
HP OpenView Application Manager and
Configuration Server Using Radia

Radia REXX Programming Guide

Software Version: Radia Application Manager 4.0
for the Windows operating system

Software Version: Radia Configuration Server 4.5.4
for the UNIX and Windows operating systems

Manufacturing Part Number: T3424-90072

September 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.
A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 1998-2004 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained
in this material is subject to change without notice.

Trademark Notices

Linux is a registered trademark of Linus Torvalds.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Acknowledgements

PREBOOT EXECUTION ENVIRONMENT (PXE) SERVER
Copyright © 1996-1999 Intel Corporation.

TFTP SERVER
Copyright © 1983, 1993
The Regents of the University of California.

3

OpenLDAP
Copyright 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA.
Portions Copyright © 1992-1996 Regents of the University of Michigan.

OpenSSL License
Copyright © 1998-2001 The OpenSSLProject.

Original SSLeay License
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

DHTML Calendar
Copyright Mihai Bazon, 2002, 2003

4

Technical Support

Please select Support & Services from the following web site:

<http://www.hp.com/managementsoftware/services>

There you will find contact information and details about the products, services, and support
that HP OpenView offers.

The support site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information

5

Preface

About this Guide

Who this Guide is for
This guide was written for the Radia systems administrator who wants to use the REXX
programming language to customize Radia Clients version 4.0 and Radia Configuration Server
version 4.5.4.

What this Guide is about
This guide is a reference manual that includes information on:

■ The structure of the REXX programming language.

■ The execution of Radia REXX programs.

■ The instructions that are provided in the Radia REXX programming language.

■ The built-in functions found in Radia REXX.

■ The use of the REXX function extensions.

■ The Radia REXX functions that allow you to inspect and manipulate the Windows Registry.

Preface

Preface

6

Summary of Changes

Global Changes
Beginning with version 3.1 of the Radia Clients, the name of the REXX Interpreter changed from
EDMPNLWR.EXE to RADPNLWR.EXE. All references to EDMPNLWR throughout the guide
have changed accordingly.

Chapter 3:
Operations
 Page 33, The Radia REXX Executable: new section.

Chapter 4:
Instructions
▪ Page 42, ADDRESS: edited environment parameter – removed EDMWIN, Mac,

and DOS references; edited note. Added WITH redirect parameter to table.
Added 2 new examples: 5 and 6.

Chapter 5:
Built-In Functions
 Page 137, DATE: syntax modified.

 Page 137, DATE Parameters table: option parameter changed to out-option;
two new parameters: date_string and in_option.

▪ Page 177, POPEN: new section.

 Page 199, TIME: syntax modified.

▪ Page 199, TIME Parameters table: option parameter changed to out_option;
two new parameters added: time_string and in_option.

3.1

3.1

3.1

3.1

 Preface

7

Chapter 6:
Using Extensions
▪ Introductory material updated.

 Page 253, NVDOBJECTS new extension.
 Page 255, NVDPATHS new extension.

 Page 238, EDMGETV new extension.

 Page 257 and 258, RADGET and RADSET: Radia 3.1 Client support adds two
new extensions. RADGET and RADSET expand the functions of EDMGET and
EDMSET, respectively, by permitting reading and writing of objects from
different directories.

 Page 260, RXXCommandKill: new extension.

 Page 261, RXXCommandSpawn: new extension.

 Page 262, RXXCommandWait: new extension.

 Page 263, RXXOSEndOfLineString: new extension.

 Page 264, RXXOSEnvironmentSeparator: new extension.

 Page 265, RXXOSName: new extension.

 Page 266, RXXOSPathSeparator: new extension.

 Page 267, RXXSleep: new extension.

 Page 268, WinMessageBox: new extension.

 Page 271, WinGetVersion: new extension.

Editorial Improvements
In addition to the changes listed above, this version contains various editorial and style updates
to the chapters and index. In particular, this version updates the topics in Chapter 3: Operations.

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

3.1

Preface

8

Conventions
You should be aware of the following conventions used in this book.

Table P.1 ~ Styles

Element Style Example

References Italic See the Publishing Applications and Content chapter in this book.

Dialog boxes and
windows

Bold The Radia System Explorer Security Information dialog box
opens.

Code Andale Mono radia_am.exe

Selections Bold Open the \Admin directory on the installation CD-ROM.

Table P.2 ~ Usage

Element Style Example

Drives
(system, mapped, CD)

Italicized
placeholder

SystemDrive:\Program Files\Novadigm might refer to C:\Program
Files\Novadigm on your computer.

CDDrive:\client\radia_am.exe might refer to
D:\client\radia_am.exe on your computer.

Files
(in the Radia Database)

All uppercase PRIMARY

Domains
(in the Radia Database)

All uppercase PRIMARY.SOFTWARE

May also be referred to as the SOFTWARE domain in the
PRIMARY file.

Classes
(in the Radia Database)

All uppercase PRIMARY.SOFTWARE.ZSERVICE

May also be referred to as the ZSERVICE class in the SOFTWARE
domain in the PRIMARY file.

 Preface

9

The following conventions are used throughout this manual to facilitate syntax descriptions.

Table P.3 ~ Conventions Used for Sample Code

Convention Explanation

uppercase Uppercase letters indicate keywords or function names that must be typed exactly as
shown. When coding the keyword or function name in a program, case is irrelevant.

lowercase Lowercase letters indicate variable information that you supply. A single character
(usually n) represents a number that you specify. Other variable data is represented by
a descriptive name such as string, expression, or pad.

optional
operands

Instructions or functions may have optional keywords or operands. These are shown
within brackets in the syntax diagram. The syntax diagram for the LINEIN built-in
function illustrates optional operands:

LINEIN([name] [, [lineno] [, count]])

required
operands

Required operands are shown without brackets as in the INTERPRET instruction:

INTERPRET expression

repeating
operands

An ellipsis (...) in a syntax diagram indicates that an operand can be repeated zero or
more times. This is illustrated by the MAX built-in function:

MAX(number [, number] ...)

where you can specify a list of numbers for which the maximum value is to be
determined. Do not include the ellipsis when typing your function call.

delimiters The following special characters are token delimiters when used outside literal strings:

Comma ,
Semicolon ;
Colon :
Parentheses ()

Syntax Notes
When an instruction keyword can have more than one value, the options are stacked within brackets as in the TRACE
instruction:

TRACE [option]
 [[VALUE] expression]

Type only one of the choices. For example:
TRACE E

When a required operand can have more than one value, the options are stacked in the same
manner as for optional operands. As with optional operands, you type only one of the choices. The
syntax diagram for the NUMERIC instruction illustrates a combination of required and optional
operands that can have more than one value:

NUMERIC DIGITS [expr1]

Preface

10

 FORM [SCIENTIFIC]
 [ENGINEERING]
 [[VALUE] expr2]
 FUZZ [expr3]

These characters must be typed exactly as shown in the syntax diagrams.

■ Literal strings are delimited by either single or double quotes.

■ Hexadecimal strings are delimited by single or double quotes followed immediately by the
character x.

Binary strings are delimited by single or double quotes followed immediately by the character b.

The table below describes terms that may be used interchangeably throughout this book, as well
as in other HP publications.

Table P.4~ Terminology*

* Depends on the context. May not always be able to substitute.

Term May also be called

Application software, service

Client Radia Application Manager and/or Radia Software Manager

Computer workstation, server

NOVADIGM domain PRDMAINT domain
Note: The NOVADIGM domain existed in the Radia Database versions prior
to the 4.0 release. As of the 4.0 release, the NOVADIGM domain is being
renamed the PRDMAINT domain.

Radia Configuration Radia Database Server Database

Radia Configuration Server Manager, Active Component Server

11

Preface ... 5

About this Guide ..5
Who this Guide is for ...5
What this Guide is about ..5

Summary of Changes ...6
Conventions...8

Syntax Notes...9

1 Introduction .. 15

Introduction to Radia REXX...16
About This Book...16

2 Language... 19

What is a Clause?...20
Clause Syntax Notes ..22

What is a Symbol?..23
What is an Expression?...25

Comparative Operators ..27
What is a Function?..28
What are Special Variables? ..29
What are Condition Traps?..30
What is an Input/Output Operation?..31
What is Parsing? ..32

Contents

Contents

12

3 Operations... 33

The Radia REXX Executable...33
The RADPNLWR Executable...33

Invoking RADPNLWR..34
RADPNLWR Log Files..35

Executing a REXX Method from Windows ...36
Coding Radia REXX Programs ..37

Including External Functions and Subroutines ..37
Executing Host Commands ...37

4 Instructions... 39

Overview of REXX Instructions ..39
Quick Reference ...40
ADDRESS ...42
ARG ...47
CALL..49
DO ...54
DROP...58
EXIT ..60
IF ...62

Parsing Templates..73
Parsing by Words...73
Parsing by Patterns ..74
Parsing by Position...75
Parsing with Placeholders ...78
Putting it All Together ..79

5 Built-In Functions.. 105

Built-In Functions Overview...105
General Rules for Built-In Functions ..107

6 Using Extensions ... 223

Radia Client REXX Methods ...223
Overview of Radia REXX Extensions...223

 Contents

13

REXX, Radia, Objects and Object Paths/Folders ... 224
Using Extensions .. 224

Function Calls and Return Values.. 225
Identifying Variables .. 226

REXX variables and Radia object values.. 227
The Radia REXX Extension List .. 230
EDMATTR .. 232
EDMLOC .. 241

7 Registry Manipulation Functions ... 273

Registry Manipulation Functions .. 273

A Message Summary... 293

Radia REXX Messages... 293

B Programming Hints ... 303

Invoking a Built-in Function Like an Instruction .. 303
Failure to Use Commas with CALL and PARSE ARG... 304

With CALL ... 304
With PARSE ARG ... 304

Incorrect Use of Continuation.. 305
Incorrect CALL Syntax .. 305
Failure to Enclose Command Arguments Within Quotes .. 306
Failure to Close a File ... 306

C System Limitations .. 307

Implementation-Specific Limits.. 307

Bibliography ... 309

Lists.. 311

Figures .. 311

Contents

14

Tables..312
Procedures...313

Index.. 315

15

Chapter 1

Introduction

This chapter introduces you to Radia REXX by first comparing this language to shell programs
and programming languages. It then provides an overview of the Radia REXX Programming
Guide and an explanation of its conventions.

1

Introduction

16

Introduction to Radia REXX
Radia REXX is an implementation of the REXX programming language as described in The REXX
Language: A Practical Approach to Programming by M.F. Cowlishaw (1990: Prentice Hall).

Radia REXX is an interpreted language that provides a simple way to customize various aspects
of Radia processing.

REXX programs are easy to write, understand, and modify. User-friendly standard features and a
simple syntax enable rapid development and testing. These features include:

z Natural data-typing (nothing to declare)

z Dynamic scoping

z Built-in trace facilities

Radia REXX methods (programs) are portable across multiple platforms.

Radia REXX conforms to the ANSI standard X3.274:1996, "Programming Language REXX."

About This Book
The Radia REXX Programming Guide is a reference manual for the Radia REXX programming
language, and a guide for creating Radia REXX methods. Radia REXX methods are the
procedures you write to customize processing for your Radia-managed computing environment.

This guide describes the features, operation, and syntax of Radia REXX, as well as the built-in
functions that can be called by a program.

This section provides you with an overview of this programming guide, so you can quickly turn to
the information you need to start writing Radia REXX procedures for your installation. The
following chapter summaries should help you find the information you need quickly and easily.

Chapter 2: Language
This chapter summarizes the language structure for those not already familiar with it. The basic
elements, terminology, and concepts of Radia REXX are presented in a concise format for review
and reference.

 Chapter 1

17

Chapter 3: Operations
This chapter presents details on the execution of Radia REXX programs. It also covers such
implementation-specific topics as access to external functions, subroutines, and host command
execution.

Chapter 4: Instructions
This chapter explains selected instructions that are provided in the Radia REXX programming
language. Radia REXX instructions consist of one or more clauses that are identified by keywords,
and are recognized only after meeting specific conditions.

Chapter 5: Built-In Functions
This chapter explores the powerful set of built-in functions found in Radia REXX. These functions
are part of the language and are always available to be called by any program.

Chapter 6: Using Extensions
This chapter teaches you how to use the REXX function extensions of Radia when you customize
Radia processing for your Radia environment.

Chapter 7: Registry Manipulation Functions
This chapter describes Radia REXX functions that enable you to inspect and manipulate the
Windows Registry.

