
HP SOA Systinet Workbench

Software Version: 4.00

Assertion Editor Guide

Document Release Date: September 2010
Software Release Date: September 2010

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

3

Contents

About this Guide. 5

Document Conventions. 7

Documentation Updates. 8

Support. 9

1 Assertion Editor. 11

Workbench Suite. 11

Overview. 12

User Interface. 13

2 Getting Started. 21

Installing Workbench. 21

SSL Configuration. 25

Creating an Assertion Project. 26

Downloading and Importing Assertions. 27

3 Manipulating Assertions. 31

Creating Assertions. 31

Editing Assertions. 32

Deleting Assertions. 39

Comparing Assertion Versions. 40

4 Validating and Publishing Assertions. 43

Testing Assertions. 43

Resolving Conflicts. 44

Publishing Assertions. 45

5 Deploying Assertions. 47

Building an Assertion Extension. 47

Applying Extensions. 47

4

Redeploying the EAR File. 52

6 Customizing Assertions. 55

Customizing Source Type. 55

Adding PM Extensions. 56

7 Java Assertion Demo. 57

Creating the Assertion Validator. 57

Applying the Extension. 59

Creating and Deploying the Assertion. 59

Testing the Assertion Validator. 60

A Dialog Boxes. 62

Define New Implementation Wizard. 62

Run. 65

B Assertion Developer Reference. 67

Assertion Document Details. 67

C Eclipse Plug-in Requirements. 82

D Integrating XQuery Function Libraries. 84

5

About this Guide
Welcome to the Assertion Editor Guide. This guide explains how to use Assertion Editor as part of HP
SOA Systinet.

This guide contains the following chapters:

• Chapter 1, Assertion Editor

Provides an overview of the main features of Assertion Editor.

• Chapter 2, Getting Started

Describes the installation of the main features, and shows you how to create an assertion project in
Assertion Editor.

• Chapter 3, Manipulating Assertions

Explains how to create, download, edit, and compare assertions using Assertion Editor.

• Chapter 4, Validating and Publishing Assertions

Shows how to test, publish, and resolve conflicts in assertions using Assertion Editor.

• Chapter 5, Deploying Assertions

Shows how to build an Assertion extension project using Assertion Editor.

• Chapter 6, Customizing Assertions

Explains how to customize the source type and add PM extensions in Assertion Editor.

• Chapter 7, Java Assertion Demo

Demonstrates the creation of a custom assertion validator and its use with Assertion Editor and HP
SOA Systinet.

6

• Appendix A, Dialog Boxes

Dialog boxes reference.

• Appendix B, Assertion Developer Reference

Assertion schema reference.

• Appendix C, Eclipse Plug-in Requirements

Required plug-ins when installing Workbench as an update.

• Appendix D, Integrating XQuery Function Libraries

Integrating custom XQuery libraries with Assertion Editor.

7

Document Conventions

This document uses the following typographical conventions:

run.bat make Script name or other executable command plus mandatory arguments.

[--help] Command-line option.

either | or Choice of arguments.

replace_value Command-line argument that should be replaced with an actual value.

{arg1 | arg2} Choice between two command-line arguments where one or the other is
mandatory.

java -jar

hpsystinet.jar

User input.

C:\System.ini File names, directory names, paths, and package names.

a.append(b); Program source code.

server.Version Inline Java class name.

getVersion() Inline Java method name.

Shift+N Combination of keystrokes.

Service View Label, word, or phrase in a GUI window, often clickable.

OK Button in a user interface.

New>Service Menu option.

8

Documentation Updates

This guide's title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go
to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport logon page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
For details, contact your HP sales representative.

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

9

Support

You can visit the HP Software Support Web site at:

http://www.hp.com/go/hpsoftwaresupport

HP Software Support Online provides customer self-solve capabilities. It provides a fast and efficient
way to access interactive technical support tools needed to manage your business. As a valued support
customer, you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require
a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

10

11

1 Assertion Editor

HP SOA Systinet Workbench includes Assertion Editor, a set of features for use with the Policy Manager
component of HP SOA Systinet. Assertion Editor enables you to create, edit, and delete assertions on
any number of Policy Manager servers. In addition, you can use Assertion Editor to test an assertion,
validating the assertion against a source document.

This chapter introduces Assertion Editor in the following sections:

• Workbench Suite on page 11

• Overview on page 12

• User Interface on page 13

Workbench Suite

HP SOA Systinet Workbench is a suite of editor tools enabling you to customize your deployment of HP
SOA Systinet 4.00.

Workbench consists of the following editor tools, distributed as a single Eclipse development platform:

• Customization Editor

Customizes the underlying SOA Definition Model (SDM) within HP SOA Systinet.

• Taxonomy Editor

Customizes the taxonomies used to categorize artifacts in HP SOA Systinet.

• Assertion Editor

Customizes the conditions applied by your business policies within HP SOA Systinet.

• Report Editor

12

Customizes report definitions for use with HP SOA Systinet.

Overview

Assertions are the building blocks of policy. Each assertion checks a single condition of a policy,
returning a true or false result. In Policy Manager, one or more assertions are collected together to form a
technical policy. The technical policy is a set of assertions that fulfils a management requirement.

HP SOA Systinet provides tools for testing whether sources comply with the relevant policies.

To meet management requirements, a technical policy often needs a new assertion. Changing
requirements can also result in existing assertions becoming out of date. Assertion Editor is a tool, built
on the widely used Eclipse IDE, to simplify assertion creation and editing.

Assertion Editor makes working with assertions easy.

Use Assertion Editor to do the following:

1 Create an assertion project.

For details, see the following sections:

• Creating an Assertion Project on page 26

• Downloading and Importing Assertions on page 27

2 Create and manage assertions.

For details, see the following sections:

• Creating Assertions on page 31

• Editing Assertions on page 32

• Deleting Assertions on page 39

• Comparing Assertion Versions on page 40

3 Validate assertions before publishing.

For details, see Testing Assertions on page 43.

13

4 Deploy assertions and manage conflicts.

For details, see the following sections:

• Publishing Assertions on page 45

• Resolving Conflicts on page 44

5 Customize assertions for use with Policy Manager.

For details, see Chapter 6, Customizing Assertions.

User Interface

The default perspective is split into a number of sections with menu options across the top, as shown in
Figure 1, “Assertion Editor UI”.

Figure 1. Assertion Editor UI

14

The platform perspective consists of the following views:

• Project Explorer

The tree view of your assertion projects. For details, see Project Explorer on page 14.

• Server Explorer

The view listing HP SOA Systinet server connections to Workbench. For details, see Server Explorer
on page 16.

• Editor

The view showing the components of the assertion. For details, see Editor Pane on page 16.

Project Explorer

Project Explorer contains a hierarchical list of projects, the assertions in each project, and the validation
definitions in each assertion, as shown in Figure 2, “Project Explorer”.

Figure 2. Project Explorer

15

The Project Explorer contains additional context menu options enabling you to interact with a running
HP SOA Systinet server. Right-click the project name or a particular assertion, and select HP SOA
Systinet to view the options listed in Table 1, "Project Context Menu Options" and Table 2, "Assertion
Context Menu Options".

Table 1. Project Context Menu Options

Option Function

Download Assertions Import Assertions from HP SOA Systinet. For details, see Downloading and
Importing Assertions on page 27.

Upload to Server Export assertions to the default HP SOA Systinet server. For details, see
Publishing Assertions on page 45.

Update from Server Update assertions from HP SOA Systinet. For details, see Editing Assertions
on page 32.

Remove from Server Delete assertions from HP SOA Systinet. For details, see Deleting Assertions
on page 39.

Upload To Other Server Export assertions to a specified HP SOA Systinet server.

Build Extension Create an assertion extension for HP SOA Systinet containing all the
assertions in your project. For details, see Building an Assertion Extension on
page 47.

Table 2. Assertion Context Menu Options

Option Function

Upload to Server Export an assertion to the default HP SOA Systinet server. For details, see
Publishing Assertions on page 45.

Update from Server Update assertions from HP SOA Systinet. For details, see Editing Assertions
on page 32.

Remove from Server Delete the assertion from HP SOA Systinet. For details, see Deleting
Assertions on page 39.

Upload To Other Server Export an assertion to a specified HP SOA Systinet server.

Build Extension Create an assertion extension for HP SOA Systinet containing all the
assertions in your project. For details, see Building an Assertion Extension on
page 47.

16

Server Explorer

The Server Explorer displays the HP SOA Systinet servers connected to Workbench, as shown in
Figure 3, “Server Explorer View”. The functionality is shared by all the Workbench editors.

Figure 3. Server Explorer View

Right-click a server in the Server Explorer to open the context menu described in Table 3, "Server
Explorer Context Menu Options".

Table 3. Server Explorer Context Menu Options

Option Function

New Server Add a server for downloading assertions and taxonomies (Assertion Editor,
Taxonomy Editor, and Customization Editor).

Remove Server Delete a server from the Server Explorer.

Download Taxonomy Download a taxonomy from a platform server (Taxonomy Editor and
Customization Editor).

Download Assertion Download assertions from a platform server (Assertion Editor).

Download Report Download reports from a reporting server (Report Editor).

