
HP Business Service Management

for the Windows operating system

Software Version: 9.01

TransactionVision Advanced Customization Guide

Document Release Date: September 2010

Software Release Date: September 2010

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express

warranty statements accompanying such products and services. Nothing herein

should be construed as constituting an additional warranty. HP shall not be liable

for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use

or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer

Software, Computer Software Documentation, and Technical Data for Commercial

Items are licensed to the U.S. Government under vendor's standard commercial

license.

Copyright Notices

© Copyright 2000-2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

TransactionVision® is a registered trademark of the Hewlett-Packard Company.

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S.

and other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S.

registered trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes software developed by the Apache Software Foundation

(http://www.apache.org).

This product includes software developed by the JDOM Project (http://www.jdom.org).

This product includes software developed by the MX4J project (http://mx4j.sourceforge.net).

 3

Contents

Contents
Warranty .. 2
Restricted Rights Legend .. 2
Trademark Notices .. 2
Contents ... 3
1. Welcome to This Guide ... 7

1.1. Who Should Read This Guide ... 7
1.2. TransactionVision Documentation .. 7
1.3. Additional Online Resources ... 8

2. Architecture Overview .. 9
2.1. System Components... 9
2.2. RDBMS ... 10

3. Tutorial - Extending the Analyzer ... 11
3.1. How to Handle XML Message Data in Events .. 11

3.1.1. Verify that XML Data is Extracted Correctly .. 12
3.2. How to Handle Custom Message Data Formats in Events .. 12

3.2.1. Step 1: Document message format layout .. 12
3.2.2. Step 2: Document the Target XML Format.. 12
3.2.3. Step 3: Implement the Bean to Do the Format Conversion 13
3.2.4. Step 4: Modify the Beans.xml File to use the Custom Bean 17
3.2.5. Step 5: Test the Custom Bean in the Analyzer Environment 17

3.3. Overview of XDM Files .. 17
3.4. How to Map Custom Message Data Fields to Database Tables 18

3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to

database columns .. 18
3.4.2. Step 2: Determine the Database Column Names for these Fields 18
3.4.3. Step 3: Construct XDM File Entries .. 19
3.4.4. Step 4: Recreate your Project Database Schema .. 21
3.4.5. Step 5: Verify that the XDM Mapping works correctly ... 21

3.5. Additional XDM File Examples .. 21
3.6. How to Classify Business Transactions and Map Attributes to Database Tables 23

3.6.1. Overview of Transaction Classification ... 23
3.6.2. Task Description ... 23
3.6.3. Implementation ... 24

3.7. How to Perform Custom Correlation of Related Events .. 28
3.7.1. Overview of Custom Event Correlation ... 28

Contents

4

3.7.2. Task Description ... 28
3.7.3. Implementation ... 28

4. Reference - Extending the Analyzer .. 33
4.1. Using the Beans.xml File ... 33

4.1.1. Enabling and Disabling Beans for Specific Events .. 34
4.2. Unmarshalling Message Data .. 35

4.2.1. The Default Modifier Bean .. 35
4.2.2. The Rules-based Event Modifier Bean ... 36
4.2.3. Adding a Message Data Unmarshal Bean .. 39
4.2.4. Disabling CICS Transaction Tracking ... 39
4.2.5. IEventModifier Interface .. 39
4.2.6. XML Related Classes ... 40
4.2.7. Class XMLEvent .. 40
4.2.8. Class XPathSearch ... 42
4.2.9. Class XMLParser ... 44
4.2.10. Other Utility Classes .. 46
4.2.11. Interface DOMElement .. 46
4.2.12. Class EventElement .. 46
4.2.13. Class TextElement .. 47
4.2.14. Class ByteElement ... 47
4.2.15. Class ByteStringElement .. 48
4.2.16. ByteStringElement ... 48
4.2.17. Class IntElement ... 49
4.2.18. Class IntHexElement .. 50
4.2.19. Class LongElement ... 50
4.2.20. Class LongHexElement .. 51
4.2.21. Class StringElement ... 51
4.2.22. Class RawStringElement .. 52

4.3. Trimming Data From an Event .. 52
4.3.1. Interface IDBWriteExit .. 52

4.4. XML-Database mapping Using XDM Files .. 52
4.5. Performing Event Analysis .. 53

4.5.1. Event Analysis Utility Classes and Interface ... 55
4.5.2. Interface Cache ... 55
4.5.3. Class ConnectionInfo ... 56
4.5.4. Class EventID ... 57
4.5.5. Class TechEventID ... 58
4.5.6. Interface IAnalyze .. 58
4.5.7. Class AnalyzeEventCtx .. 58
4.5.8. Class AnalyzeEventBean.. 59
4.5.9. Custom Business Transaction Attributes and Classification 59

4.6. Transaction Classification .. 60
4.6.1. Transaction Classification with the Standard Classification Bean 61
4.6.2. Classification Action Rules .. 65
4.6.3. The ClassifyTransactionCtx and the IClassifyTransaction Interface 66
4.6.4. Writing a Custom Classification Bean ... 67
4.6.5. Logging SLA Violations .. 68
4.6.6. Custom Event Correlation .. 68
4.6.7. Interface IEventCorrelation .. 75
4.6.8. Class CorrelationTechHelperBean ... 76
4.6.9. Class JMSCorrelationData ... 77

Welcome to This Guide

 5

4.6.10. Class LookupKey ... 78
4.6.11. Class EventRelation ... 78
4.6.12. Class MQRelationDBService ... 80
4.6.13. Class JMSRelationDBService .. 80
4.6.14. Custom Local Transaction Definition .. 84
4.6.15. LocalTransactionDefinition.xml File ... 84
4.6.16. LocalTransactionType .. 85
4.6.17. LocalTranasctionAttributes .. 86
4.6.18. Sample LocalTransactionDefinition.xml Rule File .. 86
4.6.19. Changes to the Beans.xml File ... 87

4.7. Extending the System Model ... 88
4.7.1. User Events... 89

4.8. Generating Application Events to Tivoli Enterprise Console (TEC) 90
4.8.1. Monitoring Events .. 90
4.8.2. Event Delivery .. 93
4.8.3. SlotMap.properties ... 95
4.8.4. Example Usage: .. 95
4.8.5. BTV Class Definitions and Rulebase ... 95

5. Using the Query Services .. 97
5.1. The Query Document ... 97
5.2. Sample Usage... 100
5.3. Class QueryService .. 102
5.4. Class QueryDoc ... 105
5.5. Class QueryDoc.WhereClause ... 108

5.5.1. Example .. 110
5.6. Interface Query .. 111
5.7. Interface Cursor ... 112
5.8. Class DataManagerException .. 117

6. Implementing User Events .. 119
6.1. Differences Between User Events and Standard Events .. 120
6.2. User Event Data Model .. 121

6.2.1. EventID .. 123
6.2.2. Standard Section ... 123
6.2.3. Technology Section .. 127
6.2.4. User Data Section ... 129

6.3. Analyzing User Events .. 129
6.3.1. Event Unmarshalling .. 129
6.3.2. Local Transaction Analysis .. 130
6.3.3. Business Transaction Analysis ... 130
6.3.4. Statistical Analysis ... 130

6.4. Tutorial: Generating User Events .. 130
6.4.1. Sample Overview ... 131
6.4.2. Building the Tutorial Sample ... 134
6.4.3. Running the Tutorial Sample.. 134

6.5. Configuring the Java Agent Points File ... 135
7. Database Schema ... 137

7.1. System model object tables .. 137
7.1.1. Object Types ... 137
7.1.2. Signatures ... 141
7.1.3. System Model Relationships .. 142
7.1.4. System Model Attributes .. 143

Contents

6

7.2. Event Tables .. 144
7.3. Event Relationship Tables ... 147
7.4. Transaction Tables ... 147
7.5. Statistics Tables ... 148

7.5.1. Physical model ... 149
7.6. RUM processing Tables ... 150
7.7. Other internal tables ... 150

8. Event XML Schema .. 152
8.1. Basic Types .. 152
8.2. Event Schema Description ... 153

9. The Data Manager ... 157
9.1. Using the DataManager to Access the Database ... 157
9.2. XML-Database Mapping Using XDM Files .. 160
9.3. The XDM Syntax ... 160

9.3.1. Currency columns ... 164
9.3.2. Creating the XDM Database Tables ... 166
9.3.3. Properties of the TransactionVision Document Types ... 167

9.4. The XMLDatabaseMapper Interface ... 167
9.5. Extending the /Event Document Type ... 169
9.6. Extending the Document Type ... 170

10. Appendix A: EventModifierRules DTD ... 171

 7

1. Welcome to This Guide

This guide describes how the TransactionVision platform can be extended and customized to

achieve further control over its various functions. It presents an architecture overview of the

TransactionVision system and documents the different methods available to use and extend

the Analyzer and the query service.

This chapter contains the following sections:

 1.1. Who Should Read This Guide

 1.2. TransactionVision Documentation

 1.3. Additional Online Resources

1.1. Who Should Read This Guide

This guide is for the following users of TransactionVision:

 Application developers or configurators

 System or instance administrators

 Database administrators

Readers of this guide should be moderately knowledgeable about enterprise application

development and highly skilled in enterprise system and database administration.

1.2. TransactionVision Documentation

TransactionVision documentation provides information on using the TransactionVision

application of the BSM and deploying and administering the TransactionVision-specific

components in the BSM deployment environment.

The TransactionVision documentation includes:

 The TransactionVision Deployment Guide describes the installation and configuration

of the TransactionVision-specific components in the BSM deployment environment.

This guide is available as a PDF in the BSM Documentation Library.

 The Using Transaction Management Guide describes how to set up and configure

TransactionVision to track transactions and how to view and customize reports and

topologies of business transactions. This guide is available as the TransactionVision

Portal or as a PDF in the BSM Online Documentation Library.

Chapter 1 Welcome to This Guide

8

 The TransactionVision Planning Guide contains important information for sizing and

planning new installations. This guide is available by download from the HP Software

Product Manuals site. See “Documentation Updates” on page 3.

 The TransactionVision Advanced Customization Guide contains information for how

the TransactionVision platform can be extended and customized to achieve further

control over its various functions. It presents an architecture overview of the

TransactionVision system and documents the different methods available to use and

extend the Analyzer, the query service and the TransactionVision user interface.

Additional TransactionVision documentation can be found in the following areas of the

BSM:

Readme. Provides a list of version limitations and last-minute updates. From the HP BSM

DVD root directory or download package root directory, double-click

readme<version>.html. You can also access the most updated readme file from the HP

Software Support Web site.

What’s New. Provides a list of new features and version highlights. In HP BSM, select Help

> What‟s New.

Online Documentation Library. The Documentation Library is an online help system that

describes how to work with HP BSM and the TransactionVision application. You access the

Documentation Library using a Web browser. For a list of viewing considerations, see

“Viewing the HP BSM Site” in chapter 6 of the the HP BSM Deployment Guide PDF.

To access the Documentation Library, in HP BSM, select Help > Documentation Library.

Context-sensitive help is available from specific HP BSM pages by clicking Help > Help on

this page and from specific windows by clicking the Help button. For details on using the

Documentation Library, see “Working with the HP BSM Documentation Library” in

Platform Administration.

1.3. Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on the HP

Software Support Web site where you can search the Self-solve knowledge base. Choose

Help > Troubleshooting & Knowledge Base. The URL for this Web site is

http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site enables you to

browse the Self-solve knowledge base. You can also post to and search user discussion

forums, submit support requests, download patches and updated documentation, and more.

Choose Help > HP Software Support. The URL for this Web site is

www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user and sign in.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

 9

2. Architecture Overview

This chapter includes the following sections:

 2.1. System Components

 2.2. Database

2.1. System Components

TransactionVision consists of the following logical components:

 The Sensor component generates events based on the technology being sensed. The

agent gets configuration and filtering messages from the configuration queue and sends

events into the event queue. The event and configuration queues are represented by the

“messaging middleware” box in the diagram on the following page.

 The Analyzer component is responsible for retrieving and analyzing events from the

communication link. It contains a chain of Java bean contexts, each performing a

particular function on the event data. Each bean context can hold multiple chained beans

to perform custom processing of the event data. The beans in each bean context are

controlled by the Beans.xml file. The main components of the Analyzer include:

Unmarshaller bean context. Converts raw event data from its binary format into XML.

This bean context provides an environment for user message data unmarshaller beans to

be plugged in.

DBWriteExit bean context. Allows a custom bean to trim or cut down on the data

written into the database. This gives a user flexibility to cut down on storage size.

Typically this is an XSLT which processes the XML tree generated by the unmarshaller

context.

Database write context. Maps the XML tree generated by the unmarshaller and trim

contexts to database tables and writing the tree into the database. This context uses the

XML data mapper component to map the XML tree to relational database tables.

Analysis context. Performs event correlation, local and business transaction analysis,

transaction classification, statistics analysis and any other custom data analysis.

 The User Interface and database query services components provide a means of

mapping XML data to relational tables, and a XML based query to an SQL statements

based on relational tables.

The following diagram shows the TransactionVision architecture layout:

Chapter 2 Architecture Overview

10

2.2. RDBMS

The general table organization consists of a TVISION schema, where project,

communication links, filter, queries and other administration related information is stored,

and project-specific schemas, where events collected by a project are stored. Each project

schema consists of an event table, where the event identifier and the XML event are stored,

and several lookup tables that provide indexes to the event. In addition there are several

other tables in a project schema storing event correlation, local transaction, business

transaction and other system infrastructure objects related information.

The Configuration and Administration component manages administration of the

TransactionVision system. This includes starting/stopping data collection and event

processing, changing data collection filters, providing system status, and administering

security policies on the Analyzer service. The Analyzer is controlled using embedded RMI

and can run on systems different from the application server.

This advanced customization guide provides the details of extending TransactionVision. It is

important to note that since this documentation is related to the internals of the product,

incorrect changes could break the functioning of the product.

 11

3. Tutorial - Extending the Analyzer

The Analyzer reads in binary event packets from the TransactionVision Event Queue and

processes them through a chain of bean contexts. Each bean context performs a specific

function to analyze and write data from the event into the database. Many of these

operations can be extended and customized to perform transformations based on your

systems or application needs. This chain of beans is defined by the Beans.xml file. The

sequence of bean contexts includes:

The event modifier context, which allows users to write custom beans to modify the

incoming event, such as convert binary message data into XML.

The data writer context, which contains beans to write the data into various relational

database tables.

The analysis context, which contains various beans to perform event analysis, transaction

analysis and correlation of events to create a business transaction.

Each context holds beans that perform a default function and can be replaced or added on to

perform further actions on the data being processed. The following sections document

common tasks related to extending the Analyzer:

 3.1. How to Handle XML Message Data in Events

 3.2. How to Handle Custom Message Data Formats in Events

 3.3. Overview of XDM Files

 3.4. How to Map Custom Message Data Fields to Database Tables

 3.5. Additional XDM File Examples

 3.6. How to Classify Business Transactions and Map Attributes to Database Tables

 3.7. How to Perform Custom Correlation of Related Events

3.1. How to Handle XML Message Data in Events

When your message data is already composed of XML, a custom bean is not required to

have the XML processed by the Analyzer. Instead, TransactionVision provides a default

modifier that is enabled by default and attaches the message data XML contents to the

TransactionVision event.

Chapter 3 Tutorial - Extending the Analyzer

12

This section describes the functionality of the TransactionVision DefaultModifierBean,

which detects XML data in the message field and appends it to the XML event. The default

event modifier bean, com.bristol.tvision.services.analysis.

eventmodifier.DefaultModifierBean, scans the user data for any XML data and, if found,

simply adds it to the Event XML document at the position

/Event/UserData/Chunk[@seqNo=’n’] where n is the number of the data range (defined in

the data collection filter).

3.1.1. Verify that XML Data is Extracted Correctly

Collect events using the TransactionVision agents from your application. For each event that

generates XML message data, go to the event detail view and verify that the XML data

shows up in the user data panel.

Once this task is done, the XML message data can be mapped to custom database tables

based on the kind of analysis that is required to be performed on the message data. Section

3.4 describes how to implement this mapping.

3.2. How to Handle Custom Message Data Formats in Events

Typically, event data from applications may contain binary, text or XML data embedded

within the message. This data is often in custom and proprietary formats that are not known

to the TransactionVision Analyzer. A common task is to convert these custom formats into

XML within the Analyzer for later use in reports, for analysis, browsing or querying. The

TransactionVision Analyzer allows for embedding a Java bean that implements the

IEventModifier interface to perform the format conversion. This bean can modify the event

being currently processed to do any kind of format conversion on the event data.

This section describes the steps to write a custom event modifier bean in Java to extract and

convert binary message data and insert it into the event data as XML. A custom bean that

converts a text message into XML will be used as an example. The sample code used below

is from the CICS Accounting sample shipped with TransactionVision. The source code can

be found at <TVISION_HOME>/samples/CICSAccounting.

3.2.1. Step 1: Document message format layout

The first step in the process of writing a bean to handle custom event data is to know the

layout of all message formats in the event data and document them.

Consider the sample message to contain the following text layout, with fields Account

Number, Last Name, First Name and Account Type:

In the above layout, the first 5 bytes are the AccountNumber field, while the remaining

fields of LastName, FirstName and AccountType are separated by a space separator “S”.

The LastName and FirstName fields are variable length fields. The AccountType field is

one character and can be either “S” (Savings), “M” (Money Market) or “C” (Checking). The

remaining fields are ignored and not required to be processed by TransactionVision.

3.2.2. Step 2: Document the Target XML Format

First design the target XML document to be created from the above text message. The

following is a sample resulting XML structure:

AccountNumber

(5 characters)

LastName FirstName AccountType

(1 character-S/M/C)

S

S

. . .

 13

Here, an Account node is created under the item /Event/Data/Chunk. This is the point

where TransactionVision stores references to message data. Hence, this is a good point,

though not the only point, where any XML converted message data can be added. Under the

Account node, nodes for AccountNo, LastName, FirstName and AccountType are

created and their values filled in.

The XPath values of each of the above fields are as follows:

AccountNo: /Event/Data/Chunk/Account/AccountNo

LastName: /Event/Data/Chunk/Account/LastName

FirstName: /Event/Data/Chunk/Account/ FirstName

AccountType: /Event/Data/Chunk/Account/AccountType

3.2.3. Step 3: Implement the Bean to Do the Format Conversion

This section describes the implementation of the Java bean to perform the format conversion

described in Steps 1 and 2. The source code for the Modifier Bean is available in

<TVISION_HOME>/samples/stock.

A Java class, CICSAccountingModifierBean, extends from the base class

EventModifierBean and implements the modify method of the IEventModifier interface.

This modify method is invoked by the Analyzer framework to perform any custom data

conversion tasks.

The above code defines the CICSAccountingModifierBean class with a method

modify. This method accepts the current XML event object and database connection info

as its input and is allowed to modify this object in any way, typically for transforming

data from proprietary formats to XML. If the method returns false, the current event will

be discarded and not processed any further. For modifying purposes, this method should

always return true.

 The following code fragment from the modify method first verifies whether this is the right

CICS event whose message data needs to be processed, and then processes chunks of

message data.

Chapter 3 Tutorial - Extending the Analyzer

14

In the above code, the constant XPathConstants.TECH_NAME contains the value to

the technology XPath expression. The XPathConstants class contains various other

commonly used XPath expression values. Hence, line 55 extracts the value of the

technology name from the event document. Line 56 ignores all events that are not from

the CICS Agent (ie. are not of technology CICS). Line 59-64 lookup the event type of

the CICS event. Only file control APIs (CICSConstants.B_CICS_TYPE_FC) are

considered for further processing. The getDocumentValue method returns the value of

any XPath location in the DOM tree in the XMLEvent object.

 The following code fragment shows how to obtain pieces of user data from the

XMLEvent object.

 15

Line 67 creates an XPathSearch object, whose function is to perform lookups on the

XMLEvent document. The getNodes and getValues methods on the XPathSearch class

enable lookups based on given XPath expressions. Section 0 has the documentation on

this class and its methods.

The message data in a TransactionVision event is stored as a series of chunks. This is

done since the message data from TransactionVision Sensors can be broken up based on

data ranges specified in the data collection filter. The XMLEvent document contains the

location and byte count of each of these chunks and can be looked up using the XPath

expression /Event/Data/Chunk. Typically, if no data range is specified in the data

collection filters, only one chunk is created.

Line 72 gets a list of data chunk nodes. For each of the data chunks, the method

processUserData is called to perform the format conversion.

 The following code fragment is from the processUserData method which converts the

text message into XML.

Chapter 3 Tutorial - Extending the Analyzer

16

The method processUserData converts one chunk of message data text into XML. Line 98

obtains the id of the current chunk of message data being processed.

Lines 105-115 access the array of message data binary objects (BLOB) that are stored in a

separate table in the same sequence as the chunks in the XML document. Typically, there is

just one object, but there could be more depending on whether data ranges have been set in

the data collection filter. Hence, a chunk in the XML document with the ID 1 will have its

equivalent BLOB in the user data table at the sequence number 1. The chunk id from the

XML document is matched with the message data BLOB ID.

 17

Lines 120-126 find the codepage of the message data and convert it to the code page the

Analyzer is using. This is required because the message data is from CICS and needs to be

converted from EBCDIC to ASCII.

Lines 134-135 create new nodes in the XMLEvent document to hold the Account related

data.

Lines 137-140 create new objects of type StringElement. This class is a TransactionVision

utility class that has the ability to generate XML DOM nodes from input values. Refer to

Section 4.2.4.4 for details on this class. The toDOM method of this class creates and

appends XML DOM nodes to a DOM tree at a specified location.

Lines 142-168 is Java code which parses the message data string buffer and extracts values

for Account, LastName, FirstName and AccountType based on the format defined in Step 2.

Lines 170-173 convert the parsed message data from their StringElement values into DOM

nodes attached to the XMLEvent DOM tree at location /Event/Data/Chunk/Account.

3.2.4. Step 4: Modify the Beans.xml File to use the Custom Bean

The event modifier bean implemented in the previous steps needs to be enabled in the event

modifier context of the Beans.xml file. Change the Beans.xml file to add the following line:

The Analyzer needs to be re-started after this change.

3.2.5. Step 5: Test the Custom Bean in the Analyzer Environment

To verify that the above data extraction is working correctly, check the right events user data

buffer in the event detail view. In the example above, check the user data for the file control

READ API.

3.3. Overview of XDM Files

Certain pieces of information in the message data may be useful to be queried upon by

custom reports or analysis modules. In that case, these fields need to be extracted from the

message data and mapped to database columns by the Analyzer. Before these fields can be

written to a database column by the Analyzer, they need to be extracted from the message

and converted to XML (if not already in the XML format). Section 3.2 describes how to

extract binary message data and convert it to XML and Section 3.1 describes how to handle

XML message data.

The TransactionVision database schema is made extensible through the XML to Database

Mapping (XDM) files. As message data specific columns are added to the database, the

XDM files can be updated to describe the new schema. Hence XML to Database mapping

serves several purposes:

 To describe to the CreateSqlScript program the layout of the project database schema

tables.

 To describe to the Analyzer the fields that are to be extracted from the XML event data

and stored in event lookup tables for fast searching and retrieval.

 To describe to the Analyzer the fields that are to be extracted from the transaction XML

document and stored in the transaction lookup tables.

Chapter 3 Tutorial - Extending the Analyzer

18

 To describe the database schema to the query services for use in TransactionVision user

interface views and reports.

3.4. How to Map Custom Message Data Fields to Database Tables

The task in this section describes how to map event XML data to database fields using

TransactionVision‟s XDM (XML to Database Mapping) module.

3.4.1. Step 1: Determine which fields in the XML event document need to be mapped to

database columns

Consider a WebSphere MQ MQPUT request event which has the following XML segment

in its message data:

Consider a WebSphere MQ MQPUT reply event in response to the above request that

contains the following XML segment in its message data:

3.4.2. Step 2: Determine the Database Column Names for these Fields

The mapping of message data to database columns enables custom business reports and

queries to be written to view and analyze the contents of the message data.

Consider that the following fields need to be mapped to database columns from the message

data described in Step (1).

For the MQPUT request message data, a TRADE_ORDER table can be defined as follows:

Field Name SQL Type Length

ORDERID VARCHAR 16

BRANCH VARCHAR 16

ACCOUNT VARCHAR 8

TICKER VARCHAR 8

PRICE VARCHAR 8

SHARES VARCHAR 8

PROGINST_ID INTEGER 4

 19

Field Name SQL Type Length

SEQUENCE_NO INTEGER 4

For the MQPUT reply message data, a TRADE_RESULT table can be defined as follows:

Field Name SQL Type Length

ORDERID VARCHAR 16

TYPE VARCHAR 8

STATUS VARCHAR 12

PROGINST_ID INTEGER 4

SEQUENCE_NO INTEGER 4

In both the above tables, PROGINST_ID and SEQUENCE_NO are event identification

fields that are required to join with the TransactionVision EVENT table, while the remaining

columns contain business content to be extracted from the message data.

3.4.3. Step 3: Construct XDM File Entries

Now that we have determined the format and contents of the message data in Step 1 and

which database tables need to be populated in Step 2, a mapping can be created from the

XML message data contents to the database columns.

Consider the following XML segment::

The XPath to the Order ID field can be written as: /Event/Data/Order/ID.

The value at this XPath needs to be written to the ORDERID column of the

TRADE_ORDER table.

This mapping can be done in an XDM file as follows:

The above XDM file segment defines a table name TRADE_ORDER in the Table element.

The table contains a column ORDERID, defined by the Column element, of type

VARCHAR and size 16 bytes. The Column of name ORDERID has an XPath mapping,

defined by the Path element to be /Event/Data/Order/ID.

Chapter 3 Tutorial - Extending the Analyzer

20

The table definition part of the XDM segment is applied when a new project schema is

created either by CreateSqlScript or the project creation web pages. The XPath mapping part

of the XDM segment is applied by the Analyzer when processing events. When an event

contains data at the XPath value /Event/Data/Order/ID, the Analyzer extracts the value and

writes a row to the mapped column ORDERID belonging to table TRADE_ODER for that

event. The categoryPath and categoryValues attributes for the Table element, indicates

that this mapping is applied only to MQSeries and JMS events.

The complete mapping of the MQPUT request message to the TRADE_ORDER table is as

follows:

The file Stock.xdm is available in <TVISION_HOME>/samples/stock.

 21

3.4.4. Step 4: Recreate your Project Database Schema

Copy the new XDM file to <TVISION_HOME>/config/xdm.The TransactionVision

Analyzer and UI/Job Server components need to be restarted for the modified XDM files to

have effect. Once these components are restarted, when new project schemas are created,

they will contain the newly defined tables or columns. However, existing database project

schemas need to be updated to create the newly added tables or columns. This can be done

using options in the CreateSqlScript utility.

For example:

The above command creates the table TRADE_ORDER as defined in the XDM file in the

TEST database schema.

3.4.5. Step 5: Verify that the XDM Mapping works correctly

Start Analyzer collection for the project that has the custom XDM mapping. Generate events

containing the message data with the expected XPath entries. Verify that rows are written

into the TRADE_ORDER table for every event containing the expected message data.

3.5. Additional XDM File Examples

The XDM mappings can be defined for specific events (technology, platform, etc.) by using

the attributes categoryPath and categoryValues. The common mapping defined in the file

<TVISION_HOME>/config/xdm/Event.xdm (data in the standard event header) uses

categoryPath=”COMMON” and will be written for every event. The mappings defined in

the other XDM files will only be applied if the value of categoryPath in the current event

matches one of the values listed in categoryValues. The XML schema format of XDM files

is defined in <TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an

extract from the file Event.xdm.

Chapter 3 Tutorial - Extending the Analyzer

22

The above snippet from Event.xdm defines a table EVENT containing the XML document

and a table EVENT_LOOKUP, containing various indexed columns of data from the XML

document. The key columns proginst_id and sequence_no are integer types and mapped to

XPath expressions /Event/EventID/@programInstID and /Event/EventID/@sequenceNum.

These key columns are primary keys common to the EVENT and EVENT_LOOKUP tables.

Similarly, the columns host_id and program_id are mapped to XPath expressions

/Event/StdHeader/Host/@objectId and /Event/StdHeader/ProgramName/@objectId

respectively.

The preceding XDM file specifies that when an XML event is written to the database by the

DBWrite module in the Analyzer, these fields are extracted and written into the database

columns mapped to in the XDM file. Similarly, when the database is queried using the

QueryService XML interface, these XDM files are used to construct the corresponding SQL

query.