Appendix A: Message Summary
This appendix lists and describes all the messages that may be generated by Radia REXX. This is
a valuable resource for interpreting any error messages you encounter while compiling and
executing Radia REXX programs.

Appendix B: Programming Hints
This appendix identifies the common programming mistakes to avoid when writing Radia REXX
programs.

Introduction

18

Appendix C: System Limitations
This appendix documents six implementation-specific limitations of Radia REXX.

Bibliography
This appendix lists some additional reference books on the REXX language.

19

Chapter 2

Language

Radia REXX is implemented according to the language definition contained in The REXX
Language: A Practical Approach to Programming, by M. F. Cowlishaw (1990: Prentice Hall). The
elements of the language are described in detail by Cowlishaw. This chapter summarizes the
language structure.

2

Language

20

What is a Clause?
The basic element of the Radia REXX language is the clause. A clause is composed of one or more
tokens preceded or followed by zero or more blanks and optionally terminated by a semicolon.
Tokens in a clause can be any of the following:

■ Literal string

■ Hexadecimal string

■ Binary string

■ Symbol

■ Operator

■ Special character

The following table lists the tokens and their meanings.

Table 2.1 ~ Tokens and their Meanings

Token Explanation

literal string A literal string is a sequence that can include any character. It is enclosed in single or
double quotes. A literal string that includes no characters is known as a null string.
Examples include:

'Hello world!'
"What's in a name?"
'' /* Null string */

hexadecimal
string

A hexadecimal string is a series of hexadecimal digits grouped in pairs, enclosed in
quotes, and followed immediately by the character 'x' (upper- or lowercase). The pairs
of hexadecimal digits can be optionally separated by one or more blanks. Examples
include:

'c1c3'x
"abcdef"X
'61 62 63'x
""x

binary string A binary string is a series of binary digits grouped in fours, enclosed in quotes, and
followed immediately by the character 'b' (upper- or lowercase). The groups of binary
digits can be optionally separated by one or more blanks. Examples include:

'0001'b
'10011001'B
"1111 0000"b
''b

 Chapter 2

21

Table 2.1 ~ Tokens and their Meanings

Token Explanation

symbol A symbol is any group of alphanumeric characters. Symbols can also include the
characters ".", "|", "?", and "_". If a symbol begins with a digit, it can also include the
letter "e" (upper- or lowercase) followed optionally by a plus or minus sign ("+" or "-")
and one or more digits. A symbol can be a constant, a keyword, or a variable,
depending upon the context in which it is used. Additional details are provided in the
section entitled What is a Symbol on page 23. Examples include:

abc
data.1
new_data
17
31416E-4

operator An operator is a character used to indicate operations in expressions. For a complete
list of operators supported in Radia REXX, see What is an Expression on page 25.
Examples include:

+
-
>
>>
=

special characters Special characters include both the operator characters and the characters ".", ";",
":", "(", and ")". Special characters function as token delimiters.

Language

22

A Radia REXX clause can be any of the following types:

■ Instruction

■ Label

■ Null clause

The following table lists the types of clauses and their meanings.

Table 2.2 ~ Clauses and their Meanings

Clause Explanation

instruction An instruction describes an action to be performed by the interpreter. Instructions can be any
of the following:

assignment An instruction of the form symbol = expression, that assigns a value to a
variable.

keyword An instruction that begins with a keyword that identifies the operation to be
performed; examples of instruction keywords include PARSE, DO, CALL, and
RETURN.

command An instruction comprised simply of an expression, which is evaluated and
passed to an external environment for processing.

label A label is a clause composed of a single symbol followed by a colon. Labels identify the target
of CALL or SIGNAL instructions or the beginning of an internal function.

null clause A null clause is any clause comprised only of blanks or comments.

Clause Syntax Notes
A comment is any sequence of characters preceded by a forward slash and an asterisk
(/*) and followed by an asterisk and a backward slash (*/). Comments can appear anywhere in
the program and can be nested.

A clause in a Radia REXX program can span more than one line. Continuation is indicated by a
comma. The comma is replaced by a blank when the lines are concatenated during program
execution.

 Chapter 2

23

For example, the program fragment:
list_of_months = Jan Feb Mar Apr May Jun Jul,
 Aug Sep Oct Nov Dec
say list_of_months

produces the following output:
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

What is a Symbol?
A symbol in Radia REXX is any group of characters A-Z, a-z, 0-9, ".", "|", "?", or "_". The meaning
of a symbol is derived from its context. The following table lists the types of symbols and their
meanings.

Table 2.3 ~ Symbols and their Meanings

Symbol Explanation

compound symbol A compound symbol does not begin with a digit, contains at least one embedded
period, and cannot end with a period. The name begins with a stem (see description of
stem symbols) followed by a period, followed by a tail. The tail can be a constant
symbol, a simple symbol, or null. Before a compound symbol is used, the values of any
simple symbols in the tail are substituted, creating the derived name of the compound
symbol. The default value of a compound symbol is one of the following:

• The value assigned to the stem.

• The symbol name translated to uppercase if no value has been assigned to the
stem.

Examples include:

data.1 = 5
say data.1

Output is 5; the tail is a constant symbol so this compound symbol does not have a
derived name.

x = 3
data.3 = 7
say data.x

Output is 7; the value of the simple symbol x is substituted to produce the derived
name data.3, which has been assigned the value 7.

constant symbol A constant symbol begins with a digit and can include the letter e followed optionally
by a plus or minus sign and one or more digits. The value of a constant symbol cannot
be changed. Examples include:

10
3.1416
15e-3

Language

24

Table 2.3 ~ Symbols and their Meanings

Symbol Explanation

simple symbol A simple symbol does not begin with a numeric digit and does not contain any
embedded periods. Its default value (i.e., when no value is assigned to the symbol) is
the symbol itself, translated to uppercase. A simple symbol can be used as a variable
and can be assigned a value. Examples include:

list
file1
Date

stem A stem does not begin with a numeric digit and contains only one period, which must
be the last character. It can be assigned a value, which effectively assigns that value
to all compound symbols that begin with this stem. Stems can represent a collection
(or array) of variables. Examples of stems and their use include:

list. /* a stem whose value is "LIST." */
list. = animals
list.3 = 'cows'
say list.1 list.new list.3

The output is:

ANIMALS ANIMALS cows

since only the compound symbol list.3 has been assigned a value different from the
value assigned to the stem. The value assigned to the stem is uppercase, because the
value of the variable ANIMALS is undefined, and the default value of an undefined
variable is the variable's name in uppercase.

 Chapter 2

25

What is an Expression?
A Radia REXX clause can contain one or more expressions. An expression consists of one or more
terms and zero or more operators. The operators specify the operations to be performed on the
terms.

The terms in an expression can be any of the following:

■ Function call

■ Literal string

■ Operator

■ Sub-expression

■ Symbol

The following table lists the types of expressions and their meanings.

Table 2.4 ~ Expressions and their Meanings

Expression Explanation

function calls Function calls are of the form:

function_name([expression]

 [,[expression]] ...)

where function_name can be a symbol or a string.

literal strings Literal strings are treated as constants.

operators Operators can be grouped into four categories:

• Arithmetic

• Comparative

• Concatenation

• Logical

sub-expression A sub-expression is any expression enclosed in parentheses.

symbols Symbols are translated to uppercase and can be treated as constants or variables.
Symbols that do not begin with a digit can be the name of a variable, in which case the
value of that variable is used in the expression.

Language

26

The following table lists the types of operators and their meanings.

Table 2.5 ~ Operators and their Meanings

Operator Explanation

arithmetic
operators

Arithmetic operators are used to perform operations on numbers. Radia REXX supports
the following arithmetic operators:

+ addition

- subtraction

* multiplication

/ division

% integer division (returns integer portion of result)

/ remainder (not modulo - can be negative)

** exponentiation (raise to a whole number power)

comparative
operators

Comparative operators compare two terms and return the value '1' if the result is true
or the value '0' if the result is false. There are two types of comparative operators:
normal and strict.

Two terms must be absolutely identical to be strictly equal. In other words, there must
be the same number of leading or trailing blanks in both terms, no padding is
performed before the comparison is made, and the comparison is based on the
internal character representation of the platform where the program is executed.

For strict less-than and greater-than comparisons, the collating sequence of the
internal character representation is used. Thus, these results can be platform-
dependent. Further, for strict comparisons, if string1 is shorter than string2 and is
also a leading sub-string of string2, string1 is considered strictly less than string2.

concatenation
operators

Concatenation operators combine two strings to form a single string. Concatenation
can be indicated in any of the following ways:

|| concatenate with no intervening blanks

blank concatenate with one blank between strings

abuttal concatenate with no intervening blanks

It is important to remember that concatenation is implied when two adjacent terms are
not separated by some other operator.

logical operators Logical operators take one or two logical values as their operands and return a logical
result - 1 (true) or 0 (false). Radia REXX supports the following logical operators:

& and; returns 1 if both terms are true

| or; returns 1 if either term is true

&& exclusive or; returns 1 if either (but not both) terms are true

\ or ^ not; 1 becomes 0 or 0 becomes 1

 Chapter 2

27

Comparative Operators
Radia REXX supports the following comparative operators:

Normal Comparative Operators

= Equal

^=, \=, /=, <>, >< not equal

> greater than

< less than

>=, ^<, \<, /<, greater than or equal (not less than)

<=, ^>, \>, />, less than or equal (not greater than)

Strict Comparative Operators

== strictly equal (identical)

^==, \==, /==, strictly not equal

>> strictly greater than

<< strictly less than

>>=, ^<<, \<<, /<<, strictly greater than or equal

<<=, ^>>, \>>, />>, strictly less than or equal

Language

28

What is a Function?
A function is a program or subroutine that accepts zero or more arguments and returns a single
value. A function call in Radia REXX is an expression of the form:

function_name([expression] [, [expression]] ...)

A function call can be used in any expression wherever any other term would be valid. The
argument expressions can also be function calls. There cannot be intervening blanks between
function_name and the opening parenthesis. The presence of such blanks would cause the
expression to be interpreted as two unrelated symbols or expressions. Radia REXX supports three
types of functions:

■ Built-in

■ Internal

■ External

The following table lists the types of functions and their meanings.

Table 2.6 ~ Functions and their Meanings

Function Explanation

built-in functions Built-in functions are part of the language and are always available. These functions
are documented in Chapter 5: Built-in Functions.

internal functions Internal functions are subroutines contained within the program and identified by a
label. Internal functions are always available to the program that includes them. An
internal function must return control to the main program.

external functions External functions are stand-alone routines that can be called by a Radia REXX
program. They must be written in Radia REXX. Functions are available to any
program.

Radia REXX locates the external function either in the current working directory, or in
a directory on the current PATH.

This is discussed in detail in Chapter 3: Operations.

 Chapter 2

29

What are Special Variables?
RC, RESULT, and SIGL are special variables whose values can be set automatically during
execution of a Radia REXX program.

The following table lists the types of special variables and their meanings.

Table 2.7 ~ Special Variables and their Meanings

Special Variable Explanation

RC Set to the return code from a command.

RESULT Set to the value returned by a called subroutine. If no value is specified on the
RETURN statement in the subroutine, RESULT is dropped.

SIGL Set to the line number of the last instruction that caused a jump to a label. This
could result from a CALL or SIGNAL instruction, an internal function call, or a
trapped condition.

Language

30

What are Condition Traps?
While the flow of execution in a program is normally controlled by the instructions in the
program, Radia REXX recognizes certain conditions that can alter the flow. Condition traps can
be set in a program so that execution flow is automatically altered whenever one of these
conditions is encountered. The CALL and SIGNAL instructions allow you to enable or disable
condition traps and to specify the action to be taken if a condition is raised when the trap is
enabled.

The following table lists the types of conditions that can be trapped and their meaning.

Table 2.8 ~ Conditions Traps and their Meanings

Condition Trap Explanation

ERROR Indicates an error condition during execution of a command or that the specified
host command environment was not found.

FAILURE Indicates that execution of a command failed or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

LOSTDIGITS Indicates that the result of a numeric operation has to be rounded to fit within the
current numeric digits setting. The LOSTDIGITS condition can only be trapped with
SIGNAL ON. It cannot be trapped with CALL ON.

NOTREADY Indicates an error during an I/O operation.

NOVALUE Indicates that a symbol referenced in an expression or in a PARSE, PROCEDURE, or
DROP instruction has not been assigned a value.

