exported files. The first record in the file
is exported data (except in WK1 format files). However, if you include
headings in the file, ASCII and datafile format files have the export file title (if
specified) plus column headings for each column of metrics written before the
first data records in the file. Headings in binary format files are written before
the first record in the file and contain descriptions of the metrics.

WK1 files always contain headings.

Multiple Layout

You can specify multiple layouts (per record output) for multi-instance data
types such as application or disk.

Single layout writes one record for every application or disk that was active
during the time interval. Multiple layout writes one record for each time
interval, with part of that record reserved for each configured application or
disk.

Export File Title

You can specify the title for an export file. The title can contain literal strings
as well as substitution keywords. The following items can be substituted in
the export title string:

!date the date the export file is created

!time the time of day the export file is created

!logfile the name of the log file from which data is
obtained

!collector the name and version of the collector program
(either scopent or dsilog)

!class the type of data requested

!system_id the identifier of the system that collects the
scopent raw or extracted log file data (not valid
with DSI log file data)
222 Chapter 11

For example, you could type the following string:

export “!system_id data from !logfile on !date !time”

The string would generate a title similar to the following:

gemini data from logglob on 10/25/99 08:30 AM

Export File Templates

The export task uses export templates that define the file attributes for your
exported file. The default file attributes are taken from the file
<rpmtools>\data\reptfile.mwr that specifies:

• ASCII file format

• A 0 (zero) for the missing value

• A blank space as the field separator

• 60-minute summaries

• Headings are included

• A recommended set of metrics for a given data type or class is included in
the export

You can either specify a different export template file or make ad hoc file
attribute specifications (see Making a Quick Export Template on page 226).

You can also create customized export templates using the Configure Export
Templates dialog box (see Configuring Export Templates on page 228).

Default Export Files

If you do not specify an output file to contain your exported data, the export
task creates a default output file in your <disk drive>:\Program
Files\HP\HP BTO Software\data\datafiles directory based on the data
type and level of summarization you specified.

scopent Data

When you export scopent log file data, the following default file names are
assigned to the exported files.
Using the Performance Collection Component on Windows 223

When the export task completes, you can view the contents of the output
export file by clicking the Examine Data button in the Export Log File Data
dialog box.

The default file names are created from the data type name. The prefix is
either xfrd or xfrs depending on whether the data is detail or summary
data. The extension (.ext) is the file format specified in the export template
file: asc (ASCII), bin (binary), dat (datafile), or wk1 (spreadsheet).

For example:

xfrdNETIF.wk1 contains detailed data for the NETIF data type in
spreadsheet format.

xfrdGLOBAL.ext global detail data

xfrsGLOBAL.ext global summary data

xfrdAPPLICATION.ext application detail data

xfrsAPPLICATION.ext application summary data

xfrdPROCESS.ext process detail data

xfrdDISK.ext disk device detail data

xfrsDISK.ext disk device summary data

xfrdCPU.ext CPU detail data

xfrsCPU.ext CPU summary data

xfrdFILESYSTEM.ext filesystem detail data

xfrsFILESYSTEM.ext filesystem summary data

xfrdNETIF.ext netif detail data

xfrsNETIF.ext netif summary data

xfrdTRANSACTION.ext transaction tracking detail data

xfrsTRANSACTION.ext transaction tracking summary data

xfrdCONFIGURATION.ext configuration detail data

xfrdLOGICAL.ext logical system detail data file

xfrsLOGICAL.ext logical system summary data file
224 Chapter 11

xfrsAPPLICATION.asc contains summarized data for the application data
type in ASCII format.

DSI Data

When you export DSI log file data, the default file names are created from the
class name. The prefix is either xfrd or xfrs, depending on whether the data
is detail or summary data. The extension is the file format specified in the
export template file: asc (ASCII), dat (datafile), or wk1 (spreadsheet).

For example:

xfrdACCTG.wk1 contains detailed data for the ACCTG class in spreadsheet
format.

xfrsPERSONL.asc contains summarized data for the PERSONL class in ASCII
format.

To Export Log File Data

To export log file data, perform the following steps:

1 Click Export from the Logfile menu on the main window. The Export Log
File Data dialog box appears, showing the names of the currently active
log file and the currently selected export template file. You can specify a
different log file and export template file.

If you specify an output file, data from all selected data types or classes
are placed in the same file. If you do not specify an output file, a default
output file is created based on the data type or class and summarization
level you specify. (See Default Export Files on page 223.)

2 After selecting the one or more types or class of data to be exported, select
the range of log file data to be exported and shifts to include.

3 To override the file attributes specified in your default export template, or
to select specific metrics to be included in your export file, click the Make
Quick Template button.

4 After you complete the steps for making a quick template or select specific
metrics for your export file, return to the Export Log File Data dialog box.
Click the Export Data button to start the export process.

5 When the export finishes, you can view the contents of your export file by
clicking the Examine Data button.
Using the Performance Collection Component on Windows 225

For step-by-step instructions for exporting log file data, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Export log file data."

Making a Quick Export Template

Use the Make Quick Template function in the Export Log File Data dialog box
to select specific metrics to be included in your export file and to change any of
the file attributes and metrics that are specified in the export template you
selected for your export.

Figure 5 Make Quick Template Dialog Box
226 Chapter 11

To make a quick template, follow these steps:

1 Click the Make Quick Template button in the Export Log File Data dialog
box. The Make Quick Template dialog box appears, showing the title of the
export file selected for the export.

2 The boxes below Output File Attributes show the current settings for the
export file, based on the file attributes set in the export template selected
for the export. You can modify any of these settings.

3 To use a different export template file, click the Open button.

4 You also have the option of clearing all existing settings from the Make
Quick Template dialog box and creating a totally new export template file
by clicking the New button.

Selecting Metrics to Export

• After selecting the data type or class of the metrics to be exported, you can
select the specific metrics that you want included in the export. Each data
type or class has its own set of metrics that are listed under Available
Metrics. The metrics listed under "Metrics to be exported" are the metrics
specified by the current export template to include in the export. You can
either use that list, remove metrics from the list, or select other available
metrics to include in the export.

• If you select the application, disk, cpu, filesystem, netif, or
transaction data types, select the Multiple Layout check box to generate
multiple layouts (per record output), or leave it cleared to generate single
layout.

Saving Your Selections

After making your selections, you can either:

• Proceed with the export using the selections you made to the file
attributes and to the list of metrics to be exported but WITHOUT saving
the changes to any template file.
Using the Performance Collection Component on Windows 227

• Save your selections to a new export template file that will be available for
use in future exports. The original export template file remains
unchanged.

For step-by-step instructions for making a quick export template, choose Help
Topics from the Help menu, select "How Do I…?," and then select "Make a quick
export template."

Configuring Export Templates

Use the Export Templates command from the Configure menu to customize an
existing export template file or create a new export template file. Use the
Configure Export Template dialog box to select new file attributes and specific
metrics to be included in the template.

If you save your selections to a new export template file, you must include the
.mwr file name extension when you specify the new template file name. For
example, mytmplte.mwr
228 Chapter 11

Figure 6 Configure Export Template Dialog Box

To configure an export template, follow these steps:

1 Click Export Templates from the Configure menu on the main window. The
Configure Export Template dialog box appears showing the name of the
currently open export template file in the dialog box title. To edit a
different export template file, click the Open button.

2 The boxes below Output File Attributes show the current settings for the
export file, based on the file attributes set in the export template you are
configuring. You can modify any of these settings.
Using the Performance Collection Component on Windows 229

3 You can also clear all existing settings from the Configure Export
Template dialog box and create a totally new export template file by
clicking the New button.

Selecting Metrics for Export

• After selecting the data type or class of the metrics to be exported, you can
select the specific metrics that you want included in the export. Each data
type or class has its own set of metrics that are listed under Available
Metrics. The metrics listed under "Metrics to be exported" are the metrics
specified by the current export template to include in the export. You can
use that list, remove metrics from the list, or select other available metrics
to include in the export.

• If you select the application, disk, cpu, filesystem, netif, or
transaction data types, select the Multiple Layout check box to generate
multiple layouts (per record output), or leave it cleared to generate single
layout.

Saving Your Selections

You have three choices for saving the template you edited:

• Save the changes to the current template file.

• Save the changes to a new template file, in which case the original
template file remains unchanged.

• Cancel the changes to avoid making changes to any template file.

For step-by-step instructions for configuring an export template file, choose
Help Topics from the Help menu, select "How Do I…?," and then select
"Configure an export template file."

If you save your selections to a new export template file, you must include the
.mwr file name extension when you specify the new file name.
If you click the Close button after you make changes to the template file but
before you saved them, you are prompted to either cancel or save your
changes. Clicking the Cancel button returns you to the Configure Export
Template dialog box.
230 Chapter 11

Archiving Log File Data

Use the Archive command from the Logfile menu to extract selected portions of
scopent log file data for archiving and future data analysis.

For archival purposes, data can only be extracted from the raw log files.
The extracted data is automatically placed in an archival output file in the
<disk drive>:Program Files\HP\HP BTO Software\data\datafiles
directory whose name reflects the selected archival period. These files can be
copied to tape for offline storage and then deleted to release disk space.

Figure 7 Archive Log File Data Dialog Box

Archival Periods

You can select data to be extracted based on data logged during a specific
weekly, monthly, or yearly period.
Using the Performance Collection Component on Windows 231

You can also limit extraction to data that was logged during specific hours of
the day that correspond to work shifts and include or exclude weekends
(Saturday and Sunday). If no shift is specified, the default is extraction of
24-hours’ worth of data for every day. By default, weekends are included.

Appending Archived Data

The archiving function has a special feature. Depending on which archival
period you select – weekly, monthly, or yearly – the previous output file for
that archival period is automatically checked to see if it contains data
extracted up to the last day. If not, the data is appended to the file to complete
the previous archival period’s extraction.

For example, on May 7, 1999, you begin archiving monthly data for May 1999.
An output file named rxmo199905.mwe is created containing data from May
1 through the current date (May 7).

On June 4, 1999, another monthly archival period is invoked. Before the
rxmo199906.mwe file is created for June, the rxmo199905.mwe file from the
previous month is checked. When it is found to be incomplete, data is
appended to it to complete the extraction through May 31, 1999. Then, the
rxmo199906.mwe file is created to hold data from June 1, 1999, to the current
date (June 4).

As long as another monthly (weekly, yearly) archival period is invoked at least
once a month (week, year), this feature will complete each archival period’s
file before creating the next archival period’s file.

Archiving Tips

Here are some suggestions for archiving your log file data:

• Once a month, specify the monthly archival period and extract all the
detail data from your raw log files into a single extracted log file.

• If your system generates more than 64 MB of data each month, you may
need to extract data on a weekly basis, or you can eliminate process detail
data from the extraction.

• Extract global summary and application summary data on a yearly basis,
which should minimize the disk space required. This archive file can then
be used for long-term analysis of trends.
232 Chapter 11

To archive log file data, follow these steps:

1 Click Archive from the Logfile menu on the main window. The Archive Log
File Data dialog box appears. The data to be archived is extracted from the
raw log file set.

2 After selecting the type of data to be archived from the Available Data
Types list, specify the archival period – Week, Month, or Year, and any
shifts to include.

3 Click the Archive button to start the archiving process.

For step-by-step instructions for archiving log file data, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Archive log file data."

Analyzing a Log File

Use the Analyze Log File command from the Logfile menu to analyze data in
the raw log file set against alarm definitions in an alarm definitions file, and
report on any resulting alarm activity.

This task enables you to evaluate whether or not your alarm definitions are a
good match against the historical data collected on your system. It also
enables you to decide if your alarm definitions will generate too many or too
few alarms on your analysis system.

The raw log files being analyzed are referenced in Performance Collection
Component’s default data source, SCOPE. To analyze a different log file, place
a USE statement in your alarm definitions file that specifies the name of the
data source that references that log file.
Using the Performance Collection Component on Windows 233

Figure 8 Analyze Log File Dialog Box

Range of Data to be Analyzed

You can analyze log file data that was collected during a specific period of
time. If you do not specify a specific range of data to be analyzed, data is
analyzed using the default starting date – 30 days before the latest date in the
log file or, if fewer than 30 days of data are present, the date of the earliest
record in the log file.

Analysis Report

As this task executes, it generates a printable report that lists alarm events
and an alarm summary. (Alarm events are listed only if the Report Detail box
in the Analyze Log File dialog box is checked.)

• Alarm events include alarm START, END, and REPEAT status plus any
text in associated PRINT statements. Also, if any text in PRINT
statements are listed as conditions (in IF statements) and become true,
the text is included . EXEC statements are not executed but are listed so
you can see what would have been executed.

• Alarm summaries show a count of the number of alarms that occurred and
the amount of time each alarm was active (on). The count includes alarm
starts and repeats, but not alarm ends.
234 Chapter 11

To analyze a log file, follow these steps:

1 Click Analyze from the Logfile menu in the main window. The Analyze Log
File dialog box appears showing the name of the currently selected alarm
definitions file.

2 To use a different alarm definitions file, click the Select Alarmdef File
button.

3 Select the range of log file data to be analyzed.

4 Check the Report Detail box if you want to include alarm events in the
analysis report. Otherwise, only the alarm summary is generated.

5 Click the Analyze button to start the analysis. The analysis results are
displayed in a MeasureWare Agent Report Viewer window.

For step-by-step instructions for analyzing a log file, choose Help Topics from
the Help menu, select "How Do I…?," and then select "Analyze a log file."

Scanning a Log File

Use the Scan Log File command from the Logfile menu to scan a scopent log
file and create a report on its contents. You can either scan an entire log file or
scan portions of a log file for data that was collected during a specific period of
time.

The report produced by the scan consists of 12 sections. The following four
sections of the report are always printed.

• Process summary report

• Collector coverage summary

• Log file contents summary

• Log file empty space summary

The following eight sections of the report are printed only if you select Report
Detail in the Scan Log File dialog box.

• Initial parm file global information and system configuration information

• Initial parm file application definitions

• parm file global changes
Using the Performance Collection Component on Windows 235

• parm file application/change notifications

• Collector off-time notifications

• Application-specific summary reports

Figure 9 Scan Log File Dialog Box

To scan a log file, follow these steps:

1 Click Scan Log File from the Logfile menu on the main window. The Scan
Log File dialog box appears with the name of the currently open log file
highlighted.

2 To scan a different log file, click the Select Log File button.

3 To scan data that was logged during a specific time period, under Log File
Data Range, select or type the dates and times for the beginning and end
of that time period.

4 Check the Report Detail box if you want a complete scan report. Otherwise,
only a subset of the report is generated.

5 To start the scan process, click the Scan button. The scan results are
shown in a Performance Collection Component Report Viewer window.

For step-by-step instructions for scanning a log file, choose Help Topics from
the Help menu, select "How Do I…?," and then select "Scan a log file."
236 Chapter 11

Resizing a Log File

Use the Resize Log File command from the Logfile menu to change the size of
your raw scopent log files. You can resize using either the size in megabytes
for the given file or the number of days of data the file should hold.

The maximum size of a raw log file is specified in the size parameter in the
parm file. Resizing the log file gives you more control over how often the log
file data is rolled back.

You can select any of the following types of data to resize: global,
application, process, device, or transaction, which correspond to the raw
log files logglob, logappl, logproc, logdev, and logtran. You then choose
how the resize will be performed – in megabytes or by number of days.
Depending on which type of resize you choose, the Log File Settings box in the
Resize Log File dialog box shows the following:

• The Maximum Size fields show current file size, the new file size, and the
change made by the resize.

• The Empty Space fields show the amount of room in the current file, the
amount required in the file after the resizing process is complete, and the
change. These values are used to determine if any of the data currently in
the log file must be removed in the resizing process.

• The Data Records fields show the amount of data records contained in the
current log file and the new amount of data records that will be in the
resized log file.

Log file sizes are maintained in megabytes. Often it is more convenient to
specify sizes in days rather than megabytes. If you select "Size in Days", all
units on the dialog box will change to "days". The conversion from megabytes
to days is based on a "megabytes-per-day" value for each type of data. Initially,
estimated values are used for this conversion.

A more precise value can be obtained by clicking the Calibrate button. The
calibrate function actually measures the existing log files for more precise
megabytes-per-day values. If you are specifying size in megabytes, no
conversion is needed and the calibrate function need not be used.
Using the Performance Collection Component on Windows 237

Figure 10 Resize Log File Dialog Box

Before resizing a log file, you must stop the scopent collector. To stop
scopent, follow the steps in Stopping and Restarting Data Collection on
page 43.

Attempting to resize a log file without first stopping scopent will not affect
the existing log file. To resize a log file, follow these steps:

1 Once scopent is stopped, choose Resize Log File from the Logfile menu on
the main window to display the Resize Log File dialog box.

2 In the Resize Data box, select the type of data to be resized: global,
application, process, device, or transaction.

3 Select either Size in Megabytes or Size in Days. Depending on what you
selected, the Current File and New File Sizes are shown.

4 To perform the resize based on the New File Sizes shown, click the Resize
button to start the resize process.

To get a more accurate estimate of how much additional space to add to the log
file when sizing in days, follow these steps:

1 Click the Calibrate button. Within moments, the actual number and size of
the data records that were logged in the file during the last 30 days are
displayed.
238 Chapter 11

2 Click the Close button to return to the Resize Log File dialog box. New
Current File and New File Size values based on the calibration are shown,
if sizing in days.

3 Click the Resize button to resize the log file.

4 Before performing another task, start scopent using the steps in Stopping
and Restarting Data Collection on page 43.

For step-by-step instructions for resizing a log file, choose Help Topics from the
Help menu, select "How Do I…?," and then select "Resize a log file."

Configuring User Options

Use the Options command from the Configure menu to control the display of
the toolbar, status bar, dialog help tips, and Tip of the Day on your main
window and while you are using Performance Collection Component.

You can also use the Options command to configure an editor or word processor
for modifying the collection parameters and alarm definitions files and to
select the type of status information you want to view when you choose the
Status command from the Agent menu.
Using the Performance Collection Component on Windows 239

Figure 11 Configure Options Dialog Box

To configure user options, follow these steps:

1 Click the Options command from the Configure menu in the main window
to display the Configure Options dialog box.

2 Select the Display Toolbar check box to display the toolbar in the main
window.

3 Select the Display Status Bar check box to display current status at the
bottom of each dialog box and in the main window.

4 Select the Display Dialog Help Tips check box to display help tips within
dialog boxes.

5 Select the Display Tip of the Day check box to display the current day's tip
when you open the Performance Collection Component main window.
240 Chapter 11

To configure, follow these steps:

1 Type the editor's directory path and file name in the Editor Command box,
using the .exe file name extension (for example,
C:\MSOffice\winword\winword.exe).

2 Click the Browse button to display the Select a Text Editor dialog box from
which you can select your editor.

3 Click the Test button to make sure that the editor you selected is
configured and then click OK.

To configure which agent status information you want to view, select one or
more of the option boxes shown under Agent Status Contents, and then click
OK.

For step-by-step instructions for configuring user options, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Configure user
options."

Configuring Collection Parameters

Use the Collection Parameters command from the Configure menu to check the
syntax of the parm file that is used by scopent for data collection. You can
examine the parm file’s settings for syntax errors and warnings and to see how
much room is available for defining applications.

If any warnings or errors are found and you want to correct them, or if you
want to change or add parm file parameters, you can easily modify the parm
file using the Edit Parm File function.

A detailed description of the parm file and its parameters can be found in
Managing Data Collection on page 19.
Using the Performance Collection Component on Windows 241

Figure 12 Configure Collection Parameters Dialog Box

To check the syntax, follow these steps:

1 Click Collection Parameters from the Configuration menu on the
Performance Collection Component main window. The Configure
Collection Parameters dialog box appears showing the name of the
currently open parm.mwc file in the Parm File box.

2 To check a different parm file, click the Select Parm File button.

3 To check the syntax of the parm file, click the Check Syntax button. Any
resulting warnings or errors are displayed in the Performance Collection
Component Report Viewer window.

4 To modify any portion of the parm file, click the Edit Parm File button. You
can position the Edit Parm File and the Configure Collection Parameters
dialog boxes on your screen so that you can use both at the same time.

For step-by-step instructions for checking the syntax of the parm file, choose
Help Topics from the Help menu, select "How Do I…?," and then select "Check
the syntax of a collection parameters file."
242 Chapter 11

Modify a Collection Parameters File

Figure 13 Modify Collection Parameters File Window

To modify the parm file, follow these steps:

1 Click Collection Parameters on the Configuration menu on the Performance
Collection Component main window and then click the Edit Parm File
button in the Configure Collection Parameters dialog box. The contents of
the currently open parm file are displayed in a previously specified editor
or word processor. (To specify an editor or word processor, see Configuring
User Options on page 239.)
Using the Performance Collection Component on Windows 243

2 Before you make any changes to the file, see parm File on page 21, for
some rules and conventions to follow.

3 Modify the file as necessary and save the file in text format.

Before proceeding with another task, you must activate any changes you made
to the parm file. Perform the following steps:

1 Click Start/Stop from the Agent menu on the Performance Collection
Component main window to open the MeasureWare Services window.

2 Select the Data Collection check box.

3 Click the Refresh button.

4 Click the Close button to return to the main window.

For step-by-step instructions for modifying the parm file, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Modify a collection
parameters file."

Configuring Alarm Definitions

You use the Alarm Definitions command from the Configure menu to check the
syntax of the alarm definitions in an alarm definitions file (alarmdef.mwc).
When you determine that the alarm definitions syntax is correct, you can
analyze a log file against the alarm definitions to check for alarms in
historical log file data (see Analyzing a Log File on page 233).

You cannot modify your parm file with the Windows WordPad editor while
Performance Collection Component is running. You must stop Performance
Collection Component, use WordPad, and then restart Performance
Collection Component. However, you can use the Notepad editor to modify
your file while Performance Collection Component is running.

If you use WordPad, Notepad, or Microsoft Word to modify your parm.mwc file
and then use the Save As command to save the file, the default .txt
extension will automatically be added to the file name. You will then have a
file named parm.mwc.txt. To retain the parm.mwc file name, use the Save
As command to save your file as a text file and enclose the file name in double
quotes ("). For example: "parm.mwc".
244 Chapter 11

If any warnings or errors are found and you want to correct them, or if you
want to add or delete alarm definitions, you can easily modify the alarm
definitions file using the Edit Alarmdef File button in the Configure Alarm
Definitions dialog box.

Figure 14 Configure Alarms Definitions Dialog Box

To check the syntax, follow these steps:

1 Click Alarm Definitions from the Configure menu on the Performance
Collection Component main window. The Configure Alarm Definitions
dialog box appears showing the name of the currently open alarm
definitions file.

2 To check a different alarm definitions file, click the Select Alarmdef File
button.

3 Click the Check Syntax button to start the syntax checking process. After a
few seconds, the checking results are displayed, including any warnings or
errors, in the Performance Collection Component Report Viewer window.
Using the Performance Collection Component on Windows 245

4 To modify any portion of the alarm definitions file, click the Edit Alarmdef
File button.

For step-by-step instructions for checking the syntax of an alarm definitions
file, choose Help Topics from the Help menu, select "How Do I…?," and then
select "Checking the syntax of an alarm definitions file."

Modify an Alarm Definitions File

To modify the alarmdef file, follow these steps:

1 Click Alarm Definitions from the Configure menu on the Performance
Collection Component main window and then click the Edit Alarmdef File
button in the Configure Alarm Definitions dialog box. The contents of the
currently open alarm definitions file are displayed in a previously
specified editor or word processor. (To configure an editor or word
processor, see Configuring User Options on page 239.)

2 Before you make any changes to the file, see the Alarm Syntax Reference
on page 162, for detailed information about alarm definitions.

3 Modify the file as necessary and save it in text format.

Activate Changes

Before proceeding with another task, you must activate any changes you made
to the alarm definitions file. Perform the following steps:

1 Click Start/Stop from the Agent menu on the Performance Collection
Component main window to open the MeasureWare Services window.

2 Select the Alarm Definitions check box.

3 Click the Refresh button.

4 Click the Close button to return to the main window.

If you use WordPad, Notepad, or Microsoft Word to modify your alarm
definitions file and then use the Save As command to save the file, the
default.txt extension will automatically be added to the file name. You will
then have a file named alarmdef.mwc.txt. To retain the alarmdef.mwc
file name, use the Save As command to save your file as a text file and enclose
the file name in double quotes ("). For example, "alarmdef.mwc".
246 Chapter 11

For step-by-step instructions for modifying an alarm definitions file, choose
Help Topics from the Help menu, select "How Do I…?," and then select "Modify
an alarm definitions file."

Configuring Data Sources

The Performance Collection Component uses data sources for each specific
data source such as scopent log files or DSI log files. Each data source
consists of a single log file set. The data source is configured in the
datasources file that resides in the <DataDir>\conf\perf directory.
When you first start up Performance Collection Component after installation,
a default data source named SCOPE is already configured and provides a
scopent log file set.

Figure 15 Configure Data Sources Dialog Box

Data Sources File Format

Each entry you place into the datasources file represents a data source
consisting of one log file set. The entry specifies the data source name by
which the repository server is to be known and where the data it contains is to
be found. Entries are case-insensitive. The syntax is:
Using the Performance Collection Component on Windows 247

datasource=datasource_name logfile=logfile_set

• datasource is a keyword. datasource_name is the name used to identify
the data source used in alarm definitions or analysis software. Data
source names must be unique. The maximum length for the
datasource_name is 64 characters.

• logfile is a keyword. logfile_set is the fully qualified name that
identifies the log file set. It can be a raw log file set created by scopent, an
extracted log file created by the extract task, or a DSI log file set. If you
specify a log file path name that contains embedded blanks, you must
place double quotes (") around the path name.

When specifying a scopent log file set, use only the logglob file name. You
do not need to specify other raw log file names because they are accessed as a
single log file set.

The same applies when specifying a DSI log file set. Specify only the name of
the DSI root file. You do not need to specify any of the other files in the DSI log
file set.

Configuring Data Sources from Remote Locations

The universal naming convention (UNC) is required when you specify a log
file set that resides on a network share. At system start-up, the Performance
Collection Component service is started automatically, and drive mappings for
remotely connected file systems are not established until the user logs on.
Therefore, any data source that uses a drive-mapped name to reference a log
file on a remote system causes Coda to generate an invalid data source error. If
you start the Performance Collection Component service after logging on, the
data source is processed because the drive mappings are now established.

Here are three examples of data source entries:

Example 1:

The following example shows the default SCOPE data source residing on the
default
<disk drive>:\Program Files\HP\HP BTO
Software\data\datafiles\directory.

datasource=SCOPE logfile="C:\Program Files\HP\HP BTO
Software\data\datafiles\logglob"
248 Chapter 11

Example 2:

In the following example, the universal naming convention (UNC) is used to
specify a log file set that resides on a network share.

datasource=RXLOG logfile=\\lab_sys\my_share\rxlog

Example 3:

The following example shows the SCOPE data source residing in a directory
whose path name contains an embedded blank.

datasource=SCOPE logfile="C:\Program Files\HP\HP BTO Software\/
data\donna test\logglob"

To configure data sources, Click Data Sources from the Configure menu on the
Performance Collection Component main window.

The Configure Data Sources dialog box appears listing the current data source
entries. Each entry represents a single data source.

To modify, follow these steps:

1 Select the data source in the Data Sources list.

2 Click the Log File Set Name box, modify the log file set name, and click the
Set button.

To add a new data source, follow these steps:

1 Click the Data Source Name box and enter a new name.

2 Click the Log File Set Name box, enter a new fully qualified log file set
name, and click the Set button.

Or,

3 Click the Browse button to select an existing data source.

To delete a data source, follow these steps:

1 Select the data source in the Data Sources list.

2 Click the Delete button

3 When you finish configuring your data sources file, click OK.
Using the Performance Collection Component on Windows 249

Activate the changes:

Before proceeding with another task, you must activate any changes you made
to the data sources. Perform the following steps:

1 Choose Start/Stop from the Agent menu on the Performance Collection
Component main window to open the MeasureWare Services window.

2 Click the Stop Services button to stop MeasureWare services.

3 When the Stop Services button appears dimmed, click the Start Services
button.

4 Click the Close button to return to the main window.

For step-by-step instructions for modifying the data sources file, choose Help
Topics from the Help menu, select "How Do I…?," and then select "Modify a data
source file."

Configuring Transactions

You use the transaction configuration file, ttdconf.mwc, to customize
collection of transaction data for an application. The file defines the
transaction name, performance distribution range, and the service level
objective you want to meet for each transaction. Optionally, you can define
transactions that are specific to an application.

The default ttdconf.mwc file contains three entries. Two entries define
transactions used by the Performance Collection Component scopent
collector, and a third entry, tran=* registers all transactions in applications
that were instrumented with Application Response Measurement (ARM) API
function calls.
250 Chapter 11

Figure 16 Configure Transactions Dialog Box

If you are adding new applications to your system that use the service level
objective and range values from the tran=* entry in the default ttdconf.mwc
file, you do not have to do anything to incorporate the new transactions. All of
the default values are applied automatically to them.
Using the Performance Collection Component on Windows 251

However, if you are adding applications to your system that have transactions
with their own unique service level objectives and distribution range values,
you must add these transactions to the ttdconf.mwc file.

Before you make any changes to the file, see What is Transaction Tracking? on
page 345 for descriptions of the configuration file format, transaction and
application names, performance distribution ranges, and service level
objectives. To configure, click Transactions from the Configure menu on the
Performance Collection Component main window to display the Configure
Transactions dialog box. Using this dialog box, you can perform the following
tasks:

1 Add a general transaction

2 Add an application-specific transaction

3 Modify a transaction's performance distribution range or service level
objective

4 Delete a transaction

For step-by-step instructions for performing these tasks, choose Help Topics
from the Help menu, select "How Do I…?," and then select "Configure
transactions."

Configuring Persistent DSI Collections

Use the Persistent DSI Collections command from the Configure menu to check
the syntax or modify the DSI configuration file, dsiconf.mwc. The
dsiconf.mwc file is used to configure continuous logging of data collections
that were brought into Performance Collection Component from outside
sources. For more information, see Overview of Data Source Integration on
page 261.

The order of the entries in the ttdconf.mwc file is not relevant. Exact
matches are sought first. If none are found, the longest match with a trailing
asterisk (*) is used.
252 Chapter 11

Figure 17 Configure Persistent DSI Collections Dialog Box

To check the syntax of the DSI configuration file, follow these steps:

1 Click Persistent DSI Collections from the Configure menu on the
Performance Collection Component main window. The Configure
Persistent DSI Collections dialog box shows the name of the currently
open dsiconf.mwc file.

2 To check a different dsiconf.mwc file, click the Select DSIconf File button.

3 To check the syntax of the file, click the Check Syntax button. Any resulting
warnings or errors are displayed in the Performance Collection
Component Report Viewer window.

4 To modify any portion of the file, click the Edit DSIconf File button. You can
position the Edit DSIconf File and the Configure Persistent DSI
Collections dialog boxes on your screen so that you can use both at the
same time.

For step-by-step instructions for checking the syntax of the DSI configuration
file, choose Help Topics from the Help menu, select "How Do I…?," and then
select "Check the syntax of a DSI configuration file."
Using the Performance Collection Component on Windows 253

To modify a DSI configuration file, follow these steps:

1 Click Persistent DSI Collections from the Configure menu on the
Performance Collection Component main window and then click the Edit
DSIconf File button in the Configure Persistent DSI Collections dialog box.
The contents of the currently open dsiconf.mwc file are displayed in a
previously specified editor or word processor. (To specify an editor or word
processor, see Configuring User Options on page 239.)

2 Before you make any changes to the file, see Using the Performance
Collection Component on Windows on page 215 for rules and conventions
to follow.

3 Modify the file as necessary and save the file in text format.

Before proceeding with another task, you must activate any changes you made
to the dsiconf.mwc file. Perform the following steps:

1 Click Start/Stop from the Agent menu on the Performance Collection
Component main window to open the MeasureWare Services window.

2 Select the Persistent DSI Collections check box.

3 Click the Refresh button.

4 Click the Close button to return to the main window.

For step-by-step instructions for modifying a DSI configuration file, choose
Help Topics from the Help menu, select "How Do I…?," and then select "Modify a
DSI configuration file."

If you use WordPad, Notepad, or Microsoft Word to modify your
dsiconf.mwc file and then use the Save As command to save the file, the
default .txt extension will automatically be added to the file name. You
will then have a file named dsiconf.mwc.txt. To retain the dsiconf.mwc
file name, use the Save As command to save your file as a text file and enclose
the file name in double quotes ("). For example: "dsiconf.mwc"
254 Chapter 11

Checking Performance Collection Component Status

Use the Status command from the Agent menu to review the current status of
Performance Collection Component processes. The information is generated
by the perfstat program.

You can designate which specific information to include in the status report by
choosing the Options command from the Configure menu display and selecting
any of the following options in the Configure Options dialog box.

Running Processes

Background and foreground processes that are currently running for
Performance Collection Component are listed. Any background processes that
should be running but are not running are listed.

