
HP SOA Systinet
Software Version: 4.00

Developer Guide

Document Release Date: September 2010

Software Release Date: September 2010

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2003 - 2010 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

HP SOA Systinet (4.00)Page 2 of 105

Developer Guide

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

HP SOA Systinet (4.00)Page 3 of 105

Developer Guide

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP SOA Systinet (4.00)Page 4 of 105

Developer Guide

Contents

Developer Guide 1

Contents 5

In this Guide 9

IDE Integration 10

HP SOA Systinet IDE Integrations 10

WSIL Report – IBM RAD and Eclipse 10

Microsoft Visual Studio 11

Atom-Based REST Interface 13

Workspaces 14

SDMCollections Workspace 15

Publishing Locations Workspace 15

System Collections Workspace 15

Feeds 15

Artifact Collection Feeds 16

Filtering Feeds 17

Viewing Entry Content in Feeds 18

Property Based Searching 18

FeedOrdering 19

Feed Paging 20

Bulk GETs 20

Publishing Location Feeds 21

Artifact History Feed 22

Entries 22

Artifact Atom Entries 23

Artifact History Entries 25

Atom Entry Property Descriptors 26

Primitive Properties Atom Representation 28

Category Properties Atom Representation 28

Relationship Properties Atom Representation 29

Special Properties Atom Representation 30

HP SOA Systinet (4.00)Page 5 of 105

Developer Guide
Contents

Artifact Data 30

Resource Identification 31

Category Documents 31

Atom REST Operations 32

CREATE 32

UPDATE 33

DELETE 33

UNDELETE 33

PURGE 33

Atom REST ETags 34

Conditional GET 34

Conditional PUT and POST 34

Atom REST Client 35

Classpath 36

First Steps 36

Important Classes 37

Demos 38

Atom REST Client Demo 38

Contract Demo 38

Executable Objects 42

Using DQL 43

Introduction to DQL 43

Primitive Properties 44

Complex Properties 44

Artifact Inheritance 44

Categorization Properties 45

FixingMultiple Properties 46

Relationships 46

Modifiers 48

Virtual Properties 49

Embedding SQLQueries 50

DQLReference 50

HP SOA Systinet (4.00)Page 6 of 105

Developer Guide
Contents

Properties in DQL 51

DQL and SQL 54

DQLGrammar 54

Select 55

FROMClause 56

Conditions 56

Expressions 58

Lexical Rules 59

DQLwith 3rd Party Products 59

DQL JDBC Driver 60

DQL in SQLDesigners 61

DQL inMS Access 61

WebDAV Compliant Publishing 63

Technical Security 66

HP SOA Systinet Overview 66

Users andGroups 67

Transport Security 68

Authentication 68

Resource ACL 68

WEB Security 69

Platform Services 69

Reporting Services 70

Policy Manager Services 70

Default Endpoint Authentication 70

Custom Source Parsers 72

Custom Validation Handlers 74

Validation Client 75

Downloading Policies and Assertions (sync) 75

Local Validations (validate) 75

Policy Formats 76

Source Formats 76

ValidatingMultiple Sources WithMultiple Policies 76

HP SOA Systinet (4.00)Page 7 of 105

Developer Guide
Contents

Selecting Sources By Wildcard 76

Setting UpOutput 77

ANT Task Automation of validate 77

Validating Against Policy On Server (server-validate) 78

Policy URIs 79

Source Formats 79

Selecting the HP SOA Systinet Server 79

Rendering Output from XMLReports (render) 79

Overwriting Reports 79

Selecting Output Template 79

Validation and Report Rendering Demo 80

Publishing Extensibility 81

Spring Context Publishing 81

Spring Context Decomposition 88

HP SOA Systinet (4.00)Page 8 of 105

Developer Guide
Contents

Chapter 1

In this Guide
HP SOA Systinet Developer Guide describes additional features andmethods to enable developers
to better interact with HP SOA Systinet.

It contains the following chapters:

l "IDE Integration" (on page 10)

How to integrate HP SOA Systinet with IDEs.

l "Atom-Based REST Interface" (on page 13)

A guide to the Atom REST Interface.

l "Executable Objects" (on page 42)

Execute tasks in HP SOA Systinet directly using URLs.

l "Using DQL" (on page 43)

A guide to using DQL to write queries.

l "WebDAV Compliant Publishing" (on page 63)

UsingWebDav clients with the publishing location space.

l "SDM Client"

Using the SDMClient.

l "Technical Security" (on page 66)

A technical overview of HP SOA Systinet from the security point of view.

l "RSS"

The RSS format used in HP SOA Systinet.

l "Custom Source Parsers" (on page 72)

How to write your own source parser.

l "Custom Validation Handlers" (on page 74)

How to write your own validation handler.

l "Validation Client" (on page 75)

A command-line tool for policy compliance validation.

l "Publishing Extensibility" (on page 81)

How to extend publishing for custom document types.

HP SOA Systinet (4.00)Page 9 of 105

Developer/sdm_highlights.html
Developer/sdm_highlights.html
Developer/rss_format.html

Chapter 2

IDE Integration
This chapter explains how to allow IDEs to access the HP SOA Systinet repository.

It contains the following sections:

l "HP SOA Systinet IDE Integrations" (on page 10)

Introduces the plug-ins HP Software provides for development environments.

l "WSIL Report – IBM RAD and Eclipse" (on page 10)

How to use theWSIL query include with HP SOA Systinet to add it to an IDE.

l "Microsoft Visual Studio" (on page 11)

How to add HP SOA Systinet as aWebReference inMS Visual Studio.

HP SOA Systinet IDE Integrations
HP Software provides a set of plug-ins for IDEs that embed HP SOA Systinet functionality in each
development environment.

HP Software provide the following IDE integration products:

l HP SOA Systinet Plugin for Eclipse

Enables you to search the Catalog, generate service clients and skeletons from HP SOA
Systinet resources, perform local resource validation against HP SOA Systinet policies, and
publish local resources to the Catalog. You can alsomake contract and lifecycle approval
requests and use the Navigator feature from within Eclipse.

l HP SOA Systinet Plugin for Visual Studio

Enables you to search the Catalog , generate web references from HP SOA Systinet resources,
and publish local resources to the Catalog. You can alsomake contract and lifecycle approval
requests and use the Navigator feature from within Visual Studio.

l HP SOA Systinet ARIS Integration

Enables you to search the Catalog, create processes using HP SOA Systinet resources, and
publish processes and service definitions to the Catalog.

For more details, see the documentation for each product.

WSIL Report – IBM RAD and Eclipse
AWSIL (Web Service Inspection Language) dynamic query is included tomake it easy for IDEs,
like IBM RAD, to leverage the HP SOA Systinet repository. This query provides a list of all web
services and theirWSDLs and is used by RAD to create a service proxy. You can access this
query from the Tools tabmenuGenerateWSIL Document, or at the referenced location:

http://y-

ourhost:yourport/soa/systinet/platform/restBasic/service/system/wsil

HP SOA Systinet (4.00)Page 10 of 105

Developer Guide
Chapter 2: IDE Integration

Launch IBM RAD 6.0's Web Services Explorer, and enter theWSIL report URL (the page that is
generated by theWSIL link of Search.

From there, you can access the services' WSDL documents.

Microsoft Visual Studio
TheAdd Web Reference facility of Microsoft Visual Studio’s Solution Explorer is fully supported.

HP SOA Systinet (4.00)Page 11 of 105

Developer Guide
Chapter 2: IDE Integration

Enter the URL of your HP SOA Systinet installation (for example,
http://yourserver:8080/soa/) to access HP SOA Systinet within Microsoft Visual Studio.

Notice the instructions fromMicrosoft Visual Studio at the top. In this case, you are navigating to a
WSDL file stored in HP SOA Systinet. On the right, you can see that Microsoft Visual Studio does
not recognize web service discovery information on the current page.

To find the service you are looking for, see "How to Search the Catalog" in theUser Guide.

Select theWSDL artifact for the service to open theWSDL detail page.

From this page copy the link in the Data section and paste it to theMicrosoft Visual Studio Solution
Explorer. You can now click Add Reference to read the web service definition(s) into Microsoft
Visual Studio.

HP SOA Systinet (4.00)Page 12 of 105

Chapter 3

Atom-Based REST Interface
HP SOA Systinet uses an ATOM-based REST interface.

Note: HP SOA Systinet also includes a deprecated proprietary REST Interface. For information
about this interface, see theHP SOA Systinet 3.20 Developer Guide.

Access the HP SOA Systinet platform service document using the following URL:

http://hostname:port/context/platform/rest

Hostname, port, and context are set during installation. For example, if you used the default
settings and installed to your local machine, use the following URL:

http://localhost:8080/soa/platform/rest

If set up during installation, an HTTPS secure endpoint is available which requires credentials to
access.

A default secure endpoint uses the following URL:

https://localhost:8443/soa/platform/rest

Note: Use restSecure instead of rest if you are using HTTP basic authentication.

The service document consists of workspaces, which in turn contains feeds made up of entries, as
shown in the following example:

Platform Service Document

<?xml version="1.0" encoding="UTF-8"?>

<app:service xml:base="http://localhost:8080/soa/platform/rest/"

xmlns:app="http://www.w3.org/2007/app">

<app:workspace>

<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">SDM

collections</atom:title>

<app:collection href="./artifact/reportArtifact">

<app:accept/>

<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">Collection of

Reports</atom:title>

<app:categories href="./category-document/

uddi:systinet.com:soa:model:taxonomies:artifactTypes:_

artifactType"/>

<app:categories href="./category-document/

uddi:systinet.com:soa:model:taxonomies:reportTypes:reportType"/>

<app:categories href="./category-document/

HP SOA Systinet (4.00)Page 13 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

uddi:sy-

stinet.com:soa:model:taxonomies:reportCategories:reportCategory"/>

<app:categories href="./category-document/

uddi:systinet.com:soa:model:taxonomies:reportStatus:reportStatus"/>

<app:categories href="./category-document/

uddi:systinet.com:soa:model:taxonomies:reportResultCodes:reportResultCode"/>

</app:collection>

...

</app:workspace>

<app:workspace>

<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">Publishing

Locations</atom:title>

<app:collection href="./location">

<app:accept/>

</app:collection>

</app:workspace>

<app:workspace>

<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">System

Information</atom:title>

<app:collection href="./system">

<app:accept/>

</app:collection>

</app:workspace>

</app:service>

The interface is described in the following sections:

l "Workspaces" (on page 14)

l "Feeds" (on page 15)

l "Entries" (on page 22)

l "Category Documents" (on page 31)

l "Atom REST Operations" (on page 32)

l "Atom REST ETags" (on page 34)

l "Atom REST Client" (on page 35)

Workspaces
The platform service document consists of the following workspaces:

l "SDM Collections Workspace" (on page 15)

The SDMworkspace reflects the structure of the SOA DefinitionModel (SDM) and defines
feeds for the collections in the HP SOA Systinet repository (read-only).

l "Publishing Locations Workspace" (on page 15)

HP SOA Systinet (4.00)Page 14 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

The locations workspace reflects the structure of attached data content in HP SOA Systinet
created by the publisher.

l "System Collections Workspace" (on page 15)

The system workspace contains system information used by HP SOA Systinet(read-only).

SDM Collections Workspace
The SDM collections workspace contains a collection for each artifact type in the SOA Definition
Model (SDM) for which an instance can be created within its artifact hierarchy.

Note:Customization Editor can be used tomodify the SDM, so your configurationmay vary from
specific examples in this documentation. For more details, see theCustomization Editor
Guide.

Each collection in the workspace consists of the following:

l <app:collection href="./artifact/artifactType">

The reference defines the URL used for the feed for that particular artifact type collection. For
details, see “Artifact Collection Feeds”.

l <app:categories href="./category-documents/taxonomy">

Categories can occur in feed entries and some feed readers can perform filtering according to
these categories.

Publishing Locations Workspace
The publishing locations workspace consists of a single collection. This collection is an atom feed
made up of entries where the entry can be one of the following types:

l Subcollection

l Resource

The subcollections and resources reflect content uploaded to HP SOA Systinet using its
publication feature.

For more details, see "How to Publish Content" in the User Guide.

This location is available as a feed and is accessible with aWebDAV client.

For details, see "Publishing Location Feeds" (on page 21) and "WebDAV Compliant Publishing" (on
page 63).

System Collections Workspace
The system collections workspace contains a single collection. This collection contains information
about the running system.

Feeds
You can access the content of the repository using feeds.

l "Artifact Collection Feeds" (on page 16)

l "Publishing Location Feeds" (on page 21)

HP SOA Systinet (4.00)Page 15 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l "Artifact History Feed" (on page 22)

Artifact Collection Feeds
Every artifact type collection in the SDM is accessible as a feed.

Use the reference defined in the SDM collections workspace to access a collection feed.

For example, theWSDL collection feed is accessed with URL:

http://localhost:port/context/platform/rest/artifact/wsdlArtifact

WSDL Collection Feed

<feed

xml:base="http://localhost:8180/soa/platform/rest/artifact/wsdlArtifact"

xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"

xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifacts:sdm:wsdlArtifact</id>

<updated>2009-06-19T14:54:11.614+02:00</updated>

<title type="text" xml:lang="en">Collection of WSDLs</title>

<opensearch:itemsPerPage>50</opensearch:itemsPerPage>

<opensearch:startIndex>1</opensearch:startIndex>

<link href="artifactBase" type="application/atom+xml;type=feed"

rel="urn:hp.com:2009:02:systinet:platform:artifacts:parent"

title="parent sdm feed"/>

<link href="wsdlArtifact?start-index=1&page-size=50"

type="application/atom+xml;type=feed"

rel="self" title="feed self"/>

<author>

<name>system:restadmin</name>

</author>

<generator>HP SOA Systinet</generator>

<entry>

<id>urn:hp.com:2009:02:systinet:platform:artifact:4465c1e1-f214-

47c5-a958-d3202ab20dfa</id>

<updated>2009-06-09T10:06:35.443+02:00</updated>

<title type="text" xml:lang="en">paymentMethod.wsdl</title>

...

</entry>

...

</feed>

Each artifact type collection feed consists of the following descriptors:

Descriptors Description

id The feed identification.

updated The last update time.

title The name of the feed.

link A set of links with the following link types indicated by the rel attribute:

HP SOA Systinet (4.00)Page 16 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

Descriptors Description

l urn:hp.com:2009:02:systinet:platform:artifacts:parent

Links to collection feeds for super artifacts in the inheritance category.

l urn:hp.com:2009:02:systinet:platform:artifacts:child

Links to collection feeds for descendant artifact types.

entry The set of entries in the feed. For more details, see "Artifact Atom Entries" (on
page 23).

opensearch:startIndex Starting point for the feed relative to index entries. The first indexed item is 1.

opensearch:itemsPerPage Number of items per page.

You canmodify the output of the feed as described in the following sections:

l "Filtering Feeds" (on page 17)

l "Viewing Entry Content in Feeds" (on page 18)

l "Property Based Searching" (on page 18)

l "FeedOrdering" (on page 19)

l "FeedOrdering" (on page 19)

You can also combine these output methods.

Separate each term with &.

For example, to get artifacts 10-79 which contain policy in the description, ordered primarily by
their name in descending order and then by description in ascending order, and displaying properties
defined in artifactBase, use the following URL:

http://host:port-

/co-

ntext/platform/rest/artifact/artifactBase?p.description=*policy*&start-

index=10&page-size=70&order-by=name-,description&inline-content

Filtering Feeds

Feeds are presented in the REST interface as a set of equivalent collections.

Examples of feeds include:

l http:/-

/loca-

lhost:port/context/platform/rest/artifact/implementationArtifact

l http:/-

/localhost:port/context/platform/rest/artifact/xmlServiceArtifact

l http:/-

/localhost:port/context/platform/rest/artifact/webServiceArtifact

HP SOA Systinet (4.00)Page 17 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l http:/-

/loca-

lhost:port/context/platform/rest/artifact/businessServiceArtifact

l http://localhost:port/context/platform/rest/artifact/wsdlArtifact

Viewed in this way, the feeds form a flat structure. However, there are established relationships
between feeds in terms of an inheritance hierarchy.

The root of the hierarchy is
http://localhost:port/context/platform/rest/artifact/artifactBase.

You can use abstract artifact type feeds to obtain all artifact types lower in the hierarchy. For
example, the implementationArtifact feed contains all SOAP service, XML service, and web
application artifacts.

The relationships between feeds are realized via
urn:hp.com:2009:02:systinet:platform:artifacts:parent and
urn:hp.com:2009:02:systinet:platform:artifacts:child links.

Viewing Entry Content in Feeds

You can use feeds to obtain multiple artifact entry content as well.

Add ?inline-content to the collection feed URL to obtain the full content for each entry in the
feed.

Note: The properties displayed in the content for an entry are determined by the artifact type used in
the feed URL. Properties specific to an artifact type lower in the hierarchy are not displayed.

Property Based Searching

You can search for specific artifacts in a feed with property based filtering. You can filter by any
property type regardless of its type and cardinality, but the elementary conditions are always
primitive values. The filtering property must be present in the artifact type defining the feed.

The property must be one of the following elementary types:

l text

l integer

l bigInteger

l date

l double

l boolean

l uuid

To view the permitted property names for a particular artifact feed, you can examine the SDMwith
URL:

http://host:port/context/platform/rest/system/model.

If you want to filter by a compound property (for example, category property which has 3
compounds: taxonomyUri, name, value) youmust use dot notation. For example to search by

HP SOA Systinet (4.00)Page 18 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

compound val (value) of property criticality on businessServiceArtifact use the
following URL:

http://host:port/soa/-

platform/rest/artifact/businessServiceArtifact?p.criticality.val

=uddi:systinet.com:soa:model:taxonomies:impactLevel:high

Only business services artifacts with high criticality are listed.

For text property filtering, operator case-insensitive-equals is used, but can explicitly use wildcards.
To find all service artifact with svc in their name submit the following URL:

http://host:port/soa/-

platform/rest/artifact/businessServiceArtifact?p.name=*svc*

The following wildcards are supported:

l * for zero or more arbitrary characters.

l _ for exactly one arbitrary character.

Note:HP SOA Systinet does not support explicit boolean operators but there is an implicit AND for
conditions on different properties and an implicit OR on conditions on the same property.

The following examples show various ways to use property searching:

l Artifacts with a name starting with service and a description containing assertion:

http://host:port/context/platform/rest/artifact/artifactBase?p.name=

service*&p.description=*assertion*

l Artifacts with a name containing either starting with service or containing assertion:

http://host:port/context/platform/rest/artifact/artifactBase?p.name=

service*&p.name=*assertion*

l Deleted artifacts only.

http://host:port/context/platform/rest/artifact/artifactBase?p._

deleted=true

Tip: To view the category values, open the category document, for details, see "Category
Documents" (on page 31).

Feed Ordering

By default, entries in feeds are ordered by their atom:updated element.

Add ?order-by= to the collection feed URL to change the order.

l Entries ordered by name (ascending):

http://host:port/context/platform/rest/artifact/artifactBase?order-

by=name

l Entries ordered by name (descending):

http://host:port/context/platform/rest/artifact/artifactBase?order-

by=name-

HP SOA Systinet (4.00)Page 19 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l Entries ordered by name (descending), then description (ascending):

http://host:port/context/platform/rest/artifact/artifactBase?order-

by=name-,description

You can also use properties for ordering with the same conditions as for searching.

For details, see "Property Based Searching" (on page 18).

Feed Paging

You can also control the feed paging.

l The first ten entries:

http://host:port/context/platform/rest/artifact/artifactBase?page-

size=10

l Entries 10-19 (inclusive):

http://host:port/context/platform/rest/artifact/artifactBase?page-

size=10&start-index=10

Note: The default number of entries is 50 and themaximum number of entries is 500.

Bulk GETs

A specific REST use case is a Bulk GET - gettingmultiple artifacts in a single request/response
interaction. This can be handled via a property based search on specific collections, presuming that
the UUIDs of the artifacts to retrieve are known.