SYNTAX Indicates a syntax error during program execution. The SYNTAX condition can only
be trapped with SIGNAL ON. It cannot be trapped with CALL ON.

 Chapter 2

31

What is an Input/Output Operation?
Input and output operations in Radia REXX are implemented according to the I/O model defined
by Cowlishaw in The REXX Language: A Practical Approach to Programming, (1990: Prentice
Hall). This includes both character input and output streams and the external data queue. All of
the following instructions and built-in functions for performing I/O, as defined by Cowlishaw, are
included in Radia REXX.

The following table lists the types of input/output operations and their meanings.

Table 2.9 ~ Input/Output Operations and their Meanings

Input/Output
Operation

Explanation

CHARIN Read characters from an input stream.

CHAROUT Write characters to an output stream. Optionally, if the output stream is a
file and no output string is specified, perform a close operation on the file.

CHARS Return the number of characters remaining in an input stream.

LINEIN Read one line from an input stream.

LINEOUT Write one line to an output stream. Optionally, if the output stream is a
file and no output string is specified, perform a close operation on the file.

LINES Return the number of lines remaining in the input stream.

PARSE LINEIN Read one line from the default input stream.

PARSE PULL Read one line from the external data queue or, if the queue is empty,
from the default input stream.

PULL Same as PARSE PULL except that the data is automatically converted to
uppercase.

PUSH Write one line to the top of the external data queue.

QUEUE Write one line to the end of the external data queue.

QUEUED Return the number of lines remaining on the external data queue.

SAY Write one line to the default output stream.

STREAM Return a string describing the state of the specified input or output stream
or perform operations on the stream.

Note

Transient I/O streams include the standard input, the standard output, and pipes, including
named pipes. Persistent I/O streams are disk files. The default input stream is the standard
input (STDIN). The default output stream is the standard output (STDOUT). Using Radia
REXX I/O functions with pipes allows you to write filter programs for use with other
commands or programs.

Language

32

What is Parsing?
One of the strengths of the REXX language is its extensive and flexible string manipulation
capability. Besides the built-in functions that perform string operations, Radia REXX includes the
PARSE instruction that provides a generalized and powerful mechanism for assigning portions of
a string to variables.

The general form of the PARSE instruction is:
PARSE [UPPER] keyword [expression] template

where: template is defined by the programmer and describes the way in which the string is to be
separated and assigned to variables.

Note

A detailed syntax diagram and description of the PARSE instruction can be found in Chapter
4: Instructions, which also includes extensive examples of the power and flexibility of
PARSE.

33

Chapter 3

Operations

This chapter discusses the Radia REXX Executable program (RADREXXW.EXE), as well as the
Radia REXX Interpreter and Panel Manager program, RADPNLWR.

The Radia REXX Executable
The Radia REXX executable executes Radia REXX programs. To invoke a Radia REXX command,
use the following format:

 RADREXXW ProgramName Arguments

Note that arguments are passed as a string.

The RADPNLWR Executable
The Radia executable RADPNLWR serves two functions:

■ RADPNLWR is the Radia Panel Manager that displays and processes the responses to Radia
dialogs.

3

Operations

34

■ RADPNLWR is the Radia REXX Interpreter that executes Radia REXX programs and
methods.

Note

The terms dialogs, dialog boxes, and panels are used interchangeably in this manual.

Invoking RADPNLWR
The command syntax options for invoking RADPNLWR are given below.

RADPNLWR <panel-object-name in current IDMLIB directory>
RADPNLWR <REXX-program-name with fully qualified path>
RADPNLWR

You can invoke RADPNLWR with one parameter, or with zero parameters. The parameter can be
either the name of a panel object, or the fully qualified path and name of a REXX program to
execute.

When invoked with a parameter consisting of a panel object name, RADPNLWR locates the
designated panel object in the current IDMLIB directory, and uses it to display the dialog it
defines. The panel object name must be eight characters or less. The current IDMLIB directory is
the directory identified by the IDMLIB setting in the NVD.INI file.

When invoked with a parameter consisting of a REXX program name, RADPNLWR launches the
REXX program.

When invoked with zero parameters, RADPNLWR refers to the ZMASTER object located in the
current IDMLIB directory to determine what action to take. If the ZPANEL variable contains the
name of a panel object in the current IDMLIB directory, the dialog defined by the panel object is
displayed. If there is no panel object specified in ZMASTER.ZPANEL, RADPNLWR exits.

The following table summarizes the variables in ZMASTER that RADPNLWR refers to or sets:

Table 3.1 ~ ZMASTER Variables

ZMASTER Variable Usage

ZPANEL The name of the panel object for the dialog to be displayed. RADPNLWR looks
for this object in the current IDMLIB location. The object name can have a
maximum of eight characters.

 Chapter 3

35

Table 3.1 ~ ZMASTER Variables

ZMASTER Variable Usage

ZPCONT A REXX program executed by RADPNLWR can set this variable to 1 to indicate
that RADPNLWR will continue execution after the REXX program exits. When
control is returned to RADPNLWR from the REXX program, RADPNLWR will
display the panel identified by the ZPANEL variable. If the value of ZPCONT is
0 when RADPNLWR regains control from a REXX program it has just
executed, RADPNLWR exits.

ZPHEAPNO REXX programs executed by RADPNLWR can set this variable to the heap
number in a multi-heap object associated with a list box or drop-down list
control that identifies the initial value for the control when RADPNLWR
displays the panel. This value will be displayed as the default value of the
drop-down list, or the initially highlighted selection in a list box.

Note: This value is only useful if there is only one control in the dialog
whose data source is a multi-heap object, because the ZPHEAPNO value will
be used to identify the default for all controls in a dialog whose data source
is a multi-heap object.

ZPREXEC The fully qualified path and name of the REXX program to execute when the
current dialog terminates.

ZPSEL Contains the heap number in a multi-heap object that is associated with the
control that was last manipulated by the user (whose data source is a multi-
heap object, e.g., a drop-down list or list box), containing the value last
selected by the user. For example, the data source of a list box is a multi-
heap object. When the user selects one of the items in the list box,
RADPNLWR places the heap number (in the data source object) that contains
the value that the user selected, into the ZPSEL variable.

Note: This value is only reliable if there is only one control in the dialog
whose data source is a multi-heap object, because only the most recent user
selection is recorded in ZPSEL, and there is no way to tell which control was
the most recently selected.

RADPNLWR Log Files
Each execution of RADPNLWR generates the following ASCII log files in the IDMLOG location on
the client, which defaults to C:\Program Files\Novadigm\Log when the Radia Client is
installed. The IDMLOG location is specified in the IDMLOG setting in NVD.INI.

■ NEWPANEL.LOG
This log audits the startup of RADPNLWR to the point where a panel is displayed or a REXX
program is launched.

■ PNLREXX.LOG
This log audits the REXX program interpreted by RADPNLWR.

■ <panel-name>.log
This log audits a panel displayed by RADPNLWR. There is one log for each panel displayed.

Operations

36

For example, if RADPNLWR displays a panel named PINSCOMP.EDM, the log file produced
would be named PINSCOMP.LOG.

New log files are written each time you run a REXX method. Copy the logs to an alternate file if
the contents of the log need to be retained for later use.

Executing a REXX Method from Windows

To execute a REXX method from the Windows Run dialog box

 Launch the Run dialog box.

Figure 3.1 ~ Run dialog box.

 Type the full path of RADPNLWR followed by a space and the fully qualified name of the
REXX program you want to execute. (Include the full path if the REXX program is not located in
the same directory as RADPNLWR.) Click OK.

The Radia REXX method you specified will execute.

 Chapter 3

37

Coding Radia REXX Programs
A Radia REXX program is contained in a text file with the .REX extension (for example,
HWINFO.REX). You may write your REXX programs with the text editor of your choice.

Radia REXX is designed to be portable across all platforms supported by Radia. Ensure
portability of your REXX program by following these two guidelines:

■ The name of the program may be up to eight characters in length and has a .REX extension
(for example: HWINFO.REX).

■ The program does not contain platform-specific functions or host commands.

Including External Functions and Subroutines
Radia REXX supports the use of functions or subroutines that are external to the program being
executed. The following search order is used to locate external functions and subroutines:

 Current working directory.

 Directories specified in the PATH associated with the current command environment.

If your program includes an external function or subroutine call for which the file is not found in
one of these locations, a message similar to the following appears:

Error 43 on line in filename: Routine not found

Executing Host Commands
There are a number of options for executing host commands in Radia REXX. Which execution
option you choose depends on the command to be executed and whether you need access to output
from the commands for further processing.

■ Command output is directed to STDOUT (Standard Output Stream). This is normally the
display screen.

■ If you require the output for later use, redirect STDOUT, and possibly STDERROR (Standard
Error Stream), to a file.

■ Execute a host command directly by including the command as a clause in the program. The
command may or may not be enclosed in quotes; however, we strongly recommend that you
always enclose host commands in quotes. Quotes ensure that a host command is treated as
such and they eliminate any risk of a host command being mistaken for a program variable
with the same name as the host command, or any of its operands. Quotes also ensure the
case-sensitivity of the host command.

Operations

38

■ Use the ADDRESS instruction to specify the name of the host command environment that is
to process the command. The default host command environment is the native operating
system (EDMWIN by default, for Radia).

Table 3.2 ~ Host Command Environments

Host Command Environment

CMD Windows 95, Windows 98, Windows NT 4.0

EDMWIN Windows 95, Windows 98, Windows NT 4.0

Note

Command output is directed to the standard output (STDOUT), normally the display screen.
You must redirect the standard output to a file if the output is required for later use.

39

Chapter 4

Instructions

REXX instructions consist of one or more clauses that are identified by keywords, and are
recognized only after meeting specific conditions. Selected instructions that are provided in Radia
REXX are explained in this chapter.

Overview of REXX Instructions
A REXX instruction is one or more clauses that can be specified to:

■ Control the program flow,

■ Manipulate data, or

■ Affect the external environment.

An instruction is identified by a keyword and is recognized only when the following conditions are
met:

■ The keyword is the first token in the clause.

■ The second token does not begin with an equals sign (=) (which implies assignment) or with
a colon (:) (which indicates a label).

4

Instructions

40

Instruction keywords are reserved when used in the context described above. Certain sub-
keywords (such as WHILE or WHEN) are reserved within the context of particular instructions
(such as DO or SELECT). Although instruction keywords and sub-keywords are not reserved
outside this context, it is good programming practice not to use them as labels or as variables.

Instruction keywords and sub-keywords are not case-sensitive. Further, adjacent blanks have no
effect other than to separate the keyword from surrounding tokens.

Quick Reference
The following instructions are provided in Radia REXX and explained in this chapter:

Table 4.1 ~ Quick Reference to Instructions

Instruction Description

ADDRESS Specifies the external environment for the execution of host commands.

ARG Retrieves the argument strings of a program or an internal routine and puts them into
variables.

CALL Invokes a routine or controls the trapping of certain conditions.

DO Groups instructions together. Such an instruction group can be executed zero or more
times depending on a conditional value and/or a repetitor.

DROP Restores one or more variables to the un-initialized state. In the un-initialized state, the
value of a variable is equal to the name of the variable in uppercase.

EXIT Unconditionally leave a program. As an option, it can also return a result to the caller.

IF Conditionally executes an instruction or an instruction group, or selects between
alternative instructions or instruction groups.

INTERPRET Executes dynamically created instructions.

LEAVE Modifies the flow of control within a repetitive DO loop.

NOP Controls the precision and format of numbers used in arithmetic operations.

NUMERIC Controls the precision and format of numbers used in arithmetic operations.

PARSE Assigns data to variables according to the REXX parsing rules and the specified template.

PROCEDURE In an internal routine, protects the caller's variables from modification during execution of
the routine. Also ensures that the subroutine's variables are in their un-initialized state
each time the routine is called.

PULL Simply a short form of PARSE UPPER PULL [template]. Reads a line from the Radia REXX
program stack. If the program stack is empty, PULL reads from the default character
input stream (STDIN).

PUSH Places a string at the top of the Radia REXX program stack. Data are stacked in LIFO
(last-in-first-out) order.

QUEUE Places a string at the bottom of the Radia REXX program stack. Data is stacked in FIFO
(first-in-first-out) order.

 Chapter 4

41

Table 4.1 ~ Quick Reference to Instructions

Instruction Description

RETURN Return control from a REXX program or internal routine to its caller. Optionally, can also
return a value.

SAY Writes a line to the default character output stream.

SELECT Conditionally execute one of several alternative instructions.