The isObject attribute for a Column tag in the XDM file refers to that column being an

identifier for an object in the system model table. The documentType attribute defines the

type of the mapping (event, transaction, statistics, etc.). The key is the primary key and is

common to the document table and the lookup tables. Each lookup column is indexed.

The conversionType attribute for a Column tag means that field requires a formatting

conversion before writing to the database. The TypeConvService is called into before

writing that field into the database. This is typically used for writing date/time or

enumeration fields.

The categoryPath attribute on the Table tag contains either COMMON or an XPath

expression into the event document. The string COMMON indicates that this table contains

data common to every event and should be written for every event going through the

Analyzer. If the categoryPath contains an XPath expression, the mapping only applies to

events which have a value at this path that matches any of the values specified in

„categoryValues‟ If the categoryPath is empty, the mapping will be applied to all events.

Example: a table mapping with categoryPath=‟/Event/Technology‟

categoryValues‟=”MQSERIES,SERVLET” will only insert rows for MQSeries and Servlet

events.

A column can map to multiple XPath expressions, as in the following sample code. This

assumes that only one of the XPaths will exist in a given event document.

 23

Additionally, business transaction attributes (as opposed to event attributes) can also be

mapped to transaction based XDM files. Refer to Section 9.2 for details on the XDM file

layout.

3.6. How to Classify Business Transactions and Map Attributes to Database Tables

3.6.1. Overview of Transaction Classification

Transaction classification allows users to partition their business transactions into different

transaction classes and set transaction attributes based on event data. These classes may be

created based on data in the messages flowing through the business system. A transaction is

classified to a transaction class when attributes in one or more events in the transaction

match the criteria defined in for the transaction tracing rule assigned to the transaction on the

Transaction Tracing Configuration page. This page also allows setting of attributes on

transactions. These attribute values can be extracted from one or more events belonging to

that transaction. These attributes then can be mapped to database tables using XDM files.

Consider a business system consisting of a JSP/servlet based user interface, a middle-tier

based on EJBs and a mainframe based backend. The following sample classification criteria

may be applied to such a system:

 Based on the types of business systems these transactions involve. For example, if the 3-

tier system described above supports financial transactions such those dealing with

stocks and bonds, transaction classes may be created based on this.

 Based on statistics that need to be collected for each class. Such statistics may include

service level and response time requirements for different classes of transactions. In the

3-tier system described earlier, aggregate response times could be measured for each tier

of the system.

The Transaction Tracking Report lists transaction classes and attributes automatically along

with common attributes such as start time, response time etc. For more information about

this report, see the Using Transaction Management.

3.6.2. Task Description

The task in this section describes the following:

 How to extract event data and map that data to transaction attributes.

 How to map transaction attributes to database tables using transaction XDM files.

 How to use the Transaction Definition Editor to perform transaction classification

The sample message data used in this section is from the TRADE demo system, for which

the project and event databases are shipped with TransactionVision. Refer to the Using

Transaction Management for information on how to set up the TRADE demo database.

The previous sections in this chapter have discussed mapping event attributes to database

tables. This section describes how to map business transaction attributes to database tables.

This involves extracting attributes from events that apply to the business transaction the

event belongs to and writing them to business transaction XDM tables.

Chapter 3 Tutorial - Extending the Analyzer

24

3.6.3. Implementation

Step 1: Determine the event attributes that apply to a business transaction

Consider a request event which has the following XML segment in its message data:

Three kinds of transactions flow through this TRADE system: Bond, Equity and FX (foreign

exchange). Besides a common header, each transaction type has data specific to that

transaction.

Consider the reply event in response to the above request that contains the following XML

segment in its message data:

Step 2: Determine Database Column Names for Fields

The mapping of message data to transaction database columns enables custom business

reports and queries to be written to view and analyze the contents of the business

transaction. Consider that the following fields need to be mapped to database columns from

the message data described in Step 1.

The TRADE_BUSINESS_TRANSACTION table is defined as below:

Field Name SQL Type Length

ORDERID VARCHAR 20

REGION VARCHAR 12

ACCOUNT VARCHAR 12

 25

TRADETYPE VARCHAR 12

TRADEACTION VARCHAR 12

AMOUNT DOUBLE 8

STATUS VARCHAR 12

REASON VARCHAR 32

BONDISSUE VARCHAR 12

BONDMATURITY INTEGER 4

EQUITYSYMBOL VARCHAR 8

VALUE DOUBLE 8

CUSTOMER VARCHAR 32

BUSINESS_TRANS_ID INTEGER 4

In the above table, the BUSINESS_TRANS_ID column is a transaction identification field

that is required to join with the TransactionVision BUSINESS_TRANSACTION table,

while the remaining columns contain business content that are extracted from the message

data.

Step 3: Extract Transaction Attributes from Event Data

Now that we have determined the format and contents of the message data in Step 1, these

event fields need to be set as transaction attributes. This is done in the Transaction

Definition Editor by creating Attribute rules in the transaction class you are defining. These

attributes are maintained by the Analyzer as it processes events and are then mapped to

database tables defined in the transaction XDM file.

Once a transaction attribute has been defined, with an XPath location of

/Transaction/OrderID. A Rule with a name of SetOrderID sets the value of the

transaction attribute at XPath /Transaction/OrderID from the attribute value in the event

data at XPath /Event/Technology/Servlet/Response/Headers/Header[@name='orderid'].

The two important pieces of information in the above attribute rule are the event XPath,

which is the source of the data, and the transaction XPath, which is the destination to which

the source data is copied into.

Value rules can also set constant values into transaction attributes. In the following example

a constant value of Completed is set into the transaction attribute at XPath location

/Transaction/State.

The attribute rules can be used in the context of class rules, which determine that the

attribute rules are applied only for certain classes. Consider the example below:

Here, the attribute rule of name OrderID is applied only for already classified transactions

of class “Bond”.

Attribute rules also can have match criteria such that the rules are applied to every event

when a match criteria is successful.

Here, the value rule to set the value of Amount at XPath location /Transaction/Amount

from the event XPath /Event/Data/Chunk/Order/Amount, is fired when the logical AND

of the Match criteria evaluate to True.

Refer to Section 4.5.9 for details on the syntax of the classification rules.

Step 4: Construct XDM File Entries for Transaction Attributes

Now that we have determined the contents of the transaction attributes and extracted them

from the event data as in Step (1) and (3) and determined which database tables need to be

populated as in Step (2), a mapping can be created from the XML transaction attributes to

the database columns.

Chapter 3 Tutorial - Extending the Analyzer

26

Consider the below transaction document created by rules set XML segment:

The XPath to the OrderID field can be written as: /Transaction/OrderID.

The value at this XPath is to be written to the ORDERID column of the

TRADE_BUSINESS_TRANSACTION table for the business transactions for which this

value is set.

This mapping can be done in an XDM file as follows:

The above XDM file segment, the Table element defines a table name

TRADE_BUSINESS_TRANSACTION. The table contains a column ORDERID, defined

by the Column element, of type VARCHAR and size 20 bytes. The Column of name

ORDERID has an XPath mapping, defined by the Path element to be

/Transaction/OrderID. The key for the TRADE_BUSINESS_TRANSACTION is defined

by the Key element to be business_trans_id column of type INTEGER.

The table definition part of the XDM segment is applied when a new project schema is

created either by the CreateSqlScript or the project creation web pages. The XPath mapping

part of the XDM segment is applied by the Analyzer when processing events. When a

transaction contains data at the XPath value /Transaction/OrderID set by the classification

rules, the Analyzer extracts the value from the transaction document and writes a row to the

mapped column ORDERID belonging to table TRADE_BUSINESS_TRANSACTION for

that transaction. The DBSchema attributes indicates that this mapping is applied only to

transactions being written to the Trade schema.

 27

Step 5: Determine the Transaction Classes and their Classification Criteria

Transaction classification can be based on a variety of different criteria based on the

transactions flowing through your business systems. In the sample TRADE system,

transaction classification is performed based on the type of financial transactions flowing

through the system, namely Equity, Bonds and Funds Transfer. Hence, the next step would

be to identify fields in the message data which identify the event and its transaction to be

one of these three types. For this system, this field is an attribute Product in the XPath

element /Event/Technology/Servlet/Request/Parameters/Parameter. The next section

describes how to build a classification rule using this XPath value.

Step 6: Implement Classification Rules

Consider the Transaction definition example for the TRADE sample:

In the above image, a transaction class called Bond is defined, which applies to the database

schema TRADE. Within the bond class there are one or more classification rules for the

Bond transaction class.

The Match conditions specify the rule criteria. The first Match condition has a rule which

evaluates to True when the XPath value of /Event/StdHeader/ProgramName in an event

equals the value of TradeSession. Multiple Match conditions are logically AND‟d together.

The second Match condition criteria evaluates to True if a JMS event with the XPath

element /Event/Technology/JMS/Method has a value of publish. In other words, any event

with the program name TradeSession, a JMS method of publish, and a Product value of

BOND will be classified to a Bond transaction class.

Values in "Match" criteria may contain one wildcard character, as in the following example:

Once a transaction is classified, attributes are attached to the transaction based on the

Attribute rules defined in the Transaction Definition editor. The rules for setting and writing

attributes are described in Steps 3 and 4.

Step 7: Recreate the Database Schema

Existing database schemas need to be updated to create the newly added tables or columns.

This can be done using options in the CreateSqlScript utility.

For example:

The above command creates the table TRADE_BUSINESS_TRANSACTION as defined in

the XDM file in the TRADE database schema.

Step 8: Verify that the transaction classification works correctly and the transaction attributes

are written correctly

The results of the above steps can be verified by looking at the Transaction Tracking Report.

For each business transaction, this report will show you the class of the transaction and any

custom attributes that have been set for that transaction. Other custom reports may be

written based on the transaction attributes collected.

Chapter 3 Tutorial - Extending the Analyzer

28

3.7. How to Perform Custom Correlation of Related Events

3.7.1. Overview of Custom Event Correlation

By default, the TransactionVision Analyzer correlates WebSphere MQ MQPUT and

MQGET events or JMS send and receive events based on certain criteria such as message id,

correlation id, put time and other fields in these events. However, there may be times when

these criteria are not sufficient to perform event correlation. These criteria may then either

need to be expanded to include other data fields, such as those from the message data, or

may need to be relaxed to exclude some of the standard fields, or may need to be modified

in other ways.

Here are some scenarios where a custom correlation bean may be required:

 TransactionVision agents may not be installed on some systems, such as those belonging

to external agents. Hence, the messages going out to the un-sensored systems would

need to be correlated with the replies coming back from these systems.

 Unique message ids or correlation ids are not used by the applications. In this scenario,

custom fields from the message data may need to be used to correlate message PUTs

and GETs.

 An application that replies to a message swaps the message id and correlation id fields

and this application is not monitored by TransactionVision agents.

This correlation can be done by writing XML based event correlation rules in the

EventCorrelationDefinition.xml file. Alternately, if complex logic is required to be

implemented, a Java bean can be written to override the IEventCorrelation interface. Refer

to Chapter 4, Section 4.5 on the details of a bean implementation.

3.7.2. Task Description

This task walks through the creation of a XML event correlation rule. The requirement for

the bean is to correlate WebSphere MQ events for which the message id and correlation ids

have been swapped.

3.7.3. Implementation

Step 1: Determine Correlation Requirements

Consider two applications A and B, where application A is monitored by a

TransactionVision Sensor while application B is not. The sequence of events for this system

is as follows:

 Application A performed an MQPUT on a queue q1, with message id m1 and

correlation id c1.

 Application B read the message using an MQGET from queue q1 and processed the

message.

 Application B then placed a reply message using MQPUT on the reply-to queue q2, with

message id c1 and correlation id m1. Hence, the message ids and correlation ids were

swapped by application B.

 Application A performed an MQGET to read this message.

Now, because application B does not have agents enabled and its MQGET/MQPUT are not

received, this transaction path remains un-correlated and no message flow arc is drawn

between application A‟s MQPUT and application A‟s MQGET. The custom event

correlation bean seeks to complete this path.

 29

Step 2: Determine which Events need to be Correlated and Common Correlation Data between

the Events

For this task, the requirement is to correlate an MQPUT event from application A with an

MQGET event from the same application A, which have their message id and correlation id

swapped.

Step 3: Implement XML Based Event Correlation Rules

The correlation process in the Analyzer consists of two phases:

 The first phase involves generating lookup keys based on the characteristics of the

current event. This lookup key is then inserted into the database and then used to match

up with other correlated events as they arrive into the Analyzer. The XML event

correlation rule file has a CreateLookupKey stanza that allows creation of custom

lookup keys based on fields from the incoming event. If a bean is being implemented,

the createLookupKeys method is invoked to generate these lookup keys. Hence, for

application A for a MQPUT event, a lookup key comprising of the message id needs to

be created, while for an MQGET event from application A, a lookup key comprising of

the correlation id should be created.

 The second phase involves relation generation. Specifically, a set of events is passed as

potential candidate for matching with the current event. This set is composed of the

events that have the same lookup key as the current event. The purpose of this phase is

to further narrow down set of event matches based on additional criteria which have not

been covered by the lookup key data. For example, for application A, the correlation

should only be performed between MQPUTs and MQGETs and not between APIs of the

same type. This phase is implemented by creating a CreateRelation stanza in the XML

event correlation definition file or by implementing the correlateEvents method of the

event correlation bean.

The event correlation rule file is named

<TVISION_HOME>/config/services/EventCorrelationDefinition.xml.

The basic template of a correlation rule file is as follows:

Here, a RelationLookupType stanza is composed of one or more CreateLookupKey and

CreateRelation stanzas. The CreateLookupKey stanza allows defining lookup keys from

fields of certain events and the CreateRelation stanza allows matching up keys of different

events.

The following is the event correlation rule file to correlate on the message id of a successful

MQPUT with the correlation id of a successful MQGET. The steps following this listing

describe the different stanzas in this file. The file is available in

<TVISION_HOME>/samples/stock.

Chapter 3 Tutorial - Extending the Analyzer

30

 31

 Line 7 provides the RelationLookupType stanza that contains the CreateLookupKey and

CreateRelation rules. This element provides a constant id and name and defines the list

of schemas to which its rules apply. An event correlation definition file may contain

multiple RelationLookupType elements. The list of schemas in the dbschema attribute

can be comma separated. Note that you should choose an id > 1000 for custom

correlation types.

 Lines 9-18 define a lookup key rule for events from the MQSeries technology. Lines 10

and 11 define that this rule should be applied to all events with the API MQPUT and

whose CompCode (completion code) is not equal to 2(failed). Lines 12-17 specify that

when these criteria are matched for an event, a lookup key from the field MsgId is

created for that event.

 Similarly, lines 20-29 create a lookup key from the CorrelId field for all successful

MQGET APIs.

 The CreateRelation stanza on lines 31-54 specifies that the lookup keys created by rule

id 1 and 2 should be matched up. Hence, two events that have the same lookup key

created by rules 1 and 2, will have an event relation created. This event relation has the

attributes of RelationType, Direction and Confidence set in the CreateRelation stanza.

Refer to Section “4.6.6 Custom Event Correlation” for details on customizing this rules file.

Step 4: Enable the Analyzer to Invoke the XML Correlation Rules

This involves editing the Beans.xml file to add the XML rule correlation bean, which then

loads the EventCorrelationDefinition.xml rule file. The following line in bold needs to be

added in the Beans.xml file:

Step 5: Test the Correlation Bean

The correlation bean can be verified by checking the transaction path in the transaction

analysis view. A completely correlated path will have message path flows between local

transactions.

 33

4. Reference - Extending the Analyzer

This chapter contains the following sections:

 4.1. Using the Beans.xml File

 4.2. Unmarshalling Message Data

 4.3. Trimming Data From an Event

 4.4. XML-Database mapping Using XDM Files

 4.5. Performing Event Analysis

 4.6. Transaction Classification

 4.7. Extending the System Model

 4.8. Generating Application Events to Tivoli Enterprise Console (TEC)

4.1. Using the Beans.xml File

The file Beans.xml located in the <TVISION_HOME>/config/services directory controls

the beans loaded by the Analyzer framework for event processing.

Important: This file is used by the Analyzer internally. Modifying sections that are not

documented here could break the correct functioning of the Analyzer.

Each module listed in the Beans.xml file has a type and a name. The type can be a Context,

which can hold other modules or a Bean type, which is loaded by a Context. A module of

type Bean contains the class that implements an interface which is used by its context. Each

context defines a known interface for the beans it contains, loads the bean and calls into the

interface implemented by the bean to perform its function. In the example segment below,

the EventModifierCtx is a bean context which holds the DefaultModifierBean bean.

Each context uses its own rules to determine how its beans are invoked. The following

contexts can be modified or added to:

 EventModifierCtx

 DBWriteExitCtx

 CorrelationTechHelperCtx

Chapter 4 Reference - Extending the Analyzer

34

The following sections will document how each of the above contexts can be modified.

The following section gives an example of plugging in your own implementation of EJB

correlation analysis into the analysis framework:

4.1.1. Enabling and Disabling Beans for Specific Events

Many of the default beans of TransactionVision can be configured to only getting called for

specific events by using match conditions similar to those used in custom correlation or local

transaction analysis. This is accomplished by adding an <Include> or <Exclude> section to

the bean definition in the Beans.xml file. The following sample definition will call the

Transaction Classification bean only for MQ events:

And this sample definition will disable Transaction Classification for any MQ and JMS

events:

 35

The match conditions can also be defined on the context instead of the bean level, in which

case they are effective for all beans of this context. The next sample definition will disable

all event modifier beans for all MQ events:

Note that you can only define either one <Include> or <Exclude> definitions for a bean or

context, but not both. For a detailed description of the match conditions see the

corresponding sections in Custom Correlation or Custom Local Transaction Analysis.

The following default TransactionVision analysis contexts (and their beans) can be

configured:

 EventModifierCtx

 SystemModelCtx

 DBWriteExitCtx

 DBWriteEventCtx

 AnalyzeEventCtx

 CorrelationTechHelperCtx

 LocalTransactionTechHelperCtx

 ClassifyTransactionCtx

4.2. Unmarshalling Message Data

Typically, binary message data has a proprietary, user-defined format. The

EventModifierCtx context allows a user to add a bean to “unmarshal” this binary data; that

is, convert the binary data to XML for later use by TransactionVision in reports, for analysis

or querying. To help converting binary data to XML, TransactionVision provides a set of

utility classes.

4.2.1. The Default Modifier Bean

The TransactionVision installation comes with a default event modifier bean:

com.bristol.tvision.services.analysis.eventmodifier.DefaultModifierBean. This bean

scans the user data for any XML data and, if found, simply adds it to the Event XML

document at the position /Event/UserData/Chunk[@seqNo=’n’] wher ‘n’ is the number of

the data range (defined in the data collection filter).

Chapter 4 Reference - Extending the Analyzer

36

4.2.2. The Rules-based Event Modifier Bean

This bean uses a rules file to govern what is extracted, how, and where the result is placed in

the event being processed. For each event, it applies each rule in the rules file to see if it

matches the event. If so, it adds a new element to the event based on the value specified in

the rule. The rules support both regular expressions and XPath expressions to denote the

data to pull out of an event. By changing the rules, you can change what the bean looks for

in the incoming events, and what it extracts.

Rules are configured in an analyzer‟s EventModifierRules.xml which is edited from the

Transaction Management Configuration tab:

After defining your rules and clicking the Apply button, restart the analyzer process on the

TransactionVision server host.

The Rules File

The TransactionVision Processin Server installation includes example rules files at

<TVISION_HOME>/samples/eventmodifiers/rulebased.

The following tables describe the XML elements used in defining rules. See Appendix A for

corresponding EventModifierRules.dtd.

<RegExp>

Matches a regular expression against data in the event.

Attributes Description Required?

src Event XPath specifying the event data to match the regular expression

against. Any event XPath can be used, or the special keyword “blob” can

be used which refers to the binary blob data of the event transformed into

the code page of the analyzer. Examples of “blob” src can be found in

TVISION_HOME/samples/eventmodifiers/rulebased/

yes

 37

SwiftEventModifierRules.xml

expression The regular expression to match against the data in the src XPath. This

expression supports regular expressions as supported by the Java Pattern

class. See

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

yes

dest The name of the new element to create under /Event/CustomFields in the

event XML document, if the regular expression matches for the event.

If this attribute is omitted, then the rule functions purely as a conditional

check governing whether any enclosed rules are evaluated. If specified,

the value attribute must be specified as well to control the value

assigned.

no

value The value to store into the new element, if the regular expression

matches for the event. This is a string pattern in which capturing groups

(parts of the expression enclosed in parentheses) in the regular

expression can be referred to with a $ syntax where $1 refers to the first

capturing group, $n to the nth. $0 to the entire matched expression. See

the Java Pattern and Matcher classes.

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

http://download.oracle.com/javase/6/docs/api/java/util/regex/Matcher.ht

ml

You can mix literal string data with capturing group designators. For

example “$1.$2” indicates the assigned value should be the first

capturing group followed by a period followed by the second capturing

group.

If this attribute is omitted, then the rule functions purely as a conditional

check governing whether any enclosed rules are evaluated. If specified,

the dest attribute must be specified as well to control the element the

value is stored into.

No

action The action to be taken by the rule if it matches the event. Possible actions

are:

 add_field - Create element specified by the dest attribute under

/Event/CustomFields.

 delete_event - Delete the event being processed.

If this attribute is omitted, it will default to the add_field action.

no

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html

Chapter 4 Reference - Extending the Analyzer

38

< XPathExp >

Matches an XPath expression against data in the event

Attributes Description Required?

expression The XPath expression to evaluate on the event. Any XPath in the event

XML document can be accessed.

This expression supports XPath expressions as supported by the Java

XPath class. See

http://download.oracle.com/javase/6/docs/api/javax/xml/xpath/XPath.ht

ml

yes

dest The name of the new element to create under /Event/CustomFields in the

event XML document, if the XPath expression matches for the event.

If this attribute is omitted, then the rule functions purely as a conditional

check governing whether any enclosed rules are evaluated. If specified,

the value attribute must be specified as well to control the value

assigned.

no

value The value to store into the new element, if the expression XPath matches

for the event. This is an XPath expression to evaluate based on the data

in the event. This expression supports XPath expressions as supported by

the Java XPath class. See

http://download.oracle.com/javase/6/docs/api/javax/xml/xpath/XPath.ht

ml.

If this attribute is omitted, then the rule functions purely as a conditional

check governing whether any enclosed rules are evaluated. If specified,

the dest attribute must be specified as well to control the element the

value is stored into.

No

action The action to be taken by the rule if it matches the event. Possible actions

are:

 add_field - Create element specified by the dest attribute under

/Event/CustomFields.

 delete_event - Delete the event being processed.

If this attribute is omitted, it will default to the add_field action.

no

< OneOf >

Encloses RegExp or XPathExp rules and evaluates them in order until one of them matches the event or

all have been tried.

 39

4.2.3. Adding a Message Data Unmarshal Bean

Adding a custom message or user data unmarshal bean involves modifying the Beans.xml

file to replace the default class with one or more custom written classes.

For example, in the code snippet above, a bean

com.bristol.tvision.demo.stock.StockTradePayloadProcessingBean processes any stock

trade related custom data. If no event modifier bean is plugged in, the binary data will be

saved into tables as a BLOB. The bean invoked by the EventModifierCtx context needs to

implement the IEventModifier interface.

4.2.4. Disabling CICS Transaction Tracking

Typically in CICS environments, events from the same task are placed in the same business

transaction. This assumption does not apply to long running transactions that repeat the same

set of operations. Hence, the file <TVISION_HOME>/config/services/Beans.xml as

follows can be modified to add a list of transaction ids for which events should not be placed

in the same business transaction. A comma separated list of transactions may be entered.

In this example, events from the CICS transaction BTCD will not have a tracking id based

on their task number automatically generated by the Analyzer. Hence, they will not be

automatically placed in the same business transaction, unless they belong to the same unit of

work or if they are correlated to other events. The unit of work or event correlation behavior

will not be affected by this setting.

4.2.5. IEventModifier Interface

This interface contains one method, modify(), defined as:

public boolean modify(XMLEvent event, ConnectionInfo conInfo)

throws EventModifyException

Description:

The method modify() is called to modify an unmarshaled XML event. For example, to

convert the BLOB set stored in the XMLEvent object into the user-data section of the XML

tree or modify the event‟s XML data. The BLOB set contains the event‟s binary message

data.

The framework will check the return boolean value to decide whether to continue the event

processing steps or not. A false return value means the current event under processing shall

be discarded right away.

Chapter 4 Reference - Extending the Analyzer

40

Important: data should typically be added in the XML event tree. Removing certain nodes

from the tree could break the analysis and database write operations in later contexts.

Parameters:

event - The XML event to which the XML format of the message data is appended to. The

XMLEvent class is documented in detail in Section 4.2.6.

conInfo - The connection information data structure.

Throws:

EventModifyException - This exception represents a failure in the bean performing the

XMLEvent modification.

4.2.6. XML Related Classes

This section documents the relevant public methods of the classes XMLEvent, XPathSearch

and XMLParser. Class XMLEvent contains the incoming event converted to an XML DOM

tree. Class XPathSearch is a utility class to search a DOM tree using XPath queries. Class

XMLParser is a wrapper class around the Apache DOM parser, with better error handling

facilities.

The full TransactionVision event information is saved in XML document format. To retrieve

values of different fields, an XPath expression is used to specify the location of the field.

TransactionVision provides the file XPathConstants.java, which contains XPath expression

constants used to locate different fields in the event. This file is useful for writing plug-in

beans and reports and can be found at <TVISION_HOME>/java/src.

4.2.7. Class XMLEvent

package com.bristol.tvision.services.analysis.xml

public class XMLEvent

extends com.bristol.tvision.shared.xml.XMLDocument

implements java.io.Serializable

The class XMLEvent contains event data in XML DOM representation. It also holds a set of

cached properties to carry inter-module communication information, and a list of BLOBs to

hold application data which cannot be placed in the XML DOM tree. Note, that all the

public methods of the class org.w3c.dom.Document are available to users of XMLEvent.

The following methods are defined in the XMLEvent class.

Methods:

va.lang.Object getAttribute(java.lang.String key)

setAttribute

public void setAttribute(java.lang.String key,

 java.lang.Object value)

removeAttribute

public java.lang.Object removeAttribute(java.lang.String key)

The above three methods allow the user to set a cached value at one stage of event

processing, which can be used at another point of event processing without parsing the XML

document. For example during the unmarshal message data phase values can be stored

which may later be used during analysis. Typically, the key would be an XPath into the

XML document and the value would be the XML element value. The user of the above APIs

must ensure that TransactionVision internal values are not overwritten or deleted. This can

be done by using unique XPaths to message data as the key.

 41

 getDocumentValue

This method retrieves a value from the XML document specified by a given XPath

expression . Since it takes advantage of the caching capabilities of XMLEvent it is the

preferred method to access values in the XML document. If the value at the given XPath

has never been accessed before, the method will perform an XPath search on the DOM

tree to retrieve the value, otherwise it will return the value from the cache.

 getBlobCount

public int getBlobCount()

Returns the number of BLOBs available, using the blobIterator() method.

 blobIterator

blobIterator

public java.util.Iterator blobIterator()

Typically, event message data is stored into one BLOB field in the XMLEvent object.

However, if data ranges are used in the data collection filter an array of BLOBs is

created, one BLOB for each data range. This method returns an Iterator for instances of

type XMLEvent.Blob.

 deleteBlob

deleteBlob

public void deleteBlob(int seqNo,

 boolean deleteUserDataRef,

 boolean deleteDataChunk)

 throws TVisionException

This method is used to delete the binary message data from XMLEvent. This method

should typically be called if an EventModifier plugin bean converts binary data to XML.

In that case, the binary data may no longer be required to be stored in the database and

should be deleted using this method. If the message data is unmarshaled into the

technology tree under, for example, the

/Event/Technology/MQSeries/MQPUTEntry/Buffer subtree, the deleteUserDataRef and

deleteDataChunk flags should be set to true. If the message data is unmarshalled into

/Event/Data/Chunk, then both flags should be set to false. Also, if you want to replace a

chunk with a different BLOB, call this method with both flags set to false and then call

addBlob() to add a new BLOL into the XMLEvent.