For example, assume the following business service artifacts with UUIDs, bs1 and bs2. There are
3 web service artifacts with UUIDs ws1, ws2, and ws3. The ATOMGET request to return all 5
artifacts at once is as follows:

http://host:8080/soa/platform/rest/artifact/artifactBase?p._

uuid=bs1&p._uuid=bs2&p._uuid=ws1&p._uuid=ws2&p._uuid=ws3&inline-

content

Notice the inline-content flag, it specifies the inclusion of proprietary XML representation into atom
entries.

Submitting this URL returns a feed with 5 artifacts, assuming they exist. But inside the atom
content there are only properties specific to the artifactBase artifact type. For example:
businessServiceArtifact defines the property criticality. This property is not present in the
atom content because it is not declared at artifactBase level. The properties listed in the atom
content are strictly driven by artifact type, specified as one part of the URL (in our case
artifactBase).

However, there is one exception, relationship properties are always listed in the atom content
regardless of the given artifact type. The business service artifact defines a relationship property
service. This property is not declared at artifactBase level, however, it is present in the XML
representation regardless of the artifact type given in the URI.

If you want to get the full set of properties (even those specific to the given artifact type), youmust
perform multiple GETs per artifact type. In our example, this requires the following 2GETs:

HP SOA Systinet (4.00)Page 20 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

http://host:8080-

/soa/platform/rest/artifact/businessServiceArtifact?p._uuid=bs1&p._

uuid=bs2&inline-content

http://host:8080/soa/platform/rest/artifact/webServiceArtifact?p._

uuid=ws1&p._uuid=ws2&p._uuid=ws3&inline-content

By submitting these two HTTP GETs, you obtain full representation of the 5 artifacts: bs1, bs2,
ws1, ws2, and ws3.

Publishing Location Feeds
The location feed enables you to browse the attached data content in the repository.

HP SOA Systinet adds this content whenever you publish an artifact associated with attached data
content. For details, see "How to Publish Content" in theUser Guide.

The publishing location is accessible using aWebDAV client. For details, see "WebDAV Compliant
Publishing" (on page 63).

The content feed consists of resources (the data content) organized into collections (folders).
Access the feed using the following URL:

http://localhost:8080/soa/platform/rest/location

If you use a browser, this opens a view which enables you to browse the data content and interact
with it.

Note: The view of a collection location only displays resources that you have permissions for.

HP SOA Systinet publisher creates a collection within the publishing location when you upload data
content. For more details, see "How to Publish Content" in the User Guide.

Open a collection by clicking its name, or download a zip file of its content by clickingDownload
as Archive. At the lowest level, the browser shows the actual data content. For the actual content,
click the content name.

Click Advanced View to open the detail view of the related artifact in HP SOA Systinet. For
details, see "Artifact Detail Pages" in the User Guide.

You can change the output of the location space on your browser using alternativemedia types:

l http://hostname:port/context/platform/rest/location

The default output as described above.

l http://hostname:port/context/platform/rest/location?alt=text/html

The HTML representation which is the default output for locations. For artifacts with non-HTML
content there is no HTML representation.

l http://h-

ostname:port/context/platform/rest/location/foo?alt=application/zip

Output all files from a particular collection (foo) to a zip archive.

Add the following optional switches to output additional related documentation:

HP SOA Systinet (4.00)Page 21 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

n &inline-desc

Includes document descriptor files in the archive (files with the .desc suffix in .meta
subdirectories).

n &inline-acl

Includes ACL files in the archive (files with the .acl suffix in .meta directories).

n &zip-compat

Enable zip compatibility mode (no directory entries are created in the archive).

l http://h-

ost-

name:port/context/platform/rest/location/test?alt=application/atom%2bxml

View the Atom feed for a collection location.

l http://h-

ostname:port/context/platform/rest/location/foo?alt=application/json

Output a particular collection location as a JSon representation.

By default, the last revision of a resource or collection is shown, but you can request revisions from
a particular date using the following pattern:

http://h-

ostname:port/context/platform/rest/location;datetime=[datetimeValue]

For example,
http://hostname:port/context/platform/rest/location/foo/a.wsdl,
corresponds to the last revision of a the a.wsdl resource in the foo location.

http://hostname:port/context/platform/rest/location;datetime=2008-01-

01T12:00:00.000Z/foo/a.wsdl, corresponds to the revision of the a.wsdl resource at 12:00
on 1/1/2008.

Specifying a collection location that does not exist returns an exception.

Artifact History Feed
You can view the revision history of an artifact as a feed.

For example, to view the revision history of my.wsdl, use the URL:

http://host:port-

/context/platform/rest/artifact/wsdlArtifact/my.wsdl/history

Entries
The detailed information about an artifact in the repository is available as an entry.

Entries are described in the following sections:

l "Artifact Atom Entries" (on page 23)

l "Artifact History Entries" (on page 25)

l "Atom Entry Property Descriptors" (on page 26)

HP SOA Systinet (4.00)Page 22 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l "Artifact Data" (on page 30)

l "Resource Identification" (on page 31)

Artifact Atom Entries
The information about each entry in the collection feed is only a summary. Each entry can be
accessed directly using its self link as referenced in the artifact feed, which is formed from
either its restName or id.

For example, you can access a particular user profile entry with URL:

http:/-

/localhost:port/context/platform/rest/artifact/personArtifact/admin

Admin User Profile Entry

<entry xml:base=

"http://localhost:8180/soa/platform/restSecure/artifact/personArtifact"

xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifact:d82a5dcc-d85c-

4766-9967-93eb5dc0bd0a</id>

<updated>2009-06-01T09:30:23.154+02:00</updated>

<title type="text" xml:lang="en">HP SOA Administrator</title>

<summary type="text" xml:lang="en">HP SOA Administrator.</summary>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-

93eb5dc0bd0a?alt=application%2Fatom%2Bxml"

type="application/atom+xml" rel="self" title="artifact detail"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-

93eb5dc0bd0a?alt=application%2Fxml"

type="application/xml" rel="alternate" title="XML

representation"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-

93eb5dc0bd0a?alt=application%2Fatom%2Bxml"

type="application/atom+xml"

rel="urn:hp.com:2009:02:systinet:platform:artifact:last-

revision"

title="last revision"/>

<link href="personArtifact" type="application/atom+xml;type=feed"

rel="urn:hp.com:2009:02:systinet:platform:artifacts:collection"

title="sdm feed"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-

93eb5dc0bd0a/history"

type="application/atom+xml;type=feed"

rel="urn:hp.com:2009:02:systinet:platform:artifact:history"

title="history feed"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-93eb5dc0bd0a/acl"

type="application/xml"

rel="urn:hp.com:2009:02:systinet:platform:artifact:acl"

title="access control list"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-

HP SOA Systinet (4.00)Page 23 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

93eb5dc0bd0a?alt=text%2Fhtml"

type="text/html" rel="alternate" title="UI view page"/>

<author>

<name>systinet:admin</name>

</author>

<category label="Active"

scheme="uddi:systinet.com:soa:model:taxonomies:accountStates:accountState"

term="S1"/>

<category label="Artifact"

scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_

artifactType"

term="urn:com:systinet:soa:model:artifacts"/>

<category label="Content"

scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_

artifactType"

term="urn:com:systinet:soa:model:artifacts:content"

ext:parent="urn:com:systinet:soa:model:artifacts"

xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

<category label="Contact"

scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_

artifactType"

term="urn:com:systinet:soa:model:artifacts:content:contact"

ext:parent="urn:com:systinet:soa:model:artifacts:content"

xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

<category label="User Profile"

scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_

artifactType"

term="urn:com:systinet:soa:model:artifacts:content:contact:person"

ext:parent="urn:com:systinet:soa:model:artifacts:content:contact"

xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

<content type="application/xml">

...

</content>

</entry>

Each artifact entry consists of the following descriptors:

Descriptor Description

id A unique id for the artifact (uuid).

updated The last update time.

title The name of the entry.

link A set of links with the following link types indicated by the rel attribute:

HP SOA Systinet (4.00)Page 24 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

Descriptor Description

l self

The atom entry details.

l urn:hp.com:2009:02:systinet:platform:artifacts:collection

The associated artifact collection feed. For details, see "Artifact Collection
Feeds" (on page 16).

l urn:hp.com:2009:02:systinet:platform:artifact:last-

revision

The last revision of this artifact.

l edit-media

The associated data content for an artifact.

l urn:hp.com:2009:02:systinet:platform:artifact:history

The collection feed for revisions of this artifact.

l alternate

A set of alternate views of the artifact, including:

n application/xml The bare XML representation of the content
descriptor.

n text/html Points to the HP SOA Systinet UI view of the artifact.

l related

Links to related artifacts.

Note:Related artifacts may also be linked where the link has the rel attribute
with a specific relationship name. For details, see "Relationship Properties
Atom Representation" (on page 29).

category A set of taxonomic values from:
l Taxonomy property values

l categoryBag and identifierBag

l sdmTypes taxonomy values

author The creator of this revision of the artifact.

content The bare XML representation of the content descriptor. For details, see "Atom Entry
Property Descriptors" (on page 26).

summary An artifact description.

Artifact History Entries
By default, entries display the latest revision. You can view older revisions by adding ;rev=X to
the entry URL.

For example, the first revision of aWSDL can be obtained with the URL:

HP SOA Systinet (4.00)Page 25 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

https://host:port-

/context/platform/rest/artifact/wsdlArtifacts/mywsdl;rev=1

Atom Entry Property Descriptors
Atom entries contains an XML representation of an artifact in the content descriptor.

Admin User Entry Content

<content type="application/xml">

<art:artifact name="personArtifact"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:p="http://hp.com/2008/02/systinet/platform/model/property"

xmlns:sdm="http://hp.com/2007/10/systinet/platform/model/propertyType"

xmlns:art="http://hp.com/2008/02/systinet/platform/model/artifact">

<p:primaryGroup xsi:nil="true" sdm:type="text"/>

<p:accountState name="Active"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:accountStates"

value="S1"

sdm:type="category"/>

<p:designTimePolicy xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>

<p:documentation xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>

<p:_uuid sdm:type="uuid">d82a5dcc-d85c-4766-9967-93eb5dc0bd0a</p:_

uuid>

<p:_revision sdm:type="integer">1</p:_revision>

<p:_checksum sdm:type="bigInteger">0</p:_checksum>

<p:_contentType xsi:nil="true" sdm:type="text"/>

<p:_revisionTimestamp sdm:type="date">2009-06-

01T07:30:23.154Z</p:_revisionTimestamp>

<p:keyword xsi:nil="true" sdm:type="category" p:multi="true"/>

<p:categoryBag xsi:nil="true" sdm:type="categoryBag"/>

<p:_revisionCreator sdm:type="text">systinet:admin</p:_

revisionCreator>

<p:_artifactType name="Artifact"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"

value="urn:com:systinet:soa:model:artifacts"

sdm:type="category" p:multi="true"/>

<p:_artifactType name="Content"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"

value="urn:com:systinet:soa:model:artifacts:content"

sdm:type="category" p:multi="true"/>

<p:_artifactType name="Contact"

HP SOA Systinet (4.00)Page 26 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"

value="urn:com:systinet:soa:model:artifacts:content:contact"

sdm:type="category"

p:multi="true"/>

<p:_artifactType name="User Profile"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"

value="urn:com:systinet:soa:model:artifacts:content:contact:person"

sdm:type="category"

p:multi="true"/>

<p:identifierBag xsi:nil="true" sdm:type="identifierBag"/>

<p:description sdm:type="text">HP SOA

Administrator.</p:description>

<p:_owner sdm:type="text">admin</p:_owner>

<p:_deleted sdm:type="boolean">false</p:_deleted>

<p:name sdm:type="text">HP SOA Administrator</p:name>

<p:consumptionContract xsi:nil="true"

sdm:type="documentRelationship" p:multi="true"/>

<p:consumptionRequest xsi:nil="true"

sdm:type="documentRelationship" p:multi="true"/>

<p:r_consumerOwner2contract xsi:nil="true"

sdm:type="documentRelationship" p:multi="true"/>

<p:provides xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>

<p:contactRole xsi:nil="true" sdm:type="category" p:multi="true"/>

<p:r_contactClassification xsi:nil="true" sdm:type="category"/>

<p:geographicalLocation xsi:nil="true" sdm:type="category"

p:multi="true"/>

<p:languageCode xsi:nil="true" sdm:type="category"/>

<p:hpsoaApplicationContact xsi:nil="true"

sdm:type="documentRelationship" p:multi="true"/>

<p:r_memberOf xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>

<p:loginName sdm:type="text">admin</p:loginName>

<p:address xsi:nil="true" sdm:type="address"/>

<p:email sdm:type="text" p:multi="true">admin@comp.com</p:email>

<p:phone xsi:nil="true" sdm:type="text" p:multi="true"/>

<p:instantMessenger xsi:nil="true" sdm:type="text"

p:multi="true"/>

<p:externalDefinition xsi:nil="true"

sdm:type="documentRelationship" p:multi="true"/>

</art:artifact>

</content>

The content is effectively a list of the properties of an artifact.

The property types are described in the following sections:

HP SOA Systinet (4.00)Page 27 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l "Primitive Properties Atom Representation" (on page 28)

l "Category Properties Atom Representation" (on page 28)

l "Relationship Properties Atom Representation" (on page 29)

l "Special Properties Atom Representation" (on page 30)

Primitive Properties Atom Representation

Primitive properties are represented as follows:

<p:NAMEsdm:type="TYPE">VALUE<p:NAME>

The following primitive property types use this form:

Property Type xsi:type Correspondance

date xs:dateTime

boolean xs:boolean

double xs:double

integer xs:int

bigInteger xs:integer

text xs:string

uuid xs:string

For example:

<p:phone sdm:type="text">774 789 784</p:phone>

Category Properties Atom Representation

Category properties are propagated in two places in the Atom entries.

The category descriptor, which also appears in collection feeds, describes the taxonomy and
category as follows:

<category label="..." scheme="..." term="..."/>

l label corresponds to the category name.

l scheme corresponds to the taxonomy URI combined with the property name.

l term corresponds to the category URI.

This is reproduced in the entry content as a property:

<p:NAME name="..." taxonomyUri="..." value="..." sdm:type="category"/>

For example, a web service with Failure Impact set to High is represented as a property in the entry
for the web service:

<p:criticality name="High"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:impactLevel"

HP SOA Systinet (4.00)Page 28 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

value="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"

sdm:type="category"/>

Note that the property representing this taxonomic category is criticality.

The property is propagated to Atommetadata as an atom:category element:

<atom:category label="High"

scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality"

term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"/ >

Relationship Properties Atom Representation

Relationship properties are propagated in two places in the Atom entry.

In feeds the link exists as metadata.

The link descriptor describes the following link types:

l A generic related link.

l A specific relationship bound link where the relattribute uses a
'urn:hp.com:2009:02:systinet:platform:artifact:relation:prefix with the
relationship name.

In entries, relationships are described as a set of property atom content descriptors:

Relationship Properties

Incoming relationship example:

<p:inBusinessService xlink:href="businessServiceArtifact/1210"

sdm:type="documentRelationship" p:multi="true">

<t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>

<t:exact>false</t:exact>

</p:inBusinessService>

Exact incoming:

<p:inBusinessService xlin:href="businessServiceArtifact/1210"

sdm:type="documentRelationship" p:multi="true">

<t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>

<t:exact>true</t:exact>

</p:inBusinessService>

Outgoing relationship example:

<p:service xlin:href="webServiceArtifact/5"

sdm:type="documentRelationship" p:multi="true">

<t:target deleted="false">5a4aeca7-a8f9-4761-b504-

82723ab2f417</t:target>

</p:service>

Exact outgoing:

<p:service xlin:href="xmlServiceArtifact/101.xml;rev=1"

sdm:type="documentRelationship" p:multi="true">

<t:target revision="1" deleted="false">72ab6f1f-e943-4fd2-a7bc-

5d227e6e134a</t:target>

HP SOA Systinet (4.00)Page 29 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

</p:service>

Special Properties Atom Representation

Special properties are defined by an XML schemawhich determines their structure.

HP SOA Systinet contains an XML schemawhich defines the following property types:

l address

l categoryBag

l identifierBag

l dailyInterval

l nameURLPair

l nameValuePair

l parameterList (XQuery parameter)

l scheduled

l selector

Artifact Data
If an artifact has associated data content, then you can directly access the data content.

For example, aWSDL artifact is usually associated with the actual WSDL file.

Access theWSDL entry with the URL:

https:/-

/loca-

lhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl?alt=atom

WSDL Entry

<entry

xml:base="http://localhost:8180/soa/platform/restSecure/artifact/wsdlArtifact"

xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifact:f5aff3eb-95fd-

4791-856b-3ac551666da2</id>

<updated>2009-06-08T16:24:55.609+02:00</updated>

<title type="text" xml:lang="en">mywsdl</title>

...

<link href="../location/wsdls/mywsdl.wsdl" type="application/xml"

rel="edit-media" title="attached data" />

...

</entry>

The entry contains a link pointing to the locations workspace. The data is also available using a
/data suffix.

For example,
https://localhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl/data

HP SOA Systinet (4.00)Page 30 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

You can also access older revisions of the data with the URL:

https:/-

/loca-

lhost:8443/soa/platform/rest/artifact/wsdlArtifact/mywsdl;rev=1/data

Caution:Using any relative references in the XML data will probably cause an error because they
are resolved relatively to the GET context. Use the location context to navigate
references instead.

Resource Identification
A web service artifact with uuid 65a2b119-9a6b-491e-8353-3692f4b9e3e5 and name
MyService is available in the artifacts collection:

http://localhost:port/context/soa/platform/rest/artifact/

At the following locations:

l artifactBase/65a2b119-9a6b-491e-8353-3692f4b9e3e5

l implementation/65a2b119-9a6b-491e-8353-3692f4b9e3e5

l webServiceArtifact/65a2b119-9a6b-491e-8353-3692f4b9e3e5

These URLs are not user-friendly. For newly created artifacts, HP SOA Systinetauto-generates a
REST namewhich in most cases is more user-friendly than the uuid.

This REST name can be used instead of the uuid in the URL.

http://localhost:port/context/soa/platform/rest/artifact/webServiceArtifact/MyService

Note: If youmigrate or federate resources (for example, with UDDI Registry import/export), the
user-friendly URLs are lost.

User-friendly REST names remain the same, even if you change the artifact name.

Category Documents
Atom categories are a way to categorize large amounts of data. The permitted values in Atom
categories can be either fixed or unrestricted. Category documents group permitted category
values.

An example of a category group with a fixed set of values is the impact level criticality category
group.

http://host:port/context/platform/rest/category-

document/uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality

Impact Criticality Category Document

<?xml version="1.0" encoding="UTF-8"?>

<app:categories xmlns:app="http://www.w3.org/2007/app"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:hp="http://hp.com/2008/02/systinet/platform/model/taxonomy"

xmlns:v355tax="http://systinet.com/uddi/taxonomy/v3/5.5"

xmlns:v350tax="http://systinet.com/uddi/taxonomy/v3/5.0"

fixed="yes"

HP SOA Systinet (4.00)Page 31 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality">

<atom:category

term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"

label="High"/>

<atom:category

term="uddi:systinet.com:soa:model:taxonomies:impactLevel:medium"

label="Medium"/>

<atom:category

term="uddi:systinet.com:soa:model:taxonomies:impactLevel:low"

label="Low"/>

</app:categories>

HP SOA Systinet uses taxonomies, which are an abstraction almost identical to Atom categories.
These taxonomies are sometimes transferable to Atom category documents, which can be
referenced from the service document.

The categories in the taxonomy then appear as Atom categories, corresponding to the taxonomy
values in artifact entries and feeds.

Atom REST Operations
To use the Atom REST interface, applications must map each operation to an HTTP request. For
details, see Summary of Atom REST Operations.

REST
Operation

HTTP
method Query Field Notes

"CREATE"
(on page 32)

POST create The path specifies the containing collection and
the POST body contains an XML representation of
the artifact to create.

GET GET None Obtains the requested reosurces. For details, see
"Feeds" (on page 15) and "Entries" (on page 22).

"UPDATE"
(on page 33)

PUT update Updates the specified resource.

"DELETE"
(on page 33)

DELETE delete Deletes the specified resource. GET,
UNDELETE, and PURGE operations can be run
on deleted resources.