Datacomm Services

Datacomm services locate and communicate with the Performance Collection
Component datacomm services. They show whether or not the alarm
generator database server (agdbserver) process is running and responsive. If
data communications are not enabled , this information may take more than
30 seconds to generate while it waits for datacomm services to respond.

System Services

The current status of Performance Collection Component System Services
such as the Scope Collector, Transaction Manager, and Measurement
Interface is shown.

System Configuration

System name, operating system version, and processor type.

File Version Numbers

Version numbers of Performance Collection Component files. Any critical files
that are missing are noted.
Using the Performance Collection Component on Windows 255

Status File Latest Entries

The latest few entries from each performance tool status file.

Status File Warnings and Errors

Any lines from the performance tool status files that contain "Error" or
"Warning" are listed. A very large listing can be produced in cases where
warnings have been ignored for long periods of time.

To list the current status, click Status from the Agent menu on the
Performance Collection Component main window. The Performance Collection
Component Report Viewer displays the information you selected from the
Configure Options dialog box.

To get a complete report of all status information, click Report from the Agent
menu. The Performance Collection Component Report Viewer displays a
complete list of all status information.

For step-by-step instructions for checking Performance Collection Component
status, choose Help Topics from the Help menu, select "How Do I…?," and then
select "Check status of Performance Collection Component processes."

You can also run the perfstat program from the Windows Command
Prompt.

Building Collections of Performance Counters

Performance Collection Component provides access to Windows performance
counters that are used to measure system, application, or device performance
on your system. You use the Extended Collection Builder and Manager
(ECBM) to select specific performance counters to build data collections.
256 Chapter 11

Building a Performance Counter Collection

To build a collection, choose Extended Collections from the Agent menu on the
Performance Collection Component main window. The Extended Collection
Builder and Manager window appears, showing a list of Windows objects in
the left pane. For instructions on building collections, choose Help Topics from
the Help menu in the Extended Collection Builder and Manager window.

After you build your collections of Windows performance counters, use the
Extended Collection Manager pane at the bottom to register, start, and stop
new and existing collections.

Managing a Performance Counter Collection

To manage your data collections, use the Extended Collection Manager pane
at the bottom of the Extended Collection Builder and Manager. Initially, no
collections appear because you must register a collection before you can start
collecting data.

After you register or store the collection you created, the Extended Collection
Manager pane shows a list of current collections. The Extended Collection
Manager pane also displays the state of every collection and enables you to
view information (properties) about the collection itself. For instructions on
managing your collections, choose Help Topics from the Help menu in the
Extended Collection Builder and Manager window.

Tips for Using Extended Collection Builder and Manager

• The <Installdir>\paperdocs\mwa\C\monxref.txt file contains a
cross-reference of Performance Collection Component metrics to Windows
performance counters and commands. Logging data through the Extended
Collection Builder and Manager for metrics already collected by
Performance Collection Component incurs additional system overhead.

• When you use the Extended Collection Builder to create collections,
default metric names are assigned to Windows performance counters for
internal use with the Performance Collection Component. These default
names are generally not meaningful or easy to decipher. To make metric
names more meaningful or match them to the metric names supplied by
their source application, modify metric attributes by right-clicking or
Using the Performance Collection Component on Windows 257

double clicking the metric name after you drag it from left to right pane in
the Extended Collection Builder and Manager window. (See the Extended
Collection Builder and Manager online help for detailed instructions.)

• If you start 61 or more collections, the collections beyond 60 go into error
states. This may cause problems with other collections.

• If you collect logical disk metrics from a system configured with
Wolfpack, you must restart the collection in order to collect data for any
new disk instances not present when the collection was registered.

• Successful deletion of collections requires restarting Performance
Collection Component after deleting the collection. If Performance
Collection Component is not restarted, you might get an error during the
delete operation. This error typically means that some files were not
successfully deleted. You may need to manually delete any files and
directories that remain after you restart Performance Collection
Component.

• Extended Collection Builder and Manager may report missing values for
some metrics with cache counters. The problem may occur under some
circumstances when a metric value gets an overflow. A message is also
sent to the ECBM status file. You can resolve the problem by restarting
the collection.

Explanations of Extended Collection Builder and Manager concepts, and
instructions on creating and viewing data collections are available in the
Extended Collection Builder and Manager online help. To view online help,
from your desktop select Start → Programs → HP → Operations Agent→
Performance Collection Component → ECB-ECM Online Help. You can select
Extended Collections from the Agent menu in the Performance Collection
Component main window and select Help Topics from the Help menu in the
Extended Collection Builder and Manager window. Online help is available by
selecting the Help button in the dialog boxes that appear in the Extended
Collection Builder and Manager.

Administering ECBM from the Command line

You can run the ECBM program from the <rpmtools>\bin directory using the
Windows Command prompt.

Collections can be managed from the command line using the following
command:
258 Chapter 11

\rpmtools\bin\mwcmcmd.exe

To display various options, type the following command:

\rpmtools\bin\mwcmcmd /?

To start the stopped collections, type the following command:

mwcmcmd start <collection_name(s)>

To start a new collection from a variable-instance policy, type the following
command:

mwcmcmd start <policy_name> <collect_name> <instance(s)>
[options]

The following options are available:

-i <sampling_interval> - change sampling interval (seconds)

-l <logfile_path_name> - change default log location

-a <alarm_file> - change the alarm definitions file

To stop the active collections, type the following command:

mwcmcmd stop <collection_name(s)>

The following is the command to register a policy file:

mwcmcmd register <policy_file> <collection/policy_name>
[options]

The following options are available only when registering a fixed-instance
policy file:

-i <sampling_interval> - change sampling interval (seconds)

-l <logfile_path_name> - change default log location

-a <alarm_file> - change the alarm definitions file

To delete a single collection:

mwcmcmd delete <collection/policy_name> [options]

The following options are only available when deleting a collection:

-p <archive_path> - archives logfiles to specified path

-r - restarts Performance agent

To delete multiple collections or policies:
Using the Performance Collection Component on Windows 259

mwcmcmd delete { <collection/policy_name(s)> | -c | -all }

-c - deletes ALL collections

-a - deletes ALL collections and policies

To list all registered collections and policies, type the following command:

mwcmcmd list

To list the properties of a collection or policy, type the following command:

mwcmcmd properties <collection/policy_name>

To list the variable-instance objects in a policy, type:

mwcmcmd objects <policy_name>

When deleting more than one policy/collection at a time, Performance
Collection Component will be automatically restarted, and all associated
logfiles will be deleted.
260 Chapter 11

12 Overview of Data Source Integration
The Data Source Integration (DSI) technology allows you to use the HP Operations agent to
log data, define alarms, and access metrics from new sources of data beyond the metrics
logged by the Performance Collection Component’s scope collector. Metrics can be acquired
from data sources such as databases, LAN monitors, and end-user applications.

The data you log using DSI can be displayed in HP Performance Manager along with the
standard performance metrics logged by the scope collector. DSI logged data can also be
exported, using the Performance Collection Component extract program, for display in
spreadsheets or similar analysis packages.

How DSI Works

The following diagram shows how DSI log files are created and used to log and manage data.
DSI log files contain self-describing data that is collected outside of the Performance
Collection Component scope collector. DSI processes are described in more detail on the next
page.
261

Figure 18 Data Source Integration Process

Using DSI to log data consists of the following tasks:

Creating the Class Specification

You first create and compile a specification for each class of data you want to log. The
specification describes the class of data as well as the individual metrics to be logged within
the class. When you compile the specification using the DSI compiler, sdlcomp, a set of empty
log files are created to accept data from the dsilog program. This process creates the log file
set that contains a root file, a description file, and one or more data files.

Collecting and Logging the Data

Then you collect the data to be logged by starting up the process of interest. You can either
pipe the output of the collection process to the dsilog program directly or from a file where
the data was stored. dsilog processes the data according to the specification and writes it to
the appropriate log file. dsilog allows you to specify the form and format of the incoming
data.

The data that you feed into the DSI process should contain multiple data records. A record
consists of the metric values contained in a single line. If you send data to DSI one record at a
time, stop the process, and then send another record, dsilog can append but cannot
summarize the data.
262 Chapter 12

Using the Data

You can use Performance Manager to display DSI log file data. Or you can use the
Performance Collection Component extract program to export the data for use with other
analysis tools. You can also configure alarms to occur when DSI metrics exceed defined
conditions.
Overview of Data Source Integration 263

264 Chapter 12

13 Using Data Source Integration
This chapter is an overview of how you use DSI and contains the following information:

• Planning data collection

• Defining the log file format in the class specification file

• Creating the empty log file set

• Logging data to the log file set

• Using the logged data

For detailed reference information on DSI class specifications and DSI programs, see Chapter
14, DSI Class Specification Reference and Chapter 15, DSI Program Reference.

Planning Data Collection

Before creating the DSI class specification files and starting the logging process, you need to
address the following topics:

• Understand your environment well enough to know what kinds of data would be useful in
managing your computing resources.

• What data is available?

• Where is the data?

• How can you collect the data?

• What are the delimiters between data items? For proper processing by dsilog, metric
values in the input stream must be separated by blanks (the default) or a user-defined
delimiter.

• What is the frequency of collection

• How much space is required to maintain logs?

• What is the output of the program or process that you use to access the data?

• Which alarms do you want generated and under what conditions?

• What options do you have for logging with the class specification and the dsilog process?
265

Defining the Log File Format

Once you have a clear understanding of what kind of data you want to collect, create a class
specification to define the data to be logged and to define the log file set that will contain the
logged data. You enter the following information in the class specification:

• Data class name and ID number

• Label name (optional) that is a substitute for the class name. (For example, if a label name
is present, it can be used in Performance Manager.)

• What you want to happen when old data is rolled out to make room for new data. See How
Log Files Are Organized for more information.

• Metric names and other descriptive information, such as how many decimals to allow for
metric values.

• How you want the data summarized if you want to log a limited number of records per
hour.

Here is an example of a class specification:

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

METRICS
RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 0;

BLOCKED_PROCS = 107
LABEL "Blocked Processes"
PRECISION 0;

You can include one class or multiple classes in a class specification file. When you have
completed the class specification file, name the file and then save it. When you run the DSI
compiler, sdlcomp, you use this file to create the log file set. For more information about class
specification and metric description syntax, see Chapter 14, DSI Class Specification Reference

How Log Files Are Organized

Log files are organized into classes. Each class, which represents one source of incoming data,
consists of a group of data items, or metrics, that are logged together. Each record, or row, of
data in a class represents one sample of the values for that group of metrics.

The data for classes is stored on disk in log files that are part of the log file set. The log file set
contains a root file, a description file, and one or more log files. All the data from a class is
always kept in a single data file. However, when you provide a log file set name to the sdlcomp
compiler, you can store multiple classes together in a single log file set or in separate log file
sets. The figure below illustrates how two classes can be stored in a single log file set.
266 Chapter 13

Because each class is created as a circular log file, you can set the storage capacity for each
class separately, even if you have specified that multiple classes should be stored in a single
log file set. When the storage capacity is reached, the class is “rolled”, which means the oldest
records in the class are deleted to make room for new data.

You can specify actions, such as exporting the old data to an archive file, to be performed
whenever the class is rolled.
Using Data Source Integration 267

Creating the Log File Set

The DSI compiler, sdlcomp, uses the class specification file to create or update an empty log
file set. The log file set is then used to receive logged data from the dsilog program.

To create a log file set, complete the following tasks:

1 Run sdlcomp with the appropriate variables and options. For example,

sdlcomp [-maxclass value] specification_file
 [logfile_set[log file]] [options]

2 Check the output for errors and make changes as needed.

For more information about sdlcomp, see the Compiler Syntax in Chapter 15.

Testing the Class Specification File and the Logging Process (Optional)

DSI uses a program, sdlgendata, that allows you to test your class specification file against
an incoming source of generated data. You can then examine the output of this process to
verify that DSI can log the data according to your specifications. For more information about
sdlgendata, see Testing the Logging Process with Sdlgendata in Chapter 15.

To test your class specification file for the logging process:

1 Feed the data that is generated by sdlgendata to the dsilog program. The syntax is:

sdlgendata logfile_set class | dsilog logfile_set class -vo

2 Check the output to see if your class specification file matches the format of your data
collection process. If the sdlgendata program outputs something different from your
program, you have either an error in your output format or an error in the class
specification file.

3 Before you begin collecting real data, delete all log files from the testing process.
268 Chapter 13

Logging Data to the Log File Set

After you have created the log file set, and optionally tested it, update Performance Collection
Component configuration files as needed, and then run the dsilog program to log incoming
data.

1 Update the data source configuration file, datasources, to add the DSI log files as data
sources for generating alarms.

2 Modify the alarm definitions file, alarmdef, if you want to alarm on specific DSI metrics.
For more information, see Defining Alarms for DSI Metrics in Chapter 15.

3 Optionally, test the logging process by piping data (which may be generated by
sdlgendata to match your class specification) to the dsilog program with the -vi
option set.

4 Check the data to be sure it is being correctly logged.

5 After testing, remove the data that was tested.

6 Start the collection process from the command line.

7 Pipe the data from the collection process to dsilog (or some other way to get it to stdin)
with the appropriate variables and options set. For example:

<program or process with variables>| dsilog logfile_set class

For more information about dsilog options, see dsilog Logging Process in Chapter 15.

The dsilog program is designed to receive a continuous stream of data. Therefore, it is
important to structure scripts so that dsilog receives continuous input data. Do not write
scripts that create a new dsilog process for new input data points. This can cause duplicate
timestamps to be written to the dsilog file, and can cause problems for Performance
Manager and perfalarm when reading the file. See Chapter 16, Examples of Data Source
Integration, for examples of problematic and recommended scripts
Using Data Source Integration 269

Using the Logged Data

Once you have created the DSI log files, you can export the data using the Performance
Collection Component's extract program. You can also configure alarms to occur when DSI
metrics exceed defined conditions.

Here are ways to use logged DSI data:

• Export the data for use in reporting tools such as spreadsheets.

• Display exported DSI data using analysis tools such as in Performance Manager.

• Monitor alarms using HP Operations Manager or HP Network Node Manager.

You cannot create extracted log files from DSI log files.
270 Chapter 13

14 DSI Class Specification Reference
This chapter provides detailed reference information about:

• Class specifications

• Class specifications syntax

• Metrics descriptions in the class specifications

Class Specifications

For each source of incoming data, you must create a class specification file to describe the
format for storing incoming data. To create the file, use the class specification language
described in the next section, Class Specification Syntax. The class specification file contains:

• a class description, which assigns a name and numeric ID to the incoming data set,
determines how much data will be stored, and specifies when to roll data to make room for
new data.

• metric descriptions for each individual data item. A metric description names and
describes a data item. It also specifies the summary level to apply to data (RECORDS PER
HOUR) if more than one record arrives in the time interval that is configured for the class.

To generate the class specification file, use any editor or word processor that lets you save the
file as an ASCII text file. You specify the name of the class specification file when you run
sdlcomp to compile it. When the class specification is compiled, it automatically creates or
updates a log file set for storage of the data.

The class specification allows you to determine how many records per hour will be stored for
the class, and to specify a summarization method to be used if more records arrive than you
want to store. For instance, if you have requested that 12 records per hour be stored (a record
every five minutes) and records arrive every minute, you could have some of the data items
averaged and others totaled to maintain a running count.

Avoid the use of class specification file names that conflict with these naming conventions, or
sdlcomp will fail.

The DSI compiler, sdlcomp, creates files with the following names for a log
file set (named logfile_set_name):

logfile_set_name and logfile_set_name.desc

sldcomp creates a file with the following default name for a class (named
class_name):

logfile_set_name.class_name
271

Class Specification Syntax

Syntax statements shown in brackets [] are optional. Multiple statements shown in braces {
} indicate that one of the statements must be chosen. Italicized words indicate a variable
name or number you enter. Commas can be used to separate syntax statements for clarity
anywhere except directly preceding the semicolon, which marks the end of the class
specification and the end of each metric specification. Statements are not case-sensitive.

Comments start with # or //. Everything following a # or // on a line is ignored. Note the
required semicolon after the class description and after each metric description. Detailed
information about each part of the class specification and examples follow.

CLASS class_name = class_id_number
[LABEL "class_label_name"]

 [INDEX BY {HOUR | DAY | MONTH} MAX INDEXES number
 [[ROLL BY {HOUR | DAY | MONTH} [ACTION "action"]

 [CAPACITY {maximum_record_number}]
[RECORDS PER HOUR number]
;

METRICS

metric_name = metric_id_number
[LABEL "metric_label_name"]
[TOTALED | AVERAGED | SUMMARIZED BY metric_name]
 [MAXIMUM metric_maximum_number]
[PRECISION {0 | 1 | 2 | 3 | 4 | 5}]
[TYPE TEXT LENGTH "length"]
;

User-defined descriptions, such as metric_label_name or class_label_name,
cannot be the same as any of the keyword elements of the DSI class
specification syntax.
272 Chapter 14

CLASS Description

To create a class description, assign a name to a group of metrics from a specific data source,
specify the capacity of the class, and designate how data in the class will be rolled when the
capacity is exceeded.

You must begin the class description with the CLASS keyword. The final parameter in the class
specification must be followed by a semicolon.

Syntax

CLASS class_name = class_id_number

[LABEL "class_label_name"]

[INDEX BY { HOUR | DAY | MONTH } MAX INDEXES number
[[ROLL BY { HOUR | DAY | MONTH } [ACTION "action"]

[CAPACITY {maximum_record_number}]

[RECORDS PER HOUR number]

;

Default Settings

The default settings for the class description are:

LABEL (class_name)
INDEX BY DAY
MAX INDEXES 9
RECORDS PER HOUR 12

To use the defaults, enter only the CLASS keyword with a class_name and numeric
class_id_number.

CLASS

The class name and class ID identify a group of metrics from a specific data source.

Syntax

CLASS class_name = class_id_number

How to Use It

The class_name and class_ID_number must meet the following requirements:

• class_name is alphanumeric and can be up to 20 characters long. The name must start
with an alphabetic character and can contain underscores (but no special characters).

• class_ID_number must be numeric and can be up to six digits long.

• Neither the class_name or the class_ID_number are case-sensitive.
DSI Class Specification Reference 273

• The class_name and class_ID_number must each be unique among all the classes you
define and cannot be the same as any applications defined in the Performance Collection
Component parm file. (For information about the parm file, see Chapter 2 of the HP
Operations Agent for UNIX User's Manual.).

Example

CLASS VMSTAT_STATS = 10001;

LABEL

The class label identifies the class as a whole. It is used instead of the class name in
Performance Manager.

Syntax

[LABEL "class_label_name"]

How To Use It

The class_label_name must meet the following requirements:

• It must be enclosed in double quotation marks.

• It can be up to 48 characters long.

• It cannot be the same as any of the keyword elements of the DSI class specification
syntax, such as CAPACITY, ACTION and so on.

• If it contains a double quotation mark, precede it with a backslash (\). For example, you
would enter "\"my\" data" if the label is "my" data.

• If no label is specified, the class_name is used as the default.

Example

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data";

INDEX BY, MAX INDEXES, AND ROLL BY

INDEX BY, MAX INDEXES, and ROLL BY settings allow you to specify how to store data and
when to discard it. With these settings you designate the blocks of data to store, the maximum
number of blocks to store, and the size of the block of data to discard when data reaches its
maximum index value.

Syntax

[NDEX BY {HOUR | DAY | MONTH} MAX INDEXES number]
[[ROLL BY {HOUR | DAY | MONTH} [ACTION "action"]]

How To Use It

INDEX BY settings allow blocks of data to be rolled out of the class when the class capacity is
reached. The INDEX BY and RECORDS PER HOUR options can be used to indirectly set the
capacity of the class as described later in Controlling Log File Size.

The INDEX BY setting cannot exceed the ROLL BY setting. For example, INDEX BY DAY does
not work with ROLL BY HOUR, but INDEX BY HOUR does work with ROLL BY DAY.

If ROLL BY is not specified, the INDEX BY setting is used. When the capacity is reached, all the
records logged in the oldest roll interval are freed for reuse.
274 Chapter 14

Any specified ACTION is performed before the data is discarded (rolled). This optional ACTION
can be used to export the data to another location before it is removed from the class. For
information about exporting data, see Chapter 15, DSI Program Reference.

Notes on Roll Actions

The UNIX command specified in the ACTION statement cannot be run in the background. Also,
do not specify a command in the ACTION statement that will cause a long delay, because new
data won’t be logged during the delay.

If the command is more than one line long, mark the start and end of each line with double
quotation marks. Be sure to include spaces where necessary inside the quotation marks to
ensure that the various command line options will remain separated when the lines are
concatenated.

If the command contains a double quotation mark, precede it with a backslash (\).

The ACTION statement is limited to 199 characters or less.

Within the ACTION statement, you can use macros to define the time window of the data to be
rolled out of the log file. These macros are expanded by dsilog. You can use PT_START to
specify the beginning of the block of data to be rolled out in UNIX time (seconds since 1/1/70
00:00:00) and PT_END to specify the end of the data in UNIX time. These are particularly
useful when combined with the extract program to export the data before it is overwritten.

If a macro is used, its expanded length is used against the 199-character limit.

Examples

The following examples may help to clarify the relationship between the INDEX BY, MAX
INDEXES, and the ROLL BY clauses.

The following example indirectly sets the CAPACITY to 144 records (1*12*12).

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
RECORDS PER HOUR 12;

The following example indirectly sets the CAPACITY to 1440 records (1*12*120).

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
RECORDS PER HOUR 120;

The following example shows ROLL BY HOUR.

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

The following example causes all the data currently identified for rolling (excluding
weekends) to be exported to a file called sys.sdl before the data is overwritten. Note that the
last lines of the last example are enclosed in double quotation marks to indicate that they
form a single command.
DSI Class Specification Reference 275

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
ACTION "extract -xp -l sdl_new -C SYS_STATS "
"-B PT_START -E PT_END -f sys.sdl, purge -we 17 "
RECORDS PER HOUR 120;

Other Examples

The suggested index settings below may help you to consider how much data you want to
store.

The following table provides a detailed explanation of settings using ROLL BY

INDEX BY MAX INDEXES
Amount of Data
Stored

HOUR 72 3 days

HOUR 168 7 days

HOUR 744 31 days

DAY 365 1 year

MONTH 12 1 year

INDEX BY
MAX
INDEXES ROLL BY Meaning

DAY 9 DAY Nine days of data will be stored
in the log file. Before logging
day 10, day 1 is rolled out.
These are the default values for
index and max indexes.

HOUR 72 HOUR 72 hours (three days) of data
will be stored in the log file.
Before logging hour 73, hour 1
is rolled out. Thereafter, at the
start of each succeeding hour,
the “oldest” hour is rolled out.

HOUR 168 DAY 168 hours (seven days) of data
will be stored in the log file.
Before logging hour 169 (day 8),
day 1 is rolled out. Thereafter,
at the start of each succeeding
day, the “oldest” day is rolled
out.
276 Chapter 14

HOUR 744 MONTH 744 hours (31 days) of data will
be stored in the log file. Before
logging hour 745 (day 32),
month 1 is rolled out.
Thereafter, before logging hour
745, the “oldest” month is rolled
out.

For example, dsilog is started
on April 15 and logs data
through May 16 (744 hours).
Before logging hour 745 (the
first hour of May 17), dsilog
will roll out the data for the
month of April (April 15 - 30).

INDEX BY
MAX
INDEXES ROLL BY Meaning
DSI Class Specification Reference 277

DAY 30 DAY 30 days of data will be stored in
the log file. Before logging day
31, day 1 is rolled out.
Thereafter, at the start of each
succeeding day, the “oldest”
month is rolled out.

For example, dsilog is started
on April 1 and logs data all
month, then the April 1st will
be rolled out when May 1st (day
31) data is to be logged.

DAY 62 MONTH 62 days of data will be stored in
the log file. Before logging day
63, month 1 is rolled out.
Thereafter, before logging day
63 the “oldest” month is rolled
out.

For example, if dsilog is
started on March 1 and logs
data for the months of March
and April, there will be 61 days
of data in the log file. Once
dsilog logs May 1st data (the
62nd day), the log file will be
full. Before dsilog can log the
data for May 2nd, it will roll out
the entire month of March.

MONTH 2 MONTH Two months of data will be
stored in the log file. Before
logging the third month, month
1 is rolled out. Thereafter, at the
start of each succeeding month,
the “oldest” month is rolled out.

For example, dsilog is started
on January 1 and logs data for
the months of January and
February. Before dsilog can
log the data for March, it will
roll out the month of January.

INDEX BY
MAX
INDEXES ROLL BY Meaning
278 Chapter 14

Controlling Log File Size

You determine how much data is to be stored in each class and how much data to discard to
make room for new data.

Class capacity is calculated from INDEX BY (hour, day, or month), RECORDS PER HOUR, and MAX
INDEXES. The following examples show the results of different settings.

In this example, the class capacity is 288 (24 indexes * 12 records per hour).

INDEX BY HOUR
MAX INDEXES 24
RECORDS PER HOUR 12

In this example, the class capacity is 504 (7 days * 24 hours per day * 3 records per hour).

INDEX BY DAY
MAX INDEXES 7
RECORDS PER HOUR 3

In this example, the class capacity is 14,880 (2 months * 31 days per month * 24 hours per day
* 10 records per hour).

INDEX BY MONTH
MAX INDEXES 2
RECORDS PER HOUR 10

If you do not specify values for INDEX BY, RECORDS PER HOUR, and MAX INDEXES, DSI uses the
defaults for the class descriptions. See “Default Settings” under CLASS Description earlier in
this chapter.

The ROLL BY option lets you determine how much data to discard each time the class record
capacity is reached. The setting for ROLL BY is constrained by the INDEX BY setting in that the
ROLL BY unit (hour, day, month) cannot be smaller than the INDEX BY unit.

The following example illustrates how rolling occurs given the sample

INDEX BY DAY
MAX INDEXES 6
ROLL BY DAY
DSI Class Specification Reference 279

In the above example, the class capacity is limited to six days of data by the setting:

MAX INDEXES 6.

The deletion of data is set for a day's worth by the setting:

ROLL BY DAY.

When the seventh day's worth of data arrives, the oldest day's worth of data is discarded. Note
that in the beginning of the logging process, no data is discarded. After the class fills up for
the first time at the end of 7 days, the roll takes place once a day.

Example log

Day 2 - 21 records

Day 3 - 24 records

Day 4 - 21 records

Day 5 - 24 records

Day 6 - 21 records

Space is freed when data
collection reaches 6 days.
On day 7, DSI rolls the oldest
day’s worth of data, making
room for day 7 data records.
280 Chapter 14

RECORDS PER HOUR

The RECORDS PER HOUR setting determines how many records are written to the log file every
hour. The default number for RECORDS PER HOUR is 12 to match Performance Collection
Component's measurement interval of data sampling once every five minutes (60 minutes/12
records = logging every five minutes).

The default number or the number you enter could require the logging process to summarize
data before it becomes part of the log file. The method used for summarizing each data item is
specified in the metric description. For more information, see Summarization Method later in
this chapter.

Syntax

[RECORDS PER HOUR number]

How To Use It

The logging process uses this value to summarize incoming data to produce the number of
records specified. For example, if data arrives every minute and you have set RECORDS PER
HOUR to 6 (every 10 minutes), 10 data points are summarized to write each record to the class.
Some common RECORDS PER HOUR settings are shown below:

RECORDS PER HOUR 6 --> 1 record/10 minutes
RECORDS PER HOUR 12 --> 1 record/5 minutes
RECORDS PER HOUR 60 --> 1 record/minute
RECORDS PER HOUR 120 --> 1 record/30 seconds

Notes

RECORDS PER HOUR can be overridden by the -s seconds option in dsilog. However,
overriding the original setting could cause problems when Performance Manager graphs the
data.

If dsilog receives no metric data for an entire logging interval, a missing data indicator is
logged for that metric. DSI can be forced to use the last value logged with the -asyn option in
dsilog. For a description of the -asyn option, see dsilog Logging Process in Chapter 15.

Example

In this example, a record will be written every 10 minutes.

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
RECORDS PER HOUR 6;
DSI Class Specification Reference 281

CAPACITY

CAPACITY is the number of records to be stored in the class.

Syntax

[CAPACITY {maximum_record_number}]

How To Use It

Class capacity is derived from the setting in RECORDS PER HOUR, INDEX BY, and MAX INDEXES.
The CAPACITY setting is ignored unless a capacity larger than the derived values of these
other settings is specified. If this situation occurs, the MAX INDEXES setting is increased to
provide the specified capacity.

Example

INDEX BY DAY
MAX INDEXES 9
RECORDS PER HOUR 12
CAPACITY 3000

In the above example, the derived class capacity is 2,592 records (9 days * 24 hours per day *
12 records per hour).

Because 3000 is greater than 2592, sdlcomp increases MAX INDEXES to 11, resulting in the
class capacity of 3168. After compilation, you can see the resulting MAX INDEXES and
CAPACITY values by running sdlutil with the -decomp option.
282 Chapter 14

Metrics Descriptions

The metrics descriptions in the class specification file are used to define the individual data
items for the class. The metrics description equates a metric name with a numeric identifier
and specifies the method to be used when data must be summarized because more records per
hour are arriving than you have specified with the RECORDS PER HOUR setting.

Note that there is a maximum limit of 100 metrics in the dsilog format file.

METRICS

metric_name = metric_id_number
[LABEL "metric_label_name"]
[TOTALED | AVERAGED | SUMMARIZED BY metric_name]
[MAXIMUM metric_maximum_number]
[PRECISION { 0 | 1 | 2 | 3 | 4 | 5 }]
TYPE TEXT LENGTH "length"

METRICS

The metric name and id number identify the metric being collected.

Syntax

METRICS
metric_name = metric_id_number

How To Use It

The metrics section must start with the METRICS keyword before the first metric definition.
Each metric must have a metric name that meets the following requirements:

• Must not be longer than 20 characters.

• Must begin with an alphabetic character.

• Can contain only alphanumeric characters and underscores.

• Is not case-sensitive.

The metric also has a metric ID number that must not be longer than 6 characters.

The metric_name and metric_id_number must each be unique among all the metrics you
define in the class. The combination class_name:metric_name must be unique for this system,
and it cannot be the same as any application_name:metric_name.

Each metric description is separated from the next by a semicolon (;).

User-defined descriptions, such as the metric_label_name, cannot be the same
as any of the keyword elements of the DSI class specification syntax.

For numeric metrics, you can specify the summarization method (TOTALED,
AVERAGED, SUMMARIZED BY) and PRECISION. For text metrics, you can only
specify the TYPE TEXT LENGTH.
DSI Class Specification Reference 283

You can reuse metric names from any other class whose data is stored in the same log file set
if the definitions are identical as well (see How Log Files Are Organized in Chapter 13). To
reuse a metric definition that has already been defined in another class in the same log file
set, specify just the metric_name without the metric_id_number or any other specifications. If
any of the options are to be set differently than the previously defined metric, the metric must
be given a unique name and numeric identifier and redefined.

The order of the metric names in this section of the class specification determines the order of
the fields when you export the logged data. If the order of incoming data is different than the
order you list in this specification or if you do not want to log all the data in the incoming data
stream, see Chapter 15, DSI Program Reference for information about how to map the metrics
to the correct location.

A timestamp metric is automatically inserted as the first metric in each class. If you want the
timestamp to appear in a different position in exported data, include the short form of the
internally defined metric definition (DATE_TIME;) in the position you want it to appear. To omit
the timestamp and use a UNIX timestamp (seconds since 1/1/70 00:00:00) that is part of the
incoming data, choose the -timestamp option when starting the dsilog process.

The simplest metric description, which uses the metric name as the label and the defaults of
AVERAGED, MAXIMUM 100, and PRECISION 3 decimal places, requires the following description:

METRICS
metric_name = metric_id_number

Example

VM;

VM is an example of reusing a metric definition that has already been defined in another class
in the same log file set.

LABEL

The metric label identifies the metric in Performance Manager graphs and exported data.

Syntax

[LABEL "metric_label_name"]

How To Use It

Specify a text string, surrounded by double quotation marks, to label the metric in graphs and
exported data. Up to 48 characters are allowed. If no label is specified, the metric name is
used to identify the metric.

Notes

If the label contains a double quotation mark, precede it with a backslash (\). For example,
you would enter "\"my\" data" if the label is “my” data.

The metric_label_name cannot be the same as any of the keyword elements of the DSI class
specification syntax such as CAPACITY, ACTION and so on.

Example

You must compile each class using sdlcomp and then start logging the data
for that class using the dsilog process, regardless of whether you have
reused metric names.
284 Chapter 14

METRICS
RUN_Q_PROCS = 106
LABEL "Procs in run q";

Summarization Method

The summarization method determines how to summarize data if the number of records
exceeds the number set in the RECORDS PER HOUR option of the CLASS section. For example,
you would want to total a count of occurrences, but you would want to average a rate. The
summarization method is only valid for numeric metrics.