Parameters:

seqNo - 0-based BLOB index

deleteUserDataRef – true if /Event//UserDataRef[@chunk=n] should be removed

deleteDataChunk – true if /Event/Data/Chunk[@seqNo=n] should be removed

 getPiiID

getPiiId

public long getPiiId()

file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/TVisionException.html

Chapter 4 Reference - Extending the Analyzer

42

 getEventSeqNo

The PiiId (Program Instance Id) and the SeqNo (Sequence Number) together form a

unique identifier to an event. They may be used to access event data from database

tables.

 Inner Class XMLEvent.Blob

Instances of this class are returned by the method „blobIterator()‟ and represent the data

ranges for the message data.

4.2.8. Class XPathSearch

The helper class XPathSearch allows access to elements of an XML document using the

XPath syntax.

This class does not support the full standard XPath syntax. The following subset is

supported:

 path to a text element: /Test/Value

 path to an attribute: /Test/Value/@attribute

 access a multi-valued element by qualifying attribute value:

 /Test/Value[@attribute='X']/Name

 indexed access to a multi-valued element /Test/List[0], Test/List[0]/Value

 wildcard /Test/*/Name, /Test/*lue, /Test/Val*

Constructor:

 XPathSearch

XPathSearch(org.w3c.dom.Document doc)

Creates an XPathSearch object from a DOM document or derived class like XMLEvent.

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/XPathSearchBase.html

 43

 XPathSearch

XPathSearch(java.io.InputStream stream) throws XMLException

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document without validation

 XPathSearch

XPathSearch(java.io.Reader reader) throws XMLException

Creates an XPathSearch object from an InputStream.

The InputStream is parsed into a DOM document.

Parameters:

stream - The InputStream containing the XML data

validate - Use parser validation

Methods:

 getNodes

public org.w3c.dom.NodeList getNodes(java.lang.String xpath)

 throws XMLException

This method returns a list of all nodes in the XML document matching the XPath query.

The elements in the array are ordered according to the order of the elements in the DOM

tree.

Overrides:

getNodes in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

Returns:

A list of all nodes matching the query

Throws:

XMLException - Signals error during retrieving the values from the document

 getValues

public java.lang.String[] getValues(java.lang.String xpath)

 throws XMLException

This method returns the value of all text elements in the XML document matching the

XPath query. The elements in the array are ordered according to the order of the

elements in the DOM tree.

Overrides:

getValues in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/xml/XPathSearch.html%23XPathSearch(java.io.InputStream)
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/xml/XMLException.html
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/xml/XMLException.html

Chapter 4 Reference - Extending the Analyzer

44

Returns:

The value of all text elements matching the query

Throws:

XMLException - Signals error during retrieving the values from the document

 getValue

public java.lang.String getValue(java.lang.String xpath)

 throws XMLException

This method returns the value of the first text element in the XML document matching

the XPath query.

Overrides:

getValue in class XPathSearchBase

Parameters:

xpath - The XPath expression for the query

Returns:

The value of the first matching text element

Throws:

XMLException - Signals error during retrieving the values from the document

4.2.9. Class XMLParser

package com.bristol.tvision.util.xml

public class XMLParser

implements org.xml.sax.ErrorHandler

This class is a wrapper around the Apache DOM parser and is a utility useful to parse XML

files or convert binary streams containing XML data into a DOM tree.

Constructor:

 XMLParser

XMLParser()

Creates a parser instance

Parameters:

validation – whether to create a validating parser or not

Methods:

 parse

public org.w3c.dom.Document parse(java.lang.String systemId,

 java.lang.String schema)

 throws XMLException

Parses a XML file and uses the specified XML schema rather than a schema reference in

the document itself for schema validation

Parameters:

systemId - The system id for the XML source

file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/xml/XMLException.html

 45

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals errors during parsing

 parse
public org.w3c.dom.Document parse(org.xml.sax.InputSource src)

throws XMLException

Parses a XML document from an Input Source. If schema is not null, the parser property

external-noNamespaceSchemaLocation is set for schema validation

Parameters:

src - The input source for the document

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing

 parse

public org.w3c.dom.Document parse(java.io.InputStream stream,

 java.lang.String schema)

 throws XMLException

Parses a XML document from an input stream and uses the specified XML schema

rather than a schema reference in the document itself for schema validation

Parameters:

stream - The input stream for the document

schema - The schema to use for validation

Returns:

The parsed document as a DOM tree

Throws:

XMLException - Signals an error during parsing

Chapter 4 Reference - Extending the Analyzer

46

4.2.10. Other Utility Classes

Often, binary structures embedded in the message data will need to be converted to XML.

This can be accomplished with a two step process, first extract the binary data into Java data

types and then convert these data types to appropriate XML elements. The Java class

java.io.DataInputStream could be used to walk through a binary stream, extract and convert

data into Java basic types. Also, the “Translator” class can be used to convert raw binary

data into a Java UTF String with code page conversion:

Once Java basic types have been extracted from the binary stream these values need to be

converted to XML data. This can be done using the utility XML builder classes in the

package com.bristol.tvision.services.analysis.xml. These classes allow a user to set values

of native Java types, a element name and get the XML tag output appended to a DOM tree

using the toDOM() method. These classes implement the DOMElement interface.

4.2.11. Interface DOMElement

public interface DOMElement

This class defines a common interface for classes which output XML into a DOM tree.

Methods:

 toDom
toDOM

public void toDOM(org.w3c.dom.Document doc,

org.w3c.dom.Node root)

This method appends nodes to the DOM tree doc at node location root.

4.2.12. Class EventElement

public abstract class EventElement

extends java.lang.Object

implements DOMElement

This class is the super class of all XML builder classes that output XML elements into a

DOM tree.

Methods:

 Constructor

public EventElement(java.lang.String name)

The constructor of the EventElement class takes in the element name as a parameter.

The element name is used by the toDOM method to output the node of element name to

the XML DOM tree.

 toDOM

public abstract org.w3c.dom.Element

 toDOM(org.w3c.dom.Document doc, org.w3c.dom.Node root)

This is the same method as in the interface DOMElement.

 47

4.2.13. Class TextElement

public abstract class TextElement

extends EventElement

This class is a super class for those XML element classes which have only one text node as a

child. This class allows adding attributes to the XML element.

Methods:

 Constructor

public TextElement(java.lang.String elementName)

The constructor takes in the element name of the node to be inserted into the XML

DOM tree.

 toDOM

public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

Overrides:

toDOM in class EventElement

 addAttribute

public void addAttribute(java.lang.String name,

 java.lang.String value)

This method allows adding a name-value pair of attributes to the XML element.

 hasNonNullValue

public abstract boolean hasNonNullValue()

This method returns true if this element has a non-null value and false otherwise.

4.2.14. Class ByteElement

public class ByteElement

extends TextElement

Fields:

 value

public byte value

This field holds the byte value to be converted to an XML DOM tree node by the

toDOM method.

Constructors:

 ByteElement

public ByteElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output in the XML DOM tree

node.

file:///z:/tvision/docs/api/com/bristol/tvision/services/analysis/unmarshal/xml/EventElement.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

Chapter 4 Reference - Extending the Analyzer

48

Methods:

 toDOM

public void toDOM(org.w3c.dom.Document doc,

org.w3c.dom.Node root)

This method appends a node containing the byte value held by the field value to the

DOM tree doc at node location root with the element name elementName specified in

the constructor of this object.

 toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Object

This method converts the byte held in the field value to a string representation.

 hasNonNullValue

public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.15. Class ByteStringElement

public class ByteStringElement

extends TextElement

Fields:

 value

public byte[] value

This field holds the byte array value to be converted to an XML DOM tree node by the

toDOM method.

Constructor:

public ByteStringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM

tree node.

4.2.16. ByteStringElement

public ByteStringElement(java.lang.String elementName,

 boolean isZOS)

The constructor takes in the element name of the tag to be output into the XML DOM

tree node.

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

 49

Methods:

 toDOM

public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

Specified by:

hasNonNullValue in class TextElement

This method appends a node containing the byte array value held by value to the DOM

tree doc at node location root with the element name elementName specified in the

constructor of this object.

 toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Object

This method converts a byte array held in the value field to a string representation.

 hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.17. Class IntElement

Fields:

 value

public int value

This field holds the integer value to be converted to an XML DOM tree node by the

toDOM method.

Constructors:

 IntElement

public IntElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM

tree node.

Methods:

 toDOM

public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

This method appends a node containing the integer value held by field value to the DOM

tree doc at node location root with the element name elementName specified in the

constructor of this object.

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

Chapter 4 Reference - Extending the Analyzer

50

 toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Object

This method converts an integer to a string representation.

 hasNonNullValue

public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.18. Class IntHexElement

public class IntHexElement

extends IntElement

This class‟s toDOM method outputs an integer value to a XML DOM node element as a

hexadecimal string.

4.2.19. Class LongElement

public class LongElement

extends TextElement

Fields:

 value

public long value

This field holds the integer long value to be converted to an XML DOM tree node by the

toDOM method.

Constructors:

 LongElement

public LongElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM

tree node.

Methods:

 toDOM

public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

This method appends a node containing the integer long value held by the field value to

the DOM tree doc at node location root with the element name elementName

specified in the constructor of this object.

 toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Object

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

 51

This method converts the integer long held in the field value to a string representation.

 hasNonNullValue
public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

This method returns true if this element has a non-null value and false otherwise.

4.2.20. Class LongHexElement

This class‟s toDOM method outputs an integer long value to a XML DOM node element as

a hexadecimal string.

4.2.21. Class StringElement

Fields:

 value

public java.lang.String value

This field holds the String value to be converted to an XML DOM tree node by the

toDOM method.

Constructor:

 StringElement

public StringElement(java.lang.String elementName)

The constructor takes in the element name of the tag to be output into the XML DOM

tree node.

Methods:

 toDOM
public void toDOM(org.w3c.dom.Document doc,

 org.w3c.dom.Node root)

This method appends a node containing the String value held by the field value to the

DOM tree doc at node location root with the element name elementName specified in

the constructor of this object.

 toString

public java.lang.String toString()

Overrides:

toString in class java.lang.Object

This method converts the String held in the field value to a string representation.

 hasNonNullValue

public boolean hasNonNullValue()

Overrides:

hasNonNullValue in class TextElement

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

Chapter 4 Reference - Extending the Analyzer

52

This method returns true if this element has a non-null value and false otherwise.

4.2.22. Class RawStringElement

This class‟s toDOM method outputs a String value to a XML DOM node element as a string

whose non-ASCII characters are converted to hexadecimal values.

4.3. Trimming Data From an Event

The DBWriteCtx context is invoked by the Analyzer framework before the database write

operation. It gives a user defined bean an opportunity to trim out data from the XML event

packet. Beans loaded by this context need to implement the IDBWriteExit interface.

4.3.1. Interface IDBWriteExit

public interface IDBWrite

Methods

 modify

public XMLEvent modify(XMLEvent event)

 throws DBWriteExitException

This method trims data off the XML event. The bean has to make a copy of the XML

event and return the trimmed copy.

Parameters:

event - The XML event to trim.

Returns:

The return value is the trimmed XML event

Throws:

TrimEventDataException - Trimming of the event failed

The sample code under <TVISION_HOME>/samples/dbwritexit shows how to write a bean

to plug into the database write exit context.

4.4. XML-Database mapping Using XDM Files

The TransactionVision database schema is made extensible through the XML to Database

Mapping (XDM) files. As new technologies or message data specific information is added,

new XDM files can be written to describe the lookup tables for the technology and message-

specific data in those events. Hence the purpose of the XML to Database mapping is

twofold:

 To describe which fields are to be extracted from the XML event and transaction data

and stored in lookup tables for fast searching and retrieval.

 To make the database schema partially data-driven.

The definitions contained in the XML Database Mapping (XDM) file are used as input not

only to the TransactionVision Data Manager (including the query services), but also to a

program that generates the commands necessary to create the lookup tables.

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/TextElement.html

 53

The XDM mappings can be technology or platform specific. The common mapping defined

in the file <TVISION_HOME>/config/xdm/Event.xdm (data in the standard event header)

will be written for every event, but the mappings defined in the other XDM files will only be

applied if the current event matches the mapping‟s “category‟ (technology or platform)

definition. The XML schema format of XDM files is defined in

<TVISION_HOME>/config/xmlschema/XDM.xsd. The following code is an extract from

the file Event.xdm.

The above snippet from Event.xdm defines a table EVENT_LOOKUP, containing various

indexed columns of data from the XML document. The key columns proginst_id and

sequence_no are mapped to XPath expressions /Event/EventID/@programInstID and

/Event/EventID/@sequenceNum. These key columns are primary keys common to all event

based lookup tables. Similarly columns host_id and program_id are mapped to XPath

expressions /Event/StdHeader/Host/@objectId and

/Event/StdHeader/ProgramName/@objectId respectively.

The above XDM file specifies that when an XML event is written to the database by the

DBWrite module in the Analyzer, these fields are extracted and written into the database

columns mapped to in the XDM file. Similarly, when the database is queried using the

QueryService XML interface, these XDM files are used to construct the corresponding SQL

query.

For more details on the XDM functionality, see chapter 10.2.

4.5. Performing Event Analysis

There are five categories of event analysis activities defined in TransactionVision:

 Event Correlation: Establishing relation(s) between any two events. Examples include

message path relation representing a message flow from one event to another, and

transaction path relation representing a control flow between the two events.

 Local Transaction Analysis: Grouping events of the same technology that participate

in the same unit of work in the same thread of execution into one local transaction

object.

Chapter 4 Reference - Extending the Analyzer

54

 Business Transaction Analysis: Grouping local transaction objects participating in the

processing of the same business activity instance into one business transaction object.

This is achieved by establishing relation between any two local transaction objects

through the corresponding message path or transaction path relation of respective events

in the local transaction objects.

 Statistics Analysis: Calculating event statistics for the Static Topology View

 User Analysis: This can be any customized infrastructure or business level analysis.

Each event analysis task is implemented in an event analysis bean. The class

AnalyzeEventBean defines the base class for these beans.

The individual beans are managed under a multi-level analyze event context framework. The

class AnalyzeEventCtx defines the top level context. The set of beans to be managed under

this context are specified in the Beans.xml file. Each registered bean is executed following

the order defined in the file. The following is an example of the event analysis context setup

for the stock trade simulation example:

 55

4.5.1. Event Analysis Utility Classes and Interface

The following utility classes are extensively used in implementing various types of event

analysis beans.

4.5.2. Interface Cache

package com.bristol.tvision.util.cache

public interface Cache

TransactionVision maintains various in-memory caches for miscellaneous objects. These

caches are implemented as LRU caches, meaning that always the most recent processed data

is available. For example, a local transaction cache is maintained to store a mapping from

event ID to local transaction data. This interface defines the methods for manipulating the

cache.

Methods:

 insert

public void insert(java.lang.Object key, java.lang.Object value)

Insert a new key-value pair into the cache.

Parameters:

key - new cache object key field

value - new cache object value field

 get
public Object get(java.lang.Object key)

This method returns the value field of the cache entry with the matching key.

Parameters:

key - key field of the cache entry to be matched

Returns:

The value field of the cache entry if a matching object is found.

 remove

public void remove(java.lang.Object key)

Remove the cache entry with the matching key.

Parameters:

key - key field of the cache entry to be matched

Chapter 4 Reference - Extending the Analyzer

56

 removeAll
public void removeAll()

Remove all cache entries.

 getSize

public int getSize()

Return the defined cache size specified in the CacheProperty file.

Returns:

The defined cache size

 resize

public void resize(int size)

Resizes (and clears) the cache.

Parameters:

size - new cache size

 getElementCount
public int getElementCount()

Return the current number of cache entries.

Returns:

The current number of cache entries.

 getCacheName

public java.lang.String getCacheName()

Return the name of this cache.

Returns:

The name of this cache

4.5.3. Class ConnectionInfo

package com.bristol.tvision.datamgr

public class ConnectionInfo

This class is a simple structure for holding the TransactionVision database connection

and schema name within an object which can be passed through the event analysis

service framework.

Fields:

 con

public java.sql.Connection con

A TransactionVision Connection object to the database. This connection object

implements the Java SQL Connection object interface.

 schema

public java.lang.String schema

String for the current project database schema.

 57

4.5.4. Class EventID

Each event is uniquely identified by a pair of integer ID: a program instance (PII) ID and a

sequence number. The program instance ID points to the program instance (threads, tasks,

etc.) the event occurs within. This class defines a wrapper around these two identifiers for an

event.

Constructor:

 EventID

EventID(int piiId, int seqNo)

Creates an event ID object for an event with the program instance ID piiId and sequence

number seqNo.

Fields:

 piiId

public int piiId

The program instance id for this event

 seqNo

public int seqNo

The sequence number of this event

Methods:

 equals
public boolean equals(EventID eventId)

Parameters:

eventId - eventId to be matched

Returns:

true if the event ID matches, false otherwise.

 hashCode
public int hashCode()

Return a unique integer has code for this event ID object.

Returns:

The integer hash code for this event ID object

Overrides:

equals in class java.lang.Object

Parameters:

eventID - EventID object to compare to.

Returns:

true if the two EventIDs are equivalent.

Determine if the input event is the same as this event.

Chapter 4 Reference - Extending the Analyzer

58

 toString

public java.lang.String toString()

Returns:

A string describing this event ID object.

4.5.5. Class TechEventID

This class extends class EventID and additionally holds the technology ID of the event.

Constructor:

 TechEventID
TechEventID(int piiId, int seqNo, int techId)

Creates an event ID object for an event with the program instance ID piiId, sequence

number seqNo., and technology ID techId

Fields:

public int techId

The technology ID for this event.

4.5.6. Interface IAnalyze

package com.bristol.tvision.services.analysis.eventanalysis

public interface IAnalyze

This defines the interface for general-purpose event analysis beans.

Methods:

 analyze

public void analyze(XMLEvent event, ConnectionInfo)

 throws AnalyzeEventException

This method implements a specific event analysis task on the given event.

Parameters:

conInfo - database connection info object for the current project

event - completed XML document for the current event

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

4.5.7. Class AnalyzeEventCtx

package com.bristol.tvision.services.analysis.eventanalysis

public class AnalyzeEventCtx extends ChainManagerCtx implements

IAnalyze

This is the top level event analysis context class and holds all analysis beans for the event

analysis. During analysis, the analyze() interface will be called for all beans contained in this

context (in sequential order).

 59

4.5.8. Class AnalyzeEventBean

package com.bristol.tvision.services.analysis.eventanalysis

public abstract class AnalyzeEventBean extends ChainManagedBean

implements IAnalyze

This is the abstract base class for all event analysis beans. Any custom event analysis bean

should derive directly or indirectly from this class, and implement the IAnalyze interface

methods.

Fields:

 Analysis Type

public static final int EVENT_CORRELATION = 1;

public static final int LOCAL_TRANSACTION_ANALYSIS = 2;

public static final int BUSINESS_TRANSACTION_ANALYSIS = 3;

public static final int BUSINESS_PROCESS_ANALYSIS = 4;

public static final int USER_ANALYSIS = 5;

The type of analysis implemented by the event analysis bean instance.

Methods:

 getAnalysisType

public int getAnalysisType()

Return the analysis type of the event analysis bean.

4.5.9. Custom Business Transaction Attributes and Classification

Business transaction attributes are stored in the table BUSINESS_TRANSACTION which is

defined by an XDM file, and thus are easily extensible. Additional custom business

transaction attributes can be simply added by modifying the corresponding

Transaction.xdm file. The table schema which is defined by the standard definition in

Transaction.xdm contains the following columns (among others that are used internally):

 business_trans_id: a unique ID for the transaction generated by the database

 class_id: the ID of the transaction class (FK into table transaction_class)

 starttime: the start time of the transaction

 endtime: the end time of the transaction

 responsetime: the time difference between start and end timestate: the current state of

the transaction (-1=Unknown, 0=Processing, 1=Completed)

 result: the result of the transaction (-1=Unknown, 0=Failed, 1=Success)

 exception: the transaction has been flagged erroneous (0=false, 1=true)

 label: a label for the transaction to display in the GUI

 sla_state: the SLA state of the transaction (0=None, 1=Violated, 2=AgedOut)

 value: the transaction value (based on the currency defined in the transaction class)

 update_id: a unique ID which gets incremented every time the transaction has been

updated

Chapter 4 Reference - Extending the Analyzer

60

 events_stored: whether event data has been stored (only applicable in failure mode,

0=No, 1=Yes)

When modifying the XDM definition to add custom business transaction attributes it is

important not to alter or delete any of those predefined, standard, attributes.

If no standard or custom transaction classification bean is plugged in into the Analyzer

framework, the attributes are populated with the following values during event transaction

analysis:

business_trans_id generated by the database

class_id 0 (Unclassified)

starttime time of the earliest event in this business transaction

endtime time of the latest event in this business transaction

state -1 (Unknown)

result -1 (Unknown)

exception 0 (false)

label null

sla_state

value

0 (None)

null

events_stored 1 (in normal mode), 0 (in failure mode)

responsetime difference between starttime and endtime

update_id generated by the database

There are two different ways to populate the values of custom transaction attributes or to

modify the default values of the standard attributes:

 Use the StandardClassifyTransactionBean and define rules how to classify transactions

and update attribute values. This approach does not require any additional coding, only

the classification rules have to be defined in the Transaction Definition Editor .

 Write a custom classification bean that implements the IClassifyTransaction interface.

This approach is useful if more complex transaction classification is needed than the

standard classification bean can provide

4.6. Transaction Classification

By default, TransactionVision does not classify the business transactions it processes; the

class ID of each transaction will be 0 (Unclassified), indicating that this transaction does not

belong to any transaction class. To enable transaction classification, you have to define your

classes and classification rules in the Transaction Definition Editor.

 61

4.6.1. Transaction Classification with the Standard Classification Bean

The StandardClassifyTransactionBean is a default implementation of a classification bean

and allows user customized transaction classification without the need to write a single line

of code. Although the rule engine of this standard bean is simple and fairly limited, it may

well be sufficient for a great amount of classification cases. It is well suited for transactions

that can be classified based on the attributes of one event of the transaction.

The classification logic is driven by classification rules defined in the Transaction Definition

Editor which specify how and when transactions are classified and transaction attributes are

set or updated. These rules will get evaluated for each event being processed in the

transaction analysis in the Analyzer. Each class can be assigned to one or more database

schemas, so that for an event of a particular project only class rules that are valid for the

project schema will get evaluated. For more information about the Transaction Definition

Editor, see the Using Transaction Management.

Prior to TransactionVision version 7.50 classification rules have been defined in XML form

in the TransactionDefinition.xml file, but now the class definitions can be easily created

and edited from within the TransactionVision application of HP BSM. In the following

sections we will continue to describe the structure of the classification rules in XML form,

since it relates tightly to the structure of presenting and editing the various components in

the Transaction Definition Editor. Internally, the class definitions are stored in XML format

in the TVISION system table CLASSIFICATION.

The main structure of a class definition is:

Each <Class> definition consists of one or more <Classify> sections that contain rules for

identifying the transaction class, a list of rules to set transaction attribute values at the time

of classification, and a list of action rules (described later), followed by a list of rules outside

of the <Classify> section for setting attribute values of all events of the transaction.

The evaluation flow is as follows:

 If the current transaction has not been classified yet (class_id == -1, Unclassified), then

all <Classify> sections of all class definitions matching with the current event schema

are evaluated. If a classification is successful, the transaction class ID of the transaction

will get set and all attribute rules contained in the class definition will get evaluated as

well. No further <Classify> section will be evaluated any more. If none of the

classifications are successful, the union of all attribute rules (outside of <Classify>

sections) of all class definitions for the current event schema are evaluated.

Chapter 4 Reference - Extending the Analyzer

62

Note: This is necessary because the processing order of events in the analyzer can be

different to the order the events really happened, and the classification algorithm needs

to make sure that all rules for a certain class will get evaluated even if the event which

will classify the transaction will be processed at a later time. As a consequence, rules

outside of <Classify> sections should always be specific enough (by defining

appropriate matching rules) to match only on events of the class they are meant for,

because they will also get executed on events that might belong to another class for

which the classifying event has not been processed yet.

 If the current transaction already has its class attribute set, only the attribute rules in the

corresponding class definition outside of the <Classify> sections are evaluated. The

conditions inside of the corresponding <Classify> section are not evaluated again.

Each <Classify> section contains one ore more <Match> conditions, e.g.:

If the logical AND of these conditions results in true, the current transaction is considered to

be „classified‟, and the class_id attribute of the current transaction is set to the corresponding

class ID of the definition class. In general, a match condition consist of a @xpath,

@operator, and @value attribute. The @xpath attribute specifies a certain value from either

the current XML event or the transaction document. @operator can be one of the following:

 EQUAL, UNEQUAL: compares the value in the document (specified by xpath) against

the string in „value‟. For EQUAL, a single wildcard “*” is allowed at any position, e.g.

“amqsput*”, “*QUEUE”, “TV*QUEUE”. For strings without wildcard both operators

are case-insensitive.

 GREATER, LESS, GREATEREQUAL. LESSEQUAL: compares the numeric value in

the document against the numeric value of the string in „value‟

 EXISTS, NOTEXISTS: checks for existence of any value at the specified xpath. The

„value‟ attribute is ignored and should be set to “”

 SUBSTRING: matches if the value in the document contains the string in „value‟ as a

substring. This operator is case-sensitive.

 REGEXPR: matches if the regular expression given in „value‟ matches the value in the

document. Examples for regular expressions are “MQPUT|MQGET”, “QUEUE[1-9]”,

etc. See the Java documentation for regular expressions at

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html for details.

@value can either contain a literal string value - an enumeration constant (if there is an

enumeration defined for this XPath), or another XPath expression into the current event or

transaction document. The condition gets evaluated by string comparison of the document

value with the specified value.

As mentioned before, the match conditions in one <Classify> section are logically AND-ed

together. To specify an alternative set of conditions (logical OR), one or more additional

<Classify> sections for the same class can be added.

 63

Attribute rules are used to set and update values of transaction attributes. They can either be

defined inside of a <Classify> section, in which case they are only evaluated once at the

time of classification, or they can appear outside of the <Classify> section if they have to be

evaluated for all events the transaction.

Here is an example of such an attribute rule:

Each <Attribute> element defines rules for setting the value of a certain transaction attribute.

The <Path> element specifies the Xpath for the transaction attribute. The possible values for

this transaction attribute are specified in one or more <ValueRule> sections. Each

<ValueRule> specifies a set of match conditions (logical AND) and the new value for the

attribute if the match conditions fire. The <ValueRule> definitions for an <Attribute> are

evaluated in sequential order, and once a certain rule has fired, the transaction attribute will

get updated with the value defined within this rule, and all following <ValueRule> sections

will get skipped.

The new values for a transaction attribute are specified within the <Value> element and can

have one of two possible types (specified with the attribute):

 “Constant” specifies a literal String value or an enumeration constant (if there is an

enumeration defined for this XPath)

 “XPath” specifies that the new value should be retrieved dynamically at runtime from

either the XML event or transaction document

It is possible to specify multiple <Value> element for one attribute, in which case the

attribute value will be the concatenation of all evaluated <Value> definitions, like .e.g.:

Chapter 4 Reference - Extending the Analyzer

64

Every time the transaction analysis calls into the standard classification bean for an event all

<Attribute> definitions for the corresponding transaction class are getting evaluated in

sequential order. But by default the <Attribute> rules are only evaluated if the corresponding

transaction attribute has no value yet, the definition is considered to be final. Once a final

rule has set the value of the transaction attribute, it (and other final rules that refer to the

same attribute) will not be evaluated again.

To allow transaction attributes to get set and updated more than once, the attribute rule can

be declared with an attribute @final set to “false”:

This forces an attribute rule to get evaluated every time, even when the transaction attribute

is already set. An attribute rule without the @final attribute is equivalent to @final=”true”.

Another rule attribute, @precedence, can be used to control the setting of new values for

transaction attributes:

This attribute can only be set for rules referencing integer valued transaction attributes. If set

to true then an existing attribute value only gets overwritten if the new value is greater than

the old value. This mainly makes sense for „state‟ and „result‟ like attributes where all values

can be ordered according to a priority (e.g. UNKNOWN->PROCESSING->COMPLETE),

though in general it can be applied to any integer valued attribute. All @precedence rules are

automatically considered to be non-final too. By default (if the @precedence attribute is not

specified) the value is false.