Properties View and edit the server name, URL, username, and password.

Editor Pane

The Editor pane is the main feature of the Assertion Editor UI.

17

The pane is split into tabs, described in the following sections:

• Overview Tab on page 17

• Implementation Tab on page 18

• Source Tab on page 19

Overview Tab

The Overview tab shows the components of the assertion, as shown in Figure 4, “Overview Tab”.

Figure 4. Overview Tab

The tab is divided into the following areas:

18

• General Information

Name of the assertion and its description.

• Implementation

List of implementations of validation logic and the artifact types to which they apply.

• Reference Template

Element used to reference this assertion from a WS-Policy document.

Implementation Tab

The Implementation tab includes a list of implementations, as shown in Figure 5, “Assertion Editor UI:
Editor Implementation Tab”.

Figure 5. Assertion Editor UI: Editor Implementation Tab

Highlighting an implementation opens the XQuery Definition Editor in the window beneath. For details,
see Writing XQuery Definitions on page 35.

19

Source Tab

The Source tab is an XML editor for editing the assertion, as shown in Figure 6, “Source Tab”.

Figure 6. Source Tab

20

21

2 Getting Started

This chapter describes the prerequisites for working with assertions in HP SOA Systinet Assertion Editor.
It contains the following sections:

• Installing Workbench on page 21

• SSL Configuration on page 25

• Creating an Assertion Project on page 26

• Downloading and Importing Assertions on page 27

Installing Workbench

HP SOA Systinet Workbench is an Eclipse development platform distributed as a zip file, hp-soa-
systinet-workbench-4.00-win32.zip or as a plugin for an existing Eclipse environment, hp-soa-
systinet-workbench-4.00-plugin.zip.

For supported platforms and known issues, see readme.txt alongside the archive.

To install HP SOA Systinet Workbench as a new Eclipse platform:

• Extract the archive to your required location, referred to in this document as WB_HOME.

The path must not be longer than 97 characters.

To install HP SOA Systinet Workbench to an existing Eclipse platform:

1 Ensure that your Eclipse platform contains the necessary plug-ins. For details, see Appendix C,
Eclipse Plug-in Requirements.

22

2 In your current Eclipse SDK (3.3 or later), use the software updates feature to install HP SOA
Systinet Workbench.

Select Help>Software Updates>Find and Install....

The Install/Update dialog opens.

3 In the Install/Update dialog, select Search for new features to install, and click Next.

The Install – Update Sites to Visit dialog opens.

4 In the Update Sites to Visit dialog, click New Archived Site.

The Select Local Archive Site dialog opens.

5 Locate and select hp-soa-systinet-workbench-4.00-plugin.zip, and then click Open.

The Edit Local Site dialog opens.

6 In the Edit Local Site dialog, if required, rename the local archive name, and click OK.

7 In the Install – Update Sites to Visit dialog, select the new local archive, and then click Finish.

The Updates – Search Results dialog opens.

8 Select the modules from the archive that you want to install:

• Workbench Extra 4.00

HP SOA Systinet Workbench splash screen.

• Taxonomy Editor 4.00

Required for Customization Editor.

• Customization Editor 4.00

• Assertion Editor 4.00

23

• Report Editor 4.00

• Common Plugin 4.00

Shared components used by the editors.

Click Next.

The Install – Feature License dialog opens.

9 In the Feature License dialog, select I accept the terms in the license agreements, and click Next.

The Install – Installation dialog opens.

10 In the Installation dialog, if required, change the installation location, and then click Finish.

11 If you install Workbench Extra 4.00 make the following configuration changes:

• Remove -showsplash org.eclipse.platform from ECLIPSE_HOME/eclipse.ini.

• Edit ECLIPSE_HOME/configuration/config.ini and make the following changes:

• Set osgi.splashPath=platform:/base/plugins/com.systinet.tools.workbench .

• Set eclipse.product=com.systinet.tools.workbench.ide

To start HP SOA Systinet Workbench:

• Execute WB_HOME/workbench/start.exe.

The first time you start Workbench, the welcome screen opens, as shown in Figure 7, “Workbench
Welcome Screen”.

24

Figure 7. Workbench Welcome Screen

Select one of the options to open one of the editor tools, start a new editing project, or view the
documentation set.

You can return to the welcome screen from any of the editor tools by selecting Help>Welcome from the
menu options.

By default, Workbench runs in 'normal' mode which prevents users from uploading system taxonomies
(IDs start with uddi:systinet.com:soa:model:taxonomies) and the Report Editor .rptlibrary file to HP SOA
Systinet servers. If you need to work with system taxonomies or want to upload the .rptlibrary file you
can switch Workbench into 'admin' mode.

Be extremely careful when working with system taxonomies, HP SOA Systinet uses some
hard-coded values from system taxonomies, changing or removing them may cause errors.

To Switch Workbench to Admin Mode

1 Open WB_HOME/configuration/config.ini with a text editor.

2 Add mode=admin to config.ini.

25

3 Restart Workbench.

HP SOA Systinet Workbench requires Java SE Development Kit (JDK) 1.5.0 or higher.
You must include the path to this version of the JDK in the JAVA_HOME environment
variable.

HP SOA Systinet Workbench is memory-intensive. If you experience performance issues,
HP recommends increasing the memory allocation.

To increase the memory allocation for HP SOA Systinet Workbench:

1 Open WB_HOME/workbench/start.ini for editing.

2 Set these new values:

• -Xms128m

• -Xmx1024m

3 Save your changes.

4 Restart Workbench.

SSL Configuration

By default, Workbench trusts all HP SOA Systinet server certificates. You may want Workbench to
verify HP SOA Systinet certificates.

To verify HP SOA Systinet server certificates:

• Add the following options to WB_HOME/workbench/start.ini:
-Dcom.hp.systinet.security.ssl.verifyCert=true
-Djavax.net.ssl.trustStore=USER_TRUSTSTORE
-Djavax.net.ssl.trustStorePassword=TRUSTSTORE_PASS
-Djavax.net.ssl.trustStoreType=TRUSTSTORE_FORMAT

If HP SOA Systinet is configured for 2-way SSL, you must provide Workbench certificates to HP SOA
Systinet.

26

To provide Workbench client certificates to HP SOA Systinet:

• Add the following options to WB_HOME/workbench/start.ini:
-Djavax.net.ssl.keyStore=USER_KEYSTORE
-Djavax.net.ssl.keyStorePassword=KEYSTORE_PASS
-Djavax.net.ssl.keyStoreType=KEYSTORE_FORMAT

Creating an Assertion Project

To work with assertions, you need an Assertion Project. You can create any number of Assertion Projects
to help organize your work.

To create an Assertion Project:

1 Do one of the following:

• In the Workbench Welcome page, click Create Assertion Project.

• Click New to open the Select a Wizard window, and select HP SOA Systinet>Assertion
Project.

• From the menu, select File>New>Assertion Project.

• Press Alt+Shift+N, and then press R, to open the Select a Wizard window. Then select HP SOA
Systinet>Assertion Project.

The New Assertion Project dialog box opens.

2 In the New Assertion Project dialog box, enter the following parameters:

Parameter Definition

Project Name The name of your assertion project.

Namespace The namespace to apply to all assertions in the project.

Create from
Existing Extension

Select this option if you want to create a new project from a previous assertion
extension. If selected, input the path or browse for the location of the assertion
extension.

Use Default
Location

If selected, Assertion Editor stores the project in your default workspace. If
unselected, input the path or browse for an alternative workspace.

27

3 Click Next to select or create a server.

If no servers are currently defined, the dialog box continues to Step 5.

4 Do one of the following:

• Select Create a New Server, and click Next.

Continue to Step 5.

• Select Use an Existing Server, select the server from the list and input its credentials, and then
click Next.

Continue to Step 6

5 In the New Server dialog box, add the required parameters, and then click Next.

6 Select the assertions to download from the server.

7 Select Download All Taxonomies to import taxonomies from HP SOA Systinet to make them
available for use as assertion parameters.

8 Click Finish.

Downloading and Importing Assertions

Using Assertion Editor, you can download assertions from a Policy Manager server to edit or test them.

You can download assertions in one of two ways:

• When you create a project, as described in Creating an Assertion Project on page 26.

• From your local file system, at a later date.

If you import assertions containing manual validation, Assertion Editor highlights the
manual validation as an error with a message instructing you to remove it from the
assertion.

28

To download assertions:

1 Right-click the server containing the assertions you need in Server Explorer to open its context
menu, and select Download Assertions.

The Download Assertion dialog box opens.

2 Select the assertions to download, and click Next.

The Choose Location dialog box opens.

3 Select the project to add the assertions to, and click Finish.

29

To import assertions from a local file:

1 Right-click the server containing the assertions you need in Server Explorer to open its context
menu, and select Import Assertions.

The Import Assertion dialog box opens.

2 Select the assertions to import, and click Next.

The Choose Location dialog box opens.

3 Select the project to add the assertions to, and click Finish.

The assertions are imported to your project.