"UNDELETE"
(on page 33)

POST undelete Undeletes the deleted resource. It can then be
updated again.

"PURGE" (on
page 33)

DELETE purge Purge physically removes a resource.

Summary of Atom REST Operations

CREATE
Implemented by processing a POST request to the artifact type collection space. The POST body
contains a valid XML representation of the new artifact.

HP SOA Systinet (4.00)Page 32 of 105

twiki/bin/view/Know/XML

Developer Guide
Chapter 3: Atom-Based REST Interface

POST

http://localhost:8080/soa/platform/restSecure/artifact/businessServiceArtifact

The content of the XML representation shouldmatch an artifact Atom entry. For details, see
"Artifact Atom Entries" (on page 23).

You can create artifacts conditionally using CREATE with Etags. For details, see "Atom REST
ETags" (on page 34)

Note:Since this operation requires an HTTP POST request, you cannot simply enter the URL into
a browser. Typically the request is coded in an application. It is possible to use Javascript or
HTTP command line clients.

UPDATE
Implemented by processing a PUT request to the specified collection and artifact identified with its
UUID. The updated content is contained in the XML representation. For details, see "Artifact Atom
Entries" (on page 23).

PUT

http://localhost:8080/soa/platform/restSecure/artifact/businessServiceArtifact/002374c1-

3500-43ea-92a7-02322bdf6002

Note:Since this operation requires an HTTP PUT request, you cannot simply enter the URL into a
browser. Typically the request is coded in an application. It is possible to use Javascript or
HTTP command line clients.

DELETE
Implemented by sending a DELETE request to the specified collection and artifact identified using
its UUID.

DELETE

http://localhost:8080/soa/platform/restSecure/artifact/businessServiceArtifact/002374c1-

3500-43ea-92a7-02322bdf6002

UNDELETE
Implemented by sending an empty POST request to the specific collection and deleted artifact
identified using its UUID. There is no XML representation associated with the POST operation for
UNDELETE.

POST

http://localhost:8080/soa/platform/restSecure/artifact/businessServiceArtifact/002374c1-

3500-43ea-92a7-02322bdf6002

PURGE
Implemented by sending a DELETE request to the specific collection and artifact identified by its
UUID and its history feed URI.

Caution: This operation cannot be undone.

DELETE

http://localhost:8080/soa/platform/restSecure/artifact/businessServiceArtifact/002374c1-

HP SOA Systinet (4.00)Page 33 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

3500-43ea-92a7-02322bdf6002/history

Atom REST ETags
ETags enable you to perform GET, PUT, and POST operations using conditions. For example, you
can use ETags to compare a response to a previously cached response to see if there are any
changes to the requested resource.

Note:Using ETags requires a REST client in order to specify the parameters.

You can use bothweak and strongETags.

Weak ETags are implemented by comparing the last modified time of an artifact in the repository
with the time from HTTP header attributes: If-Modified-Since and If-Unmodified-Since.

Strong ETags are usedmainly for caching purposes when weak ETags based on timestamps are
not sufficient. For example, when an artifact has not beenmodified but its representation has. This
happens when there is a new, changed, or missing incoming relation. ETags are random hash-
generated with every artifact update.

Use ETags as described in the following topics:

l "Conditional GET" (on page 34)

l "Conditional PUT and POST" (on page 34)

Conditional GET
You can apply a conditional GET to determine whether a resource has changed, and then only
return the representation if there is a change.

You can use a weak ETag specifying a time or a strong ETag specifying the tag attribute used to
identify the revision.

Specify the time using the If-Modified-Since header parameter in the HTTP request.

This time is compared to the Last Modified attribute in the response. The Last Modified attribute is
always returned and can be stored for future reference.

If cases where timestamps are not sufficient, you can use ETags to compare entry or feed
revisions.

Specify the ETag value using the If-None-Match header parameter in the HTTP request.

This speoifed ETag is compared to theETag attribute in the response. TheETag attribute is always
returned and can be stored for future reference.

If the artifact has not changed, then an HTTP standard non-modified response is created with a 304
status code and proper headers are returned.

If a header parameter is not specified the latest representation is always returned.

Conditional PUT and POST
You can apply a conditional PUT or POST to determine whether a resource has changed compared
to the revision you are updating, and then only apply your update if there is no change.

HP SOA Systinet (4.00)Page 34 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

You can use a weak ETag specifying a time or a strong ETag specifying the tag attribute used to
identify the revision.

Specify the time using the If-Unmodified-Since header parameter in the HTTP request.

This time is compared to the Last Modified attribute in the response. The Last Modified attribute is
always returned and can be stored for future reference.

In cases where timestamps are not sufficient, you can use ETags to compare entry or feed
revisions to determine whether a resource has changed compared to the revision you are updating,
and then only apply your update if there is no change.

Specify the ETag value using the If-Match header parameter in the HTTP request.

This speoifed ETag is compared to theETag attribute in the response. TheETag attribute is always
returned and can be stored for future reference.

If the artifact has changed, then an HTTP standard preconditions-failed response is created with a
412 status code and proper headers are returned.

If a header parameter is not specified your update is applied regardless of any other changes.

Atom REST Client
The Atom REST client is an untyped API to manipulate artifacts in the repository. It is a thin layer
above the Atom REST Interface.

The client provides the following features:

Model Introspection

l Enumerate Artifact types

l Enumerate Artifact properties

CRUD

l Local operations:

n Create Artifact instance

l Server Operations

n Create Artifact

n Get Artifact

n Get Artifact Data

n Update Artifact

n Update Artifact Data

n Delete Artifact

n Purge Artifact

Search

HP SOA Systinet (4.00)Page 35 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

l Search criteria - name-value pairs, same property names are "ORed"

l Lists Artifacts - initialized properties depend on the given artifact type. For example,
ArtifactBase has only name, description, categoryBag,...

l Pagination and ordering is supported .

Classpath
JAR files aremixed with others in the installation client/lib folder.

l abdera-client-1.0.jar

l abdera-core-1.0.jar

l abdera-i18n-1.0.jar

l abdera-parser-1.0.jar

l axiom-api-1.2.5.jar

l axiom-impl-1.2.5.jar

l common-lang.jar

l commons-codec-1.3.jar

l commons-httpclient-3.1.jar

l commons-lang-2.3.jar

l commons-logging-1.1.jar

l jaxen-full-2.51.jar

l localization-1.0.0-alpha-3.jar

l pl-model-api.jar

l pl-model-impl.jar

l pl-remote-client.jar

l pl-remote-model.jar

l pl-xml-serialization.jar

l pl-xmlbeans-sdmconfig.jar

l pl-xmlbeans-serialization.jar

l saxpath-1.0-FCS.jar

l xmlbeans-2.3.0-patch.hp-3.jar

First Steps
This section provides code extracts that demonstrate working with the API. For more examples,
see "Demos" (on page 38) and the Javadocs at
http://host:port/soa/web/doc/api/index.html.

HP SOA Systinet (4.00)Page 36 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

1. Create a new RepositoryClient instance:

RepositoryClient repositoryClient =

RepositoryClientFactory.createRepositoryClient("http://localhost:8080/soa",

"demouser", "changeit", false, null, 0);

2. Create a new webService artifact instance and set its name:

ArtifactBase webService =

repositoryClient.getArtifactFactory().newArtifact("webServiceArtifact");

webService.setName("Demo Webservice Name");

3. Store the instance on the server:

webService = repositoryClient.createArtifact(webService);

4. Get the instance from server:

webService = repositoryClient.getArtifact(webService.get_

uuid().toString());

Important Classes
l Javadoc documentation is located at SOA_HOME/doc/api

([host]:[port]/[context]/web/doc/api/index.html).

l SDM Model documentation is located at SOA_HOME/doc/sdm
([host]:[port]/[context]/web/doc/sdm/index.html).

l RepositoryClientFactory

n Factory used to create RepositoryClient instances.

n The factory supports:

o SDMModel Caching - the parameter means that the factory loads themodel from the
server if the cached version is older than the passed value.

o Custom authentication (custom Abdera client factory) - see
https://cwiki.apache.org/ABDERA/client.html for more information.

o Switching off server certificate validation when using HTTPS.

l RepositoryClient

n This interface contains all the important methods and getters for supporting classes.

l ArtifactBase

n To get/set a particular part of an artifact use either the get or set methods.

n Common abstraction for the untyped view of any artifact in SOA DefinitionModel (SDM).

l ArtifactData - Artifact data holder.

l ArtifactFactory - Factory for creating artifact instances.

l ArtifactRegistry - Registry of defined artifacts.

HP SOA Systinet (4.00)Page 37 of 105

https://soawiki.emea.hp.com/twiki/bin/exit.cgi?url=https%3A%2F%2Fcwiki.apache.org%2FABDERA%2Fclient.html

Developer Guide
Chapter 3: Atom-Based REST Interface

n ArtifactDescriptor - Introspective info about an artifact.

n PropertyDescriptor - Introspective info about an artifact's property.

l ValuesFactory

n Able to createMultiplePropertyValues, Uuid, and ArtifactData.

n Creates instances of single property values from given values.

l PropertiesUtil

n Various static helper functions for manipulating properties.

Demos
The following demos providemore code examples:

l "Atom REST Client Demo" (on page 38)

l "Contract Demo" (on page 38)

Atom REST Client Demo

The purpose of this demo is to introduce the Atom REST Java client and to show how to interact
with HP SOA Systinet using this client. The basic operations CREATE, UPDATE, DELETE,
UNDELETE, PURGE, GET, search, andmodel introspection are demonstrated.

1. Enumerate artifact types and service properties (enumerateArtifactsAndProperties
method).

2. Create web service artifact and business service artifact with relation to that web service
(createGetUpdateDeletemethod).

3. Create service and search that service by criticality (createSearchDeletemethod).

You can find the demo source code in: SOA_HOME\demos\client\rest\src

To run the REST API demo:

1. Ensure that the demo is properly configured and HP SOA Systinet is running.

2. Change your working directory to: SOA_HOME\demos\client\rest

3. To get help, execute: run

4. To build the demo, execute: run make

5. To run the demo, execute: run publish

To rebuild the demo, execute run clean to delete the classes directory and run make to rebuild
the demo classes.

Contract Demo

The purpose of this demo is to show the creation a contract between a service provider and a
service consumer.

1. The first step is to create a business service artifact – the provider. The business service ready
for consumption property is set to true to indicate that the service can be consumed. Along with

HP SOA Systinet (4.00)Page 38 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

the business service a service level objective (SLO) artifact is also published describing
conditions under which the service can be consumed.

2. In the second step a consumer, Daniel Johnson, is created. He is represented by a person
artifact. The consumer also creates a request for a consumption artifact that references the
provider, the preferred SLO and the consumer.

3. Finally the contract artifact is created. The consumer reviews the request for consumption and
if they are satisfied, they create a contract. The contract is approved by the creation of the
relationship from the artifact representing the provider (business service) to a particular revision
of the contract.

Contract Overview

You can find the demo source code in: SOA_
HOME\demos\contractmgr\simplecontract\src

To run the contract demo:

1. Ensure that the demo is properly configured and HP SOA Systinet is running.

2. Change your working directory to: SOA_HOME\demos\contractmgr\simplecontract

3. To get help, execute: run

4. To build the demo, execute: run make

5. To run the first demo step – provider, execute: run provider

The output of this step resembles the following:

Preparing provider ...

Preparing Provider in the following steps:

1. Trying to publish Provider: Postal Address Verification and

Correction Business Service

Published!

2. The provider is trying to publish the Platinum SLO

Published!

3. Attaching SLO to provider

Attached!

Prepare provider summary

HP SOA Systinet (4.00)Page 39 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

The following artifacts have been published:

* provider at:

https://localhost:8843/soa/systinet/platform/restBasic/repository/businessServiceArtifacts/PostalAddressVerificationBusinessService

* SLO at:

https://localhost:8843/soa/systinet/platform/restBasic/repository/sloArtifacts/PostalAddressVerificationSlo

6. To run the second demo step – consumer, execute: run consumer

The output of this step resembles the following:

Preparing consumer ...

Checking provider's artifacts:

SLO found!

Preparing Consumer in the following steps:

1. Finding Person artifact representing consumer

Found: contactArtifacts/DanielConsumerJohnson

2. Trying to publish a Contract request

Published!

Prepare consumer summary

The following artifact has been published:

* contract request at:

https://localhost:8843/soa/systinet/platform/restBasic/repository/contractRequestArtifacts/DanielJohnsonContractRequest

7. To run the third demo step – contract, execute: run contract

The output of this step resembles the following:

Preparing contract ...

Checking provider's artifacts:

SLO found!

Checking consumer's artifacts:

Contract request found!

1. Provider is trying to publish the contract:

Using Usage Plan:

usagePlanArtifacts/PostalAddressVerificationUsagePlan?revision=1

Using Contract request:

contractRequestArtifacts/DanielJohnsonContractRequest?revision=1

Published!

2. Provider is confirming Contract

contractArtifacts/PostalAddressVerificationAndDanielJohnsonContract?revision=1

HP SOA Systinet (4.00)Page 40 of 105

Developer Guide
Chapter 3: Atom-Based REST Interface

...

Contract confirmed by provider:

contractArtifacts/PostalAddressVerificationAndDanielJohnsonContract?revision=1

8. To unpublish the demo, execute: run unpublish

9. To rebuild the demo, execute run clean to delete the classes directory and run make to
rebuild the demo classes.

Once the demo is published, youmay review the published artifacts using both the web UI and the
http interface:

l Access the Services tab at http://localhost:8080/soa/web/service-catalog/sm/homepage. Login
as demoapprover/changeit (provider participant of the demo) or demouser/changeit
(consumer participant of the demo).

l Use https://localhost:8443/soa/web/service-
catalog/services/contractArtifact/viewContractArtifact?document=PostalAddressVerificationAndDanielJohnsonContract&collection=/contractArtifacts
to review the contract artifact.

l Use
http://localhost:8080/soa/systinet/platform/rest/repository/contractArtifacts/PostalAddressVerificationAndDanielJohnsonContract?desc
to review the XML representation of the contract.

Note: Change the hostname, port and context in the URL according to your installation settings

HP SOA Systinet (4.00)Page 41 of 105

http://localhost:8080/soa/web/service-catalog/sm/homepage
http://localhost:8080/soa/web/service-catalog/sm/homepage
https://localhost:8443/soa/web/service-catalog/services/contractArtifact/viewContractArtifact?document=PostalAddressVerificationAndDanielJohnsonContract&collection=/contractArtifacts
https://localhost:8443/soa/web/service-catalog/services/contractArtifact/viewContractArtifact?document=PostalAddressVerificationAndDanielJohnsonContract&collection=/contractArtifacts
http://localhost:8080/soa/systinet/platform/rest/repository/contractArtifacts/PostalAddressVerificationAndDanielJohnsonContract?desc

Chapter 4

Executable Objects
In HP SOA Systinet you can execute task artifacts remotely by accessing a proprietary remote
endpoint representing the task artifact.

A document is executed by a request containing an execute parameter. The result of an execution
of a task artifact is the resulting report document.

An example of a task execution is the URL to use to execute the Recycle Bin Cleaner Task:

http://localhost:8080/soa/systinet/platform/restBasic/

repository/taskArtifacts/recycleBinCleanerTask?execute

The output of such a task execution is an XML representation of the report.

HP SOA Systinet (4.00)Page 42 of 105

Chapter 5

Using DQL
The DQL query language provides a simple query solution for the SOA DefinitionModel (SDM). It
enables you to query all aspects of themodel – artifacts, properties, relationships, governance, and
compliance.

This chapter describes DQL in the following sections:

l "Introduction to DQL" (on page 43)

l "DQLReference" (on page 50)

l "DQLwith 3rd Party Products" (on page 59)

Introduction to DQL
DQL is an SQL-like language that enables you to query the repository of artifacts in HP SOA
Systinet defined by the SDMmodel. DQL preserves SQL grammar, but uses artifacts instead of
tables, and artifact properties instead of table columns. As DQL is based on SQL you can apply
your SQL knowledge to DQL.

A simple example is to return the name and description of all business service artifacts.

select name, description

from businessServiceArtifact

In HP SOA Systinet, you can use DQL queries in the following use cases:

l To create reports in HP SOA Systinet Report Editor. For more details, see theHP SOA Systinet
Report Editor Guide.

l To customize pages of the SOA Systinet user interface. For details, see "Customizing the User
Interface" in theHP SOA Systinet Administrator Guide.

l You can also use DQL in any SQL designer using the DQL JDBC driver. For more details, see
"DQL in SQLDesigners" (on page 61)

The following sections contain DQL examples:

l "Primitive Properties" (on page 44)

l "Complex Properties" (on page 44)

l "Artifact Inheritance" (on page 44)

l "Categorization Properties" (on page 45)

l "FixingMultiple Properties" (on page 46)

l "Relationships" (on page 46)

l "Modifiers" (on page 48)

HP SOA Systinet (4.00)Page 43 of 105

Developer Guide
Chapter 5: Using DQL

l "Virtual Properties" (on page 49)

l "Embedding SQLQueries" (on page 50)

Primitive Properties
Primitive properties are simple properties, such as numbers, characters, and dates, that may occur
once or multiple times for an artifact depending on the cardinality as defined in the SDM.

For example, in the SDMModel, each person is represented by a person artifact. The person
artifact includes a name property with single cardinality and an email property with multiple
cardinality.

The following query returns the name and all emails for each person in the repository.

select name, email

from personArtifact

Instances of primitive properties with multiple cardinality are all returned as comma separated
values. For example, all the emails for a person return as a concatenated, comma-separated string.
If there is no instance of the property for an artifact, a null value is returned.

The following query returns the name, description, and version of all business service artifacts
whose version is 2.0.

select name, description, version

from businessServiceArtifact

where version = '2.0'

Note: By default, DQL queries return the latest revisions of artifacts unless you specify revision
modifiers. For details, see "Modifiers" (on page 48).

Complex Properties
Complex properties are composed of one or more single or multiple-valued sub-properties (for
example, address contains sub-properties addressLines in multiple cardinality, country in single
cardinality, etc. The sub-property addressLines is also a complex sub-property, containing a value
and useType.). It is only possible to query the sub-property components of primitive types.
Components of sub-properties are separated by . (in MS Access you can use $ as a separator).

select address.addressLines.value, address.country

from personArtifact

where address.city = 'Prague'

For a full reference of all complex properties in the default SDM, see "SOA DefinitionModel" in the
ReferenceGuide.

Artifact Inheritance
Artifacts in SOA Systinet form a hierarchy defined by the SDMmodel. Artifacts lower in the
hierarchy inherit properties from higher abstract artifact types. artifactBase is the root abstract
artifact type in the SDM hierarchy. All other artifacts are below it in the hierarchy and inherit its
properties. You can query abstract artifacts and return a result set from all the instances of artifact
types lower in the hierarchy.

Property groups function in a similar way, querying a property group returns results from all artifact
types that inherit properties from the group.

HP SOA Systinet (4.00)Page 44 of 105

Developer Guide
Chapter 5: Using DQL

The following query returns results from all implementation artifacts; SOAP Services, XML
Services, andWeb Applications.

select name, serviceName

from implementationArtifact

Notice that in this query, serviceName is a specific property of SOAP Service artifacts. In the result
set, name is returned for all implementation artifacts but serviceName is only returned for SOAP
service artifacts. For other implementation types, the serviceName is NULL.

Caution: Different artifact types may define the same properties with different cardinalities. In
cases where two artifact types define the same property with different cardinality, querying
a shared parent abstract artifact for these properties may fail. Examples that fail include
SELECT environment FROM artifactBase andSELECT accessPoint FROM
artifactBase.

Categorization Properties
Categorization properties are a special case of complex properties.

Categorization properties have the following sub-properties:

l val - machine readable name of the category.

l name - human readable name of the category.

l taxonomyURI - identifies the taxonomy defining the category set.

Note: taxonomyURI is not defined for named category properties.

HP SOA Systinet uses categorization properties in the following ways:

l Named category properties (for example, business service criticality).