In addition to the <Class> definitions you can also define one or more <Common> sections

in the UI Transaction Definition Editor. The structure of a <Common> definition is similar

to the <Class> definition:

Unlike the rules defined in the <Class> sections, the rules defined in the <Common> section

are valid for all classes (including UNCLASSIFIED) and will get evaluated on every event,

irrespectively of the classification status. Like <Class> definitions, <Common> sections can

be assigned to one or more project schemas to restrict the evaluation of the sections to events

of those projects.

 65

Any transactions that have been successfully classified will show up with their respective

class name in the reports that categorize by class, such as the Transaction Tracking Report.

Also, any errors that are encountered during the classification process will get logged in the

Analyzer.log file.

4.6.2. Classification Action Rules

In addition to setting and updating transaction attribute values, the classification rules can

also trigger custom actions. Action rules specify a java class implementing

com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction and can appear in

two locations of the classification rules:

 As part of an Attribute rule. The action is executed after the value of the attribute has

been updated

In this example, if the event is generated from the program TradeServlet, the

transaction attribute named State will be set to "Completed". After the attribute has been

updated, the bean specified in the action tag is invoked. The sample bean logs

information about the event and the transaction to the analyzer trace log.

The <Action> rule can have the following attributes: type, code, and reason. Currently,

the only Action type available is “JAVACLASS”. Code and reason provide a means of

passing an integer and/or string for use in the action method. They are not required. If

the action is invoked as part of an Attribute definition, a reference to the transaction

attribute is also passed into the action method call.

 As part of a <Classify> or <Evaluate> section:

The actions defined inside of <Classify> and <Common> sections will be executed in

textual order, after all attribute rules have been evaluated.

Chapter 4 Reference - Extending the Analyzer

66

If you write a custom action class, it must implement

com.bristol.tvision.services.analysis.eventanalysis.IAnalyzerAction interface and must

provide an action method to be invoked by the standard classification bean:

The code and reason string will get passed in from the rule definition (null if not specified).

InputDoc is the event XML document, and outputDoc is the transaction XML document.

Attr is a reference to the updated transaction attribute if the action has been invoked as part

of an attribute rule, or null otherwise. To identify which attribute triggered the action, you

can reference attr.attrPath which contains the XPath for the attribute. The method has to

return true if it has modified the transaction document, or false otherwise.

The custom class has to be added to the Analyzer‟s CLASSPATH.

4.6.3. The ClassifyTransactionCtx and the IClassifyTransaction Interface

Transaction classification beans are plugged in into the Analyzer framework by placing

them into the ClassifyTransactionCtx in the Beans.xml file; for example:

The context can contain multiple beans, in which case the beans are processed in sequential

order. Each classification bean has to extend

com.bristol.tvision.services.analysis.framework and implement the IClassifyTransaction

interface which contains the following two methods:

 classify

public boolean

classify(com.bristol.tvision.services.analysis.xml.XMLEvent event,

com.bristol.tvision.services.analysis.eventanalysis.XMLTransaction txn,

com.bristol.tvision.datamgr.dbtypes.EventID[] correlatedEvents,

com.bristol.tvision.datamgr.ConnectionInfo conInfo)

 throws

com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventExceptio

n

Parameters:

event - The current event.

txn - The transaction document for the current event.

correlatedEvents - The list of correlated events.

conInfo - The current database connection.

Returns:

 67

true if the transaction doc has been updated, false otherwise

Throws:

com.bristol.tvision.services.analysis.eventanalysis.AnalyzeEventException - The

analysis process failed.

 hasTimeRules

public boolean

hasTimeRules(com.bristol.tvision.datamgr.ConnectionInfo conInfo.

String className)

Returns whether the classification rules for the given class contain rules for start/endtime

of the transaction (/Transaction/Starttime and /Transaction/Endtime).

Parameters:

conInfo - The current database connection

className - The name of the class

Returns:

true if the given class has rules for start/endtime of the transaction, false otherwise

For each event that gets processed during the event transaction analysis phase the classify

method of each registered classification bean will be called, and the logical OR of all bean

invocations will be returned back to the transaction analysis phase in the Analyzer. If the

returned value is true (meaning one or more beans have modified the transaction document)

the corresponding row values in the business_transaction table will get updated by the

Analyzer framework.

4.6.4. Writing a Custom Classification Bean

A classification bean has to implement the classify interface described above and can trigger

the update of business transaction attributes by modifying the XMLTransaction object (the

business transaction for the current event), which gets passed into the call. The bean has

access to all XMLDocument values in the current event and the corresponding business

transaction object by using the method ; for

example:

The bean can set and modify all of the additional custom transaction attributes, and most of

the standard ones. The exceptions are business_trans_id, update_id, timerule_state, and

events_stored. Updating those values is not allowed and may lead to unexpected results in

the Analyzer. The update of transaction attributes is done by using the method

setDocumentValue(String xpath, String value); for example

If the bean has modified any of the transaction attributes, it has to return a boolean true value

from the classify call; otherwise, the new values will not be written to the database in the

Analyzer framework.

Chapter 4 Reference - Extending the Analyzer

68

If the transaction document remains unchanged, the bean should return false to avoid

unnecessary database write overhead.

To classify a certain transaction, the bean has to update the class_id attribute of the

transaction document (XMLTransaction.CLASS_ID_XPATH). This integer value is a

foreign key into the CLASSIFICATION table and thus should only contain values that

correspond to valid transaction class entries. The transaction class Ids can easily be accessed

by using the utility class TransactionClassCache:

The utility class reads the transaction class data only once at initialization time from the

database and returns all Ids without any further database access.

4.6.5. Logging SLA Violations

When a transaction gets classified, the analyzer can monitor its response time against the

SLA value defined for the corresponding transaction class, and fire an alert in case the SLA

is violated. The SLA violation logging can be enabled by removing the comment around the

LogSLAViolationCtx section in Beans.xml and by placing the appropriate logging bean

(standard or custom logging bean) into it.

TransactionVision ships with a standard logging bean, com.bristol.tvision.

.services.analysis.eventanalysis.LogSLAViolationBean, which logs the transaction

together with its SLA and response time to the SLAViolationLog defined in

Analyzer.Logging.xml.

If you write a custom logging class, it must implement the

com.bristol.tvision.services.analysis.eventanalysis.ILogSLAViolation interface:

public boolean slaViolation(XMLTransaction txn, ConnectionInfo conInfo);

For the normal analyzer processing mode, the return value of this method is ignored. In

failure mode, the return value indicates to the analyzer whether to write the whole business

transaction to the database (return true) or to discard it (return false). The custom class

needs to be added to the Analyzer‟s CLASSPATH by running the TVisionSetupInfo utility

again.

4.6.6. Custom Event Correlation

There are two ways to establish relationships between either two user events or a user event

and a standard Sensor event:

Implement the correlation logic through a Java bean that implements the interface

com.bristol.tvision.services.analysis.eventanalysis.IEventCorrelation. Install this bean as the

UserCorelationBean for the CorrelationTechHelperCtx in the analyzer configuration file

<TVISION_HOME>/config/services/Beans.xml:

 69

TransactionVision supports an XML rule engine for event correlation purposes

(com.bristol.tvision.services.analysis.eventanalysis.XMLRuleCorrelationBean). This is

similar to the rule engine for transaction classification. The custom correlation logic is

implemented through XML syntax rules that are stored in the configuration file

<TVISION_HOME>/config/services/EventCorrelationDefinition.xml. For each event

(Sensor or user), it will evaluate the correlation rules against the event, create correlation

lookup key(s) and event relation(s) according to the matched rules. The bean will also take

care of updating the memory cache and database tables for the entities created.

The rule engine bean can be enabled by modifying the file as follows:

Event Correlation Using the XML Rule File

The event correlation rules follow the same syntax as the transaction classification rules.

Refer to the transaction classification section in Chapter 3 for a detailed description on the

rule basics. This section covers the details specific to the event correlation rule engine. For

an example of the rules, see <TVISION_HOME>/config/services/

EventCorrelationDefinition.xml.

The high level framework for the correlation rules is as follows:

RelationLookupType

This element defines a relation type. It takes three attributes that characterizes the lookup

type:

Attributes:

Name Type Use Description

id xsd:int required The relation lookup type ID. This ID should be

unique in the type definition scope. The type ID

should have a value greater than 1000.

name xsd:string required Relation lookup type name.

dbschema xsd:string optional A string representing the database schema. The

presence of this attribute limits the relation lookup

type scope to the particular database schema.

Chapter 4 Reference - Extending the Analyzer

70

This element can have two types of child elements: CreateLookupKey and CreateRelation.

The former implements a single rule set for creating lookup keys from individual event

specific for this relation lookup type. The latter implements a single rule set for creating

relation entity between two events that obey the matching conditions specified.

 CreateLookupKey

This element defines a set of rules for creating a lookup key for the relation type this

element belongs to. The following illustrates the structure of this element and its

children:

Attributes:

Name Type Use Description

technology xsd:string required String representing a technology name. This must

be one of the technologies supported by

TransactionVision. Only events belonging to the

specified technology will be evaluated against this

rule.

Id xsd:int required An integer uniquely identifying this

CreateLookupKey rule among all belonging to the

same RelationLookupType object. This ID can be

used in the relation creation stage to identify

events that have lookup keys created based on this

rule.

The following is a list of supported technology names to be used for reference in

TransactionVision configuration or definition files (for example, in XML event

correlation definition):

1. BTTRACE for application tracing library for WebSphere MQ

2. MQSERIES for WebSphere MQ

3. MQIMSBRIDGE for WebSphere MQ IMS bridge

4. Servlet for J2EE Servlet

5. JSP for J2EE JSP

6. JMS for J2EE Java Message Service

7. EJB for J2EE Enterprise Java Beans

8. CICS for IBM CICS

9. UserEvent for TransactionVision User Event

 71

Match

There can be one or more match conditions. All the conditions must be met (AND) for a

proper event match.

Attribute LookupKey

There should be exactly one Attribute element with the name LookupKey and path

/RelationLookup/LookupKey, as shown in the above example. There can be one or more

ValueRule elements with optional match conditions for assigning the lookup key value

based on the event contents.

In the above example, the lookup key value is extracted from the event document under the

path /Event/Data/Chunk/Order/OrderID.

 CreateRelation

This element implements a rule for creating a relation between two events having the

same lookup key. This element has two attributes “keyRuleId1” and “keyRuleId2”.

These attributes refer to the CreateLookupKey id attribute:

Attributes:

Name Type Use Description

keyRuleId1 xsd:int required The source event of this relation object should have

its lookup key generated by the CreateLookupKey

element with id equals to the value of this attribute.

keyRuleId2 xsd:int required The destination event of this relation object should

have its lookup key generated by the

CreateLookupKey element with id equals to the

value of this attribute.

id xsd:int required An integer ID for this CreateRelation element.

The following illustrates the structure of this element and its children:

Chapter 4 Reference - Extending the Analyzer

72

This example says that a relation is to be created between event 1 (source) and 2

(destination) if the following conditions are met:

1. Event 1 and 2 has the same lookup key value for this relation type.

2. Event 1‟s lookup key for this relation type is created under the

CreateLookupKey rule with id equals to 3.

3. Event 2‟s lookup key for this relation type is created under the

CreateLookupKey rule with id equals to 5

The CreateRelation element should always have the three child Attribute elements as shown

above:

 The RelationType element should always have the value 17 or 18. 17 indicates a

message path (suitable for representing message oriented middleware activities)

while 18 indicates general purpose transaction control flow.

 The Direction element defines the relation direction, and should have value

equals to 0 (unknown), 1 (inbound, flow from destination to source event), or 2

(outbound, flow from source to destination event).

 The Confidence element indicates whether the relation is strong (value = 1) or

weak (value = 0). In general, the relation confidence should be set to strong (1).

Time-Based Correlation

In the area of event correlation, there are certain scenarios where perfect correlation data is

not available. While there may be enough correlation information--based on either standard

technology context or customer specific business data--to triage the events and limit the

matching event candidates to a minimum set, additional factors need to be considered to

complete the correlation process and result in one-to-one event relationship.

One such factor is event time stamps. In certain situations, TransactionVision can correlate

specific event candidates by considering the respective event execution time. One example:

two events A and B representing EJB X and Y method calls respectively are reported to

TransactionVision, with EJB X method invoking the EJB Y method. In this

case TransactionVision can reasonably assume that the two events' exit timestamps are very

close based on the call latency nature. Thus TransactionVision can deduce that by truncating

the respective event time stamps to a precision consistent with the expected latency, the two

events would have the same truncated timestamp, and this can in turn be considered as a

matching key in a lookup key based correlation algorithm.

TransactionVision provides a correlation component that supports this type of time based

correlation enhancement. One can consider this as a correlation algorithm based on a mix of

time and payload/technology specific data keys.

 73

This will correlate all events which happen within a 10 minute time interval into one

business transaction, provided they match the other conditions (if present, this is optional).

Note that in order for this to work, different transactions have to be separated in time by at

least the same interval length.

Event Correlation Using a Custom Bean

For event correlation, the class CorrelationTechHelperCtx defines the top-level context for

managing all event correlation beans. These beans are managed into different groups

according to the technology categories the beans are associated with. Each category is

managed by a technology specific event correlation context. Each context is designated to

handle a particular type of technology (e.g.: WebSphere MQ). That is, all the events being

passed to the context belong to the same technology. The technology specific context itself

holds a set of correlation beans which implements the Interface IEventCorrelation, each is

responsible for correlating the current technology to one particular other technology.

In Addition to these technology specific contexts it is possible to plug in a custom

„UserCorrelationBean‟, which will be invoked for every event processed by the event

analysis service, irrespectively of the technology.

The following is an example of event correlation context definition in the Beans.xml file:

Chapter 4 Reference - Extending the Analyzer

74

For WebSphere MQ, TransactionVision provides a bean MQToMQRelationshipBean that

handles all WebSphere MQ correlation tasks. This includes matching MQPUT or MQPUT1

calls to MQGET calls that handle the same message. The resultant relation is known as the

message path relation, indicating a data flow between the two corresponding applications.

It is possible to add additional correlation logic in several ways:

 A new correlation bean can be developed and added to the correlation processing chain.

In the above example, the StockTradeRelationshipBean bean is invoked in the

MQSeries event context along with the MQToMQRelationshipBean.

 The default correlation bean can be replaced by a user bean through subclassing or

aggregation. This allows modifications to the default correlation behavior. For example,

a bean can be developed that invokes the MQToMQRelationshipBean correlation

interfaces, examines the correlation results, and makes modifications to the results if

necessary.

 Provide an implementation for the UserCorrelationBean.

An event correlation bean should implement the interface IEventCorrelation. The

IEventCorrelation interface defines two methods createLookupKeys and correlate for the

two phases discussed before. The class CorrelationTechHelperBean serves as the base class

for all event correlation beans

In TransactionVision, event correlation is performed on a per event, per technology basis.

The correlation task is divided into two phases.

The first phase involves generating lookup keys based on the characteristics of the current

event. The purpose of setting up these keys is to identify the set of events bearing the same

lookup key as the potential candidates for correlation in the second phase. For example, in

the case of MQPUT(1) – MQGET message path relation generation, for each MQPUT(1)

and MQGET event, a key composed of the message ID (MQMD.MsgId), correlation ID

(MQMD.CorrelId), message put data and time is generated.

 75

For any event, the createLookupKeys() method of each bean contained in the technology

specific context will be called. In the above example, for a MQ event the

MQToMQRelationshipBean as well as the MSToBridge RelationshipBean will both

generate a lookup key for the current event.

The second phase involves relation generation. Specifically, a set of events is passed as

potential candidate for matching with the current event. This set is composed of the events

that have the same lookup key as the current event. For example, for a MQGET event, all

the MQPUT(1) /MQGET events having the same key (message Id + correlation ID +

message put data + message put time) are passed as potential match candidates. Further tests

can now be conducted on individual candidate event to see if it is truly related to the current

event. For example, events with the same method/API name (MQPUT-MQPUT, MQGET-

MQGET) should not result in a message path relation.

For a certain set of candidates with matching lookup keys, the type of the correlation (e.g.,

MQ-MQ or MQ-IMS) determines which beans correlateEvents() method is called. In the

above example, a set of events with matching lookup key of type MQ-MQ will be passed on

to the MQToMQRelationshipBean, a set of events with type MQ-IMS will be passed on to

the MQToBridgeRelationshipBean. Currently the following correlation types are defined for

TransactionVision as constants in class EventCorrelationBean:

The correlation type for a correlation bean has to provided in the constructor call. For user

defined correlation beans, new correlation types should be >= 100.

4.6.7. Interface IEventCorrelation

package com.bristol.tvision.util.services.analysis.eventanalysis

public interface IEventCorrelation

The IEventCorrelation interface defines the methods to be implemented by any event

correlation bean.

Methods:

 createLookupKeys

public void createLookupKeys(ConnectionInfo conInfo, XMLEvent event,

java.awt.List lookupKeys) throws AnalyzeEventException

Generate one or more lookup keys for correlation purpose for the given event.

Parameters:

conInfo - database connection info object for the current project

event - completed XML document for the current event

lookupKeys - list of lookup keys to be added

Chapter 4 Reference - Extending the Analyzer

76

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

 correlateEvents

public void correlateEvents (ConnectionInfo conInfo,

TechEventID id, TechEventID idToMatch, int correlationType, List

eventRelations)

throws AnalyzeEventException

Decide whether a relation should be established between the two events passed. If the

conclusion is affirmative, generate new relation objects and add them to the given list.

Parameters:

conInfo - database connection info object for the current project

id - event ID object for the current event to be matched

idToMatch - event ID object for the potential matching event candidate

correlationType - the correlation type

eventRelations - list of event relations generated

Throws:

AnalyzeEventException - Signals errors during the event correlation analysis

4.6.8. Class CorrelationTechHelperBean

package com.bristol.tvision.util.services.analysis.eventanalysis

public abstract class CorrelationTechHelperBean

extends ChainManagedBean

implements IEventCorrelation

This is the abstract base class for all event correlation beans.

Constructor:

 CorrelationTechHelperBean

CorrelationTechHelperBean(java.lang.String technology, int

correlationType) throws AnalyzeEventException

Creates an instance of this event correlation bean for the given technology and

correlation type. The correlation type is a unique integer and should be >= 100 for new

user-defined correlation types.

Methods:

 createLookupKeys

Refer to the definition of IEventCorrelation.

 correlateEvents

Refer to the definition of IEventCorrelation.

 getCorrelationType
public int getCorrelationType()

Return the correlation type string.

 77

 Class MQCorrelationData
package com.bristol.tvision.datamgr.dbtypes

public class MQCorrelationData

This class defines a collection of event attributes relevant to the event correlation process.

For example, in the IEventCorrelation::correlateEvents method, event attributes for the two

events to be matched can be retrieved through a correlation data cache. The attributes are

returned in an object instance of this class.

Constructor:

MQCorrelationData

MQCorrelationData(int apiCode, java.lang.String putApplName, java.lang.String

putApplType,String userId, long qmgrId, long mqObjId, java.lang.String eventTime, long

programId)

MQCorrelationData(int apiCode, java.lang.String putApplName, java.lang.String

putApplType,String userId, long qmgrId, long mqObjId, java.lang.String eventTime, long

programId, java.lang.String jobNameId, java.lang.String jobStepId, java.lang.String sysId,

java.lang.String transId, java.lang.String imsId, java.lang.String imsRegionType,

java.lang.String imsRegionId, long imsTxnId, java.lang.String imsPsbId)

Creates an instance of a WebSphere MQ correlation event attribute data collection object

based on the given event attributes.

Fields:

 int apiCode

 String putApplName

 String putApplType

 String userId

 long qmgrId

 long mqObjId

 String eventTime

 long programId

4.6.9. Class JMSCorrelationData

package com.bristol.tvision.datamgr.dbtypes

public class JMSCorrelationData

Similar to the class MQCorrelationData, this class defines a collection of event attributes

relevant to the event correlation process of JMS events.

Constructor:

JMSCorrelationData

JMSCorrelationData(int methodCode, String appId, String userId, String destination, String

eventTime, long programId, String putApplType, long qmgrId, long mqObjId)

Creates an instance of a JMS correlation event attribute data collection object based on the

given event attributes.

Chapter 4 Reference - Extending the Analyzer

78

Fields:

 int methodCode

 String appId

 String userId

 String destination

 String eventTime

 long programId

 String putApplType

 long qmgrId

 long mqObjid

4.6.10. Class LookupKey

package com.bristol.tvision.datamgr.dbtypes

public class LookupKey

This class defines the lookup key object to be used in identifying potential events for

correlation purpose.

Constructor:

LookupKey

LookupKey(java.lang.String keyValue, int typeId)

Creates a new lookup key instance with the given key and the correlation type id.

Fields:

 String keyValue

 int typeId

Methods:

 equals
public boolean equals (LookupKey lookupKey)

Determine whether two LookupKey objects are equivalent.

Overrides:

equals in class java.lang.Object

Decide whether the given lookupKey is equal to this key object. The two objects are

equal if the corresponding key, correlation type string, and type ID are the same.

Parameters:

lookupKey - lookup key object to be compared

Returns:

true if the two keys are equal, false otherwise

4.6.11. Class EventRelation

package com.bristol.tvision.datamgr.dbtypes

public class EventRelation

This class defines an event relation object between any two events.

 79

Fields:

Relation Type

public static final int UNKNOWN_PATH = 0;

public static final int MESSAGE_PATH = 1;

public static final int TRANSACTION_PATH = 2;

public static final int BIDIRECTION = 16

Type of the event relation:

 MESSAGE_PATH indicates a direct message flow between the two events. That means

the two events are associated with the same message data. For example, a MQPUT and

MQGET call dealing with the same message bears a message path relation.

 TRANSACTION_PATH indicates a control flow between two events.

 BIDIRECTION is a type mask that indicates the bi-direction nature of the relation

between the two events.

Relation Direction

public static final int RELATION_PATH_IN = 1;

public static final int RELATION_PATH_OUT = 2;

public static final int RELATION_UNKNOWN = 0;

Direction of the event relation. Note that the event object is created in conjunction with an

event pair (event1, event2). This indicates the direction from event1 to event2.

Confidence Factor

public static final int WEAK_RELATION = 0;

public static final int STRONG_RELATION = 1;

This factor is assigned by the event correlation module. There are cases where the

correlation module may not have perfect data for a deterministic decision on the event

relation generated. In such case, the relation created can carry a WEAK_RELATION

confidence factor indicating the uncertainty in the decision.

int relation

Bitfield indicating the relation type, e.g. MESSAGE_PATH | BIDIRECTION

int direction

Bitfield indicating the relation direction, e.g. RELATION_PATH_IN |

RELATION_PATH_OUT

int confidence

Confidence factor, either WAEK_RELATION or STRONG_RELATION

int latency

The latency between the two events in milliseconds

Constructor:

EventRelation

EventRelation(int relation, int direction, int confidence, int

latency)

Creates a relation object with the given relation type, direction, confidence factor, and

latency.

Chapter 4 Reference - Extending the Analyzer

80

4.6.12. Class MQRelationDBService

package com.bristol.tvision.datamgr.dbservices

public class MQRelationDBService

This class defines an internal database service for accessing MQSeries correlation related

information. For example, this service works in conjunction with the caching mechanism

and stores MQSeries event correlation attributes. The following describes the public

interfaces of interest to the custom event analysis beans developers.

Methods:

 instance

public static MQRelationDBService

instance(java.lang.String schema)

Return the singleton instance of the MQRelationDBServices.

Parameters:

schema - Database schema for the current project

Returns:

Singleton instance of the MQRelationDBService.

 getCorrelationData

public MQCorrelationData getCorrelationData(java.lang.Connection

con, EventID eventID) throws DataManagerException

Return the MQSeries correlation event data for the given event.

Parameters:

con - Java SQL database connection handle, probably from the ConnectionInfo object.

eventID - EventID object for the interested event

Returns:

A MQCorrelationData object for the given event.

Throws:

DataManagerException - Signals errors during internal database operations.

4.6.13. Class JMSRelationDBService

package com.bristol.tvision.datamgr.dbservices

public class JMSRelationDBService

This class defines an internal database service for accessing JMS correlation related

information.

Methods:

 instance

public static JMSRelationDBService

instance(java.lang.String schema)

Return the singleton instance of the JMSRelationDBServices.

Parameters:

schema - Database schema for the current project

 81

Returns:

Singleton instance of the JMSRelationDBService.

 getCorrelationData

public JMSCorrelationData

getCorrelationData(java.sql.Connection con,EventID eventId)

throws DataManagerException

Return the MQSeries correlation event data for the given event.

Parameters:

con – Java SQL database connection handle, probably from the ConnectionInfo object.

eventID – EventID object for the interested event

Returns:

A JMSCorrelationData object for the given event.

Throws:

DataManagerException - Signals errors during internal database operations.

Sample Custom Event Correlation Bean

Refer to the code in the directory <TVISION_HOME>/samples/stock to see a sample

implementation of a custom event correlation bean (StockTradeRelationshipBean.java).

StockTradeRelationshipBean implements the IEventCorrelation interface and is derived

from the class CorrelationTechHelperBean. It builds a custom message path relation

between a failed MQGET event (CompCode equals to MQCC_FAILED) and the MQPUT

event that participates in the same trade request processing. The stock trade example follows

a request-reply messaging model. The StockTrade program records the message ID field of

the initial request message, and uses this value as the correlation ID value to be matched

when it reads the reply message through the MQGET call. In other words, for a particular

transaction, the message ID field in the MQMD object of the StockTrade – MQPUT(1)

event should be the equal to the correlation ID field in the MQGET event.

The following is the code fragment for the StockTradeRelationshipBean constructor. It

specifies that the bean handles MQSeries events and generates custom event relation of type

“REQUEST_REPLY_TYPE” correlation as described above:

The next code fragement contains the implementation of the createLookupKeys method. As

discussed before, the message ID or correlation ID value in the message descriptor record is

used as the lookup key for MQPUT(1) and MQGET respectively.

Chapter 4 Reference - Extending the Analyzer

82

The next code fragment contains the implementation of the correlateEvents method:

 83

The AnalysisCacheManager object provides an internal memory cache for storing selected

attributes of the events to be matched. Refer to the MQCorrelationData class definition for a

list of attributes supported. This cache allows quick access to certain event attributes without

executing an event data query, thus improving the correlation process performance.

To decide whether the two events are indeed related, the API code of the two events are

compared to ensure that one event is MQPUT(1) and the other one is MQGET. Since only

MQPUT(1) and MQGET events can be potential candidates, it is enough to check whether

the two event API codes are different or not.

Once it is decided that the two events are related, a new event relation object is created and

inserted to the relation list. The relation is of type MESSAGE_PATH, has no direction

attribute, and has a STRONG_RELATION confidence factor.

The following code fragment is the change to the Beans.xml file for including this custom

event correlation bean. It tells the Analyzer framework to load and run the

StockTradeCorrelationBean bean as a part of the CorrelationMQHelperCtx context.

This bean will be invoked after the default MQToMQRelationshipBean for every MQSeries

event.

Chapter 4 Reference - Extending the Analyzer

84

4.6.14. Custom Local Transaction Definition

Customization of the local transaction analysis algorithm in the Analyzer allows

modification of the unit of work or local transaction definition for a set of events. By default,

TransactionVision uses the sync-point APIs such as MQCMIT, MQBACK, etc., to group

events into local transactions. However some applications may not be transactional in

nature. For these applications, it may be useful to group sets of events into logical local

transactions.

The local transaction rule definition file follows the same syntax as the transaction

classification rules. See the “Transaction Classification” section earlier in this chapter for a

detailed description on the rule basics. This section covers the details specific to the local

transaction rule engine.

The basic goal of the rules defined in the LocalTransactionDefinition.xml file is to set

local transaction attributes, if the event currently being processed matches certain criteria.

These attributes, such as the LookupKey attribute, are then used by the framework to either,

create a new local transaction id and assign that id to the event or find an existing local

transaction that has the same attributes, and assign its local transaction id to the current

event.

An example application of the LocalTransactionDefinition.xml rule file is to correlate an

MQPUT of a request with an MQGET for the reply in the same process based on message

id, where the MQPUT and MQGET do not exist in the same unit of work. This happens

when an application puts a request, and waits for a reply with an MQGET for the same id

until it times out. The request and reply will by placed in the same unit of work by the

Analyzer only if the sync-point options have been used by the application. If not, the

LocalTransactionDefinition.xml file may be used to generate a custom LookupKey attribute

based on the message id field in the MQPUT and MQGET events.