Syntax

[{TOTALED | AVERAGED | SUMMARIZED BY metric_name}]

How To Use It

SUMMARIZED BY should be used when a metric is not being averaged over time, but over
another metric in the class. For example, assume you have defined metrics TOTAL_ORDERS and
LINES_PER_ORDER. If these metrics are given to the logging process every five minutes but
records are being written only once each hour, to correctly summarize LINES_PER_ORDER to be
(total lines / total orders), the logging process must perform the following calculation every
five minutes:

• Multiply LINES_PER_ORDER * TOTAL_ORDERS at the end of each five-minute interval and
maintain the result in an internal running count of total lines.

• Maintain the running count of TOTAL_ORDERS.

• At the end of the hour, divide total lines by TOTAL_ORDERS.

To specify this kind of calculation, you would specify LINES_PER_ORDER as SUMMARIZED BY
TOTAL_ORDERS.

If no summarization method is specified, the metric defaults to AVERAGED.

Example

METRICS
ITEM_1_3 = 11203
LABEL "TOTAL_ORDERS"
TOTALED;
ITEM_1_5 = 11205
LABEL "LINES_PER_ORDER"
SUMMARIZED BY ITEM_1_3;

PRECISION

PRECISION identifies the number of decimal places to be used for metric values. If PRECISION
is not specified, it is calculated based on the MAXIMUM specified. If neither is specified, the
default PRECISION value is 3. This setting is valid only for numeric metrics.

Syntax

[PRECISION{0|1|2|3|4|5}]

How To Use It

The PRECISION setting determines the largest value that can be logged. Use PRECISION 0 for
whole numbers.
DSI Class Specification Reference 285

Example

METRICS
RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 1;

TYPE TEXT LENGTH

The three keywords TYPE TEXT LENGTH specify that the metric is textual rather than
numeric. Text is defined as any character other than ^d, \n, or the separator, if any.

Because the default delimiter between data items for dsilog input is blank space, you will
need to change the delimiter if the text contains embedded spaces. Use the dsilog -c char
option to specify a different separator as described in Chapter 15, DSI Program Reference.

Syntax

[TYPE TEXT LENGTH length]

How To Use It

The length must be greater than zero and less than 4096.

Notes

Summarization method, MAXIMUM, and PRECISION cannot be specified with text metrics. Text
cannot be summarized, which means that dsilog will take the first logged value in an
interval and ignore the rest.

Example

METRICS
text_1 = 16
LABEL "first text metric"
TYPE TEXT LENGTH 20
;

PRECISION
of Decimal
Places

Largest
Acceptable
Numbers MAXIMUM

0 0 2,147,483,647 > 10,000

1 1 214,748,364.7 1001 to 10,000

2 2 21,474,836.47 101 to 1,000

3 3 2,147,483.647 11 to 1,000

4 4 214,748.3647 2 to 10

5 5 21,474.83647 1
286 Chapter 14

Sample Class Specification

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 0;

BLOCKED_PROCS = 107
LABEL "Blocked Processes"
PRECISION 0;

SWAPPED_PROCS = 108
LABEL "Swapped Processes"
PRECISION 0;

AVG_VIRT_PAGES = 201
LABEL "Avg Virt Mem Pages"
PRECISION 0;

FREE_LIST_SIZE = 202
LABEL "Mem Free List Size"
PRECISION 0;

PAGE_RECLAIMS = 303
LABEL "Page Reclaims"
PRECISION 0;

ADDR_TRANS_FAULTS = 304
LABEL "Addr Trans Faults"
PRECISION 0;

PAGES_PAGED_IN = 305
LABEL "Pages Paged In"
PRECISION 0;

PAGES_PAGED_OUT = 306
LABEL "Pages Paged Out"
PRECISION 0;

PAGES_FREED = 307
LABEL "Pages Freed/Sec"
PRECISION 0;
DSI Class Specification Reference 287

MEM_SHORTFALL = 308
LABEL "Exp Mem Shortfall"
PRECISION 0;

CLOCKED_PAGES = 309
LABEL "Pages Scanned/Sec"
PRECISION 0;

DEVICE_INTERRUPTS = 401
LABEL "Device Interrupts"
PRECISION 0;

SYSTEM_CALLS = 402
LABEL "System Calls"
PRECISION 0;

CONTEXT_SWITCHES = 403
LABEL "Context Switches/Sec"
PRECISION 0;

USER_CPU = 501
LABEL "User CPU"
PRECISION 0;

SYSTEM_CPU = 502
LABEL "System CPU"
PRECISION 0;

IDLE_CPU = 503
LABEL "Idle CPU"
PRECISION 0;
288 Chapter 14

15 DSI Program Reference
This chapter provides detailed reference information about:

• the sdlcomp compiler

• configuration files datasources and alarmdef

• the dsilog logging process

• exporting DSI data using the Performance Collection Component extract program

• the sdlutil data source management utility
289

sdlcomp Compiler

The sdlcomp compiler checks the class specification file for errors. If no errors are found, it
adds the class and metric descriptions to the description file in the log file set you name. It
also sets up the pointers in the log file set's root file to the log file to be used for data storage.
If either the log file set or the log file does not exist, it is created by the compiler.

Compiler Syntax

sdlcomp [-maxclass value] specification_file
 [logfile_set[log file]] [options]

You can put the DSI files anywhere on your system by specifying a full path in
the compiler command. However, once the path has been specified, DSI log
files cannot be moved to different directories. (SDL62 is the associated class
specification error message, described in SDL Error Messages in Chapter 17.
The format used by DSI for the class specification error messages is the prefix
SDL (Self Describing Logfile), followed by the message number.

Variables and Options Definitions

-maxclass value allows you to specify the maximum number of
classes to be provided for when creating a new
log file set. This option is ignored if it is used
with the name of an existing log file set. Each
additional class consumes about 500 bytes of
disk space in overhead, whether the class is
used or not. The default is 10 if -maxclass is
not specified.

specification_file is the name of the file that contains the class
specification. If it is not in the current
directory, it must be fully qualified.

logfile_set is the name of the log file set this class should

log file is the log file in the set that will contain the
data for this class. If no log file is named, a
new log file is created for the class and is
named automatically.

-verbose prints a detailed description of the compiler
output to stdout.

-vers displays version information.

-? displays the syntax description.

-u allows you to log more than one record per
second. Use this option to log unsummarized
data only.
290 Chapter 15

Sample Compiler Output

Given the following command line:

->sdlcomp vmstat.spec sdl_new

the following code is sample output for a successful compile. Note that vmstat.spec is the
sample specification file presented in the previous chapter.

sdlcomp
Check class specification syntax.

CLASS VMSTAT_STATS = 10001
LABEL "VMSTAT data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 0;

BLOCKED_PROCS = 107
LABEL "Blocked Processes"
PRECISION 0;

SWAPPED_PROCS = 108
LABEL "Swapped Processes"
PRECISION 0;

AVG_VIRT_PAGES = 201
LABEL "Avg Virt Mem Pages"
PRECISION 0;

FREE_LIST_SIZE = 202
LABEL "Mem Free List Size"
PRECISION 0;

PAGE_RECLAIMS = 303
LABEL "Page Reclaims"
PRECISION 0;
ADDR_TRANS_FAULTS = 304
LABEL "Addr Trans Faults"
PRECISION 0;

PAGES_PAGED_IN = 305
LABEL "Pages Paged In"
PRECISION 0;

PAGES_PAGED_OUT = 306
LABEL "Pages Paged Out"
PRECISION 0;
DSI Program Reference 291

PAGES_FREED = 307
LABEL "Pages Freed/Sec"
PRECISION 0;

MEM_SHORTFALL = 308
LABEL "Exp Mem Shortfall"
PRECISION 0;

CLOCKED_PAGES = 309
LABEL "Pages Scanned/Sec"
PRECISION 0;

DEVICE_INTERRUPTS = 401
LABEL "Device Interrupts"
PRECISION 0;

SYSTEM_CALLS = 402
LABEL "System Calls"
PRECISION 0;

CONTEXT_SWITCHES = 403
LABEL "Context Switches/Sec"
PRECISION 0;

USER_CPU = 501
LABEL "User CPU"
PRECISION 0;

SYSTEM_CPU = 502
LABEL "System CPU"
PRECISION 0;

IDLE_CPU = 503
LABEL "Idle CPU"
PRECISION 0;
Note: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL sdl_new.
Open SDL sdl_new
Add class VMSTAT_STATS.
Check class VMSTAT_STATS.

Class VMSTAT_STATS successfully added to log file set.

For explanations of error messages and recovery, see Chapter 17, Error Message.
292 Chapter 15

Configuration Files

Before you start logging data, you may need to update two Performance Collection Component
configuration files:

• /var/opt/OV/conf/perf/datasources

• /var/opt/perf/alarmdef — see the next section, Defining Alarms for DSI Metrics for
information about using the alarmdef configuration file.

Defining Alarms for DSI Metrics

You can use Performance Collection Component to define alarms on DSI metrics. These
alarms notify you when DSI metrics meet or exceed conditions that you have defined. To
define alarms, you specify conditions that, when met or exceeded, trigger an alert notification
or action. You define alarms for data logged through DSI the same way as for other
Performance Collection Component metrics — in the alarmdef file on the Performance
Collection Component system. The alarmdef file is located in the var/opt/perf/
configuration directory of Performance Collection Component.

Whenever you specify a DSI metric name in an alarm definition, it should be fully qualified;
that is, preceded by the datasource_name, and the class_name as shown below:

datasource_name:class_name:metric_name

• datasource_name is the name you have used to configure the data source in the
datasources file.

• class_name is the name you have used to identify the class in the class specification for
the data source. You do not need to enter the class_name if the metric name is unique (not
reused) in the class specification.

• metric_name is the data item from the class specification for the data source.

However, if you choose not to fully qualify a metric name, you need to include the USE
statement in the alarmdef file to identify which data source to use. For more information
about the USE statement, see Chapter 7, “Performance Alarms,” in the HP Operations Agent
for UNIX User's Manual.

 To activate the changes you made to the alarmdef file so that it can be read by the alarm
generator, enter the ovpa restart alarm command in the command line.

For detailed information on the alarm definition syntax, how alarms are processed, and
customizing alarm definitions, see Chapter 7 in the HP Operations Agent for UNIX User's
Manual.

Alarm Processing

As data is logged by dsilog it is compared to the alarm definitions in the alarmdef file to
determine if a condition is met or exceeded. When this occurs, an alert notification or action is
triggered.

You can configure where you want alarm notifications sent and whether you want local
actions performed. Alarm notifications can be sent to the central Performance Manager
analysis system where you can draw graphs of metrics that characterize your system
DSI Program Reference 293

performance. SNMP traps can be sent to HP Network Node Manager. Local actions can be
performed on the Performance Collection Component system. Alarm information can also be
sent to Operations Manager.

dsilog Logging Process

The dsilog process requires that either devise your own program or use one that is already
in existence for you to gain access to the data. You can then pipe this data into dsilog, which
logs the data into the log file set. A separate logging process must be used for each class you
define.

dsilog expects to receive data from stdin. To start the logging process, you could pipe the
output of the process you are using to collect data to dsilog as shown in the following
example.

vmstat 60 | dsilog logfile_set class

You can only have one pipe (|) in the command line. This is because with two pipes, UNIX
buffering will hold up the output from the first command until 8000 characters have been
written before continuing to the second command and piping out to the log file.

You could also use a fifo (named pipe). For example,

mkfifo -m 777 myfifo
dsilog logfile_set class -i myfifo &
vmstat 60 > myfifo &

The & causes the process to run in the background.

Note that you may need to increase the values of the UNIX kernel parameters shmmni and
nflocks if you are planning to run a large number of dsilog processes. Shmmni specifies the
maximum number of shared memory segments; nflocks specifies the maximum number of
file locks on a system. The default value for each is 200. Each active DSI log file set uses a
shared memory segment (shmmni) and one or more file locks (nflocks). On HP-UX, you can
change the settings for shmmni and nflocks using the System Administration and
Maintenance utility (SAM).

Syntax

dsilog logfile_set class [options]

The dsilog parameters and options are described on the following pages.
294 Chapter 15

Table 1 dsilog parameters and options

Variables and
Options Definitions

logfile_set is the name of the log file set where the data is to
be stored. If it is not in the current directory, the
name must be fully qualified.

class is the name of the class to be logged.

-asyn specifies that the data will arrive asynchronously
with the RECORDS PER HOUR rate. If no data
arrives during a logging interval, the data for the
last logging interval is repeated. However, if
dsilog has logged no data yet, the metric value
logged is treated as missing data. This causes a
flat line to be drawn in a graphical display of the
data and causes data to be repeated in each record
if the data is exported.

-c char uses the specified character as a string delimiter/
separator. You may not use the following as
separators: decimal, minus sign, ^z, \n. If there
are embedded spaces in any text metrics then you
must specify a unique separator using this option.

-f format file names a file that describes the data that will be
input to the logging process. If this option is not
specified, dsilog derives the format of the input
from the class specification with the following
assumptions. See Creating a Format File later in
this chapter for more information.
Each data item in an input record corresponds to a
metric that has been defined in the class
specification.
The metrics are defined in the class specification in
the order in which they appear as data items in the
input record.
If there are more data items in an input record
than there are metric definitions, dsilog ignores
all additional data items.

-f format file
(continued)

If the class specification lists more metric
definitions than there are input data items, the
field will show “missing” data when the data is
exported, and no data will be available for that
metric when graphing data in the analysis
software.
The number of fields in the format file is limited to
100.
DSI Program Reference 295

-i fifo
or ASCII file

indicates that the input should come from the fifo
or ASCII file named. If this option is not used,
input comes from stdin. If you use this method,
start dsilog before starting your collection
process. See man page mkfifo for more
information about using a fifo. Also see Chapter
16, Examples of Data Source Integration for
examples.

-s seconds is the number of seconds by which to summarize
the data. The -s option overrides the
summarization interval and the summarization
rate defaults to RECORDS PER HOUR in the class
specification. If present, this option overrides the
value of RECORDS PER HOUR.

A zero (0) turns off summarization, which means
that all incoming data is logged. Caution should be
used with the -s 0 option because dsilog will
timestamp the log data at the time the point
arrived. This can cause problems for Performance
Manager and perfalarm, which work best with
timestamps at regular intervals. If the log file will
be accessed by Performance Manager, use of the
-s 0 option is discouraged.

-t prints everything that is logged to stdout in
ASCII format.

-timestamp indicates that the logging process should not
provide the timestamp, but use the one already
provided in the input data. The timestamp in the
incoming data must be in UNIX timestamp format
(seconds since 1/1/70 00:00:00) and represent the
local time.

-vi filters the input through dsilog and writes errors
to stdout instead of the log file. It does not write
the actual data logged to stdout (see the -vo
option below). This can be used to check the
validity of the input.

-vo filters the input through dsilog and writes the
actual data logged and errors to stdout instead of
the log file. This can be used to check the validity
of the data summarization.

-vers displays version information

-? displays the syntax description.

Table 1 dsilog parameters and options

Variables and
Options Definitions
296 Chapter 15

How dsilog Processes Data

The dsilog program scans each input data string, parsing delimited fields into individual
numeric or text metrics. A key rule for predicting how the data will be processed is the
validity of the input string. A valid input string requires that a delimiter be present between
any specified metric types (numeric or text). A blank is the default delimiter, but a different
delimiter can be specified with the dsilog -c char command line option.

You must include a new line character at the end of any record fed to DSI in order for DSI to
interpret it properly.

Testing the Logging Process with Sdlgendata

Before you begin logging data, you can test the compiled log file set and the logging process
using the sdlgendata program. sdlgendata discovers the metrics for a class (as described
in the class specification) and generates data for each metric in a class.

Syntax

sdlgendata logfile_set class [options]

Sdlgendata parameters and options are explained below.

By piping sdlgendata output to dsilog with either the -vi or -vo options, you can verify
the input (-vi) and verify the output (-vo) before you begin logging with your own process or
program.

Table 2 Sdlgendata parameters and options

Variables and
Options Definitions

logfile_set is the name of the log file set to generate data for.

class is the data class to generate data for.

-timestamp
[number]

provides a timestamp with the data. If a negative
number or no number is supplied, the current time
is used for the timestamp. If a positive number is
used, the time starts at 0 and is incremented by
number for each new data record.

 -wait number causes a wait of number seconds between records
generated.

 -cycle number recycles data after number cycles.

-vers displays version information.

-? displays the syntax description.

After you are finished testing, delete all log files created from the test.
Otherwise, these files remain as part of the log file test.
DSI Program Reference 297

Use the following command to pipe data from sdlgendata to the logging process. The -vi
option specifies that data is discarded and errors are written to stdout. Press CTRL+C or
other interrupt control character to stop data generation.

sdlgendata logfile_set class -wait 5 | dsilog \
logfile_set class -s 10 -vi

The previous command generates data that looks like this:

dsilog

I: 744996402 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

I: 744996407 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

I: 744996412 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000

I: 744996417 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

I: 744996422 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000

I: 744996427 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000

I: 744996432 7.0000 8.0000 9.0000 10.000 11.000 12.0000 13.0000

I: 744996437 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000

You can also use the -vo option of dsilog to examine input and summarized output for your
real data without actually logging it. The following command pipes vmstat at 5-second
intervals to dsilog where it is summarized to 10 seconds.

->vmstat 5 | dsilog logfile_set class -s 10 -vo

dsilog
I: 744997230 0.0000 0.0000 21.0000 2158.0000 1603.0000 2.0000 2.0000
I: 744997235 0.0000 0.0000 24.0000 2341.0000 1514.0000 0.0000 0.0000
interval marker
L: 744997230 0.0000 0.0000 22.5000 2249.5000 1558.5000 1.0000 1.0000

I: 744997240 0.0000 0.0000 23.0000 2330.0000 1513.0000 0.0000 0.0000
I: 744997245 0.0000 0.0000 20.0000 2326.0000 1513.0000 0.0000 0.0000
interval marker
L: 744997240 0.0000 0.0000 21.5000 2328.0000 1513.0000 0.0000 0.0000

I: 744997250 0.0000 0.0000 22.0000 2326.0000 1513.0000 0.0000 0.0000
I: 744997255 0.0000 0.0000 22.0000 2303.0000 1513.0000 0.0000 0.0000
interval marker
L: 744997250 0.0000 0.0000 22.0000 2314.5000 1513.0000 0.0000 0.0000

I: 744997260 0.0000 0.0000 22.0000 2303.0000 1512.0000 0.0000 0.0000
I: 744997265 0.0000 0.0000 28.0000 2917.0000 1089.0000 9.0000 33.0000
interval marker
L: 744997260 0.0000 0.0000 25.0000 2610.0000 1300.5000 4.5000 16.5000

I: 744997270 0.0000 0.0000 28.0000 2887.0000 1011.0000 3.0000 9.0000
I: 744997275 0.0000 0.0000 27.0000 3128.0000 763.0000 8.0000 6.0000
interval marker
L: 744997270 0.0000 0.0000 27.5000 3007.5000 887.0000 5.5000 12.5000
298 Chapter 15

You can also use the dsilog -vo option to use a file of old data for testing, as long as the data
contains its own UNIX timestamp (seconds since 1/1/70 00:00:00). To use a file of old data,
enter a command like this:

dsilog -timestamp -vo <oldfile>
DSI Program Reference 299

Creating a Format File

Create a format file to map the data input to the class specification if:

• the data input contains data that is not included in the class specification.

• incoming data has metrics in a different order than you have specified in the class
specification.

A format file is an ASCII text file that you can create with vi or any text editor. Use the -f
option in dsilog to specify the fully qualified name of the format file.

Because the logging process works by searching for the first valid character after a delimiter
(either a space by default or user-defined with the dsilog -c option) to start the next metric,
the format file simply tells the logging process which fields to skip and what metric names to
associate with fields not skipped.

$numeric tells the logging process to skip one numeric metric field and go to the next. $any
tells the logging process to skip one text metric field and go to the next. Note that the format
file is limited to 100 fields.

For example, if the incoming data stream contains this information:

ABC 987 654 123 456

and you want to log only the first numeric field into a metric named metric_1, the format file
would look like this:

$any metric_1

This tells the logging process to log only the information in the first numeric field and discard
the rest of the data. To log only the information in the third numeric field, the format file
would look like this:

$any $numeric $numeric metric_1

To log all four numeric data items, in reverse order, the format file would look like this:

$any metric_4 metric_3 metric_2 metric_1
300 Chapter 15

If the incoming data stream contains the following information:

/users 15.9 3295 56.79% xdisk1 /dev/dsk/
c0d0s*

and you want to log only the first text metric and the first two numeric fields into metric fields
you name text_1, num_1, and num_2, respectively, the format file would look like this:

text_1 num_1 num_2

This tells the logging process to log only the information in the first three fields and discard
the rest of the data.

To log all of the data, but discard the “%” following the third metric, the format file would look
like this:

text_1 num_1 num_2 num_3 $any text_2 text_3

Since you are logging numeric fields and the “%” is considered to be a text field, you need to
skip it to correctly log the text field that follows it.

To log the data items in a different order the format file would look like this:

text_3 num_2 num_1 num_3 $any text_2 text_1

Note that this will result in only the first six characters of text_3 being logged if text_1 is
declared to be six characters long in the class specification. To log all of text_3 as the first
value, change the class specification and alter the data stream to allow extra space.
DSI Program Reference 301

Changing a Class Specification

To change a class specification file, you must recreate the whole log file set as follows:

1 Stop the dsilog process.

2 Export the data from the existing log file using the UNIX timestamp option if you want to
save it or integrate the old data with the new data you will be logging. See Exporting DSI
Data later in this chapter for information on how to do this.

3 Run sdlutil to remove the log file set. See Managing Data With sdlutil later in this
chapter for information on how to do this.

4 Update the class specification file.

5 Run sdlcomp to recompile the class specification.

6 Optionally, use the -i option in dsilog to integrate in the old data you exported in step 2.
You may need to manipulate the data to line up with the new data using the -f
format_file option

7 Run dsilog to start logging based on the new class specification.

8 As long as you have not changed the log file set name or location, you do not need to
update the datasources file.
302 Chapter 15

Exporting DSI Data

To export the data from a DSI log file, use the Performance Collection Component extract
program's export function. See Chapters 5 and 6 of the HP Operations Agent for UNIX User's
Manual for details on how to use extract to export data. An example of exporting DSI data
using command line arguments is provided on the following page.

There are several ways to find out what classes and metrics can be exported from the DSI log
file. You can use sdlutil to list this information as described in Managing Data With sdlutil
later in this chapter. Or you can use the extract guide command to create an export
template file that lists the classes and metrics in the DSI log file. You can then use vi to edit,
name, and save the file. The export template file is used to specify the export format, as
described in Chapters 5 and 6 of the HP Operations Agent for UNIX User's Manual.

Example of Using Extract to Export DSI Log File Data

extract -xp -l logfile_set -C class [options]

You can use extract command line options to do the following:

• Specify an export output file.

• Set begin and end dates and times for the first and last intervals to export.

• Export data only between certain times (shifts).

• Exclude data for certain days of the week (such as weekends).

• Specify a separation character to put between metrics on reports.

• Choose whether or not to display headings and blank records for intervals when no data
arrives and what the value displayed should be for missing or null data.

• Display exported date/time in UNIX format or date and time format.

• Set additional summarization levels.

Viewing Data in Performance Manager

In order to display data from a DSI log file in Performance Manager, you need to configure the
DSI log file as an Performance Collection Component data source. Before you start logging
data, configure the data source by adding it to the datasources file on the Performance
Collection Component system.

You can centrally view, monitor, analyze, compare, and forecast trends in DSI data using
Performance Manager. Performance Manager helps you identify current and potential
problems. It provides the information you need to resolve problems before user productivity is
affected.

You must be root or the creator of the log file to export DSI log file data.
DSI Program Reference 303

Managing Data With sdlutil

To manage the data from a DSI log file, use the sdlutil program to do any of the following
tasks:

• list currently defined class and metric information to stdout. You can redirect output to a
file.

• list complete statistics for classes to stdout.

• show metric descriptions for all metrics listed.

• list the files in a log file set.

• remove classes and data from a log file set.

• recreate a class specification from the information in the log file set.

• display version information.

Syntax

sdlutil logfile_set [option]

Variables and
Options Definitions

logfile_set is the name of a log file set created by
compiling a class specification.

-classes classlist provides a class description of all classes listed.
If none are listed, all are provided. Separate
the Items in the classlist with spaces.

-stats classlist provides complete statistics for all classes
listed. If none are listed, all are provided.
Separate the Items in the classlist with spaces.

-metrics metriclist provides metric descriptions for all metrics in
the metriclist. If none are listed, all are
provided. Separate the Items in the metriclist
with spaces.

-id displays the shared memory segment ID used
by the log file.

-files lists all the files in the log file set.

-rm all removes all classes and data as well as their
data and shared memory ID from the log file.
304 Chapter 15

-decomp classlist recreates a class specification from the
information in the log file set. The results are
written to stdout and should be redirected to
a file if you plan to make changes to the file
and reuse it. Separate the Items in the classlist
with spaces.

-vers displays version information.

-? displays the syntax description.

Variables and
Options Definitions
DSI Program Reference 305

306 Chapter 15

16 Examples of Data Source Integration
Data source integration is a very powerful and very flexible technology. Implementation of
DSI can range from simple and straightforward to very complex.

This chapter contains examples of using DSI for the following tasks:

• writing a dsilog script

• logging vmstat data

• logging sar data

• logging who word count
307

Writing a dsilog Script

The dsilog code is designed to receive a continuous stream of data rows as input. This
stream of input is summarized by dsilog according to the specification directives for each
class, and one summarized data row is logged per requested summarization interval.
Performance Manager and perfalarm work best when the timestamps written in the log
conform to the expected summarization rate (records per hour). This happens automatically
when dsilog is allowed to do the summarization.

dsilog process for each arriving input row, which may cause problems with Performance
Manager and perfalarm. This method is not recommended.

• Problematic dsilog script

• Recommended dsilog script

Example 1 - Problematic dsilog Script

In the following script, a new dsilog process is executed for each arriving input row.

while :

do

 feed_one_data_row | dsilog sdlname classname

 sleep 50

done

Example 2 - Recommended dsilog Script

In the following script, one dsilog process receives a continuous stream of input data.
feed_one_data_row is written as a function, which provides a continuous data stream to a
single dsilog process.

Begin data feed function

feed_one_data_row()

 {

 while :

 do

Perform whatever operations necessary to produce one row

of data for feed to a dsilog process

 sleep 50

 done

 }

End data feed function

Script mainline code

 feed_one_data_row | dsilog sdlname classname
308 Chapter 16

Logging vmstat Data

This example shows you how to set up data source integration using default settings to log the
first two values reported by vmstat. You can either read this section as an overview of how the
data source integration process works, or perform each task to create an equivalent DSI log
file on your system.

The procedures needed to implement data source integration are:

• Creating a class specification file.

• Compiling the class specification file.

• Starting the dsilog logging process.

Creating a Class Specification File

The class specification file is a text file that you create to describe the class, or set of incoming
data, as well as each individual number you intend to log as a metric within the class. The file
can be created with the text editor of your choice. The file for this example of data source
integration should be created in the /tmp/ directory.

The following example shows the class specification file required to describe the first two
vmstat numbers for logging in a class called VMSTAT_STATS. Because only two metrics are
defined in this class, the logging process ignores the remainder of each vmstat output record.
Each line in the file is explained in the comment lines that follow it.

CLASS VMSTAT_STATS = 10001;
 # Assigns a unique name and number to vmstat class data.
 # The semicolon is required to terminate the class section
 # of the file.

METRICS
 # Indicates that everything that follows is a description
 # of a number (metric) to be logged.

RUN_Q_PROCS = 106;
 # Assigns a unique name and number to a single metric.
 # The semicolon is required to terminate each metric.

BLOCKED_PROCS = 107;
 # Assigns a unique name and number to another metric.
The semicolon is required to terminate each metric.

Compiling the Class Specification File

When you compile the class specification file using sdlcomp, the file is checked for syntax
errors. If none are found, sdlcomp creates or updates a set of log files to hold the data for the
class.

Use the file name you gave to the class specification file and then specify a name for
logfile_set_name that makes it easy to remember what kind of data the log file contains. In the
command and compiler output example below, /tmp/vmstat.spec is used as the file name
and /tmp/VMSTAT_DATA is used for the log file set.

-> sdlcomp /tmp/vmstat.spec /tmp/VMSTAT_DATA
Examples of Data Source Integration 309

sdlcomp X.01.04
Check class specification syntax.

CLASS VMSTAT_STATS = 10001;

METRICS
RUN_Q_PROCS = 106;
BLOCKED_PROCS = 107;

NOTE: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL VMSTAT_DATA.
Shared memory ID used by vmstat_data=219

Class VMSTAT_STATS successfully added to log file set.

This example creates a log file set called VMSTAT_DATA in the /tmp/ directory, which includes
a root file and description file in addition to the data file. The log file set is ready to accept
logged data. If there are syntax errors in the class specification file, messages indicating the
problems are displayed and the log file set is not created.

Starting the dsilog Logging Process

Now you can pipe the output of vmstat directly to the dsilog logging process. Use the
following command:

vmstat 60 | dsilog /tmp/VMSTAT_DATA VMSTAT_STATS &

This command runs vmstat every 60 seconds and sends the output directly to the
VMSTAT_STATS class in the VMSTAT_DATA log file set. The command runs in the background.
You could also use remsh to feed vmstat in from a remote system.

Note that the following message is generated at the start of the logging process:

Metric null has invalid data
Ignore to end of line, metric value exceeds maximum

This message is a result of the header line in the vmstat output that dsilog cannot log.
Although the message appears on the screen, dsilog continues to run and begins logging
data with the first valid input line.

Accessing the Data

You can use the sdlutil program to report on the contents of the class:

sdlutil /tmp/VMSTAT_DATA -stats VMSTAT_STATS

You can use extract program command line arguments to export data from the class. For
example:

extract -xp -l /tmp/VMSTAT_DATA -C VMSTAT_STATS -ut -f stdout

By default, data will be summarized and logged once every five minutes.
310 Chapter 16

Note that to export DSI data, you must be root or the creator of the log file.

Logging sar Data from One File

This example shows you how to set up several DSI data collections using the standard sar
(system activity report) utility to provide the data.

When you use a system utility, it is important to understand exactly how that utility reports
the data. For example, note the difference between the following two sar commands:

sar -u 1 1

 HP-UX hpptc99 A.11.00 E 9000/855 04/10/99

 10:53:15 %usr %sys %wio %idle
 10:53:16 2 7 6 85

sar -u 5 2

 HP-UX hpptc99 A.11.00 E 9000/855 04/10/99

 10:53:31 %usr %sys %wio %idle
 10:53:36 4 5 0 91
 10:53:41 0 0 0 99

Average 2 2 0 95

As you can see, specifying an iteration value greater than 1 causes sar to display an average
across the interval. This average may or may not be of interest but can affect your DSI class
specification file and data conversion. You should be aware that the output of sar, or other
system utilities, may be different when executed on different UNIX platforms. You should
become very familiar with the utility you are planning to use before creating your DSI class
specification file.

Our first example uses sar to monitor CPU utilization via the -u option of sar. If you look at
the man page for sar, you will see that the -u option reports the portion of time running in
user mode (%usr), running in system mode (%sys), idle with some process waiting for block I/
O (%wio), and otherwise idle (%idle). Because we are more interested in monitoring CPU
activity over a long period of time, we use the form of sar that does not show the average.

Creating a Class Specification File

The first task to complete is the creation of a DSI class specification file. The following is an
example of a class specification that can be used to describe the incoming data:

sar_u.spec
#
sar -u class definition for HP systems.
#
==> 1 minute data; max 24 hours; indexed by hour; roll by day
#

Examples of Data Source Integration 311

CLASS sar_u = 1000
LABEL "sar -u data"
INDEX BY hour
MAX INDEXES 24
ROLL BY day
ACTION "./sar_u_roll PT_START PT_END"
RECORDS PER HOUR 60
;

METRICS

hours_1 = 1001
LABEL "Collection Hour"
PRECISION 0;

minutes_1 = 1002
LABEL "Collection Minute"
PRECISION 0;

seconds_1 = 1003
LABEL "Collection Second"
PRECISION 0;

user_cpu = 1004
LABEL "%user"
AVERAGED
MAXIMUM 100
PRECISION 0
;

sys_cpu = 1005
LABEL "%sys"
AVERAGED
MAXIMUM 100
PRECISION 0
;

wait_IO_cpu = 1006
LABEL "%wio"
AVERAGED
MAXIMUM 100
PRECISION 0
;

idle_cpu = 1007
LABEL "%idle"
AVERAGED
MAXIMUM 100
PRECISION 0
;

312 Chapter 16

Compiling the Class Specification File

The next task is to compile the class specification file using the following command.

sdlcomp sar_u.spec sar_u_log

The output of the sar -u command is a system header line, a blank line, an option header
line, and a data line consisting of a time stamp followed by the data we want to capture. The
last line is the only line that is interesting. So, from the sar -u command, we need a
mechanism to save only the last line of output and feed that data to DSI.

dsilog expects to receive data from stdin. To start the logging process, you could pipe
output from the process you are using to dsilog. However, you can only have one pipe (|) in
the command line. When two pipes are used, UNIX buffering retains the output from the first
command until 8000 characters have been written before continuing to the second command
and piping out to the log file. As a result, doing something like the following does not work:

sar -u 60 1 | tail -1 | dsilog

Therefore, we use a fifo as the input source for DSI. However, this is not without its
problems.