The following query returns the names, descriptions, and versions of all business service
artifacts which are categorized using the named criticality categorization property with a high
failure impact.

select name, description, version

from businessServiceArtifact

where criticality.val =

'uddi:systinet.com:soa:model:taxonomies:impactLevel:high'

Note: taxonomyURI is not defined for named category properties. The name of the category
property implies the taxonomy.

l categoryBag

categoryBag is a complex property that includes sub-property categories which is a
categorization property and categoryGroups. categoryGroups also contains
categorization sub-property categories and a taxonomyURI defining themeaning of the
group. HP recommends querying _category instead of categoryBag to ensure that all
categories are queried.

The following query returns the names, descriptions, and versions of all business service
artifacts which are categorized by the Gift certificate category (14111608) of the
uddi:uddi.org:ubr:categorization:unspsc taxonomy.

HP SOA Systinet (4.00)Page 45 of 105

Developer Guide
Chapter 5: Using DQL

select name, description, version

from businessServiceArtifact

where categoryBag.categories.taxonomyURI =

'uddi:uddi.org:ubr:categorization:unspsc'

and categoryBag.categories.val = '14111608'

l identifierBag

identifierBag is a complex property similar to categoryBag that includes sub-property
categories. identifierBag does not contain the categoryGroups subproperty. HP
recommends querying _category instead of identifierBag to ensure that all categories
are queried.

l _category

This generic categorization property holds all categorizations from categoryBag,
identifierBag, and all named categorization properties from the given artifact type.

The following query returns the names, descriptions, and versions of all business service
artifacts which are categorized with a high failure impact.

select name, description, version

from businessServiceArtifact

where _category.val =

'uddi:systinet.com:soa:model:taxonomies:impactLevel:high'

and _category.taxonomyURI =

'uddi:systinet.com:soa:model:taxonomies:impactLevel'

Caution: When you use the generic _category property youmust specify the taxonomy using
the _category.taxonomyURI sub-property. When you use a named categorization
property the taxonomy is implicitly known and does not need to be specified.

Fixing Multiple Properties
Consider a business service with keywords, 'Finance' and 'Euro'. The intuitive query for finding a
'Euro Finance' service is as follows:

select name, description, version

from businessServiceArtifact b

where b.keyword.val = 'Finance'

and b.keyword.val = 'Euro'

This query does not work as a single instance of keyword can never be both 'Finance' and 'Euro'

The solution is to fix instances of multiple properties as shown in the following query:

select name, description, version

from businessServiceArtifact b, b.keyword k1, b.keyword k2

where k1.val = 'Finance'

and k2.val = 'Euro'

Relationships
A relationship is a special kind of complex property pointing to another artifact. HP SOA Systinet
uses relationships to join artifacts.

HP SOA Systinet (4.00)Page 46 of 105

Developer Guide
Chapter 5: Using DQL

The following queries are semantically identical and return all business services and the contact
details of their provider. These queries do not return business services that do not have providers.

l The following query is an example of anSQL92-like join which uses the USING clause.

select b.name, b.version, b.keyword.name, p.name as contact, p.email

from businessServiceArtifact b

join personArtifact p using provides

The relationship property provides leads from person artifacts to business service artifacts is
specified after the using keyword.

l The following query is an example of anSQL92-like join which uses the ON clause.

select b.name, b.version, b.keyword.name, p.name as contact, p.email

from businessServiceArtifact b

join personArtifact p on bind(provides)

The relationship property provides leads from person artifacts to business service artifacts is
specified with the bind predicate in the WHERE clause.

l The following query is an example of an old-style join which uses the BIND predicate.

select b.name, b.version, p.name as contact, p.email

from businessServiceArtifact b, personArtifact p

where bind(p.provides, b)

The BIND predicate specifies that the provides relationship of the person artifact points to
business service artifacts.

The following query also returns all business services and the contact details of their provider. This
query is an example of a LEFT JOIN. The LEFT JOIN extends the previous queries by also
returning business services that do not have providers.

select b.name, b.version, p.name as contact, p.email

from businessServiceArtifact b

left join personArtifact p using provides

Each relationship has the following sub-properties which you can query:

l rType - the SDMQNames of the relationship type.

l useType - the values of the useType relationship property

l target - the UUIDs of the artifact the relationship points to (deprecated).

It is possible to specify a particular provider type using useType. The following queries return all
business services and their contact details where the provider is an architect.

select b.name, b.version, p.name as contact, p.email

from businessServiceArtifact b, personArtifact p

where bind (p.provides, b)

and p.provides.useType = 'architect'

select b.name, b.version, p.name as contact, p.email

from businessServiceArtifact b

join personArtifact p on bind(p.provides, b)

and p.provides.useType = 'architect'

HP SOA Systinet (4.00)Page 47 of 105

Developer Guide
Chapter 5: Using DQL

It is possible to traverse several relationships using several old-style joins or SQL-92-like join
clauses in the same query. The following example queries business services in applications, which
are also part of a project.

select b.name, b.description, a.name as Application, p.name as Project

from businessServiceArtifact b

join hpsoaApplicationArtifact a using hpsoaProvidesBusinessService

join hpsoaProjectArtifact p using contentRelationshipType

In cases where artifacts may be joined by multiple properties, you can use a generic _relation
property together with the additional rType condition.

select A.name as A_name, B.name as B_name

from hpsoaApplicationArtifact A left join artifactBase B on bind(A._

relation)

and A._relation.rType in (

'{http://systinet.com/2005/05/soa/model/property}hpsoaProvidesBusinessService',

'{http://systinet.com/2005/05/soa/model/property}r_

providesBusinessProcess'

);

You can use the target relationship sub-property to bind the source and target of a relationship.

select b.name, b.version, p.name as contact, p.email

from businessServiceArtifact b, personArtifact p

where p.provides.target = b._uuid

Caution: The target property and this style of comparison is deprecated and its use is not
recommended. Use the bind predicate instead.

Modifiers
Modifiers define primary sets of objects (artifacts and their revisions) to query. If nomodifier is
specified, the last revisions of undeleted artifacts for which the user has read access are queried.

The followingmodifiers are available:

l Revision relatedmodifiers (mutually exclusive):

n all_rev - queries all revisions of artifacts.

n last_approved_revision - queries the last approved revisions of artifacts.

l Security relatedmodifiers (mutually exclusive):

n my - queries artifacts belong to the user.

n writable - queries artifact the user has write permission for.

n no_acl - queries all artifacts regardless of security.

l Other modifiers:

n include_deleted - queries all instances, including deleted artifacts.

You can usemultiple comma-separatedmodifiers.

The following query returns all business services that you own that aremarked as deleted.

HP SOA Systinet (4.00)Page 48 of 105

Developer Guide
Chapter 5: Using DQL

select b.name, b.version, b.keyword.name

from businessServiceArtifact b (my, include_deleted)

where _deleted = '1'

Virtual Properties
DQL defines virtual properties, that are not defined by the SDM. HP SOA Systinet stores or
calculates these properties enabling DQL to query meta information about artifacts. These virtual
properties provide information about lifecycle, compliance, domains, etc.

The following example returns lifecycle details from the last approved revisions of all business
service artifacts, ordered by lifecycle stage.

select name, _lastApprovedStage.name Stage, _revision

from businessServiceArtifact(last_approved_revision)

order by Stage

The following example returns the name and compliance status of last approved revisions of all
business services which a compliance status of at least 80%.

select b.name, b._complianceStatus

from businessServiceArtifact b (last_approved_revision)

where b._complianceStatus >= 80

HP SOA Systinet repository content exists within a domain structure where each artifact exists
within only one domain. The default functionality of DQL queries all domains but HP SOA Systinet
provides virtual properties enabling you to query artifacts within a particular domain. The following
example returns business service names and the domain details of all business service artifacts
that exist within the EMEA domain.

select A.name, A._domainId, A._domainName

from businessServiceArtifact A

where A._domainId="EMEA"

DQL provides the followingmacros for querying within domain hierarchies:

l #SUBDOMAINS('domainId')

Queries the specified domain and all its sub-domains.

l #SUPERDOMAINS('domainId')

Queries the specified domain and all its parent domains.

The following query returns all business services in the EMEA domain and any of all of its sub-
domains.

select A.name

from businessServiceArtifact A

where A._domainId in #SUBDOMAINS('EMEA')

The following query returns the name and virtual properties artifactTypeName and owner from the
latest revisions of consumer properties (the property group for all consuming artifact types).

select name, _artifactTypeName, _owner

from consumerProperties

For details of all virtual properties, see "Properties in DQL" (on page 51).

HP SOA Systinet (4.00)Page 49 of 105

Developer Guide
Chapter 5: Using DQL

Embedding SQL Queries
DQLworks with SDM entities (artifacts and properties) only and cannot directly access database
tables. In some cases it is necessary to obtain values from outside the SDM (for example, system
configuration). You can use an SQL subquery in a NATIVE clause of a DQL query. By default, DQL
expects SQL to return an unnamed single column of values.

The following example returns business services owned by the administrator using the name
defined during installation:

select name,description, version

from businessServiceArtifact

where _owner in (

native {select svalue from systemConfiguration

where name='shared.administrator.username'})

You can use NATIVE clauses instead of expressions, as a condition inWHERE clauses, as a
column in SELECT clauses, and as a artifact reference in FROM clauses. For details, see "DQL
Grammar" (on page 54) .

If you use a NATIVE clause to formulate part of a FROM clause, youmust specify parameters to
bind columns defined by SQL to properties used by DQL.

Each parameter consists of the following:

l The property name defines how DQL addresses columns returned from the NATIVE SQL
statement.

l The property type whichmay be returned by themetadata of a column is optional and if not
specified is assumed to be a text string.

The parameters are enclosed in brackets in the native clause, delimited by commas, and the type is
separated from the name using whitespace.

The following example shows a query with NATIVE SQL in a DQL FROM clause.

select B.p_id, B.s_val, A.name, B.state_index

from (

native(s_val, s_name, state_index integer, p_name, p_id)

{select S.val as s_val, S.name as s_name, S.state_index as

state_index,

P.name as p_name, P.id as p_id

from rylf_state S, rylf_process P

where S.fk_rylf_process=P.id and P.name='Application

Lifecycle'}) B

left join artifactBase A on A._currentStage.val = B.s_val

order by B.p_id, B.state_index

The NATIVE statement returns the following columns; s_val, s_name, p_name, and p_id of
type String, and state_index of type Integer.

Note: Native clauses can not contain variables (? or :<variable>).

DQL Reference
This section provides a reference to properties and DQL grammar in the following sections:

HP SOA Systinet (4.00)Page 50 of 105

Developer Guide
Chapter 5: Using DQL

l "Properties in DQL" (on page 51)

l "DQL and SQL" (on page 54)

l "DQLGrammar" (on page 54)

Properties in DQL
Artifact (property group) properties hold values whichmay be queried in DQL expressions.

DQL recognises the following properties:

l SDM Properties

Properties defined in the SDMModel. For details, see "SOA DefinitionModel" in theReference
Guide.

l Virtual, System, andOther Properties

Properties holdingmetadata about artifact instances.

Properties may be one of the following:

Property Kind Description

Primitive Holds string, number, or boolean values. For example, name, description,
version. A primitive property is defined in DQL statements by the artifact type
name or alias, the property delimiter (. or $), followed by the property name.
For example, personArtifact.name. The artifact name or alias is optional (with
the delimiter) when the property is specific to a single artifact type in the
query.

Complex Hold complex structures such as address. Only primitive sub-properties of
complex properties may be queried. Properties and sub-properties are
separated by . or $. For example, personArtifact.address.city.

Categorization Hold categorization data and are handled in a similar way to complex
properties. Categories consist of name, val, and taxonomyURI
components. For example,
businessServiceArtifact.criticality.name.

Relationships Properties that specify a directional relationship to other artifacts.

All values that you can query are of a particular data type. The following table describes these data
types, and gives examples of how to use them in a query.

Data Type Description Example

Number Numeric values _revision = 1

String Text values _revisionCreator = 'admin'

Date Time Date and Time (ms since 00:00
1/1/1970)

_revisionTimestamp > 1274447040124

/* revisions made since 15:04 21/5/2010 */

Boolean True or False flags _deleted = '1'

HP SOA Systinet (4.00)Page 51 of 105

Developer Guide
Chapter 5: Using DQL

Properties may have the following cardinalities:

Property Cardinality Description

Single Only one instance of the property exists for an artifact and it may be
optional or required.

Multiple The property is a list of values and so occurs multiple times for an
artifact. InWHERE clauses, usingmultiple properties returns particular
artifacts if any instance of themultiple property matches the condition.
In SELECT clauses, usingmultiple properties returns all instances of
themultiple property as a concatenated, comma-separated string.

DQL uses the following system properties:

System Property Description

_artifactTypeName The human readable name of the artifact type (the SDM label of the
artifact). HP recommends using _sdmName in conditions, and _
artifactTypeName in SELECT clauses.

_category All categorizations for an artifact with name, val, and taxonomyURI
components.

_deleted The deletionmarker flag (boolean).

_id The database ID of an artifact instance (number, deprecated - use _
uuid).

_longDescription SOA Systinet supports a long description including HTML tags up to
25000 characters by default. HP recommends using the description
property in DQL queries instead as queries using _longDescriptionmay
affect performance and the HTML tags may corrupt report outputs.
description contains only the first 1024 text characters of _
longDescription (may vary according to your database type).

Note: The platform.repository.max.description.length
property determines themaximum length of _longDescription. You
canmodify this property in SOA_
HOME/conf/setup/configuration-propeties.xml. DB2
has an absolute limit of 32672 characters which is sufficient for
descriptions containing ASCII (single-byte encoding) characters
but may be exceeded, for example by Japanese descriptions,
leading to description truncation.

_owner The user, group, or role designated as the artifact owner.

_ownerName The human readable name of the user (taken from the use profile),
group, or role artifact.

_path Legacy REST path of the artifact (string, deprecated - use _uuid).

_relation A generic virtual property that may be used to specify all outgoing
relationships.

HP SOA Systinet (4.00)Page 52 of 105

Developer Guide
Chapter 5: Using DQL

System Property Description

_revision The revision number of an artifact instance.

_revisionCreator The user who created the revision of the artifact.

_revisionTimestamp The date and time the revision was created.

_sdmName The local name of the artifact type. HP recommends using _sdmName
in conditions, and _artifactTypeName in SELECT clauses.

_uuid The unique artifact indentifier.

DQL uses the following virtual properties:

Property
Class Property Description

UI
Property

_isFavorite Marked by the user as favorite flag (boolean).

_rating The average rating of the artifact (double).

Security
Property

_shared Indicates that the artifact is shared and visible to users in
the Sharing Principal role (boolean). For more details, see
"How to Share Artifacts" in theUser Guide.

_writable User write permission flag (boolean).
Note: Using this property may have a performance impact.

If possible, use thewritablemodifier instead. For
details, see "Modifiers" (on page 48).

Contract
Property

_enabledConsumer The artifact is a valid consumer artifact type.

_enabledProvider The artifact is a valid provider artifact type. The artifact
must also bemarked as 'Ready for Consumption'.

Domain
Property

_domainId Value of the domainId property defined for the domain
artifact that the artifact belongs to.

_domainName The readable name of the domain.

HP SOA Systinet (4.00)Page 53 of 105

Developer Guide
Chapter 5: Using DQL

Lifecycle
Property

_currentStage Current working stage of an artifact.

_governanceProcess process applicable to the artifact.

_isApproved Lifecycle approval flag (boolean).

_lastApprovedRevision Revision number of the last approved revision (number).

_lastApprovedStage The name of the last approved stage.

_
lastApprovalTimestamp

Timestamp for the last approval (number, ms since 00:00
1/1/1970).

_lifecycleStatus The status of the current lifecycle stage.

Policy
Manager
Property

_complianceStatus Compliance status as a percentage (number).

DQL and SQL
DQL supports most features of SQLwith the following exceptions:

l SELECT * is not supported.

l RIGHT and FULLOUTER JOIN are not supported.

l It is not possible to use properties with multiple cardinality in GROUP BY, HAVING, or ORDER
BY clauses.

DQL Grammar
A DQL query consists of the following elements with their grammar explained in the following
sections:

l "Select" (on page 55)

l "FROMClause" (on page 56)

l "Conditions" (on page 56)

l "Expressions" (on page 58)

l "Lexical Rules" (on page 59)

Typographical Conventions

Convention Example Description

KEYWORDS SELECT A reserved word in DQL (case-insensitive).

parsing rules expr Name of a parsing rule. A parsing defines a fragment of DQLwhich
consists of keywords, lexical rules, and other parsing rules.

LEXICAL
RULES

ID Name of a lexical rule. A lexical rule defines a fragment of DQLwhich
consists of letters, numbers, or special characters.

[] [AS] Optional content.

HP SOA Systinet (4.00)Page 54 of 105

Developer Guide
Chapter 5: Using DQL

Convention Example Description

[...] [,
select_
item, ...]

Iterations of optional content.

| ASC |
DESC

Alternatives.

{ } { + | - } Group of alternatives.

.. 0..9 A range of allowable characters.

Select

select :

subquery [ORDER BY order_by_item [, order_by_item

...]]

subquery :

subquery [set_operatorsubquery ...]

| (subquery)

| native_sql

| subquery_base

subquery_base :

SELECT [DISTINCT] select_item [, select_item ...]

FROM from_clause_list

[WHERE condition]

[GROUP BY expression_list

[HAVING condition]

]

select_item :

expr [[AS] alias]

alias :

ID | QUOTED_ID

order_by_item :

expr [ASC | DESC]

set_operator :

UNION ALL | UNION | INTERSECT | EXCEPT

native_sql :

NATIVE [(column_name [column_type] [, ...])]

{ sql_select }

Explanation:

HP SOA Systinet (4.00)Page 55 of 105

Developer Guide
Chapter 5: Using DQL

l The { } around the sql_select are required and sql_select is an SQL query.

l The column_name and column_type specify parameters to pass from the SQL query to the DQL
query.

FROM Clause

from_clause_list :

{ artifact_ref | subquery_ref | fixed_property | native_sql }

[from_clause_item ...]

from_clause_item :

, { artifact_ref | subquery_ref | fixed_property | native_sql }

| [LEFT [OUTER]] JOIN

{ artifact_ref | subquery_ref } join_condition

artifact_ref :

artifact_name [alias] [(artifact_modifiers)]

subquery_ref :

(subquery)alias

fixed_property :

property_refalias

artifact_modifiers :

ID [,ID ...]

artifact_name :

ID

join_condition :

| USINGproperty_ref

Conditions

condition :

condition_and [OR condition_and ...]

condition_and :

simple_condition [AND simple_condition ...]

simple_condition :

(condition)

| NOT simple_condition

| exists_condition

| like_condition

| null_condition

| in_condition

| simple_comparison_condition

| native_sql

HP SOA Systinet (4.00)Page 56 of 105

Developer Guide
Chapter 5: Using DQL

| bind

simple_comparison_condition :

exprcomparison_opexpr

comparison_op :

= | <> | < | > | <= | >=

like_condition :

expr [NOT] LIKE like_expression [ESCAPE

STRING]

like_expression :

STRING

| variable_ref

null_condition :

expr IS [NOT] NULL

in_condition :

expr [NOT] IN({ subquery | expression_list })

| macro

exists_condition :

EXISTS(subquery)

bind :

BIND(property_ref [, alias])

macro :

macro_name [(expression_list)]

macro_name :

#ID

Explanation:

l Conditions can be evaluated to true, false, or N/A. condition consists of one or more condition_
and that are connected by theOR logical operator.

l condition_and consists of one or more simple_condition connected by theAND

l simple_condition is one of following:

n condition in parentheses.

n Negation of simple_condition.

n exists_condition

n like_condition

n null_condition

HP SOA Systinet (4.00)Page 57 of 105

Developer Guide
Chapter 5: Using DQL

n in_condition

n simple_comparison_condition

n native_sql

l simple_comparison_condition is a comparison of two expressions using one of the comparison
operators: =, <>, <, >, <=, >=

l like_condition compares an expression with a pattern. Patterns can contain wildcards:

n _means any character (including numbers and special characters).

n %means zero or more characters (including numbers and special characters).

n ESCAPE STRING is used to prefix _ and% in patterns that should represent those
characters and not the wildcard.

l alias references the target artifact.