SIGNAL Causes an abnormal change in the flow of control or controls the trapping of certain
conditions.

TRACE Traces execution flow in a program and is used primarily for debugging.

UPPER Converts one or more variables to uppercase.

Instructions

42

ADDRESS
Syntax ADDRESS [environment [expr1]] [WITH redirect]

 [[VALUE] expr2]

Description The ADDRESS instruction specifies the external environment for the execution of host commands.

Parameters
Parameter Explanation

environment Name of host command environment for subsequent host commands. Normally, the
default host command environment is the native operating system, though this cannot be
the case for applications that embed Radia REXX as a macro language. The following
additional host command environments are normally supported: UNIX, sh, csh, ksh,
command, CMD, and DOS.

unix UNIX

sh The Unix Bourne shell; used for commands that are available only in the
Bourne shell or for command syntax specific to the Bourne shell; this is
the default shell used by the default host command environment (Unix).

csh The Unix C shell; used for commands that are available only in the C shell
or for command syntax specific to the C shell.

ksh The UNIX Korn shell; used for commands that are available only in the
Korn shell or for command syntax specific to the Korn shell.

command A special host command environment that bypasses normal shell
expansions; used for commands with operands that would normally be
expanded by the shell, such as "*"; no shell is used; the command is
executed directly; because no shell is invoked, piping (|), redirection (>,
>>, <, etc.), filename expansions (using *, ?, [], etc.), and back
grounding (&) are unavailable.

CMD The NetWare, OS/2, Windows NT, and Windows 95 shells.
Note: Currently, Radia supports the standard ‘out of the box’ environments, including
COMMAND, CMD and the UNIX variants.

expr1 Host command to be executed. This can be a literal string or an expression that evaluates
to a host command. When expr1 is specified, ADDRESS sends a single command to the
specified environment. If expr1 is omitted, ADDRESS causes a change to the default
host command environment, which persists until it is explicitly changed again or until the
program exits, whichever comes first.

When a new host command environment is specified, this becomes the primary host
command environment. Radia REXX retains the previous environment name as the
alternate environment. Repeated execution of ADDRESS without operands has the effect
of a toggle between the primary and alternate environments.

ADDRESS
[VALUE] expr2

Equivalent to ADDRESS environment. expr2 is an expression that evaluates to the name
of a host command environment. If expr2 does not begin with a symbol or a literal
string (if it starts with a special character), you may omit the sub-keyword VALUE.

 Chapter 4

43

Parameter Explanation

WITH redirect redirect represents the keyword syntax that supports I/O redirection. This extended
format is only available with Address CMD or UNIX (sh, ksh, csh), and not COMMAND. In
the case of Windows, the redirection only works if the command executing is a "console"
command that writes output to standard output. Most Windows commands do not write
to "standard output." For example the command "xcopy" writes to "standard output" but
Notepad does not.

Syntax is as follows:

INPUT PULL

 STEM stem_name

 STREAM file

 NORMAL

OUTPUT [REPLACE] PUSH

 [APPEND] QUEUE

 STEM stem_name

 STREAM file

 NORMAL

ERROR [REPLACE] PUSH

 [APPEND] QUEUE

 STEM stem_name

 STREAM file

 NORMAL

INPUT specifies redirection of standard input for the command. OUTPUT specifies
redirection of standard output. ERROR specifies redirection of standard error. These
keywords may be used individually or in any combination. When used in combination, the
instruction has the form:

address UNIX cmd with input ikey output okey error ekey

where cmd is the command to be executed and ikey, okey, and ekey are additional
keywords for input, output, and error, respectively.

REPLACE indicates that command standard output or standard error should replace
existing data in the target specified. This is the default. APPEND indicates that command
standard output or standard error should be appended to existing data in the target
specified.

The remaining keywords indicate the source (for input) or target (for output and error) of
I/O redirection.

PULL causes command input to be taken from the REXX program stack. PUSH and
QUEUE redirect command output or error to the REXX program stack in the same
manner as the PUSH and QUEUE instructions. These keywords are REXX extensions to
the ANSI standard and should not be used if portability to other platforms is a
consideration.

STEM specifies that the source of command input or the target of output or error is a

Instructions

44

Parameter Explanation

stem in the current program.

stem_name is the name of the stem to be used. It must be specified in the form stem.,
the trailing "." being required to distinguish it from an ordinary variable.

For INPUT, you must set stem_name.0 to the number of elements in the stem.
stem_name.1 through stem_name.n contain the data to be redirected. For OUTPUT or
ERROR, stem_name.0 is set automatically to the number of elements created in the
stem. stem_name.1 through stem_name.n contain the data returned from the command.

STREAM specifies that the source of command input or the target of output or error is a
file stream. file specifies the name of the file. It is recommended that file be enclosed in
quotes (UNIX filenames are case sensitive and may also contain characters that would
cause them to appear to REXX as an expression).

NORMAL resets the source of command input or the target of output or error back to
the terminal. When NORMAL is specified, it must be the only keyword following INPUT,
OUTPUT, or ERROR.

Usage Notes
Applications that embed Radia REXX as a macro language can define additional host command
environments and/or set a different default.

The current setting of ADDRESS is accessible through the ADDRESS built-in function, described
in detail in Chapter 5: Built-In Functions.

Any host command sent to the default host command environment, or to one of the automatically
recognized environments, creates a new process to execute the command. When the command
completes, the created process terminates. If the command changes an attribute that is unique for
each process (such as current working directory), the change is associated with the created
process only, and has no effect on the process in which Radia REXX is running.

Example 1
The following program fragment captures the output of the MS-DOS "dir" command in a file for
later use.

address CMD 'dir > filelist'

 Chapter 4

45

Example 2
The following program fragment executes a C shell command to capture the session command
history in a file for later use.

cmd_list = '/tmp/cmd.history'
address csh 'history >' cmd_list

Example 3
The following program fragment alternates between two host command environments to execute
commands that are specific to those environments.

cmd_list = '/tmp/cmd.history'
home_file_list = '/tmp/home.list'
here_file_list = '/tmp/here.list'
sales_file_list = '/tmp/sales.list'
address UNIX
'ls -l >' here_file_list
address csh

Example 4
In the following line, ~ is C-shell short hand for $HOME.

'ls -l ~/reports >' home_file_list
address /* resets environment name to UNIX */
'ls -l > /home/sales/reports'
address /* resets environment name to CSH */
'history >' cmd_list

Example 5
The following program fragment captures the output of the UNIX "ls -l" command in a file for
later use.

address UNIX 'ls -l' with output stream 'files'

Instructions

46

Example 6
The following program scans a Windows directory for *.txt files and places the output of the dir
command in the stem variable Text.

/*--*/
/* L i s t D i r */
/*--*/
Trace Off
Cmd = "Dir /b *.txt"
Text.0 = 0
Address CMD Cmd With Output Replace Stem Text.
Do tt = 1 to Text.0
 Say Text.tt
End tt
Exit 0

 Chapter 4

47

ARG
Syntax ARG [template]

Description The ARG instruction retrieves the argument strings of a program or an internal routine and puts
them into variables.

Parameters
Parameter Explanation

template The parsing template that defines how the argument strings are assigned to variables.
For details on parsing templates, refer to the PARSE instruction in this chapter. If
template is omitted, the ARG instruction has no effect.

Usage Notes
The ARG instruction is simply a short form of PARSE UPPER [ARG template]. Thus, characters
in the argument strings are translated to uppercase and then parsed into variables according to
normal parsing rules (refer to the PARSE instruction in this chapter for details). Use PARSE
ARG to preserve the case of the argument strings.

As with the PARSE instruction, ARG can be used repeatedly with different templates to separate
the argument strings in different ways.

The argument strings and information about the argument strings are also accessible from the
ARG built-in function, described in Chapter Five: Built-In Functions.

Example 1
The following program, named "bday", accepts a single argument for use in an output string.

arg who
say 'Happy birthday,' who'!'

If the user types "bday Susan"
the output is "Happy birthday, SUSAN!"

If the user types "bday Jean Luc"
the output is "Happy birthday, JEAN LUC!"

Example 2
The following program fragment accepts a maximum of two arguments for processing; the third
and subsequent arguments are discarded.

arg order_number part_number .
if order_number = '' then
 call display_order_list

Instructions

48

if part_number = '' then
 call display_parts_list

Example 3
The following program fragment illustrates repeated use of ARG to separate the argument strings
in different ways.

today = date(s)
say today
call breakup today
exit
breakup:
arg thisdate
arg year +4 month +2 day
arg +2 yr +2 +1 mo +1 +1 dy
say thisdate
say year month day
say yr mo dy
return

The output is:
19940303
19940303
1994 03 03
94 3 3

 Chapter 4

49

CALL
Syntax CALL name [expr] [, [expr]] ...

 ON condition [NAME trapname]
 OFF condition

Description The CALL instruction invokes a routine or controls the trapping of certain conditions.

Parameters
Parameter Explanation

name Names the subroutine to be invoked. It can refer to any of these types of routines:

Internal routine Any subroutine or function contained within the current program and
identified by a label.

Built-in function One of the Radia REXX built-in functions described in Chapter Five:
Built-In Functions or one of the Radia-specific functions described in
Chapter Six: Using Extensions.

External routine An external program written in REXX or a function written in a
language other than REXX that has been added to the Radia REXX
interpreter, or that is part of an application that embeds Radia REXX
as a macro language.

expr Any valid REXX expression. The expressions are evaluated from left to right with the
results passed to the called routine as arguments.

ON, OFF Sub-keywords of CALL that control the trapping of certain conditions. ON enables a
condition trap. OFF disables a condition trap. Using CALL in this manner is similar to the
use of SIGNAL.

condition

NAME trapname

Simple symbols which are taken as constants.

Usage Notes
name must be either a symbol or a literal string. If it is a literal string, it can refer only to a built-
in function or an external routine, since the search for internal routines is bypassed.

If the routine returns a value, it is assigned to the special variable RESULT. If the routine does
not return a value, RESULT is dropped.

If name is an internal routine, all variables are available to both the subroutine and the caller.
Use the PROCEDURE instruction, described in this chapter, to protect variables in the caller
from undesired or unexpected modification by the called routine. The EXPOSE option of the
PROCEDURE instruction allows you to make selected variables from the caller available to the
subroutine.

If name is an internal routine, the special variable SIGL is set to the line number of the CALL
instruction when control is passed to the subroutine. If the routine uses the PROCEDURE

Instructions

50

instruction, you must EXPOSE SIGL if the line number of the CALL instruction is to be available
for debugging purposes while in the subroutine.

An internal routine can call other internal routines or external routines. Eventually, a subroutine
must exit, or return control to its caller using a RETURN instruction.

The following conditions can be controlled using the CALL instruction:

Condition Explanation

ERROR Indicates an error condition during execution of a command, or that the specified host
command environment was not found.

FAILURE Indicates that execution of a command failed, or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

NOTREADY Indicates an error during an I/O operation.

The following state information is saved when making a call to an internal subroutine, and is
restored when control is returned to the caller:

State Information Explanation

Status of DO loops and
other structures

Executing a SIGNAL in the subroutine does not deactivate DO loops in the
caller.

ADDRESS settings Both the primary and alternate ADDRESS of the caller are unaffected by
ADDRESS commands in the subroutine.

CONDITION traps Use of CALL, or SIGNAL ON or OFF, in the subroutine does not change the
settings in the caller.

CONDITION information This is the information accessed by the CONDITION built-in function.

NUMERIC settings Settings of precision, format, or fuzz factor in the subroutine do not affect the
caller.

TRACE settings All TRACE settings, including the interactive TRACE state, are restored when
control is returned to the caller.

Elapsed time clocks The subroutine can inherit an elapsed time clock from the caller and may reset
it during execution without affecting the caller's clock; thus, an elapsed time
clock started by the subroutine is not available to the caller.

Using CALL to control condition traps differs from using SIGNAL in the following ways:

z condition is the name of the condition to be detected. If a condition trap is enabled, when
that condition occurs, control is passed to one of the following:

♦ to the label specified by trapname, if NAME trapname is specified, or

 Chapter 4

51

♦ to the label that matches condition, if NAME trapname is not specified.

z CALL cannot be used with the NOVALUE or SYNTAX conditions.

z State information is preserved across the CALL so the trap routine can return to the
caller, which can resume execution; with SIGNAL, program execution terminates when
the trap routine completes.