Assume we were to use the following script:

#!/bin/ksh sar_u_feed

sar_u_feed script that provides sar -u data to DSI via
a fifo(sar_u.fifo)

while : # (infinite loop)
do

specify a one minute interval using tail to extract the
last sar output record(contains the time stamp and data),
saving the data to a file.

/usr/bin/sar -u 60 1 2>/tmp/dsierr | tail -1 > /usr/tmp/sar_u_data

Copy the sar data to the fifo that the dsilog process is
reading.

cat /usr/tmp/sar_u_data > ./sar_u.fifo

done

Unfortunately, this script will not produce the desired results if run as is. This is because the
cat command opens the fifo, writes the data record, and then closes the fifo. The close
indicates to dsilog that there is no more data to be written to the log, so dsilog writes this
one data record and terminates. What is needed is a dummy process to “hold” the fifo open.
Therefore, we need a dummy fifo and a process that opens the dummy fifo for input and
the sar_u.fifo for output. This will hold the sar_u.fifo open, thereby preventing dsilog
from terminating.
Examples of Data Source Integration 313

Starting the DSI Logging Process

Now let's take a step by step approach to getting the sar -u data to dsilog.

1 Create two fifos; one is the dummy fifo used to “hold open” the real input fifo.

Dummy fifo.
mkfifo ./hold_open.fifo
Real input fifo for dsilog
mkfifo ./sar_u.fifo

2 Start dsilog using the -i option to specify the input coming from a fifo. It is important
to start dsilog before starting the sar data feed (sar_u_feed).

dsilog ./sar_u_log sar_u \
-i ./sar_u.fifo &

3 Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \
 > ./sar_u.fifo &

4 Start the sar data feed script (sar_u_feed).

./sar_u_feed &

5 The sar_u_feed script will feed data to dsilog until it is killed or the cat that holds the
fifo open is killed. Our class specification file states that sar_u_log will be indexed by
hour, contain a maximum of 24 hours, and at the start of the next day (roll by day), the
script sar_u_roll will be executed.

!/bin/ksh sar_u_roll
#
Save parameters and current date in sar_u_log_roll_file.
(Example of adding comments/other data to the roll file).

mydate=`date`
echo "$# $0 $1 $2" >> ./sar_u_log_roll_file
echo $mydate >> ./sar_u_log_roll_file

extract -l ./sar_u_log -C sar_u -B $1 -E $2 -1 -f \
stdout -xp >> ./sar_u_log_roll_file

6 The roll script saves the data being rolled out in an ASCII text file that can be examined
with a text editor or printed to a printer.
314 Chapter 16

Logging sar Data from Several Files

If you are interested in more than just CPU utilization, you can either have one class
specification file that describes the data, or have a class specification file for each option and
compile these into one log file set. The first example shows separate class specification files
compiled into a single log file set.

In this example, we will monitor CPU utilization, buffer activity
(sar -b), and system calls (sar -c). Logging data in this manner requires three class
specification files, three dsilog processes, three dsilog input fifos, and three scripts to
provide the sar data.

Creating Class Specification Files

The following are the class specification files for each of these options.

sar_u_mc.spec
#
sar -u class definition for log files on HP systems.
#
==> 1 minute data; max 24 hours; indexed by hour; roll by day
#

CLASS sar_u = 1000
LABEL "sar -u data"
INDEX BY hour
MAX INDEXES 24
ROLL BY day
ACTION "./sar_u_mc_roll PT_START PT_END"
RECORDS PER HOUR 60
;

METRICS

hours_1 = 1001
LABEL "Collection Hour"
PRECISION 0
;

minutes_1 = 1002
LABEL "Collection Minute"
PRECISION 0
;

seconds_1 = 1003
LABEL "Collection Second"
PRECISION 0
;
user_cpu = 1004
LABEL "%user"
AVERAGED
MAXIMUM 100
PRECISION 0
;

Examples of Data Source Integration 315

sys_cpu = 1005
LABEL "%sys"
AVERAGED
MAXIMUM 100
PRECISION 0
;

wait_IO_cpu = 1006
LABEL "%wio"
AVERAGED
MAXIMUM 100
PRECISION 0
;

idle_cpu = 1007
LABEL "%idle"
AVERAGED
MAXIMUM 100
PRECISION 0
;

sar_b_mc.spec
#
sar -b class definition for log files on HP systems.
#
==> 1 minute data; max 24 hours; indexed by hour; roll by day
#

CLASS sar_b = 2000
LABEL "sar -b data"
INDEX BY hour
MAX INDEXES 24
ROLL BY day
ACTION "./sar_b_mc_roll PT_START PT_END"
RECORDS PER HOUR 60
;

METRICS

hours_2 = 2001
LABEL "Collection Hour"
PRECISION 0
;

minutes_2 = 2002
LABEL "Collection Minute"
PRECISION 0
;

seconds_2 = 2003
LABEL "Collection Second"
PRECISION 0
;

bread_per_sec = 2004
316 Chapter 16

LABEL "bread/s"
PRECISION 0
;

lread_per_sec = 2005
LABEL "lread/s"
PRECISION 0
;

read_cache = 2006
LABEL "%rcache"
MAXIMUM 100
PRECISION 0
;

bwrit_per_sec = 2007
LABEL "bwrit/s"
PRECISION 0
;

lwrit_per_sec = 2008
LABEL "lwrit/s"
PRECISION 0
;

write_cache = 2009
LABEL "%wcache"
MAXIMUM 100
PRECISION 0
;

pread_per_sec = 2010
LABEL "pread/s"
PRECISION 0
;

pwrit_per_sec = 2011
LABEL "pwrit/s"
PRECISION 0
;

sar_c_mc.spec
#
sar -c class definition for log files on HP systems.
#
==> 1 minute data; max 24 hours; indexed by hour; roll by day
#

CLASS sar_c = 5000
LABEL "sar -c data"
INDEX BY hour
MAX INDEXES 24
ROLL BY day
ACTION "./sar_c_mc_roll PT_START PT_END"
RECORDS PER HOUR 60
Examples of Data Source Integration 317

;

METRICS

hours_5 = 5001
LABEL "Collection Hour"
PRECISION 0
;

minutes_5 = 5002
LABEL "Collection Minute"
PRECISION 0
;

seconds_5 = 5003
LABEL "Collection Second"
PRECISION 0
;

scall_per_sec = 5004
LABEL "scall/s"
PRECISION 0
;

sread_per_sec = 5005
LABEL "sread/s"
PRECISION 0
;

swrit_per_sec = 5006
LABEL "swrit/s"
PRECISION 0
;

fork_per_sec = 5007
LABEL "fork/s"
PRECISION 2
;

exec_per_sec = 5008
LABEL "exec/s"
PRECISION 2
;

rchar_per_sec = 5009
LABEL "rchar"
PRECISION 0
;

wchar_per_sec = 5010
LABEL "wchar/s"
PRECISION 0
;

318 Chapter 16

The following are the two additional scripts that are needed to supply the sar
data.

#!/bin/ksh

sar_b_feed script that provides sar -b data to DSI via
a fifo (sar_b.fifo)

while : # (infinite loop)
do

specify a one minute interval using tail to extract the
last sar output record(contains the time stamp and data),
saving the data to a file.

/usr/bin/sar -b 60 1 2>/tmp/dsierr | tail -1 &> \
/usr/tmp/sar_b_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_b_data > ./sar_b.fifo

done

#!/bin/ksh sar_c_feed

sar_c_feed script that provides sar -c data to DSI via
a fifo(sar_c.fifo)

while : # (infinite loop)
do

specify a one minute interval using tail to extract the
last sar output record(contains the time stamp and data),
saving the data to a file.

/usr/bin/sar -c 60 1 2>/tmp/dsierr | tail -1 > /usr/tmp/sar_c_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_c_data > ./sar_c.fifo

done

Compiling the Class Specification Files

Compile the three specification files into one log file set:

sdlcomp ./sar_u_mc.spec sar_mc_log
sdlcomp ./sar_b_mc.spec sar_mc_log
sdlcomp ./sar_c_mc.spec sar_mc_log
Examples of Data Source Integration 319

Starting the DSI Logging Process

Returning to the step by step approach for the sar data:

1 Create four fifos; one will be the dummy fifo used to “hold open” the three real input
fifos.

Dummy fifo.
mkfifo ./hold_open.fifo

sar -u input fifo for dsilog.
mkfifo ./sar_u.fifo

sar -b input fifo for dsilog.
mkfifo ./sar_b.fifo

sar -c input fifo for dsilog.
mkfifo ./sar_c.fifo

2 Start dsilog using the -i option to specify the input coming from a fifo. It is important
to start dsilog before starting the sar data feeds.

dsilog ./sar_mc_log sar_u \
-i ./sar_u.fifo &

dsilog ./sar_mc_log sar_b \
-i ./sar_b.fifo &

dsilog ./sar_mc_log sar_c \
-i ./sar_c.fifo &

3 Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \
 > ./sar_u.fifo &

cat ./hold_open.fifo \
 > ./sar_b.fifo &

cat ./hold_open.fifo \
> ./sar_c.fifo &

4 Start the sar data feed scripts.

./sar_u_feed &

./sar_b_feed &

./sar_c_feed &
320 Chapter 16

Logging sar Data for Several Options

The last example for using sar to supply data to DSI uses one specification file to define the
data from several sar options (ubycwavm).

sar_ubycwavm.spec
#
sar -ubycwavm class definition for HP systems.
#
==> 1 minute data; max 24 hours; indexed by hour; roll by day
#

CLASS sar_ubycwavm = 1000
LABEL "sar -ubycwavm data"
INDEX BY hour
MAX INDEXES 24
ROLL BY day
ACTION "./sar_ubycwavm_roll PT_START PT_END"
RECORDS PER HOUR 60
;

METRICS
hours = 1001
LABEL "Collection Hour"
PRECISION 0;

minutes = 1002
LABEL "Collection Minute"
PRECISION 0;

seconds = 1003
LABEL "Collection Second"
PRECISION 0;

user_cpu = 1004
LABEL "%user"
AVERAGED
MAXIMUM 100
PRECISION 0
;

sys_cpu = 1005
LABEL "%sys"
AVERAGED
MAXIMUM 100
PRECISION 0
;

wait_IO_cpu = 1006
LABEL "%wio"
AVERAGED
MAXIMUM 100
PRECISION 0
;

Examples of Data Source Integration 321

idle_cpu = 1007
LABEL "%idle"
AVERAGED
MAXIMUM 100
PRECISION 0
;

bread_per_sec = 1008
LABEL "bread/s"
PRECISION 0
;

lread_per_sec = 1009
LABEL "lread/s"
PRECISION 0
;

read_cache = 1010
LABEL "%rcache"
MAXIMUM 100
PRECISION 0
;

bwrit_per_sec = 1011
LABEL "bwrit/s"
PRECISION 0
;

lwrit_per_sec = 1012
LABEL "lwrit/s"
PRECISION 0
;

write_cache = 1013
LABEL "%wcache"
MAXIMUM 100
PRECISION 0
;
pread_per_sec = 1014
LABEL "pread/s"
PRECISION 0
;

pwrit_per_sec = 1015
LABEL "pwrit/s"
PRECISION 0
;

rawch = 1016
LABEL "rawch/s"
PRECISION 0
;

canch = 1017
LABEL "canch/s"
322 Chapter 16

PRECISION 0
;

outch = 1018
LABEL "outch/s"
PRECISION 0
;

rcvin = 1019
LABEL "rcvin/s"
PRECISION 0
;

xmtin = 1020
LABEL "xmtin/s"
PRECISION 0
;

mdmin = 1021
LABEL "mdmin/s"
PRECISION 0
;

scall_per_sec = 1022
LABEL "scall/s"
PRECISION 0
;

sread_per_sec = 1023
LABEL "sread/s"
PRECISION 0
;

swrit_per_sec = 1024
LABEL "swrit/s"
PRECISION 0
;

fork_per_sec = 1025
LABEL "fork/s"
PRECISION 2
;

exec_per_sec = 1026
LABEL "exec/s"
PRECISION 2
;

rchar_per_sec = 1027
LABEL "rchar/s"
PRECISION 0
;

wchar_per_sec = 1028
LABEL "wchar/s"
Examples of Data Source Integration 323

PRECISION 0
;

swpin = 1029
LABEL "swpin/s"
PRECISION 2
;

bswin = 1030
LABEL "bswin/s"
PRECISION 1
;

swpot = 1031
LABEL "swpot/s"
PRECISION 2
;

bswot = 1032
LABEL "bswot/s"
PRECISION 1
;
blks = 1033
LABEL "pswch/s"
PRECISION 0
;

iget_per_sec = 1034
LABEL "iget/s"
PRECISION 0
;

namei_per_sec = 1035
LABEL "namei/s"
PRECISION 0
;

dirbk_per_sec = 1036
LABEL "dirbk/s"
PRECISION 0
;

num_proc = 1037
LABEL "num proc"
PRECISION 0
;

proc_tbl_size = 1038
LABEL "proc tbl size"
PRECISION 0
;

proc_ov = 1039
LABEL "proc ov"
PRECISION 0
324 Chapter 16

;

num_inode = 1040
LABEL "num inode"
PRECISION 0
;

inode_tbl_sz = 1041
LABEL "inode tbl sz"
PRECISION 0
;

inode_ov = 1042
LABEL "inode ov"
PRECISION 0
;

num_file = 1043
LABEL "num file"
PRECISION 0
;

file_tbl_sz = 1044
LABEL "file tbl sz"
PRECISION 0
;

file_ov = 1045
LABEL "file ov"
PRECISION 0
;

msg_per_sec = 1046
LABEL "msg/s"
PRECISION 2
;

LABEL "sema/s"
PRECISION 2
;

At this point, we need to look at the output generated from

sar -ubycwavm 1 1:
HP-UX hpptc16 A.09.00 E 9000/855 04/11/95

12:01:41 %usr %sys %wio %idle
 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s

pwrit/s
rawch/s canch/s outch/s cvin/s xmtin/s mdmin/s

 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
 swpin/s bswin/s swpot/s bswot/s pswch/s
 iget/s namei/s dirbk/s
 text-sz ov proc-sz ov inod-sz ov file-sz ov
 msg/s sema/s
Examples of Data Source Integration 325

12:01:42 22 48 30 0
 0 342 100 33 81 59 0 0
0 0 470 0 0 0

801 127 71 1.00 1.00 975872 272384
0.00 0.0 0.00 0.0 251

 28 215 107
 N/A N/A 131/532 0 639/644 0 358/1141 0

40.00 0.00

This output looks similar to the sar -u output with several additional lines of headers and
data. We will again use tail to extract the lines of data, but we need to present this as “one”
data record to dsilog. The following script captures the data and uses the tr (translate
character) utility to “strip” the line feeds so dsilog will see it as one single line of input data.

#!/bin/ksh Sar_ubycwavm_feed

Script that provides sar data to DSI via a fifo(sar_data.fifo)

while : # (infinite loop)
do

specify a one minute interval using tail to extract the
last sar output records (contains the time stamp and data)
and pipe that data to tr to strip the new lines converting
the eight lines of output to one line of output.

/usr/bin/sar -ubycwavm 60 1 2>/tmp/dsierr | tail -8 | \
tr "\012" " " > /usr/tmp/sar_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_data > ./sar_data.fifo

Print a newline on the fifo so that DSI knows that this is
the end of the input record.

print "\012" > ./sar_data.fifo

done

The step-by-step process follows that for the earlier sar -u example with the exception of log
file set names, class names, fifo name (sar_ubycwavm.fifo), and the script listed above to
provide the sar data.
326 Chapter 16

Logging the Number of System Users

The next example uses who to monitor the number of system users. Again, we start with a
class specification file.

who_wc.spec
#
who word count DSI spec file
#

CLASS who_metrics = 150
LABEL "who wc data"
INDEX BY hour
MAX INDEXES 120
ROLL BY hour
RECORDS PER HOUR 60
;

METRICS
who_wc = 151
label "who wc"
averaged
maximum 1000
precision 0
;

Compile the specification file to create a log file:

sdlcomp ./who_wc.spec ./who_wc_log.

Unlike sar, you cannot specify an interval or iteration value with who, so we create a script
that provides, at a minimum, interval control.

#!/bin/ksh who_data_feed

while :
do
 # sleep for one minute (this should correspond with the
 # RECORDS PER HOUR clause in the specification file).

sleep 60

 # Pipe the output of who into wc to count
 # the number of users on the system.

who | wc -l > /usr/tmp/who_data

copy the data record to the pipe being read by dsilog.

cat /usr/tmp/who_data > ./who.fifo

done

Again we need a fifo and a script to supply the data to dsilog, so we return to the step by
step process.

1 Create two fifos; one will be the dummy fifo used to “hold open” the real input fifo.
Examples of Data Source Integration 327

Dummy fifo.
mkfifo ./hold_open.fifo

Real input fifo for dsilog.
mkfifo ./who.fifo

2 Start dsilog using the -i option to specify the input coming from a fifo. It is important
to start dsilog before starting the who data feed.

dsilog ./who_wc_log who_metrics \
-i ./who.fifo &

3 Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \
> ./who.fifo &

4 Start the who data feed script (who_data_feed).

./who_data_feed &
328 Chapter 16

17 Error Message
There are three types of DSI error messages: class specification, dsilog logging process, and
general.

• Class specification error messages format consists of the prefix SDL, followed by the
message number.

• dsilog logging process messages format consists of the prefix DSILOG, followed by the
message number.

• General error messages can be generated by either of the above as well as other tasks.
These messages have a minus sign (-) prefix and the message number.

DSI error messages are listed in this chapter. SDL and DSILOG error messages are listed in
numeric order, along with the actions you take to recover from the error condition. General
error messages are self-explanatory, so no recovery actions are given.

SDL Error Messages

SDL error messages are Self Describing Logfile class specification error messages, with the
format, SDL<message number>.

Message SDL1

ERROR: Expected equal sign, “=”.

An “=” was expected here.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL2

ERROR: Expected semi-colon, “;”.

A semi-colon (;) marks the end of the class specification and the end of each metric
specification. You may also see this message if an incorrect or misspelled word is found where
a semi-colon should have been.

For example: If you enter

class xxxxx = 10
 label "this is a test"
 metric 1000;

instead of

class xxxxx = 10
 label "this is a test"
 capacity 1000;

you would see this error message and it would point to the word “metric.”
329

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL3

ERROR: Precision must be one of {0, 1, 2, 3, 4, 5}

Precision determines the number of decimal places used when converting numbers internally
to integers and back to numeric representations of the metric value.

Action: See PRECISION in Chapter 14 for more information.

Message SDL4

ERROR: Expected quoted string.

A string of text was expected.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL5

ERROR: Unterminated string.

The string must end in double quotes.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL6

NOTE: Time stamp inserted at first metric by default.

A timestamp metric is automatically inserted as the first metric in each class.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL7

ERROR: Expected metric description.

The metrics section must start with the METRICS keyword before the first metric definition.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL8

ERROR: Expected data class specification.

The class section of the class specification must start with the CLASS keyword.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL9

ERROR: Expected identifier.

An identifier for either the metric or class was expected. The identifier must start with an
alphabetic character, can contain alphanumeric characters or underscores, and is not
case-sensitive.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL10

ERROR: Expected positive integer.
330 Chapter 17

Number form is incorrect.

Action: Enter numbers as positive integers only.

Message SDL13

ERROR: Expected specification for maximum number of indexes.

The maximum number of indexes is required to calculate class capacity.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL14

ERROR: Syntax Error.

The syntax you entered is incorrect.

Action: Check the syntax and make corrections as needed. See Class Specification Syntax in
Chapter 14 for more information.

Message SDL15

ERROR: Expected metric description.

A metric description is missing.

Action: Enter a metric description to define the individual data items for the class. See Class
Specification Syntax in Chapter 14 for more information.

Message SDL16

ERROR: Expected metric type.

Each metric must have a metric_name and a numeric metric_id.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL17

ERROR: Time stamp metric attributes may not be changed.

A timestamp metric is automatically inserted as the first metric in each class. You can change
the position of the timestamp, or eliminate it and use a UNIX timestamp.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL18

ERROR: Roll action limited to 199 characters.

The upper limit for ROLL BY action is 199 characters.

Action: See INDEX BY, MAX INDEXES, AND ROLL BY in Chapter 14 for more information.

Message SDL19

ERROR: Could not open specification file (file).

In the command line sdlcomp specification_file, the specification file could not be
opened. The error follows in the next line as in:

$/usr/perf/bin/sdlcomp /xxx
ERROR: Could not open specification file /xxx.
Error Message 331

Action: Verify that the file is readable. If it is, verify the name of the file and that is was
entered correctly.

MessageSDL20

ERROR: Metric descriptions not found.

Metric description is incorrectly formatted.

Action: Make sure you begin the metrics section of the class statement with the METRICS
keyword. See Metrics Descriptions in Chapter 14 for more information.

Message SDL21

ERROR: Expected metric name to begin metric description.

Metric name may be missing or metric description is incorrectly formatted.

Action: Metric name may be missing or metric description is incorrectly formatted.

Message SDL24

ERROR: Expected MAX INDEXES specification.

A MAX INDEXES value is required when you specify INDEX BY.

Action: Enter the required value. See INDEX BY, MAX INDEXES, AND ROLL BY in
Chapter 14 for more information.

Message SDL25

ERROR: Expected index SPAN specification.

A value is missing for INDEX BY.

Action: Enter a qualifier when you specify INDEX BY. See INDEX BY, MAX INDEXES, AND
ROLL BY in Chapter 14 for more information.

Message SDL26

ERROR: Minimum must be zero.

The number must be zero or greater.

Message SDL27

Expected positive integer.

A positive value is missing.

Action: Enter numbers as positive integers only.

Message SDL29

ERROR: Summarization metric does not exist.

You used SUMMARIZED BY for the summarization method, but did not specify a metric_name.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL30

ERROR: Expected 'HOUR', 'DAY', or 'MONTH'.

A qualifier for the entry is missing.
332 Chapter 17

Action: You must enter one of these qualifiers. See INDEX BY, MAX INDEXES, AND ROLL
BY in Chapter 14 for more information.

Message SDL33

ERROR: Class id number must be between 1 and 999999.

The class-id must be numeric and can contain up to 6 digits.

Action: Enter a class ID number for the class that does not exceed the six-digit maximum.
See Class Specification Syntax in Chapter 14 for more information.

Message SDL35

ERROR: Found more than one index/capacity statement.

You can only have one INDEX BY or CAPACITY statement per CLASS section.

Action: Complete the entries according to the formatting restrictions in Class Specification
Syntax in Chapter 14.

Message SDL36

ERROR: Found more than one metric type statement.

You can have only one METRICS keyword for each metric definition.

Action: See Metrics Descriptions in Chapter 14 for formatting information.

Message SDL37

ERROR: Found more than one metric maximum statement.

You can have only one MAXIMUM statement for each metric definition.

Action: See Metrics Descriptions in Chapter 14 for formatting information.

Message SDL39

ERROR: Found more than one metric summarization specification.

You can have only one summarization method (TOTALED, AVERAGED, or SUMMARIZED BY) for
each metric definition.

Action: See Summarization Method in Chapter 14 for more information.

Message SDL40

ERROR: Found more than one label statement.

You can have only one LABEL for each metric or class definition.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL42

ERROR: Found more than one metric precision statement.

You can have only one PRECISION statement for each metric definition.

Action: See the PRECISION in Chapter 14 for more information.
Error Message 333

Message SDL44

ERROR: SCALE, MINIMUM, MAXIMUM, (summarization) are inconsistent with text
metrics

These elements of the class specification syntax are only valid for numeric metrics.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL46

ERROR: Inappropriate summarization metric (!).

You cannot summarize by the timestamp metric.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL47

ERROR: Expected metric name.

Each METRICS statement must include a metric_name.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL47

ERROR: Expected metric name.

Each METRICS statement must include a metric_name.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL48

ERROR: Expected positive integer.

The CAPACITY statement requires a positive integer.

Action: See CAPACITY in Chapter 14 for more information.

Message SDL49

ERROR: Expected metric specification statement.

The METRICS keyword must precede the first metric definition.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL50

Object name too long.

The metric_name or class_name can only have up to 20 characters.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL51

ERROR: Label too long (max 20 chars).

The class_label or metric_label can only have up to 20 characters.

Action: See Class Specification Syntax in Chapter 14 for more information.
334 Chapter 17

Message SDL53

ERROR: Metric must be between 1 and 999999.

The metric_id can contain up to 6 digits only.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL54

ERROR: Found more than one collection rate statement.

You can have only one RECORDS PER HOUR statement for each class description.

Action: See RECORDS PER HOUR in Chapter 14 for more information.

Message SDL55

ERROR: Found more than one roll action statement.

You can have only one ROLL BY statement for each class specification.

Action: See INDEX BY, MAX INDEXES, AND ROLL BY in Chapter 14 for more information.

Message SDL56

ERROR: ROLL BY option cannot be specified without INDEX BY option.

The ROLL BY statement must be preceded by an INDEX BY statement.

Action: See INDEX BY, MAX INDEXES, AND ROLL BY in Chapter 14 for more information.

Message SDL57

ERROR: ROLL BY must specify time equal to or greater than INDEX BY.

Because the roll interval depends on the index interval to identify the data to discard, the
ROLL BY time must be greater than or equal to the INDEX BY time.

Action: See INDEX BY, MAX INDEXES, AND ROLL BY in Chapter 14 for more information.

Message SDL58

ERROR: Metric cannot be used to summarize itself.

The SUMMARIZED BY metric cannot be the same as the metric_name.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL62

ERROR: Could not open SDL (name).

Explanatory messages follow this error. It could be a file system error as in:

$/usr/perf/bin/sdlutil xxxxx –classes
ERROR: Could not open SDL xxxxx.
ERROR: Could not open log file set.

or it could be an internal error as in:

$/usr/perf/bin/sdlutil xxxxx –classes
ERROR: Could not open SDL xxxxx.
ERROR: File is not SDL root file or the
description file is not accessible.
Error Message 335

You might also see this error if the log file has been moved. Because the path name
information is stored in the DSI log files, the log files cannot be moved to different directories.

Action: If the above description or the follow-up messages do not point to some obvious
problem, use sdlutil to remove the log file set and rebuild it.

Message SDL63

ERROR: Some files in log file set (name) are missing.

The list of files that make up the log file set was checked and one or more files needed for
successful operation were not found.

Action: Unless you know precisely what happened, the best action is to use sdlutil to
remove the log file set and start over.

Message SDL66

ERROR: Could not open class (name).

An explanatory message will follow.

Action: Unless it is obvious what the problem is, use sdlutil to remove the log file set and
start over.

Message SDL67

ERROR: Add class failure.

Explanatory messages will follow.

The compiler could not add the new class to the log file set.

Action: If all the correct classes in the log file set are accessible, specify a new or different log
file set. If they are not, use sdlutil to remove the log file set and start over.

Message SDL72

ERROR: Could not open export files (name).

The file to which the exported data was supposed to be written couldn't be opened.

Action: Check to see if the export file path exists and what permissions it has.

Message SDL73

ERROR: Could not remove shared memory ID (name).

An explanatory message will follow.

Action: To remove the shared memory ID, you must either be the user who created the log file
set or the root user. Use the UNIX command ipcrm -m id to remove the shared memory ID.

Message SDL74

ERROR: Not all files could be removed.

All the files in the log file set could not be removed.

Explanatory messages will follow.

Action: Do the following to list the files and shared memory ID:

sdlutil (logfile set) -files
sdlutil (logfile set) -id
336 Chapter 17

To remove the files, use the UNIX command rm filename. To remove the shared memory ID,
use the UNIX command ipcrm -m id. Note that the shared memory ID will only exist and
need to be deleted if sdlutil did not properly delete it when the log file set was closed.

Message SDL80

ERROR: Summarization metric (metric) not found in class.

The SUMMARIZED BY metric was not previously defined in the METRIC section.

Action: See Metrics Descriptions in Chapter 14 for more information.

Message SDL81

ERROR: Metric id (id) already defined in SDL.

The metric_id only needs to be defined once. To reuse a metric definition that has already
been defined in another class, specify just the metric_name without the metric_id or any other
specifications.

Action: See METRICS in Chapter 14 for more information.

Message SDL82

ERROR: Metric name (name) already defined in SDL.

The metric_name only needs to be defined once. To reuse a metric definition that has already
been defined in another class, specify just the metric_name without the metric_id or any other
specifications.

Action: See METRICS in Chapter 14 for more information.

Message SDL83

ERROR: Class id (id) already defined in SDL.

The class_id only needs to be defined once. Check the spelling to be sure you have entered it
correctly.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL84

ERROR: Class name (name) already defined in SDL.

The class_name only needs to be defined once. Check the spelling to be sure you have entered
it correctly.

Action: See Class Specification Syntax in Chapter 14 for more information.

Message SDL85

ERROR: Must specify class to de-compile.

You must specify a class list when you use -decomp.

Action: See Managing Data With sdlutil in Chapter 15 for more information.

Message SDL87

ERROR: You must specify maximum number of classes with -maxclass.

When you use the -maxclass option, you must specify the maximum number of classes to be
provided for when creating a new log file set.
Error Message 337

Action: See sdlcomp Compiler in Chapter 15 for more information.

Message SDL88

ERROR: Option \"!\" is not valid.

The command line entry is not valid.

Action: Check what you have entered to ensure that it follows the correct syntax.

Message SDL89

ERROR: Maximum number of classes (!) for -maxclass is not valid.

The -maxclass number must be greater than zero.

Action: See sdlcomp Compiler in Chapter 15 for more information.

Message SDL90

ERROR: -f option but no result file specified.

You must specify a format file when using the -f option.

Action: You must specify a format file when using the -f option.

Message SDL91

ERROR: No specification file named.

No name assigned to class specification file.

Action: You must enter a specification_file when using sdlcomp. See sdlcomp Compiler in
Chapter 15 for more information.

Message SDL92

ERROR: No log file set named.

You must enter a logfile_set when using sdlcomp.

Action: See sdlcomp Compiler in Chapter 15 for more information.

Message SDL93

ERROR: Metric ID already defined in class.

The metric_id only needs to be defined once.

Action: To reuse a metric definition that has already been defined in another class, specify
just the metric_name without the metric_id or any other specifications.

See Metrics Descriptions in Chapter 14 for more information.

Message SDL94

ERROR: Metric name already defined in class.

The metric-name only needs to be defined once.

Action: To reuse a metric definition that has already been defined in another class, specify
just the metric_name without the metric_id or any other specifications. See Metrics
Descriptions in Chapter 14 for more information.
338 Chapter 17

Message SDL95

ERROR: Text found after complete class specification.

The sdlcomp compiler found text it did not recognize as part of the class specification.

Action: Reenter the specification and try again.

Message SDL96

ERROR: Collection rate statement not valid.

The proper format is RECORDS PER HOUR (number). The keywords must be present in this
order and cannot be abbreviated.

Action: Correct the keyword and follow the required the format.

Message SDL97

ERROR: Expecting integer between 1 and 2,147,483,647.

You must use a number in this range.

Action: Enter a number that falls within the range.

Message SDL98

ERROR: Action requires preceding ROLL BY statement.

The entry is out of order or is missing in the class specification file.

Action: The action specifies what will happen when the log file rolls. It is important to first
know when it should roll. ROLL BY must precede ACTION.

For example:

class xxxxx = 10
 index by month max indexes 12
 action "ll *";

should have been:

class xxxxx = 10
 index by month max indexes 12
 roll by month
 action "ll *";

Message SDL99

ERROR: MAX INDEXES requires preceding INDEX BY statement.

The entry is out of order or is missing in the class specification file.

Action: To specify a maximum number of indexes, the program needs to know where you are
doing an indexing by. The INDEX BY statement must precede MAX INDEXES.

For example:

class xxxxx = 10
 max indexes 12
 label "this is a test";

should have been:
Error Message 339

class xxxxx = 10
 index by month
 max indexes 12
 label "this is a test";

Message SDL100

WARNING: CAPACITY UNLIMITED not implemented, derived value used. (SDL-100)

Message SDL101

ERROR: Derived capacity too large. (SDL-101)

Message SDL102

ERROR: Text Length should not exceed 4096.

The maximum allowed length for the text metric is 4096.

Message SDL103

ERROR: RECORDS PER HOUR should not be greater than 3600 for logging summarized
data.

Action: The RECORDS PER HOUR can be greater than 3600 only for unsummarized data. Use
the -u option to compile.