30

31

3 Manipulating Assertions

This chapter explains how to work with assertions, as detailed in the following sections:

• Creating Assertions on page 31

• Editing Assertions on page 32

• Deleting Assertions on page 39

• Comparing Assertion Versions on page 40

Creating Assertions

In Creating an Assertion Project on page 26, you created an Assertion Project and looked at how to
download and import assertions. The following section explains how to create new assertions.

To create a new assertion:

1 Do one of the following:

• Click New to open the New: Select a Wizard dialog, and expand HP SOA Systinet>Assertion,
and then, click Next.

• Select File>New>Assertion.

• Press Alt+Shift+N to open the context menu, and select Assertion.

The New Assertion wizard opens.

2 In the New Assertion wizard, enter the required parameters.

3 Click Finish to create the assertion.

4 Double-click the assertion in Project Explorer to open it in the Editor, and do the following:

• Add an implementation, as described in Adding and Deleting Implementations on page 33.

32

• Test the assertion, as described in Testing Assertions on page 43.

• Publish the assertion, as described in Publishing Assertions on page 45.

Editing Assertions

The heart of Assertion Editor's functionality is the ability to edit assertions. To edit an assertion, you
must have a local copy.

If you are editing an assertion that also exists on a server, you must update your local copy
before editing it. Editing a local assertion before updating it from the server can result in a
revision conflict. Assertion Editor warns you if this is the case. For details, see Resolving
Conflicts on page 44.

To update an assertion from the server:

1 Right-click the assertion in Project Explorer to open its context menu.

2 Select HP SOA Systinet>Update from Server.

The main functionality of Assertion Editor is described in the following sections:

• Editing General Properties on page 32

• Adding and Deleting Implementations on page 33

• Writing XPath Definitions on page 34

• Writing XQuery Definitions on page 35

• Editing XQuery Definitions on page 36

• Editing Reference Templates on page 38

Editing General Properties

General properties are the name and text description of the assertion. Changing the name in the editor
does not change the file name or reference template local name. These can only be changed in the
General Properties section of the Overview tab. For details, see Overview Tab on page 17.

33

Adding and Deleting Implementations

An implementation contains a resource type and the code used to validate that resource type. An assertion
must contain one or more implementations.

To add an implementation:

1 In the Implementation field of the Editor view, click New.

The Define New Implementation wizard opens. For details, see Define New Implementation Wizard
on page 62.

2 Do one of the following:

• To use a predefined resource type, select Select an Existing Type, select a resource type from the
list, and then click Next. Use filter to find a specific resource type and uncheck Show common
types only to list all available resource types.

Skip to Step 4.

• To manually define a new resource type, select Define New Type and then click Next.

3 Input a Namespace and Local Name, or click Load from file to use a document in your assertion
project, and then click Next.

4 Select the implementation type from the list and then click Finish.

To delete an implementation:

1 Open the Editor view and select the Overview tab.

Implementations in your project are displayed in the Implementation window.

2 To delete an implementation, select it and click Delete.

After adding the implementation, open the Implementation tab of the Editor and edit the XQuery or
XPath definitions to meet your needs. For instructions, see Writing XPath Definitions on page 34 or
Writing XQuery Definitions on page 35.

34

Writing XPath Definitions

After creating an implementation that uses an XPath validation handler, as described in Adding and
Deleting Implementations on page 33, you need to write the XPath definition.

To write an XPath definition:

1 Open the Editor view and select the Implementation tab.

2 Import a sample XML document of the type to which the assertion applies.

3 In the XPath Definition Editor, under Load XML Template, select one of the following links:

• Click From Resource to load a sample XML document from your Assertion Editor project.

• Click From file to load a sample XML document from your local file system.

• Click From URL to load a sample XML document from the Web.

The XML document appears in the XML Template tab.

To add an XPath expression:

1 Right-click the relevant line in the sample XML document to open its context menu.

2 Select Generate XPath expression.

The XPath expression appears in the XPath Definition Editor field.

You can have only one XPath expression for each implementation. An artifact passes
validation if at least one XML node matches the XPath expression.

3 Modify the XPath expression in the XPath Definition Editor, if necessary.

4 If the XPath contains any unresolved namespace prefixes, an unresolved warning appears.

• If you receive a warning, go to Step 5.

• If you do not receive a warning, go to Step 8.

35

5 Click the unresolved prefix link.

The Manage prefix and namespace pane opens.

6 Define the namespace of the prefix, as follows:

• To add a namespace, click Add, and then enter the required parameters.

• To delete a namespace, select it and click Remove.

7 Click OK.

8 To test the XPath expression, click Test expression.

The results of the test appear in the Test Results tab of the XPath Expression Editor.

For more information, see XPath Assertions on page 77.

Writing XQuery Definitions

Assertion Editor incorporates syntax highlighting for writing and editing XQueries.

To write an XQuery definiton:

1 Open the assertion in the Editor view and click New in the Implementation pane.

The Define New Implementation dialog box opens, as shown in Define New Implementation
Wizard on page 62.

2 To use a predefined source type:

• In the Predefined field, select the source type you need from the drop-down list.

• In the Dialect field, select XQuery from the drop-down list, and click OK.

3 To manually define a source type:

• Select the Manual Define check-box.

• Enter the required parameters.

36

• In the Dialect field, select XQuery from the drop-down list, and click OK.

The XQuery Definition opens in the Editor view.

4 Edit the XQuery Definition, as described in Editing XQuery Definitions on page 36, and click
Test Assertion.

If the assertion passes validation, you can now publish the assertion. For details, see Publishing
Assertions on page 45.

If the assertion does not pass validation, you can resolve any problems. For details, see Resolving
Conflicts on page 44.

For more information, see XQuery Assertions on page 78.

Editing XQuery Definitions

Assertion Editor also supports external XML editors.

To use an external XQuery editor with Assertion Editor, you must first add the Saxon extension to the
external editor:

• Folder

WORKBENCH_HOME/plugins/com.systinet.tools.assertioneditor.lib_version-number/lib/

saxon-extensions/

• Extension

pm-extension-functions.jar

To edit an XQuery Definition:

1 In Project Explorer, right-click the XQuery to open its context menu, select Open With, and then
select from the following options:

• Text Editor

To edit the XQuery with a plain text editor.

37

• System Editor

To edit the XQuery with an editor currently used by your system.

• In-place Editor

To edit the XQuery with an OLE editor.

• Default Editor

To edit the XQuery with the default editor provided with Assertion Editor.

• Other

To edit the XQuery with an editor not previously defined.

2 Edit the XQuery as required and save your changes.

Instructions on how to add the Saxon extension to the most popular XML editors are given in the
following sections:

• Editing XQueries in oXygen on page 37

• Editing XQueries in Stylus Studio on page 38

Editing XQueries in oXygen

To set up oXygen™ to edit XQueries:

1 Open or create the XQuery file in oXygen.

2 Click Configure Transformation Scenario to open the Configure Transformation Scenario wizard.

3 Select Execute XQuery, and click New to open the Edit Scenario pane.

4 In the Transformer field, select Saxon 8B.

5 Click Extensions to open the Extensions dialog box, and click Add to open the Add Extension
dialog box.

6 Type in or browse for the path to pm-extension-functions.jar.

38

7 Click OK in all wizard panes to save the transformation scenario.

When you open any other XQuery files, you must always choose this transformation scenario and then
edit the XQuery file to force oXygen to rebuild it.

This procedure was created for oXygen 8.1. Other versions can be used but some details
may differ.

Editing XQueries in Stylus Studio

To set up Stylus Studio™ to edit XQueries:

1 Select Tools>Options to open the Options dialogue.

2 Expand Module Setting+XQuery>Processor Settings from the tree menu.

3 In the Processor drop-down list, select Saxon 9.0.0.2, and then, click the Use as default processor
checkbox.

4 Click OK.

5 Select Project>Set Classpath and add the path to pm-extension-functions.jar.

To open an XQuery in Stylus Studio from Assertion Editor:

1 In the Project Explorer of the Assertion Editor UI, right-click the XQuery.

2 Select Open With>System Editor.

Editing Reference Templates

The referencing template defines the element used to reference an assertion from a Technical Policy
document. The template can include parameters which represent requirements whose specific values
might vary.

To edit an assertion's reference template:

1 Open the Overview tab in the Editor view.

39

2 In the Reference Template pane, enter the required parameters.

3 Do one of the following:

• To add a parameter, click New.

• To edit an existing assertion, highlight it, and then click Edit.

The Define Parameter wizard opens.

4 Input a name, description, select if the parameter is optional or required.

5 Do one of the following:

• Select Primitive type and the parameter type from the drop-down list.

• Select Taxonomy and input or Browse for the relevant taxonomy.

The available taxonomies depend on those imported from HP SOA Systinet when
you created the project.

To Update Taxonomies

1 Open the context menu for the assertion project and select Properties to open
the Project Properties dialog box.

2 Expand HP SOA Systinet>HP SOA Systinet and select Taxonomies to view
the list of downloaded taxonomies from the server.

3 Click Download to update the taxonomies in the project.

6 Click OK.

To preview the reference template in a technical policy, click Preview assertion reference to open the
dialog box, and then enter example parameter values.

Deleting Assertions

If an assertion is no longer useful, you can delete it in one of the following ways:

40

• Deleting Local Assertions on page 40

• Deleting Assertions on the Server on page 40

Deleting Local Assertions

Deleting a local copy of an assertion does not affect the version on the server.