Example 1
The following program fragment illustrates calling an internal subroutine which returns a value.

if date('w') = 'Friday' then call week_report
if result = 0 then say 'Report Generated'
 else say 'Error' result 'from report program'
exit
week_report:
status = 0
: /* Some processing, during which status gets a non-zero value */
: /* if something goes wrong */
return status

Instructions

52

Example 2
The following program fragment illustrates nested calls of internal and external routines.

parse arg first second .
call sub1 first
call sub2 second
exit
sub1:
arg what_to_do
 :
 :
call sub3
if result > 0 then call extern1
return
sub2:
parse arg a '*' b .
 :
 :
return b
sub3:
 :
 :
return

Example 3
The following program fragment uses CALL to control condition traps.

call on error
call on halt name interrupt
address edmwin 'holycow'
 :
i = 1
do 100000
 i = i + 5
 say i
 end
exit
error:
say 'Error condition detected at line' sigl
return
interrupt:
say 'Ctl-C detected; exiting at your request'
exit

Because the EDMWIN environment does not have a command named "holycow" (and assuming
there is no program in your PATH named "holycow"), this program detects the ERROR condition,
displays the message, and resumes execution following the ADDRESS instruction. If the user

 Chapter 4

53

decides to press CTL-C (an interrupt signal) during the long DO loop, the HALT condition is
detected, messages are printed, and the program terminates.

Example 4
This program illustrates the use of CALL and SIGNAL together to implement a multi-way call.
The program might be named "doit".

parse arg what .

say 'starting in main'
who_to_call = 'aaa'
call multi who_to_call, what

say 'back in main'
exit
multi: procedure
say 'now entering multi'
if arg(2) = '' then signal value arg(1)
 else do
 say 'still in multi, arg is' arg(2)
 return
 end

say 'better not see this line'
return
aaa:
say 'now in aaa'
return

If the program is executed by typing doit, then the output is:
starting in main
now entering multi
now in aaa
back in main

If the program is executed by typing doit go, then the output is:
starting in main
now entering multi
still in multi, arg is go
back in main

Instructions

54

DO
Syntax DO [repetitor] [conditional]

 [instr_list]
END [symbol]

Description The DO instruction is used to group instructions together. Such an instruction group can be
executed zero or more times depending on a conditional value and/or a repetitor.

Usage Notes
A DO instruction group consists of the DO instruction followed by one or more instruction clauses,
and then the keyword END. The END keyword must begin a new clause. instr_list represents
the instruction clauses included in the group. Any Radia REXX instruction can appear in the
group, including the DO instruction.

conditional can be any of the following, as explained in the following table:

z WHILE exprl

z UNTIL exprl

Parameter Explanation

exprl exprl is any expression that evaluates to 0 or 1. exprl is evaluated for each pass
through the loop using the current values for all variables. The instruction group is
repeated WHILE exprl evaluates to 1 or UNTIL exprl evaluates to 1.

WHILE A WHILE condition is evaluated at the beginning of the loop. Thus, if the condition is
already satisfied at the start of the first iteration, the instruction group is never executed.

UNTIL An UNTIL condition is evaluated at the end of the loop but before the control value, if
any, is incremented.

The WHILE and UNTIL keywords are reserved within the context of a DO instruction. This
means that they cannot be used in any of the expressions.

Execution of a DO loop can also be modified by the execution of a LEAVE or ITERATE
instruction.

 Chapter 4

55

Repetitor may be any of the following, as explained in the following table:

z exprn

z name= exprn [TO exprn] [BY exprn] [FOR exprn]

z FOREVER

Parameter Explanation

exprn exprn is any expression that evaluates to a number. It is rounded before use according
to the current setting of NUMERIC DIGITS. When used alone or with the FOR keyword,
exprn must evaluate to a non-negative whole number.

name name is a control variable. It can be any valid symbol. name is assigned an initial value
at the beginning of the loop and is stepped BY a specified increment TO a maximum
value or FOR a designated number of iterations. The value of the control variable can be
altered within the loop, but this is not normally considered to be good programming
practice. Also, if the control value is a compound symbol such as "I.J", altering "J" within
the loop changes the control variable and can have an unexpected and undesirable effect
on the result. Again, this is not normally considered to be good programming practice.

TO, BY, and
FOR

TO, BY, and FOR can be used in any combination and in any order. They are evaluated in
the order in which they appear in the DO instruction clause. The default value for BY
exprn is 1. The expressions associated with TO, BY, and FOR are evaluated only once—
when the DO instruction is first executed. The TO condition and the FOR count are
checked at the beginning of each iteration of the loop. If the TO condition is already
satisfied at the start of the first iteration, the instruction group is never executed.

The TO, BY, and FOR keywords are reserved within the context of a DO instruction. This
means that they cannot be used in any of the expressions that appear in conjunction with
the specification of a control variable.

FOREVER The FOREVER keyword indicates that the instruction group should be repeated until an
instruction (such as LEAVE or RETURN) is executed to exit the loop.

repetitor and conditional can be used separately or in combination to control the number of
times an instruction group is executed.

Instructions

56

Example 1
The following program fragment illustrates the simplest form of the DO loop. If the user types Q,
the program prints a message and exits; otherwise, processing proceeds.

say 'Enter menu selection or Q to quit'
pull reply
if reply = 'Q' then do
 say 'Exiting at your request'
 exit
 end
else call do_selection reply

Example 2
The following program fragment illustrates a simple repetitive DO loop.

say 'Enter number of rows to process'
pull reply
if datatype(reply, 'W') then do reply
 line = linein('datafile')
 call mangle_it line
 end

Example 3
The following program fragment illustrates the use of the WHILE conditional to force continued
prompting for user input until something valid is entered. It also illustrates the use of DO loops
within DO loops.

list = 'REXX C FORTRAN LISP PL/I'
thislang = ''
do while thislang = ''
 say 'What language for this program?'
 pull thislang
 if wordpos(thislang, list) = 0 then do
 say ''
 say 'Invalid selection:' thislang
 say 'Must be one of the following:' list
 thislang = ''
 say ''
 end
end

 Chapter 4

57

Example 4
The following program fragment illustrates the use of DO FOREVER. It repeatedly displays a
menu for the user to select processing options until the user chooses the QUIT option.

do forever
 'clear'
 say ''
 say ' 1 Enter sales data'
 say ' 2 Consolidate by region'
 say ' 3 Consolidate by product line'
 say ' 4 Consolidate by salesman'
 say ' 5 Statistical analyses'
 say ' 6 Monthly report'
 say ' Q Quit'
 say ''
 say 'Select processing option'
 pull option
 if option = 'Q' then leave
 interpret 'call process.'option
 end
exit

Example 5
The following program illustrates nested DO loops. It finds all primes between 1 and n, where n is
the calling argument. If n is not specified, the default is 5000; the calls to time('e') make this
program suitable for use as a benchmark.

call time 'e'
arg n
if n = '' then n = 5000
 /* Calculate all non-primes in the range and mark non-primes */
 /* in an array. */
do i = 2 to n%2
 do j = 2 to n%i
 k = i * j
 a.k = 0
 end
 end
 /* Look through the array and display all the primes found. */
 /* */
do i = 1 to n
 if a.i \= 0 then say i
 end
say time('e')

Instructions

58

DROP
Syntax DROP varlist

Description The DROP instruction restores one or more variables to the un-initialized state. In the un-
initialized state, the value of a variable is equal to the name of the variable in uppercase.

Parameters
Parameter Explanation

varlist varlist specifies the variables to be dropped. varlist is one or more symbols separated
by blanks. The symbols must be valid variable names. If a symbol is enclosed in
parentheses, it is a variable reference; and its value is treated as a subsidiary variable
list. The subsidiary list cannot include a variable reference, that is, it must be a list of
symbols representing valid variables, separated by blanks. varlist can include the same
variable more than once. It can also contain variables that have never been assigned a
value.

Usage Notes
Variables are dropped from left to right, with variables in subsidiary lists dropped as soon as the
variable reference is found. If a subroutine drops a variable that has been exposed from the caller,
then the caller's variable is dropped. If a variable in varlist is a stem, then all variables that
begin with that stem are dropped.

Example 1
x = 10
drop x
say x

The output is:
X

Example 2
x.a = 'cow'
x.b = 'pig'
drop x.
say x.b

The output is:
X.B

 Chapter 4

59

Example 3
list = 'a b x.'
a = 10; b = 12; c = 14
y. = 'unknown animal'; y.12 = 'pony'
drop (list) c
say y.b

The output is:
unknown animal

Example 4
The following program fragment illustrates the relationship between the value returned by the
SYMBOL function and DROPped variables.

x = 100
say symbol('x')
drop x
say symbol('x')

The output is
VAR
LIT

Example 5
The following program fragment illustrates using DROP and SYMBOL together instead of setting a
flag to test for successful processing.

drop testvar
do i = 1 to lines('in_file')
 line = linein('in_file')
 if word(line, 5) \= 'temp' then
 testvar = word(line, 5)

end
if symbol('testvar') \= 'LIT' then
 say 'Good data'
 else say 'All temps'

Instructions

60

EXIT
Syntax EXIT [expression]

Description The EXIT instruction is used to unconditionally leave a program. As an option, it can also return a
result to the caller.

Parameters
Parameter Explanation

expression expression is any valid Radia REXX expression. Its value is returned to the caller as a
character string.

Usage Notes
When the EXIT instruction is executed, the program terminates immediately. If an external
subroutine is executing, EXIT and RETURN have the same effect of returning control to the
caller.

It is not absolutely necessary to include an EXIT instruction at the end of your program. EXIT is
implied when there are no more instructions to execute. If, however, a program contains internal
subroutines, it is important to include an EXIT instruction at the end of the main program. In the
absence of such an EXIT, the program would fall through into the first internal subroutine.

Example 1
say 'Hello world'
exit

This is identical to the one-line program:
say 'Hello world'

Example 2
The following program fragment illustrates returning a value on the exit instruction.

exitrc = 0
do i = 1 to 3
 interpret 'call report.'i
 if result \= 0 then exitrc = 4
 end
exit exitrc

Example 3
The following program fragment illustrates the use of exit to terminate a program when an
unexpected condition occurs. It generates a report that can only be run on the last day of the

 Chapter 4

61

month, so if the user is running this program on any other day, it terminates automatically. It
also illustrates the use of exit to terminate the main program to avoid falling through into the
first internal routine.

months = 'January February March April May',
 'June July August September October',
 'November December'
days='31 leap() 31 30 31 30 31 31 30 31 30 31'
this_month = wordpos(date('m'), months)
if left(date(), 2) \= word(days, this_month)
 then exit
call setup
call do_report
exit
leap:

The function to calculate the number of days in February is:
:
:
return howmany

Instructions

62

IF
Syntax IF expression [;] THEN [;] instruction [ELSE [;] instruction]

Description The IF instruction is used to conditionally execute an instruction or an instruction group, or to
select between alternative instructions or instruction groups.

Parameters
Parameter Explanation

expression expression must evaluate to 0 or 1.

instruction instruction can be an assignment, a command, or an instruction, including IF and
SELECT constructs and DO groups.

THEN The keyword THEN followed by an instruction is required whenever the IF instruction is
used. If the value of expression is 1, then the instruction following THEN is executed. If
instruction is DO, then an instruction group is executed. If the value of expression is
0, the THEN instruction is bypassed. It is not necessary for the keyword THEN to begin
a new clause.

ELSE The keyword ELSE indicates alternative processing to occur when the value of
expression is 0. The keyword ELSE must begin a new clause in the program. If it
appears on the same line as the THEN instruction, a semicolon must be present to
terminate the THEN instruction.

Usage Notes
Optional semicolons in the syntax diagram indicate that the following component can appear on
the same line as the preceding component (with or without the presence of a semicolon) or can
appear on a new line in the program without changing the behavior of the IF instruction.

Use the NOP instruction to indicate that nothing is to be executed following a THEN or ELSE. A
null clause is not an instruction in Radia REXX, so putting an extra semicolon after THEN or
ELSE results in Error 1: Incomplete DO/SELECT/IF or Error 8: Unexpected THEN or ELSE.