DSILOG Error Messages

DSILOG error messages are dsilog logging process messages with the format,

DSILOG<message number>.

Message DSILOG1

ERROR: Self describing log file not specified.

Action: Correct the command line and try again.

Message DSILOG2

ERROR: Data class name not specified.

The data class must be the second parameter passed to dsilog.

Action: Correct the command line and try again.

Message DSILOG3

ERROR: Could not open data input file (name).

The file specified in the command line couldn't be opened. A UNIX file system error appears
in the next line of the error message.

Message DSILOG4

ERROR: OpenClass (\"name\") failed.
340 Chapter 17

The class specified couldn't be opened. It may not be in the log file set specified, or its data file
isn't accessible.

Action: Explanatory messages will follow giving either an internal error description or a file
system error.

Message DSILOG5

ERROR: Open of root log file (name) failed.

The log file set root file couldn't be opened. The reason is shown in the explanatory messages.

Message DSILOG6

ERROR: Time stamp not defined in data class.

The class was built and no timestamp was included.

Action: Use sdlutil to remove the log file set and start over.

Message DSILOG7

ERROR: (Internal error) AddPoint () failed.

dsilog tried to write a record to the data file and couldn't. Explanatory messages will follow.

Message DSILOG8

ERROR: Invalid command line parameter (name).

The parameter shown was either not recognized as a valid command line option, or it was out
of place in the command line.

Action: Correct the command line parameter and try again.

Message DSILOG9

ERROR: Could not open format file (name).

The file directing the match of incoming metrics to those in the data class could not be found
or was inaccessible. Explanatory messages will follow with the UNIX file system error.

Action: Check the class specification file to verify that it is present.

Message DSILOG10

ERROR: Illegal metric name (name).

The format file contained a metric name that was longer than the maximum metric name size
or it did not otherwise conform to metric name syntax.

Action: Correct the metric name in the class specification and rerun dsilog.

Message DSILOG11

ERROR: Too many input metrics defined. Max 100.

Only 100 metrics can be specified in the format file

Action: The input should be reformatted externally to dsilog, or the data source should be
split into two or more data sources.
Error Message 341

Message DSILOG12

ERROR: Could not find metric (name) in class.

The metric name found in the format file could not be found in the data class.

Action: Make corrections and try again.

Message DSILOG13

ERROR: Required time stamp not found in input specification.

The -timestamp command line option was used, but the format file did not specify where the
timestamp could be found in the incoming data.

Action: Specify where the timestamp can be found.

Message DSILOG14

ERROR: (number) errors, collection aborted.

Serious errors were detected when setting up for collection.

Action: Correct the errors and retry. The -vi and -vo options can also be used to verify the
data as it comes in and as it would be logged.

Message DSILOG15

ERROR: Self describing log file and data class not specified.

The command line must specify the log file set and the data class to log data to.

Action: Correct the command line entry and try again.

Message DSILOG16

ERROR: Self describing log file set root file (name) could not be accessed.
error=(number).

Couldn't open the log file set root file.

Action: Check the explanatory messages that follow for the problem.

Message (unnumbered)

Metric null has invalid data
Ignore to end of line, metric value exceeds maximum

This warning message occurs when dsilog doesn’t log any data for a particular line of input.
This happens when the input doesn’t fit the format expected by the DSI log files, such as when
blank or header lines are present in the input or when a metric value exceeds the specified
precision. In this case, the offending lines will be skipped (not logged). dsilog will resume
logging data for the next valid input line.

Message DSILOG17

ERROR: Logfile set is created to log unsummarized data, could not log
summarized data.

Action: If the set of log files are created using the -u option during compilation, use -s 0
option to log using dsilog. Using the option indicates that the data logged is unsummarized.
342 Chapter 17

General Error Messages

Error Explanation

-3 Attempt was made to add more classes than allowed by
max-class.

-5 Could not open file containing class data.

-6 Could not read file.

-7 Could not write to file.

-9 Attempt was made to write to log file when write access was
not requested.

-11 Could not find the pointer to the class.

-13 File or data structure not initialized.

-14 Class description file could not be read.

-15 Class description file could not be written to.

-16 Not all metrics needed to define a class were found in the
metric description class.

-17 The path name of a file in the log file set is more than 1024
characters long.

-18 Class name is more then 20 characters long.

-19 File is not log file set root file.

-20 File is not part of a lod file set.

-21 The current software cannot access the log file set.

-22 Could not get shared memory segment or id.

-23 Could not attach to shared memory segment.

-24 Unable to open log file set.

-25 Could not determine current working directory.

-26 Could not read class header from class data file.

-27 Open of file in log file set failed.

-28 Could not open data class.

-29 Lseek failed.

-30 Could not read from log file.

-31 Could not write on log file.

-32 Remove failed.
Error Message 343

-33 shmctl (REM_ID) failed.

-34 Log file set is incomplete: root or description file is missing.

-35 The target log file for adding a class is not in the current log
file set.

Error Explanation
344 Chapter 17

18 What is Transaction Tracking?
This chapter describes:

• Improving Performance Management

• A Scenario: Real Time Order Processing

• Monitoring Transaction Data

Improving Performance Management

You can improve your ability to manage system performance with the transaction tracking
capability of HP Operations Agent and HP GlancePlus.

As the number of distributed mission-critical business applications increases, application and
system managers need more information to tell them how their distributed information
technology (IT) is performing.

• Has your application stopped responding?

• Is the application response time unacceptable?

• Are your service level objectives (SLOs) being met?

The transaction tracking capabilities of Performance Collection Component and GlancePlus
allow IT managers to build in end-to-end manageability of their client/server IT environment
in business transaction terms. With Performance Collection Component, you can define what
a business transaction is and capture transaction data that makes sense in the context of your
business.

When your applications are instrumented with the standard Application Response
Measurement (ARM) API calls, these products provide extensive transaction tracking and
end-to-end management capabilities across multi-vendor platforms.
345

Benefits of Transaction Tracking

• Provides a client view of elapsed time from the beginning to the end of a transaction.

• Provides transaction data.

• Helps you manage service level agreements (SLAs).

These topics are discussed in more detail in the remainder of this section.

Client View of Transaction Times

Transaction tracking provides you with a client view of elapsed time from the beginning to the
end of a transaction. When you use transaction tracking in your Information Technology (IT)
environment, you see the following benefits:

• You can accurately track the number of times each transaction executes.

• You can see how long it takes for a transaction to complete, rather than approximating the
time as happens now.

• You can correlate transaction times with system resource utilization.

• You can use your own business deliverable production data in system management
applications, such as data used for capacity planning, performance management,
accounting, and charge-back.

• You can accomplish application optimization and detailed performance troubleshooting
based on a real unit of work (your transaction), rather than representing actual work with
abstract definitions of system and network resources.

Transaction Data

When Application Response Measurement (ARM) API calls have been inserted in an
application to mark the beginning and end of each business transaction, you can then use the
following resource and performance monitoring tools to monitor transaction data:

• Performance Collection Component provides the registration functionality needed to log,
report, and detect alarms on transaction data. Transaction data can be viewed in
Performance Manager, Glance, or by exporting the data from Performance Collection
Component log files into files that can be accessed by spreadsheet and other reporting
tools.

• Performance Manager graphs performance data for short-term troubleshooting and for
examining trends and long-term analysis.

• Glance displays detailed real time data for monitoring your systems and transactions
moment by moment.

• Performance Manager, Glance, or the HP Operations Manager message browser allow you
to monitor alarms on service level compliance.

Individual transaction metrics are described in Chapter 22, Transaction Metrics
346 Chapter 18

Service Level Objectives

Service level objectives (SLOs) are derived from the stated service levels required by business
application users. SLOs are typically based on the development of the service level agreement
(SLA). From SLOs come the actual metrics that Information Technology resource managers
need to collect, monitor, store, and report on to determine if they are meeting the agreed upon
service levels for the business application user.

An SLO can be as simple as monitoring the response time of a simple transaction or as
complex as tracking system availability.

A Scenario: Real Time Order Processing

Imagine a successful television shopping channel that employs hundreds of telephone
operators who take orders from viewers for various types of merchandise. Assume that this
enterprise uses a computer program to enter the order information, check merchandise
availability, and update the stock inventory. We can use this fictitious enterprise to illustrate
how transaction tracking can help an organization meet customer commitments and SLOs.

Based upon the critical tasks, the customer satisfaction factor, the productivity factor, and the
maximum response time, resource managers can determine the level of service they want to
provide to their customers.

Chapter 23, Transaction Tracking Examples contains a pseudocode example of how ARM API
calls can be inserted in a sample order processing application so that transaction data can be
monitored with Performance Collection Component and Glance.

Requirements for Real Time Order Processing

To meet SLOs in the real time order processing example described above, resource managers
must keep track of the length of time required to complete the following critical tasks:

• Enter order information

• Query merchandise availability

• Update stock inventory

The key customer satisfaction factor for customers is how quickly the operators can take their
order.

The key productivity factor for the enterprise is the number of orders that operators can
complete each hour.

To meet the customer satisfaction and productivity factors, the response times of the
transactions that access the inventory database, adjust the inventory, and write the record
back must be monitored for compliance to established SLOs. For example, resource managers
may have established an SLO for this application that 90 percent of the transactions must be
completed in five seconds or less.
What is Transaction Tracking? 347

Preparing the Order Processing Application

ARM API calls can be inserted into the order processing application to create transactions for
inventory response and update inventory. Note that the ARM API calls must be inserted
by application programmers prior to compiling the application. See Chapter 23, Transaction
Tracking Examples for an example order processing program (written in pseudocode) that
includes ARM API calls that define various transactions.

For more information on instrumenting applications with ARM API calls, see the Application
Response Measurement 2.0 API Guide.

Monitoring Transaction Data

When an application that is instrumented with ARM API calls is installed and running on
your system, you can monitor transaction data with Performance Collection Component,
GlancePlus, or Performance Manager.

... with Performance Collection Component

Using Performance Collection Component, you can collect and log data for named
transactions, monitor trends in your SLOs over time, and generate alarms when SLOs are
exceeded. Once these trends have been identified, Information Technology costs can be
allocated based on transaction volumes. Performance Collection Component alarms can be
configured to activate a technician's pager, so that problems can be investigated and resolved
immediately. For more information, see Chapter 24, Advanced Features.

Performance Collection Component is required for transaction data to be viewed in
Performance Manager.

... with Performance Manager

Performance Manager receives alarms and transaction data from Performance Collection
Component. For example, you can configure Performance Collection Component so that when
an order processing application takes too long to check stock, Performance Manager receives
an alarm and sends a warning to the resource manager's console as an alert of potential
trouble.

In Performance Manager, you can select TRANSACTION from the Class List window for a data
source, then graph transaction metrics for various transactions. For more information, see
Performance Manager online help.

... with GlancePlus

Use GlancePlus to monitor up-to-the-second transaction response time and whether or not
your transactions are performing within your established SLOs. GlancePlus helps you
identify and resolve resource bottlenecks that may be impacting transaction performance. For
more information, see the GlancePlus online help, which is accessible through the GlancePlus
Help menu.
348 Chapter 18

Guidelines for Using ARM

Instrumenting applications with the ARM API requires some careful planning. In addition,
managing the environment that has ARMed applications in it is easier if the features and
limitations of ARM data collection are understood. Here is a list of areas that could cause
some confusion if they are not fully understood.

1 In order to capture ARM metrics, ttd and midaemon must be running. For Performance
Collection Component, the scope collector must be running to log ARM metrics. The ovpa
start script starts all required processes. Likewise, Glance starts ttd and midaemon if
they are not already active. (See Transaction Tracking Daemon (ttd) in Chapter 19.)

2 Re-read the transaction configuration file, ttd.conf, to capture any newly-defined
transaction names. (See Transaction Configuration File (ttd.conf) in Chapter 19.)

3 Performance Collection Component, user applications, and ttd must be restarted to
capture any new or modified transaction ranges and service level objectives (SLOs). (See
Adding New Applications in Chapter 19.)

4 Strings in user-defined metrics are ignored by Performance Collection Component. Only
the first six non-string user-defined metrics are logged. (See How Data Types Are Used in
Chapter 24.)

5 Using dashes in the transaction name has limitations if you are specifying an alarm
condition for that transaction. (See “... with Performance Collection Component” in the
section Alarms in Chapter 20)

6 Performance Collection Component will only show the first 60 characters in the
application name and transaction name. (See Specifying Application and Transaction
Names in Chapter 19.)

7 Limit the number of unique transaction names that are instrumented. (See Limits on
Unique Transactions in Chapter 20.)

8 Do not allow ARM API function calls to affect the execution of an application from an
end-user perspective. (See ARM API Call Status Returns in Chapter 19.)

9 Use shared libraries for linking. (See the section C Compiler Option Examples by
Platform on page 388)
What is Transaction Tracking? 349

350 Chapter 18

19 How Transaction Tracking Works
The following components of Performance Collection Component and GlancePlus work
together to help you define and track transaction data from applications instrumented with
Application Response Measurement (ARM) calls.

• The Measurement Interface daemon, midaemon, is a daemon process that monitors and
reports transaction data to its shared memory segment where the information can be
accessed and reported by Performance Collection Component, Performance Manager, and
GlancePlus. On HP-UX systems, the midaemon also monitors system performance data.

• The transaction configuration file, /var/opt/perf/ttd.conf, is used to define
transactions and identify the information to monitor for each transaction.

• The Transaction Tracking daemon, ttd, reads, registers, and synchronizes transaction
definitions from the transaction configuration file, ttd.conf, with the midaemon.
351

Support of ARM 2.0

ARM 2.0 is a superset of the previous version of Application Response Measurement. The new
features that ARM 2.0 provides are user-defined metrics, transaction correlation, and a
logging agent. Performance Collection Component and GlancePlus support user-defined
metrics and transaction correlation but do not support the logging agent.

However, you may want to use the logging agent to test the instrumentation in your
application. The source code for the logging agent, logagent.c, is included in the ARM 2.0
Software Developers Kit (SDK) that is available from the following web site:

http://regions.cmg.org/regions/cmgarmw

For information about using the logging agent, see the Application Response Measurement 2.0
API Guide.

Support of ARM API Calls

The Application Response Measurement (ARM) API calls listed below are supported in
Performance Collection Component and GlancePlus.

See your current Application Response Measurement 2.0 API Guide and the arm (3) man page
for information on instrumenting applications with ARM API calls as well as complete
descriptions of the calls and their parameters. For commercial applications, check the product
documentation to see if the application has been instrumented with ARM API calls.

For important information about required libraries, see the Transaction Libraries on page 383
later in this manual.

The Application Response Measurement 2.0 API Guide uses the term “application-defined
metrics” instead of “user-defined metrics”.

arm_init() Names and registers the application and (optionally)
the user.

arm_getid() Names and registers a transaction class, and provides
related transaction information. Defines the context
for user-defined metrics.

arm_start() Signals the start of a unique transaction instance.

arm_update() Updates the values of a unique transaction instance.

arm_stop() Signals the end of a unique transaction instance.

arm_end() Signals the end of the application.
352 Chapter 19

arm_complete_transaction Call

In addition to the ARM 2.0 API standard, the HP ARM agent supports the
arm_complete_transaction call. This call, which is an HP-specific extension to the ARM
standard, can be used to mark the end of a transaction that has completed when the start of
the transaction could not be delimited by an arm_start call. The
arm_complete_transaction call takes as a parameter the response time of the completed
transaction instance.

In addition to signaling the end of a transaction instance, additional information about the
transaction can be provided in the optional data buffer. See the arm (3) man page for more
information on this optional data as well a complete description of this call and its
parameters.

Sample ARM-Instrumented Applications

For examples of how ARM API calls are implemented, see the sample ARM-instrumented
applications, armsample1.c, armsample2.c, armsample3.c, and armsample4.c, and their
build script, Make.armsample, in the /<InstallDir>/examples/arm/ directory.

• armsample1.c shows the use of simple standard ARM API calls.

• armsample2.c also shows the use of simple standard ARM API calls. It is similar in
structure to armsample1.c, but is interactive.

• armsample3.c provides examples of how to use the user-defined metrics and the
transaction correlator, provided by version 2.0 of the ARM API. This example simulates a
client/server application where both server and client perform a number of transactions.
(Normally application client and server components would exist in separate programs, but
they are put together for simplicity.)

The client procedure starts a transaction and requests an ARM correlator from its
arm_start call. This correlator is saved by the client and passed to the server so that the
server can use it when it calls arm_start. The performance tools running on the server
can then use this correlator information to distinguish the different clients making use of
the server.

Also shown in this program is the mechanism for passing user-defined metric values into
the ARM API. This allows you to not only see the response times and service-level
information in the performance tools, but also data which may be important to the
application itself. For example, a transaction may be processing different size requests,
and the size of the request could be a user-defined metric. When the response times are
high, this user-defined metric could be used to see if long response times correspond to
bigger size transaction instances.

• armsample4.c provides an example of using user-defined metrics in ARM calls. Different
metric values can be passed through arm_start, arm_update, and arm_stop calls.
Alternatively, arm_complete_transaction can be used where a tran cannot be delimited
by start/stop calls.

Specifying Application and Transaction Names

Although ARM allows a maximum of 128 characters each for application and transaction
names in the arm_init and arm_getid API calls, Performance Collection Component shows
only a maximum of 60 characters. All characters beyond the first 60 will not be visible.
However, GlancePlus allows you to view up to 128 characters.
How Transaction Tracking Works 353

Performance Collection Component applies certain limitations to how application and
transaction names are shown in extracted or exported transaction data. These rules also
apply to viewing application and transaction names in Performance Manager.

The application name always takes precedence over the transaction name. For example, if you
are exporting transaction data that has a 65-character application name and a 40-character
transaction name, only the application name is shown. The last five characters of the
application name are not visible.

For another example, if an application name contains 32 characters and the transaction name
has 40 characters, Performance Collection Component shows the entire application name but
the transaction name appears truncated. A total of 60 characters are shown. Fifty-nine
characters are allocated to the application and transaction names and one character is
allocated to the underscore (_) that separates the two names. This is how the application
name “WarehouseInventoryApplication” and the transaction name
“CallFromWestCoastElectronicSupplier” would appear in Performance Collection
Component or Performance Manager:

WarehouseInventoryApplication_CallFromWestCoastElectronicSup

The 60-character combination of application name and transaction name
must be unique if the data is to be viewed with Performance Manager.
354 Chapter 19

Transaction Tracking Daemon (ttd)

The Transaction Tracking daemon, ttd, reads, registers, and synchronizes transaction
definitions from ttd.conf with midaemon.

ttd is started when you start up Performance Collection Component's scope data collector
with the ovpa start command. ttd runs in background mode when dispatched, and errors
are written to the file /var/opt/perf/status.ttd.

midaemon must also be running to process the transactions and to collect performance metrics
associated with these transactions (see next page).

Use the ovpa script to start Performance Collection Component processes to ensure that the
processes are started in the correct order. ovpa stop will not shut down ttd. If ttd must be
shut down for a reinstall of any performance software, use the command /<InstallDir>/
bin/ttd -k. However, we do not recommend that you stop ttd, except when reinstalling
Performance Collection Component.

If Performance Collection Component is not on your system, GlancePlus starts midaemon.
midaemon then starts ttd if it is not running before midaemon starts processing any
measurement data.

See the ttd man page for complete program options.

ARM API Call Status Returns

The ttd process must always be running in order to register transactions. If ttd is killed for
any reason, while it is not running, arm_init or arm_getid calls will return a “failed” return
code. If ttd is subsequently restarted, new arm_getid calls may re-register the same
transaction IDs that are already being used by other programs, thus causing invalid data to
be recorded.

When ttd is killed and restarted, ARM-instrumented applications may start getting a return
value of -2 (TT_TTDNOTRUNNING) and an EPIPE errno error on ARM API calls. When your
application initially starts, a client connection handle is created on any initial ARM API calls.
This client handle allows your application to communicate with the ttd process. When ttd is
killed, this connection is no longer valid and the next time your application attempts to use an
ARM API call, you may get a return value of TT_TTDNOTRUNNING. This error reflects that the
previous ttd process is no longer running even though there is another ttd process running.
(Some of the ARM API call returns are explained in the arm (3) man page.)

To get around this error, you must restart your ARM-instrumented applications if ttd is
killed. First, stop your ARMed applications. Next, restart ttd (using /<InstallDir>/bin/
ovpa start or /<InstallDir>/bin/ttd), and then restart your applications. The restart of
your application causes the creation of a new client connection handle between your
application and the ttd process.

We strongly recommend that you do not stop ttd.
If you must stop ttd, any ARM-instrumented applications that are running
must also be stopped before you restart ttd and Performance Collection
Component processes. ttd must be running to capture all arm_init and
arm_getid calls being made on the system. If ttd is stopped and restarted,
transaction IDs returned by these calls will be repeated, thus invalidating the
ARM metrics
How Transaction Tracking Works 355

Some ARM API calls will not return an error if the midaemon has an error. For example, this
would occur if the midaemon has run out of room in its shared memory segment. The
performance metric GBL_TT_OVERFLOW_COUNT will be > 0. If an overflow condition occurs, you
may want to shut down any performance tools that are running (except ttd) and restart the
midaemon using the -smdvss option to specify more room in the shared memory segment. (For
more information, see the midaemon man page.)

We recommend that your applications be written so that they continue to execute even if ARM
errors occur. ARM status should not affect program execution.

The number of active client processes that can register transactions with ttd via the
arm_getid call is limited to the maxfiles kernel parameter. This parameter controls the
number of open files per process. Each client registration request results in ttd opening a
socket (an open file) for the RPC connection. The socket is closed when the client application
terminates. Therefore, this limit affects only the number of active clients that have registered
a transaction via the arm_getid call. Once this limit is reached, ttd will return
TT_TTDNOTRUNNING to a client's arm_getid request. The maxfiles kernel parameter can be
increased to raise this limit above the number of active applications that will register
transactions with ttd.

Measurement Interface Daemon (midaemon)

The Measurement Interface daemon, midaemon, is a low-overhead process that continuously
collects system performance information. The midaemon must be running for Performance
Collection Component to collect transaction data or for GlancePlus to report transaction data.
It starts running when you run the scope or perfd process or when starting GlancePlus.

Performance Collection Component and GlancePlus require both the midaemon and ttd to be
running so that transactions can be registered and tracked. The ovpa script starts and stops
Performance Collection Component processing, including the mideamon, in the correct order.
GlancePlus starts the mideamon, if it is not already running. The midaemon starts ttd, if it is
not already running.

See the CPU Overhead section later in this manual for information on the midaemon CPU
overhead.

See the midaemon man page for complete program options.
356 Chapter 19

Transaction Configuration File (ttd.conf)

The transaction configuration file, /var/opt/perf/ttd.conf, allows you to define the
application name, transaction name, the performance distribution ranges, and the service
level objective you want to meet for each transaction. The ttd reads ttd.conf to determine
how to register each transaction.

Customization of ttd.conf is optional. The default configuration file that ships with
Performance Collection Component causes all transactions instrumented in any application
to be monitored.

If you are using a commercial application and don't know which transactions have been
instrumented in the application, collect some data using the default ttd.conf file. Then look
at the data to see which transactions are available. You can then customize the transaction
data collection for that application by modifying ttd.conf.

Adding New Applications

If you add new ARMed applications to your system that use the default slo and range values
from the tran=* line in your ttd.conf file, you don't need to do anything to incorporate these
new transactions. (See the Configuration File Keywords section for descriptions of tran,
range, and slo.) The new transactions will be picked up automatically. The slo and range
values from the tran line in your ttd.conf file will be applied to the new transactions.

Adding New Transactions

After making additions to the ttd.conf file, you must perform the following steps to make
the additions effective:

• Stop all applications.

• Execute the ttd -hup -mi command as root.

The above actions cause the ttd.conf file to be re-read and registers the new transactions,
along with their slo and range values, with ttd and the midaemon. The re-read will not
change the slo or range values for any transactions that were in the ttd.conf file prior to
the re-read.

Changing the Range or SLO Values

If you need to change the SLO or range values of existing transactions in the ttd.conf file,
you must do the following:

• Stop all ARMed applications.

• Stop the scope collector using ovpa stop.

• Stop any usage of Glance.

• Stop the ttd by issuing the command ttd -k.

• Once you have made your changes to the ttd.conf file:

• Restart scope using ovpa start.

• Restart your ARMed applications.
How Transaction Tracking Works 357

Configuration File Keywords

The /var/opt/perf/ttd.conf configuration file associates transaction names with
transaction attributes that are defined by the keywords in Table 1.

These keywords are described in more detail below.

tran

Use tran to define your transaction name. This name must correspond to a transaction that is
defined in the arm_getid API call in your instrumented application. You must use the tran
keyword before you can specify the optional attributes range or slo. tran is the only required
keyword within the configuration file. A trailing asterisk (*) in the transaction name causes a
wild card pattern match to be performed when registration requests are made against this
entry. Dashes can be used in a transaction name. However, spaces cannot be used in a
transaction name.

The transaction name can contain a maximum of 128 characters. However, only the first 60
characters are visible in Performance Collection Component. GlancePlus can display 128
characters in specific screens.

The default ttd.conf file contains several entries. The first entries define transactions used
by the Performance Collection Component data collector scope, which is instrumented with
ARM API calls. The file also contains the entry tran=*, which registers all other transactions
in applications instrumented with ARM API or Transaction Tracker API calls.

range

Use range to specify the transaction performance distribution ranges. Performance
distribution ranges allow you to distinguish between transactions that take different lengths
of time to complete and to see how many successful transactions of each length occurred. The
ranges that you define appear in the GlancePlus Transaction Tracking window.

Each value entered for sec represents the upper limit in seconds for the transaction time for
the range. The value may be an integer or real number with a maximum of six digits to the
right of the decimal point. On HP-UX, this allows for a precision of one microsecond (.000001
seconds). On other platforms, however, the precision is ten milliseconds (0.01 seconds), so only
the first two digits to the right of the decimal point are recognized.

A maximum of ten ranges are supported for each transaction you define.
You can specify up to nine ranges. One range is reserved for an overflow range, which collects
data for transactions that take longer than the largest user-defined range. If you specify more
than nine ranges, the first nine ranges are used and the others are ignored.

Table 1 Configuration File Keywords

Keyword Syntax Usage

tran tran=transaction_name Required

slo slo=sec Optional

range range=sec [,sec,...] Optional
358 Chapter 19

If you specify fewer than nine ranges, the first unspecified range becomes the overflow range.
Any remaining unspecified ranges are not used. The unspecified range metrics are reported
as 0.000. The first corresponding unspecified count metric becomes the overflow count.
Remaining unspecified count metrics are always zero (0).

Ranges must be defined in ascending order (see examples later in this chapter).

slo

Use slo to specify the service level objective (SLO) in seconds that you want to use to monitor
your performance service level agreement (SLA).

As with the range keyword, the value may be an integer or real number, with a maximum of
six digits to the right of the decimal point. On HP-UX, this allows for a precision of one
microsecond (.000001 seconds). On other platforms, however, the precision is ten milliseconds
(0.01 seconds), so only the first two digits to the right of the decimal point are recognized.

Note that even though transactions can be sorted with one microsecond precision on HP-UX,
transaction times are displayed with 100 microsecond precision.

Configuration File Format

The ttd.conf file can contain two types of entries: general transactions and
application-specific transactions.

General transactions should be defined in the ttd.conf file before any application is defined.
These transactions will be associated with all the applications that are defined. The default
ttd.conf file contains one general transaction entry and entries for the scope collector that
is instrumented with ARM API calls.

tran=* range=0.5, 1, 2, 3, 5, 10, 30, 120, 300 slo=5.0

Optionally, each application can have its own set of transaction names. These transactions
will be associated only with that application. The application name you specify must
correspond to an application name defined in the arm_init API call in your instrumented
application. Each group of application-specific entries must begin with the name of the
application enclosed in brackets. For example:

[AccountRec]
tran=acctOne range=0.01, 0.03, 0.05

The application name can contain a maximum of 128 characters. However, only the first 60
characters are visible in Performance Collection Component. Glance can display 128
characters in specific screens.

If there are transactions that have the same name as a “general” transaction, the transaction
listed under the application will be used.
How Transaction Tracking Works 359

For example:

tran=abc range=0.01, 0.03, 0.05 slo=0.10
tran=xyz range=0.02, 0.04, 0.06 slo=0.08
tran=t* range=0.01, 0.02, 0.03

[AccountRec}
tran=acctOne range=0.04, 0.06, 0.08
tran=acctTwo range=0.1, 0.2
tran=t* range=0.03, 0.5

[AccountPay]

[GenLedg]
tran=GenLedgOne range=0.01

In the example above, the first three transactions apply to all of the three applications
specified.

The application [AccountRec] has the following transactions: acctOne, acctTwo, abc, xyz,
and t*. One of the entries in the general transaction set also has a wild card transaction
named "t*". In this case, the "t*" transaction name for the AccountRec application will be
used; the one in the general transaction set is ignored.

The application [AccountPay] has only transactions from the general transactions set.

The application [GenLedg] has transactions GenLedgOne, abc, xyz, and t*.

The ordering of transactions names makes no difference within the application.

For additional information about application and transaction names, see the section
Specifying Application and Transaction Names in this chapter.

Configuration File Examples

Example 1

tran=* range=0.5,1,2,3,5,10,30,12,30 slo=5.0

The "*" entry is used as the default if none of the entries match a registered transaction name.
These defaults can be changed on each system by modifying the "*" entry. If the "*" entry is
missing, a default set of registration parameters are used that match the initial parameters
assigned to the "*" entry above.

Example 2

[MANufactr]
tran=MFG01 range=1,2,3,4,5,10 slo=3.0
tran=MFG02 range=1,2.2,3.3,4.0,5.5,10 slo=4.5
tran=MFG03
tran=MFG04 range=1,2.2,3.3,4.0,5.5,10

Transactions for the MANufctr application, MFG01, MFG02, and MFG04, each use their own
unique parameters. The MFG03 transaction does not need to track time distributions or service
level objectives so it does not specify these parameters.

Example 3
360 Chapter 19

[Financial]
tran=FIN01
tran=FIN02 range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0
tran=FIN03 range=0.1,0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the Financial application, FIN02 and FIN03, each use their own unique
parameters. The FIN01 transaction does not need to track time distributions or service level
objectives so it does not specify these parameters.

Example 4

[PERSONL]
tran=PERS* range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0
tran=PERS03 range=0.1,0.2,0.5,1,2,3,4,5,10,20 slo=0.8

The PERS03 transaction for the PERSONL application uses its own unique parameters while the
remainder of the personnel transactions use a default set of parameters unique to the
PERSONL application.

Example 5

[ACCOUNTS]
tran=ACCT_* slo=1.0
tran=ACCT_REC range=0.5,1,2,3,4,5,10,20 slo=2.0
tran=ACCT_PAY range=0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the ACCOUNTS application, ACCT_REC and ACCT_PAY, each use their own
unique parameters while the remainder of the accounting transactions use a default set of
parameters unique to the accounting application. Only the accounts payable and receivable
transactions need to track time distributions. The order of transaction names makes no
difference within the application.

Overhead Considerations for Using ARM

The current versions of Performance Collection Component and GlancePlus contain
modifications to their measurement interface that support additional data required for ARM
2.0. These modifications can result in increased overhead for performance management. You
should be aware of overhead considerations when planning ARM instrumentation for your
applications.

The overhead areas are discussed in the remainder of this chapter.

Guidelines

Here are some guidelines to follow when instrumenting your applications with the ARM API:

• The total number of separate transaction IDs should be limited to not more than 4,000.
Generally, it is cheaper to have multiple instances of the same transaction than it is to
have single instances of different transactions. Register only those transactions that will
be actively monitored.

• Although the overhead for the arm_start and arm_stop API calls is very small, it can
increase when there is a large volume of transaction instances. More than a few thousand
arm_start and arm_stop calls per second on most systems can significantly impact
overall performance.
How Transaction Tracking Works 361

• Request ARM correlators only when using ARM 2.0 functionality. (For more information
about ARM correlators, see the “Advanced Topics” section in the Application Response
Measurement 2.0 API Guide. The overhead for producing, moving, and monitoring
correlator information is significantly higher than for monitoring transactions that are
not instrumented to use the ARM 2.0 correlator functionality.

• Larger string sizes (applications registering lengthy transaction names, application
names, and user-defined string metrics) will impose additional overhead.

Disk I/O Overhead

The performance management software does not impose a large disk overhead on the system.
Glance generally does not log its data to disk. Performance Collection Component's collector
daemon, scope, generates disk log files, but their size is not significantly impacted by ARM
2.0. The logtran scope log file is used to store ARM data.

CPU Overhead

A program instrumented with ARM calls will generally not run slower because of the ARM
calls. This assumes that the rate of arm_getid calls is lower than one call per second, and the
rate of arm_start and arm_stop calls is lower than a few thousand per second. More frequent
calls to the ARM API should be avoided.