4.6.15. LocalTransactionDefinition.xml File

This file is located in the <TVISION_HOME>/config/services directory. The layout of this

rule file is as follows:

 85

The LocalTransactionDefinition element is the root element and only one instance of this

element can exist in a definition file. Each root element can contain several

LocalTransactionType elements. Each LocalTransactionType element has a dbschema

attribute containing one or more schemas (comma separated) to which this rule type applies.

Hence, the attributes and match criteria contained in this LocalTransactionType element

only apply to events being written to the given schemas. The schema attribute can be set to

“*”, or left out completely, to indicate that the rule is applicable to all schemas. A set of

Match child elements determine whether the attributes specified in the

LocalTransactionAttributes element should be applied to the current event. The

LocalTransactionAttributes element contains a set of Attribute elements. Each attribute is set

at the XPath specified in the Path element. The value for this attribute comes from the Value

elements. These may be constants or XPaths into the current event document. The Attribute

element may contain additional Match criteria to determine which attributes need to be set.

4.6.16. LocalTransactionType

This element defines a local transaction rule type. It takes three attributes that characterizes

the lookup type:

Attributes:

Name Type Use Description

dbschema xsd:string optional A string representing the database schema.

The presence of this attribute limits the

relation lookup type scope to the particular

database schema.

hasMultiTracking xsd:boolean optional A boolean value, which when true indicates

that the local transaction can have multiple

tracking ids and the processMultiTracking()

method of the ILocalTransaction interface

needs to be executed.

This element can contain two kinds of child elements, multiple Match elements and one

LocalTransactionAttributes element. The Match elements contain the criteria based on

which attributes will be set for an event. For example:

<Match xpath="/Event/StdHeader/TechName" operator="EQUAL"

value="MQSERIES"/>

 <Match xpath="/Event/StdHeader/HostArch/OS" operator="UNEQUAL"

value="OS390_CICS"/>

The above two Match criteria evaluate to true if the event is an MQSeries event, but not

from z/OS CICS. When an event which matches these criteria is evaluated, the attribute

setting rules contained in the LocalTransactionAttributes element are executed.

Chapter 4 Reference - Extending the Analyzer

86

4.6.17. LocalTranasctionAttributes

One element of this type is required. This element holds multiple attribute elements, each

defining an Attribute to be set. The LookupKey attribute containing a Path

/LocalTransaction/LookupKey is required. Attribute names need to be unique for a given

LocalTransactionAttributes element. There can be multiple Attribute rules with the same

XPath but a different name, Match and Value rules.

For example:

The above LocalTransactionAttributes element contains one Attribute called LookupKey.

This attribute maps to the XPath /LocalTransaction/LookupKey and is set to a concatenation

of three values in the Value elements. The attribute „LookupKey‟ determines the local

transaction for the current event – events with the same LookupKey will be part of the same

local transaction.

Typically, for WebSphere MQ events, only the LookupKey attribute needs to be set to group

events into a unit of work. However, for other events such as JMS, Servlet or EJB events,

additional attributes such as TrackingId (/LocalTransaction/TrackingId), ParentTxnKey

(/LocalTransaction/ParentTxnKey) and TrackingSeq (/LocalTransaction/TrackingSeq) may

be set. The TrackingId attribute is used to group multiple local transactions into business

transactions for the J2EE Sensors. In custom local transaction definitions, generating the

same tracking id for certain events can be used to group their local transactions into the same

business transaction. The ParentTxnKey and TrackingSeq attributes are primarily used by

the TransactionVision Transaction Analysis view to draw links between local transactions.

These attributes are reported by the Sensors and typically would not need to be customized.

4.6.18. Sample LocalTransactionDefinition.xml Rule File

The following sample rule file sets the LookupKey local transaction attribute to the event

message id field for all events from queue TVISION.TEST.Q for all events being written to

the TEST.SCHEMA. For events to any other schema besides TEST.SCHEMA, the

LookupKey attribute is set using the default MQSeries strict algorithm to use the program

instance id and unit of work ids.

 87

4.6.19. Changes to the Beans.xml File

To enable usage of the LocalTransactionDefinition.xml rules file, the

<TVISION_HOME>/config/services/Beans.xml file must be modified to enable use of the

rules bean. The following changes are required to the Beans.xml file:

The same needs to be repeated for the corresponding technology where the rule bean needs

to be applied.

Local transaction analysis algorithm beans can be chained by placing multiple bean names

in the Beans.xml file as below:

Chapter 4 Reference - Extending the Analyzer

88

The local transaction beans are initialized and invoked in the sequence they are placed in the

Beans.xml file. For example, in the above snippet the XMLRuleLocalTransactionBean rules

will be executed before the MQStrictLocalTransaction getAttributes() method is invoked.

By default, the chain of invocation is broken and subsequent beans are NOT called when a

bean's getAttribute() method returns a non-null lookup key. Hence, in the above example,

the MQStrictLocalTransaction bean is invoked only when there is no matching rule set in

the LocalTransactionDefinition.xml file which create a non-null lookup key. Note: it is

important to place the XMLRuleLocalTransactionBean before any standard beans if it is

intended to replace the generated default lookup key.In some scenarios, it may be desired

that certain events do not have a local transaction id. To do this, create a rule that sets the

return key value as a constant NULL.

The following example rule does not create a local transaction id for all events from queue

TVISION.TEST.Q, by setting the LookupKey attribute to a constant NULL value.

<LocalTransactionType dbschema="*" hasMultiTracking="false" >

 <Match xpath="/Event/StdHeader/TechName" operator="EQUAL"

value="MQSERIES"/>

 <Match xpath="/Event/Technology/MQSeries/MQObject/@objectName"

operator="EQUAL" value="TVISION.TEST.Q"/>

 <LocalTransactionAttributes>

 <Attribute name="LookupKey">

<Path>/LocalTransaction/LookupKey</Path>

<ValueRule name="SetLookupKey">

 <Value type="Constant">NULL</Value>

 </ValueRule>

 </Attribute>

 </LocalTransactionAttributes>

</LocalTransactionType>

4.7. Extending the System Model

Use the <TVISION_HOME>/config/services/RemoteDefinition.xml file to define objects

in your system that the agent might otherwise not be able to fully resolve.

For example, suppose you have a remote queue on queue manager QM1 that points to some

queue on queue manager QM2. A sensored application putting to the queue on QM1 does

not connect to QM2 to fully discover what type of object the final destination queue is. The

destination queue might be an alias queue or even another remote queue. If no sensored

application on QM2 ever connects directly to the destination of the QM1 remote queue, then

the object will never be fully resolved, possibly resulting in a missing link in the correlation

of events.

By manually defining objects in RemoteDefinition.xml, you can specify the details of

objects that the agent could not completely resolve otherwise.

Each <RemoteObject> tag defines an object. When the analyzer attempts to resolve the

target of a remote queue, it checks whether an entry exists with the same object and queue

manager name. If such a match is found, the MQObject definitions within the RemoteObject

tag will replace the generic queue definition provided by the agent. Embedding an additional

MQObject tag within the first MQObject tag creates a "resolveto" relationship.

 89

Therefore, the first RemoteObject tag in the following example can be interpreted as: If the

destination of a remote queue has the name RALIAS2.QUEUE on queue manager

perplex7.tv2.manager, create for this object an alias queue RALIAS2.QUEUE that resolves

to a local queue RRR.QUEUE.

Possible values for the objectType attribute include:

Q_LOCAL

Q_MODEL

Q_ALIAS

Q_REMOTE

Q_CLUSTER

Q_LOCAL_CLUSTER

Q_ALIAS_CLUSTER

Q_REMOTE_CLUSTER

Take care in creating and modifying these definitions as inserting objects that don't actually

match the topology of your system could break the correlation of events.

Example RemoteDefinition.xml file:

4.7.1. User Events

Each user event can optionally carry data about system resource objects involved in the

event. The user defined types have type ID greater than the value

com.bristol.tvision.userevents.Constants.USEROBJECT_TYPE_BASE.

Chapter 4 Reference - Extending the Analyzer

90

On the Analyzer side, all user object types should be included in a central configuration file

<TVISION_HOME>/config/sysmodel/SystemModelDefinition.xml. Both the Analyzer

and Web components read this configuration file, and use the information for runtime object

type validation.

The following is an example of this file:

 User object types should be grouped under various object type classes. Each class is

defined under the element /SystemModelDefinition/ObjectClass. In the example, two

classes are defined for database and FTP technology objects respectively.

 Each object type class should have a string attribute “name” and integer attribute “base”,

which defines the base for the type ID for all objects in the class.

 The element /SystemModelDefinition/ObjectClass/ObjectType defines a single object

type. It has a string attribute “name” for the object type name, and an integer attribute

“id”. The id attribute, combining with the object type class ID base, forms the final type

ID for the object type. In this example, the object type “DatabaseServer” has type ID

100001 (100000 + 1), and the object type “FTPServer” has type ID 101001 (101000 +

1).

It is important to ensure that the object type ID values used by the user events are consistent

with the ones from the central configuration file.

4.8. Generating Application Events to Tivoli Enterprise Console (TEC)

TransactionVision allows plugging in custom code to generate TEC events when certain

application events occur. These can either be plugin beans into the Analyzer or as scheduled

jobs running in the application server hosting the UI. This custom code can use the log4j

classes to generate log messages. The log4j appender, TECAppender, routes these log

messages to Tivoli, when enabled. The MonitoringEvent class is provided to allow setting of

parameters into the log4j message, which are then mapped to Tivoli slots by the

TECAppender. The TECAppender uses the file

<TVISION_HOME>/config/logging/tivoli/SlotMap.properties to map MonitoringEvent

parameters to Tivoli slots.

4.8.1. Monitoring Events

The class com.bristol.tvision.util.log.MonitoringEvent implements the monitoring event

structure. TransactionVision defines various monitoring events reporting the analyzer and

web component runtime states. Custom monitoring events based on business data can also

be constructed with this class.

Class com.bristol.tvision.util.log.MonitoringEvent

 91

Attributes and Access Methods

Event Source Components

This refers to a string identifying the main event source component. TransactionVision

defines several standard values in the class com.bristol.tvision.util.TVisionCommon:

 TVisionCommon.COMP_ANALYZER: Analyzer components

 TVisionCommon.COMP_JOB: Job bean

 TVisionCommon.COMP_UI: TransactionVision UI/Job Server components

 TVisionCommon.COMP_OTHERS: Other event sources.

Access methods:

Event Source Sub-components

This refers to a string identifying the event source subcomponent. Usually this refers to the

Java class name (e.g.: com.bristol.tvision.services.analysis.action.LogSLAViolation).

Access methods:

Event Class

This refers to a string identifying the event class. TransactionVision defines the following

standard values:

 MonitoringEvent.CLASS_INTERNAL: Analyzer and web components internal

monitoring events.

 MonitoringEvent.CLASS_APPLICATION: Application specific monitoring events.

 MonitoringEvent.CLASS_CEP_SITUATION: Complex event processor situation

events.

Access methods:

Event Type

This refers to a string describing the monitoring event type. All TransactionVision standard

values for internal monitoring events have the prefix “TVision”. Any custom defined

monitoring event should have a type name consistent with the complex event processor

event definitions.

Access methods:

Priority

Chapter 4 Reference - Extending the Analyzer

92

This refers to an integer value reflecting the priority of the monitoring events. The following

is a list of standard values:

 MonitoringEvent.PRIORITY_HIGH = 70

 MonitoringEvent.PRIORITY_MEDIUM = 50

 MonitoringEvent.PRIORITY_LOW = 10

 MonitoringEvent.PRIORITY_UNKNOWN = 0

Access methods:

Severity

This refers to an integer value reflecting the severity of the monitoring events. The following

is a list of standard values:

 MonitoringEvent.SEVERITY_FATAL= 60

 MonitoringEvent.SEVERITY_ERROR = 50

 MonitoringEvent.SEVERITY_MINOR = 40

 MonitoringEvent.SEVERITY_WARNING = 30

 MonitoringEvent.SEVERITY_HARMLESS = 20

 MonitoringEvent.SEVERITY_INFORMATION = 10

 MonitoringEvent.SEVERITY_UNKNOWN = 0

Access methods:

Message

This refers to a string containing the description for the monitoring event. By default this is

set to an empty string.

Access methods:

Time

This refers to a long value representing the event time in milliseconds (specifically, the

difference, measured in milliseconds, between the current time and midnight, January 1,

1970 UTC). The constructors for this class automatically set this to the current time.

Access methods:

Parameters

Additional parameters for the monitoring event are stored as name-value pair in an internal

hash map in the MonitoringEvent class. The name part has to be a Java string, while the

value part can be any Java serializable objects. Use the following access methods to get and

set additional parameters.

Access methods:

 93

Constructors

The default constructor only initializes the monitoring event time. All other attributes are set

to the default values. The attribute access methods should be used to set the required

attributes.

This constructor initializes the monitoring event with the given source component,

subcomponent, event class, event type, and severity level. Event time is by default set to the

current time.

Clone

This method returns a shallow clone copy of the given MonitoringEvent object. The

parameter hash map contents are indeed copied over.

Serialization

The toString() method can serialize the MonitoringEvent contents in two forms:

By default, the message attribute will be returned by the toString() method (Message

Serialization).

The complete event content can be serialized in XML format (XML Serialization).

The serialization behavior can be toggled by the following two methods:

Helper functions

This method returns the local host name.

4.8.2. Event Delivery

This section describes the steps for implementing monitoring event delivery.

The class com.bristol.tvision.util.log.Logging supports various methods for delivering the

monitoring events through Log4J. Any log4j initialization is taken care of by the

TransactionVision components. TransactionVision implements the following Logger

(Category) objects in various components:

Analyzer:

AppLog: for reporting Analyzer errors, warning, and information type messages. This is the

default logger object in the Logging class. One can invoke any of the following four Log4J

category logging methods directly through this class:

Chapter 4 Reference - Extending the Analyzer

94

AnalyzerActivityLog: for internal Analyzer activity logging such as start and stop operation.

This can also be used for logging transaction related report such as service level agreement

violation. This logger object can be accessed through the variable

Logging.analyzerActivityLog:

UI/Job Server components:

AppLog: for reporting UI component errors, warning, and information type messages. This

is the default logger object in the Logging class. One can invoke any of the following four

Log4J category logging methods directly through this class:

UIActivityLog: for internal UI components activity logging such as start and stop operation.

This logger object can be accessed through the variable Logging.uiActivityLog:

The following code segment provides an example of logging a service level agreement

violation monitoring event:

 95

4.8.3. SlotMap.properties

This file is used by the log4j TECAppender to allow mapping of parameters set into

MonitoringEvent to Tivoli slots. The file format is:

<MonitoringEvent parameter> = <Tivoli slot>

Any parameter specified here is explicitly mapped to a Tivoli slot. Parameter names

unspecified in this file are mapped to Tivoli slots tv_attrib[1|2|3] and their values are

mapped to slots tv_value[1|2|3].

4.8.4. Example Usage:

The following sample code writes an ERROR log message of class BTV_app_red, with

parameters "application", "transaction_class" set.

4.8.5. BTV Class Definitions and Rulebase

Class definitions supplied address the following events:

 Internal events - events generated regarding the TransactionVision application itself

 Applications events - events generated by entities that TransactionVision is monitoring

 Unknown events - events that have not fit the criteria to be defined beyond coming from

TransactionVision.

 Escalation events - events of either internal or application that have exceeded count

thresholds

The rules file creates the following classes related to TransactionVision:

 BTV_app_black

 BTV_app_red

 BTV_app_yellow

 BTV_app_green

 BTV_int_black

 BTV_int_red

 BTV_int_yellow

 BTV_int_green

 BTV_unk

The classes BTV_int_[black|red|yellow|green] are used by TransactionVision internally

while the classes BTV_app_[black|red|yellow|green] may be used by application plugin

code. The color black, red, yellow, green indicates the severity level to be FATAL, ERROR,

WARN and INFO respectively.

The following slots will be created:

 message_id

 tv_component

 tv_attrib1

Chapter 4 Reference - Extending the Analyzer

96

 tv_attrib2

 tv_attrib3

 tv_value1

 tv_value2

 tv_value3

 err_code

 application

 event_time

 transact_class

 transact_id

All slots may not be filled by TransactionVision internal messages.

Rulesets have supplied rules for the following:

 First instance rule which takes action upon an event the first time it arrives, or if there

are no other like events in either OPEN or ACK status

 Duplicate rule which identifies an event as a duplicate to a previous event in either

OPEN or ACK status, increments the repeat count on the original event, and drops the

new event

 Escalation rule which takes action when an event has been received in succession for a

defined count and status is of OPEN or ACK

 internal events, which are focused on the TransactionVision application itself.

 97

5. Using the Query Services

This chapter contains the following sections:

 5.1. The Query Document

 5.2. Sample Usage

 5.3. Class QueryService

 5.4. Class QueryDoc

 5.5. Class QueryDoc.WhereClause

 5.5.1. Example

 5.6. Interface Query

 5.7. Interface Cursor

 5.8. Class DataManagerException

The Query Services interfaces provide a means to retrieve XDM mapped data from the

database using an XML based query document. The QueryService interface is the top-level

interface to create and run queries. The methods in this class return an object that

implements the Query interface, which can be used to execute the query. Many of the

methods in this class take a “query doc” argument – an XML document describing the query

to execute. The query object can either be constructed manually with DOM tree operations,

or by using the helper class QueryDoc which offers convenient methods to assemble the

query and which is described in more detail later in this chapter. A Cursor object is returned

from several of the QueryService methods, which allows a user to iterate over the results.

The QueryService implementation converts the input XML query into an SQL statement and

executes it. The Cursor class is a wrapper around the JDBC cursor classes.

The following sections will describe each of these objects and interfaces and show sample

code to document their usage.

5.1. The Query Document

The query document is used to describe the query to be executed. The schema of the XML

document is defined in the file <TVISION_HOME>/config/xmlschema/Query.xsd:

Chapter 5 Using the Query Services

98

A sample query document:

 99

The above query searches for events on the XPath

“/Event/Technology/MQSeries/@apiCode”, that is the lookup column corresponding to the

MQSeries API code for values 8 (MQGET), 11(MQPUT) and 12 (MQPUT1), and retrieves

their primary and secondary time. The result is sorted by primary time in descending order.

Note that you can specify multiple <Group> sections, and the conditions of all <Group>

sections are ORed together in the final query.

The above query searches for WebSphere MQ API “MQGET” events from programs with

name “amqsput”and “amqsput1” and returns all column values.

An AND operation is performed on the two Where clauses in the above query, while an OR

operation is performed on values within the same Where clause. There are two approaches

to reference system model objects in a query document: you can specify the object_id that is

stored in the lookup table, or you can set the attribute “translateValue” to true and compose

a query doc based on object name instead of object id. This attribute causes the data in the

<Value> subelement to be treated as an object name. The corresponding object ID is looked

up and used before submitting the query to the query engine.

For example, the following code looks up an event where the program name is test and the

internal system model table says the object ID of test is 12:

To use the object name instead of the object ID, the code would be as follows:

Chapter 5 Using the Query Services

100

Furthermore, you can use SQL wildcard support for a more powerful query:

The “negated” and “translateValue” attributes are optional and default to „false‟.

By default, if the query document does not contain a Select clause, the query will retrieve all

available columns of the base document type. It is recommended to specify an explicit

Select clause since the retrieval of all column values requires a database join of all tables.

The “BaseDocumentType” specifies the document type that should be used for the base

query and determines the join order in the resulting SQL query. The element is optional, by

default every query is considered to be an event based query with document type “/Event”.

Besides “/Event”, the query engine also supports transaction based queries with the

document type “/Transaction”:

As a third option, the query engine allows to use both document types together. This allows

to define queries that can use both event and transaction data. In this case the

BaseDocumentType has to be set to the document type that should be used as the base table

for the table joins.

5.2. Sample Usage

The following sample code shows how to create a query document, use the QueryService

interface to get a Query object back and then execute the query. The sample counts the

number of events for each MQPUT, MQPUT1 and MQGET. To assemble the query

document the helper class QueryDoc is used.

 101

The method getQueryResults used in the above code snippet is as follows. This method gets

the QueryService instance (QueryService is a singleton object per schema), gets an event list

query object and executes the query, returning the result set cursor.

Chapter 5 Using the Query Services

102

5.3. Class QueryService

public class com.bristol.tvision.datamgr.query.QueryService

extends java.lang.Object

QueryService is the main interface to query the XDM tables. It is a singleton object that has

methods that take a XML query document as the query definition and returns a query object.

This query object can then be executed to obtain a cursor, which is then used in consecutive

calls to retrieve data. All the methods in this interface that get a cursor or data from the

database require a valid JDBC SQL connection handle. The methods throw a

DataManagerException on an error condition occurring.

This interface defines the following methods.

Methods

 instance

This method returns the singleton instance for the service.

Returns:

The return value is a reference to the singleton instance.

Example:

 getEventDetail
public org.w3c.dom.Document getEventDetail(ConnectionInfo con,

 EventID eventId,

 TypeConvService convSvr)

 throws DataManagerException

This method returns the event XML document for a given event.

Parameters:

con The database connection to use

eventId The specified event

convSvr The TypeConvService allows fields like date and time formatting, time-

zone and other conversions to be applied to the retrieved data. A value

of null implies that no conversions are applied. Refer to the section on

TypeConvService for more information on the supported conversions.

Returns:

The return value is an XML document containing event data.

Throws:

DataManagerException - if retrieving of the XML document fails

 getUserDataLength

public long getUserDataLength(ConnectionInfo con,

file:///z:/tvision/docs/api/com/bristol/tvision/datamgr/query/QueryServices.html
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/datamgr/dbtypes/EventID.html
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/util/typeconv/TypeConvService.html
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/datamgr/DataManagerException.html

 103

 EventID eventId,

 int dataNum)

 throws DataManagerException

This method returns the length of a given message data segment for a given event.

Typically, message data is segmented when a data collection filter using data ranges is

used to collect data. In that case, this method allows you to get the size of a particular

data segment.

Parameters:

con - the database connection to use.

eventId The event id the event that the message data belongs to.

dataNum The segment number of the message data, where the first segment has

index 0.

Returns:

The return value is the length of the message data segment.

Throws:

DataManagerException – occurs if the database operation fails.

 getUserData

This method returns a segment of a message data segment. This segment is specified by

a starting offset (offset) and the length (length) to return.

Parameters:

con The database connection to use.

eventId The event id the user data belongs to.

dataNum The segment number of the user data.

offset The starting offset of the segment to retrieve.

length The number of bytes to return.

Returns:

The return value is the message data part of the event of id eventId.

Throws:

DataManagerException - if database operation fails.

Example:

The following code retrieves the first (index 0) segment of the message data buffer into a

byte array.

file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/datamgr/dbtypes/EventID.html
file://ros59524srv/c$/TransactionVision9/AdvancedCustomizationGuide/JavaDoc801/com/bristol/tvision/datamgr/DataManagerException.html

Chapter 5 Using the Query Services

104

 getNextListDocument

public org.w3c.dom.Document getNextListDocument(Cursor cursor,

QueryResultPager pager, QueryResultFormatter formatter)

throws DataManagerException

This method Returns the next XML list document for a given query cursor and pager

object that defines the page size.

Parameters:

cursor The query cursor on the events

pager The pager object (the same instance of the pager object has to be passed

into consecutive calls of get

formatter The formatter object to format the result

Returns:

The XML list document for the page.

Throws:

DataManagerException - if retrieving of the data or assembly of the XML document

fails.

 getCorrelatedEventsQuery

public Query getCorrelatedEventsQuery(ConnectionInfo con,

 EventID eventId,org.w3c.dom.Document queryDoc)

 throws DataManagerException

This method creates a Query object to query the database for all events correlated to the

event denoted by eventId. Execution of the query returns a Cursor that allows access to

all columns specified in select section of the query, as well as to the column

"confidence", “direction”, and “relation_type” of table event_relation.

Parameters:

con The connection to use for executing the query

eventId The eventID

queryDoc The XML query document specifying the rows to include in the result.

The WHERE clauses are ignored.

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

 getQuery

public Query getQuery(Document queryDoc, boolean

useScrollableCursor)

 throws DataManagerException

This method returns a query that is executed across all analyzer schemas / databases.

The results from each analyzer schema are merged together and returned.

 105

Parameters:

queryDoc The XML query document specifying the rows to include in the result.

The WHERE clauses are ignored.

useScrollab

leCursor

Whether to use a scrollable cursor which allows forward and backward

iteration

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

 getQuery

public Query getQuery(ConnectionInfo conInfo, Document queryDoc,

boolean useScrollableCursor)

 throws DataManagerException

This method returns a Returns a query on a single schema (conInfo.schema), executed

on a single database connection (conInfo.con).

Parameters:

conInfo The database connection info, containing the database connection and the

database schema name.

queryDoc The XML query document specifying the rows to include in the result.

The WHERE clauses are ignored.

useScrollab

leCursor

Whether to use a scrollable cursor which allows forward and backward

iteration

Returns:

A Query object ready for execution

Throws:

DataManagerException - if parsing the query doc or executing the query fails

5.4. Class QueryDoc

public class com.bristol.tvision.shared.query.QueryDoc

extends com.bristol.tvision.shared.xml.XMLDocument

The QueryDoc class is a helper class that can be used to assemble a query document.

Constructors

 QueryDoc

public QueryDoc()

This constructor creates new QueryDoc with base document type “/Event”. The root

element 'Query' is created automatically.

 QueryDoc

public QueryDoc(QueryDoc other)

file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/XMLDocument.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/XMLDocument.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/XMLDocument.html
file:///z:/tvision/docs/api/com/bristol/tvision/util/xml/XMLDocument.html

Chapter 5 Using the Query Services

106

This copy constructor creates a new QueryDoc from the given input QueryDoc.

Parameters:

other - QueryDoc instance used to create a new QueryDoc from.

 QueryDoc

public QueryDoc(java.lang.String baseDocType)

This constructor creates an empty QueryDoc for the specified base document type.

 toString

public String toString()

This method returns the XML query document as a string.

Returns:

The return value is a string of the XML document. Returns null on failure.

 insertSelect

public boolean insertSelect(java.lang.String[] xpaths)

This method sets an array of XPath expressions, which form the “SELECT” part of the

query.

 updateWhereClause

public boolean updateWhereClause(WhereClause clause, int groupId)

Add a where clause under given query group. The groupId can be any integer > 0.For

each „Group‟ section in the query document use a different id.

Parameters:

clause where clause

groupId group id

Return:

true if operation succeeds.

 updateBufferClause

public boolean updateBufferClause(BufferClause clause,

 int groupId)

Add a buffer clause under given query group. The groupID can be any integer > 0.

Parameters:

clause buffer clause

groupId group id

Return:

true if operation succeeds.

 deleteWhereClauseByName

public void deleteWhereClauseByName(String name, int groupId)

Delete a where clause under the given query group. GroupId should be the ID of an

existing query group.

 107

Parameters:

name where clause name

groupId group id

 deleteBufferClause

public void deleteBufferClause(int groupId)

Delete a buffer clause under the given query group. GroupId should be the ID of an

existing query group.

Parameters:

groupId - group id

 findWhereClauseByName

public WhereClause findWhereClauseByName(String name, int

groupId)

Retrieve the where clause of given name under given query group. GroupId should be

the ID of an existing query group.

Parameters:

name where clause name

groupId query group id

Return:

WhereClause instance.

 getBufferClause
public BufferClause getBufferClause(int groupId)

Get buffer clause under given query group.

Return:

BufferClause instance

 getWhereClauseNames

public String[] getWhereClauseNames(int groupId)

Get all where clause names under given query group.

Return:

An array of where clause names.

 isLinearSearch
public boolean isLinearSearch()

Check if query document contains linear search clause.

Return:

true if query document is linear searching.

 isBufferSearch

public boolean isBufferSearch()

Check if query document contains buffer clause

Return:

Chapter 5 Using the Query Services

108

true if there‟s at least one buffer clause

 equals

public boolean equals(QueryDoc d)

Check if two queries equal or not.

 groupCompare

public boolean groupCompare(QueryDoc d, int groupId1, int

groupId2)

Compare group of different query doc.

 printQueryDoc

public void printQueryDoc(OutputStream out)

Dump query document to given output stream.

Parameter:

 - output stream instance.

5.5. Class QueryDoc.WhereClause

This is an inner static class in the class QueryDoc. It is a utility class that helps to define the

where condition of the query. This condition is the matching criteria for which events should

be retrieved from the database.