 Chapter 4

63

Example 1
The simplest form of IF:

rc = linein('data.file')
if rc \= 0 then say 'Error reading data.file'

Example 2
The following program fragment still uses the simplest form of IF but uses a function that
evaluates to 0 or 1 as the conditional expression.

val = 'abc'
if datatype(val, 'l') then
 upper_val = translate(val)

Example 3
The following program illustrates alternative processing using ELSE.

say 'Enter menu selection (1, 2, or 3)'
pull answer
if datatype(answer, 'W') then call mysub
 else call error1

Example 4
The following program fragment extends the previous example to illustrate the use of a more
complex conditional expression.

say 'Enter menu selection (1-8)'
pull answer
if \datatype(answer, 'w') | answer < 1 | ,
 answer > 8 then call error1
 else call mysub

Example 5
The following program fragment illustrates execution of a DO loop within an IF instruction.

list = 'REXX C FORTRAN LISP PL/I'
say 'What language for this program?'
pull thislang
if wordpos(thislang, list) = 0 then do
 say ''
 say 'Invalid selection:' thislang
 say 'Must be one of the following:' list
end

Instructions

64

INTERPRET
Syntax INTERPRET expression

Description The INTERPRET instruction executes dynamically created instructions.

Parameters
Parameter Explanation

expression expression is any valid expression that evaluates to one or more Radia REXX
instructions. It is executed just as if it were a line inserted into the program.

Usage Notes
For instructions such as DO, IF, or SELECT, expression must include the complete instruction
construct. If expression evaluates to a DO instruction which includes a LEAVE or ITERATE
instruction, the complete DO-END construct must still be present.

Label clauses are not permitted in the expression to be interpreted.

Example 1
say 'Enter region for this report'
pull reply
do_prog = 'call report.'reply
interpret do_prog

If the user enters East, the variable do_prog evaluates to call report.east. The
INTERPRET instruction executes the CALL instruction.

Example 2
The following program fragment illustrates a similar use of INTERPRET without the intermediate
variable; it calls a different subroutine for each day of the week.

today = date('w')
interpret 'call report_'today

 Chapter 4

65

ITERATE
Syntax ITERATE [name]

Description The ITERATE instruction modifies the flow of control within a repetitive DO loop.

Parameters
Parameter Explanation

name name is the name of the control variable for the loop to be iterated. name must refer to
the control variable for a currently active loop. Except for case, name must exactly
match the symbol specifying the control variable on the DO instruction. Substitution for
compound variables does not occur in this case. If name is omitted, then the innermost
active loop is iterated.

Usage Notes
When an ITERATE instruction is encountered, processing of the DO instruction list stops, and
control is returned to the DO clause in the same manner as if the END keyword had been
encountered.

If more than one active loop uses the same control variable, then the innermost loop is iterated.
All active loops inside the loop selected for iteration are terminated.

Example
The following program fragment outputs all the odd numbers between 1 and 10.

do i = 1 to 10
 if i//2 = 0 then iterate
 say i
 end

The output is:
1
3
5
7
9

Instructions

66

LEAVE
Syntax LEAVE [name]

Description The LEAVE instruction causes an immediate exit from one or more repetitive DO loops.

Parameters
Parameter Explanation

name name is the name of the control variable for the loop to be terminated. name must refer
to the control variable for a currently active loop. Except for case, name must exactly
match the symbol specifying the control variable on the DO instruction. Substitution for
compound variables does not occur in this case. Control passes to the instruction
immediately following the END keyword which matches the selected DO. If name is
omitted, the innermost active loop is terminated.

Usage Notes
Execution of the DO instruction list terminates and control passes to the instruction immediately
following the END keyword as if the END had been encountered and termination conditions had
been satisfied normally. If there is a control variable for the loop, it retains the value it had at the
time the LEAVE instruction was executed.

If more than one active loop uses the same control variable, then the innermost loop is
terminated. All active loops inside the loop selected for termination are also terminated.

Example
The following program fragment illustrates the use of LEAVE to end a DO FOREVER loop.

do forever
 say ' 1 Enter sales data'
 say ' 2 Consolidate by region'
 say ' 3 Consolidate by product line'
 say ' Q Quit'
 say 'Select processing option'
 pull option
 if option = 'Q' then leave
 interpret 'call process.'option
 end

 Chapter 4

67

NOP
Syntax NOP

Description The NOP instruction is a dummy instruction. Because the NOP instruction has no effect, it is
useful within IF or SELECT instructions.

Example
The following program fragment uses NOP in a SELECT instruction where an OTHERWISE clause
is required, but no OTHERWISE processing is desired.

parse arg startup_option rest
select
 when startup_option = 1 then
 call lookup rest
 when startup_option = 2 then
 call gen_report rest
 when startup_option = 3 then
 call newdata rest
 otherwise nop
 end

Instructions

68

NUMERIC
Syntax NUMERIC DIGITS [expr1]

 FORM [SCIENTIFIC]

 [ENGINEERING]

 [VALUE] expr2
 FUZZ [expr3]

Description The NUMERIC instruction controls the precision and format of numbers used in arithmetic
operations.

Parameters
Parameter Explanation

DIGITS DIGITS controls the precision for arithmetic operations and for the evaluation of
arithmetic functions.

expr1 expr1 specifies the number of significant digits in the result of arithmetic operations or
functions. expr1 must evaluate to a positive whole number that is greater than the
current setting of NUMERIC FUZZ. If necessary, it is rounded according to the current
setting of NUMERIC DIGITS before it is used.

If expr1 is omitted, the default value is 9. The current maximum value for expr1 in
Radia REXX is 10.

FORM Controls the format used for exponential notation. The format must be one of the
following:

SCIENTIFIC Only one, non-zero digit appears before the decimal point.

ENGINEERING The exponent (power of ten) is always expressed as a multiple of
three. The number of digits before the decimal point is adjusted as
necessary to meet this criterion.

[VALUE]expr2 expr2 must evaluate to either SCIENTIFIC or ENGINEERING. The
form is set to the value of expr2.

FUZZ Controls the number of digits, at full precision, that are ignored for numeric comparisons.

expr3 expr3 specifies the number of digits to ignore. expr3 must evaluate to a non-negative
whole number that is less than the current setting of NUMERIC DIGITS. If necessary, it is
rounded according to the current setting of NUMERIC DIGITS before it is used.

If expr3 is omitted, the default value is 0.

Usage Notes
It should be noted that small values of NUMERIC DIGITS can produce unexpected or undesirable
results in some cases since the setting affects all computations. For example, the execution of a
DO loop can be altered by unexpected rounding of the repetitor expression or the value of a
control variable.

The current setting of NUMERIC DIGITS is accessible using the DIGITS built-in function
described in Chapter Five: Built-In Functions.

 Chapter 4

69

The NUMERIC FORM setting can also be specified by evaluating an expression that follows the
sub-keyword VALUE. expr2 must evaluate to either SCIENTIFIC or ENGINEERING. The
VALUE sub-keyword can be omitted if expr2 does not begin with a literal string or a symbol.

The current setting of NUMERIC FORM is accessible using the FORM built-in function described
in Chapter Five: Built-In Functions.

NUMERIC FUZZ effectively reduces the precision used for numeric comparisons to the value:
NUMERIC DIGITS - NUMERIC FUZZ

The current setting of NUMERIC FUZZ is accessible using the FUZZ built-in function described
in Chapter Five: Built-In Functions.

Example 1
The following program fragment illustrates the results of various settings of NUMERIC DIGITS.

x = 123456789
do i = digits() by -2 for 3
 numeric digits i
 say 'Digits:' digits() ' - ' format(x)
 end

The output is:
Digits: 9 - 123456789
Digits: 7 - 1.234568E+8
Digits: 5 - 1.2346E+8

Instructions

70

Example 2
The following program fragment illustrates the effect of NUMERIC FORM ENGINEERING on the
output of the previous example.

numeric form engineering
x = 123456789
do i = digits() by -2 for 3
 numeric digits i
 say 'Digits:' digits() ' - ' format(x)
 end

The output is:
Digits: 9 - 123456789
Digits: 7 - 123.4568E+6
Digits: 5 - 123.46E+6

Example 3
The following program fragment illustrates the effect of NUMERIC FUZZ.

numeric digits 6
x = 123456; y = 123455; z = 123451
if x = y then say 'True'; else say 'False'
numeric fuzz 1
if x = y then say 'True'; else say 'False'
if x = z then say 'True'; else say 'False'

The output is:
False
True
False

 Chapter 4

71

PARSE
Syntax PARSE [UPPER] ARG [template]

 LINEIN
 PULL
 SOURCE
 VALUE [expr] WITH
 VAR name
 VERSION

Description The PARSE instruction assigns data to variables according to the REXX parsing rules and the
specified template.

Parameters
Parameter Explanation

template template is a list of symbols separated by blanks or patterns. The symbols are the
names of variables to which data are assigned. If template is omitted, variables are not
set but data are prepared for parsing in one of the following ways:

• for LINEIN or PULL
A line is removed from a character stream or the Radia REXX program stack.

• for VALUE
expr is evaluated.

• for VAR
If the variable does not have a value, the NOVALUE condition is raised.

A detailed discussion of parsing templates is presented below.

ARG Indicates that the data to be parsed is the argument strings passed to the program,
subroutine, or function.

LINEIN Indicates that the data to be parsed is the next line from the default character input
stream. PARSE LINEIN is simply a short form of:

PARSE VALUE LINEIN() WITH [template]

PULL Indicates that the data to be parsed is one of the following:

If data is available on the Radia REXX program stack, the next string on the stack is
parsed.

If no data is available on the program stack, data is taken from the default character
input stream (STDIN). If no data is available on the default character input stream, the
program pauses for input.

Instructions

72

Parameter Explanation

SOURCE Indicates that the data to be parsed is a special string that identifies and describes the
source of the program being executed. The SOURCE string is fixed and contains the
following tokens:

• The system where the program is running for Radia REXX. This is the native
operating system.

• How the program was invoked. This is COMMAND, FUNCTION, or SUBROUTINE.

• The full path name of the program.

• The name of the program without the path—the default host command
environment. Normally this is the native operating system, but it can be different
in applications that embed Radia REXX as a macro language.

For example, the following code in the program test5.rex, running on a Windows NT 4.0
system, located in the C:\Program Files\Novadigm directory, and executed from a
DOS box command line:

parse source x

results in x being set to:

NT COMMAND C:\PROGRA~1\NOVADIGM\TEST5.REX TEST5.REX EDMWIN

VALUE Indicates that the data to be parsed is the result of evaluating expr. The keyword WITH
is required to indicate the end of expr. WITH is therefore reserved in this context and
cannot be included in expr.

VAR Indicates that the data to be parsed is the value of the variable specified by name.
name must be a symbol that is a valid variable name in the current program. The
variable is not changed unless it also appears in the template.

VERSION Indicates that the data to be parsed is a special string describing this version of Radia
REXX. The VERSION string is fixed and contains the following tokens:

language name The first four characters are "REXX" with the
remainder of the token being implementation-
dependent. For Radia REXX, this token is "REXX:Radia
REXX:2.00".

language level This indicates the degree of compliance with the
language level definitions in The REXX Language by
Cowlishaw. Language level 4.00 indicates full
compliance with the second edition (1990) of this
reference.

release date (three tokens) The release date of this implementation in the same
format as the default for the DATE built-in function
(dd Mmm yyyy).

For example, the following code:

parse version x

results in x being set to:
REXX:Open-REXX:285:Open-REXX:ASCII
:SingleThread:StaticLink 4.00 13 Nov 1998

 Chapter 4

73

Parsing Templates
A parsing template is a symbolic pattern by which a string is broken up (parsed) and assigned to
variables. A string can be split by words (delimited by blanks), by matching specific string
patterns, or by explicit numeric position. Portions of the string can also be skipped or discarded.
The template can include any combination of:

■ Symbols
The variable names to which the data is assigned.

■ Patterns
Character string for which a match is sought.

■ Positional patterns
Absolute or relative column numbers within the string.

■ Placeholder symbols
The ".", indicating that data are to be discarded.

Parsing by Words
The simplest form of parsing templates is comprised only of symbols. The string is separated into
words with one word assigned to each variable. One possible exception is the last variable in the
template, which can be assigned more than one word if the number of symbols in the template
does not exactly match the number of words in the string.

Usage Notes
Leading and trailing blanks are removed from all tokens except the last. For the last token, one
leading blank (the delimiter) is removed but all other leading and trailing blanks are retained.

Example 1
string = 'Hello world'
parse var string first second

The result is:
first == 'Hello'
second == 'world'

Example 2
string = 'Once upon a time in the west'
parse var string first second rest

The result is:

Instructions

74

first == 'Once'
second == 'upon'
rest == 'a time in the west'

Example 3
string = 'Long ago and far away '
parse var string first second rest

The result is:
first == 'Long'
second == 'ago'
rest = ' and far away '

Parsing by Patterns
Another method of parsing involves matching a pattern string. This can be useful in parsing
strings that contain delimiters other than blanks between words. The pattern is specified in the
template as a literal string or as a variable that is set to a literal string. If the pattern is specified
as a variable, the variable name must be enclosed in parentheses in the template to distinguish it
from the symbols to which data is to be assigned. The string to be parsed is separated so that all
characters preceding the pattern are placed into a variable.