Most of the additional CPU overhead for supporting ARM is incurred inside of the
performance tool programs and daemons themselves. The midaemon CPU overhead rises
slightly but not more than two percent more than it was with ARM 1.0. If the midaemon has
been requested to track per-transaction resource metrics, the overhead per transaction
instance may be twice as high as it would be without tracking per-transaction resource
metrics. (You can enable the tracking of per-transaction resource metrics by setting the log
transaction=resource flag in the parm file.) In addition, Glance and scope CPU overhead
will be slightly higher on a system with applications instrumented with ARM 2.0 calls. Only
those applications that are instrumented with ARM 2.0 calls that make extensive use of
correlators and/or user-defined metrics will have a significant performance impact on the
midaemon, scope, or Glance.

An midaemon overflow condition can occur when usage exceeds the available default shared
memory. This results in:

• No return codes from the ARM calls once the overflow condition occurs.

• Display of incorrect metrics, including blank process names.

• Errors being logged in status.mi (for example, “out of space”).

Memory Overhead

Programs that are making ARM API calls will not have a significant impact in their memory
virtual set size, except for the space used to pass ARM 2.0 correlator and user-defined metric
information. These buffers, which are explained in the Application Response Measurement 2.0
API Guide, should not be a significant portion of a process's memory requirements.

There is additional virtual set size overhead in the performance tools to support ARM 2.0. The
midaemon process creates a shared memory segment where ARM data is kept internally for
use by Performance Collection Component and GlancePlus. The size of this shared memory
segment has grown, relative to the size on releases with ARM 1.0, to accommodate the
362 Chapter 19

potential for use by ARM 2.0. By default on most systems, this shared memory segment is
approximately 11 megabytes in size. This segment is not all resident in physical memory
unless it is required. Therefore, this should not be a significant impact on most systems that
are not already memory-constrained. The memory overhead of midaemon can be tuned using
special startup parameters (see the midaemon man page).
How Transaction Tracking Works 363

364 Chapter 19

20 Getting Started with Transactions
This chapter gives you the information you need to begin tracking transactions and your
service level objectives. For detailed reference information, see Chapter 19, How Transaction
Tracking Works. See Chapter 23, Transaction Tracking Examples for examples.

Before you start

Performance Collection Component provides the libarm.* shared library in the following
locations:

If you do not have Performance Collection Component installed on your system and if
libarm.* doesn’t exist in the path indicated above for your platform, see C Compiler Option
Examples by Platform on page 388 at the end of this manual. See also “The ARM Shared
Library (libarm)” section in the Application Response Measurement 2.0 API Guide for
information on how to obtain it. For a description of libarm, see ARM Library (libarm) on
page 383 at the end of this manual.

Setting Up Transaction Tracking

Follow the procedure below to set up transaction tracking for your application. These steps
are described in more detail in the remainder of this section.

1 Define SLOs by determining what key transactions you want to monitor and the response
level you expect (optional).

2 To monitor transactions in Performance Collection Component and Performance
Manager, make sure that the Performance Collection Component parm file has
transaction logging turned on. Then start or restart Performance Collection Component to
read the updated parm file.

Editing the parm file is not required to see transactions in GlancePlus. However, ttd must
be running in order to see transactions in GlancePlus. Starting GlancePlus will
automatically start ttd.

3 Run the application that has been instrumented with ARM API calls that are described in
this manual and the Application Response Measurement 2.0 API Guide.

Platform Path

IBM RS/6000 /usr/lpp/perf/lib/

Other UNIX platforms /opt/perf/lib/
365

4 Use Performance Collection Component or Performance Manager to look at the collected
transaction data, or use GlancePlus to view current data. If the data isn’t visible in
Performance Manager, close the data source and then reconnect to it.

5 Customize the configuration file, ttd.conf, to modify the way transaction data for the
application is collected (optional).

6 After making additions to the ttd.conf file, you must perform the following steps to
make the additions effective:

a Stop all ARMed applications.

b Execute the ttd -hup -mi command as root.

These actions re-read the ttd.conf file and registers new transactions along with their
slo and range values with ttd and the midaemon. The re-read will not change the slo or
range values for any transactions that were in the ttd.conf file prior to the re-read.

7 If you need to change the slo or range values of existing transactions in the ttd.conf
file, do the following:

a Stop all ARMed applications.

b Stop the scope collector using ovpa stop.

c Stop all usage of Glance.

d Stop ttd using ttd -k.

Once you have made your changes:

a Restart scope using ovpa start.

b Start your ARMed applications.

Defining Service Level Objectives

Your first step in implementing transaction tracking is to determine the key transactions that
are required to meet customer expectations and what level of transaction responsiveness is
required. The level of responsiveness that is required becomes your service level objective
(SLO). You define the service level objective in the configuration file, ttd.conf.

Defining service level objectives can be as simple as reviewing your Information Technology
department's service level agreement (SLA) to see what transactions you need to monitor to
meet your SLA. If you don't have an SLA, you may want to implement one. However, creating
an SLA is not required in order to track transactions.

Modifying the Parm File

If necessary, modify the Performance Collection Component parm file to add transactions to
the list of items to be logged for use with Performance Manager and Performance Collection
Component. Include the transaction option in the parm file's log parameter as shown in the
following example:

log global application process transaction device=disk

The default for the log transaction parameter is no resource and no correlator. To turn
on resource data collection or correlator data collection, specify log transaction=resource
or log transaction=correlator. Both can be logged by specifying log
transaction=resource, correlator.
366 Chapter 20

Before you can collect transaction data for use with Performance Collection Component and
Performance Manager, the updated parm file must be activated as described below:

Collecting Transaction Data

Start up your application. The Transaction Tracking daemon, ttd, and the Measurement
Interface daemon, midaemon, collect and synchronize the transaction data for your application
as it runs. The data is stored in the midaemon's shared memory segment where it can be used
by Performance Collection Component or GlancePlus. See Monitoring Performance Data on
page 369 for information on using each of these tools to view transaction data for your
application.

Error Handling

Due to performance considerations, not all problematic ARM or Transaction Tracker API calls
return errors in real time. Some examples of when errors are not returned as expected are:

• calling arm_start with a bad id parameter such as an uninitialized variable

• calling arm_stop without a previously successful arm_start call

Performance Collection Component — To debug these situations when instrumenting
applications with ARM calls, run the application long enough to generate and collect a
sufficient amount of transaction data. Collect this data with Performance Collection
Component, then use the extract program's export command to export data from the
logtran file. Examine the data to see if all transactions were logged as expected. Also, check
the /var/opt/perf/status.ttd file for possible errors.

GlancePlus — To debug these situations when instrumenting applications with ARM calls,
run the application long enough to generate a sufficient amount of transaction data, then use
GlancePlus to see if all transactions appear as expected.

Limits on Unique Transactions

Depending on your particular system resources and kernel configuration, a limit may exist on
the number of unique transactions allowed in your application. This limit is normally several
thousand unique arm_getid calls.

The number of unique transactions may exceed the limit when the shared memory segment
used by midaemon is full. If this happens, an overflow message appears in GlancePlus.
Although no message appears in Performance Collection Component, data for subsequent new
transactions won't be logged. (However, check /var/opt/perf/status.scope for an
overflow message.) Data for subsequent new transactions won't be visible in GlancePlus.
Transactions that have already been registered will continue to be logged and reported. The
GBL_TT_OVERFLOW_COUNT metric in GlancePlus reports the number of new transactions that
could not be measured.

Performance Collection
Component status

Command to activate transaction
tracking

Running ovpa restart

Not running ovpa start
Getting Started with Transactions 367

This situation can be remedied by stopping and restarting the midaemon process using the
-smdvss option to specify a larger shared memory segment size. The current shared memory
segment size can be checked using the midaemon -sizes command. For more information on
optimizing the midaemon for your system, see the midaemon man page.

Customizing the Configuration File (optional)

After viewing the transaction data from your application, you may want to customize the
transaction configuration file, /var/opt/perf/ttd.conf, to modify the way transaction
data for the application is collected. This is optional because the default configuration file,
ttd.conf, will work with all transactions defined in the application. If you do decide to
customize the ttd.conf file, complete this task on the same systems where you run your
application. You must be logged on as root to modify ttd.conf.

See Chapter 19, How Transaction Tracking Works for information on the configuration file
keywords – tran, range, and slo. Some examples of how each keyword is used are shown
below:

tran=Example: tran=answerid
tran=answerid*
tran=*

range=Example: range=2.5,4.2,5.0,10.009

slo=Example: slo=4.2

Customize your configuration file to include all of your transactions and each associated
attribute. Note that the use of the range or slo keyword must be preceded by the tran
keyword. An example of a ttd.conf file is shown below.

tran=*
tran=my_first_transaction slo=5.5

[answerid]
tran=answerid1 range=2.5, 4.2, 5.0, 10.009 slo=4.2

[orderid]
tran=orderid1 range=1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

If you need to make additions to the ttd.conf file:

• Stop all ARMed applications.

• Execute the ttd -hup -mi command as root.

The above actions re-read the ttd.conf file and registers new transactions along with their
slo and range values with ttd and the midaemon. The re-read will not change the slo or
range value for any transactions that were in the ttd.conf file prior to the re-read,

If you need to change the slo or range values of existing transactions in the ttd.conf file, do
the following:

1 Stop all ARMed applications.

2 Stop the scope collector using ovpa stop.

3 Stop all usage of Glance.

4 Stop ttd using ttd -k.
368 Chapter 20

Once you have made your changes:

1 Restart scope using ovpa start.

2 Start your ARMed applications.

Monitoring Performance Data

You can use the following resource and performance management products to monitor
transaction data – Performance Collection Component, Performance Manager, and
GlancePlus.

... with Performance Collection Component

By collecting and logging data for long periods of time, Performance Collection Component
gives you the ability to analyze your system's performance over time and to perform detailed
trend analysis. Data from Performance Collection Component can be viewed with
Performance Manager Agent or exported for use with a variety of other performance
monitoring, accounting, modeling, and planning tools.

With Performance Collection Component's extract program, data can be exported for use
with spreadsheets and analysis programs. Data can also be extracted for archiving and
analysis.

Performance Collection Component and ttd must be running in order to monitor transaction
data in Performance Collection Component. Starting Performance Collection Component
using the ovpa script ensures that the ttd and midaemon processes that are required to view
transaction data in GlancePlus are started in the right order.

... with Performance Manager

Performance Manager imports Performance Collection Component data and gives you the
ability to translate that data into a customized graphical or numerical format. Using
Performance Manager, you can perform analysis of historical trends of transaction data and
you can perform more accurate forecasting.

You can select TRANSACTION from the Class List window for a data source in Performance
Manager, then graph transaction metrics for various transactions. For more information, see
Performance Manager online help, which is accessible from the Performance Manager Help
menu. If you don’t see the transactions you expect in Performance Manager, close the current
data source and then reconnect to it.

... with GlancePlus

Monitoring systems with GlancePlus helps you identify resource bottlenecks and provides
immediate performance information about the computer system. GlancePlus has a
Transaction Tracking window that displays information about all transactions that you have
defined and a Transaction Graph window that displays specific information about a single
transaction. For example, you can see how each transaction is performing against the SLO
that you have defined. For more information about how to use GlancePlus, see the online help
that is accessible from the Help menu.
Getting Started with Transactions 369

Alarms

You can alarm on transaction data with the following resource and performance management
products — Performance Collection Component, Performance Manager, and GlancePlus.

... with Performance Collection Component

In order to generate alarms with Performance Collection Component, you must define alarm
conditions in its alarm definitions file, alarmdef. You can set up Performance Collection
Component to notify you of an alarm condition in various ways, such as sending an email
message or initiating a call to your pager.

To pass a syntax check for the alarmdef file, you must have data logged for that application
name and transaction name in the log files, or have the names registered in the ttd.conf
file.

There is a limitation when you define an alarm condition on a transaction that has a dash (–)
in its name. To get around this limitation, use the ALIAS command in the alarmdef file to
redefine the transaction name.

... with GlancePlus

You can configure the Adviser Syntax to alarm on transaction performance. For example,
when an alarm condition is met, you can instruct GlancePlus to display information to
stdout, execute a UNIX command (such as mailx), or turn the Alarm button on the main
GlancePlus window yellow or red. For more information about alarms in GlancePlus, choose
On This Window from the Help menu in the Edit Adviser Syntax window.
370 Chapter 20

21 Transaction Tracking Messages
The error codes listed in Table 2 are returned and can be used by the application developer
when instrumenting an application with Application Response Measurement (ARM) or
Transaction Tracker API calls:

When an application instrumented with ARM or Transaction Tracker API calls is running,
return codes from any errors that occur will probably be from the Transaction Tracking
daemon, ttd. The Measurement Interface daemon, midaemon, does not produce any error
return codes.

If an midaemon error occurs, see the /var/opt/perf/status.mi file for more information.

Table 2 Error codes

Error Code Errno Value Meaning

-1 EINVAL Invalid arguments

-2 EPIPE ttd (registration
daemon) not running

-3 ESRCH Transaction name not
found in the ttd.conf
file

-4 EOPNOTSUPP Operating system
version not supported
371

372 Chapter 21

22 Transaction Metrics
The ARM agent provided as a shared component of both the GlancePlus and Performance
Collection Component, produces many different transaction metrics. To see a complete list of
the metrics and their descriptions:

• For installed GlancePlus metrics, use the GlancePlus online help or see the GlancePlus for
HP-UX Dictionary of Performance Metrics located:

On UNIX/Linux under /<InstallDir>/paperdocs/gp/C/ as gp-metrics.txt.

InstallDir is the directory in which Performance Collection Component is installed.

• For installed Performance Collection Component metrics for specific platforms, see the
platform’s HP Operations Agent Dictionary of Operating System Performance Metrics files
located:

On UNIX/Linux under /<InstallDir>/paperdocs/ovpa/C/ as met<platform>.txt.

On Windows under %ovinstalldir%paperdocs\ovpa\C as met<platform>.txt.
373

374 Chapter 22

23 Transaction Tracking Examples
This chapter contains a pseudocode example of how an application might be instrumented
with ARM API calls, so that the transactions defined in the application can be monitored with
Performance Collection Component or GlancePlus. This pseudocode example corresponds
with the real time order processing scenario described in Chapter 18, What is Transaction
Tracking?

Several example transaction configuration files are included in this chapter, including one
that corresponds with the real time order processing scenario.

Pseudocode for Real Time Order Processing

This pseudocode example includes the ARM API calls used to define transactions for the real
time order processing scenario described in
Chapter 18, What is Transaction Tracking? This routine would be processed each time an
operator answered the phone to handle a customer order. The lines containing the ARM API
calls are highlighted with bold text in this example.

routine answer calls()
{

* Register the transactions if first time in *

 if (transactions not registered)
 {
 appl_id = arm_init("Order Processing Application","*", 0,0,0)
 answer_phone_id = arm_getid(appl_id,"answer_phone","1st tran",0,0,0)
 if (answer_phone_id < 0)
 REGISTER OF ANSWER_PHONE FAILED - TAKE APPROPRIATE ACTION
 order_id = arm_getid(appl_id,"order","2nd tran",0,0,0)
 if (order_id < 0)
 REGISTER OF ORDER FAILED - TAKE APPROPRIATE ACTION
 check_id = arm_getid(appl_id,"check_db","3rd tran",0,0,0)
 if (check_id < 0)
 REGISTER OF CHECK DB FAILED - TAKE APPROPRIATE ACTION
 update_id = arm_getid(appl_id,"update","4th tran",0,0,0)
 if (update_id < 0)
 REGISTER OF UPDATE FAILED - TAKE APPROPRIATE ACTION

 } if transactions not registered

* Main transaction processing loop

 while (answering calls)
 {
375

 if (answer_phone_handle = arm_start(answer_phone_id,0,0,0) < -1)
 TRANSACTION START FOR ANSWER_PHONE NOT REGISTERED
**
* At this point the answer_phone transaction has *
* started. If the customer does not want to order, *
* end the call; otherwise, proceed with order. *
**
 if (don't want to order)
 arm_stop(answer_phone_handle,ARM_FAILED,0,0,0)
 GOOD-BYE - call complete
 else
 {

* They want to place an order - start an order now *

 if (order_handle = arm_start(order_id,0,0,0) < -1)
 TRANSACTION START FOR ORDER FAILED
 take order information: name, address, item, etc.
**
* Order is complete - end the order transaction *
**
 if (arm_stop(order_handle,ARM_GOOD,0,0,0) < -1)
 TRANSACTION END FOR ORDER FAILED
**
* order taken - query database for availability *
**
 if (query_handle = arm_start(query_id,0,0,0) < -1)
 TRANSACTION QUERY DB FOR ORDER NOT REGISTERED
 query the database for availability
**
* database query complete - end query transaction *
**
 if (arm_stop(query_handle,ARM_GOOD,0,0,0) < -1)
 TRANSACTION END FOR QUERY DB FAILED

**
* If the item is in stock, process order, and *
* update inventory. *
**
 if (item in stock)
 if (update_handle = arm_start(update_id,0,0,0) < -1)
 TRANSACTION START FOR UPDATE NOT REGISTERED
 update stock
**
* update complete - end the update transaction *
**
 if (arm_stop(update_handle,ARM_GOOD,0,0,0) < -1)
 TRANSACTION END FOR ORDER FAILED
**
* Order complete - end the call transaction *
**
 if (arm_stop(answer_phone_handle,ARM_GOOD,0,0,0) < -1)
 TRANSACTION END FOR ANSWER_PHONE FAILED
 } placing the order
 GOOD-BYE - call complete
376 Chapter 23

 sleep("waiting for next phone call...zzz...")
 } while answering calls
 arm_end(appl_id, 0,0,0)
} routine answer calls

Configuration File Examples

This section contains some examples of the transaction configuration file, /var/opt/
perf/ttd.conf. For more information on the ttd.conf file and the configuration file
keywords, see Chapter 19, How Transaction Tracking Works

Example 1 (for Order Processing Pseudocode Example)

The "*" entry below is used as the default if none of the
entries match a registered transaction name.

tran=* range=0.5,1,1.5,2,3,4,5,6,7 slo=1
tran=answer_phone* range=0.5,1,1.5,2,3,4,5,6,7 slo=5
tran=order* range=0.5,1,1.5,2,3,4,5,6,7 slo=5
tran=query_db* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

Example 2

The "*" entry below is used as the default if none of the
entries match a registered transaction name.

tran=* range=1,2,3,4,5,6,7,8 slo=5

The entry below is for the only transaction being
tracked in this application. The "*" has been inserted
at the end of the tran name to catch any possible numbered
transactions. For example "First_Transaction1",
"First_Transaction2", etc.

tran=First_Transaction* range=1,2.2,3.3,4.0,5.5,10 slo=5.5

Example 3

The "*" entry below is used as the default if none of the
entries match a registered transaction name.

tran=*
tran=Transaction_One range=1,10,20,30,40,50,60 slo=30
Transaction Tracking Examples 377

Example 4

tran=FactoryStor* range=0.05, 0.10, 0.15 slo=3

The entries below shows the use of an application name.
Transactions are grouped under the application name. This
example also shows the use of less than 10 ranges and
optional use of "slo."

[Inventory]
tran=In_Stock range=0.001, 0.004, 0.008
tran=Out_Stock range=0.001, 0.005
tran=Returns range=0.1, 0.3, 0.7

[Pers]
tran=Acctg range=0.5, 0.10, slo=5
tran=Time_Cards range=0.010, 0.020
378 Chapter 23

24 Advanced Features
This chapter describes how Performance Collection Component uses the following ARM 2.0
API features:

• data types

• user-defined metrics

• scope instrumentation

How Data Types Are Used

Table 3 describes how data types are used in Performance Collection Component. It is a
supplement to “Data Type Definitions” in the “Advanced Topics” section of the Application
Response Measurement 2.0 API Guide.

Performance Collection Component does not log string data. Because Performance Collection
Component logs data every five minutes, and what is logged is the summary of the activity for
that interval, it cannot summarize the strings provided by the application.

Performance Collection Component logs the Minimum, Maximum, and Average for the first
six usable user-defined metrics. If your ARM-instrumented application passes a Counter32, a
String8, a NumericID 32, a Gauge32, a Gauge64, a Counter64, a NumericID64, a String32,

Table 3 Data type usage in Performance Collection Component

ARM_Counter32 Data is logged as a 32-bit integer.

ARM_Counter64 Data is logged as a 32-bit integer with type
casting.

ARM_CntrDivr32 Makes the calculation and logs the result as a
32-bit integer.

ARM_Gauge32 Data is logged as a 32-bit integer.

ARM_Gauge64 Data is logged as a 32-bit integer with type
casting.

ARM_GaugeDivr32 Makes the calculation and logs the result as a
32-bit integer.

ARM_NumericID32 Data is logged as a 32-bit integer.

ARM_NumericID64 Data is logged as a 32 bit integer with type
casting.

ARM_String8 Ignored.

ARM_String32 Ignored.
379

and a GaugeDivr32, Performance Collection Component logs the Min, Max, and Average over
the five-minute interval for the Counter32, NumericID32, Gauge32, Gauge64, NumericID32
and NumericID64 as 32-bit integers. The String8 and String32 are ignored because strings
cannot be summarized in Performance Collection Component. The GaugeDivr32 is also
ignored because only the first six usable user-defined metrics are logged. (For more
examples, see the next section, User-Defined Metrics.)

User-Defined Metrics

This section is a supplement to “Application-Defined Metrics” under “Advanced Topics” in the
Application Response Measurement 2.0 API Guide. It contains some examples about how
Performance Collection Component handles user-defined metrics (referred to as
application-defined metrics in ARM). The examples in Table 4 show what is logged if your
program passes the following data types.

Table 4 Examples of What is Logged with Specific Program Data
Types

…what your program passes in …what is logged

EXAMPLE 1
String8

Counter32

Gauge32

CntrDivr32

Counter32

Gauge32

CntrDivr32

EXAMPLE 2
String32

NumericID32

NumericID64

NumericID32

NumericID64
380 Chapter 24

Because Performance Collection Component cannot summarize strings, no strings are logged.

In example 1, only the counter, gauge, and counter divisor are logged.

In example 2, only the numerics are logged.

In example 3, only the numerics and gauges are logged.

In example 4, nothing is logged.

In example 5, because only the first six user-defined metrics are logged, NumericID64 is not
logged.

scope Instrumentation

The scope data collector has been instrumented with ARM API calls. When Performance
Collection Component starts, scope automatically starts logging two transactions,
Scope_Get_Process_Metrics and Scope_Get_Global_Metrics. Both transactions will be in
the HP Performance Tools application.

Transaction data is logged every five minutes so you will find that five Get Process
transactions (one transaction per minute) have completed during each interval. The
Scope_Get_Process_Metrics transaction is instrumented around the processing of process
data. If there are 200 processes on your system, the Scope_Get_Process_Metrics
transaction should take longer than if there are only 30 processes on your system.

EXAMPLE 3
NumericID32

String8

NumericID64

Gauge32

String32

Gauge64

NumericID32

NumericID64

Gauge32

Gauge64

EXAMPLE 4
String8

String32

(nothing)

EXAMPLE 5
Counter32

Counter64

CntrDivr32

Gauge32

Gauge64

NumericID32

NumericID64

Counter32

Counter64

CntrDivr32

Gauge32

Gauge64

NumericID32

Table 4 Examples of What is Logged with Specific Program Data
Types (cont’d)

…what your program passes in …what is logged
Advanced Features 381

The Scope_Get_Global_Metrics transaction is instrumented around the gathering of all
five-minute data, including global data. This includes global, application, disk,
transaction, and other data types.

To stop the logging of process and global transactions data, remove or comment out the
entries for the scope transactions in the ttd.conf file.
382 Chapter 24

25 Transaction Libraries
This appendix discusses:

• the Application Response Measurement library (libarm)

• C compiler option examples by platform

• the Application Response Measurement NOP library (libarmNOP)

• using Java wrappers

ARM Library (libarm)

With Performance Collection Component and GlancePlus, the environment is set up to make
it easy to compile and use the ARM facility. The libraries needed for development are located
in /opt/perf/lib/. See the next section in this appendix for specific information about
compiling.

The library files listed in Table 5 exist on an HP-UX 11.11 and beyond Performance Collection
Component and GlancePlus installation:

Table 5 HP-UX 11.11 and Beyond Performance Collection
Component and GlancePlus Library Files

/opt/perf/
lib/

libarm.0 HP-UX 10.X compatible shared library for
ARM (not thread safe). If you execute a
program on HP-UX 11 that was linked on
10.20 with -larm, the 11.0 loader will
automatically reference this library.

libarm.1 HP-UX 11 compatible shared library
(thread safe). This will be referenced by
programs that were linked with -larm on
HP-UX releases. If a program linked on
10.20 references this library, (for example,
if it was not linked with -L /opt/perf/
lib, it may abort with an error such as "/
usr/lib/dld.sl: Unresolved symbol:
_thread_once (code) from libtt.sl".

libarm.sl A symbolic link to libarm.1

libarmNOP.sl “No-operation” shared library for ARM (the
API calls succeed but do nothing; used for
testing and on systems that do not have
Performance Collection Component
installed.
383

The additional library files listed in Table 6 exist on an IA64 HP-UX installation:

Because the ARM library makes calls to HP-UX that may change from one version of the
operating system to the next, programs should link with the shared library version, using
-larm. Compiling an application that has been instrumented with ARM API calls and linking
with the archived version of the ARM library (-Wl, -a archive) is not supported. (For additional
information, see Transaction Tracking Daemon (ttd) on page 355 in Chapter 2.

/opt/perf/
examples/
arm

libarmjava.s
l

32-bit shared library for ARM.

/opt/perf/
examples/
arm/arm64

libarmjava.s
l

64-bit shared library for ARM.

/opt/perf/
lib/pa20_64/

Note that these files will be referenced automatically by
programs compiled on HP-UX 11 with the +DD64 compiler
option.

libarm.sl 64-bit shared library for ARM.

libarmNOP.sl 64-bit “no-operation” shared library for
ARM (the API calls succeed but do nothing;
used for testing and on systems that do not
have Performance Collection Component
installed.

Table 6 HP-UX IA64 Library Files

/opt/perf/lib/hpux32/ libarm.so.1 IA64/32-bit shared library
for ARM.

/opt/perf/lib/hpux64/ libarm.so.1 IA64/64-bit shared library
for ARM.

/opt/perf/examples/arm libarmjava.
so

32-bit shared library for
ARM.

/opt/perf/examples/
arm/arm64

libarmjava.
so

64-bit shared library for
ARM.

Table 5 HP-UX 11.11 and Beyond Performance Collection
Component and GlancePlus Library Files (cont’d)
384 Chapter 25

The library files that exist on an AIX operating system with Performance Collection
Component and GlancePlus installation are as follows.

The library files that exist on a Solaris operating system with Performance Collection
Component and GlancePlus installation are as follows.

Table 7 AIX Library Files

/usr/lpp/perf/lib/ libarm.a 32-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

/usr/lpp/perf/lib libarmNOP.a 32-bit shared library for ARM.
This library is used for testing
on systems that do not have
Performance Agent/
Performance Collection
Component installed.

/usr/lpp/perf/lib64/ libarm.a 64-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

/usr/lpp/perf/lib64 libarmNOP.a 64-bit shared library for ARM.
This library is used for testing
on systems that do not have
Performance Agent/
Performance Collection
Component installed.

/usr/lpp/perf/
examples/arm

libarmjava.
a

32-bit shared library for ARM

/usr/lpp/perf/
examples/arm/arm64

libarmjava.
a

64-bit shared library for ARM.

/usr/lpp/perf/lib/ libarmns.a 32-bit archived ARM library.
Functionality wise this is same
as 32 bit libarm.a.

/usr/lpp/perf/lib64/ libarmns.a 64-bit archived ARM library.
Functionality wise this is same
as 64 bit libarm.a.

Table 8 Solaris Library Files for 32-bit programs

/opt/perf/lib/ libarm.so 32-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

libarmNOP.so 32-bit shared library for ARM.
This library is used for testing on
systems that do not have
Performance Collection
Component installed.
Transaction Libraries 385

Table 9 Solaris Library Files for Sparc 64-bit programs

/opt/perf/lib/
sparc_64/

libarm.so 64-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

libarmNOP.so 64-bit shared library for ARM
This library is used for testing on
systems that do not have
Performance agent/Performance
Collection Component installed.

/opt/perf/
examples/arm

libarmjava.s
o

32-bit shared library for ARM.

/opt/perf/
examples/arm/
arm64

libarmjava.s
o

64-bit shared library for ARM.

Table 10 Solaris Library Files for x86 64-bit programs

/opt/perf/lib/
x86_64/

libarm.so 64-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

libarmNOP.so 64-bit shared library for ARM
This library is used for testing on
systems that do not have
Performance agent installed.

/opt/perf/
examples/arm

libarmjava.s
o

32-bit shared library for ARM.

/opt/perf/
examples/arm/
arm64

libarmjava.s
o

64-bit shared library for ARM.

You must compile 64-bit programs using -xarch=generic64 command-line
parameter along with the other parameters provided for 32-bit programs.
386 Chapter 25

The library files that exist on a Linux operating system with Performance Collection
Component and GlancePlus installation are as follows.

Table 11 Linux Library Files

/opt/perf/lib/ libarm.so 32-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

libarmNOP.so 32-bit shared library for ARM.
This library is used for testing on
systems that do not have
Performance Collection
Component installed.

/opt/perf/lib64/ libarm.so 64-bit shared ARM library
(thread safe). This library is
referenced by programs linked
with -larm.

libarmNOP.so 64-bit shared library for ARM.
This library is used for testing on
systems that do not have
Performance Collection
Component installed.

/opt/perf/
examples/arm

libarmjava.so 32-bit shared library for ARM.

/opt/perf/
examples/arm/
arm64

libarmjava.so 64-bit shared library for ARM.

For Linux 2.6 IA 64 bit 32 bit libarm.so and libarmjava.so are not
implemented.
Transaction Libraries 387

C Compiler Option Examples by Platform

The arm.h include file is located in /opt/perf/include/. For convenience, this file is
accessible via a symbolic link from /usr/include/ as well. This means that you do not need
to use “-I/opt/perf/include/” (although you may). Likewise, libarm resides in /opt/
perf/lib/ but is linked from /usr/lib/. You should always use “-L/opt/perf/lib/”
when building ARMed applications.

• For Linux:

The following example shows a compile command for a C program using the ARM API.

cc myfile.c -o myfile -I /opt/perf/include -L
-Xlinker -rpath -Xlinker /opt/perf/lib

• For 64-bit programs on Linux:

cc –m64 myfile.c -o myfile -I /opt/perf/include –L -Xlinker -rpath
-Xlinker /opt/perf/lib64

• For HP-UX:

For HP-UX releases 11.2x on IA64 platforms, change the -L parameter from -L/opt/
perf/lib to -L/opt/perf/lib/hpux32 for 32-bit IA ARMed program compiles, and
to -L/opt/perf/lib/hpux64 for 64-bit IA program compiles using ARM.

The following example shows a compile command for a C program using the ARM API.

cc myfile.c -o myfile -I /opt/perf/include -L /opt/perf/lib -larm

• For Sun Solaris:

The following example works for Performance Collection Component and GlancePlus on
Sun Solaris:

cc myfile.c -o myfile -I /opt/perf/include -L /opt/perf/lib -larm -lnsl

• For 64-bit Sparc programs on Sun Solaris:

The following example works for Performance Collection Component and 64-bit programs
on Sun Solaris:

cc -xarch=generic64 myfile.c -o myfile -I /opt/perf/include -L /opt/perf/
lib/sparc_64 -larm -lnsl

• For 64-bit x86 programs on Sun Solaris:

The following example works for Performance agent and 64-bit programs on Sun Solaris:

cc -xarch=generic64 myfile.c -o myfile -I /opt/perf/include -L /opt/perf/
lib/x86_64 -larm -lnsl

• For IBM AIX:

The file placement on IBM AIX differs from the other platforms (/usr/lpp/perf/ is
used instead of /opt/perf/), therefore the example for IBM AIX is different from the
examples of other platforms:

cc myfile.c -o myfile -I /usr/lpp/perf/include -L /usr/lpp/perf/lib -larm

• For 64-bit programs on IBM AIX:

The following example works for Performance agent and 64-bit programs on IBM AIX:

cc –q64 myfile.c -o myfile -I /usr/lpp/perf/include -L /usr/lpp/perf/lib64
–larm
388 Chapter 25

For C++ compilers, the -D_PROTOTYPES flag may need to be added to the
compile command in order to reference the proper declarations in the arm.h
file.
Transaction Libraries 389

ARM NOP Library

The “no-operation” library (named libarmNOP.* where * is sl, so, or a, depending on the OS
platform) is shipped with Performance Collection Component and Glance. This shared library
does nothing except return valid status for every ARM API call. This allows an application
that has been instrumented with ARM to run on a system where Performance Collection
Component or GlancePlus is not installed.