To delete a local copy of an assertion:

• Right-click the assertion in Project Explorer to open its context menu, and select Delete.

Deleting Assertions on the Server

Deleting the version of an assertion that is on a server does not affect any local versions.

To delete an assertion on a server:

• Right-click the assertion in Server Explorer to open its context menu, and select Delete Assertion.

Alternatively, you can delete an assertion from the server directly from the Project Explorer. This gives
you the option of deleting the local copy at the same time.

To delete an assertion from the server and the local copy:

1 Right-click the assertion in Project Explorer to open its context menu, and select HP SOA
Systinet>Remove from Server.

2 When prompted, select one of the following:

• Also delete resources from local file system.

• Do not delete resources on local file system.

Comparing Assertion Versions

Assertion Editor uses the Eclipse Compare function to track version numbers, enabling you to roll back
an assertion to a previous version.

41

To compare versions of an assertion:

1 Right-click the assertion in Project Explorer to open its context menu, and select Replace
with>Local History.

The Replace with Local History window opens.

Changes to XQuery implementations do not appear in this window. XQueries are held
in separate, stand-alone files so they can be accessed by external XML editors. Use
your editor's revision control feature for XQueries.

2 Compare the versions.

3 Click Replace, if you want to replace the current version with the one to which you are comparing
it.

42

43

4 Validating and Publishing Assertions

This chapter explains how to test assertions and deal with validation conflicts before publishing or
exporting them, as detailed in the following sections:

• Testing Assertions on page 43

• Resolving Conflicts on page 44

• Publishing Assertions on page 45

Testing Assertions

Before publishing an assertion, you can test it.

To test an assertion:

1 Double-click the assertion in Project Explorer to open it in the Editor.

2 Click Test Assertion.

The Run dialog box opens. For details, see Run on page 65.

3 Enter the required parameters, and click Apply to save the parameters, or Revert to roll back the
changes.

4 Click Run.

The test results appear in the Assertion Console view.

To test a different assertion:

1 Click Browse.

The Select Assertion window opens

44

2 Browse for the required assertion.

3 Click OK.

4 Enter the required parameters, and click Run.

To select source files for testing an assertion:

1 Do one of the following:

• Click Add File to browse Assertion Editor projects.

• Click Add External Files to browse the local file system.

• Click Add URL and type in the URL of a source file.

2 Enter the required parameter values in the Parameters table, and then do one of the following:

• Click Apply.

• Click Revert to use the most recent parameter value.

For information about assertion reference templates, see Editing Reference Templates on page 38.

3 Click Run.

Resolving Conflicts

Conflicts occur when there are differences between an updated local copy of an assertion and that on
the server. Assertion Editor notifies you of the conflict, and asks if you want to force the update or
publication.

Forcing an assertion to be updated overwrites any local changes that have been made. Forcing an
assertion to be published overwrites any changes that were made to the version on the server.

The safest way to resolve such conflicts is to either cancel publication or update the assertion.

To update a conflicting assertion:

1 Copy your local version of the assertion to a different location in Project Explorer.

45

2 Right-click the assertion to open its context menu, and select HP SOA Systinet>Update Assertion.

A conflict warning appears.

3 Click OK to update the assertion.

Assertion Editor overwrites the local copy of the assertion with the version on the server.

Publishing Assertions

After writing, editing, and testing an assertion, you can publish it to an HP SOA Systinet server.

In Project Explorer, assertions that have not been published are indicated by a question
mark (?). Assertions that have been changed locally since they were last synchronized with
the version on the server are indicated by a right arrow (>).

To publish an assertion:

• Right-click the assertion in Project Explorer to open its context menu, and select HP SOA
Systinet>Upload to Server.

Assertion Editor connects to the server and attempts to publish the assertion.

To select a server that is not in the project:

1 Right-click the assertion to open its context menu, and select HP SOA Systinet>Upload to Other
Server.

The New Server wizard opens.

2 Follow the steps for adding a server, as described in Creating an Assertion Project on page 26.

If changes were made to the version on the server since you last synchronized, a conflict
warning appears that asks whether you want to force publication. For details on conflict
resolution, see Resolving Conflicts on page 44.

46

47

5 Deploying Assertions

This chapter explains how to test assertions and deal with validation conflicts before publishing or
exporting them, as detailed in the following sections:

• Building an Assertion Extension on page 47

• Applying Extensions on page 47

• Redeploying the EAR File on page 52

Building an Assertion Extension

After publishing assertions, you can copy them to an Assertion extension.

In Project Explorer, assertions that have not been published are indicated by a question
mark (?). Assertions that have been changed locally since they were last synchronized with
the version on the server are indicated by a right arrow (>).

To build an Assertion extension:

1 Right-click the assertion project in Project Explorer to open its context menu, and expand HP SOA
Systinet>Build Extension to open the location browser.

2 Enter a name for the extension project and browse for the location you want to save the project to,
and then click Save.

All assertions from the selected assertion project are copied to the Assertion extension.

Applying Extensions

You can extend HP SOA Systinet by adding libraries or JSPs to the deployed EAR files, by modifying
the data model, by configuring the appearance of the UI, and by importing prepackaged data.

48

Extensions to HP SOA Systinet come from the following sources:

• Customization Editor

Typical extensions created by Customization Editor contain modifications to the data model and
artifact appearance, and possibly data required by the customization (taxonomies). They may also
contain new web components, which may include custom JSP and Java code.

If your extension contains new artifact types, HP SOA Systinet does not create default
ACLs for them. Set default ACLs for the new artifact types in HP SOA Systinet using the
functionality described in "How to Manage Default Access Rights" in the Administration
Guide.

• Assertion Editor, Report Editor, and Taxonomy Editor

These extensions contain assertion, reporting, and taxonomy data only. They do not involve changes to
the data model.

The Setup Tool opens the EAR files, applies the extensions, and then repacks the EAR files.

Apply extensions according to one of the following scenarios:

• Single-Step Scenario on page 49

The Setup Tool performs all the processes involved in applying extensions, including any database
alterations, as a single step.

• Decoupled DB Scenario on page 51

Database SQL scripts are run manually. The Setup Tool performs the other processes as individual
steps that are executable on demand. This scenario is useful in organizations where the user applying
extensions does not have the right to alter the database, which is done by a database administrator.

In some specific circumstances (underscores and numbers in property names), extension
application may fail because HP SOA Systinet cannot create short enough database table
names (31 character maximum for most databases).

The error in setup.log resembles the following:
[java] --- Nested Exception ---

49

[java] java.lang.RuntimeException: cannot reduce length of identifier
 'ry_c_es_Artifact02s_c_priEspPty01Group_c_priEspPty01',
 rename identifier elements or improve the squeezing algorithm
[java] at com.systinet.platform.rdbms.design.decomposition.naming.impl.

 BlizzardNameProviderImpl.getUniqueLimitedLengthName(BlizzardNameProviderImpl.java:432)
[java] at com.systinet.platform.rdbms.design.decomposition.naming.impl.
 BlizzardNameProviderImpl.filterTableName(BlizzardNameProviderImpl.java:374)

This is due to HP SOA Systinet using an older table naming algorithm in order to preserve
backward compatibility with HP SOA Systinet 3.00 and older versions.

If you do not require backwards compatibility with these older versions, you can change the
table naming algorithm.

To change the table naming algorithm:

1 Open SOA_HOME/lib/pl-repository-old.jar#META-INF/rdbPlatformContext.xml
with a text editor.

2 In the rdb-nameProvider bean element, edit the following property element:

<property name="platform250Compatible" value="false"/>

3 Save rdbPlatformContext.xml

This solution only impacts properties with multiple cardinality. If the problem persists
or you need to preserve backwards compatibility, then review the property naming
conventions in your extension.

Single-Step Scenario

Follow this scenario if you have permission to alter the database used for HP SOA Systinet.

To apply extensions to HP SOA Systinet in a single step:

1 Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The Setup Tool automatically applies all extensions in that directory.

50

If you are applying extensions to another server, substitute the relevant home directory
for SOA_HOME.

2 Stop the server.

3 Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup.bat(sh)

4 Select the Apply Extensions scenario, and click Next.

The Setup Tool automatically validates the step by connecting to the server, copying the extensions,
and merging the SDM configuration.

5 Click Next for each of the validation steps and the setup execution.

This process takes some time.

6 Click Finish to end the process.

7 Deploy the EAR file:

• JBoss

The Setup Tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see Redeploying the EAR File on page
52.

• Other Application Servers

You must deploy the EAR file manually.

For application server-specific details, see "Deploying the EAR File" in the HP SOA Systinet
Installation and Deployment Guide.

51

8 Restart the server.

Applying an extension that modifies the SDM model may drop your full text indices.

SOA_HOME/log/setup.log contains the following line in these cases:

Could not apply alteration scripts, application will continue with slower DB

drop/create/restore scenario.

In these cases, reapply full text indices as described in the "Enabling Full Text Search"
section of the HP SOA Systinet Installation and Deployment Guide.

Decoupled DB Scenario

Follow this scenario if the user who applies extensions does not have permission to modify the database.