Expressions

expr :

term [{ + | - | CONCAT } term ...]

term :

factor [{ * | / } factor ...]

factor :

(select)

| (expr)

| { + | - } expr

| case_expression

| NUMBER

| STRING

| NULL

| function_call

| variable_ref

| property_ref

| native_sql

case_expression :

CASE case_item [case_item ...]

[ELSE expr]

END

case_item :

WHEN condition THEN expr

function_call :

ID([DISTINCT] { [*] | [expression_list] })

property_ref :

{ ID | QUOTED_ID } [{ . | $ } { ID | QUOTED_ID } ...]

HP SOA Systinet (4.00)Page 58 of 105

Developer Guide
Chapter 5: Using DQL

expression_list :

expr [,expr ...]

variable_ref :

? | :ID

Explanation:

l Variables are of two kinds:

n Positional variables - ? in DQL.

n Named variables - :<name_of_variable>

l When variables are used in DQL, each variable must have a value bound to the variable.

Lexical Rules

CONCAT :

||

STRING :

[N | n] ' text '

NUMBER :

[[INT] .] INT

INT :

DIGIT [DIGIT ...]

DIGIT :

0..9

ID :

CHAR [{ CHAR | DIGIT } ...]

CHAR :

a..z | A..Z | _

Explanation:

l ID is sequence of characters, numbers and underscores beginning with a character or
underscore.

l QUOTED_ID is text in quotes.

l CONCATmeans a concatenation of strings - syntax ||

DQL with 3rd Party Products
DQL is provided by a JDBC driver which you can use with common SQL designers supporting 3rd-
party JDBC drivers (or ODBC with anODBC-JDBC bridge).

The following sections describe the driver and its use with 3rd party products:

HP SOA Systinet (4.00)Page 59 of 105

Developer Guide
Chapter 5: Using DQL

l "DQL JDBC Driver" (on page 60)

l "DQL in SQLDesigners" (on page 61)

l "DQL inMS Access" (on page 61)

DQL JDBC Driver
The DQL JDBC driver translates DQL queries into SQL queries and executes them using the
underlying JDBC driver for the used database. The translation is provided by a remote invocation of
HP SOA Systinet.

All the required JAR files for the DQL driver are available in SOA_HOME/client/lib/jdbc:

l pl-dql-jdbc.jar

l hessian-version.jar

l Database driver JAR files are copied here during installation (for example, ojdbc6.jar).

The following table describes the driver configuration required to use the driver with 3rd party
products.

DQL JDBC Driver Configuration

Property Description

Connection
String

jdbc:systinet:http(s)://<username>@<host:port>/<context>[|schema=schema
name][|model=list of allowedmodels]
l <username> is the SOA Systinet usernamewho executes the DQL query using SOA

Systinet permissions security.

l <host:port> are the connection details of your SOA Systinet installation (for example,
localhost:8080 for HTTP or secure:8443 for HTTPS.

l <context> is the application server context, the default is soa.

l |schema=schema name is the schema of the user who owns HP SOA Systinet database
tables. This parameter is optional. When omitted it is supposed that the user account used to
access the database is also the owner of HP SOA Systinet tables. In case a common user or
read-only user is used, use the power user schema name, unless the DQL JDBC Driver
cannot providemetadata regarding artifacts and properties.

l |model=list of allowedmodels is optional and represents a comma-separated list of
models. Only artifacts from allowedmodels are provided in JDBC metadata as tables. The
available models are sys and public. By default, only artifacts from the public model are
provided.

For example,
jdbc:systinet:http://admin@demoserver.acme.com:8080/soa|schema=SOA320

DB
Credentials

The database username and credentials used for direct access to the HP SOA Systinet
database. In most cases it is the user who owns all tables for HP SOA Systinet - called the
power user. In case of "Manual Database Arrangement" with a power user and a common user
(who has only read/write access to tables, but can not create other tables), use the common user
account. In case the common user is still too powerful to be shared, the DB administrator can
create another - "read-only user" with read-only access to HP SOA Systinet tables. Note that the
read-only user must also have created synonyms/aliases for HP SOA Systinet tables to pretend

HP SOA Systinet (4.00)Page 60 of 105

Developer Guide
Chapter 5: Using DQL

Property Description

that HP SOA Systinet tables are in the schema of the read-only user. For more details, see
"Database Installation Types" in the Installation and Deployment Guide.

DQL JDBC
Classname

com.hp.systinet.dql.jdbc.DqlDriver

Note: The DQL JDBC driver must be able to connect to the database from the client. Use the full
hostname for your database used during installation or setup. In the event of connection
problems, verify the firewall settings between the local server and the database server.

DQL in SQL Designers
SQLDesigner software can use the DQL driver if the designer is JDBC-aware.

To configure a JDBC-aware SQL Designer:

1. Add the DQL JDBC JAR files to the classpath.

2. Create a JDBC connection using the properties described in "DQL JDBC Driver Configuration"
(on page 60).

After you establish the DQL JDBC connection, the following functionality should be available in
your SQLDesigner:

l Schema introspection, browsing the list of artifact types and property groups as tables, and their
properties as columns.

l DQL query execution.

DQL in MS Access
MS Access 2007 can execute DQL queries using anODBC-JDBC bridge. Before usingMS
Access, youmust configure the ODBC datasource inWindows.

To configure an ODBC-JDBC bridge:

1. Download and install an ODBC-JDBC bridge. For example, Easysoft ODBC-JDBC Gateway.

2. Configuration typically consists of:

n JDBC driver configuration using the properties described in "DQL JDBC Driver
Configuration" (on page 60).

n Bridge configuration. For details, see the documentation for the bridge software.

DQL syntax varies from the examples given in "Introduction to DQL" (on page 43) in the following
cases:

l Complex properties must use $ notation and be enclosed by [].

personArtifact.[address$addressLines$value],

personArtifact.[address$country]

l To usemodifiers such as (include_deleted) use the Pass-Through option in MS Access.

l Left Joins do not work. Use plain joins instead.

HP SOA Systinet (4.00)Page 61 of 105

Developer Guide
Chapter 5: Using DQL

l For fixed properties, use the Pass-Through option in MS Access.

l For timestamps, use the Pass-Through option in MS Access.

l Native queries do not work in MS Access.

l For property aliases, do not use quoted aliases.

HP SOA Systinet (4.00)Page 62 of 105

Chapter 6

WebDAV Compliant Publishing
HP SOA Systinet uses aWebDAV compliant workspace to store data content uploaded to the
repository using the publishing functionality described in "How to Publish Content" in theUser
Guide.

HP SOA Systinet supports WebDAV Level 1 (no locking). For details, see
http://www.ietf.org/rfc/rfc4918.txt.

Caution:WebDAV functionality is unavailable for HP SOA Systinet integrated with Siteminder
because Siteminder does not support theWebDAV protocol.

TheWebDAV protocol enables document access in a file-systemmanner. You can access, create,
modify, and delete documents using aWebDAV compliant client.

The publishing location is available at the following URLwhich varies depending on the
authentication and transport security you use:

l Authenticated (username/password required)

http://SERVER:PORT/soa/platform/restSecure/location

https://SERVER:SSLPORT/soa/platform/restSecure/location

l Anonymous (username/password not required)

http://SERVER:PORT/soa/platform/rest/location

https://SERVER:SSLPORT/soa/platform/rest/location

Tip: In Linux clients youmay need to use webdav or davs as the protocol instead of http(s).

HP recommends using the authenticated URL. HP SOA Systinet permissions apply to operations
performed in the publishing location usingWebDAV.

You can use the URL in yourWebDAV client, for example, in any of the following ways:

l As a publishing location in your IDE.

For example, Eclipse or Visual Studio with appropriateWebDAV plugins, specifically, Plugin for
Eclipse and Plugin for Visual Studio.

l As amapped web folder inWindows.

Note:Windows requires the KB907306 patch for the correct client functionality:

http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-
987622ED1D64&displaylang=en

HP recommends deploying HP SOA Systinet using standard HTTP/HTTPS ports (80/443) to
ensure the correct client functionality.

HP SOA Systinet (4.00)Page 63 of 105

http://www.ietf.org/rfc/rfc4918.txt
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en

Developer Guide
Chapter 6: WebDAV Compliant Publishing

InWindows Vista, a file from the publishing workspace opened inMS Office applications may
appear as read-only. In this case, make a local copy and resubmit it to the server after youmake
your changes.

l Using a 3rd party file manager program with the appropriate plugin. For example, Total
Commander with the plugin available at http://ghisler.fileburst.com/fsplugins/webdav.zip.

Note: Use multi-step upload methodmust be disabled in Total Commander or any file
is published as a documentation artifact. Restart Total Commander after changing any
plugin settings.

Consult yourWebDAV client documentation for details of theirWebDAV functionality.

WebDAV access enables you to work with documents published to the repository using the
publishing location like a file system (depending on the client). HP SOA Systinet handles create
and update operations using its publishing functionality, so relationships between documents are
established andmaintained with respect to the document content (for example, when aWSDL
references an XSD, HP SOA Systinet publishes the XSD and a relationship between them is
established). These details are available in the HP SOA Systinet UI in the document artifact
details.

WebDAV publishing is an alternative to UI-based publishing. Unlike the configuration of UI
publishing (for example, what artifacts to create), WebDAV publishing can only be configured
globally using the configuration described in theAdministration Guide.

Themost commonWebDAV client operations are:

l Retrieving the content of published documents.

For example, import aWSDL to your IDE client for service implementation development.

l Publishing new documents.

For example, publish aWSDL to the repository from your IDE client. HP SOA Systinet uses its
publishing feature to create the document and associated artifacts. Relationships are
automatically maintained.

l Republishing documents.

For example, importing aWSDL to your IDE client, modifying it, and then republishing. HP SOA
Systinet uses its publishing functionality to update the document andmaintain associated
artifacts and relationships.

l Deleting documents.

For example, using your IDE client to delete an obsoleteWSDL. HP SOA Systinet uses Delete
instead of Purge enabling retrieval of the document if required.

l Changing document locations.

WebDAV clients can use theMOVE operation to change the server location for an artifact in the
repository. HP SOA Systinet maintains metadata and history. This functionality enables remote
management of the publishing location.

l Creating, renaming, and deleting directories.

HP SOA Systinet (4.00)Page 64 of 105

http://ghisler.fileburst.com/fsplugins/webdav.zip

Developer Guide
Chapter 6: WebDAV Compliant Publishing

The publishing location is effectively a file system, enabling you to organize your documents in
the publishing location using yourWebDAV client.

l Copying documents or whole directories.

Create duplicates of publishing folders or documents in the publishing location.

HP SOA Systinet (4.00)Page 65 of 105

Chapter 7

Technical Security
This chapter provides a technical description of HP SOA Systinet security.

Security is described in the following sections:

l "HP SOA Systinet Overview" (on page 66)

l "Users andGroups" (on page 67)

l "Transport Security" (on page 68)

l "Authentication" (on page 68)

l "Resource ACL" (on page 68)

l "WEB Security" (on page 69)

l "Platform Services" (on page 69)

l "Reporting Services" (on page 70)

l "Policy Manager Services" (on page 70)

l "Default Endpoint Authentication" (on page 70)

HP SOA Systinet Overview
HP SOA Systinet consists of the following components:

l Web UI

Exposes theWEB service providing the HP SOA Systinet UI.

l Platform

Provides a repository (data store) for artifacts.

Exposes WEB and REST services tomanage artifacts.

l Policy Manager

Engine for policy validation.

Exposes REST services to policy management and validation.

l Reporting

Store for report definitions and data.

Engine for report generation.

Exposes REST service for report management.

These components are deployed as a single EAR file which is generated by the installation.

For details, see the Installation and Deployment Guide.

HP SOA Systinet (4.00)Page 66 of 105

Developer Guide
Chapter 7: Technical Security

Users and Groups
HP SOA Systinet delegates authentication to the J2EE container. The userstore is not managed by
HP SOA Systinet, but by the application server or LDAP/AD tools.

HP SOA Systinet uses the following definitions:

l User

A user represents the identity accessing HP SOA Systinet.

Use your application or LDAP/AD tools to manage users.

l User Profile

Profiles provide additional information for HP SOA Systinet. For example, a contact email used
for mail notifications and a primary group used for collective ownership.

l Role

Roles are defined by functional security. They define the actions permitted to a user. Currently,
only the administrator role is defined.

l Group

Groups are defined by organizational security following the company structure.

HP SOA Systinet uses the following types of groups:

n external

Groups defined by LDAP. Thesemust bemanaged within LDAP.

n internal (local)

Groups managed within HP SOA Systinet by the administrator.

HP SOA Systinet uses the following user types for processing:

l authenticated

A user authenticated by J2EE. For example, a user/password for HTTP.

See the "Authentication" (on page 68) for authenticationmechanisms.

l anonymous

A user who does not pass any credentials and accesses service on access points with an
anonymous authenticationmechanism.

The name used in ACL is systinet#anonymous.

l resource owner

A user who owns the accessed resource. Used in ACL evaluation.

l administrator

A user with the administrator role. The administrator has the rights to perform all actions (no
ACLs are applied on resources, management tasks, and so on).

During installation, youmust define an administrator.

HP SOA Systinet (4.00)Page 67 of 105

Developer Guide
Chapter 7: Technical Security

HP SOA Systinet user and groupmanagement enables you to assign the administrator role to
users or entire user groups.

l system administrator

An internal identity used for the execution of internal tasks. It is not possible to authenticate (log
in) with this identity. This user has the same capabilities as an administrator.

The name used in ACL is systinet:admin.

HP SOA Systinet uses the following built-in groups:

l system#registered

All users who exist in the userstore. In other words, users who are authenticated.

l system#everyone

Both authenticated users (group system#registered) and anonymous users
(systinet#anonymous).

Transport Security
HP SOA Systinet provides several REST andWEB services. They are exposed at access points
mapped on the HTTP and HTTPS transports provided by the hosting application server. It also
provides installation scenarios where you can enable or disable HTTP or HTTPS.

HP SOA Systinet does not provide SSLmanagement (certificates) because HTTPS transport is
provided by the application server.

For simple JBoss configuration, HP SOA Systinet provides automatic SSL enablement (certificate
generation and SSL configuration) during installation.

On the client side (for example, HP SOA Systinet accesses HTTPS URLs to uploadWSDLs), the
handling of SSL certificates is configurable (for example, the selection of truststores,
enable/disable hostname verification).

Authentication
Authentication is provided by the J2EE application server. The application server capability
determines whichmethod is used (for example, HTTP Basic, SiteMinder). For backward
compatibility, it is possible to configure HP SOA Systinet authentication (SiteMinder and client SSL
certificates) but the preferred authentication is via J2EE application servers.

For details on HP SOA Systinet authentication, see the Installation and Deployment Guide.

J2EE sessionmanagement is used for bothWEB and REST services.

Resource ACL
HP SOA Systinet does not use J2EE authorization to access service resources (for example,
REST resources are artifacts and collection orWEB resources are tasks).

Platform, Policy Manager, and Reporting Service components provide hierarchical resourcemodels
accessible by REST. In thesemodels there are collections and resources, where a collection can
contain both individual resources and other collections.

Platform and Reporting Service use the same ACLmodel.

HP SOA Systinet (4.00)Page 68 of 105

Developer Guide
Chapter 7: Technical Security

When access to a resource is requested, ACL is used to authorize access for a user using the
followingmodel:

l An ACL is a list of ACEs, where an ACE is composed of the followingmodel:

n resource owner

Can be either a user or a group.

resource owner and administrator always have read and write permission granted so ACLs
are not evaluated in these cases.

n ACL is a list of ACEs, where an ACE is composed of:

o user or group identification

o granted permission:

o read:

o artifact/resource—permission to read any data andmetadata of the artifact.

o collection—permission to read the content andmetadata of the collection.

o write:

o artifact/resource— permission to update any data andmetadata of the artifact.

o collection— permission to create new artifacts, resources, and sub-collections, and
to update themetadata of the collection.

l No negative ACE.

It is not possible to deny permission to a user or group.

l No inheritance or propagation of ACL.

Only the ACL of the accessed artifact is used for authorization.

A change to a collection ACL does not change any ACLs of collectionmembers.

To read or update an artifact, it is sufficient to have read or write permission on the resource.

l When a resource is created, its default ACL is set by artifact. It is possible to configure default
ACLs per collection (for example, artifact type).

For details about changing the default ACL configuration, see "How toManage Default ACLs" in the
Administration Guide.

WEB Security
The UI is composed of tasks mapped on URLs. All UI tasks require an authenticated user who
must sign in to HP SOA Systinet.

The UI is composed of static tasks, so this setup is part of theWEB configuration.

WEB uses J2EE sessionmanagement, provided by the application server.

Platform Services
Platform provides a REST service, exposed at the following access points, mapped on HTTP and
HTTPS transports provided by the hosting application server:

HP SOA Systinet (4.00)Page 69 of 105

Developer Guide
Chapter 7: Technical Security

l Proprietary REST

http://host:port/context/systinet/platform/rest/ and
https://host:port/context/systinet/platform/rest/ operate with the
anonymous authenticationmechanism.

http://host:port/context/systinet/platform/restBasic/ and
https://host:port/context/systinet/platform/restBasic/ operate with the
default HTTP Basic authenticationmechanism, specified by the application server.

l Atom-Based REST

http://host:port/context/platform/rest/ and
https://host:port/context/platform/rest/ operate with the anonymous
authenticationmechanism.

http://host:port/context/platform/restSecure/ and
https://host:port/context/platform/restSecure/ operate with the default HTTP
Basic authenticationmechanism, specified by the application server.

The REST service uses J2EE sessionmanagement, provided by the application server.

Reporting Services
Reporting provides a REST service. It is exposed on the following access points, mapped on HTTP
and HTTPS transports provided by the hosting application server:

l Atom-Based REST

http://host:port/context/reporting/rest/ and
https://host:port/context/reporting/rest/ operate with the anonymous
authenticationmechanism.

http://host:port/context/reporting/restSecure/ and
https://host:port/context/reporting/restSecure/ operate with the default
HTTP Basic authenticationmechanism, specified by the application server.

The REST service uses J2EE sessionmanagement, provided by the application server.

Policy Manager Services
Policy Manager provides a REST service. It is exposed on the following access points, mapped on
HTTP and HTTPS transports provided by the hosting application server:

l Atom-Based REST

http://host:port/context/policymgr/rest/ and
https://host:port/context/policymgr/rest/ operate with the anonymous
authenticationmechanism.

http://host:port/context/policymgr/restSecure/ and
https://host:port/context/policymgr/restSecure/ operate with the default
HTTP Basic authenticationmechanism, specified by the application server.

The REST service uses J2EE sessionmanagement, provided by the application server.

Default Endpoint Authentication
By default, HP SOA Systinet performs the following authentication on HP SOA Systinetendpoints:

HP SOA Systinet (4.00)Page 70 of 105

Developer Guide
Chapter 7: Technical Security

l FORM authentication:

n /web/service/catalog/*

n /web/policy-manager/*

n /web/shared/*

n /web/artifactIconList.htm

l HTTP basic authentication:

n /systinet/platform/restBasic/*

n /platform/restSecure/*

n /policymgr/restSecure/*

n /reporting/restSecure/*

n /remote/navigator/*

n /remote/upload/*

l Unauthenticated URL patterns:

n /systinet/platform/rest/*

n /platform/rest/*

n /policymgr/rest/*

n /reporting/rest/*

n /web/design/*

n /remote/dql/*

Note:All endpoints are preceded by http(s):/host:port/context as set during installation.

HP SOA Systinet (4.00)Page 71 of 105

Chapter 8

Custom Source Parsers
The source parser you write creates an object representation of a log of messages. When your input
source is only a single message, it creates a log of onemessage.