To run your ARM-instrumented application on a system where Performance Collection
Component or GlancePlus is not installed, copy the NOP library and name it libarm.sl
(libarm.so, or libarm.a depending on the platform) in the appropriate directory (typically, /
<InstallDir>/lib/). When Performance Collection Component or GlancePlus is installed,
it will overwrite this NOP library with the correct functional library (which is not removed as
the other files are). This ensures that instrumented programs will not abort when
Performance Collection Component or GlancePlus is removed from the system.

Using the Java Wrappers

The Java Native Interface (JNI) wrappers are functions created for your convenience to allow
the Java applications to call the HP ARM2.0 API. These wrappers (armapi.jar) are included
with the ARM sample programs located in the /<InstallDir>/examples/arm/ directory.
InstallDir is the directory in which Performance Collection Component is installed.

Examples

Examples of the Java wrappers are located in the /
<InstallDir>/examples/arm/ directory. This location also contains a README file, which
explains the function of each wrapper.

Setting Up an Application (arm_init)

To set up a new application, make a new instance of ARMApplication and pass the name and
the description for this API. Each application needs to be identified by a unique name. The
ARMApplication class uses the C – function arm_init.

Syntax:

ARMApplication myApplication =
new ARMApplication(“name”,”description”);

Setting Up a Transaction (arm_getid)

To set up a new transaction, you can choose whether or not you want to use user-defined
metrics (UDMs). The Java wrappers use the C – function arm_getid.
390 Chapter 25

Setting Up a Transaction With UDMs

If you want to use UDMs, you must first define a new ARMTranDescription.
ARMTranDescription builds the Data Buffer for arm_getid. (See also the jprimeudm.java
example.)

Syntax:

ARMTranDescription myDescription =
new ARMTranDescription(“transactionName”,”details”);

If you don’t want to use details, you can use another constructor:

Syntax:

ARMTranDescription myDescription =
new ARMTranDescription(“transactionName”);

Adding the Metrics

Metric 1-6:

Syntax:

myDescription.addMetric(metricPosition, metricType,
metricDescription);

Parameters:

metricPosition: 1-6

metricType: ARMConstants.ARM_Counter32
ARMConstants.ARM_Counter64 ARMConstants.ARM_CntrDivr32
ARMConstants.ARM_Gauge32 ARMConstants.ARM_Gauge64
ARMConstants.ARM_GaugeDivr32 ARMConstants.ARM_NumericID32
ARMConstants.ARM_NumericID64 ARMConstants.ARM_String8

Metric 7:

Syntax:

myDescription.addStringMetric(“description”);

Then you can create the Transaction:

Syntax:

myApplication.createTransaction(myDescription);

Setting the Metric Data

Metric 1-6:

Syntax:

myTransaction.setMetricData(metricPosition, metric);

Examples for “Metric”

ARMGauge32Metric metric = new ARMGauge32Metric(start);
ARMCounter32Metric metric = new ARMCounter32Metric(start);
ARMCntrDivr32Metric metric = new ARMCntrDivr32Metric(start, 1000);

Metric 7:
Transaction Libraries 391

Syntax:

myTransaction.setStringMetricData(text);

Setting Up a Transaction Without UDMs

When you set up a transaction without UDMs, you can immediately create the new
transaction. You can choose whether or not to specify details.

With Details

Syntax:

ARMTransaction myTransaction =
myApplication.createTransaction(“Transactionname”,”details”;

Without Details

Syntax:

ARMTransaction myTransaction =
myApplication.createTransaction(“Transactionname”);

Setting Up a Transaction Instance

To set up a new transaction instance, make a new instance of ARMTransactionInstance with
the method createTransactionInstance() of ARMTransaction.

Syntax:

ARMTransactionInstance myTranInstance =
myTransaction.createTransactionInstance();

Starting a Transaction Instance (arm_start)

To start a transaction instance, you can choose whether or not to use correlators. The
following methods call the C – function arm_start with the relevant parameters.

Starting the Transaction Instance Using Correlators

When you use correlators, you must distinguish between getting and delivering a correlator.

Requesting a Correlator

If your transaction instance wants to request a correlator, the call is as follows (see also the
jcorrelators.java example).

Syntax:

int status = myTranInstance.startTranWithCorrelator();
392 Chapter 25

Passing the Parent Correlator

If you already have a correlator from a previous transaction and you want to deliver it to your
transaction, the syntax is as follows:

Syntax

int status = startTran(parent);

Parameter

parent is the delivered correlator. In the previous transaction, you can get the transaction
instance correlator with the method getCorrelator().

Requesting and Passing the Parent Correlator

If you already have a correlator from a previous transaction and you want to deliver it to your
transaction and request a correlator, the syntax is as follows:

Syntax:

int status = myTranInstance.startTranWithCorrelator(parent);

Parameter:

parent is the delivered correlator. In the previous transaction, you can get the transaction
instance correlator with the method getCorrelator().

Retrieving the Correlator Information

You can retrieve the transaction instance correlator using the getCorrelator() method as
follows:

Syntax:

ARMTranCorrelator parent = myTranInstance.getCorrelator();

Starting the Transaction Instance Without Using Correlators

When you do not use correlators, you can start your transaction instance as follows:

Syntax:

int status = myTranInstance.startTran();

startTran returns a unique handle to status, which is used for the update and stop.

Updating Transaction Instance Data

You can update the UDMs of your transaction instance any number of times between the start
and stop. This part of the wrappers calls the C – function arm_update with the relevant
parameters.
Transaction Libraries 393

Updating Transaction Instance Data With UDMs

When you update the data of your transaction instance with UDMs, first, you must set the
new data for the metric. For example,

metric.setData(value) for ARM_Counter32 ARM_Counter64, ARM_Gauge32,
ARM_Gauge64, ARM_NumericID32, ARM_NumericID64

metric.setData(value,value) for ARM_CntrDivr32 and , ARM_GaugeDivr32

metric.setData(string) for ARM_String8 and ARM_String32

Then you can set the metric data to new (like the examples in the Setting the Metric Data
section) and call the update:

Syntax:

myTranInstance.updateTranInstance();

Updating Transaction Instance Data Without UDMs

When you update the data of your transaction instance without UDMs, you just call the
update. This sends a “heartbeat” indicating that the transaction instance is still running.

Syntax:

myTranInstance.updateTranInstance();

Providing a Larger Opaque Application Private Buffer

If you want to use the second buffer format, you must pass the byte array to the update
method. (See the Application Response Measurement 2.0 API Guide.

Syntax:

myTranInstance.updateTranInstance(byteArray);

Stopping the Transaction Instance (arm_stop)

To stop the transaction instance, you can choose whether or not to stop it with or without a
metric update.

Stopping the Transaction Instance With a Metric Update

To stop the transaction instance with a metric update, call the method
stopTranInstanceWithMetricUpdate.

Syntax:

myTranInstance.stopTranInstanceWithMetricUpdate
(transactionCompletionCode);

Parameter:
394 Chapter 25

The transaction Completion Code can be:

These methods use the C – function arm_stop with the requested parameters.

Stopping the Transaction Instance Without a Metric Update

To stop the transaction instance without a metric update, you can use the method
stopTranInstance.

Syntax:

myTranInstance.stopTranInstance(transactionCompletionCode);

Using Complete Transaction

The Java wrappers can use the arm_complete_transaction call. This call can be used to
mark the end of a transaction that has lasted for a specified number of nanoseconds. This
enables the real time integration of transaction response times measured outside of the ARM
agent.

In addition to signaling the end of a transaction instance, additional information about the
transaction (UDMs) can be provided in the optional data buffer.

(See also the jcomplete.java example.)

Using Complete Transaction With UDMs:

Syntax:

myTranInstance.completeTranWithUserData(status,responseTime;

Parameters:

ARMConstants. ARM_GOOD. Use this value when the operation ran
normally and as expected.

ARMConstants.ARM_ABORT. Use this value when there is a
fundamental failure in the system.

ARMConstants.ARM_FAILED. Use this value in applications where the
transaction worked properly, but no
result was generated.
Transaction Libraries 395

Using Complete Transaction Without UDMs:

Syntax:

myTranInstance.completeTran(status,responseTime);

Further Documentation

For further information about the Java classes, see the doc folder in the /
<InstallDir>/examples/arm/ directory, which includes html-documentation for every
Java class. Start with index.htm.

status • ARMConstants. ARM_GOOD
Use this value when the operation ran normally and as
expected.

• ARMConstants.ARM_ABORT
Use this value when there was a fundamental failure in
the system.

• ARMConstants.ARM_FAILED
Use this value in applications where the transaction
worked properly, but no result was generated.

responseTime This is the response time of the transaction in
nanoseconds.
396 Chapter 25

26 Logging and Tracing
You can diagnose and troubleshoot problems in the HP Operations agent by using the logging
and tracing mechanisms. The HP Operations agent stores error, warning, and general
messages in log files for easy analysis.

The tracing mechanism helps you trace specific problems in the agent’s operation; you can
transfer the trace files generated by the tracing mechanism to HP Support for further
analysis.

Logging

The HP Operations agent writes warning and error messages and informational notifications
in the System.txt file on the node. The contents of the System.txt file reveal if the agent
is functioning as expected. You can find the System.txt file in the following location:

On Windows

%ovdatadir%log

On UNIX/Linux

/var/opt/OV/log

In addition, the HP Operations agent adds the status details of the Performance Collection
Component and coda in the following files:

On Windows

• %ovdatadir%\status.scope

• %ovdatadir%\status.perfalarm

• %ovdatadir%\status.ttd

• %ovdatadir%\status.mi

• %ovdatadir%\status.perfd-<port>

• %ovdatadir%\log\coda.txt

On UNIX/Linux

• /var/opt/perf/status.scope

• /var/opt/perf/status.perfalarm

• /var/opt/perf/status.ttd

• /var/opt/perf/status.mi

In this instance, <port> is the port used by perfd. By default, perfd uses the port
5227. To change the default port of perfd, see Configuring the RTMA Component
on page 48.
397

• /var/opt/perf/status.perfd

• Only on vMA. /var/opt/perf/status.viserver

• /var/opt/OV/log/coda.txt

Configure the Logging Policy

The System.txt file can grow up to 1 MB in size, and then the agent starts logging messages
in a new version of the System.txt file. You can configure the message logging policy of the
HP Operations agent to restrict the size of the System.txt file.

To modify the default logging policy, follow these steps:

1 Log on to the node.

2 Go to the following location:

On Windows

%ovdatadir%conf\xpl\log

On UNIX/Linux

/var/opt/OV/conf/xpl/log

3 Open the log.cfg file with a text editor.

4 The BinSizeLimit and TextSizeLimit parameters control the byte size and number of
characters of the System.txt file. By default, both the parameters are set to 1000000 (1
MB and 1000000 characters). Change the default values to the desired values.

5 Save the file.

6 Restart the Operations Monitoring Component with the following commands:

a ovc -kill

b ovc -start

Tracing

Before you start tracing an HP Operations agent application, you must perform a set of
prerequisite tasks, which includes identifying the correct application to be traced, setting the
type of tracing, and generating a trace configuration file (if necessary).

Before you begin tracing an HP Operations agent process, perform the following tasks:

1 Identify the Application on page 398

2 Set the Tracing Type on page 400

3 Optional. Create the Configuration File on page 403

Identify the Application

On the managed system, identify the HP Software applications that you want to trace. Use
the ovtrccfg -vc option to view the names of all trace-enabled applications and the
components and categories defined for each trace-enabled application.
398 Chapter 26

Alternatively, you can use the ovtrcgui utility to view the list of trace-enabled applications. To
use the ovtrcgui utility to view the list of trace-enabled applications, follow these steps:

1 Run the ovtrcgui.exe file from the %OvInstallDir%\support directory. The ovtrcgui
window opens.

2 In the ovtrcgui window, click File → New → Trace Configuration. A new trace configuration
editor opens.
Logging and Tracing 399

3 In the ovtrcgui window, click Edit → Add Application. Alternatively, right-click on the
editor, and then click Add Application. The Add Application window opens.

The Add Application window presents a list of available trace-enabled applications.

Set the Tracing Type

Before you enable the tracing mechanism, decide and set the type of tracing that you want to
configure with an application. To set the type of tracing, follow these steps:

Determine the type of tracing (static or dynamic) you want to configure, and then follow these
steps:

1 Go to the location <data_dir>/conf/xpl/trc/

2 Locate the <application_name>.ini file. If the file is present, go to step step 3. If the
<application_name>.ini file is not present, follow these steps:

• Create a new file with a text editor.

• Add the following properties to the file in the given order: DoTrace, UpdateTemplate,
and DynamicTracing.

• Save the file.

3 Open the <application_name>.ini file with a text editor.

4 To enable the static tracing, make sure that the DoTrace property is set to ON and the
DynamicTracing property is set to OFF.

Do not list the properties in a single line. List every property in a new line. For
example:

DoTrace=

UpDateTemplate=

DynamicTracing=
400 Chapter 26

5 To enable the dynamic tracing, make sure that the DoTrace and DynamicTracing
properties are set to ON.

6 Make sure that the UpdateTemplate property is set to ON.

7 Save the file.

For the dynamic trace configuration, you can enable the tracing mechanism even after the
application starts. For the static trace configuration, you must enable the tracing mechanism
before the application starts.

Introduction to the Trace Configuration File

Syntax

TCF Version <version_number>
APP: "<application_name>"
SINK: File "<file_name>" "maxfiles=[1..100];maxsize=[0..1000];"
TRACE: "<component_name>" "<category_name>" <keyword_list>

Each line of the syntax is described in detail in the following sections.

TCF Version

The TCF version line specifies that this is a trace configuration file and also specifies the
version number of the file. It is case-sensitive and must be specified exactly as shown below:

Syntax:

TCF Version <version_number>

Example:

TCF Version 1.1

APP

The application line defines the name of the application to be traced. It must start with APP
followed by a colon (:) and a space and the application name should be in double quotes
("..."). Multiple applications can be specified for the trace. Repeat this pattern for each
application that you want to trace.

Syntax:

APP: "<application_name>"

Example:

APP: "dbmanager"
APP: "opcmsg"
APP: "poller"

SINK

The sink line specifies the target file to which the trace output is directed. The target must be
a file on the same machine. The line must begin with SINK: FILE. The arguments on the line
should be separated by spaces.

The SINK: FILE line has two arguments.

The first argument is the name of the target file and must be in double quotes ("...").
Logging and Tracing 401

The second argument is additional sink type options. The options must be in double quotes
("..."), and each option must be followed by a semi-colon (;).

The options for the sink type File are:

• maxfiles=n

• maxsize=n

maxfiles

The maxfiles option is followed by an integer value between 1 and 100. This option enables
you to specify the number of historic trace log files to be retained. Each time an application
starts to trace to the file, a backup is made of the previous file (if any) by adding ".001" to the
name and renaming the file. If there was a ".001" file already, then it is renamed to ".002" and
so on. The same backup scheme is in effect if the current log file reaches the maximum size.

maxsize

The maxsize option is followed by an integer or float value between 0 and 1000 that specifies
the maximum amount of disk space in megabytes (MB) to be used for each file.

If the last block of trace output written to the file makes the file larger than the specified
maximum, then the next output will back up and close the current output file and a new
output file to be created. A value of 0 is a special case that lets the file grow until you run out
of disk space.

Syntax:

SINK: File "<file_name>" "maxfiles=[1..100];maxsize=[0..1000];"

Example:

SINK: File "C:\\TEMP\\Output.trc" "maxfiles=10;maxsize=100;"

TRACE

The trace line must begin with TRACE followed by a colon (:) and a space (). The arguments
on the line must be separated by spaces.

The first argument is the trace component name and it must be in double quotes ("...").
Multiple components can be specified.

The second argument is the trace category name and it must also be in double quotes ("...").
Multiple components can be specified. If you are using one of the standard categories in the
code, it is mapped to the string value which you specify here. For the exact mapping of
standard category constants to string values, see the language-appropriate documentation
(C++, Java).

Syntax:

TRACE: "<component_name>" "<category_name>" <keyword_list>

Example:

In an existing trace configuration file, you can observe the force option. This option is not
supported with this version of the tracing utility and has no effect on the tracing mechanism.
You can ignore this option while configuring the tracing mechanism.

Use the ovtrcmon or ovtrcgui tool to view the contents of the target file where the trace
output was directed. Formatting is not orderly when the file is opened using standard text
editors.
402 Chapter 26

TRACE: "database" "Parms" Error Info Warn
TRACE: "xpl.io" "Trace" Info

You can use "*" as the component name, category name, or both. This is useful when using
applications in the mode where they read their configuration information directly from a file.

When an application tries to determine the settings for component A and category B, it first
looks to see if the configuration contains an explicit trace definition for this pair. If the trace
definition is there, it uses these settings. If it is not, then it looks to see if there is a
configuration for component A and category *. If there is, it uses these settings. If there is not,
then it looks to see if there is a configuration for component * and category *. If there is, it
uses those settings. If not, then the trace is not activated.

The remaining parameters are a variable list of keyword options. At least one of the
keywords, Error, Info, or Warn, must be in the list. The supported keywords are:

Sample Trace Configuration Files

TCF Version 3.2
APP: "dbmanager"
SINK: File "C:\\TEMP\\Output.trc" "maxfiles=10;maxsize=100;"
TRACE: "DbManager" "Parms" Error Info Warn Developer

Create the Configuration File

If you want to enable the tracing mechanism without the help of a configuration file, skip this
section and go to Enabling Tracing and Viewing Trace Messages with the Command-Line
Tools on page 408.

You can create the trace configuration file with the command-line tool ovtrccfg, with a text
editor, or with the ovtrcgui utility (only on Windows nodes).

Using the Command-Line Tool

Run the following command to generate a trace configuration file:

ovtrccfg -app <application_name> [-cm <component_name>] [-sink <filename>] -gc
<configuration_file_name>

The command creates the configuration file with the details of the applications and
components that you want to trace.

Table 12 Trace Keywords

Keyword Description

Error Enable traces marked as errors.

Warn Enable traces marked as warnings.

Info Enable traces marked as information

Support Enables normal tracing. Trace output include
Informational, Warnings, and Error messages.
This option is recommended for troubleshooting
problems. Tracing can be enabled for long
duration as the overhead to capture trace
output is minimal with this option.
Logging and Tracing 403

Using a Text Editor

If you want to manually create the configuration file with a text editor, follow these steps:

1 With a text editor, create a new file.

2 Specify the version number of the configuration file at the beginning in the following
format:

TCF Version <version_number>

For example:

TCF Version 1.0

3 Specify the application that you want to trace in the following format:

APP <application_name>

For example:

APP “coda”

4 Specify the target location to store the trace files in the following format:

SINK: File “<filename>” “maxfiles=<max_files>;maxsize=<max_size>”

For example:

SINK: File "C:\\TEMP\\Output.trc" "maxfiles=10;maxsize=100;"

If you do not specify any value for the SINK parameter, the tracing mechanism starts
placing the trace output files into the home directory of the traced application.

5 Specify the component and category that you want to trace in the following format:

TRACE: “<component_name>” “<category_name>” “<keyword_list>”

For example:

TRACE: "bbc.cb" "Parms" Error Info Warn

TRACE: "bbc.https.server" "Trace" Info

6 Save the file with the tcf extension.

The trace file name must have the extension trc. Make sure to specify the
complete path of the trace output file in the following format:

<drive>:\\<directory>\\<filename>

If you want to trace multiple components or category, add multiple TRACE
statements with line breaks.
404 Chapter 26

Using the Tracing GUI

On the Windows nodes, you can use the tracing GUI (the ovtrcgui utility) to create the trace
configuration file. To use this utility and create a trace configuration file, follow these steps:

1 Run the ovtrcgui.exe file from the %OvInstallDir%\support directory. The ovtrcgui
window opens.

2 In the ovtrcgui window, click File → New → Trace Configuration. A new trace configuration
editor opens.
Logging and Tracing 405

3 In the ovtrcgui window, click Edit → Add Application. Alternatively, right-click on the
editor, and then click Add Application. The Add Application window opens.

4 Select the application that you want to trace, and then click OK. The Configuration for
<application> window opens.
406 Chapter 26

The Traces tab of the Configuration for <application> window lists all the components
and categories of the selected application. By default, tracing for all the components and
categories are set to Off.

5 In the Traces tab, click a component and category pair, and then click one of the following
buttons:

• Support: Click this to gather trace messages marked as informational notifications.

• Developer: Click this to gather trace messages marked as informational notifications
along with all developer traces.

• Max: Click this to set the maximum level of tracing.

• Custom: When you click Custom, the Modify Trace window opens.

In the Modify Trace window, select the custom options, select the trace levels and
options of your choice, and then click OK.

6 Click OK.

7 Go to the Sink tab.

8 Specify the name of the trace output file in the File Name text box. The file extension
must be .trc.

9 Specify the number of historic files from the drop-down list (see maxfiles on page 402).

10 Specify the maximum file size from the drop-down list (see maxsize on page 402).

11 Click Apply.

12 Click OK.

13 Click File → Save. The Save As dialog box opens.

14 In the Save As dialog box, browse to a suitable location, specify the trace configuration file
name with the .tcf extension in the File name text box, and then click Save.

In the Configuration for <application> window, you can click Off to disable tracing
for a component-category pair.

Specify the complete path for the .trc file.

The ovtrcgui utility enables the tracing mechanism when you click OK.
Logging and Tracing 407

The ovtrcgui utility saves the new trace configuration file into the specified location with
the specified name and enables the tracing mechanism based on the configuration
specified in the file. You can open the trace configuration file with the ovtrcgui utility
and add new configuration details.

15 If you try to close the trace configuration editor or the ovtrcgui window, the following
message appears:

16 If you click No, the tracing mechanism continues to trace the configured applications on
the system. If you click Yes, the ovtrcgui utility immediately disables the tracing
mechanism.

Enabling Tracing and Viewing Trace Messages with the
Command-Line Tools

The procedure outlined below covers the general sequence of steps required to enable tracing.
To enable the tracing mechanism, follow these steps:

1 Make a trace configuration request using ovtrccfg.

ovtrccfg -cf <configuration_file_name>

where <configuration_file_name> is the name of the trace configuration file created in
Create the Configuration File on page 403.

2 If you configure the static tracing mechanism, start the application that you want to trace.

3 Run the application specific commands necessary to duplicate the problem that you want
to trace. When the desired behavior has been duplicated, tracing can be stopped.

4 Make a trace monitor request using ovtrcmon.

To monitor trace messages, run one of the following commands or a similar command
using additional ovtrcmon command options:

• To monitor trace messages from /opt/OV/bin/trace1.trc and direct trace
messages to a file in the text format:

ovtrcmon -fromfile /opt/OV/bin/trace1.trc -tofile /tmp/
traceout.txt

• To view trace messages from /opt/OV/bin/trace1.trc in the verbose format:

ovtrcmon -fromfile /opt/OV/bin/trace1.trc -verbose

If you do not want to use a trace configuration file, you can enable tracing with the
following command:

ovtrccfg -app <application> [-cm <component>]
408 Chapter 26

• To view trace messages from /opt/OV/bin/trace1.trc in the verbose format and
direct the trace message to a file:

ovtrcmon -fromfile /opt/OV/bin/trace1.trc -short > /tmp/traces.trc

5 To stop or disable tracing using ovtrccfg, run the following command:

ovtrccfg -off

6 Collect the trace configuration file and the trace output files. Evaluate the trace messages
or package the files for transfer to HP Software Support Online for evaluation. There may
be multiple versions of the trace output files on the system. The Maxfiles option allows
the tracing mechanism to generate multiple trace output files. These files have the
extension .trc and the suffix n (where n is an integer between 1 and 99999).

Enabling Tracing and Viewing Trace Messages with the Tracing
GUI

On the Windows nodes, you can use the ovtrcgui utility to configure tracing and view the
trace messages.

Enable the Tracing Mechanism

To enable the tracing mechanism with the ovtrcgui utility and without the help of a trace
configuration file, follow these steps:

1 Follow step 1 on page 405 through step 6 on page 407 in Using the Tracing GUI on
page 405.

2 Close the trace configuration editor.

3 Click No when prompted to save changes to Untitled.

The following message appears:

4 Click No. If you click Yes, the ovtrcgui utility immediately disables the tracing
mechanism.

To enable the tracing mechanism with the ovtrcgui utility using a trace configuration file, go
to the location on the local system where the trace configuration file is available, and then
double-click on the trace configuration file. Alternatively, open the ovtrcgui utility, click File
→ Open, select the trace configuration file, and then click Open.
Logging and Tracing 409

View Trace Messages

To view the trace output files with the ovtrcgui utility, follow these steps:

1 Run the ovtrcgui.exe file from the %OvInstallDir%\support directory. The ovtrcgui
window opens.

2 Click File → Open. The Open dialog box opens.

3 Navigate to the location where the trace output file is placed, select the .trc file, and
then click Open. The ovtrcgui utility shows the contents of the .trc file.

Every new line in the .trc file represents a new trace message.
410 Chapter 26

4 Double-click a trace message to view the details. The Trace Properties window opens.

The Trace Properties window presents the following details:

• Trace Info:

— Severity: The severity of the trace message.

— Count: The serial number for the message.

— Attributes: The attribute of the trace message.

— Component: Name of the component that issues the trace message.

— Category: An arbitrary name assigned by the traced application.

• Process Info:

— Machine: Hostname of the node.

— Application: Name of the traced application.

— PID: Process ID of the traced application.

— TID: Thread ID of the traced application.

• Time Info:

— Time: The local-equivalent time and date of the trace message.

— Tic count: A high-resolution elapsed time.
Logging and Tracing 411

— Tic difference:

• Location

— Source: Line number and file name of the source generating the trace.

— Stack: A description of the calling stack in the traced application.

5 Click Next to view the next trace message.

6 After viewing all the trace messages, click Cancel.

Use the Trace List View

By default, the ovtrcgui utility displays the trace messages for a trace file in the trace list
view. The trace list view presents the trace messages in a tabular format.

The trace list view presents every trace message with the help of the following columns:

Table 13 Trace List View

Column Description

Severity Indicates the severity of the trace message. The view uses the
following icons to display the severity of the messages:

• Info

• Warning

• Error

Application Displays the name of the traced application.

Component Displays the name of the component of the traced application
that generated the trace message.

Category Displays the category of the trace message.

Trace Displays the trace message text.
412 Chapter 26

Use the Procedure Tree View

You can view the trace messages in a structured format in the procedure tree view. The
procedure tree view sorts the messages based on the process IDs and thread IDs and presents
the data in the form of a tree view.

You can expand the process IDs and thread IDs to view trace messages. To go back to the

trace list view, click .
Logging and Tracing 413

Filter Traces

The ovtrcgui utility displays all the trace messages that are logged into the trace output files
based on the configuration set in the trace configuration file. You can filter the available
messages to display only the messages of your choice in the ovtrcgui console. To filter the
available trace messages, follow these steps:

1 In the ovtrcgui console, click View → Filter. The Filter dialog box opens.
414 Chapter 26

2 Expand All Traces. The dialog box lists all filtering parameters in the form of a tree.

3 Expand the parameters to make selections to filter the trace messages.

4 Click OK. You can see only the filtered messages in the ovtrcgui console.
Logging and Tracing 415

416 Chapter 26

27 Troubleshooting Operation
This section describes the solutions or workarounds for the common problems encountered
while working with the HP Operations agent. Areas covered in this section include:

• Operations Monitoring Component

• Performance Collection Component

• RTMA

Operations Monitoring Component

• Problem: On the Windows Server 2008 node, the opcmsga process does not function, and
the ovc command shows the status of the opcmsga process as aborted.

Solution:

Set the OPC_RPC_ONLY variable to TRUE by running the following command:

ovconfchg -ns eaagt -set OPC_RPC_ONLY TRUE

• Problem: On Windows nodes, Perl scripts do not work from the policies.

Cause: Perl scripts available within the policies require the PATH configuration variable to
include the directory where Perl (supplied with the HP Operations agent) is available.

Solution:

a Run the following command to set the PATH configuration variable to the Perl
directory:

ovconfchg -ns ctrl.env -set PATH "%ovinstalldir%nonOV\perl\a\bin"

b Restart the agent by running the following commands:

— ovc -kill

— ovc -start

• Problem: Changes do not take effect after changing the variable values through the
ovconfchg command.

Cause 1:

The variable requires the agent to be restarted.

Solution 1:

Restart the agent by running the following commands:

a ovc -kill

b ovc -start

Cause 2:
417

ConfigFile policies deployed on the node sets the variable to a certain value.

Solution:

If the deployed ConfigFile policies include commands to set the configuration variables to
certain values, your changes through the ovconfchg command will not take effect. You
must either remove the ConfigFile policies from the node, or modify the policies to include
the commands that set the variables to the desired values.

Cause 3:

The profile or job file available on the node override your changes.

Solution:

Open the profile or job file on the node and make sure they do not include conflicting
settings for the variables.

• Problem: After changing the value of the configuration variable SNMP_SESSION_MODE, the
status of the opctrapi process is shown as Aborted by ovc.

Cause:

After you change the value of the configuration variable SNMP_SESSION_MODE, the HP
Operations agent attempts to restart opctrapi. Occasionally, the process of restarting
opctrapi fails.

Solution:

Restart opctrapi by running the following command:

ovc -start opctrapi

• Problem: The opcmona process is automatically restarted after you run a schedule task
policy with an embedded perl script on the node and the following message appears in the
HPOM console:

(ctrl-208) Component 'opcmona' with pid 6976 exited with exit value
'-1073741819'. Restarting component.

Cause:

References of exit (o) in the embedded perl script cause opcmona to restart.

Solution:

Do not use exit (o) in the embedded perl script.

Performance Collection Component

• Problem: The following error appears in the status.midaemon file on the HP-UX 11.11
system:

mi_shared - MI initialization failed (status 28)

Cause: Large page size of the midaemon binary.

Solution: To resolve this, follow these steps:

a Log on to the system as the root user.

b Run the following command to stop the HP Operations agent:

/opt/OV/bin/opcagt -stop
418 Chapter 27

c Run the following command to take a backup of midaemon:

cp /opt/perf/bin/midaemon /opt/perf/bin/midaemon.backup

d Run the following command to reduce the page size to 4K for the midaemon binary:

chatr +pi 4K /opt/perf/bin/midaemon

e Run the following command to start the HP Operations agent:

/opt/OV/bin/opcagt -start

• After installing the HP Operations agent, the following error message appears in the
System.txt file if the tracing mechanism is enabled:

Scope data source initialization failed

Solution: Ignore this error.

RTMA

• Problem: On the vSphere Management Assistant (vMA) node, the rtmd process does not
function, and the ovc command shows the status of the rtmd process as aborted.

Cause: The rtmd process cannot resolve the hostname of the system to the IP address.

Solution:

a Log on to the node with the root privileges.

b From the /etc directory, open the hosts file with a text editor.

c Locate the line where the term localhost appears.

d Remove the # character from the beginning of the line.

e Save the file.

f Start all processes by running the following command:

ovc -restart

• Problem: The Diagnostic view of HP Performance Manager cannot access data.

Cause: The rtmd process is not running.

Solution: To check if the rtmd process is running on the HP Operations agent node, run
ovc -status rtmd. To start the rtmd process, run ovc -start rtmd.

• Problem: The following error appears in the status.perfd file on the HP-UX 11.11
system:

mi_shared - MI initialization failed (status 28)

Cause: Large page size of the perfd binary.