Fields

 name

public java.lang.String name

Name of the where clause

 negated

public boolean negated

Whether the where clause has "not" condition

 xpath

public java.lang.String xpath

XPath for the where clause

 operator

public java.lang.String operator

Operator for the where clause

 values

public java.lang.String[] values

Values for the where clause

 isLinearCond

public boolean isLinearCond

Specifies whether the “Where” clause is a linear search condition.

 needTranslate

 109

public boolean needTranslate

If true, causes all data in the <Value> subelement to be treated as an object name. The

corresponding object ID will be looked up and used before submitting the query to the

query engine.

 valueType

public java.lang.String valueType

 TYPE_BIN

public static final java.lang.String TYPE_BIN

 TYPE_TEXT

public static final java.lang.String TYPE_TEXT

 codePage

public java.lang.String codePage

Constructors

 QueryDoc.WhereClause

public QueryDoc.WhereClause()

This constructor creates an empty object.

 QueryDoc.WhereClause

public QueryDoc.WhereClause(boolean Negated,

 java.lang.String XPath,

 java.lang.String Operator,

 java.lang.String[] Values)

This constructor creates a “WhereClause” object using the given data.

Parameters:

Negated - Whether the where clause has "not" condition

XPath - XPath of where clause

Operator - Operator of where clause

Values - Values of where clause.

 QueryDoc.WhereClause

public QueryDoc.WhereClause(java.lang.String Name,

 boolean Negated,

 java.lang.String XPath,

 java.lang.String Operator,

 java.lang.String[] Values,

 boolean IsLinearCond)

This constructor creates a “WhereClause” object using the given data.

Parameters:

Name - Name of the where clause

Negated - Whether the where clause has "not" condition

XPath - XPath of where clause

Chapter 5 Using the Query Services

110

Operator - Operator of where clause

Values - Values of where clause

IsLinerCond - True if where clause is at linear condition

 QueryDoc.WhereClause

public QueryDoc.WhereClause(java.lang.String Name,

 boolean Negated,

 java.lang.String XPath,

 java.lang.String Operator,

 java.lang.String[] Values,

 boolean IsLinearCond,

 java.lang.String valueType,

 java.lang.String codePage)

This constructor creates a “WhereClause” object using the given data.

Parameters:

Name - Name of the where clause

Negated - Whether the where clause has "not" condition

XPath - XPath of where clause

Operator - Operator of where clause

Values - Values of where clause

IsLinerCond - True if where clause is at linear condition

valueType - Either of the following values. For display purpose only.

 QueryDoc.WhereClause.TYPE_BIN

 QueryDoc.WhereClause.TYPE_TEXT

codePage - The character set code page, that is used when converting the hexidecimal

 value string into text

Methods

 equals

public boolean equals(QueryDoc.WhereClause c)

This method compares two WhereClause objects.

Parameters:

c - another instance of WhereClause

Returns:

true if two are considered be equal

5.5.1. Example

The sample code below creates a query document with a “WhereClause” and a

“SelectClause” using the methods updateWhereClause and insertSelect. The query condition

is named “mqputget” and specifies to match all MQPUT, MQPUT1 and MQGET APIs. The

data fetched out of the database is specified by the selects String array and contains the

XPath expressions for the fields entry time, exit time, API code, host id, program id,

program instance id and sequence number.

QueryDoc qdoc = new QueryDoc();

 111

String[] apiCodes = { String.valueOf(MQDefs.MQPUT),

 String.valueOf(MQDefs.MQPUT1),

 String.valueOf(MQDefs.MQGET)};

QueryDoc.WhereClause clause = new QueryDoc.WhereClause("mqputget",

 true,

XPathConstants.APICODE,

QueryOp.EQ_QUERY_STRING,

 apiCodes,

 false);

String[] selects = { XPathConstants.PRIMARYTIME,

 XPathConstants.APICODE,

 XPathConstants.HOST_ID,

 XPathConstants.PROGRAM_ID,

 XPathConstants.PROGINST_ID,

 XPathConstants.SEQUENCE_NO };

qdoc.updateWhereClause(clause, 1);

qdoc.addSelects(selects);

5.6. Interface Query

public interface com.bristol.tvision.datamgr.query.Query

This interface provides the functionality to run a query. This object is obtained from

methods in the QueryService class.

Methods

 execute

public Cursor execute()

 throws DataManagerException

This method executes the query and returns a Cursor object to be iterated over.

Throws:

DataManagerException - If executing the query fails

 close

public void close()

 throws DataManagerException

This method closes the query and releases the database resources. The query can not be

executed again once close has been called.

Throws:

DataManagerException - If release of the database resources fails

 cancel

public void cancel()

 throws DataManagerException

This method can be called from a different thread to cancel the current query execution.

Chapter 5 Using the Query Services

112

Throws:

DataManagerException - If the cancel fails

5.7. Interface Cursor

public interface com.bristol.tvision.datamgr.query.Cursor

The cursor interface is used to iterate over data returned by a query.

Methods

 getRowCount

public int getRowCount()

This method returns the number of table rows in the query result, or -1 if this feature is

not supported

Returns:

The number of rows

 getColumnCount

public int getColumnCount()

This method returns the number of columns in the query result

Returns:

The number of columns

 getColumnDescription

public java.lang.String getColumnDescription(int index)

This method returns the column description for the specified column. The index of the

first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

 getColumnName

public java.lang.String getColumnName(int index)

This method returns the database column name for the specified column. The index of

the first column is 1.

Parameters:

index - The index of the column

Returns:

The column name

 getRow

public int getRow()

 throws DataManagerException

This method returns the current row for this cursor

 113

Returns:

The current row, or 0 if there is no current row

 getValue

public java.lang.String getValue(int index)

 throws DataManagerException

This method returns the value of the column as a String value. The index of the first

column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

 getValue

public java.lang.String getValue(int index,

 TypeConvService convSvr)

 throws DataManagerException

This method returns the value of the column as a String value (converted by the type

conversion service). The index of the first column is 1.

Parameters:

index The index of the column

convSvr The type conversion service to use.

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

 getIntValue

public int getIntValue(int index)

 throws DataManagerException

This method returns the value of the column as an integer value. The index of the first

column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

 getLongValue

Chapter 5 Using the Query Services

114

public long getLongValue(int index)

 throws DataManagerException

This method returns the value of the column as a long value. The index of the first

column is 1.

Parameters:

index - The index of the column

Returns:

The value of the column, converted into a long

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

 getValue

public java.lang.String getValue(java.lang.String key)

 throws DataManagerException

This method returns the value of the column as a String value. The column is identified

by a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

 getValue

public java.lang.String getValue(java.lang.String key,

 TypeConvService convSvr)

 throws DataManagerException

This method returns the value of the column as a String value (possibly converted by the

type conversion service). The column is identified by a key (XPath for XDM columns).

Parameters:

key The key for the column

convSvr The type conversion service to use

Returns:

The value of the column, converted into a String

Throws:

DataManagerException - If getting the value from the underlying ResultSet fails

 getIntValue

public int getIntValue(java.lang.String key)

 throws DataManagerException

This method returns the value of the column as an integer value. The column is

identified by a key (XPath for XDM columns).

 115

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a integer

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

 getLongValue

public int getLongValue(java.lang.String key)

 throws DataManagerException

This method returns the value of the column as a long value. The column is identified by

a key (XPath for XDM columns).

Parameters:

key - The key for the column

Returns:

The value of the column, converted into a long

Throws:

DataManagerException - if getting the value from the underlying ResultSet fails

 getValueMap

public java.util.Map getValueMap(TypeConvService convSvr)

 throws DataManagerException

This method returns a Map object which contains a mapping from XPath to current

column value, or null if this feature is not supported.

Parameters:

convSvr - The type conversion service to use.

Returns:

A Map object containing the values of the current row

Throws:

DataManagerException - if getting the values from the underlying ResultSet fails

 wasNull

public boolean wasNull()

 throws DataManagerException

This method reports whether the last column read with getValue() or getIntValue had a

value of SQL NULL

Returns:

true if the last column value read was SQL NULL and false otherwise

Throws:

DataManagerException - if accessing the ResultSet fails

Chapter 5 Using the Query Services

116

 next

public boolean next()

 throws DataManagerException

This method moves the cursor forward one row from its current position. A Cursor is

initially positioned before the first row, calls to next() advance the cursor to the next

row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

 previous

public boolean previous()

 throws DataManagerException

This method moves the cursor backwards one row from its current position. A Cursor is

initially positioned before the first row, calls to previous() advance the cursor to the

previous row.

Returns:

true if the new current row is valid; false if there are no more rows

Throws:

DataManagerException - if moving the cursor in the underlying ResultSet fails

 absolute

public boolean absolute(int row)

 throws DataManagerException

This method moves the cursor to an absolute row position.

Parameters:

row - The row to position on

Returns:

true if the new current row is valid; false if cursor is not positioned on valid row

Throws:

DataManagerException - if positioning the cursor in the underlying ResultSet fails

 close

public void close()

 throws DataManagerException

This method closes the cursor and all with the cursor associated database resources

Throws:

DataManagerException - if closing the underlying JDBC resources fails

Linda add beforeFirst and AfterLast

 117

5.8. Class DataManagerException

public class DataManagerException

extends TVisionException

This exception class contains errors from the DataManager package.

Constructors

 DataManagerException

public DataManagerException()

This constructor creates new DataManagerException without a detail message string.

 DataManagerException

public DataManagerException(java.lang.Throwable t)

This method constructs a DataManagerException with the specified embedded

Throwable.

 DataManagerException

public DataManagerException(java.lang.Object[] args)

This method constructs a DataManagerException with the specified logging arguments.

Parameters:

args - the logging arguments

 DataManagerException

public DataManagerException(java.lang.Throwable t,

 java.lang.Object[] args)

This method constructs a DataManagerException with the specified embedded

Throwable and the specified logging arguments.

Parameters:

t - the exception to chain

args - the logging arguments

Methods

 getSQLException

public java.sql.SQLException getSQLException()

This method returns the embedded exception as a SQLException if it is an instance of

SQLException, null otherwise.

Returns:

The SQLException, or null if the embedded exception is not an instance of

SQLException

 isUniqueViolationException

public boolean isUniqueViolationException()

Returns true if the embedded exception is a SQLException indicating a violation of an

unique constraint, false otherwise.

Returns:

Chapter 5 Using the Query Services

118

true if exception is a unique constraint violation

 isOperationCanceledException

public boolean isOperationCanceledException()

This method returns true if the embedded exception is an SQLException indicating that

the executed SQL query has been canceled, false otherwise.

Returns:

true if exception is a SQL cancellation violation

 119

6. Implementing User Events

This chapter contains the following sections:

 6.1. Differences Between User Events and Standard Events

 6.2. User Event Data Model

 6.3. Using the User Event SDK

 6.4. Transporting User Events

 6.5. Analyzing User Events

 6.6. Tutorial: Generating User Events

 6.7. Configuring the Java Agent Points File

TransactionVision supports accepting events created by user applications beyond those

originating from the standard TransactionVision agents. In essence, you can add code in

your application or by configuring the Java Agent points file to generate events in propriety

format. This type of event is known as a user event. In general, your applications are also

responsible for delivering the event to the Analyzer through the standard communication

links. In some cases such as Java environment, the TransactionVision agent can be

configured to generate and deliver user events automatically without custom coding. See the

Using Transaction Management for information about enabling communication links to

process user events in addition to standard TransactionVision events.

User events are defined as XML documents, and should conform to the standard imposed by

the TransactionVision user event XML schema. Just like standard events, user events

contain three sections: standard data, technology data, and user data. TransactionVision

provides a Java User Event SDK for you to use to generate user events.

Each user event should reflect the transaction processing state at the point of origin. Events

can be classified and associated with custom defined system resources (for example,

database or FTP server).

Each user event should reflect the transaction processing state at the point of origin. Events

can be classified and associated with custom defined system resources (for example,

database or FTP server).

Chapter 6 Implementing User Events

120

The TransactionVision Analyzer is capable of processing the standard header section

automatically. By default, it does not perform any processing or analysis on the technology

and user data section. However, you may implement additional beans for customizing the

unmarshaling, modification, and database writing process.

User events should include data for event correlation, unit of work identification, and

transaction classification. The XML rule engine in TransactionVision has been extended to

also handle event-to-event correlation. It is also possible to implement event or transaction

analysis beans for more complicated type processing.

6.1. Differences Between User Events and Standard Events

Standard TransactionVision events are distinguished from user events as follows:

Standard events belong to technologies supported directly by TransactionVision. Sensor and

analysis components are supplied. Events are generated automatically within applications by

the Sensors.

User events are designed and implemented by end users. They belong to the

TransactionVision technology type “UserEvent”. Events can be divided into different

classes according to your design.

The following tables provide a comparison of standard and user events features:

Data Format:

 Standard Events User Events

Standard data format Binary XML

Technology data format Binary/XML XML

User data format BLOB/XML XML

Event Correlation Data Supported by TV Defined by user

Transaction Data (e.g.: UOW

id)

Supported by TV Defined by user

Application A

Event Queue A Event Queue B

Standard Header
Unmarshaller

User Defined Technology
Header Unmarshaller

User Data
Unmarshaller

Event Analysis
Bean

Event Analysis
Bean

System Model
Processor Bean

XML Events

User Events User Events User Events

TransactionVision
Communication

Infrastructure

Event Collection and Analysis Service

Application B Application C

 121

Agent and Transportation Support:

 Standard Events User Events

Configuration Message Yes Yes (optional use subject

to application)

Sensor Components Yes No

SDK Support No Yes

Data Collection Filtering Supported Supported

Event Generation Control By data collection filters By applications AND/OR

data collection filters

Event Packaging Supported Supported

Event Analysis Support:

 Standard Events User Events

Unmarshaling (Standard) Supported by TV Supported by TV

Unmarshaling (Technology) Supported by TV User Defined

Unmarshaling (User Data) Supported by TV User Defined

System Model Update Supported by TV TV/User Defined

Event Modification TV/User Defined TV/User Defined

Database I/O Supported by TV Supported by TV

Event Correlation Supported by TV TV(XML Rules)/User

Defined

Local Transaction Analysis Supported by TV Supported by TV (data to

be defined by users)

Business Transaction Analysis Supported by TV Supported by TV

6.2. User Event Data Model

The following is an example of user event XML content. User events should conform to the

TransactionVision user event XML schema. The two schema files UserEvent.xsd and

TechUserEvent.xsd can be found under the TransactionVision installation configuration

directory <TVISION_HOME>/config/xmlschema:

Chapter 6 Implementing User Events

122

The following shows a sample TransactionVision user event XML document:

 123

This section describes the user event XML elements and attributes. In many cases,

TransactionVision defines the possible constant values for the elements and attributes

through the following class com.bristol.tvision.userevents.Constants. There are also

references to the User Event SDK provided by TransactionVision for assisting the user event

generation process.

/Event (required): This is the root element for a single user event. Any user event must have

one and only one instance of this element.

6.2.1. EventID

/Event/EventID (required): This element servers as the event identifier. It has one required

attribute sequenceNum. This identifier must be unique in the application‟s thread of

execution (program instance) space over the lifetime of the application.

Attributes:

Name Type Use Description

sequenceNum xsd:int required Uniquely identify the event among those

belong to the same thread of execution.

6.2.2. Standard Section

/Event/StdHeader (required): This is the top level element for standard event data.

Attributes:

Chapter 6 Implementing User Events

124

Name Type Use Description

version xsd:int required Major version number for the event. Should be set to

Constants..EVENT_MAJOR_VERSION_LATEST.

minorVersio

n

xsd:int required Minor version number for the event. Should be set to

Constants.EVENT_MINOR_VERSION_LATEST.

uow xsd:string optional A string representing the local unit of work that the

event participates in the application thread of execution.

The analyzer uses this to group events to the same local

transaction.

/Event/StdHeader/HostArch (required): This element describes the host machine architecture

where the application runs: It contains one child element “HostArchValue” that contains a

unique code defined by TransactionVision for identifying the host vendor and operating

system. Java applications should use the User Event SDK to retrieve the host architecture

value.

The host architecture code is a 32-bit integer that is divided into three separate subfields,

these subfields identify

 The byte order (Big or Little Endian)

 The operating system

 The operator system vendor

In the following discussion, bit 0 is the most significant bit, and bit 31 is the least significant

bit.

BYTE ORDER

Mask for binary-integer encoding.

This subfield occupies bit positions 0 through 7 and 24 through 31 within the host

architecture value field. For big endian architecture, this should be set to 0x80000080. For

little endian architecture, this should be set to 0x00000000.

VENDOR

Mask for vendor code.

This subfield occupies bit positions 8 through 15 within the host architecture value field.

The possible values are as follows:

Vendor Name Code Value

Microsoft 0

Sun Microsystem 1

Hewlett-Packard

(HP)

2

IBM 3

Linux 4

Digital 5

OPERATING SYSTEM

Mask for operating system code.

This subfield occupies bit positions 16 through 23 within the host architecture value field.

The possible values are as follows:

Operating System Code Value

Microsoft Windows 3.1 0

 125

Microsoft Windows 95 1

Microsoft Windows 98 2

Microsoft Windows 2000 3

Microsoft Windows NT 4

Sun Solaris 5

Hewlett Packard HP-UX 6

IBM AIX 7

IBM OS390 (CICS) 8

Linux 9

IBMOS390 (Batch) 10

IBM OS400 11

IBM OS390 (IMS) 12

Microsoft Windows ME 13

Tru64 UNIX 14

IBM Sun OS 15

Microsoft Windows XP 16

Microsoft Windows 2003 17

/Event/StdHeader/Encoding (required): This element contains an integer code for identifying

the numerical encoding of the application environment (integer, floating point). Java

applications should use the User Event SDK to retrieve this value.

The Encoding field is a 32-bit integer that is divided into four separate subfields; these

subfields identify:

 The encoding used for binary integers

 The encoding used for packed-decimal integers

 The encoding used for floating-point numbers

 Reserved bits

Each subfield is identified by a bit mask which has 1-bits in the positions corresponding to

the subfield, and 0-bits elsewhere. The bits are numbered such that bit 0 is the most

significant bit, and bit 31 the least significant bit. The following masks are defined:

INTEGER_MASK

Mask for binary-integer encoding.

This subfield occupies bit positions 28 through 31 within the Encoding field.

DECIMAL_MASK

Mask for packed-decimal-integer encoding.

This subfield occupies bit positions 24 through 27 within the Encoding field.

FLOAT_MASK

Mask for floating-point encoding.

This subfield occupies bit positions 20 through 23 within the Encoding field.

RESERVED_MASK

Mask for reserved bits.

This subfield occupies bit positions 0 through 19 within the Encoding field.

Chapter 6 Implementing User Events

126

/Event/StdHeader/CCSID (required): This element contains an integer code for identifying

the character code set of the application environment. The User Event SDK defines the

default value as UTF-8 for Java environment.

/Event/StdHeader/PrimaryTime (required): This element contains a string representing the

primary time stamp of the event up to microseconds. The format of the string is

yyyyMMddhhmmssuuuuuu, where yyyy is the 4-digit year field, MM is the 2 digit month

field, dd is the 2-digit day field, hh is the 2-digit 24-hour based hour field, mm is the 2-digit

minute field, ss is the 2-digit second field, and uuuuuu is the 6-digit microsecond fields. The

User Event SDK provides support of retrieving and rendering the time stamp value.

For cases where a distinct entry and exit time stamps are to be associated with a single event,

set this and the SecondaryTime element to the entry and exit time respectively.

/Event/StdHeader/SecondaryTime (required): This element contains a string representing the

secondary time stamp for the event. The format is similar to that for the primary time

element. As stated before, this can be set to hold the exit time stamp of an event. The

secondary time is set to the primary time value if this element is absent.

/Event/StdHeader/ClientTimeSkew (optional): This element contains a long value defining

the time skew (in milliseconds) between the two hosts where (a) the application runs and (b)

the event queue/manager receiving the event resides. If the event queue/queue manager

exists on the same host where the application runs, this should be set to zero. The time skew

is assumed to be zero if this element is absent.

/Event/StdHeader/TechName (required): This element contains a string that identifies the

technology. This should always be set to “UserEvent”. Java applications can retrieve this

value through the constant variable TECH_NAME_USEREVENT defined in the Constants

class.

/Event/StdHeader/Host (required): This element contains a string that identifies the host

where the application runs.

/Event/StdHeader/ExecPoint (required): This element contains that an integer that is a

numerical byte code defined by TransactionVision for identifying the monitored method

execution point. For user events, this should always be set to the value Constants.EP_EXIT

(=2).

/Event/StdHeader/DataCollMode (required): This element contains an integer that is a

numerical byte code defined by TransactionVision for identifying the data collection mode.

For user events, the two possible values are “Collect technology and user data”

(Constants.DATA_COLL_MODE_ALL_MASK , value = 7) or “Collect technology data

only, no user data” (Constatns.DATA_COLL_MODE_ARG_MASK, value = 3).

/Event/StdHeader/UserName (optional): This element contains a string that identifies the

user context of the running application. This can be set to the user id running the application.

/Event/StdHeader/ProgramPath (optional): This element contains a string that defines the

application path on the host. This is not needed for Java programs.

/Event/StdHeader/ProgramName (required): This element contains a string that defines the

application name.

/Event/StdHeader/ProgramInstance (required): This element contains one or more child

elements that together identify the runtime thread of execution (program instance) where the

event occurs. For example, this can be threads in JVM on distributed platforms. The actual

elements and their meaning are specific to the platform and environment.

For Java environment, the program instance identifier contains the following three elements:

 127

/Event/StdHeader/ProgramInstance/SensorStartTime: This element contains a string that

represents a timestamp in milliseconds. This should be a value unique across all application

threads. The User Event SDK can automatically generate a value based on the time when the

SDK singleton helper class is created. The application can choose to overwrite with another

reference time stamp that is unique in the application space.

/Event/StdHeader/ProgramInstance/ThreadStartTime. This element contains a string that

represents a timestamp in milliseconds. This should be a value unique in the application

thread where the event happens. The User Event SDK can automatically generate this value.

The application can choose to overwrite with another reference time stamp if it wishes.

/Event/StdHeader/ProgramInstance/ThreadIDHash. This element contains a string that

represents a hash value for the Java thread ID. The User Event SDK can automatically

generate this value. Unlike the other two attributes, the SDK does not allow user to

overwrite the default value.

Important. Java applications should avoid generating this element directory and leverage the

SDK support instead.

6.2.3. Technology Section

/Event/Technology: This is the top level element for technology data. It has exactly one

child element /Event/Technology/UserEvent. All the standard child elements for the

UserEvent element are optional. The technology section can contain any number of

application defined child elements attached to the UserEvent element.

The standard elements are defined as follows:

/Event/Technology/UserEvent/Technology: This element contains a string that defines the

fine grain technology category among different user event types.

/Event/Technology/UserEvent/Class: This element contains a string that describes the class

or category type of information within the technology. ”.

/Event/Technology/UserEvent/Method: This element contains that a string that describes the

method/API of the event (e.g.: insert/update/query for JDBC).

/Event/Technology/UserEvent/DataSize: This element contains an integer that represents the

user data length.

/Event/Technology/UserEvent/CompCode: This element contains an integer representing the

event completion (return) code. TransactionVision defines the possible values in the

Constants class.

/Event/Technology/UserEvent/Status: This element contains a string that representing the

status (reason) code supplementing the completion code. For example, this can be the SQL

error code further explaining the JDBC operation result.

/Event/Technology/UserEvent/Tracking: This element contains a mandatory string attribute

id that defines a unique ID for grouping events belonging to the same business transaction.

In other words, events having the same tracking ID would be put into the same business

transaction record in TransactionVision. This is different from the unit of work attribute

(/Event/StdHeader/@uow) since the unit of work ID is used for grouping events into the

same LOCAL transaction.

Attributes:

Name Type Use Description

Chapter 6 Implementing User Events

128

id xsd:string Required A tracking string for correlating events

belongs to the same business transaction

across multiple applications and platforms.

/Event/Technology/UserEvent/UserDataRef: This element serves as a reference tag to the

user data (if presented). It has a single mandatory integer attribute “chunk” that should

always be set to the value 0.

Attributes:

Name Type Use Description

chunk xsd:int required A tracking string for correlating

events belongs to the same

business transaction across

multiple applications and

platforms.

/Event/Technology/SystemModel: A user event can be associated with a system resource.

For example, a JDBC event can be associated with the database table that the JDBC call

operates on. This element defines the model for any such system resource. The system

model can have one or more child elements /Event/Technology/SystemModel/Object. Each

object element contains a user defined system object. The object element has the following

mandatory attributes:

Attributes for /Event/Technology/SystemModel/Object:

Name Type Use Description

id xsd:int required The object local ID in the system model and event

context. The event element for the event system

resource /Event/Technology/Object uses this ID for

identifying the object.

typeId xsd:int required The object type ID in the Analyzer project-wise system

object model table. Any use defined object type should

have a type ID value greater than a well-defined base

value Constants.USEROBJECT_TYPE_BASE (=

100000).

name xsd:string required The object name. In general, this should be a simple

string.

sig xsd:string required A string that services as the object unique signature in

the Analyzer project system object table. The signature

should have the format <typeId>/<signature name>.

TypeId is the global object type ID, while “signature

name” can be any string chosen by the user. For

example, a database table MYTABLE can have the

signature 100100/MYTABLE, where 100100 is the type

ID for database tables.

/Event/Technology/Object: This element identifies the system resource object associated

with this event. For example, this can refer to a database table for a JDBC insert event. The

presence of this element implies that the application interacts with the system resource in the

scope of the event lifetime.

 129

Attributes:

Name Type Use Description

id xsd:int required The local object ID for this object, as defined in the

local system model.

dir xsd:int required An integer defining the direction of interaction of the

application and resource object. The two possible values

are Constants.USEREVENT_PATH_IN and

Constants..USEREVENT_PATH_OUT. PATH_IN

indicates that data flows from resource to application,

and PATH_OUT implies the opposite. For example, if

an event is supposed to represent a database query, the

direction should be set to PATH_OUT, implying the

application is retrieving data from the database

(resource).

latency xsd:string optional A long value representing the latency of the application-

resource interaction in milliseconds. For example, for a

database query event, this can represent the amount of

time taken for the query to complete.

6.2.4. User Data Section

/Event/Data (optional): This is the top level element for storing any user payload data. User

data should also be in XML format. There should be one child element /Event/Data/Chunk

attached to the /Event/Data element. The user data document should then be attached to the

Chunk element as its child. The following attributes should be set for the Chunk element:

Attributes:

Name Type Use Description

seqNo Xsd:int required This should always be set to 0.

blobType Xsd:int required Identify the type of the data attached. This should

always be set to Constants.XMLEVENT_BLOB_XML

(=2).

ccsid Xsd:int required This should be set to the character code set for the user

data.

from xsd:int required This should always be set to 0.

to Xsd:int required This should be set to the user data length minus 1.

6.3. Analyzing User Events

This section discusses the specific customization or configuration for user event analysis.

For information on correlating user events into transactions, see section 4.5. For information

about extending the system model for user events, see section 4.6.

6.3.1. Event Unmarshalling

By default, TransactionVision Analyzers would extract the user event XML document from

the event messages, and convert it into the internal XMLEvent class object

(com.bristol.tvision.services.analysis.xml.XMLEvent). The XMLEvent class implements the

interface org.w3c.dom.Document and can be manipulated like any other XML document.

Since the user event is in XML format, minimal modifications are needed to the incoming

document.

Chapter 6 Implementing User Events

130

Should you decide to further customize the unmarshalling logic for the technology and user

data section, you can elect to develop a bean implementing the

com.bristol.tvision.services.analysis.unmarshal.IUnmarshal interface. There is one

difference between unmarshalling user events and standard Sensor events. In the former

case, the whole XML document has already been read off from the input stream and

attached to the XMLEvent structure. Thus the unmarshalling logic for user event should not

attempt to read from the event input stream. Instead, it should focus on modifying the

XMLEvent document instead.

6.3.2. Local Transaction Analysis

TransactionVision implements a local transaction generation algorithm through the bean

com.bristol.tvision.services.analysis.eventanalysis.UserEventLocal Transaction for all user

events. To group user events into the same local transaction, this bean uses the user event

unit of work ID (/Event/StdHeader/@uow) and the program instance identifier.

6.3.3. Business Transaction Analysis

By default, the Analyzer is capable of putting user events belonging to different local

transactions into the same business transactions by either event relations or tracking ID.