The following list specifies amapping between concepts and classes in HP SOA Systinet Policy
Manager API:

l A log of messages corresponds to an instance of
org.systinet.policy.validation.ValidationSourceCollection. It can contain
both inline request/responsemessages and references to external messages. As credentials
are passed along, the external messages can be secured with HTTP basic authentication.

l A request/response conversation (or a single message, if it is one-way) corresponds to an
instance of org.systinet.policy.validation.ValidationSource. When creating
an instance of this class, make sure you set up:

n SourceType – this should be set to
org.systinet.policy.validation.ValidationConstants#Elements.SOURCE_

CONVERSATION, in case of request/response conversation, or soap:Envelope for single-
message validation.

n One (for one-way) or two (for request-response conversation) messages.

l A message corresponds to an instance of
org.systinet.policy.validation.ValidationSourceDocument.

You should set up:

n content

The SOAP payload of themessage.

n contentURL

The url of the SOAP payload. If the SOAP message is inline in the parsed source, you can
use
org.systinet.xml.XPointerHelper.appendToURL(java.lang.String,java.lang.String)

, together with
org.systinet.xml.DOMHelper.getXPointer(org.w3c.dom.Element) to create
a URL pointing directly to the payload.

n contentBOM (optional)

The BOM signature of the content.

n description (optional)

TheWSDL description of themessage.

n descriptionURL (optional)

URL of theWSDL description of themessage.

HP SOA Systinet (4.00)Page 72 of 105

Developer Guide
Chapter 8: Custom Source Parsers

n metadata (optional)

Metadata associated with themessage. Anything which is java.io.Serializable can
be added to themetadata. The built-in handlers understand only
org.systinet.policy.validation.SOAPMetadataConstants.METADATA_

MESSAGE_HEADERS, which is used as a key to access transport headers.

n sourceType

This field should be either soap:Envelope to indicate that only a SOAP content is
available, or
org.systinet.policy.validation.ValidationConstants#Elements.SOURCE_

MESSAGE, to indicate that additional metadata is available.

n sourceDocumentURL

This field should be set to the URL of the wholemessage; that is, the container for the SOAP
payload andmetadata. If this container is inlined in a bigger structure, youmay use the
XPointerHelper class mentioned above to get amore detailed URL. If there is no URL, rather
than leaving this field empty, use the URL of the SOAP payload or of the whole
request/response conversation.

The parser's mainmethod is public ValidationSourceCollection parse(String

uri, String rootElementNamespaceURI, String rootElementLocalName,

SourceResolver resolver, CredentialsList credentials) throws

SourceParseException, CredentialsException. Usually, the parser follows these
steps:

1. The parser inspects the rootElementNamespaceURI and rootElementLocalName to
determine if the document should be handled by this parser. If not, it returns immediately with
null and the parsing framework continues with the next parser.

2. The parser retrieves the parsed document from the source resolver: Source source =

resolver.getSource(uri, credentials). This call fetches the document if this is the
first time the document was accessed (this is why credentials must be passed) or uses a
cached version if the document has been fetched already. The cache expires when the
validation of this source ends.

3. The source parser should either create an instance of ValidationSourceDocument, pass
a reference to another document, or do both. For example, aWSDL source parser creates an
instance of ValidationSource, adds the parsedWSDL as a new
ValidationSourceDocument, and then includes each contained/referenced xml schema
via ValidationSource.addReferencedDocument. All the referenced documents are
parsed before the validation starts.

4. If the resource being parsed is a collection, the parser should create a
ValidationSourceCollection and add the references via addReferencedSource.

The URLwhich goes to the addReferencedXXXmethods might point inside the parsed
resource if XPointer is used. You can use DOMHelper.getXPointer() and
XPointerHelper.appendToURL() to create such a URL.

To be recognized by the source parsing framework, the parser must be bound to the
/systinet/policy/validation/sources/ JNDI context.

HP SOA Systinet (4.00)Page 73 of 105

Chapter 9

Custom Validation Handlers
In addition to the built-in handlers described in the "Assertion Schema" section in theReference
Guide, you can write and deploy your own validation handlers without further changes to the HP
SOA Systinet Policy Manager installation.

The following points should be kept in mind:

l Home and remote interfaces

The handler must have
org.systinet.policy.validation.handlers.DialectValidator as its remote
interface and
org.systinet.policy.validation.handlers.DialectValidatorHome as its
remote home interface.

l Classloaders

The handler should be deployed within the same classloader. This not only makes sure of better
performance, but you also do not have tomodify the existing systinet-policy.ear. For
further details, see jboss-app.xml.

l Deployment path

The handler must be deployed to the systinet/policy/validation/handlers/ JNDI
context.

l Exceptions

The handler should never throw an exception, apart from
org.systinet.http.CredentialsException. If an error occurs, the handler should
always create a report saying that there has been an error.

l Incoming assertions

The incoming list of assertions contains instances of
org.systinet.policy.validation.handlers.DialectValidator#AssertionRecord

.

l Return value

The return valuemust be a list of org.systinet.policy.model.report.Result. In this
list, there is one result for each of the assertions in the incoming list, placed in the same order.

l getDialect()

This method returns the URI of the dialect this handler accepts. It must be the same as the
namespace URI of the first element in the pe:Enforcement section of the assertion definition.
It is used to filter the input list of assertions. Only the assertions with this namespace are
passed into this handler.

HP SOA Systinet (4.00)Page 74 of 105

Chapter 10

Validation Client
Policy Manager includes a command-line validation client that you can copy to another computer on
the network. The validation client is designed for the following uses:

l Validating local and/or remote documents against local policies. These validations run on the
client.

l Validating remote documents against policies located on a server. These validations run on the
server.

The validation client is located at SOA_HOME/client. To install the client, copy this folder to the
location of your choice.

The validation client command-line tools are located in SOA_HOME/client/bin. The tools and
their functions are described in the following sections:

l "Downloading Policies and Assertions (sync)" (on page 75)

l "Local Validations (validate)" (on page 75)

l "Validating Against Policy On Server (server-validate)" (on page 78)

l "Rendering Output from XMLReports (render)" (on page 79)

l "Validation and Report Rendering Demo" (on page 80)

Downloading Policies and Assertions (sync)
To perform validations locally, you need local copies of the policies and assertions in the HP SOA
Systinet repository. To download these policies and assertions, run the sync tool. Your computer
must be connected to the HP SOA Systinetserver/cluster when you run sync.

To run sync, simply enter sync -u username -p password. If HP SOA Systinet does not require
any credentials, enter sync -noauth. The sync tool gets the hostname and port of the HP SOA
Systinet host from the SOA_HOME/client/conf/policy-manager.properties file,
created automatically when HP SOA Systinet is installed.

The property used is determined by the shared.https.use property and is either:

l shared.http.urlbase=http\://host\:port/context

l shared.https.urlbase=https\://host\:8443/context

Local Validations (validate)
Validate documents against local copies of technical policies by running the validate tool. The
syntax is:

validate [OPTIONS] {--policy local_technical_policy_name,_file_or_uri...} {--source source_file_
or_uri...}

For a full list of options and examples of commands, enter validate --help.

HP SOA Systinet (4.00)Page 75 of 105

Developer Guide
Chapter 10: Validation Client

Caution:Before you can validate a set of documents, download policies and assertions from the
server to your local directory using the sync tool.

Policy Formats
You can specify technical policies in the following ways:

l As the plain text name of the policy, in quotationmarks. For example, "SOA Systinet Best

Practices".

l As the file name (full or relative) of the policy file. For example,
C:/opt/systinet/policymgr/client/data/policies/systinet-best-

practices.xml.

l As the full URI of the policy. For example,
file:///opt/systinet/policymgr/client/data/policies/systinet-best-

practices.xml.

Source Formats
You can write source document locations in the following formats:

l As the file name (full or relative) of the document. For example,
C:/tmp/services/service1.wsdl.

l As the full URI of the document. For example,
http://host:port/services/service1.wsdl.

To validate one source against one policy it is not necessary to include any options in the command
line. For example, to validate a local copy of service1.wsdl against a local copy of the SOA
 Systinet Best Practices technical policy, you can run validate "SOA Systinet Best
Practices" C:/tmp/services/service1.wsdl.

Validating Multiple Sources With Multiple Policies
You can validatemultiple source documents and/or usemultiple technical policies using the -p or -
-policy and -d or --source options. For example, validate -p "SOA Systinet Best
Practices" -p file:///opt/systinet/policymgr/client/data/policies/wsdl-validity.xml -d
C:/tmp/services/service1.wsdl -d C:/tmp/services/service2.wsdl validates service1.wsdl
and service2.wsdl against the SOA Systinet Best Practices andWSDLValiditytechnical
policies.

You canmake the validation stop the first time a policy is violated. Use the -c or --stop option.
For example, the validation launched by validate --stop -p "WSDL Validity" -p "SOA Systinet
Best Practices" -d C:/tmp/services/service1.wsdl -d C:/tmp/services/service2.wsdl would
stop when either service1.wsdl or service2.wsdl violated either Systinet Best Practices or
WSDL Validity.

Selecting Sources By Wildcard
Instead of specifying every source document to be validated, you can specify a directory of
documents and pass a wildcard so all matching documents in that directory will be validated.
Specify the directory with the -d or --source option and use the -e or --pattern to pass the
wildcard. For example, validate -p "SOA Systinet Best Practices" -d C:/tmp/services -e
service*.wsdl would validate service1.wsdl, service2.wsdl, etc, against the SOA Systinet
Best Practices technical policy.

HP SOA Systinet (4.00)Page 76 of 105

Developer Guide
Chapter 10: Validation Client

Setting Up Output
By default, validation reports are created in text format and printed in the console window. You can
save the report as a file by using the -o or -outputDiroption and the file location. For example,
validate -o C:/tmp/reports "SOA Systinet Best Practices" C:/tmp/services/service1.wsdl
would create the file C:/tmp/reports/service1.txt.

Report names are based on source names by default. To give a report a different name, use the -n
or --name option.

You can produce output in HTML or XML format instead of text. Use the --format html or --
format xml option, respectively. When producing HTML or XML output, specify an output
location with the -o or -outputDiroption. Otherwise the raw HTML or XML is only printed out to
the console.

If you produce a report in XML format, you can use it to produce any number of HTML reports with
the render tool. See "Rendering Output from XMLReports (render)" (on page 79).

When the validate tool produces HTML output, it uses a template combining XSL and graphics.
The validation client comes with a default template that reproduces the Policy Manager report style.
You can add additional templates by saving them in the ../client/templates folder. Specify
the template to be used by using the -m or --template option. For example, if you saved a
custom template in .../client/templates/MyCustomTemplate, use it to produce HTML
output by running validate.sh --format html --template MyCustomTemplate [-p policy] [-d
source]. If you do not specify a template, the default template is used.

ANT Task Automation of validate
You can automate the execution of the validate tool as an ANT task. Write an ANT script to
launch validate and save the script in .../client/bin. Launch it with the ant command. For
example, if you create an ANT script called /client/bin/validatetask.xml, launch it with
ant -f validatetask.xml.

The elements of the ANT task are given in Table, “validate ANT Task Elements”. Example,
“validate ANT Task” is an example of an ANT task script for launching validate.

validate ANT Task Elements

Element name Attributes

taskdef
name Must be validate.

classname Must be
com.systinet.policy.tools.ant.ValidateTask

validate (Child
of target)

format Output format. Takes one of xml, html, or txt

policyPropsFile Specifies Policy Manager properties file. Usually
../conf/policy-manager.properties

output Output file path, such as C:/opt/reports/ or
C:/tmp/myreport.html. If file name is not
specified, it will match the validated source's

HP SOA Systinet (4.00)Page 77 of 105

Developer Guide
Chapter 10: Validation Client

Element name Attributes

name or summary.txt|xml|html if it is a
summary report. name or name or

cancel Boolean. true stops the validation at the first
failure.

policies (Child
of validate)

No attributes. Contains a list of all policies to be used for the validation, in
nested ANT elements (fileset/include).

sources (Child of
validate)

No attributes. Contains a list of sources to be validated, in nested ANT
elements (uri, fileset/include).

validate ANT Task

<?xml version="1.0"?>

<project name="validatetool" default="main">

<taskdef name="validate"

classname="com.systinet.policy.tools.ant.ValidateTask"/>

<target name="main">

<validate format="html" policyPropsFile="../conf/policy-

manager.properties"

output="C:/tmp/out">

<policies>

<fileset dir="../data/policies/">

<include name="wsdl-validity.xml"/>

<include name="systinet-best-practices.xml"/>

</fileset>

</policies>

<sources>

<uri value="http://api.google.com/GoogleSearch.wsdl"/>

<fileset dir="../data/policies/">

<include name="wsdl-validity.xml"/>

</fileset>

</sources>

</validate>

</target>

</project>

Validating Against Policy On Server (server-validate)
Validate a document against a technical policy in an HP SOA Systinet repository, or remotely run a
business policy validation, by running the server-validate tool. The tool publishes a report in
the sameHP SOA Systinet repository that contains the policy. The URL of the report is printed on
the command-line console.

The syntax for validating a document against a technical policy is

server-validate [OPTION] {-u HP SOA Systinet username} {-p HP SOA Systinet

password} [-s HP SOA Systinet server URL] { POLICY_URI} {SOURCE_FILE_OR_URI}

. The syntax for running a business policy validation is

HP SOA Systinet (4.00)Page 78 of 105

Developer Guide
Chapter 10: Validation Client

server-validate [OPTION] {-u username} {-p password} [-s server URL] {-b
BUSINESS_POLICY_URI}

For a full list of options and examples of commands, enter server-validate --help.

Policy URIs
Policy URIs are in the following formats:

l Technical policy URI:
http|https://

host:port/soa/systinet/platform/rest/repository/wsPolicies/policy-

name

l Business policy URI:
http|https://

host:port

/soa/systinet/platform/rest/repository/businessPolicies/policy-name

Source Formats
Only specify a source document if you are validating one against a technical policy. You can write
source document locations in the following format:

l As the full URI of the document. For example,
http://api.google.com/GoogleSearch.wsdl.

Selecting the HP SOA Systinet Server
By default, the server-validate tool communicates with the installation of HP SOA Systinet
from which the validation client was copied. It can use a policy in a different HP SOA Systinet
repository. Specify the HP SOA Systinet repository with the -s|--server option and the URL of
the HP SOA Systinet host. Be careful to use the authorization credentials for that server.

Rendering Output from XML Reports (render)
If you have a report in XML, you can use it to generate HTML reports by running the render tool.
The syntax is

render {--input full_path_to_XML_report} {--outDir output_directory} [OPTIONS]

. For a full list of options and examples of commands, enter render.bat|.sh --help.

Overwriting Reports
The render tool cannot overwrite existing reports of the same name in the same directory. By
default, render gives the output file the same name as the input file. If a file of the default name
already exists and you want to generate a report in the same location, give it a different name by
using the -n|--name option.

Selecting Output Template
The render tool uses a template combining XSL and graphics. The validation client comes with a
default template that reproduces the Policy Manager report style. You can add additional templates
by saving them in the ../client/templates folder. Specify the template to be used by using
the -m|--template option. For example, if you saved a custom template in
../client/templates/MyCustomTemplate, use it to produce HTML output by running

HP SOA Systinet (4.00)Page 79 of 105

Developer Guide
Chapter 10: Validation Client

render.sh [-i XML_input_file] [-o output_directory] -m MyCustomTemplate. If you do not
specify a template, the default template is used.

Validation and Report Rendering Demo
This demo shows how to use the Policy Manager REST API to validate a resource. The demo
utilizes the ValidationClient class. See the Javadoc for a full description of this class.

In this demo, you will learn how to:

l Create a service.

l Create a policy report which uses a technical policy.

l Use this policy report to validate a service.

l View the report.

You can find the demo source code in SOA_HOME\demos\policymgr\validation\src

To run the validation demo:

1. Ensure that HP SOA Systinet is running.

2. Open a command prompt at SOA_HOME\demos\policymgr\validation.

3. Enter run make to compile the demo source code.

4. Enter run run to create the artifacts and run the validation. A link to the HTML report page is
printed to the console.

HP SOA Systinet (4.00)Page 80 of 105

Chapter 11

Publishing Extensibility
This chapter describes how to extend the built-in publishing functionality of HP SOA Systinet to
enable the publishing of custom document types. Specifically, how to create a custom extension
that provides support for publishing XML files containing Spring context definitions and then to
extend that publishing to provide a decomposition of Spring context definitions into Spring Beans.

Tip:API Docs to accompany the classes described in this chapter are available at SOA_
HOME/doc/publishing/apidocs.zip. Extract the archive and open
/apidocs/index.html.

This chapter is split into the following sections:

l "Spring Context Publishing" (on page 81)

l "Spring Context Decomposition" (on page 88)

Spring Context Publishing
This section describes how to create an extension for HP SOA Systinet which enables you to
publish Spring Context files using the publishing functionality of HP SOA Systinet.

The process consists of the following parts:

l Extending the SDMModel.

l Providing custom code components.

The first stage is to create an extension with a custom artifact type definition.

To create a Spring publishing extension:

1. InWorkbench Customization Editor, create a new extension project.

n Select mixed as the project type to be able tomake bothmodel and code changes.

Note: For forward compatibility you should create amodel extension for the new artifacts
and properties described in this procedure, and a separate code extension for the
custom components. Forward compatibility is only guaranteed onmodel extensions.

n Select an appropriate name (for example, Spring Publishing), and leave all other options as
defaults.

For more details, see "Creating an Extension Project" in theCustomization Editor Guide.

2. Create a Spring Context artifact type in the extension.

n Use name Spring Context, Customization Editor populates the artifact properties with
default values. If you use different parameters, make sure that you use the same values
when you provide the SpringContextDocType implementation.

n Select a suitable package, for example Content.

HP SOA Systinet (4.00)Page 81 of 105

Developer Guide
Chapter 11: Publishing Extensibility

n Select XML as the Data Attachment type.

n For demonstration purposes, make the artifact available in the Service Catalog.

n Use springContexts and c_springContexts for the Collection Name and Database
Table Name respectively to avoid table name length restrictions.

For more details, see "Creating an Artifact Type or Package" in theCustomization Editor
Guide.

3. Create an Imported Spring Context relationship property in the extension.

n Use name Imported Spring Context and inverse name Spring Context Imported By.

n Use Spring Context artifact as both the from and to artifact types.

n Create the relationship with optional cardinality.

n Leave the remaining options as defaults.

For more details, see "Creating a Property" in theCustomization Editor Guide.

4. Add properties Imported Spring Context and Spring Context Imported By to the Spring Context
artifact with multiple cardinality. Make the properties visible in the UI.

5. Create a Transaction Annotation Driven primitive property of boolean type with optional
cardinality and add it to the Spring Context artifact. Make the property visible in the UI.

For more details, see "Creating a Property" in theCustomization Editor Guide.

6. Create a Context Annotation Config primitive property of boolean type with optional cardinality
and add it to the Spring Context artifact. Make the property visible in the UI.

7. Build and apply the extension to HP SOA Systinet.

For details, see "Exporting the Extension Project" and "Applying Extensions" in the
Customization Editor Guide.

The new artifact type Spring Context should now be visible in the HP SOA Systinet Service
Catalog.

The next step is to extend the publishing framework to handle Spring Context artifacts
automatically, for example when using the Upload Data Content functionality in HP SOA Systinet.
This requires a custom implementation of the DocType abstract class.

The following approaches for implementing such a class for XML content are available:

l Extend the XmlDocType class.

l Extend the DocType class and implement an XML interface.

And to provide further support for publishing non-XML content:

l Extend the DocType class and implement a Binary interface.

Note: It is also possible to mark your DocType with the Binary interface even if the content is XML-
based. In this case you are provided with both SAX- and binary- callbacks. In particular, it
injects the file extension value into the handler. While this may be useful (for example, for type
detection based on a file extension if no content is provided in the first place), it is generally
not encouraged as extension-based solutions are not as reliable.

HP SOA Systinet (4.00)Page 82 of 105

Developer Guide
Chapter 11: Publishing Extensibility

Any DocType that is available forWebDAV-based publishingmust also be annotated with the
DavEnabled notation. As an alternative for XML-based content, you can base your implementation
on the DavEnabledXmlDocType class that is already annotated accordingly. Be aware that in the
case of WebDAV-based publishing, the source URL is NULL. As a result, should the DocType
need to determine the name of the resource from the filename, its target location is more
appropriate.