To apply extensions and modify the database separately:

1 Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The Setup Tool automatically applies all extensions in that directory.

2 Stop the server.

3 Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup -a.

4 Select the Apply Extensions scenario, and click Next.

5 Click Next, to execute the extension application, and exit the Setup Tool.

6 Provide the scripts from SOA_HOME/sql to the database administrator.

The database administrator can use all.sql to execute the scripts that drop and recreate the
database schema.

7 Execute the Setup Tool in command-line mode to finish the extension application:

52

SOA_HOME/bin/setup -c

8 Redeploy the EAR file:

• JBoss

The Setup Tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see Redeploying the EAR File on page
52.

• Other Application Servers

You must deploy the EAR file manually.

For application server-specific details, see "Deploying the EAR File" in the HP SOA Systinet
Installation and Deployment Guide.

Redeploying the EAR File

After using the Setup Tool to apply extensions or updates, you must redeploy the EAR file to the
application server. For JBoss, you can do this using the Setup Tool.

For other application servers, follow the EAR deployment procedures described in the
"Deploying the EAR File" in the HP SOA Systinet Installation and Deployment Guide.

To redeploy the EAR file to JBoss:

1 Stop the application server.

2 Start the Setup Tool by executing the following command:

SOA_HOME/bin/setup.bat(sh).

3 Select the Advanced scenario, and click Next.

4 Scroll down, select Deployment, and then click Next.

53

When the Setup Tool validates the existence of the JBoss Deployment folder, click Next.

5 Click Finish to close the Setup Tool.

6 Restart the application server.

54

55

6 Customizing Assertions

Assertion Editor incorporates predefined elements that are suitable for most use cases. However, you can
customize certain elements. Customization of assertions is described in the following sections:

• Customizing Source Type on page 55

• Adding PM Extensions on page 56

Customizing Source Type

When you define the implementation of an assertion, you can either select from a list provided by
Assertion Editor, or you can define your own source type.

To manipulate source types:

1 From the menu, select Window>Preferences.

The Preferences wizard opens.

2 Expand HP SOA SystinetAssertion Editor, and select Source Type.

A table opens displaying source type names, local names, and namespaces.

3 Do one of the following:

• To create a new source type, click Add to open the New Source Type window. Enter the required
parameters, and click OK.

• To edit an existing source type, select it and click Edit to open the Edit Source Type window.
Enter the required parameters, and click OK.

• To delete an existing source type, select it and click Delete.

56

Adding PM Extensions

You can extend Policy Manager with custom-written validation handlers, in addition to the XQuery and
XPath handlers that are included in the distribution.

To add a PM extension to your project:

1 Right-click the project in Project Explorer to open its context menu, and select Properties.

The Properties for HP SOA Systinet wizard opens.

2 Select PM Extensions to open a list of PM extensions in the project.

3 Do one of the following:

• Click Add PM Extension to open the Select Extension window. Select the required extension,
and click OK.

• Click Add External PM Extension to open the Select PM Extension window. Browse for the
required extension, and click OK.

After adding a PM extension to your Assertion Editor project, apply it to all relevant Policy Manager
servers with the Setup Tool. For information about the Setup Tool, see the HP SOA Systinet
Administrator Guide.

57

7 Java Assertion Demo

This demo shows how to create and use a custom assertion validator. You will learn how to:

• Create a custom assertion validator.

• Apply a custom assertion validator into Policy Manager as an extension.

• Create an assertion in Assertion Editor (a feature of HP SOA Systinet Workbench) based on our
validator.

• Publish the assertion to the Platform repository.

You can find the demo sources in SOA_HOME\demos\policymgr\assertionvalidator. It contains:

• An Eclipse project for developing a custom assertion validator (in the validator folder).

• An Assertion Editor project for developing a sample assertion (in the assertion folder).

• Demo data for testing our assertion validator (in the demodata folder).

The demo is divided into separate procedures, described in the following sections:

Creating the Assertion Validator

A sample Eclipse project is available in SOA_HOME\demos\policymgr\assertionvalidator\validator.
This project can be imported into Eclipse as an existing project. It has the following structure:

• src/

A directory containing the Java sources.

• lib/

A directory containing external libraries used by assertion validator.

58

• resources/extension.xml

A Policy Manager extension definition file.

• build.xml

An Ant build file to build extension containing the validators.

The src folder contains a sample implementation of an assertion validator:
mycompany.validator.demo.ServiceNameValidator. This validator applies to WSDL documents and
checks whether the name of services defined in WSDL starts with the words "dummy," "test," "sample,"
or "example."

The assertion validator class must implement both methods of the interface
org.systinet.policy.validation.AssertionValidator:

• QName getDialect() — Must return a QName which will be used in assertions to invoke this
validator. Our example uses the QName {http://mycompany/validation}ServiceNameValidator.

• void validate(ValidationListener listener, SourceCollection sources, SourceType

sourceType, ValidatedAssertion[] assertions, ValidationContext context) — This is the
validation method which is called when a source must be validated against an assertion using this
validator. Our sample validator parses the XML content of the WSDL document and checks each
service name (under XPath /wsdl:definitions/wsdl:service/@name) to see whether it starts with
the unwanted words or not.

For more information about Policy Manager's interfaces see the Javadoc.

To build an extension from your assertion implementation, you need an extension definition file, which
is available at resources/extension.xml. It contains a unique identifier (attribute uri) which identifies
the extension, the extension name (element name), and the list of contained assertion validators (elements
assertion-validator):

<?xml version="1.0"?>
<extension version="1.0" uri="mycompany.ext.demo">
 <name>Demo Assertion Validators</name>
 <assertion-validator class="mycompany.validator.demo.ServiceNameValidator" />
</extension>

59

To build the extension you can use Eclipse to start an ANT build using build.xml or use the following
procedure:

To build an extension for the assertion validator:

1 Change your working directory to SOA_HOME\demos\policymgr\assertionvalidator.

2 To get help run run.bat or run.sh.

3 Build the extension with the command run.bat|.sh make.

4 Check the created extension in SOA_HOME\demos\policymgr\assertionvalidator\validator
\dist\mycompany.ext.demo.jar.

If you want use an Eclipse project for this demo you must define the SOA_CLIENT_LIB
classpath variable in the Eclipse IDE. The SOA_CLIENT_LIB variable must point to
SOA_HOME/client/lib.

Applying the Extension

After you create mycompany.ext.demo.jar, apply it to HP SOA Systinet as an extension.

To apply the extension to HP SOA Systinet:

1 Make sure the HP SOA Systinet server is not running.

2 Copy SOA_HOME\demos\policymgr\assertionvalidator\validator\dist
\mycompany.ext.demo.jar into SOA_HOME\extensions.

3 Execute SOA_HOME\bin\setup and select the Apply Extensions scenario.

4 Start HP SOA Systinet.

For details, see "Applying Extensions" in the HP SOA Systinet Administrator Guide.

Creating and Deploying the Assertion

There is a sample project for Assertion Editor in SOA_HOME\demos\policymgr\assertionvalidaton
\assertion.

60

You can use this sample project to create your own assertions. It already contains a demo assertion
named WSDLServiceNameIsNotDummy. Browse this assertion to see that it is applicable to WSDL
Documents and implements the ServiceNameValidator created in Creating the Assertion Validator
on page 57 (linked through SOA_HOME\demos\policymgr\assertionvalidator\validator\dist
\mycompany.ext.demo.jar).

The XML definition of the assertion is automatically filled out according to the definition in assertion
validator (in the method getDialect()):

<my:ServiceNameValidator xmlns:my="http://mycompany/validation" xmlns:pm="http://
systinet.com/2005/10/soa/policy"/>

After creating the assertion, deploy it. Or deploy the existing WSDLServiceNameIsNotDummy assertion.

To publish an assertion to HP SOA Systinet:

1 Open Assertion Editor.

2 Open the File menu and select Import>Existing Projects into Workspace and open the demo
project.

3 In the Server Explorer, open the context menu and define a New Server pointing to your HP SOA
Systinet server.

4 In the Project Explorer, open the Project context menu and select Properties>HP SOA Systinet
Server, and select the server you defined in Step 3.

5 Publish the demo assertion from the Project Explorer.

Open the WSDLServiceNameIsNotDummy.asr context menu and select HP SOA Systinet
Server>Publish Assertion.

For more details, see the HP HP SOA Systinet Assertion Editor Guide.

Testing the Assertion Validator

In the previous sections you created and deployed an assertion validator and an assertion. The next step is
to use this new assertion in a validation for a business test case. To do this, you need to do the following
in HP SOA Systinet:

61

• Publish a WSDL containing a service element where the name attribute starts with Test. For details,
see "How to Publish Content" in the HP SOA Systinet User Guide.

• Create a Technical Policy applicable to WSDLs and add the WSDLServiceNameIsNotDummy assertion to
it. For details, see "How to Manage Technical Policies" in the HP SOA Systinet Administration Guide.

• Create a Policy Report using artifact type, WSDL, and the new technical policy. For details, see "How to
Create Policy Reports" in the HP SOA Systinet User Guide.

• Execute the policy report and review the result. The WSDL with the service name attribute Test must
fail while all others should pass. For details, see "How to Review Policy Reports" in the HP SOA
Systinet User Guide.