In the first case, two local transactions containing user events are put into the same business

transaction if at least one event relation exists between events from either local transaction.

In the second case, two local transactions containing user events are put into the same

business transaction if at least one event from each local transaction shares the same tracking

id (/Event/Technology/UserEvent/Tracking/@id).

6.3.4. Statistical Analysis

For user events that have an associated system object (resource), the Analyzer will generate

aggregated latency statistics over fixed intervals. Individual latency statistics will be

gathered for each application-system object pair with a particular flow direction.

For example, if there are two applications reading from and writing to five different database

tables, a total of twenty (20) data sets will be created and updated for every application-

resource combination in either flow direction (20 = 2 x 5 x 2).

The statistics computation and aggregation is handled by the Java bean

com.bristol.tvision.services.analysis.statistics.UserEvent StatisticsBean. This can be enabled

and disabled by modifying the corresponding entry in the Beans.xml file.

6.4. Tutorial: Generating User Events

This section provides a tutorial sample that demonstrates how to generate user events with

the TransactionVision User Event SKD and helper classes.

The source code and build files for this tutorial are located in the TransactionVision

<TVISION_HOME>/samples/userevent/tutorial directory. This directory contains the

following files:

File Description

build.xml Ant build file

readme.txt Readme file for the tutorial

SystemModelDefinition.xlm System model definitions for this sample

TechUserEvent.xsd XML schema for user events

 131

TVisionUserEvent.java Source code for the tutorial

tvUserEvent.bat Script to run the sample on Microsoft

Windows.

tvUserEvent.sh Script to run the sample on UNIX

platforms.

UserEvent.xsd XML schema for user evnets

6.4.1. Sample Overview

This sample generates a single user event representing a JDBC query activity. It delivers the

event message through WebSphere JMS. The user can define the destination WebSphere

MQ queue manager and queue to receive the generated user event.

First, examine the main routine of this Java sample, found in TVisionUserEvent.java:

The majority of the code in this method validates the command line arguments and handles

the JMS connection for delivering the user event message. This code for this has been

omitted in the above code snippet.

The sendEvent() method contains the code that generates and delivers the user event

In the following code segment, the UserEventHelper class records the start and end time of

the JDBC activity. The sleep call simulates the elapsed time of a JDBC call.

The following code segment creates a system object to represent the database named

“tradedb01.” Note that the system object type identifier (100001) must be consistent with the

data in the SystemModelDefinition file in the TransactionVision configuration directory.

Chapter 6 Implementing User Events

132

Next, the sample prepares the user data for a book order in XML format:

The following code uses the User Event SDK UserEventSkeleton class to generate the basic

XML document for the user event standard header section. It uses several set methods in the

UserEventSkeleton class to set the context data such as program name, event primary and

secondary time, and unit of work identifier.

 133

Next, add a reference to the database system model object associated with the JDBC activity

you are reporting. In this case, the sample reports an inbound activity (query), the

application reading data from the database:

The following code segment generates a unique transaction tracking ID for grouping events

of the same business transaction:

The following code writes details about the system model object for the database by using

the serialization method toXML() of the system model object class:

We add the UserDataRef element as a reference to the user data for this event:

We have now completed the technology section of the user event:

The following code segment attaches the user data to the event

The event document has now been completed:

Optionally, we can validate the document generated against the XML schema

UserEvent.xsd. This sample has a copy of this schema file in the sample directory. This

schema file is also available in the TransactionVision configuration directory. The validation

code can be found in the tutorial Java source file:

Chapter 6 Implementing User Events

134

Finally, we are ready to deliver the user event through JMS. Note that since this sample uses

JMS to deliver the user event, we may get TransactionVision JMS events for these activities

if the sample is run in a Sensor-enabled environment. The SDK helper class allows you to

temporarily disable such JMS events generation through the method

disableTVisionJMSSensor().

All user event JMS messages should have the correlation ID set to the well-defined value

Constants.TVISION_USEREVENTS_ID:

Now that we have delivered the message, we can restore the normal behavior of the JMS

Sensor with restoreTVisionJMSSensor().

6.4.2. Building the Tutorial Sample

Use the included ant file to build this tutorial. Make sure you update the build.xml file so

that the following directory properties are set according to your local environment:

Property Description

mq.dir The WebSphere MQ installation directory

tvision.dir The TransactionVision installation directory

This sample uses the XML schema files UserEvent.xsd and TechUserEvent.xsd for

validating the user event XML document generated. These two files can also be found in the

config/xmlschema directory under the TransactionVision installation directory.

This sample makes use of the user event SDK tvisionuserevents.jar under the

TransactionVision installation (<TVISION_HOME>/java/lib/tvisionuserevents.jar).

6.4.3. Running the Tutorial Sample

To set up a TransactionVision project, run the tutorial sample, and collect user events,

perform the following steps:

Merge the provided SystemModelDefinition.xml file with the one in the TransactionVision

installation under the directory <TVISION_HOME>/config/sysmodel.

Create a TransactionVision Analyzer with one communication link.

 135

Make sure the communication link is created with User Event Processing support enabled.

This option is available in the Miscellaneous Information section of the communication link

editing user interface.

This sample makes use of JMS (WebSphere MQ) for delivering the user event messages.

Make sure the event queue created can be accessed by the sample through MQ SERVER

connection.

Before running the sample, make sure you turn on Analyzer collection.

Use the script tvUserEvent.[bat|sh] to run the sample. The script takes two required

command line arguments which specify the event queue name and queue manager name

respectively (in the specified order).

For example, if the event queue has name TVISION.EVENT.QUEUE on the queue manager

trading, run the sample as follows:

After a successful run of the sample, you should find a single user event in the project

database.

6.5. Configuring the Java Agent Points File

You can include custom company methods as part of the TransactionVision Transaction

path to be presented as events. These methods are not normally included in the Event

History unless they are part of the standard Java application framework such as JMS, EJB,

Servlets, JSP, etc.

To include these custom events, modify the auto_detect.points file and either create a

TransactionVision only point or modify an existing Diagnostics point to specify a

TransactionVision user event by specifying the tv:user_event tag on the details line

For example:

For more information about creating and modifying existing instrumentation points, see

advanced instrumentation in the HP Diagnostics Installation and Configuration Guide.

 137

7. Database Schema

This chapter contains the following sections:

 7.1. System Model Object tables

 7.2. Event Tables

 7.3. Event Relationship Tables

 7.4. Transaction Tables

 7.5. Statistics Tables

 7.6. RUM processing Tables

 7.7. Other internal tables

7.1. System model object tables

The System Object Model tables are used to store all the System Model objects and the

relationships between them. System model objects include general resources as well as

technology-specific resources.

7.1.1. Object Types

As such, different technologies will be assigned different ranges of object types. This is

described in the table below.

Object Types

Value

(range)
Description

0 – 999 Basic System Model Objects (hosts,

technologies, Program Instances, etc.)

1 Host

2 Not used

3 Program

4 Program Instance

5 z/OS Jobname

Chapter 7 Database Schema

138

6 z/OS Jobstep

7 z/OS CICS Region

8 z/OS CICS Transaction

9 z/OS IMS ID

10 z/OS IMS Region Type

11 z/OS IMS Region ID

12 z/OS IMS Transaction

13 z/OS IMS PSB

14 OS400 Jobname

15 z/OS CICS Task

16 User Name

17 Proxy

18 Statistics

100 Transaction Class

510 CICS Task

511 CICS Transaction

512 CICS Region

520 Batch TCB

521 Batch Jobstep

522 Batch Job

1000-1999 MQSeries Objects

1000 Unknown type

1001 None

1002 Queue

1003 Local Queue

1004 Model Queue

1005 Alias Queue

1006 Remote Queue

1007 Cluster Queue

1008 Local Cluster Queue

 139

1009 Alias Cluster Queue

1010 Remote Cluster Queue

1011 Namelist

1012 Process

1013 Queue Manager

1014 Distribution List

1015 Cluster

1016 WBI Message Flow

1017 WBI Broker

1018 Connection Name

1019 Cluster Name

1020 ReplyTo Queue

1021 ReplyTo Queue Manager

2000 Proxy Object

3000-3100 Servlet Objects

3000 Server

3001 UI/Job Server

3002 Servlet

3003 Internet

3004 JSP

3005 EJB

3006 EJB Method

3007 Probe

3008 Probe Group

3101-3199 JMS Objects

3101 Topic

3102 Queue

3103 Connection Name

3104 Tibco Global Queue

3105 Tibco Global Topic

Chapter 7 Database Schema

140

3106 Sonic Broker URL

3107 Sonic Node

3108 Sonice Topic Routing Definition

3109 Sonic Queue Routing Definition

3110 Sonic Cluster

3111 Sonic Cluster Queue

3112 Sonic Cluster Topic

3113 BEA Server

3114 Sonic Domain

4000-4999 CICS Objects

4001 SYSID

4002 APPLID

4003 TREMID

4004 File

4005 TD Queue

4006 TS Queue

4007 TD Alias Queue

5000-5999 User Event Objects

5001 User Event Class

5002 User Event Method

5003 User Event Status

5004 User Event Technology

6000-6999 JDBC Objects

6001 Database

6002 Schema

6003 Table

6004 View

6005 Alias

6006 SQL

6007 DB Object Group

 141

6008 SQL Statement

6009 Procedure

6010 Database URL

7000-7999 RUM Objects

7001 End User Name

7002 Country

7003 State

7004 City

7005 End User Group

8000-8999 Tuxedo Objects

8001 Queue

8002 Queue Space

8003 Service

7.1.2. Signatures

Each System Model Object has a unique object id that is assigned when the object is inserted

into the table. In addition to this unique identifier, each object can be considered to have a

signature that identifies that object uniquely. The signature of the object can be generated

from event data and looked up in the SYS_MDL_OBJECT table to find the corresponding

unique object id. The signature can be uniquely generated from the attributes of the object

in an event.

The general format for a signature is a list of all the successor objects from left (highest) to

right (the final object), separated by forward slashes. In addition, the object type identifier

(see table above) is a prefix to the signature since two objects of different types might

otherwise have the same signature.

Signature Examples

Object Type Example Signature

Host 1/macbeth

(Object type/hostname)

Program Instance

(Unix/NT)

4/U/2001080617592300000/132/1

(Object type/platform id/start time/process id/thread id)

Program Instance

(CICS – z/OS)

2/C/CICS/ABCD/A0F1

(Object type/platform id/CICS region/transaction id/task

id)

MQSeries Queue 1001/qm1 (Object type/queue manager name)

Chapter 7 Database Schema

142

Manager

MQSeries Queue

(local)

1002/qm1/LOCAL.QUEUE

(Object type/queue manager/queue)

MQSeries Queue

(alias)

1003/qm1/ALIAS.QUEUE

(Object type/queue manager/queue)

SYS_MDL_OBJECT

PK OBJECT_ID BIGINT

 SIGNATURE VARCHAR(255)

 OBJECT_NAME VARCHAR(128)

 OBJECT_TYPE INTEGER

 OBJECT_DOC VARCHAR(3200)

 CMDB_ID VARCHAR(32)

SYS_MDL_OBJECT_ATTR

PK OBJECT_ID BIGINT

PK ATTR_NAME VARCHAR(124)

 ATTR_VALUE VARCHAR(215)

SYS_MDL_OBJECT_RELATION

PK OBJECT_ID1 BIGINT

PK OBJECT_ID2 BIGINT

 RELATION_TYPE INTEGER

 DIRECTION INTEGER

 CMDB_ID VARCHAR(32)

7.1.3. System Model Relationships

The following table shows the relationship between system model objects:

Relation

Type

Relation Name Examples of the Relationship

1 OWNS A host owns all the programs it hosts.

A program owns its program instances.

A queue manager owns all the queues it

hosts.

A host owns all application servers it hosts.

An application server owns all web

(enterprise) applications.

A web application owns all servlets, JSP, and

EJB it contains.

An EJB owns all the methods it defines.

An IMS control region job owns transaction.

A z/OS job owns all its job steps.

A TIBCO connection owns TIBCO targets.

2 CONTAINS A name List and its contents.

 143

Relation

Type

Relation Name Examples of the Relationship

3 USES A queue uses a connection name.

A program uses a queue.

A program uses its EJB and servlets.

A CICS transaction uses programs.

A CICS program uses CICS PC programs.

A CICS program uses CICS files.

A CICS program uses CICS TD queues.

4 RESOLVETO An alias queue and the base queue it refers to

A remote queue and the queue it refers to

A model queue and the dynamic queue

generated from it

A CICS TD queue and indirect queue

5 ABSTRACTS Cluster name and cluster object

Cluster object and cluster queue

6 ALIAS Program instance and MQSI message flow

Program instance and MQSI broker

7 ONE_TO_ONE EJB entity beans relationship

8 ONE_TO_MANY EJB entity beans relationship

9 MANY_TO_ONE EJB entity beans relationship

10 MANY_TO_MANY EJB entity beans relationship

11 STARTS Two CICS transactions; one starts the other

12 BRIDGE_TO TIBCO bridge source and target

13 ROUTE_TO TIBCO route source and target

14 ROUTE_TO_FROM TIBCO route source and target

15 DEPENDS_ON Transaction class and program

7.1.4. System Model Attributes

For each system model object an arbitrary number of additional attributes can be stored in

the SYS_MDL_OBECT_ATTR table. Each row in the table contains the object id of the

corresponding system module object, and a name/value pair for the attribute and its value.

Chapter 7 Database Schema

144

7.2. Event Tables

Data in the event tables is split up into three basic sections:

 The core event data

 The user data

 Lookup tables

The core event data contains a unique compound key identifying that event and an XML

document, which contains the entire event data (minus user data which was not

unmarshalled into XML.) The XML data gets stored in LOB columns. For performance

reasons, the Analyzer can be configured to store the XML data into a VARCHAR column

instead. Should the event XML data exceed the maximum size of this VARCHAR column, a

separate row will be inserted into the EVENT_OVERFLOW table, which defines the

event_data as LOB. To configure the Analyzer to use VARCHAR, edit the DatabaseDef.xml

file in <TVISION_HOME>/config.datamgr and replace:

For ORACLE:

with the following:

For DB2 and SQL Server:

with the following:

Note: This change will only improve performance if most of the events will fit into the

LONGVARCHAR/VARCHAR column (thus minimizing the need to use the overflow

table). In DB2 the maximum size for the VARCHAR is dependent on the database

tablespace page size and should be determined by a DBA.

 145

The PARTIAL_EVENT table is a temporary container for Entry- or Exit only events. If the

corresponding partial event arrives in the Analyzer within a defined time interval, a

matching thread running in the Analyzer will merge those events and store them in the

EVENT table as usual.

User data that was not unmarshalled into XML is stored in the USER_DATA table in the

raw format (no data conversion). As with the XML event data, the Analyzer can be

configured to use VARCHAR instead of BLOB columns. Edit the DatabaseDef.xml file in

<TVISION_HOME>/config.datamgr and replace:

For ORACLE:

with the following:

Or alternatively (similar to EVENT) you can define the table with multiple RAW columns:

For DB2 and SQL Server:

with the following:

Note that if any values or data types are changed in DatabaseDef.xml, the corresponding

tables must be dropped and then re-created for the changes to take effect.

The lookup tables are used to store fields for quick searching; all columns in these tables are

indexed. The XML to Database Mapping (XDM) file uses XPath statements to identify

which data items are to be extracted from the XML event data and placed into the lookup

tables. Lookup tables for the basic event data and the technology/platform specific event

data are shown in the following figures.

Chapter 7 Database Schema

146

XML Database Mapper

USER_DATA_OVERFLOW

PK proginst_id LARGEINT

PK sequence_no INTEGER

PK data_num INTEGER

 user_data BINARY(10485760)

 event_time TIMESTAMP

EVENT_OVERFLOW

PK proginst_id LARGEINT

PK sequence_no INTEGER

 event_data CHAR(1048576)

 event_time TIMESTAMP

PARTIAL_EVENT

PK proginst_id LARGEINT

PK sequence_no INTEGER

PK event_type INTEGER

 event_data BINARY(10485760)

 event_time TIMESTAMP
USER_DATA

PK proginst_id LARGEINT

PK sequence_no INTEGER

PK data_num INTEGER

 type INTEGER

 ccsid INTEGER

 user_data BINARY(524287)

 event_time TIMESTAMP

EVENT

PK proginst_id LARGEINT

PK sequence_no INTEGER

 event_data CHAR(1048576)

 event_time TIMESTAMP

EVENT_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 host_id LARGEINT

 program_id LARGEINT

 tech_id INTEGER

 username_id LARGEINT

 primary_time CHAR(20)

 secondary_time CHAR(20)

 local_trans_id LARGEINT

 seq_id LARGEINT

 hierarchy CHAR(255)

 event_time TIMESTAMP

SERVLET_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 status INTEGER

 method INTEGER

 servlet_id LARGEINT

 webapp_id LARGEINT

 appserver_id LARGEINT

 caller_id LARGEINT

 data_size INTEGER

 event_time TIMESTAMP

 probe_id LARGEINT

 probe_group_id LARGEINT

 uri_id LARGEINT

 client_ip CHAR(20)

 url_id LARGEINT

 bpm_txn_id LARGEINT

 bpm_txn_flow_id LARGEINT

 bpm_location_id LARGEINT

 bpm_biz_app_id LARGEINT

OS390_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 jobname LARGEINT

 jobstep LARGEINT

 cicstask LARGEINT

 cicsregion LARGEINT

 cicstransaction LARGEINT

 imsregionid LARGEINT

 imsregiontype LARGEINT

 imsid LARGEINT

 imstransaction LARGEINT

 imspsb LARGEINT

 event_time TIMESTAMP

JDBC_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 class INTEGER

 method INTEGER

 appserver_id LARGEINT

 webapp_id LARGEINT

 db LARGEINT

 caller_id LARGEINT

 sql_id LARGEINT

 fullsql_id LARGEINT

 sql_stmt INTEGER

 sql_result INTEGER

 sql_code INTEGER

 sql_state CHAR(16)

 stat_time INTEGER

 stat_gets INTEGER

 stat_iter INTEGER

 event_time TIMESTAMP

JMS_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 method INTEGER

 class CHAR(200)

 appserver_id LARGEINT

 webapp_id LARGEINT

 topic_id LARGEINT

 queue_id LARGEINT

 msg_id CHAR(255)

 correl_id CHAR(255)

 app_id CHAR(196)

 user_id CHAR(84)

 put_ts LARGEINT

 putappltype INTEGER

 qmgr_id LARGEINT

 mqobj_id LARGEINT

 caller_id LARGEINT

 error_code CHAR(196)

 exception_class INTEGER

 data_size INTEGER

 conn_id LARGEINT

 event_time TIMESTAMP

CICS_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 api INTEGER

 api_type INTEGER

 terminal_id LARGEINT

 appl_id LARGEINT

 start_code CHAR(4)

 resource_id LARGEINT

 EIBRESP INTEGER

 datasize INTEGER

 event_time TIMESTAMP

EJB_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 ejb_id LARGEINT

 method_id LARGEINT

 ejb_type INTEGER

 appserver_id LARGEINT

 app_id LARGEINT

 caller_id LARGEINT

 status INTEGER

 event_time TIMESTAMP

 caller_pii LARGEINT

OS400_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 as400jobname LARGEINT

 event_time TIMESTAMP

BTTRACE_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 apicode INTEGER

 severity INTEGER

 event_time TIMESTAMP

 147

7.3. Event Relationship Tables

EVENT_RELATION table stores the relationship between two events determined by

technology specific event correlation logic. If the relationship type is defined as

BIDIRECTION, there will be two entries in this table: event1 -> event 2 and event2 ->

event1. If the logic determines the two events are correlated in certain way with 100%

certainty, the confidence factor is set to STRONG_RELATION, otherwise

WEAK_RELATION.

RELATION_LOOKUP table stores a correlation lookup id for each event. The logic to

generate this lookup id is specific to the technology used by this event.

EVENT_RELATION

 proginst_id LARGEINT

 sequence_no INTEGER

 proginst_id2 LARGEINT

 sequence_no2 INTEGER

 relation_type INTEGER

 direction INTEGER

 confidence INTEGER

 latency INTEGER

 event_time TIMESTAMP

RELATION_LOOKUP

 lookup_key CHAR(255)

 type_id INTEGER

 proginst_id LARGEINT

 sequence_no INTEGER

 tech_id INTEGER

 event_time TIMESTAMP

 keyrule_id INTEGER

EVENT

PK proginst_id LARGEINT

PK sequence_no INTEGER

 event_data CHAR(1048576)

 event_time TIMESTAMP

7.4. Transaction Tables

Local and Business Transactions are created and updated during the Event Analysis phase in

the Analyzer. The local transaction analysis populates the LOCAL_TRANSACTION table

and links the event data to the corresponding transaction through the column local_trans_id

in the table EVENT_LOOKUP. The BUSINESS_TRANSACTION table is defined through

an XDM file and populated during business transaction analysis.

Chapter 7 Database Schema

148

XML Database Mapper

BUSINESS_TRANSACTION

PK business_trans_id LARGEINT

 class_id INTEGER

 stable_txn_id LARGEINT

 starttime CHAR(20)

 endtime CHAR(20)

 responsetime LARGEINT

 tv_starttime CHAR(20)

 tv_endtime CHAR(20)

 tv_responsetime LARGEINT

 rum_responsetime LARGEINT

 state INTEGER

 result INTEGER

 exception_state INTEGER

 label CHAR(128)

 update_id LARGEINT

 timerule_state INTEGER

 sla_state INTEGER

 events_stored INTEGER

 topology_doc CHAR(131072)

 value NUMERIC(15,3)

 txn_timestamp TIMESTAMP

 rum_guid CHAR(255)

 eug_subnet_id LARGEINT

 location_id LARGEINT

 is_bpievent CHAR(1)

LOCAL_TRANSACTION

PK local_trans_id LARGEINT

 key_name CHAR(255)

 business_trans_id LARGEINT

 starttime CHAR(20)

 tracking_id CHAR(255)

 tracking_seq INTEGER

 parent_txn_key CHAR(255)

 multi_tracking INTEGER

 txn_timestamp TIMESTAMP

TRACKING_OVERFLOW

 tracking_id CHAR(255)

 tracking_seq INTEGER

 parent_txn_key CHAR(255)

 local_trans_id LARGEINT

 txn_timestamp TIMESTAMP

7.5. Statistics Tables

The statistics tables contain data used by various Reports in the TransactionVision UI/Job

Server. The data in the TOPOLOGY_STATS and JDBC_STATS is collected by the

Analyzer and used for the static Topology View and as a Datasource for event based reports.

The BAC_SAMPLE_STATISTICS is used for delivering data samples to BSM.

 149

7.5.1. Physical model

BAC_SAMPLE_STATISTICS

PK sample_timestamp TIMESTAMP

PK class_id INTEGER

 start_time TIMESTAMP

 end_time TIMESTAMP

 seq_no INTEGER

 sum_response_time LARGEINT

 sum_tv_response_time LARGEINT

 sum_rum_response_time LARGEINT

 max_response_time LARGEINT

 max_response_time_txnid INTEGER

 exp_tx_count INTEGER

 late_tx_count INTEGER

 failed_tx_count INTEGER

 tx_count INTEGER

 total_tx_value LARGEINT

 total_failed_tx_value LARGEINT

 total_exp_tx_value LARGEINT

 total_late_tx_value LARGEINT

TOPOLOGY_STATS

PK start_time TIMESTAMP

PK end_time TIMESTAMP

PK source_objid LARGEINT

PK dest_objid LARGEINT

PK link_objid LARGEINT

PK tech_id INTEGER

 msg_success INTEGER

 msg_warn INTEGER

 msg_error INTEGER

 putget_success INTEGER

 putget_warn INTEGER

 putget_error INTEGER

 byte_success LARGEINT

 byte_warn LARGEINT

 byte_error LARGEINT

 min_latency INTEGER

 max_latency INTEGER

 avg_latency REAL

 latency_count INTEGER

 type INTEGER

JDBC_STATS

PK start_time TIMESTAMP

PK end_time TIMESTAMP

PK source_objid LARGEINT

PK dest_objid LARGEINT

PK link_objid LARGEINT

PK tech_id INTEGER

 min_latencycur INTEGER

 max_latencycur INTEGER

 avg_latencycur REAL

 latency_countcur INTEGER

 cursor_iter INTEGER

 cursor_get LARGEINT

 total_time LARGEINT

Chapter 7 Database Schema

150

7.6. RUM processing Tables

These tables are used for processing RUM events. The analyzer will process events sent by

the RUM engine and update the TransactionVision business transaction data with the

available RUM data (end user group information, end-to-end response times, etc). The

RUM_LOOKUP table is defined via XDM and populated during RUM event processing.

RUM_EVENT_RECOVERY and RUM_BUFFER_TABLE are used internally.

RUM_BUFFER_TABLE

 rum_guid CHAR(255)

 session_id CHAR(50)

 timestamp LARGEINT

 subnet_id LARGEINT

 location_id LARGEINT

 pagetime LARGEINT

 creation_time TIMESTAMP

RUM_LOOKUP

PK proginst_id LARGEINT

PK sequence_no INTEGER

 client_starttime CHAR(20)

 client_responsetime LARGEINT

 session_id CHAR(50)

 client_timestamp TIMESTAMP

RUM_EVENT_RECOVERY

 insertion_time TIMESTAMP

 id INTEGER

 data BINARY(1048576)

 compressed INTEGER

7.7. Other internal tables

These tables are used internally by the analyzer. The SCRATCH table is used for storing the

analyzer recovery status, the ID_TABLE is used for id generation, the SEQUENCE_MAP

and DIRTY_BIT tables for system model processing, and the BPI_BUFFER_TABLE for

BPI event processing. The SCHEMA_VERSION table contains the the TransactionVision

schema version number.

 151

SCHEMA_VERSION

 version INTEGER

SCRATCH

PK key_name CHAR(30)

 bvalue BINARY(1048576)

 cvalue CHAR(1048576)

 lvalue LARGEINT

BPI_BUFFER_TABLE

 id INTEGER

 txn_id LARGEINT

 expire_time TIMESTAMP

 type INTEGER

 xml_data CHAR(10240)

SEQUENCE_MAP

PK sequence CHAR(255)

 id INTEGER

ID_TABLE

PK key_name CHAR(30)

 id INTEGER

DIRTY_BIT

PK module_id INTEGER

 status INTEGER

Chapter 8 Event XML Schema

152

8. Event XML Schema

This section describes the various XML documents stored in TransactionVision database

tables. XML schemas are used to describe TransactionVision data.

This chapter contains the following sections:

 8.1. Basic Types

 8.2. Event Schema Description

8.1. Basic Types

Basic types are technology specific data types and are described using schema tags

xsd:simpleType or xsd:complexType. For example, MQMD belonging to the MQSeries

technology may be described in a schema as:

and the basic types MQCHAR4 and MQLONG are:

Similarly, all data types in a particular technology need to be described as above.

Technology specific methods such as MQGET, MQPUT etc. extend the “API” base type.

 153

8.2. Event Schema Description

An event packet saved in the database would have the following layout: Detailed Schema

definition can be found under <TVISION_HOME>/config/xmlschema/Event.xsd.

<?xml version="1.0" encoding="UTF-8"?>

<Event>

<EventID programInstID="642" sequenceNum="7"/>

<StdHeader minorVersion="1" uow="…" version="5">

<HostArch>

<OS>AIX</OS>

<Vendor>IBM</Vendor>

<HostArchValue>0xFFFFFFFF80030780</HostArchValue>

</HostArch>

<Encoding>273</Encoding>

…

</StdHeader>

<Technology>

<MQSeries API="MQPUT" … >

<MQPUT>

<MQPUTEntry>

<HConn>0x5</HConn>

<HObj>0x200EC268</HObj>

<MQMD parameterName="MsgDesc" pointerValue="0x2FF22288">

<StrucId>MQMD_STRUC_ID "MD"</StrucId>

<Version>MQMD_VERSION_1 1</Version>

<Report>MQRO_NONE 0</Report>

<MsgType>MQMT_DATAGRAM 8</MsgType>

…

</MQMD>

<MQPMO parameterName="PutMsgOpts" pointerValue="0x2FF223F8">

<StrucId>MQPMO_STRUC_ID "PMO"</StrucId>

<Version>MQPMO_VERSION_1 1</Version>

<Options>MQPMO_NONE 0x0</Options>

…

</MQPMO>

<BufferLength>25</BufferLength>

<Buffer pointerValue="0x2FF2253C">

 <UserDataRef chunk="0"/>

</Buffer>

<CompCode pointerValue="0x2FF224FC">N/A</CompCode>

<ReasonCode pointerValue="0x2FF22500">N/A</ReasonCode>

</MQPUTEntry>

<MQPUTExit>

<HConn>0x5</HConn>

<HObj>0x200EC268</HObj>

…

</MQPUTExit>

</MQPUT>

</MQSeries>

</Technology>

<Data>

 <Chunk blobType="0" ccsid="0" from="0" seqNo="0" to="24"/>

Chapter 8 Event XML Schema

154

</Data>

</Event>

 155

The diagram below shows the basic structure of the type hierarchy of objects used to

describe an event.