For XML content, extending XmlDocType (or DavEnabledXmlDocType) is the recommended
approach as shown in the following example:

SpringContextDocType.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import com.hp.systinet.publishing.types.DavEnabledXmlDocType;

import com.hp.systinet.publishing.types.ReferenceDefinition;

import com.hp.systinet.repository.sdm.properties.PropertyValue;

import com.hp.systinet.repository.sdm.propertytypes.BooleanProperty;

import com.hp.systinet.repository.sdm.propertytypes.StringProperty;

import com.hp.systinet.repository.sdm.ValuesFactory;

import com.hp.systinet.repository.sdm.ArtifactBase;

import com.hp.systinet.repository.sdm.SdmConstants;

import com.hp.systinet.repository.criteria.filtering.ArtifactFilter;

import com.hp.systinet.repository.criteria.filtering.PropertyFilter;

import javax.xml.namespace.QName;

import java.util.Map;

import java.util.HashMap;

import java.util.List;

import org.springframework.schema.beans.BeansDocument;

import org.apache.xmlbeans.XmlObject;

import org.apache.xmlbeans.XmlAnySimpleType;

import org.apache.xmlbeans.XmlException;

import org.apache.xmlbeans.XmlOptions;

import org.apache.xmlbeans.XmlSaxHandler;

/**

* DocType for handling XML files with definition of a spring

context.

* <p> *

* Following is recognized:

*

* import of another context files

* transaction:annotation-driven property

* context:annotation-config property

*

*/

public class SpringContextDocType extends DavEnabledXmlDocType {

private static final String NAMESPACE_BEANS =

HP SOA Systinet (4.00)Page 83 of 105

Developer Guide
Chapter 11: Publishing Extensibility

"http://www.springframework.org/schema/beans";

private static final String NAMESPACE_TX =

"http://www.springframework.org/schema/tx";

private static final String NAMESPACE_CONTEXT =

"http://www.springframework.org/schema/context";

private static final QName ANNOTATION_DRIVEN =

new QName(NAMESPACE_TX, "annotation-driven");

private static final QName ANNOTATION_CONFIG =

new QName(NAMESPACE_CONTEXT, "annotation-config");

private static final String SDM_TYPE_SPRING_CONTEXT = "c_

springContextArtifact";

private static final String SDM_COLLECTION_SPRING_CONTEXT =

"/springContexts/";

private static final String SDM_RELATION_IMPORT_SPRING_CONTEXT =

"c_importedSpringContext";

private static final String SDM_PROPERTY_TRANSACTION =

"c_transactionAnnotationDriven";

private static final String SDM_PROPERTY_CONTEXT = "c_

contextAnnotationConfig";

/**

* The XML describing spring context can include another file using

* <code>{http://www.springframework.org/schema/beans}import</code>

element.

* File pointed to by the <code>resource</code> attribute will be

treated as

* spring context and it will be linked to its referee by the

* <code>c_importedSpringContext</code> relationship.

*/

private static Map<QName, ReferenceDefinition> imports =

new HashMap<QName, ReferenceDefinition>();

static {

imports.put(new QName(NAMESPACE_BEANS, "import"),

new ReferenceDefinition("resource", SDM_RELATION_IMPORT_SPRING_

CONTEXT,

SDM_TYPE_SPRING_CONTEXT));

}

private XmlSaxHandler saxHandler;

private BeansDocument.Beans beans;

public SpringContextDocType() {

super(SDM_COLLECTION_SPRING_CONTEXT, SDM_TYPE_SPRING_CONTEXT,

imports);

// writing SAX-based parser is somewhat tedious, we will use

XmlBeans instead

// register appropriate content&lexical handler for the spring

schema type

XmlOptions xmlOptions = new XmlOptions();

xmlOptions.setDocumentType(BeansDocument.type);

HP SOA Systinet (4.00)Page 84 of 105

Developer Guide
Chapter 11: Publishing Extensibility

saxHandler = XmlObject.Factory.newXmlSaxHandler(xmlOptions);

setContentHandler(saxHandler.getContentHandler());

setLexicalHandler(saxHandler.getLexicalHandler());

}

/**

* Input is recognized as spring context if its XmlBeans

representation

* is built successfully

* @return true if content is spring context

*/

public boolean recognized() {

return getBeans() != null;

}

/**

* Get relevant information gathered from the input.

* @param valuesFactory factory to be used for property

instantiation

* @return relevant information gathered from the input

*/

public Map<String, PropertyValue>

getArtifactProperties(ValuesFactory valuesFactory) {

Map<String, PropertyValue> ret = new HashMap<String,

PropertyValue>();

// get the XmlBeans representation of the content

BeansDocument.Beans beans = getBeans();

if(beans != null) {

if(beans.isSetDescription()) {

// set description property if it is set in the XML file

ret.put(SdmConstants.PROPERTY_DESCRIPTION,

new StringProperty(getTextValue(beans.getDescription())));

}

// strip the extension from the resource name

ret.put(SdmConstants.PROPERTY_NAME,

new

StringProperty(filenameWithoutExtension(getLocation())));

// set transaction annotation driven property to true if

there is tx:annotation-driven element

ret.put(SDM_PROPERTY_TRANSACTION,

new BooleanProperty(beans.selectChildren(ANNOTATION_

DRIVEN).length > 0));

// set context annotation config property to true if

there is context:annotation-config element

ret.put(SDM_PROPERTY_CONTEXT,

new BooleanProperty(beans.selectChildren(ANNOTATION_

CONFIG).length > 0));

}

return ret;

}

HP SOA Systinet (4.00)Page 85 of 105

Developer Guide
Chapter 11: Publishing Extensibility

/**

* Get find filter to be used when searching for duplicates of

given resource.

* @param artifact artifact used as a source for the duplicate

filter

* @return find filter to be used when searching for duplicates of

given resource

*/

public ArtifactFilter getDuplicateFilter(ArtifactBase artifact) {

// default filter defined in DocType requires the last segment of

the location

(i.e. filename) to match

ArtifactFilter filter = super.getDuplicateFilter(artifact);

// let's add the requirement that both extra properties we define

match too

filter = filter.combineAnd(new PropertyFilter(SDM_PROPERTY_

TRANSACTION,

artifact.getBooleanProperty(SDM_PROPERTY_TRANSACTION)));

filter = filter.combineAnd(new PropertyFilter(SDM_PROPERTY_

CONTEXT,

artifact.getBooleanProperty(SDM_PROPERTY_CONTEXT)));

return filter;

}

/**

* Get list of properties that must be initialized in artifact for

construction

* of the duplicate filter.

* @return list of properties that must be initialized in artifact

for construction

* of the duplicate filter

*/

public List<String> getProperties4DuplicateFilter() {

// we call super in getDuplicateFilter(), we musn't forget to

include super properties too

List<String> list = super.getProperties4DuplicateFilter();

// list both properties we acquire during filter creation

list.add(SDM_PROPERTY_TRANSACTION);

list.add(SDM_PROPERTY_CONTEXT);

return list;

}

public String getFileDescription() {

return "XML Spring Context definition";

}

private String filenameWithoutExtension(String url) {

return url.replaceFirst("^(.*/)?([^/]*?)(\\.[^/\\.]*)?$", "$2");

}

HP SOA Systinet (4.00)Page 86 of 105

Developer Guide
Chapter 11: Publishing Extensibility

private String getTextValue(XmlObject o) {

try {

return

XmlAnySimpleType.Factory.parse(o.xmlText()).getStringValue();

} catch (XmlException e) {

throw new RuntimeException(e);

}

}

private BeansDocument.Beans getBeans() {

if(beans == null) {

try {

BeansDocument doc = (BeansDocument)saxHandler.getObject();

if(doc != null) {

beans = doc.getBeans();

}

} catch (Exception e) {

// couldn't parse

}

}

return beans;

}

}

Place the class file into the EXTENSION-INF/ui/src/... folder (maintaining Java package
conventions).

XmlBeans are used for in-memory representations of the Spring Context XML files, so youmust
also provide appropriate schema types with the extension. Make sure you install an XmlBeans tool
on your system and run the following command to generate the appropriate schema types:

scomp -out xmlbeans_spring_beans.jar spring-beans-2.5.xsd

Place the resulting xmlbeans_spring_beans.jar into the EXTENSION-INF/lib/ directory.

Tip:Download spring-beans-2.5.xsd from
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd.

The final step is register the SpringContextDocType implementation into the system. This is done
by registering the implementation of the DocTypeFactory that serves as the factory for creating
instances of SpringContextDocType objects.

As SpringContextDocType provides a public parameter-less constructor, you do not need to
provide a custom factory implementation and can re-use DocTypeFactoryImpl instead.

extensionContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- note that bean ID is not important unless we want to enforce

HP SOA Systinet (4.00)Page 87 of 105

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

Developer Guide
Chapter 11: Publishing Extensibility

order of the factories -->

<bean id="demo.publishing.docTypeFactory"

class="com.hp.systinet.publishing.types.DocTypeFactoryImpl">

<property name="types">

<list>

<!-- list of DocType classes (must have default public ctor)

this factory instantiates, list our SpringContextDocType

here -->

<value>demo.publishing.spring.SpringContextDocType</value>

</list>

</property>

</bean>

</beans>

Place extensionContext.xml to the EXTENSION-INF/ui/src/META-INF directory.

Build and apply the extension.

To verify that everything works you can publish an archive file containing two files with Spring
Contexts available at SOA_HOME/doc/publishing/upload.zip

upload.zip.

A built version of this extension is available at SOA_
HOME/doc/publishing/com.systinet.soa.ext.cust.Spring_

Publishing.1.1.jar.

Spring Context Decomposition
This section extends the process described in "Spring Context Publishing" (on page 81) with the
following features:

l Create artifacts for every named (top-level) bean in the Spring context file.

l Take names and other name properties from the bean ID as defined in the Spring context.

l Establish relationships to other beans.

This additional functionality is also optional, allowing the user to decide whether to create bean
artifacts during the upload of the Spring context file.

Note: For demonstration purposes this example does not support:

l Bean aliasing.

l Inner beans.

l Abstract beans and inheritance.

l Anonymous beans.

To automate bean creation from the Spring context file, requires the following overall process:

1. Extend the SDMmodel.

2. Extend SpringContextDocType to collect information about the beans defined in the context
file.

HP SOA Systinet (4.00)Page 88 of 105

Developer Guide
Chapter 11: Publishing Extensibility

3. Provide custom options for turning on/off bean decomposition.

4. Provide a decomposer that builds a decomposition graph for each context file.

5. Provide a post-processor to establish relationships between decomposed beans.

To extend the model:

1. Create a new artifact, Spring Bean Artifact, to represent beans.

Use name, Spring Bean, and leave other inputs as defaults.

2. Add a plain text property, c_otherName, with multiple cardinality to store alternative bean
names.

3. Add a relationship property from Spring Bean to Spring Context, c_beanDecomposition,
with multiple cardinality and inverse relationship, c_beanDecompositionOf.

The beans and relevant properties are obtained from the Spring Context file. Tomake this data
available during decomposition, override the getCollectedDatamethod by extending
SpringContextDocType as shown in the following source code examples:

SpringContextDecomposingDocType.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import com.hp.systinet.publishing.types.DavEnabledXmlDocType;

import com.hp.systinet.publishing.types.ReferenceDefinition;

import com.hp.systinet.repository.sdm.properties.PropertyValue;

import com.hp.systinet.repository.sdm.propertytypes.BooleanProperty;

import com.hp.systinet.repository.sdm.propertytypes.StringProperty;

import com.hp.systinet.repository.sdm.ValuesFactory;

import com.hp.systinet.repository.sdm.ArtifactBase;

import com.hp.systinet.repository.sdm.SdmConstants;

import com.hp.systinet.repository.criteria.filtering.ArtifactFilter;

import com.hp.systinet.repository.criteria.filtering.PropertyFilter;

import javax.xml.namespace.QName;

import java.util.Map;

import java.util.HashMap;

import java.util.List;

import java.util.ArrayList;

import org.springframework.schema.beans.BeansDocument;

import org.springframework.schema.beans.BeanDocument;

import org.springframework.schema.beans.PropertyType;

import org.apache.xmlbeans.XmlObject;

import org.apache.xmlbeans.XmlAnySimpleType;

import org.apache.xmlbeans.XmlException;

import org.apache.xmlbeans.XmlOptions;

import org.apache.xmlbeans.XmlSaxHandler;

/**

* DocType for handling XML files with definition of a spring

HP SOA Systinet (4.00)Page 89 of 105

Developer Guide
Chapter 11: Publishing Extensibility

context.

* <p>

*

* Following is recognized:

*

* import of another context files

* transaction:annotation-driven property

* context:annotation-config property

* */

public class SpringContextDecomposingDocType extends

DavEnabledXmlDocType {

private static final String NAMESPACE_BEANS =

"http://www.springframework.org/schema/beans";

private static final String NAMESPACE_TX =

"http://www.springframework.org/schema/tx";

private static final String NAMESPACE_CONTEXT =

"http://www.springframework.org/schema/context";

private static final QName ANNOTATION_DRIVEN =

new QName(NAMESPACE_TX, "annotation-driven");

private static final QName ANNOTATION_CONFIG =

new QName(NAMESPACE_CONTEXT, "annotation-config");

private static final String SDM_TYPE_SPRING_CONTEXT = "c_

springContextArtifact";

private static final String SDM_COLLECTION_SPRING_CONTEXT =

"/springContexts/";

private static final String SDM_RELATION_IMPORT_SPRING_CONTEXT =

"c_importedSpringContext";

private static final String SDM_PROPERTY_TRANSACTION =

"c_transactionAnnotationDriven";

private static final String SDM_PROPERTY_CONTEXT = "c_

contextAnnotationConfig";

static final String BEAN_LIST = "spring.beans";

/**

* The XML describing spring context can include another file using

* <code>{http://www.springframework.org/schema/beans}import</code>

element.

* File pointed to by the <code>resource</code> attribute will be

treated as

* spring context and it will be linked to its referee by the

* <code>c_importedSpringContext</code> relationship.

*/

private static Map<QName, ReferenceDefinition> imports =

new HashMap<QName, ReferenceDefinition>();

static {

imports.put(new QName(NAMESPACE_BEANS, "import"),

new ReferenceDefinition("resource", SDM_RELATION_IMPORT_

SPRING_CONTEXT,

SDM_TYPE_SPRING_CONTEXT));

}

HP SOA Systinet (4.00)Page 90 of 105

Developer Guide
Chapter 11: Publishing Extensibility

private XmlSaxHandler saxHandler;

private BeansDocument.Beans beans;

public SpringContextDecomposingDocType() {

super(SDM_COLLECTION_SPRING_CONTEXT, SDM_TYPE_SPRING_CONTEXT,

imports);

// writing SAX-based parser is somewhat tedious, we will use

XmlBeans instead

// register appropriate content&lexical handler for the spring

schema type

XmlOptions xmlOptions = new XmlOptions();

xmlOptions.setDocumentType(BeansDocument.type);

saxHandler = XmlObject.Factory.newXmlSaxHandler(xmlOptions);

setContentHandler(saxHandler.getContentHandler());

setLexicalHandler(saxHandler.getLexicalHandler());

}

/**

* Input is recognized as spring context if its XmlBeans

representation

* is built successfully

* @return true if content is spring context

*/

public boolean recognized() {

return getBeans() != null;

}

/**

* Get relevant information gathered from the input.

* @param valuesFactory factory to be used for property

instantiation

* @return relevant information gathered from the input

*/

public Map<String, PropertyValue>

getArtifactProperties(ValuesFactory valuesFactory) {

Map<String, PropertyValue> ret = new HashMap<String,

PropertyValue>();

// get the XmlBeans representation of the content

BeansDocument.Beans beans = getBeans();

if(beans != null) {

if(beans.isSetDescription()) {

// set description property if it is set in the XML file

ret.put(SdmConstants.PROPERTY_DESCRIPTION,

new StringProperty(getTextValue(beans.getDescription())));

}

// strip the extension from the resource name

ret.put(SdmConstants.PROPERTY_NAME,

new

StringProperty(filenameWithoutExtension(getLocation())));

// set transaction annotation driven property to true if

there is tx:annotation-driven element

ret.put(SDM_PROPERTY_TRANSACTION,

new BooleanProperty(beans.selectChildren(ANNOTATION_

HP SOA Systinet (4.00)Page 91 of 105

Developer Guide
Chapter 11: Publishing Extensibility

DRIVEN).length > 0));

// set context annotation config property to true if

there is context:annotation-config element

ret.put(SDM_PROPERTY_CONTEXT,

new BooleanProperty(beans.selectChildren(ANNOTATION_

CONFIG).length > 0));

}

return ret;

}

/**

* Get find filter to be used when searching for duplicates of

given resource.

* @param artifact artifact used as a source for the duplicate

filter

* @return find filter to be used when searching for duplicates of

given resource

*/

public ArtifactFilter getDuplicateFilter(ArtifactBase artifact) {

// default filter defined in DocType requires the last segment of

the location

(i.e. filename) to match

ArtifactFilter filter = super.getDuplicateFilter(artifact);

// let's add the requirement that both extra properties we define

match too

filter = filter.combineAnd(new PropertyFilter(SDM_PROPERTY_

TRANSACTION,

artifact.getBooleanProperty(SDM_PROPERTY_TRANSACTION)));

filter = filter.combineAnd(new PropertyFilter(SDM_PROPERTY_

CONTEXT,

artifact.getBooleanProperty(SDM_PROPERTY_CONTEXT)));

return filter;

}

/**

* Get list of properties that must be initialized in artifact for

construction

* of the duplicate filter.

* @return list of properties that must be initialized in artifact

for construction

* of the duplicate filter

*/

public List<String> getProperties4DuplicateFilter() {

// we call super in getDuplicateFilter(), we musn't forget to

include super properties too

List<String> list = super.getProperties4DuplicateFilter();

// list both properties we acquire during filter creation

list.add(SDM_PROPERTY_TRANSACTION);

list.add(SDM_PROPERTY_CONTEXT);

return list;

}

public String getFileDescription() {

HP SOA Systinet (4.00)Page 92 of 105

Developer Guide
Chapter 11: Publishing Extensibility

return "XML Spring Context definition";

}

/**

* Collects data about beans defined in the spring context.

* This data will be later used for decomposition.

*/

public Map getCollectedData() {

Map ret = new HashMap();

BeansDocument.Beans beans = getBeans();

if(beans != null) {

List<Bean> list = new ArrayList<Bean>();

ret.put(BEAN_LIST, list);

BeanDocument.Bean[] bs = beans.getBeanArray();

for(BeanDocument.Bean b: bs) {

Bean bb = new Bean(b.getId(), b.getName());

if(bb.getId() == null) {

// we ignore anonymous beans, because we wouldn't be able to

identify

them during update

continue;

}

PropertyType[] ps = b.getPropertyArray();

for(PropertyType p: ps) {

if(p.getRef2() != null) {

bb.addRef(p.getRef2());

}

}

list.add(bb);

}

}

return ret;

}

private String filenameWithoutExtension(String url) {

return url.replaceFirst("^(.*/)?([^/]*?)(\\.[^/\\.]*)?$", "$2");

}

private String getTextValue(XmlObject o) {

try {

return

XmlAnySimpleType.Factory.parse(o.xmlText()).getStringValue();

} catch (XmlException e) {

throw new RuntimeException(e);

}

}

private BeansDocument.Beans getBeans() {

if(beans == null) {

try {

BeansDocument doc = (BeansDocument)saxHandler.getObject();

if(doc != null) {

beans = doc.getBeans();

}

HP SOA Systinet (4.00)Page 93 of 105

Developer Guide
Chapter 11: Publishing Extensibility

} catch (Exception e) {

// couldn't parse

}

}

return beans;

}

}

Bean.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import java.util.List;

import java.util.Arrays;

import java.util.ArrayList;

import java.util.Collections;

public class Bean {

private String id;

private List<String> names;

private List<String> refs;

public Bean(String id, String names) {

this.names = splitNames(names);

this.id = (id == null && !this.names.isEmpty())?

this.names.remove(0): id;

this.refs = new ArrayList<String>();

}

public String getId() {

return id;

}

public List<String> getNames() {

return names;

}

public List<String> getRefs() {

return refs;

}

public void addRef(String ref) {

if(!refs.contains(ref)) {

refs.add(ref);

}

}

private List<String> splitNames(String s) {

if(s == null) {

return Collections.emptyList();

} else {

return Arrays.asList(s.split("[,;\\s]"));

}

}

}

HP SOA Systinet (4.00)Page 94 of 105

Developer Guide
Chapter 11: Publishing Extensibility

Define custom options containing a radio button for turning on/off bean decomposition, as shown in
the following source code example:

SpringContextOptions.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import

com.hp.systinet.publishing.extensibility.base.AbstractCustomOptions;

import com.hp.systinet.publishing.options.Options;

import com.hp.systinet.publishing.options.ElementaryOption;

import com.hp.systinet.publishing.options.RadioOption;

import com.hp.systinet.repository.sdm.generated.artifacts.C_

springContextArtifact;

import java.util.Arrays;

import java.util.HashSet;

import java.util.List;

public class SpringContextOptions extends AbstractCustomOptions {

public Options getDefaults() {

// we define single radio option for turning on/off bean

decomposition

RadioOption opt = new RadioOption("spring.decompostion", "Spring

Decomposition",

"Artifacts to decompose from spring context",

Arrays.asList("beans", "none"), // keys

Arrays.asList("Beans", "None"), // captions

Arrays.asList("Decompose Spring Beans", "Decompose nothing"), //

hints

"beans"); // default key

return new Options("spring.options", "Spring Publishing",

Arrays.<ElementaryOption>asList(opt),

new HashSet<String>(Arrays.asList(C_springContextArtifact.SDM_

NAME)));

}

/**

* Utility method for reading the value of the spring decomposition

settings.