62

A Dialog Boxes

Each Assertion Editor input dialog is described in the following sections:

• Define New Implementation Wizard on page 62

• Run on page 65

Define New Implementation Wizard

The Define New Implementation Wizard enables you to add a new implementation of an assertion either
from an existing resource type or by adding a new one.

The wizard contains the following steps.

1 Define New Implementation: Select Resource Type on page 62

2 If you are defining a new implementation resource type, you must specify the namespace and local
name.

Define New Implementation: New Type on page 64

3 Define New Implementation: Implementation Type on page 64

Define New Implementation: Select Resource Type

Enter general parameters to define the new implementation.

63

Parameter Definition

Define New Type Select this check-box to manually define the resource type you want to use.

Select an Existing
Type

Select a predefined resource type from the drop-down menu.

Filter Text Use the input to reduce the list of resource types.

Show Common
Types only

De-select to show the full list of resource types.

64

Define New Implementation: New Type

Define the parameters for a new resource type.

Parameter Definition

Namespace Namespace of the source type.

Local Name The local name of the source type.

Load from File Select to load a source document defining the source type.

Define New Implementation: Implementation Type

Define the parameters for a new resource type.

65

Select the implementation type from the available options.

Run

Define parameters to test the assertion before publishing.

66

Parameter Definition

Name The name you want to use for the test.

Assertion Browse for and select the assertion you want to test.

Source Add or remove a local file, external file, or endpoint URL to test against the
assertion.

Parameters Enter the required parameters for the selected source.

67

B Assertion Developer Reference

Assertion Document Details

Example B.1 on page 67 is the raw XML document of the UDDI BE 01 assertion.

Example B.1. UDDI BE 01 Assertion XML Document

<?xml version="1.0" encoding="UTF-8"?>
 <pm:Assertion xmlns:pm="http://systinet.com/2005/10/soa/policy"
 xmlns:up="http://systinet.com/2005/10/soa/policy/uddi"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <pm:Parameter Name="lang" Type="xs:string" XPointer="xpointer(@RequiredLang)"/>
<!-- template of the instance of the assertion -->
 <pm:Template>
 <up:UDDI_BE_01 RequiredLang="en"/>
 </pm:Template>
 <pm:Validation SourceType="xmlns(ns=urn:uddi-
org:api_v2)qname(ns:businessEntity)"
 xmlns:uddi="urn:uddi-org:api_v2"
 xmlns:val="http://systinet.com/2005/10/soa/policy/validation">
<!-- the validation is implemented via xpath expression -->
 <val:XPath>
 count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0
 </val:XPath>
 </pm:Validation>
 </pm:Assertion>

Assertion documents contain the following elements:

• pm:Assertion/pm:Template . This required element must contain exactly one child element, which
is a reference template of how this assertion looks as a WS-Policy document. If there are namespace
definitions here, they are included in the reference template. If the assertion has any parameters, you
can define default values for them in the reference template. If there are no namespaces or parameters,
the reference template can be in the form <name/>.

68

• pm:Assertion/pm:Parameter . An assertion in a WS-Policy document may contain parameters
including timeouts (in WS-ReliableMessaging), type of authentication, required SOAP header
elements, etc. This element gives a definition of such parameters, including the type of the parameter
and where the parameter can be found in an instance of the assertion. This information is used both by
the UI console and by policy validators.

• pm:Assertion/pm:Parameter/@Name . The name of the parameter. This name will be shown in the UI.

• pm:Assertion/pm:Parameter/@Type . Type of the parameter's value.

• pm:Assertion/pm:Parameter/@Taxonomy . A taxonomy with values that the parameter can adopt.
The taxonomy is specified using its tModelKey. This attribute is only required when Type has the
pm:taxonomy value (with pm being the xmlns:pm="http://systinet.com/2005/10/soa/policy
namespace), otherwise it is ignored (and optional).

• pm:Assertion/pm:Parameter/@XPointer . In the absence of a ValueXPointer attribute, this attribute
identifies the place of the parameter in the assertion's template (that is, how the attribute can be
obtained from an instance of the assertion). Only a simplified form of the XPointer can be used.

The evaluation context for the XPointer is the root of the actual assertion. So, for example, b[1] is the
first "b" child of the assertion's element.

In this release, an XPath starting with "/" is interpreted to point to the root of the policy document. This
behavior will be changed, so do not use absolute XPaths.

• pm:Assertion/pm:Parameter/@ValueXPointer . ValueXPointer identifies the place of the parameter
relative to the place identified by the XPointer attribute. When the parameter is not set, the element
referenced by the XPointer attribute is removed from the instance. When the parameter is defined, its
value is set to a place identified by the concatenation of the XPointer and ValueXPointer values. The
rationale for this attribute is that there are assertions whose schema requires that either an attribute is
set or the attribute's parent element is missing.

• pm:Assertion/pm:Parameter/@Optional . This attribute tells whether the parameter is optional, that
is, if it can be omitted from the assertion instance.

• pm:Assertion/pm:Validation . The implementation, as described in Implementations on page
75.

The key components of the assertion, visible in both the UI and the XML document, are described in the
following sections:

69

• Reference Template

• Parameters

• Implementation, which includes the validation handler.

Reference Templates

The reference template defines what the assertion looks like instantiated as a WS-Policy document (See
the generic <pm:Template> element shown in Example B.1 on page 67.). If there is a namespace
to be defined it is included in the reference template. If there are parameters, you can define the default
values they point to. If there is no namespace or parameter, the template can be a simple empty tag, like
<assertionName/>.

The UDDI BE 01 assertion reference template defines the up namespace. The assertion has one
parameter, lang, which points to the RequiredLang attribute. The reference template sets the default
value of this parameter, en. The actual XML of the reference template is:
<p:Template>
 <up:UDDI_BE_01 RequiredLang="en" xmlns:up="http://systinet.com/2005/10/soa/
policy/uddi"/>
 </p:Template>

Reference templates must obey the following rules:

• The template name must be unique.

• The template must be a complete and valid XML element, not a fragment.

• The template can carry a namespace. This is the case with the WS-I BasicProfile assertion
reference templates, such as <wsi:BP1004 xmlns:wsi="http://www.ws-i.org/testing/2004/07/
assertions/"/>

Parameters

Parameters represent requirements whose specific values may vary. They include such things as timeouts,
type of authentication, required SOAP header elements, and so on. The value referenced by a parameter
can differ between technical policies containing the parameter's parent assertion because each technical
policy contains its own instance of the assertion.

Using parameters lets the policy developer reuse assertions. The developer can set a different required
value for an assertion in each policy in which the assertion is used. Without parameters, the developer
would need a separate assertion for each required value.

70

Example B.2 on page 70 is an assertion taken from a policy file (namespaces omitted for brevity).
Note the attribute RequiredLang with the value of "en". This attribute represents the RequiredLang
parameter. Its default value is "en" for English. This default value is specified in the reference template
(see Reference Templates on page 69) but the policy developer can change this value in individual
policy files. If the assertion developer does not specify the parameter's default value in the reference
template and does not set the parameter as optional, the policy developer must set the parameter value
when creating a technical policy with the parameter's parent assertion.

Example B.2. Assertion With Parameter
<wsp:Policy xmlns:wsp="...">
 <up:UDDI_BE_01 RequiredLang="en" xmlns:up="..."/>
</wsp:Policy>

A parameter definition has the following structure:

• pm:Parameter/@Name

Name of the parameter.

• pm:Parameter/pm:Description

Description of the parameter.

• pm:Parameter/@XPointer

Location of the modified attribute (expressed as an XPointer).

• pm:Parameter/@ValueXPointer

Location of the modified attribute (expressed as an XPointer). See below for details.

• pm:Parameter/@Optional

Optionality of the parameter (if it is optional, it might be left unfilled).

• pm:Parameter/@Type

Type of the parameter's value. Supported values are most of built-in W3C Schema data types (see
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes):

• xs:string

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

71

• xs:boolean

• xs:float

• xs:double

• xs:duration

• xs:dateTime

• xs:time

• xs:date

• xs:gYearMonth

• xs:gYear

• xs:gMonthDay

• xs:gDay

• xs:gMonth

• xs:hexBinary

• xs:base64Binary

• xs:anyURI

• xs:QName

• xs:integer

• xs:long

• xs:short

• xs:byte

72

• xs:unsignedLong

• xs:unsignedInt

• xs:unsignedShort

• xs:unsignedByte

Where xs is the xmlns:xs="http://www.w3.org/2001/XMLSchema" namespace.

Also supported is the value pm:taxonomy (with pm being the xmlns:pm="http://
systinet.com/2005/10/soa/policy namespace), which specifies that the parameter will take on
values from the taxonomy specified by the @Taxonomy attribute.

• pm:Parameter/@Taxonomy

Taxonomy whose values the parameter adopts. Specified with the taxonomy tModelKey. The attribute
is required only when Type has the pm:taxonomy value, otherwise it is be ignored (and optional).
Actual parameter values are specified with keyValues in policy documents.

The following examples demonstrate the use of a taxonomy-based parameter and the corresponding
policy document.