Usage Notes
When pattern matching is used, only the pattern itself is discarded. If there are any blanks
following the pattern, they become leading blanks on the next token.

Example 1
string = 'red, green, blue'
parse var string color1 ',' color2 ',' color3

The result is:
color1 == 'red'
color2 == ' green'
color3 == ' blue'

Example 2
string = 'time and time again'
parse upper var string a 'and' b

The result is:
a == 'TIME'
b == ' TIME AGAIN'

 Chapter 4

75

Example 3
parse arg x ',' y

If the argument string passed to this program is "4,3", then
x == '4'
y == '3'

Example 4
delim = 'or'
string = 'You or me or them?'
parse var string a (delim) b (delim) c

The result is:
a == 'You'
b == ' me'
c == ' them?'

Example 5
The following program fragment extends the idea of using a variable name as the pattern to show
how to parse a series of strings that may include different delimiters.

str.0 = 3
str.1 = 'Numbers : 1414 : 2753 : 1816'
str.2 = 'Names - Tom - Dick - Harry'
str.3 = 'Cars # Ford # BMW # Toyota'
do i = 1 to str.0
 parse var str.i what x rest
 parse var rest a (x) b (x) c
 say what':' a b c
 end

The output is:
Numbers: 1414 2753 1816
Names: Tom Dick Harry
Cars: Ford BMW Toyota

Parsing by Position
When parsing by position, the template includes column numbers where the next token begins.
These can be absolute or relative column numbers. Using relative column numbers permits re-
positioning of the starting point for the next token and even allows you to re-parse in a different
manner data which has already been assigned to variables.

Instructions

76

Usage Notes
The value of a positional pattern is specified in the template as a whole number or as a variable
that is set to a whole number. If the positional pattern is specified as a variable, the variable
name must be enclosed in parentheses in the template to distinguish it from the symbols to which
data is to be assigned.

A positional pattern that is not preceded by a sign, or that is preceded by an equals sign (=), is an
absolute positional pattern. A positional pattern that is preceded by a plus or minus sign is a
relative positional pattern.

When an absolute positional pattern appears in the template, the preceding variable receives all
data up to, but not including, that absolute position. The next variable receives data beginning at
the specified absolute position.

When a relative positional pattern appears in the template, the starting position for the next
assignment is calculated by adding or subtracting the specified value from the last matched
position.

Use "+0" as a relative positional pattern to assign data without moving the start point for the next
assignment.

Example 1
The following program fragment gives the instruction to move to the 5th column and assign the
rest of the string to variable "y".

x = 1234567890
parse var x 5 y

The result is:
y = '567890'

 Chapter 4

77

Example 2
The following program fragment gives the instruction to assign the data up to column 3 to "y",
then move forward 4 columns and assign the rest of the string to "z".

x = 1234567890
parse var x y 3 +4 z

The result is:
y = '12'
z = '7890'

Example 3
The following program fragment gives the instruction to assign the data up to column four to "a";
to assign the data in the next five columns to "b"; to move forward one column and assign the rest
of the string to "c".

x = 'abcdefghijklmnop'
parse var x a 4 b +5 +1 c

The result is:
a == 'abc'
b == 'defgh'
c == 'jklmnop'

Example 4
The following program fragment gives the instruction to assign the data up to column four to "a",
to move back two columns and assign the rest of the string to "b"; move to column one and assign
the next four columns to "c".

x = abcdefgh
parse var x a 4 -2 b 1 c +4

The result is:
a == 'ABC'
b == 'BCDEFGH'
c == 'ABCD'

Instructions

78

Example 5
s.0 = 3
s.1 = 'A:1414:2753:1816'
s.2 = 'B-Tom-Dick-Harry'
s.3 = 'C#Ford#BMW#Toyota'
do i = 1 to s.0
 parse var s.i what 2 x +1 a (x) b (x) c
 say what':' a b c
 end

The output is:
A: 1414 2753 1816
B: Tom Dick Harry
C: Ford BMW Toyota

Example 6
The following program fragment gives the instruction to move to column three; assign the rest of
the string to "a" but don't move the parsing position; assign the next three characters to "b"; move
forward one column; assign the rest of the string to "c".

x = 1234567890
parse var x 3 a +0 b +3 +1 c

The result is:
a == '34567890'
b == '345'
c == '7890'

Parsing with Placeholders
Parsing templates can also include placeholder symbols. The placeholder symbol is the period
("."). If a period is encountered in a template, data that would normally be assigned to a variable
at that point is discarded.

Example 1
The output of the following program fragment:

x = 'How are you'
parse var x a . b
say a b 'be?'

is:
"How you be?"

 Chapter 4

79

Example 2
The output of the following program fragment:

x = 'one potato two potato three potato four'
parse var x a . b . c . rest
say a b c rest

is:
one two three four

Putting it All Together
Parsing templates can include any combination of the elements discussed above. This makes
PARSE an extremely powerful and flexible tool for manipulating data.

Instructions

80

PROCEDURE
Syntax PROCEDURE [EXPOSE varlist]

Description The PROCEDURE instruction is used in an internal routine to protect the caller's variables from
modification during execution of the routine. It also has the effect of ensuring that the
subroutine's variables are in their un-initialized state each time the routine is called.

Parameters
Parameter Explanation

PROCEDURE If present, the PROCEDURE instruction must be the first instruction following the label. All
variables used in the subroutine are then local to that routine. When a RETURN
instruction is executed, all these local variables are dropped and the caller's variables are
restored.

EXPOSE The EXPOSE sub-keyword allows you to selectively expose variables from the caller's
environment for manipulation by the subroutine.

varlist varlist is the list of variables to be exposed. varlist is one or more symbols separated by
blanks. The symbols must be valid variable names. If a symbol is enclosed in
parentheses, it is a variable reference; and its value is treated as a subsidiary variable
list. The subsidiary list cannot include a variable reference, that is, it must be a list of
symbols, representing valid variables, separated by blanks. varlist can include the same
variable more than once. It can also contain variables that have never been assigned a
value.

Usage Notes
It is not necessary for an internal routine to include a PROCEDURE instruction. If it does not,
then all the variables of the caller are visible to, and can be modified by, the subroutine. Using
PROCEDURE protects the caller's variables from modification by the subroutine.

Variables are exposed from left to right. When a variable reference is encountered, the variable
itself is exposed first, with variables in subsidiary lists exposed as soon as the variable reference
is found. If a variable in varlist is a stem, then all variables that begin with that stem are
exposed.

Consideration should be given to the order in which variables are exposed. If a variable is to be
used to expose a compound variable, then it must be exposed before the compound variable.

Example 1
The following program fragment illustrates the effect of not using PROCEDURE in an internal
subroutine.

x = 10; y = 20; z = 30
call blotz
say y
exit

 Chapter 4

81

blotz:
say y
return

The output is:
20
20

Example 2
The following program fragment illustrates the effect of PROCEDURE alone.

x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure
say y
return

The output is:
Y
20

Instructions

82

Example 3
The following program fragments illustrate the effect of EXPOSing a variable and how
modifications to the variable affect its value on return to the caller.

For the following:
x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
return

The output is:
20
20

For the following:
x = 10; y = 20; z = 30
call blotz
say y
exit
blotz:
procedure expose y
say y
drop y
return

The output is:
20
Y

For the following:
x = 10; y = 20; z = 30
call blotz
say y
exit blotz:
procedure expose y
say y
y = x
return

The output is:
20
X

The variable x was not exposed so y was assigned the value of the un-initialized symbol x.

 Chapter 4

83

Example 4
The following program fragment illustrates the use of variable references and the exposure of
compound variables.

a = 1; b = 2; c = 3
x = 10; y = 20; z = 30
p. = 'unknown value'
p.1 = 100; p.2 = 200; p.3 = 300

blotz_list = 'a b c'
call blotz
say p.b
exit
blotz:
procedure expose (blotz_list) p.b
p.b
b = 4
return

The output is:
200
unknown value

Instructions

84

PULL
Syntax PULL [template]

Description The PULL instruction reads a line from the Radia REXX program stack. If the program stack is
empty, PULL reads from the default character input stream (STDIN). The PULL instruction is
simply a short form of PARSE UPPER PULL [template].

Parameters
Parameter Explanation

template template is the parsing template that defines how the data are assigned to variables.
For details on parsing templates, refer to the PARSE instruction on page 71. If template
is omitted, the data read by PULL are simply discarded. This is functionally equivalent to
using PULL, where the template is comprised solely of the placeholder symbol.

Usage Notes
The data read are translated to uppercase and then parsed into variables according to normal
parsing rules (refer to the PARSE instruction in this chapter for details). Use PARSE PULL to
preserve the case of the data.

The number of lines currently available in the program stack is accessible with the QUEUED
built-in function described in Chapter Five: Built-In Functions.

Example 1
The following program fragment processes all data currently available on the RADIA REXX
program stack.

do j = 1 while queued() > 0
 pull order.j . amount.j .
 end

Example 2
The following program fragment assumes that no data are on the program stack and that PULL
will read from STDIN, normally the terminal.

say 'Type a menu option or "Q" to quit'
pull reply
if reply = 'Q' then exit

The test is valid regardless of the case in which the user types q since PULL converts to
uppercase.

 Chapter 4

85

PUSH
Syntax PUSH [expression]

Description The PUSH instruction places a string at the top of the Radia REXX program stack. Data are
stacked in LIFO (last-in-first-out) order.

Parameters
Parameter Explanation

expression expression is evaluated and the result placed on the program stack. If expression is
omitted, a null string is placed on the stack.

Usage Notes
Use the QUEUE instruction, described in this chapter, to place data at the bottom of the program
stack.

The number of lines currently available in the program stack is accessible with the QUEUED
built-in function described in Chapter Five: Built-In Functions.

Example 1
The following example places not nice at the top of the program stack.

and = 'not'
shove = 'nice'
push and shove

Example 2
The following program fragment illustrates the use of PUSH to place something on the stack for
use by a subroutine.

parse arg input
push input
if datatype(input, 'num') then call numeric
 else call char
 :
exit
numeric: procedure
parse pull value
 :
return
char: procedure
parse pull string
 :
return

Instructions

86

QUEUE
Syntax QUEUE [expression]

Description The QUEUE instruction places a string at the bottom of the Radia REXX program stack. Data is
stacked in FIFO (first-in-first-out) order.

Parameters
Parameter Explanation

expression expression is evaluated and the result placed on the program stack. If expression is
omitted, a null string is placed on the stack.

Usage Notes
Use the PUSH instruction, described in this chapter, to place data at the top of the program stack.

The number of lines currently available in the program stack is accessible with the QUEUED
built-in function described in Chapter Five: Built-In Functions.

Example 1
The following example places how much longer? at the bottom of the program stack.

for = 'how much'
entry = 'longer?'
queue for entry

 Chapter 4

87

Example 2
The following program fragment illustrates use of the stack to remove a block of lines from a file
in placeno intermediate file.

pull start_line block_size
do start_line - 1
 queue linein('data.txt')
 end
do block_size
 tossit = linein('data.txt')
 end
do until lines('data.txt') = 0
 queue linein('data.txt')
 end
pull first
call lineout 'data.txt', first, 1
do queued()
 pull next
 call lineout 'data.txt', next
 end
call lineout 'data.txt'

Instructions

88

RETURN
Syntax RETURN [expression]

Description The RETURN instruction is used to return control from a REXX program or internal routine to its
caller. It can also, optionally, return a value.

Parameters
Parameter Explanation

expression expression is the value to be returned to the caller. expression can evaluate to any
character string, including the null string.

Usage Notes
If the program is external, the effect of RETURN is identical to that of the EXIT instruction.

If the program was invoked by the CALL instruction, it is being executed as a subroutine. In this
case, the return value is optional. When control returns to the caller, the special variable
RESULT is set to the value of expression. If expression is omitted, the special variable
RESULT is dropped.

If the program was invoked as a function, it must return a value. This value (the result of the
function) is used in the original expression at the point where the function was invoked.