* @param list all available publishing options specified for this

publishing process

* @return true if spring bean decomposition is turned on

*/

public static boolean isDecomposeBeans(List<Options> list) {

for(Options options: list) {

if(options.getId().equals("spring.options")) {

// we have located our options, check the value

return

"beans".equals(((RadioOption)options.list().get(0)).getSelectedKey());

HP SOA Systinet (4.00)Page 95 of 105

Developer Guide
Chapter 11: Publishing Extensibility

}

}

return true; // default if our options were not found

}

}

The option value (selected by the user in the UI advanced options) must be acquired in both the
decomposer and post-processor, so SpringContextOptionsincludes amethod for obtaining
the value.

The decomposer takes information (bean definitions) collected from the content (Spring context
files) and builds a decomposition tree describing the subordinate components and their
relationships. Information captured in the decomposition tree includes the relational property
towards the decomposed resource, as well as the handler for mapping the decomposed resources
to artifacts in the repository. In this example, the tree structure is relatively simple, because there is
only a single level of decomposition, Spring beans are directly connected to the encapsulating
Spring context as shown in the following diagram:

Decomposition

For details of the decomposer, see the following source code examples:

SpringContextOptions.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import

com.hp.systinet.publishing.extensibility.base.AbstractDecomposer;

import com.hp.systinet.publishing.struct.DecomposedRelation;

import com.hp.systinet.publishing.struct.DecomposedRecord;

import com.hp.systinet.publishing.options.Options;

import com.hp.systinet.publishing.NamedIdentity;

import java.util.Map;

HP SOA Systinet (4.00)Page 96 of 105

Developer Guide
Chapter 11: Publishing Extensibility

import java.util.List;

import java.util.Arrays;

public class SpringContextDecomposer extends AbstractDecomposer

implements NamedIdentity {

public List<DecomposedRelation> decompose(Map collectedData,

List<Options> optionsList) {

if(collectedData != null) {

List<Bean> beans =

(List)collectedData.get(SpringContextDecomposingDocType.BEAN_LIST);

if(beans != null &&

SpringContextOptions.isDecomposeBeans(optionsList)) {

return decompose(beans);

}

}

return null;

}

public String getId() {

return "spring.decomposer";

}

public String getName() {

return "Spring publishing";

}

private List<DecomposedRelation> decompose(List<Bean> beans) {

DecomposedRelation<Bean> ret =

new DecomposedRelation<Bean>("c_beanDecompositionOf",

new BeanHandler(), false);

for(Bean bean: beans) {

// add decomposition record for every bean we found in the

content

ret.add(new DecomposedRecord<Bean>(bean));

}

return Arrays.<DecomposedRelation>asList(ret);

}

}

BeanHandler.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import

com.hp.systinet.publishing.extensibility.base.AbstractArtifactHandler;

import com.hp.systinet.publishing.struct.DecomposedRelation;

import com.hp.systinet.publishing.options.Options;

import com.hp.systinet.repository.sdm.generated.artifacts.C_

springBeanArtifact;

import java.util.List;

import java.util.Collections;

HP SOA Systinet (4.00)Page 97 of 105

Developer Guide
Chapter 11: Publishing Extensibility

import java.util.Arrays;

import java.util.HashSet;

import org.apache.commons.collections.bag.HashBag;

public class BeanHandler extends AbstractArtifactHandler<C_

springBeanArtifact, Bean> {

public Class<C_springBeanArtifact> getArtifactClass() {

return C_springBeanArtifact.class;

}

public List<String> getPropertyNames() {

// this is optimization that avoids necessity to explicitly

fetch these properties later in code:

// we use c_otherNames and c_dataReference in this handler and

c_beanReference later in post-processor

return Arrays.asList("c_otherNames", "c_beanReference", "c_

dataReference");

}

public boolean setArtifactProperties(C_springBeanArtifact art, Bean

item) {

boolean changed = false;

if(!item.getId().equals(art.getName())) {

art.setName(item.getId());

changed = true;

}

if(!new HashBag(art.getC_otherNamesGroup()).equals(new

HashBag(item.getNames()))) {

art.setC_otherNamesGroup(item.getNames());

changed = true;

}

if(!new HashSet<String>(item.getRefs()).equals

(new HashSet<String>(art.getC_dataReferenceGroup()))) {

art.setC_dataReferenceGroup(item.getRefs());

changed = true;

}

return changed;

}

public Matcher<C_springBeanArtifact> getMatcherForItem(final Bean

item) {

return new Matcher<C_springBeanArtifact>() {

public boolean matches(C_springBeanArtifact candidate) {

// two beans match if their primary name matches

return item.getId().equals(candidate.getName());

}

}

}

}

Relationships between beans cannot be established during the decomposition process, because
one beanmay reference another bean defined in a separate context file. Referencingmay only take

HP SOA Systinet (4.00)Page 98 of 105

Developer Guide
Chapter 11: Publishing Extensibility

place after the decomposition of all context files being published, using publishing post-processor,
as shown the following diagram:

Post-Processing

The relationships between beans and their encapsulating context (solid black arrows) are
established during decomposition. Relationships between beans (dashed blue lines) are added by
the post-processor. The complexity of the code depends largely on how smart the process is
required to be. For example, the code could be simplified by not requiring late-binding (client.xml
published prior to context.xml) to work or alternatively, limit the code to relationship creation and do
not remove relationships no longer represented in the data, etc.

For details of the decomposer, see the following source code example:

SpringContextProcessor.java

//(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.

package demo.publishing.spring;

import

com.hp.systinet.publishing.extensibility.base.AbstractProcessor;

import com.hp.systinet.publishing.extensibility.Processor;

import com.hp.systinet.publishing.ProcessorDescriptor;

import com.hp.systinet.publishing.PublisherRecord;

import com.hp.systinet.publishing.NamedIdentity;

import com.hp.systinet.publishing.PublishingLib;

HP SOA Systinet (4.00)Page 99 of 105

Developer Guide
Chapter 11: Publishing Extensibility

import com.hp.systinet.publishing.struct.ResourceStatus;

import com.hp.systinet.publishing.options.Options;

import com.hp.systinet.repository.sdm.generated.artifacts.C_

springBeanArtifact;

import com.hp.systinet.repository.sdm.generated.artifacts.C_

springContextArtifact;

import com.hp.systinet.repository.sdm.SdmConstants;

import

com.hp.systinet.repository.sdm.propertytypes.DocumentRelationship;

import com.hp.systinet.repository.sdm.properties.Uuid;

import com.hp.systinet.repository.command.FindCommand;

import com.hp.systinet.repository.structures.ArtifactPartSelector;

import com.hp.systinet.repository.RepositoryService;

import com.hp.systinet.repository.criteria.filtering.ArtifactFilter;

import com.hp.systinet.repository.criteria.filtering.PropertyFilter;

import java.util.*;

import org.springframework.beans.factory.annotation.Required;

@ProcessorDescriptor(type = Processor.Type.POST)

public class SpringContextProcessor extends AbstractProcessor

implements NamedIdentity {

private PublishingLib publishingLib;

private RepositoryService repositoryService;

@Required

public void setPublishingLib(PublishingLib publishingLib) {

this.publishingLib = publishingLib;

}

@Required

public void setRepositoryService(RepositoryService

repositoryService) {

this.repositoryService = repositoryService;

}

public List<PublisherRecord> process(List<PublisherRecord> records,

List<Options> optionsList, Type type) {

if(!SpringContextOptions.isDecomposeBeans(optionsList)) {

// do nothing if bean decomposition is turned off

}

// collect all references to other beans (bean ID -> list of

referenced bean IDs)

Map<String, List<String>> refs = new HashMap<String,

List<String>>();

// collect all contexts that are already part of publishing

Set<Uuid> ctxs = new HashSet<Uuid>();

for(PublisherRecord record: records) {

if(record.getArtifact() instanceof C_springContextArtifact) {

ctxs.add(record.getArtifact().get_uuid());

List<Bean> beans =

(List)record.get(SpringContextDecomposingDocType.BEAN_

HP SOA Systinet (4.00)Page 100 of 105

Developer Guide
Chapter 11: Publishing Extensibility

LIST);

if(beans != null) {

for(Bean bean: beans) {

// references

refs.put(bean.getId(), bean.getRefs());

}

}

}

}

// find out beans that we either point to or point to us (if we

are newly created)

Set<String> allReferences = new HashSet<String>();

for(List<String> list: refs.values()) {

allReferences.addAll(list);

}

ArtifactFilter filter = getNameFilter(allReferences); // we point

to

ArtifactFilter referenceFilter = getReferenceFilter(records); //

point to us

if(referenceFilter != null) {

if(filter != null) {

filter = filter.combineOr(referenceFilter);

} else {

filter = referenceFilter;

}

}

List<PublisherRecord> createdRecords =

new ArrayList<PublisherRecord>();

Map<String, List<String>> dataRefs =

new HashMap<String, List<String>>();

if(filter != null) {

// find them in repository

FindCommand find = new FindCommand(C_springBeanArtifact.SDM_

NAME);

find.setArtifactPartSelector(new ArtifactPartSelector("c_

beanDecomposition"));

find.setFilter(filter.combineAnd(new PropertyFilter

(SdmConstants.PROPERTY_DELETED, false)));

List<C_springBeanArtifact> arts =

(List)repositoryService.findArtifacts(find);

for(C_springBeanArtifact art: arts) {

if(art.getC_beanDecomposition() ==

null || art.getC_beanDecomposition().getTargetId() ==

null) {

// ignore beans without context (never link to/from them)

continue;

}

if(!ctxs.add(art.getC_beanDecomposition().getTargetId())) {

// ignore beans of contexts that we are processing

(they are already loaded or doesn't exist anymore)

HP SOA Systinet (4.00)Page 101 of 105

Developer Guide
Chapter 11: Publishing Extensibility

continue;

}

// we have found context that contains bean we want to link

to/from,

add context + all its beans to the result

C_springContextArtifact ctx = (C_springContextArtifact)

repositoryService.getArtifact(art.getC_

beanDecomposition().getTargetId(),

new ArtifactPartSelector(SdmConstants.PROPERTY_DATA_SYNC_

LAST_CHECKED,

SdmConstants.PROPERTY_DATA_LOCATION,

SdmConstants.PROPERTY_DATA_ORIGIN_URL,

"c_beanDecompositionOf"));

PublisherRecord createdContext =

publishingLib.createRecord(ctx,

ResourceStatus.IDENTICAL);

createdRecords.add(createdContext);

for(DocumentRelationship rel: ctx.getC_

beanDecompositionOfGroup()) {

if(rel.getTargetId() != null) {

C_springBeanArtifact bean = (C_springBeanArtifact)

repositoryService.getArtifact(rel.getSourceId(),

new ArtifactPartSelector("c_otherNames", "c_

dataReference"));

PublisherRecord createdBean =

publishingLib.createRecord(bean,

ResourceStatus.IDENTICAL, createdContext);

publishingLib.addReference(createdBean, createdContext,

"c_beanDecomposition");

createdRecords.add(createdBean);

dataRefs.put(bean.getName(), bean.getC_

dataReferenceGroup());

}

}

}

}

// make map of all beans that we have

Map<String, PublisherRecord> beanMap = new HashMap<String,

PublisherRecord>();

List<PublisherRecord> list = new

ArrayList<PublisherRecord>(records);

list.addAll(createdRecords);

for(PublisherRecord record: list) {

if(record.getArtifact() instanceof C_springBeanArtifact) {

beanMap.put(record.getArtifact().getName(), record);

for(String otherName:

((C_springBeanArtifact)record.getArtifact()).getC_

otherNamesGroup()) {

beanMap.put(otherName, record);

}

HP SOA Systinet (4.00)Page 102 of 105

Developer Guide
Chapter 11: Publishing Extensibility

}

}

// set bean references...

for(String beanName: refs.keySet()) {

PublisherRecord source = beanMap.get(beanName);

Set<Uuid> targetUids = new HashSet<Uuid>();

// clear existing reference if any

((C_springBeanArtifact)source.getArtifact()).setC_

beanReferenceGroup

(Collections.<DocumentRelationship>emptyList());

for(String targetName: refs.get(beanName)) {

PublisherRecord target = beanMap.get(targetName);

if(target != null) {

publishingLib.addReference(source, target, "c_

beanReference");

targetUids.add(target.getUuid());

}

}

// check if bean changed due to references

if(ResourceStatus.IDENTICAL.equals(source.getStatus())) {

if(targetUids.contains(null)) {

// referencing something new -> changed

source.markArtifactChanged();

continue;

}

// relations we have in repository

HashSet<Uuid> repositoryUuids = new HashSet<Uuid>();

C_springBeanArtifact art = (C_

springBeanArtifact)source.getArtifact();

List<DocumentRelationship> l = art.getC_beanReferenceGroup();

for(DocumentRelationship rel: l) {

if(rel.getTargetId() != null) {

repositoryUuids.add(rel.getTargetId());

}

}

if(!repositoryUuids.equals(targetUids)) {

source.markArtifactChanged();

}

}

}

// set references on implicitly loaded

for(String beanName: dataRefs.keySet()) {

PublisherRecord source = beanMap.get(beanName);

for(String targetName: dataRefs.get(beanName)) {

PublisherRecord target = beanMap.get(targetName);

if(target != null && target.getUuid() == null) {

publishingLib.addReference(source, target, "c_

beanReference");

publishingLib.setIncremental(source, "c_beanReference",

true);

HP SOA Systinet (4.00)Page 103 of 105

Developer Guide
Chapter 11: Publishing Extensibility

// only adding references

source.markArtifactChanged();

}

}

}

// for all unsynchronized beans, remove relations to other beans

for(PublisherRecord record: records) {

if(record.getArtifact() instanceof C_springBeanArtifact &&

ResourceStatus.UNSYNCHRONIZED.equals(record.getDisplayStatus())) {

// clear outgoing references if any

((C_springBeanArtifact)record.getArtifact()).setC_

beanReferenceGroup

(Collections.<DocumentRelationship>emptyList());

}

// NOTE: we don't remove relations to UNSYNCHRONIZED

}

return createdRecords;

}

private ArtifactFilter getReferenceFilter(List<PublisherRecord>

records) {

ArtifactFilter ret = null;

for(PublisherRecord record: records) {

if(ResourceStatus.NEW.equals(record.getStatus()) &&

record.getArtifact() instanceof C_springBeanArtifact) {

if(ret == null) {

ret = new PropertyFilter("c_dataReference",

record.getArtifact().getName());

} else {

ret = ret.combineOr(new PropertyFilter("c_dataReference",

record.getArtifact().getName()));

}

for(String otherName:

((C_springBeanArtifact)record.getArtifact()).getC_

otherNamesGroup()) {

ret = ret.combineOr(new PropertyFilter("c_dataReference",

otherName));

}

}

}

return ret;

}

private ArtifactFilter getNameFilter(Set<String> names) {

ArtifactFilter ret = null;

for(String name: names) {

if(ret == null) {

ret = new PropertyFilter(SdmConstants.PROPERTY_NAME,

name).combineOr

(new PropertyFilter("c_otherNames", name));

} else {

HP SOA Systinet (4.00)Page 104 of 105

Developer Guide
Chapter 11: Publishing Extensibility

ret = ret.combineOr(new PropertyFilter(SdmConstants.PROPERTY_

NAME,

name).combineOr(new PropertyFilter("c_otherNames",

name)));

}

}

return ret;

}

public String getId() {

return "spring.processor";

}

public String getName() {

return "Spring publishing";

}

}

When you build and apply the new extension (available at SOA_
HOME/doc/publishing/com.systinet.soa.ext.cust.Spring_

Publishing.1.2.jarSpring Decomposition Extension), you can verify bean decomposition by
uploading the archive, SOA_HOME/doc/publishing/uploadAdvanced.zip
uploadAdvanced.zip, which includes the files described in the Figure, “Post-Processing”.

HP SOA Systinet (4.00)Page 105 of 105

	Developer Guide
	Contents
	In this Guide
	IDE Integration
	HP SOA Systinet IDE Integrations
	WSIL Report – IBM RAD and Eclipse
	Microsoft Visual Studio

	Atom-Based REST Interface
	Workspaces
	SDM Collections Workspace
	Publishing Locations Workspace
	System Collections Workspace

	Feeds
	Artifact Collection Feeds
	Filtering Feeds
	Viewing Entry Content in Feeds
	Property Based Searching
	Feed Ordering
	Feed Paging
	Bulk GETs

	Publishing Location Feeds
	Artifact History Feed

	Entries
	Artifact Atom Entries
	Artifact History Entries
	Atom Entry Property Descriptors
	Primitive Properties Atom Representation
	Category Properties Atom Representation
	Relationship Properties Atom Representation
	Special Properties Atom Representation

	Artifact Data
	Resource Identification

	Category Documents
	Atom REST Operations
	CREATE
	UPDATE
	DELETE
	UNDELETE
	PURGE

	Atom REST ETags
	Conditional GET
	Conditional PUT and POST

	Atom REST Client
	Classpath
	First Steps
	Important Classes
	Demos
	Atom REST Client Demo
	Contract Demo

	Executable Objects
	Using DQL
	Introduction to DQL
	Primitive Properties
	Complex Properties
	Artifact Inheritance
	Categorization Properties
	Fixing Multiple Properties
	Relationships
	Modifiers
	Virtual Properties
	Embedding SQL Queries

	DQL Reference
	Properties in DQL
	DQL and SQL
	DQL Grammar
	Select
	FROM Clause
	Conditions
	Expressions
	Lexical Rules

	DQL with 3rd Party Products
	DQL JDBC Driver
	DQL in SQL Designers
	DQL in MS Access

	WebDAV Compliant Publishing
	Technical Security
	HP SOA Systinet Overview
	Users and Groups
	Transport Security
	Authentication
	Resource ACL
	WEB Security
	Platform Services
	Reporting Services
	Policy Manager Services
	Default Endpoint Authentication

	Custom Source Parsers
	Custom Validation Handlers
	Validation Client
	Downloading Policies and Assertions (sync)
	Local Validations (validate)
	Policy Formats
	Source Formats
	Validating Multiple Sources With Multiple Policies
	Selecting Sources By Wildcard
	Setting Up Output
	ANT Task Automation of validate

	Validating Against Policy On Server (server-validate)
	Policy URIs
	Source Formats
	Selecting the HP SOA Systinet Server

	Rendering Output from XML Reports (render)
	Overwriting Reports
	Selecting Output Template

	Validation and Report Rendering Demo

	Publishing Extensibility
	Spring Context Publishing
	Spring Context Decomposition