Example B.3. Parameter with Taxonomy Type

<pm:Parameter Name="artifactType" Optional="true" Type="pm:taxonomy"
 Taxonomy="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
 XPointer="xpointer(@artifactType)"
 xmlns:pm="http://systinet.com/2005/10/soa/policy">
 <pm:Description>Artifact type to restrict applicability.</pm:Description>
</pm:Parameter>

Example B.4. Policy Document with a Taxonomy based Assertion

<wsp:Policy xmlns:ws="...">
 <up:MyAssertion
 artifactType="urn:com:systinet:soa:model:artifacts:soa:applicationArtifact"
 xmlns:up="..."/>
</wsp:Policy>

73

The following assertion checks whether communication settings contain a connection timeout set to at
least 10 seconds. Additionally, the XML Schema of this assertion specifies that either the "value" must
be present, or, to use the default value, the whole up:ConnectionTimeout element must be missing.

<wsp:Policy xmlns:wsp="...">
 <up:Communication xmlns:up="...">
 <up:ConnectionTimeout value="10000"/>
 ...
 </up:Communication>
</wsp:Policy>

In this case, a single XPointer referencing the up:ConnectionTimeout/@value attribute is not enough,
because Policy Manager would not know that the whole element should be removed when the value is
not entered. Therefore the parameter is now described in two XPaths:

• Location of the element that should be removed when the value of the parameter is not set

• Location of the value within the element defined above

The location of the element is set in the XPointer and the location of the value within the element is set in
a ValueXPointer. For example, Example B.5 on page 73 is a parameter with the ValueXPointer set at
5000. This results in the policy document in Example B.6 on page 73. By contrast, if the developer
leaves the ValueXPointer blank, the resulting policy document is Example B.7 on page 74.

Example B.5. Parameter with ValueXPointer Set at 5000

<p:Parameter Name="ConnectionTimeout" Optional="false" Type="xsd:integer"
 XPointer="xmlns(up=...)xpointer(up:ConnectionTimeout)"
 ValueXPointer="xpointer(@value)"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <p:Description>Connection timeout in milliseconds.</p:Description>
</p:Parameter>

Example B.6. Policy Document with ValueXPointer in Parameter Set to 5000

<wsp:Policy xmlns:wsp="...">
 <up:Communication xmlns:up="...">
 <up:ConnectionTimeout value="5000"/>
 </up:Communication>
</wsp:Policy>

74

Example B.7. Policy Document with Empty ValueXPointer in Parameter
<wsp:Policy xmlns:wsp="...">
 <up:Communication xmlns:up="...">
 </up:Communication>
</wsp:Policy>

Table 4, "XPointer Combinations and Results" shows the XML representations of various XPointer and
ValueXPointer combinations, for optional and required attributes, and whether the value is defined or
not. Example B.8 on page 74 is a correctly defined XPointer.

Only a simplified form of XPointer is recognized in the parameter definition. The rationale
is that in this context XPointer is used not only for retrieving data, but also for creating
parameters via the UI. This is not possible with general XPointers. The recognized XPointer
must have the following structure:

 xmlns(prefix1=ns1)*xpointer({/{<prefix>:}?<localname>[<index>]}*)

Table 4. XPointer Combinations and Results

Optional Value XPointer ValueXPointer Result in Policy Schema

Yes/No 'ABC' @P —

Yes — @P — <a/>

No — Prohibited

Yes 'ABC' b[1] @P <a><b P='ABC'/>

Yes — b[1] @P <a/> (XPointer is removed.)

Yes 'ABC' b[1] — <a>ABC

Yes 'ABC' b[1] c[1] <a><c>ABC</c>

Yes — b[1] c[1] <a/> (XPointer is removed.)

Example B.8. XPointer
xmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)
xmlns(myns=http://systinet.com/examples/foo)xpointer(soap:Envelope[1]/soap:Body[1]/
myns:Foo)

75

Implementations

An assertion has one implementation for each source type to which the assertion applies. Each
implementation is propagated into its own pm:Validation element. An implementation contains the
definition of the validation handler, in p:Validation/##other[1], and the type of artifact which the
assertion can be used to validate, in p:Validation/@SourceType.

Implementations use validation handlers if they do not specify manual validation. Validation handlers
are pluggable pieces of code that show Policy Manager how to validate a source document. Validation
handlers are usually XPath or XQuery expressions, in which case the source code is included inside the
implementation, but they can be custom made. Custom made validation handlers are written in Java and
the implementation references the Java class.

Validation handlers and source types are described in the following sections:

Source Type on page 75. A description of all source types to which an implementation may apply.

XPath Assertions on page 77. XPath validation handlers.

XQuery Assertions on page 78. XQuery validation handlers.

Source Type

The pm:Validation@SourceType attribute defines the type of artifact validated by the assertion.
SourceType must be a simplified XPointer identifying the root element of the resource which the
assertion validates. If this parameter is omitted, the implementation would apply to sources of any type.
However, for performance reasons it is better to map validation to a concrete source type, as narrowly as
possible.

SourceType can be set as one of the following:

• A general artifact type with the namespace usually defined in the pm:Validation element. Please see
Table 5, "Source Types Applying to General Resources" for a list of these SourceTypevalues and their
associated artifacts and namespaces.

• A HP SOA Systinet artifact type. These share the namespace xmlns:a="http://
systinet.com/2005/05/soa/model/artifact". They are described in "SOA Definition Model" in
the HP SOA Systinet Reference Guide. A list of these SourceType values and their matching HP SOA
Systinet artifact types is given in Table 6, "SourceTypes Applying to HP SOA Systinet Artifacts ".

76

Table 5. Source Types Applying to General Resources

Resource SourceType value

Any HP SOA
Systinet resource

xmlns(rest=http://systinet.com/2005/05/soa/resource)rest:resource

SOAP message xmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)soap:Envelope

UDDI v3 Business
Entity

xmlns(uddi=urn:uddi-org:api_v3)uddi:businessEntity

WSDL Definition xmlns(wsdl=http://schemas.xmlsoap.org/wsdl/)wsdl:definitions

XML Schema xmlns(xsd=http://www.w3.org/2001/XMLSchema)xsd:schema

Table 6. SourceTypes Applying to HP SOA Systinet Artifacts

HP SOA Systinet
artifact

SourceType Value

Agreement xmlns(a=http://systinet.com/2005/05/soa/model/artifact)agreementArtifact

Application xmlns(a=http://systinet.com/2005/05/soa/model/
artifact)hpsoaApplicationArtifact

Business Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)businessPolicyArtifact

Business Service xmlns(a=http://systinet.com/2005/05/soa/model/artifact)businessServiceArtifact

Consumption Request xmlns(a=http://systinet.com/2005/05/soa/model/artifact)contractRequestArtifact

Contact xmlns(a=http://systinet.com/2005/05/soa/model/artifact)contactArtifact

Contract xmlns(a=http://systinet.com/2005/05/soa/model/artifact)contractArtifact

Conversation
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Conversation

Documentation xmlns(a=http://systinet.com/2005/05/soa/model/artifact)documentationArtifact

HTTP Message
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Message

Person xmlns(a=http://systinet.com/2005/05/soa/model/artifact)personArtifact

Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)policyArtifact

Registry xmlns(a=http://systinet.com/2005/05/soa/model/artifact)registryArtifact

77

HP SOA Systinet
artifact

SourceType Value

Report xmlns(a=http://systinet.com/2005/05/soa/model/artifact)reportArtifact

SOAP Service xmlns(a=http://systinet.com/2005/05/soa/model/artifact)webServiceArtifact

SLO xmlns(a=http://systinet.com/2005/05/soa/model/artifact)sloArtifact

Schema xmlns(a=http://systinet.com/2005/05/soa/model/artifact)schemaArtifact

Taxonomy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)taxonomyArtifact

UDDI Channel xmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiChannelArtifact

UDDI Entity xmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiEntityArtifact

UDDI Registry xmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiRegistryArtifact

WS-Policy xmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsPolicyArtifact

WSDL xmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsdlArtifact

Web Application xmlns(a=http://systinet.com/2005/05/soa/model/artifact)webArtifact

XML Schema xmlns(a=http://systinet.com/2005/05/soa/model/artifact)xmlSchemaArtifact

XML Service xmlns(a=http://systinet.com/2005/05/soa/model/artifact)xmlServiceArtifact

XSLT xmlns(a=http://systinet.com/2005/05/soa/model/artifact)xsltArtifact

XPath Assertions

Example B.9 on page 77 is an XPath that applies to UDDI business entities and returns every name
element whose lang attribute is set to the same value as the value of the lang parameter. If the XPath
returns a non-empty list, the source document is considered to be valid against the assertion. If the
returned node list is empty, validation has failed..

Example B.9. XPath Expression

 <val:XPath>
 count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0
</val:XPath>

You must take the following points into account when writing XPath assertions:

• Namespace

78

The element val:XPath is the namespace context for the XPath expression. If you need to define a
prefix-namespace mapping, do it on this element or its ancestors.