Chapter 8 Event XML Schema

156

 157

9. The Data Manager

This chapter contains the following sections:

 9.1. Using the DataManager to Access the Database

 9.2. XML-Database Mapping Using XDM Files

 9.3. The XDM Syntax

 9.4. The XMLDatabaseMapper Interface

 9.5. Extending the /Event Document Type

 9.6. Extending the /Transaction Document Type

 9.7. Adding New Document Types

9.1. Using the DataManager to Access the Database

Custom beans and reports that need to access the database may use the service interface of

the DataManager class to conveniently perform tasks which otherwise would have to be

coded on the JDBC level.

A reference to the DataManager object can be obtained with the instance() method.

If the DataManager instance is used outside of the TransactionVision application context

(for example, in a standalone Java application), the first call into the DataManager must be

 DataManager.instance().init()

Beans and reports that run within the TransactionVision application are not required to do

this; they can expect the instance to be successfully initialized.

Custom beans running within the TransactionVision Analyzer Framework will usually get

the current database connection passed in as a parameter of class ConnectionInfo, which

encapsulates the JDBC connection handle and the database schema name for the current

processed event:

Chapter 9 The Data Manager

158

In cases where the custom code needs to obtain its own database connection, the

DataManager offers three different methods for this purpose:

 getThreadConnection() will return a connection for the current thread. If this is the first

time the thread calls into this method, a new connection to the database is returned.

Every following call from the same thread will return the same connection, until it is

getting released with releaseThreadConnection().

 getConnection() will always create and return a new connection to the database. This

connection will get released with a call to releaseConnection(Connection con).

Interface

init

public static DataManager instance()

Returns the DataManager Singleton instance

Methods

Here is the complete list of the methods that make up the supported DataManager interface.

 init

public void init(java.lang.String propertyFile)

 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager according to the settings in the specified properties file.

NOTE : This method has to be called before any other method.

Parameters:

dbProperties - The Database.properties file containing the db settings

Throws:

com.bristol.tvision.datamgr.DataManagerException - If initialization fails

 init

public void init()

 throws com.bristol.tvision.datamgr.DataManagerException

Initializes the DataManager with the default properties file (Database.properties)

Throws:

com.bristol.tvision.datamgr.DataManagerException - If initialization fails

 getThreadConnection

public java.sql.Connection getThreadConnection()

 throws

com.bristol.tvision.datamgr.DataManagerException

Returns the database connection for the current thread. If there is no connection stored in

the connection map for this thread, a new connection is established by calling into the

configured ConnectionSource, and this connection will be returned for all following

calls.

Returns:

The database connection for the current thread

 159

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new connection from

the ConnectionSource fails

 releaseThreadConnection

public void releaseThreadConnection()

 throws

com.bristol.tvision.datamgr.DataManagerException

Releases (closes) the connection for the current thread.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection fails

 getConnection

public java.sql.Connection getConnection()

 throws

com.bristol.tvision.datamgr.DataManagerException

Returns a new database connection which is not cached, which means every call into this

method will obtain a new connection from the configured ConnectionSource.

Returns:

The database connection

Throws:

com.bristol.tvision.datamgr.DataManagerException - if getting a new connection from

the ConnectionSource fails

 releaseConnection

public void releaseConnection(java.sql.Connection con)

 throws

com.bristol.tvision.datamgr.DataManagerException

Close the connection which has been obtained from a call to getConnection.

Throws:

com.bristol.tvision.datamgr.DataManagerException - if closing the connection fails

 commitTransaction

public void commitTransaction(java.sql.Connection con)

 throws

com.bristol.tvision.datamgr.DataManagerException

Performs a commit on current the database transaction

Parameters:

con - The connection holding the transaction to commit

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the commit fails

Chapter 9 The Data Manager

160

 rollbackTransaction

public void rollbackTransaction(java.sql.Connection con)

 throws

com.bristol.tvision.datamgr.DataManagerException

Performs a rollback on the current database transaction

Parameters:

con - The connection holding the transaction to roll back

Throws:

com.bristol.tvision.datamgr.DataManagerException - if the rollback fails

9.2. XML-Database Mapping Using XDM Files

The TransactionVision database schema is made extensible through the XML to Database

Mapping (XDM) files. XDM is a generic way to describe the mapping of values contained

in XML documents onto table columns in the database and allows fast, indexed XML data

retrieval by the database engine.

The XML mapping is implemented by the class XMLDatabaseMapper and is used in

TransactionVision to store the event and transaction data into lookup tables for fast retrieval.

This class is also accessible from custom beans and reports and allows user written code to

map basically any XML data to the database.

XML mappings are grouped into different „document types‟. Each document type is defined

by the root tag value for its documents and describes a mapping from XML to a set of

database tables that logically belong together. These tables must share the same primary key,

and the join across all these tables represents the mapped XML data for one XML document.

In TransactionVision there are three predefined document types:

/Event

This document type consists of all event based XML mappings, including standard header

event data, technology specific event data, and platform specific event data.

/Transaction

This document type maps data for the transaction analysis to the database tables.

/EventStatistics

This document type contains mappings for event statistics that are used for the topology

view and various reports.

9.3. The XDM Syntax

XML mappings are defined in XDM files in the <TVISION_HOME>/config/xdm directory.

The XML schema format of XDM files is defined in

<TVISION_HOME>/config/xmlschema/XDM.xsd. Each XDM file defines a mapping of

XML data to a particular database table. The syntax to describe this mapping is as follows:

<Mapping documentType="/Event">

Defines the document type for this mapping. This mapping is only valid for XML

documents that have the same root tag as “documentType”.

<Mapping documentType="/Event" dbschema="SCHEMA1,SCHEMA2">

 161

The dbschema attribute can specify one schema (or a list of schemas) for which the mapping

is valid. The data insertion and retrieval methods of the XMLDatabaseMapper will not use

this mapping if the supplied database schema parameter does not match. If this attribute is

missing, the mapping is valid for all schemas. The <DBSchema> syntax of previous

versions is still supported.

Defines the primary key for the database table. All XDM mappings of the same document

type must have the same key definition. There may be multiple key tags, in which case a

compound primary key will get created. The structure of the key tag is similar to the Column

tag and will be described there.

Specifies the database table for the mapping. For mappings of the document type “/Event”,

the XDM mappings can be technology or platform specific. The categoryPath attribute on

the Table tag contains either “COMMON” to indicate that this table contains data common

to every event and should be written for every event going through the Analyzer, or it can

contain an XPath to the event document which is used as a criteria to decide if the mapping

is applicable to the current event. If the “categoryPath” attribute contains an XPath, the

attribute “categoryValues” contains a list of qualifying values from the event data. The

standard event XDM mappings use XPaths to the event technology and to the event platform

in the categoryPath attribute.

Examples:

If the categoryPath attribute is missing, the mapping is applicable to all events. Note that

there has to be exactly one XDM mapping with categoryPath = “COMMON” for each

document type.

Chapter 9 The Data Manager

162

Each table mapping consists of several Column definitions that describe which XML value

has to be mapped onto which database table column. The name attribute specifies the

column name, and the type attribute specifies the column type, which can be one of the

following:

 INTEGER

 BIGINT

 FLOAT

 DOUBLE

 DECIMAL

 CHAR

 VARCHAR

 DATE

 TIMESTAMP

Both name and type are required. Types CHAR and VARCHAR require an additional

attribute size.

Type DECIMAL requires additional attributes precision and scale.

The unicode attribute specifies that the character column should be generated in the database

with the number of bytes defined for „unicode_bytes_per_character‟ in Database.properties

for each character. Default value if missing: „false‟.

The subtype attribute can further refine the type of the column, Currently the only supported

subtype is CURRENCY, which has to include the currency code, e.g.

„subtype=CURRENCY(USD)‟. See 10.3.1 for details on using currency values.

The description attribute specifies the name of the tag containing the value for that column

in the query result document returned by the QueryService. Required.

The isObject attribute for a Column tag in the above XDM file refers to that column being

an identifier for an object in the system model table. This allows to use the object name

instead of the numerical, system generated object id in XDM based queries. Possible values:

„true/false‟. Default value if missing: „false‟.

The generated attribute for a Column tag means that the column value will be generated by

the DataManager.. Possible values: „true/false‟. Default value if missing: „false‟.

The conversionType attribute for a Column tag means that field requires a formatting

conversion after reading from the database. The TypeConvService is called into after

reading that field from the database. This is typically used for writing enumeration fields

(conversionType=‟enum‟). Refer to the TypeConversionService for more information on

how values are converted.

 163

Additionally, an XDM column definition can be assigned a parameter named decimalFormat

using a Param tag with a value set to a pattern of how to display a numeric value. When this

column is read from the database and conversion is used, it will format a number according

to the pattern given here. This pattern can be any pattern of the form supported by the

java.text.DecimalFormat class. For example:

The indexed attribute specifies if a database index should be created for this column for

faster query access. Possible values: „true/false‟. Default value if missing: „true.

The complex attribute specifies that the Xalan XPath engine should be used instead of the

built-in one for the document lookup. The built-in XPath search implementation is very

efficient, but supports only a subset of the standard XPath syntax (see section 4.2 for

details). If full XPath support is needed for a certain column, this attribute can be set. Note:

the Xalan XPath implementation is much slower than the internal one and might slow down

the analyzing process. Possible values: „true/false‟. Default value if missing: „false‟.

The xml attribute specifies that the XPath is pointing to an XML sub tree. The

XMLDatabaseMapper will store the complete subtree as a full XML document into the

corresponding column. Possible values: „true/false‟. Default value if missing: „false‟. Note:

on ORACLE, LOB types are not supported for XDM column types. Use 'VARCHAR' or

'LONGVARCHAR' instead.

<Path> contains the XPath of the document value to write into the table column. The

XMLDatabaseMapper will extract the value form the XML document and insert it into the

database. Note that only XPaths pointing to Text nodes and attribute values are valid. If a

value specified by the XPath does not exist in the XML document, a NULL value is inserted

to the database.

A column can map to multiple XPath expressions as in the sample code below. The XPath

expressions are evaluated in a sequential order and the first value found will get inserted into

the database.

In addition to the <Path> element, a column definition can contain a <Join> definition like

in the following example:

Join definitions offer a way to link two different document types together in order to use

column definitions of both document types in one query. Internally this will generate a

database join between the column of the current table and the primary key of the other table.

Chapter 9 The Data Manager

164

It is possible to store multiple values for one event into the database by defining an XDM

table definition with the attribute type=”MultiValueExtension”. The table definition also

requires an attribute basePath that specifies the base XPath for the event values that should

be stored in the table. Let‟s take the following event as an example:

To store all account numbers for each event , the following XDM mapping has to be created:

This will define a table „ACCOUNTS‟ into which all account numbers found at the XPath

/Event/Data/Chunk/Account/@number will be stored. The difference to a regular XDM

table is that there can be multiple entries for a certain event in the table, the

proginst_id/sequence_no columns are not a primary key any more.

NOTE: Multi-valued XDM tables are only useful for saving the data into the database

tables, for later retrieval by custom SQL code. The TransactionVision query engine

currently does not support any queries containing columns of multi-valued XDM mappings.

9.3.1. Currency columns

To handle monetary values accurately, it is recommended to use a DECIMAL data type with

subtype CURRENCY in the XDM column definition. The subtype value indicates the

default currency for the monetary column value with the three letter ISO-4217 currency

code, e.g.:

 165

The currency for the column can be defined in three different ways:

 The currency can be defined by the value of another column in the transaction instance.

This can be specified by using the parameter „currencyCodeXPath‟ in the column

definition, which points to the XPath of the column containing the currency code for the

transaction instance

 The currency can be defined by the value of a transaction class attribute. This can be

specified by using the parameter „currencyCodeClassXPath‟ in the column definition,

which points to the transaction class attribute containing the currency code for the

transaction instance. Note that every class has a default “currency_code” attribute which

can be used for this purpose.

 If none of the above definitions exist, the currency code will be taken from the

„CURRENCY(…)‟ value in the column definition

The currency code for a business transaction instance can be used programmatically for the

following purposes:

 if the value of a column with subtype CURRENCY is retrieved via a cursor with

conversion service, the cursor will convert the currency code to the currency symbol (if

available).

 the currency code determined for a transaction instance can be obtained in code (e.g. in a

java action) via

in class XMLTransaction

 The value of a curreny column can automatically be converted from one currency to

another via classification, by using a „CurrencyConversionAction‟. Here are the setup

steps required for using this feature:

Manually insert up-to-date conversion factors into the table CURRENCY_CONV in schema

TVISION. Each row in this table contains a „From‟ code, a „To‟ code, and the factor to

convert from „From‟ to „To‟. Note that the factors do not work in reverse, so if you e.g. have

a row („USD‟, „EUR‟, 0.79), and you also need conversion from EUR -> USD, you will also

need to enter a row („EUR‟, „USD‟, 1.26)

In the Transaction Definition Editor, define a currency action on the transaction attribute

whose value is supposed to get converted, with the following properties:

Reason: the 3-letter currency code from which to convert

Now, whenever the attribute value is set during classification, the following will happen:

Chapter 9 The Data Manager

166

 The value determined by the value rule will be interpreted to be of the currency defined

in „reason‟

 The action rule will use the conversion factors in table CURRENCY_CONV to convert

the attribute value into the currency defined by XDM definition (as described above)

 The transaction attribute will be set to the converted value

Example:

A custom „OrderAmount‟ business transaction attribute has been defined which is supposed

to track monetary values in US dollar. The value will be set from a field in the XML payload

of the event via a classification rule, but this value is based on Euro. A currency conversion

action is used to convert the amount from EUR to USD before the value is stored in the

attribute:

XDM definition:

Attribute rule definition:

Action rule on attribute „OrderAmount‟:

Class: com.bristol.tvision.services.analysis.actions.CurrencyConversionAction

Reason: EUR

Contents of the CURRENCY_CONV table:

„EUR‟, „USD‟, 1.26

Result:

Once the attribute rule for „OrderAmount‟ fires, the value will be retrieved from

/Event/Data/Chunk/Order/Amount, converted to USD in the action rule by multiplying it

with 1.26, and stored in the „amount‟ column in the business transaction table.

Note: the table CURRENCY_CONV is only read once at analyzer startup, so the analyzer

needs to be restarted if the table has been updated.

9.3.2. Creating the XDM Database Tables

One important aspect of the XDM framework is that the creation of the underlying database

tables is entirely data-driven. The definitions in the XDM files are not only being used for

updating or querying the XML data, but also as an input to the TransactionVision Table

Manager, which is responsible for creating and dropping the project tables as projects in the

Analyzer GUI get created and deleted. Thus there is no need to issue any SQL DDL calls to

the database. Once the XDM file is placed into the proper directory, and provided the

document type is registered with the Table Manager, the new tables defined in the XDM

mapping get automatically created for a new project. The same holds true if the project

tables get created or dropped by using the command line tool CreateSqlScript.

 167

The registration with the Table Manager is only needed if the XDM mapping uses a new

user defined document type. The only thing to do is to add the new document type to the

following section of the DatabaseDefinition.xml in the

<TVISION_HOME>/config/datamgr directory:

9.3.3. Properties of the TransactionVision Document Types

The /Event Document Type

Event-based XDM files specify that when an XML event is written to the database by the

DBWrite module in the Analyzer, these fields are extracted and written into the database

columns defined by the XDM mappings. Similarly, when the database is queried to retrieve

event based data in the Analyzer GUI, these XDM files are used to construct the

corresponding SQL query. The XML document for each event gets stored in the database

table EVENT.

The /Transaction Document Type

This mapping is used to write business transaction attributes during the transaction analysis

phase in the Analyzer. One noticeable difference to the event-based mappings is that there is

no XML document inserted into the database, all document values are always mapped to the

database tables. Note that you can define XDM based queries that combine both transaction

and event document types.

The /EventStatistics Document Type

This document type contains XDM mappings for the event statistics data generated during

analyzer processing that is used for the static topology view and other various reports. Note

that it is not possible to link this document type to the event or transaction document types.

9.4. The XMLDatabaseMapper Interface

The XMLDatabaseMapper can be used in 2 different ways: implicitly when writing custom

bean code in the Analyzer bean framework or using the query facilities of the QueryService,

or explicitly by obtaining a reference to an XMLDatabaseMapper instance and calling into

one of the available service methods.

To obtain a reference to an instance, the instance() method has to be called with the

particular schema as an argument, e.g.:

The interface contains methods for reading, inserting, updating, and deleting XML values.

All methods take a parameter of class XMLDocument, which denotes the XML document

containing the data. The XMLDocument class implements the org.wc3.dom.Document

Interface and can be constructed in several ways: from an existing document using the

constructor XMLDocument(org.w3.dom.Document doc), or entirely bypassing the

generation of any XML objects and creating a „lightweight‟ XMLDocument instance by

using the constructor XMLDocument(java.util.Map).

Chapter 9 The Data Manager

168

The class contains an internal HashMap for caching XPath expressions to the corresponding

values in the XML document. The key of the map entry is an XPath expression, the value of

the map entry is the value in the XML document corresponding to that XPath. If an instance

is created by using the latter constructor, then any value lookup on the document translates

into a simple HashMap lookup, whereas a lookup on an instance created with the first

constructor is performed by executing an XPath search on the XML document (unless the

corresponding XPath is already in the cache). This is implemented transparently for the

caller by the following method of XMLDocument:

If there is a value for the given XPath in the HashMap, the stored value is returned.

Otherwise an XPath search on the document is performed.

With these „lightweight‟ XML documents it is possible to provide data to the

XMLDatabaseMapper without having to make expensive XML operations. The

XMLTransaction class used in the transaction analysis is one example of such a

„lightweight‟ XML object.

Methods

Following is the list of available XMLDatabaseMapper methods.

 read

Reads all lookup table rows for the given key values and store the values in the attribute

map of the XML document. The document passed in only needs to contain the key

values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the

document or reading from the database tables

 write

Writes the values of the mapped document elements to the lookup tables. For each

mapped column defined in the xdm files, the value of the corresponding XPath

expression is searched in the xml document and written to the table column defined in

the mapping.

Parameters:

con - The database connection to use

doc - The document to search

 169

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the

document or writing to the database tables

 update

Updates the values of the mapped document elements in the lookup tables. All columns

that are defined by the document type will get updated. The rows to update are

determined by the key values in the XML document.

Parameters:

con - The database connection to use

doc - The document containing the updated values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the

document or writing to the database tables

 delete

Deletes rows in all lookup tables of the document type for the given key values in the

XML document.

The document passed in only needs to contain the key values.

Parameters:

con - The database connection to use

doc - The document containing the key values

Throws:

com.bristol.tvision.datamgr.DataManagerException - Error while accessing the

document or writing to the database tables

9.5. Extending the /Event Document Type

The XDM mappings of the /Event document type can be easily extended to map additional

XML data to indexed database columns for faster retrieval. First, this can be done for XML

values that are already present in the standard XML event data but which are not included in

the default event based XDM mapping definitions. In this case the mapping for the desired

values can be simply added (with its XPath and database column) to the corresponding

XDM file (event.xdm. mqseries.xdm, etc.).

Chapter 9 The Data Manager

170

Second and more important, additional mappings can be defined for XML data that has been

assembled from the contents of the user data buffer by an EventModifierBean (see chapter

3.2). Although this user defined XML data could also be mapped to the existing lookup

tables (by simply modifying one of the existing XDM files), this is not advisable. For this

purpose a new XDM file defining a mapping to a new table should be created. The mapping

definition is required to have the document type /Event and the key columns proginst_id and

sequence_no like all other event based XDM files. The column definitions should include all

XDM values intended for display in the Analyzer GUI or queries through the query services.

For steps to configure the Analyzer GUI to display these new columns see Chapter 3.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion scheme

based on timestamp columns if the –older option is used. To delete data in user-defined

XDM tables, the timestamp column must be present in any additional XDM mapping you

define. Therefore, the following section is mandatory in the XDM file:

9.6. Extending the Document Type

The /Transaction document type can be extended to add custom business transaction

attributes to the transactional data in TransactionVision. See chapter 3.5.4 for details.

The TransactionVision DeleteEvents utility and job use an optimized fast deletion scheme

based on timestamp columns if the –older option is used. To delete data in user-defined

XDM tables, the timestamp column must be present in any additional XDM mapping you

define. Therefore, the following section is mandatory in the transaction document type:

 171

Appendix: EventModifierRules DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT EventModifierRules (RegExp|XPathExp|OneOf)*>

<!ELEMENT RegExp (RegExp|XPathExp|OneOf)*>

<!ATTLIST RegExp

 src CDATA #REQUIRED

 expression CDATA #REQUIRED

 dest CDATA #IMPLIED

 value CDATA #IMPLIED

 action (add_field | delete_event) #IMPLIED

>

<!ELEMENT XPathExp (RegExp|XPathExp|OneOf)*>

<!ATTLIST XPathExp

 expression CDATA #REQUIRED

 dest CDATA #IMPLIED

 value CDATA #IMPLIED

 action (add_field | delete_event) #IMPLIED

>

<!ELEMENT OneOf (RegExp|XPathExp)+>

	HP Business Service Management - TransactionVision Advanced Customization Guide
	Restricted Rights Legend
	Trademark Notices
	Contents
	Welcome to This Guide
	Who Should Read This Guide
	TransactionVision Documentation
	Additional Online Resources

	Architecture Overview
	System Components
	RDBMS

	Tutorial - Extending the Analyzer
	How to Handle XML Message Data in Events
	Verify that XML Data is Extracted Correctly

	How to Handle Custom Message Data Formats in Events
	Step 1: Document message format layout
	Step 2: Document the Target XML Format
	Step 3: Implement the Bean to Do the Format Conversion
	Step 4: Modify the Beans.xml File to use the Custom Bean
	Step 5: Test the Custom Bean in the Analyzer Environment

	Overview of XDM Files
	How to Map Custom Message Data Fields to Database Tables
	Step 1: Determine which fields in the XML event document need to be mapped to database columns
	Step 2: Determine the Database Column Names for these Fields
	Step 3: Construct XDM File Entries
	Step 4: Recreate your Project Database Schema
	Step 5: Verify that the XDM Mapping works correctly

	Additional XDM File Examples
	How to Classify Business Transactions and Map Attributes to Database Tables
	Overview of Transaction Classification
	Task Description
	Implementation
	Step 1: Determine the event attributes that apply to a business transaction
	Step 2: Determine Database Column Names for Fields
	Step 3: Extract Transaction Attributes from Event Data
	Step 4: Construct XDM File Entries for Transaction Attributes
	Step 5: Determine the Transaction Classes and their Classification Criteria
	Step 6: Implement Classification Rules
	Step 7: Recreate the Database Schema
	Step 8: Verify that the transaction classification works correctly and the transaction attributes are written correctly

	How to Perform Custom Correlation of Related Events
	Overview of Custom Event Correlation
	Task Description
	Implementation
	Step 1: Determine Correlation Requirements
	Step 2: Determine which Events need to be Correlated and Common Correlation Data between the Events
	Step 3: Implement XML Based Event Correlation Rules
	Step 4: Enable the Analyzer to Invoke the XML Correlation Rules
	Step 5: Test the Correlation Bean

	Reference - Extending the Analyzer
	Using the Beans.xml File
	Enabling and Disabling Beans for Specific Events

	Unmarshalling Message Data
	The Default Modifier Bean
	The Rules-based Event Modifier Bean
	The Rules File

	Adding a Message Data Unmarshal Bean
	Disabling CICS Transaction Tracking
	IEventModifier Interface
	Description:
	Parameters:
	Throws:

	XML Related Classes
	Class XMLEvent
	Methods:

	Class XPathSearch
	Constructor:
	Methods:

	Class XMLParser
	Constructor:
	Methods:

	Other Utility Classes
	Interface DOMElement
	Methods:

	Class EventElement
	Methods:

	Class TextElement
	Methods:

	Class ByteElement
	Fields:
	Constructors:
	Methods:

	Class ByteStringElement
	Fields:
	Constructor:

	ByteStringElement
	Methods:

	Class IntElement
	Fields:
	Constructors:
	Methods:

	Class IntHexElement
	Class LongElement
	Fields:
	Constructors:
	Methods:

	Class LongHexElement
	Class StringElement
	Fields:
	Constructor:
	Methods:

	Class RawStringElement

	Trimming Data From an Event
	Interface IDBWriteExit
	Methods
	Parameters:

	XML-Database mapping Using XDM Files
	Performing Event Analysis
	Event Analysis Utility Classes and Interface
	Interface Cache
	Methods:

	Class ConnectionInfo
	Fields:

	Class EventID
	Constructor:
	Fields:
	Methods:

	Class TechEventID
	Constructor:

	Interface IAnalyze
	Methods:
	Parameters:

	Class AnalyzeEventCtx
	Class AnalyzeEventBean
	Fields:
	Methods:

	Custom Business Transaction Attributes and Classification

	Transaction Classification
	Transaction Classification with the Standard Classification Bean
	Classification Action Rules
	The ClassifyTransactionCtx and the IClassifyTransaction Interface
	Writing a Custom Classification Bean
	Logging SLA Violations
	Custom Event Correlation
	Event Correlation Using the XML Rule File
	RelationLookupType
	Time-Based Correlation
	Event Correlation Using a Custom Bean

	Interface IEventCorrelation
	Methods:

	Class CorrelationTechHelperBean
	Constructor:
	Methods:
	Constructor:

	Class JMSCorrelationData
	Constructor:
	Fields:

	Class LookupKey
	Constructor:
	Fields:
	Methods:

	Class EventRelation
	Fields:
	Constructor:

	Class MQRelationDBService
	Methods:

	Class JMSRelationDBService
	Methods:

	Custom Local Transaction Definition
	LocalTransactionDefinition.xml File
	LocalTransactionType
	LocalTranasctionAttributes
	Sample LocalTransactionDefinition.xml Rule File
	Changes to the Beans.xml File

	Extending the System Model
	User Events

	Generating Application Events to Tivoli Enterprise Console (TEC)
	Monitoring Events
	Class com.bristol.tvision.util.log.MonitoringEvent

	Event Delivery
	SlotMap.properties
	Example Usage:
	BTV Class Definitions and Rulebase

	Using the Query Services
	The Query Document
	Sample Usage
	Class QueryService
	Methods

	Class QueryDoc
	Constructors

	Class QueryDoc.WhereClause
	Fields
	Constructors
	Methods
	Example

	Interface Query
	Methods

	Interface Cursor
	Methods

	Class DataManagerException
	Constructors
	Methods

	Implementing User Events
	Differences Between User Events and Standard Events
	User Event Data Model
	EventID
	Standard Section
	Technology Section
	User Data Section

	Analyzing User Events
	Event Unmarshalling
	Local Transaction Analysis
	Business Transaction Analysis
	Statistical Analysis

	Tutorial: Generating User Events
	Sample Overview
	Building the Tutorial Sample
	Running the Tutorial Sample

	Configuring the Java Agent Points File

	Database Schema
	System model object tables
	Object Types
	Signatures
	System Model Relationships
	System Model Attributes

	Event Tables
	Event Relationship Tables
	Transaction Tables
	Statistics Tables
	Physical model

	RUM processing Tables
	Other internal tables

	Event XML Schema
	Basic Types
	Event Schema Description

	The Data Manager
	Using the DataManager to Access the Database
	Interface
	Methods

	XML-Database Mapping Using XDM Files
	The XDM Syntax
	Currency columns
	Creating the XDM Database Tables
	Properties of the TransactionVision Document Types
	The /Event Document Type
	The /Transaction Document Type
	The /EventStatistics Document Type

	The XMLDatabaseMapper Interface
	Methods

	Extending the /Event Document Type
	Extending the /Transaction Document Type

	Appendix: EventModifierRules DTD