Solution: To resolve this, follow these steps:

a Log on to the system as the root user.

b Run the following command to stop the HP Operations agent:

/opt/OV/bin/opcagt -stop

c Run the following command to take a backup of perfd:

cp /opt/perf/bin/perfd /opt/perf/bin/perfd.backup
Troubleshooting Operation 419

d Run the following command to reduce the page size to 4K for the perfd binary:

chatr +pi 4K /opt/perf/bin/perfd

e Run the following command to start the HP Operations agent:

/opt/OV/bin/opcagt -start
420 Chapter 27

Index
A
accessing DSI data, 303

accessing help
extract program, 131
utility program, 82

action, 293

adding new applications, 357

adding new transactions, ttd.conf, 357, 368

agdb, 158

agdb database, 158

agdbserver, 158

agsysdb, 158

alarm
generator, 293
processing, 293

alarm conditions in historical log file data, 78, 159,
233, 235

alarmdef
changes, 293

alarmdef file, 78, 79, 175, 181, 293

alarm definition
DSI metric name in, 293

alarm definitions
application metrics, 164
components, 161
configuring, 244
customizing, 181
examples, 179
file, 78, 233, 244
metric names, 164
modifying, 246
syntax checking, 79

alarm generator, 158

alarming on transaction data
with GlancePlus, 369, 370
with Performance agent, 370
with Performance Manager, 369

alarm processing errors, 159

alarms
configuring, 294
defining, 293
local actions, 158
sending messages to Operations Manager, 158

ALARM statement, alarm syntax, 165

alarm syntax, 162
ALARM statement, 165
ALERT statement, 169
ALIAS statement, 177
comments, 163
common elements, 162
compound statements, 163
conditions, 163, 166, 172
constants, 164
conventions, 162
EXEC statement, 170
expressions, 164
IF statement, 172
INCLUDE statement, 174
LOOP statement, 173
messages, 165
metric names, 164
PRINT statement, 171
reference, 162
SYMPTOM statement, 177
USE statement, 174
variables, 176
VAR statement, 176

alert, 293

ALERT statement, alarm syntax, 169

ALIAS statement, alarm syntax, 177

analyze command, utility program, 78

analyzing
historical log file data, 78, 159
log files, 78, 159

analyzing data
with GlancePlus, 369
with Performance Manager, 369

analyzing historical log file data, 233

analyzing log files, 233, 235

appending archived data, 232
 421

application command, extract program, 121

application definition parameters, parm file, 35

application example, 347

application LOOP statement, alarm syntax, 173

application metrics, in alarm definitions, 164

application name parameter, parm file, 35

application name record, 115

Application Response Measurement
2.0 features, 352
2.0 logging agent, 352
2.0 Software Developers Kit (SDK), 352
benefits of, 346
guidelines for using, 361
library (libarm), 383
no operation-library (libarmNOP), 390
obtaining shared library for, 365
overhead considerations, 361
sample applications, 353

applications
adding new, 357
defined in ttd.conf, 359

archival periods, 231

archiving, appending data, 232

archiving log file data, 47, 135, 149, 151, 231, 233

archiving processes, managing, 47

archiving tips, 232

argv1 keyword, parm file, 36

arm.h include file, 388

ARM API
error messages from, 371
function calls, 348
instrumenting scopeux, 381
shared library, 365
status returns, 355
transaction tracking and, 351

ARM API calls
arm_complete_transaction, 353
arm_getid call, 390
arm_init call, 390
arm_start call, 392

ARM correlators, 362

ASCII format, export file, 106, 221

ASCII record format, 110

B
binary format, export file, 106, 221

binary header record layout, 111

binary record format, 110

building collections of performance counters, 256

C
capacity, 279

statement, 282

C compiler option examples by platform, 388

C function
arm_stop, 394

changing
alarmdef file, 293
class specifications, 302

changing range or SLO, ttd.conf, 357, 368

checkdef command, utility program, 79

checking Performance Agent status, 255

class
capacity, 279, 282
definitions, 271
description, 266
description defaults, 273
ID requirements, 273
index interval, 274
label, 274
listing with sdlutil, 304
name requirements, 273
records per hour, 281
roll interval, 274
statement, 273
syntax, 273

class command, extract program, 122

class specification
changing, 302
compiling, 309, 313, 319
creating, 309, 311, 315
metrics definition, 283
recreate using sdlutil, 304
testing, 297

cmd parameter, parm file, 37

collecting data with Performance agent, 369

collection parameters
configuring, 241
modifying, 243, 254

column headings, specifying in export files, 222

command abbreviations
extract, 117
utility, 77

command line arguments
extract program, 99
utility program, 67
422

command line interface
extract program, 98, 99
utility program, 65, 67

commands
extract program, 117
perfstat, 21
utility program, 77

comments, using in alarm syntax, 163

compiler output, sample, 291

compiling class specification, 309, 313, 319

components of transaction tracking, 351

compound actions in ALARM statement, 167

compound statements in alarm syntax, 163

conditions
alarm syntax, 163, 172
in alarm syntax, 166

configuration command, extract program, 123

configure
community strings, 49
monitor agent, 49

Configure Data Logging Intervals, 39

configuring
alarm definitions file, 244
collection parameters, 241
export template files, 228, 229
parm file, 241
transactions, 250
ttdconf.mwc file, 250

configuring alarms, 294

configuring tracing, 398

configuring user options, 239

constants, in alarm syntax, 164

controlling disk space used by log files, 45

conventions, alarm syntax, 162

correlator data collection, 366

cpu command, extract program, 123

cpu option, 29

CPU overhead, 362

creating
class specification, 262
log files, 266

creating custom graphs or reports, 108

customized export template files, 105, 228

customizing the ttd.conf file, 368

D
data

accessing, 303
collecting, 262
exporting, 303
logging, 262
managing, 304

data collection
management, 45
stopping, 44

datafile format, export file, 106, 221

datafile record format, 110

data source integration
error messages, 329
examples of using DSI, 307
how it works, 261
overview, 261
testing, 297

data sources, 175

data type parameter, export template file, 107

data types, 103, 216, 379

decimal places, metrics, 285

default export file names, 223

default log parameter, parm file, 366

defaults
class description, 273
class label, 274
delimiters, 286, 297
metrics, 284
records per hour, 281
separator, 286
separators, 297
summarization level, 281, 294

default ttd.conf file, 357, 358, 359

defining
measurement ranges, 368
service level objectives, 366, 368

delimiters, 286, 297

deploying an application, 367

detail command, utility program, 80

disk command, extract program, 124

disk device name record, 115

disk I/O, overhead, 362

disk option, 29

disk space used by log files, controlling, 45

displaying data in Performance Manager, 303

DSI. See also data source integration
423

dsilog
input to, 294
logging process, 294, 310
syntax, 294
writing a script, 308

DSI log files, 127, 131

dsilog program, 269

DSI metrics in alarm definitions, 293

E
error handling considerations, 367

error messages, 329
from ARM API, 371
from midaemon, 371

errors, alarm processing, 159

escape characters, 274, 275, 284

examining trends, 346

examples
transaction tracking, 375
ttd.conf, 377

examples of using DSI, 307
logging sar data for several options, 321
logging sar data from one file, 311
logging sar data from several files, 315
logging the number of system users, 327
logging vmstat data, 309
writing a dsilog script, 308

excluding data from logging, 300

EXEC statement, alarm syntax, 170

executing an application, 367

executing local actions, 158

exit command, extract program, 125

exit command, utility program, 81

export command, extract program, 103, 125

export data types, 103

export default output files, 126

export file
ASCII format, 221
attributes, 220, 223
binary format, 221
datafile format, 221
default file names, 223
title, 108
WK1 (spreadsheet) format, 221

export file title, 222

export function
data files, 105
export template files, 104
export template file syntax, 106
overview, 103
process, 103
sample tasks, 104
using, 108

exporting DSI log file data, 131

exporting log file data, 125, 219, 225
according to dates and times, 217

exporting logged data, 303, 310

exporting transaction data using Performance agent,
369

export template file
configuring, 228, 229
data type, 107
export file title, 108
field separator, 221
file format, 221
format, 106
headings, 107, 222
items, 107
layout, 107
making a quick template, 226
missing, 107
missing value, 221
multiple layout, 222
output, 107
parameters, 106
report, 106
separator, 107
summary, 107
summary minutes, 221
syntax, 106

expressions, in alarm syntax, 164

Extended Collection Builder and Manager, 256
tips for using, 257

extract
using with transaction data, 367

extract command, extract program, 127
424

extract commands
application, 121
class, 122
configuration, 123
cpu, 123
disk, 124
exit, 125
export, 103, 125
extract, 127
filesystem, 129
global, 129
guide, 130
help, 131
list, 131
lvolume, 133
menu, 134
monthly, 135
output, 137
process, 139
quit, 140
report, 140
sh, 141
shift, 141
show, 142
start, 144
stop, 145
weekdays, 148
weekly, 149
yearly, 151

extracting log file data, 127, 218
according to dates and times, 217

extracting transaction data using Performance
agent, 369

extract program, 97, 303
command line arguments, 99
command line interface, 99
commands, 117
interactive versus batch, 98
running, 98

F
field separator parameter, export template file, 221

fifo, 294

file attributes, export, 220

file format parameter, export template file, 221

file names, default export files, 223

file parameter, parm file, 36

files
alarmdef, 78, 79, 181, 293
alarm definitions, 78, 233, 244
collection parameters, 241
export template, 104
logappl, 27
logdev, 27
logglob, 27
logproc, 27
parm, 241
reptall, 104
reptfile, 104, 140
reptfile.mwr, 223
repthist, 104
status.scope, 21
ttdconf.mwc, 250

filesystem command, extract program, 129

Flush, 33

format file, 294, 300

format parameter
export template file, 106

G
gapapp, 31

GlancePlus
alarming on transaction data, 369, 370
analyzing transaction data, 369
identifying performance bottlenecks, 348
monitoring transaction data, 369
support of Application Response Measurement

2.0, 352
viewing transaction data, 348

global command, extract program, 129

group parameter, parm file, 37

guide command, extract program, 130

guide command, utility program, 81

guided mode
extract, 130
utility, 81

guidelines for using ARM, 361

H
headings parameter, export template file, 107, 222

help command, extract command, 131

help command, utility program, 82

HP Network Node Manager, 158

I
identifying performance bottlenecks, 348
425

ID parameter
parm file, 27

IF statement, alarm syntax, 172

INCLUDE statement, alarm syntax, 174

index interval, class, 274

input to dsilog, 294

interactive mode
extract program, 98
utility program, 66

interesting processes, 27, 46

items parameter, export template file, 107

J
javaarg parameter, parm file, 33

Java wrappers, 390
documentation, 396
examples, 390
setting up an application, 390
setting up a transaction, 390
starting a transaction instance, 392
stopping a transaction instance, 394
updating transaction instance data, 393
using complete transaction, 395

K
kernel parameters, 294

keywords
range, 358, 368
slo, 359, 368
tran, 358, 368

L
label

class, 274
metrics, 284

layout parameter, export template file, 107

length text metrics, 286

libarm, 365, 383

libarmNOP, 390

libraries
using libarm, 365

limits on unique transactions, 367

list command, extract program, 131

list command, utility program, 82

local actions
alarms, 170
executing, 158

logappl file, 27
PRM groups, 27

logdev file, 27

log file
size, controlling, 279

logfile command, utility program, 83

log file data
analyzing for alarm conditions, 159, 233, 235
archiving, 135, 149, 151, 231, 233
exporting, 125, 219, 225
extracting, 127, 218
resizing, 237, 238
scanning, 235, 236

log files
archiving data, 47
controlling disk space, 45
DSI, 127, 261
organization, 266
resizing, 86
rolling back, 46
scanning, 90
setting maximum size, 32, 46

log file sets
defining, 266
listing with sdlutil, 304
naming, 271
rolling, 279

logged data, exporting, 303

logging agent, Application Response Measurement
2.0, 352

logging data
run dsilog program, 269

logging process, 294, 310
dsilog, 310
testing, 297

logging transaction data, 348

logglob file, 27, 151

logical volume name record, 116

log parameter, parm file, 27

logproc file, 27

long-term analysis, 346

LOOP statement, alarm syntax, 173

lvolume command, extract program, 133

M
maintenance time, parm file, 32

mainttime parameter, parm file, 32, 46

making a quick export template, 226
426

managing DSI data, 304

managing SLOs, 347

mapping incoming data to specification, 300

measurement, defining ranges, 368

Measurement Interface daemon, See midaemon, 351

memory option, 29

memory overhead, 362

menu command
extract program, 134
utility program, 84

messages in alarm syntax, 165

metric names in alarm syntax, 164, 177

metrics, 373
defaults, 284
definition, 283
description, 266
id requirements, 283
keyword, 283
label, 284
label requirements, 284
listing with sdlutil, 304
name requirements, 283
order, 284
precision, 285
reusing name, 284
summarization method, 285
text, 286

metrics, selecting for export, 227, 230

metrics in alarm definitions, 293

MIB ID, 50

midaemon, 351, 367
error messages, 371
errors, 355
memory overhead, 363
resizing the midaemon shared memory segment,

368
shared memory segment, 355, 367

missing parameter, export template file, 107, 221

modify class specification file, 302

modifying
alarm definitions, 246
collection parameters, 22, 243, 254
parm file, 22, 243, 254

modifying the parm file, 366

monitoring transaction performance data, 348

monthly command, extract program, 135

multiple layout, specifying in export files, 222

multiple layout parameter, export template file, 222

mwa script, 44

N
named pipe, 294

naming a transaction, 358, 368

netif name record, 116

Network Node Manager, 293

nokilled option, 29

no operation library, 390

numeric format option, 300

numeric metrics, format file, 300

O
OIDs, 50

Operations Manager, 294

order of metrics, changing, 300

or parameter, parm file, 38

output command, extract program, 137

output parameter, export template file, 107

overflow conditions, 367

overhead
considerations for using ARM, 361
CPU, 362
disk I/O, 362
memory, 362

overview
data source integration, 261

overview of transaction tracking, 351

ovpa restart, 367

ovpa start, 367

ovpa stop scope, 366

P
parameter

subprocinterval, 31

parm file
application definition parameters, 35
configure data logging intervals, 39
configuring, 241
flush, 33
gapapp, 31
modifications for Performance Manager and

Performance agent, 366
modifying, 22, 243, 254
parameters, 26
subprocinterval parameter, 31
syntax check, 85
427

parm file application keywords
argv1, 36

parm file application parameters
cmd, 37

parmfile command, utility program, 85

parm file parameters
application name, 35
file, 36
group, 37
ID, 27
javaarg, 33
log, 27
mainttime, 32, 46
or, 38
priority, 38
scopetransactions, 30
size, 32

perfalarm, 158, 175

perflbd.mwc file
format, 247

Performance Agent
data types, 216
extract program, 97
status checking, 255
summarization levels, 217
utility program, 65

Performance agent
collecting and logging data, 369
exporting transaction data, 369
extracting transaction data, 369
modifying the parm file, 366
restarting, 367
starting, 367
support of Application Response Measurement

2.0, 352
viewing transaction data, 348

performance counters, building collections of, 256

Performance Manager
alarming on transaction data, 369, 370
analyzing transaction data, 369
displaying DSI data, 303
viewing transaction data, 348

perfstat command, 21

piping data to dsilog, 294

precision, 285
metrics, 285

PRINT statement, alarm syntax, 171

priority parameter, parm file, 38

PRM application logging mode, 35

PRM groups
APP_NAME_PRM_GROUPNAME, 27

proccmd, 34

process command, extract program, 139

processing alarms, 293

Q
quit command

extract program, 140
utility program, 86

R
range keyword, 358

ranges of data to export or extract, 217

raw log files
managing space, 86
names, 83

record formats
ASCII, 110
binary, 110
datafile, 110

records per hour, 281, 294

report command, extract program, 140

reporting alarm conditions in historical log file data,
234

reporting of log file contents, 235, 236

report parameter, export template file, 106

reptall file, 104

reptfile.mwr file, 223

reptfile file, 104, 140

repthist file, 104

resize command
default resizing parameters, 87
reports, 88
utility program, 66, 86

resizing
log files, 86
tasks, 46

resizing log files, 237, 238

resizing the midaemon shared memory segment, 368

resource data collection, 366

reusing metric names, 284

roll
action, 275
example of action, 275
interval, 274
428

rolling back log files, 46

running
an application, 367
extract program, 98
ttd, 355
utility program, 65

S
sample ARM-instrumented applications, 353

sample compiler output, 291

sar
example of logging sar data for several options,

321
example of logging sar data from one file, 311
example of logging sar data from several files,

315

scan command, utility program, 90

scanning a log file, 90

scanning transaction data with Performance Agent,
369

SCOPE default data source, 164, 174, 175

scopetransactions parameter, parm file, 30

scopeux, 261
instrumenting with ARM API calls, 381
stopping, 44
stopping and restarting, 355, 357

SDL
prefix for class specification error messages, 290

sdlcomp, 309
compiler, 309

sdlcomp compiler, 266

sdlgendata, 297

sdlutil, 304, 310
syntax, 304

sending alarm information, 293

sending alarm messages, 158, 169

sending SNMP traps, 158

separating metrics in export files, 221

separator, 286

separator parameter, export template file, 107

separators, 297

service level objectives
defining, 366
managing, 347

setting maximum size of log files, 46

setting up tracing, 398

shared libraries, 390

shared memory segment, midaemon, 355, 367

sh command
extract program, 141
utility program, 91

shift command, extract program, 141

shortlived option, 29

show command
extract program, 142
utility program, 92

size parameter, parm file, 32

slo keyword, 359

SLOs
See service level objectives, 347

SNMP
nodes, 158
traps, 158

SNMP_COMMUNITY, 50

SNMP_COMMUNITY_LIST, 50

SNMP traps, 293

start command
extract program, 144
parameters, 93
utility program, 93

starting
Performance agent, 367
ttd, 355

starting logging process, 294

state persistence, 51

statistics, listing with sdlutil, 304

status.mi, 371

status.scope file, 21

status bar, displaying, 239

stop command
extract program, 145
parameters, 94
utility program, 94

stopping
applications, 355
data collection, 44
scopeux, 44
ttd, 355

stopping and restarting scopeux, 355, 357

summarization level, 294
default, 281

summarization levels, 217

summarization method, 285
429

summarized by option, 285

summary minutes, specifying in export files, 221

summary parameter, export template file, 107, 221

support of
Application Response Measurement 2.0, 352

SYMPTOM statement, alarm syntax, 177

syntax
dsilog, 294
export, 303
sdlutil, 304

T
terminating

extract program, 125, 140
utility command, 86
utility program, 81

testing
class specification, 297
logging process, 297

text metrics
format file, 300
specifying, 286

threshold parameter, parm file
cpu option, 29
disk option, 29
memory option, 29
nokilled option, 29
nonew option, 29
shortlived option, 29

timestamp, 284
suppressing, 294

Tip of the Day, 239

toolbar, displaying, 239

ToolTips, displaying, 239

trace
configuration files

application, 401
sink, 401
syntax version, 401
trace, 402

tracing
dynamic

enabling, 408
setting up, 398

tran keyword, 358

transaction
adding new to ttd.conf, 357
data, 346
metrics, 373
naming, 368

Transaction configuration file, 357

transaction configuration file, See ttd.conf, 351

transaction metrics, 373

transaction name record, 115

transaction names, 358

transactions configuring, 250

Transaction Tracker
instrumenting an application, 348

transaction tracking
benefits of, 346
components of, 351
error handling, 367
examples, 375
limits on unique transactions, 367
missing data, 367
overview, 347
setting up an application, 365
startup, 355
technical reference, 351
viewing data, 348

Transaction Tracking registration daemon, See ttd,
351

troubleshooting sdlcomp, 292

ttd, 351, 367

ttd.conf, 351, 357
adding new transactions, 357
adding transactions, 368
changing range or SLO, 357, 368
customizing, 368
default, 357, 358, 359, 368
example, 377
format, 359
keywords, 358

ttdconf.mwc file, 250

U
UNIX kernel parameters, 294

UNIX timestamp, 284

user-defined metrics, 380

user options, configuring, 239

USE statement, alarm syntax, 174

utilities, sdlutil, 304
430

utility commands
analyze, 78
checkdef, 79
detail, 80
exit, 81
guide, 81
help, 82
list, 82
logfile, 83
menu, 84
parmfile, 85
quit, 86
resize, 66, 86
scan, 90
sh, 91
show, 92
start, 93
stop, 94

utility program, 65, 77, 159
batch mode, 66
batch mode example, 66
command line arguments, 68
command line interface, 65, 67
entering shell commands, 91
interactive mode, 66
interactive program example, 66
interactive versus batch, 65
running, 65

utility scan report
application overall summary, 74
application-specific summary report, 72
collector coverage summary, 74
initial parm file application definitions, 71
initial parm file global information, 70
log file contents summary, 75
log file empty space summary, 76
parm file application addition/deletion

notifications, 72
parm file global change notifications, 71
process log reason summary, 73
scan start and stop, 74
scopeux off-time notifications, 72

V
Variable Data Logging, 39

variables, alarm syntax, 176

VAR statement, alarm syntax, 176

version information, displaying, 304

viewing transaction data
overview, 348
with GlancePlus, 348
with Performance agent, 348
with Performance Manager, 348

vmstat
example of logging vmstat data, 309

W
weekdays command, extract program, 148

weekly command, extract program, 149

who word count example, 327

WK1 (spreadsheet) format, export file, 221

WK1 format, export file, 106

writing a dsilog script, 308
problematic dsilog script example, 308
recommended dsilog script example, 308

Y
yearly command, extract program, 151

Z
zone_app, 34
431

432

We appreciate your feedback!

If an email client is configured on this system, by default an email window opens when you
click on the bookmark “Comments”.

In case you do not have the email client configured, copy the information below to a web mail
client, and send this email to docfeedback@hp.com

Product name:

Document title:

Version number:

Feedback:

	User Guide
	Contents
	1 Introduction
	Documentation Map
	Related Documentation

	2 Managing Data Collection
	Collection Log Files
	logglob
	logappl
	logproc
	logpcmd
	logdev
	logtran
	logls
	logindx

	Scope Status
	parm File
	Modify the parm File
	parm File Parameters
	Parameter Descriptions
	Application Definition Parameters
	Configure Data Logging Intervals

	Configuring Data Collection on vMA Nodes
	Normalizing CPU Metrics on Hyper-Threading/Simultaneous Multi-Threading-Enabled Systems
	Logging Metrics Calculated with the Core-Based Normalization

	Stopping and Restarting Data Collection
	Stopping Data Collection
	Restarting Data Collection
	Daylight Savings
	Changing System Time Manually

	Effective Data Collection Management
	Controlling Disk Space Used by Log Files
	Setting mainttime
	Setting the Maximum Log File Size
	Managing Your Resizing Processes

	Data Archiving
	Managing Your Archiving Processes

	3 Working with the HP Operations Agent
	Configuring the Monitor Agent
	Configure the Agent to Monitor MIB Objects
	Persistence of Monitored Object

	Configuring the Event Interceptor
	Configuring the RTMA Component
	Configuring the Agent User
	Change the Default User on Windows
	Configure the Agent User to Start or Stop Services and Processes

	Change the Default User on UNIX/Linux
	Change the Default User for Commands

	Configuring viserver for Monitoring vMA Nodes
	viserver.properties
	port
	hosts
	instance
	jvmArgs
	log4jInterval

	VILog4j.xml

	Monitoring Applications and Services Logs on Windows
	Monitor Applications and Services Event Logs from HPOM for Windows
	Monitor Applications and Services Event Logs from HPOM on UNIX/Linux 9.1x
	Monitor Applications and Services Event Logs from HPOM for UNIX 8.35

	4 Using the Utility Program
	Running the Utility Program
	Using Interactive Mode
	Example of Using Interactive and Batch Mode

	Utility Command Line Interface
	Example of Using the Command Line Interface

	Utility Scan Report Details
	Scan Report Information
	Initial Values
	Initial Parm File Global Information

	Initial Parm File Application Definitions
	Chronological Detail
	Parm File Global Change Notifications
	Parm File Application Addition/Deletion Notifications
	scope Off-Time Notifications
	Application-Specific Summary Report

	Summaries
	Process Log Reason Summary
	Scan Start and Stop
	Application Overall Summary
	Collector Coverage Summary
	Log File Contents Summary
	Log File Empty Space Summary

	5 Utility Commands
	analyze
	checkdef
	detail
	exit
	guide
	help
	list
	logfile
	menu
	parmfile
	quit
	resize
	Resize Command Reports
	Examples

	scan
	sh
	show
	start
	stop

	6 Using the Extract Program
	Running the Extract Program
	Syntax

	Using Interactive Mode
	Extract Command Line Interface
	Overview of the Export Function
	How to Export Data
	Sample Export Tasks
	Generating a Printable CPU Report
	Producing a Customized Export File

	Export Data Files
	Export Template File Syntax
	Parameters
	Export File Title

	Creating a Custom Graph or Report
	Output of Exported Files
	Notes on ASCII and Datafile Formats
	Notes on Binary Format
	Binary Header Record Layout
	Binary Title Record
	Binary Item Identification Record
	Binary Scale Factor Record
	Special Scale Factors
	Application Name Record
	Transaction Name Record
	Disk Device Name Record
	Logical Volume Name Record
	Netif Name Record

	7 Extract Commands
	application
	class
	configuration
	cpu
	disk
	exit
	export
	extract
	filesystem
	global
	guide
	help
	list
	logfile
	lvolume
	menu
	monthly
	netif
	output
	process
	quit
	report
	sh
	shift
	show
	start
	stop
	transaction
	weekdays
	weekly
	yearly

	8 Using the cpsh Program
	Using the Interactive Mode
	View Real-Time Metrics
	Modify a Metric Class
	View All the Available Metrics
	Organize a Metric Class

	View Metric Help
	View Summarized Metric Data

	9 Performance Alarms
	Processing Alarms
	Alarm Generator
	Sending SNMP Traps to Network Node Manager
	Sending Messages to HPOM
	Executing Local Actions
	Errors in Processing Alarms
	Analyzing Historical Data for Alarms
	Examples of Alarm Information in Historical Data

	Alarm Definition Components
	Alarm Syntax Reference
	Alarm Syntax
	Conventions
	Common Elements
	Comments
	Compound Statements
	Conditions
	Constants
	Expressions
	Metric Names
	Messages

	ALARM Statement
	Syntax
	How It Is Used
	Examples

	ALERT Statement
	Syntax
	How It Is Used
	Example

	EXEC Statement
	Syntax
	How It Is Used
	Examples

	PRINT Statement
	Syntax
	Example

	IF Statement
	Syntax
	How It Is Used
	Example

	LOOP Statement
	Syntax
	How It Is Used
	Example

	INCLUDE Statement
	Syntax
	How It Is Used
	Example

	USE Statement
	Syntax
	How It Is Used

	VAR Statement
	Syntax
	How It Is Used
	Examples

	ALIAS Statement
	Syntax
	How It Is Used
	Examples

	SYMPTOM Statement
	Syntax
	How It Is Used
	Example

	Alarm Definition Examples
	Example of a CPU Problem
	Example of Swap Utilization
	Example of Time-Based Alarms
	Example of Disk Instance Alarms

	Customizing Alarm Definitions

	10 Adviser for the RTMA Component
	Alarms and Symptoms
	Working of the Adviser Script
	Using Adviser
	Run the Adviser Script on Multiple Systems

	Adviser Syntax
	Syntax Conventions
	Comments
	Conditions
	Constants
	Expressions
	Metric Names in Adviser Syntax
	Printlist
	Variables
	Adviser Syntax Statements
	ALARM Statement
	ALERT Statement
	ALIAS Statement
	ASSIGNMENT Statement
	COMPOUND Statement
	EXEC Statement
	IF Statement
	LOOP Statement
	PRINT Statement
	SYMPTOM Statement

	11 Using the Performance Collection Component on Windows
	Data Types and Classes
	Summarization Levels
	Ranges of Data to Extract or Export
	Extracting Log File Data
	Exporting Log File Data
	File Attributes
	File Format
	Missing Value
	Field Separators
	Summary Minutes
	Headings
	Multiple Layout
	Export File Title

	Export File Templates
	Default Export Files
	scopent Data
	DSI Data

	Making a Quick Export Template
	Selecting Metrics to Export
	Saving Your Selections

	Configuring Export Templates
	Selecting Metrics for Export
	Saving Your Selections

	Archiving Log File Data
	Archival Periods
	Appending Archived Data
	Archiving Tips

	Analyzing a Log File
	Range of Data to be Analyzed
	Analysis Report

	Scanning a Log File
	Resizing a Log File
	Configuring User Options
	Configuring Collection Parameters
	Configuring Alarm Definitions
	Configuring Data Sources
	Data Sources File Format
	Configuring Data Sources from Remote Locations

	Configuring Transactions
	Configuring Persistent DSI Collections
	Checking Performance Collection Component Status
	Running Processes
	Datacomm Services
	System Services
	System Configuration
	File Version Numbers
	Status File Latest Entries
	Status File Warnings and Errors

	Building Collections of Performance Counters
	Building a Performance Counter Collection
	Managing a Performance Counter Collection
	Tips for Using Extended Collection Builder and Manager

	Administering ECBM from the Command line

	12 Overview of Data Source Integration
	How DSI Works
	Creating the Class Specification
	Collecting and Logging the Data
	Using the Data

	13 Using Data Source Integration
	Planning Data Collection
	Defining the Log File Format
	How Log Files Are Organized

	Creating the Log File Set
	Testing the Class Specification File and the Logging Process (Optional)

	Logging Data to the Log File Set
	Using the Logged Data

	14 DSI Class Specification Reference
	Class Specifications
	Class Specification Syntax
	CLASS Description
	Syntax
	Default Settings
	CLASS
	LABEL
	INDEX BY, MAX INDEXES, AND ROLL BY

	Controlling Log File Size
	RECORDS PER HOUR
	CAPACITY
	Metrics Descriptions
	METRICS
	LABEL
	Summarization Method
	PRECISION
	TYPE TEXT LENGTH

	Sample Class Specification

	15 DSI Program Reference
	sdlcomp Compiler
	Compiler Syntax
	Sample Compiler Output

	Configuration Files
	Defining Alarms for DSI Metrics
	Alarm Processing

	dsilog Logging Process
	Syntax
	How dsilog Processes Data
	Testing the Logging Process with Sdlgendata

	Creating a Format File
	Changing a Class Specification
	Exporting DSI Data
	Example of Using Extract to Export DSI Log File Data
	Viewing Data in Performance Manager

	Managing Data With sdlutil
	Syntax

	16 Examples of Data Source Integration
	Writing a dsilog Script
	Example 1 - Problematic dsilog Script
	Example 2 - Recommended dsilog Script

	Logging vmstat Data
	Creating a Class Specification File
	Compiling the Class Specification File
	Starting the dsilog Logging Process
	Accessing the Data

	Logging sar Data from One File
	Creating a Class Specification File
	Compiling the Class Specification File
	Starting the DSI Logging Process

	Logging sar Data from Several Files
	Creating Class Specification Files
	Compiling the Class Specification Files
	Starting the DSI Logging Process

	Logging sar Data for Several Options
	Logging the Number of System Users

	17 Error Message
	SDL Error Messages
	DSILOG Error Messages
	General Error Messages

	18 What is Transaction Tracking?
	Improving Performance Management
	Benefits of Transaction Tracking
	Client View of Transaction Times
	Transaction Data
	Service Level Objectives

	A Scenario: Real Time Order Processing
	Requirements for Real Time Order Processing
	Preparing the Order Processing Application

	Monitoring Transaction Data
	Guidelines for Using ARM

	19 How Transaction Tracking Works
	Support of ARM 2.0
	Support of ARM API Calls
	arm_complete_transaction Call
	Sample ARM-Instrumented Applications
	Specifying Application and Transaction Names

	Transaction Tracking Daemon (ttd)
	ARM API Call Status Returns

	Measurement Interface Daemon (midaemon)
	Transaction Configuration File (ttd.conf)
	Adding New Applications
	Adding New Transactions
	Changing the Range or SLO Values
	Configuration File Keywords
	tran
	range
	slo

	Configuration File Format
	Configuration File Examples

	Overhead Considerations for Using ARM
	Guidelines
	Disk I/O Overhead
	CPU Overhead
	Memory Overhead

	20 Getting Started with Transactions
	Before you start
	Setting Up Transaction Tracking
	Defining Service Level Objectives
	Modifying the Parm File
	Collecting Transaction Data
	Error Handling
	Limits on Unique Transactions

	Customizing the Configuration File (optional)

	Monitoring Performance Data
	Alarms

	21 Transaction Tracking Messages
	22 Transaction Metrics
	23 Transaction Tracking Examples
	Pseudocode for Real Time Order Processing
	Configuration File Examples
	Example 1 (for Order Processing Pseudocode Example)
	Example 2
	Example 3
	Example 4

	24 Advanced Features
	How Data Types Are Used
	User-Defined Metrics
	scope Instrumentation

	25 Transaction Libraries
	ARM Library (libarm)
	C Compiler Option Examples by Platform
	ARM NOP Library
	Using the Java Wrappers
	Examples
	Setting Up an Application (arm_init)
	Syntax:

	Setting Up a Transaction (arm_getid)
	Setting Up a Transaction With UDMs
	Adding the Metrics
	Setting the Metric Data

	Setting Up a Transaction Without UDMs
	Setting Up a Transaction Instance
	Starting a Transaction Instance (arm_start)
	Starting the Transaction Instance Using Correlators
	Requesting a Correlator
	Passing the Parent Correlator
	Requesting and Passing the Parent Correlator
	Retrieving the Correlator Information

	Starting the Transaction Instance Without Using Correlators

	Updating Transaction Instance Data
	Updating Transaction Instance Data With UDMs
	Updating Transaction Instance Data Without UDMs

	Providing a Larger Opaque Application Private Buffer
	Stopping the Transaction Instance (arm_stop)
	Stopping the Transaction Instance With a Metric Update
	Stopping the Transaction Instance Without a Metric Update

	Using Complete Transaction
	Using Complete Transaction With UDMs:
	Using Complete Transaction Without UDMs:

	Further Documentation

	26 Logging and Tracing
	Logging
	Configure the Logging Policy

	Tracing
	Identify the Application
	Set the Tracing Type
	Introduction to the Trace Configuration File
	Syntax

	Create the Configuration File

	Enabling Tracing and Viewing Trace Messages with the Command-Line Tools
	Enabling Tracing and Viewing Trace Messages with the Tracing GUI
	Enable the Tracing Mechanism
	View Trace Messages
	Use the Trace List View
	Use the Procedure Tree View

	Filter Traces

	27 Troubleshooting Operation
	Operations Monitoring Component
	Performance Collection Component
	RTMA

	Index

	We appreciate your feedback!
	Comments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