• Type system

The XPath engine used in this enforcer is the free version of the Saxon-B 8.5.1 [http://
www.saxonica.com] XSLT/XPath/XQuery engine. Although this version does not contain XML
Schema parsing, it still checks for type conformance. For example, if you need to check that the value
of attribute "xyz" is greater than 5, include in your XPath expression:

xs:integer(@xyz) > 5

If you fail to retype to integer, the XPath expression will never be fulfilled and no warning will be
returned.

• Parameter type

In this release, assertion parameters are always passed as strings, regardless of the schema type written
in the parameter definition. For this reason you have to explicitly cast the parameter in numerical
comparisons. For example, the following XPath expression would be used in an assertion which
checks that the message's body has at most a given number of elements (defined as a parameter named
MaxElements):

count(soap:Body//*) <=xs:integer($MaxElements)

XQuery Assertions

XQuery expression can be represented as shown in Example B.10 on page 79:

http://www.saxonica.com

79

Example B.10. XQuery Expression

 <val:XQuery>

 declare namespace rest="http://systinet.com/2005/05/soa/resource";
 declare namespace a="http://systinet.com/2005/05/soa/model/artifact";
 declare namespace p="http://systinet.com/2005/05/soa/model/property";
 declare namespace val="http://systinet.com/2005/10/soa/policy/validation";

 declare variable $metadata.source.url external;

 if (exists(rest:resource/rest:descriptor/a:businessServiceArtifact/
p:productionStage)) then
 val:assertionOK()
 else
 val:assertionFailed(concat('This service is not assigned a category from a
 lifecycle taxonomy. ',
 'To fix this problem, go to the
 service, ',
 'click on "Edit" and assign the category.'))

</val:XQuery>

The XQuery in Example B.10 on page 79 comes from the Service Supports Lifecycle assertion. The
XQuery applies to business services and checks that each service has a lifecycle stage assigned to it.
In the HP SOA Systinet use of XQueries, the assertionOK function is called only one time per tested
artifact if the artifact passes validation, whereas if the artifact fails, the assertionFailed function is
called for each individual violation. For the XQuery in Example B.10 on page 79 there is no logical
need to call assertionFailed more than once, since the artifact either has one lifecycle stage or none at
all. In Example B.11 on page 80, the XQuery checks each include and import element and makes
sure they use relative references. The assertionFailed function is called for each element that does not
use relative references.

80

Example B.11. XQuery Reporting Multiple Failures

declare namespace xs = "http://www.w3.org/2001/XMLSchema";
 declare namespace val="http://systinet.com/2005/10/soa/policy/
validation";

 let $errors :=
 for $el in //xs:*[local-name() = 'include' or local-name() = 'import'] where
 ($el/@schemaLocation and contains($el/@schemaLocation, ':'))
 return
 val:assertionFailed(concat('This xs:', local-name($el), ' uses absolute
 reference to another schema.'), $el)
 return
 if (empty($errors)) then
 val:assertionOK()
 else
 ()

Namespaces are not propagated from parent elements but defined via standard XQuery
declarations.

Together with the source document, XQuery assertions can be called with additional parameters. For
example, these parameters can be used by the assertion to perform additional checks or output the
location of the problem back to the user. The parameters are added to the XQuery expression of the
assertion. A metadata parameter is shown in Example B.10 on page 79.

Parameter name Description

metadata.source.url The URL of the source of validation. In the case of HTTP request/
response, this points to the request/response message. For one-way
messages, WSDL documents etc. it points to the resource being
validated.

metadata.description.url The URL of the associated description document (for example,
WSDL associated to a log of messages).

metadata.source.is.subdocument Detects subdocuments. Returns "false" if document is standalone,
"true" if document is part of a larger document.

If you want to write a new XQuery assertion or modify an existing one, follow these guidelines:

81

• The XQuery engine used in this enforcer is the free version of the Saxon-B 8.5.1 [http://
www.saxonica.com] XSLT/XPath/XQuery engine. Although this version does not contain XML
Schema parsing, it still checks for type conformance. For example, if you need to check that the value
of attribute "xyz" is greater than 5, write:

xs:integer(@xyz) > 5

Failing to do so, the XQuery expression might never be fulfilled. If this happens, no warning will be
returned.

• In this release, assertion parameters are always passed as strings, regardless of the schema type written
in the parameter definition. Because of this you must explicitly cast the parameter in numerical
comparisons. For example, the following expression would be used in an assertion which checks
that the message's body has at most a given number of elements (defined as a parameter named
MaxElements):

count(soap:Body//*) <= xs:integer($MaxElements)

http://www.saxonica.com

82

C Eclipse Plug-in Requirements

Ensure that the following prerequisite plug-ins are added to your Eclipse development platform based on
the required Workbench components:

• DTP SDK 1.5

Required for Customization Editor and Report Editor.

http://www.eclipse.org/datatools/downloads.php

• EMF SDO Runtime 2.3.0

Required for Customization Editor and Report Editor.

http://www.eclipse.org/modeling/emf/downloads/

• GEF Runtime 3.3

Required for Customization Editor and Report Editor.

http://archive.eclipse.org/tools/gef/downloads/drops/R-3.3-200706281000/index.php

• WTP 2.0

Required for Customization Editor and Report Editor.

http://www.eclipse.org/webtools/releases/2.0/

• XSD Runtime 2.3

Required for Customization Editor and Report Editor

http://www.eclipse.org/modeling/mdt/downloads/?project=xsd

• BIRT 2.2.0

http://www.eclipse.org/datatools/downloads.php
http://www.eclipse.org/modeling/emf/downloads/
http://archive.eclipse.org/tools/gef/downloads/drops/R-3.3-200706281000/index.php
http://www.eclipse.org/webtools/releases/2.0/
http://www.eclipse.org/modeling/mdt/downloads/?project=xsd

83

Required for Report Editor.

http://download.eclipse.org/birt/downloads/build_list.php

http://download.eclipse.org/birt/downloads/build_list.php

84

D Integrating XQuery Function Libraries

You can integrate a user-defined XQuery Library into Assertion Editor.

To integrate an XQuery function library:

1 You JAR file must have the following structure:

• your-lib.jar

• META-INF

• your-XQueryContext.xml

• com

• your-class

your-XQueryContext.xml should match the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd

85

 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">
 <context:annotation-config/>
 <!--STM Lifecycle Policies: XQuery extension for Policy Manager, depends on
 lifecycle API-->
 <bean id="your-bean-id" class="your-class-XQueryExtension" scope="singleton"/>
</beans>

2 Open AE_LIB/META-INF/eclipseBeanRefContext.xml in a text editor.

AE_LIB refers to WB_HOME/plugins/
com.systinet.tools.assertioneditor.lib_4.0.0.xxx.

3 Add your mapping file to the constructor-arg element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
 <bean id="com.hp.soa.systinet"
 class="com.hp.systinet.spring.ClassPathXmlApplicationContext">
 <constructor-arg>
 <list>
 <value>classpath*:META-INF/${mapping_file.xml}</value>
 <value>classpath*:META-INF/pmContext.xml</value>
 <value>classpath*:stmContext.xml</value>
 </list>
 </constructor-arg>
 </bean>
</beans>

4 Add the XQuery library to the AE_LIB/lib/ folder.

5 Modify AE_LIB/META-INF/MANIFEST.MF to set the Eclipse classpath. Add the XQuery library to the
Bundle-ClassPath item. For example, lib/lifecycle-xquery.jar.

6 Restart Workbench with command, start.exe -clean.

	HP SOA Systinet Workbench
	Table of Contents
	About this Guide
	Document Conventions
	Documentation Updates
	Support

	Assertion Editor
	Workbench Suite
	Overview
	User Interface
	Project Explorer
	Server Explorer
	Editor Pane
	Overview Tab
	Implementation Tab
	Source Tab

	Getting Started
	Installing Workbench
	SSL Configuration
	Creating an Assertion Project
	Downloading and Importing Assertions

	Manipulating Assertions
	Creating Assertions
	Editing Assertions
	Editing General Properties
	Adding and Deleting Implementations
	Writing XPath Definitions
	Writing XQuery Definitions
	Editing XQuery Definitions
	Editing XQueries in oXygen
	Editing XQueries in Stylus Studio

	Editing Reference Templates

	Deleting Assertions
	Deleting Local Assertions
	Deleting Assertions on the Server

	Comparing Assertion Versions

	Validating and Publishing Assertions
	Testing Assertions
	Resolving Conflicts
	Publishing Assertions

	Deploying Assertions
	Building an Assertion Extension
	Applying Extensions
	Single-Step Scenario
	Decoupled DB Scenario

	Redeploying the EAR File

	Customizing Assertions
	Customizing Source Type
	Adding PM Extensions

	Java Assertion Demo
	Creating the Assertion Validator
	Applying the Extension
	Creating and Deploying the Assertion
	Testing the Assertion Validator

	Appendix A. Dialog Boxes
	Define New Implementation Wizard
	Define New Implementation: Select Resource Type
	Define New Implementation: New Type
	Define New Implementation: Implementation Type

	Run

	Appendix B. Assertion Developer Reference
	Assertion Document Details
	Reference Templates
	Parameters
	Implementations
	Source Type
	XPath Assertions
	XQuery Assertions

	Appendix C. Eclipse Plug-in Requirements
	Appendix D. Integrating XQuery Function Libraries