 Chapter 4

89

Example 1
The following program fragment illustrates the simplest use of RETURN in an internal routine
invoked as a subroutine.

say 'Please select a processing option (1-8)'
pull reply
interpret 'call option.'reply
 :
 :
exit
option.1:
procedure expose (list1)
 :
 :
return
option.2:
 :
 :

Example 2
The following program fragment illustrates returning a value from a subroutine.

say 'Please select a processing option (1-8)'
pull reply
if reply \= 'Q' then do
 interpret 'call option.'reply
 if result \= 0 then signal disaster
 end
exit
option.1:
procedure expose (list1)
status = 0
 : /* If something goes wrong in here, an */
 : /* appropriate message is displayed & */
 : /* status is set to a non-zero value. */
return status
 :
 :
disaster:
say 'Unrecoverable error in option:' reply
say 'Processing terminated'
exit

Instructions

90

Example 3
The following program fragment illustrates the use of RETURN in an internal routine invoked as a
function.

months = 'January February March April May',
 'June July August September October',
 'November December'
days='31 leap() 31 30 31 30 31 31 30 31 30 31'
 :
 :
exit
leap:

The leap() function calculates the number of days in February…
 :
 :
return how many

 Chapter 4

91

SAY
Syntax SAY [expression]

Description The SAY instruction writes a line to the default character output stream.

Parameters
Parameter Explanation

expression expression is evaluated and the result is written to the default output stream. If
expression is omitted, the result is a null string.

Usage Notes
The default character output stream is the standard output (STDOUT), and is normally the
terminal unless the standard output has been redirected.

The SAY instruction is equivalent to:
CALL LINEOUT , [expression]

In the case of SAY, however, the special variable RESULT is not set.

To view terminal output on the screen in Windows environments, you must use the
WinMessageBox function. See this function for more information.

Example 1
The following program fragment writes the string Hello world to the standard output,
normally the terminal.

say 'Hello world'

Example 2
The output of the following program fragment:

say 'Enter amount of sale'
 pull amount
 say 'Commission is:' amount * .06

is 6% of the sale amount entered.

Example 3
retcode = linein('data.txt')
if retcode \= 0 then
 say 'Error reading "data.txt"'

If the read operation fails, the message is displayed.

Instructions

92

SELECT
Syntax SELECT

when_list
 [OTHERWISE [;] instr_list]
 END

Description The SELECT instruction is used to conditionally execute one of several alternative instructions.

Parameters
Parameter Explanation

SELECT A SELECT instruction consists of the SELECT instruction followed by one or more WHEN
clauses, optionally followed by an OTHERWISE clause, and terminated by the keyword
END. The END keyword must begin a new clause.

when_list when_list defines the conditions under which each alternative is selected.

OTHERWISE The keyword OTHERWISE indicates alternative processing to occur when none of the
WHEN expressions evaluates to 1. instr_list is one or more instructions to be executed if
the OTHERWISE path is chosen. If instr_list is omitted, this is equivalent to using the
NOP instruction.

Usage Notes
when_list is made up of one or more constructs in the following syntax:

WHEN expression [;] THEN [;] instruction

Parameter Explanation

expression expression must evaluate to 0 or 1.

instruction instruction can be an assignment, a command, or an instruction, including the DO, IF,
or SELECT instruction.

THEN The keyword THEN followed by an instruction is required whenever the WHEN keyword is
used. If the value of expression is 1, then the instruction following THEN is executed. If
instruction is DO, then an instruction group is executed. If the value of expression is
0, then instruction is bypassed and the next WHEN expression is evaluated. It is not
necessary for the keyword THEN to begin a new clause.

Optional semicolons in the syntax diagrams indicate that the following component can appear on
the same line as the preceding component (with or without the presence of a semicolon), or can
appear on a new line in the program without changing the behavior of the SELECT instruction.

If you are certain that one of the WHEN alternatives will be executed, the OTHERWISE clause
can be omitted; however, this is generally not considered good programming practice. If none of
the WHEN expressions evaluates to 1, absence of an OTHERWISE clause results in Error 7:
WHEN or OTHERWISE expected. If present, the keyword OTHERWISE must begin a new clause
in the program.

 Chapter 4

93

Use the NOP instruction to indicate that nothing is to be executed following a THEN or
OTHERWISE. A null clause is not an instruction in Radia REXX, so putting an extra semicolon
after the THEN results in an error.

Example 1
The following program fragment illustrates the use of NOP with SELECT. If a line begins with a
comment character (#) followed by a space, no action is taken.

do while lines('parms.txt') \= 0
 dowhat = word(linein('parms.txt'), 1)
 select
 when dowhat = 'Monthly' then call report
 when dowhat = '#' then nop
 when dowhat = 'Weekly' then call add_data
 otherwise interpret 'call' dowhat
 end
 end

Example 2
The following program fragment illustrates the use of SELECT to choose among alternative
processing options.

parse arg startup_option rest
select
 when startup_option = 1 then
 call lookup rest
 when startup_option = 2 then
 call gen_report rest
 when startup_option = 3 then
 call newdata rest
 otherwise call edit
 end

Instructions

94

SIGNAL
Syntax SIGNAL label

 [VALUE] expression
 ON condition [NAME trapname]
 OFF condition

Description The SIGNAL instruction causes an abnormal change in the flow of control or controls the trapping
of certain conditions.

Parameters
Parameter Explanation

label label is the label name to which control is passed. It must be a symbol (which is
treated literally) or a literal string. label must be a valid label name in the current
program.

Usage Notes
As an alternative, the label name can be derived from the expression following the keyword
VALUE. expression must evaluate to a valid label name in the current program. The keyword
VALUE can be omitted if expression does not begin with a symbol or a literal string.

When control passes to the specified label, all active DO, IF, SELECT, and INTERPRET
instructions are immediately terminated and cannot be reactivated. The line number of the
SIGNAL instruction is assigned to the special variable SIGL.

The ON and OFF sub-keywords of SIGNAL control the trapping of certain conditions. ON enables
a condition trap. OFF disables a condition trap. Using SIGNAL in this manner is similar to the
use of CALL except that control is not returned to the program executing the SIGNAL.

condition is the name of the condition to be detected. If a condition trap is enabled, when that
condition occurs, control is passed to one of the following:

z to the label specified by trapname, if NAME trapname is specified.

z to the label that matches condition, if NAME trapname is not specified.

Both condition and trapname are single symbols which are taken as constants.

The following conditions can be controlled using the SIGNAL instruction:

Condition Explanation

ERROR Indicates an error condition during execution of a command or that the specified host
command environment was not found.

FAILURE Indicates that execution of a command failed or that the specified host command
environment was not found.

HALT Indicates detection of an external interrupt or termination signal.

 Chapter 4

95

NOTREADY Indicates an error during an I/O operation.

NOVALUE Indicates that a symbol referenced in an expression or in a PARSE, PROCEDURE, or
DROP instruction has not been assigned a value.

SYNTAX Indicates a syntax error during program execution.

Using SIGNAL to control condition traps differs from using CALL in the following ways:

■ All conditions can be trapped with SIGNAL; CALL cannot be used with the NOVALUE and
SYNTAX conditions.

■ SIGNAL does not return control to the program that executed the SIGNAL. With CALL, state
information is preserved across the CALL so the trap routine can return to the caller, which
can resume execution.

Instructions

96

Example
The following program fragment illustrates the use of SIGNAL to set up traps for all conditions.

signal on error
signal on failure
signal on halt name interrupt
signal on notready
signal on novalue name uhoh
say 'Enter host command environment'
parse pull hce
say 'Enter command to run'
parse pull cmd
say 'Enter filename to read'
parse pull file
line = linein(file)
address hce 'more /home/'userid()'/.login'
"'"cmd"'"
i = 1
do 100000
 i = i + 5
 say i
 end
a = b
exit
error:
say 'Error detected at line' sigl; exit
failure:
say condition('c') 'detected at line' sigl;exit
interrupt:
say 'Ctl-C detected'; exit
notready:
say 'File' file 'not found'; exit
uhoh:
say 'Oops, no value in line' sigl; exit

z If the user names a non-existent host environment, the failure exit is taken.

z If the execution of the user's command failed in any way, the error exit is taken.

z If the user names a file that does not exist or for which read permission has not been
granted, the notready exit is taken.

z If the user presses CTL-C during the long DO loop, the halt exit is taken.

z If the program ever gets to the line that reads a = b, the novalue exit is taken.

 Chapter 4

97

TRACE
Syntax TRACE [option]

 [VALUE] expression

Description The TRACE instruction traces execution flow in a program and is used primarily for debugging.

Parameters
Parameter Explanation

option option specifies the level of tracing to occur. Alternatively, the level can be taken from
the value of expression. The keyword VALUE can be omitted if expression does not
begin with a symbol or a literal string. If no trace level is specified or if option or
expression evaluate to a null string, the default is N.

Usage Notes
option (or the value of expression) can be one of the following:

Trace Option Explanation

A (All) Trace all clauses before execution.

C (Commands) Trace all commands before execution; if the command results in error or failure, show
the return code as well.

E (Error) Trace (after execution) any command that results in error; show the return code as
well.

F (Failure) Trace (after execution) any command that results in failure; show the return code as
well; this is identical to TRACE N.

I (Intermediates) Trace all clauses before execution; show intermediate results of expressions as well as
substituted names; show final results of expressions; show values assigned as the
result of ARG, PARSE, or PULL instructions.

L (Labels) Trace only labels; this is particularly useful for observing the flow to and from internal
routines.

N (Normal) Trace only commands that result in failure. Show the return code. This is the default
trace level.

O (Off) Nothing is traced; interactive tracing is disabled.

R (Results) Trace all clauses before execution; show the final results of expressions; show values
assigned as the result of ARG, PARSE, or PULL instructions.

Trace output is automatically formatted according to its logical depth of nesting within the
program. If TRACE R or TRACE I is specified, results are indented an additional two spaces and
are enclosed in double quotes so that leading and trailing blanks can be easily identified. The first
clause traced on any line is preceded by its line number.

Instructions

98

All trace output lines have a three-character prefix to indicate the type of data. The following
prefixes are used for all trace settings:

Line Prefix Explanation

- Source of the clause (the data that is actually in the program).

+++ Trace message; this could include error or failure return codes, prompts at interactive
trace startup, a syntax error during interactive trace, or a traceback from a syntax error
during execution.

>>> Result of an expression, the value assigned to a variable during parsing, or the return
value from a subroutine or function call.

>.> Value assigned to a placeholder during parsing.

The following additional prefixes are used when TRACE I is in effect:

Line Prefix Explanation

>V> Contents of a variable.

>L> Literal (constant symbol, un-initialized variable, or literal string).

>F> Result of a function call.

>P> Result of a prefix operation.

>O> Result of an operation on two terms.

>C> Compound variable; traced after substitution and before use.

 Chapter 4

99

Example 1
The following program fragment includes various kinds of REXX clauses; output is shown from
specifying each of the trace options as a calling argument; the program is named "traceit.rex". The
file infile.txt has one line with the number 123 starting in column 1.

trace value arg(1)
 file = 'infile.txt'
 line = linein(file)
 x = word(line, 1)
 if datatype(x) = 'NUM' then do
 y = x + 456 / 100
 say y
 end
 call Subrtn
 if result > 4 then address edmwin 'copy
 infile.txt outfile.txt'
 exit

 Subrtn:
 say now in subroutine
 return 4

Example 2
Logged output from: RADPNLWR traceit.rex a

Termout EDM000010 99.202 14:09:15 4 *-* file = 'infile.txt'

EDM000010 99.202 14:09:15 5 *-* line = linein(file)
EDM000010 99.202 14:09:15 6 *-* x = word(line, 1)
EDM000010 99.202 14:09:15 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:09:15 7 *-* then
EDM000010 99.202 14:09:15 7 *-* do
EDM000010 99.202 14:09:15 8 *-* y = x + 456 / 100
EDM000010 99.202 14:09:15 9 *-* say y
EDM000010 99.202 14:09:15 127.56
EDM000010 99.202 14:09:15 10 *-* end
EDM000010 99.202 14:09:15 11 *-* call Subrtn
EDM000010 99.202 14:09:15 15 *-* Subrtn:
EDM000010 99.202 14:09:15 16 *-* say now in subroutine
EDM000010 99.202 14:09:15 NOW IN SUBROUTINE
EDM000010 99.202 14:09:15 17 *-* return 4
EDM000010 99.202 14:09:15 12 *-* if result > 4
EDM000010 99.202 14:09:15 13 *-* exit

Instructions

100

Example 3
Logged output from: RADPNLWR traceit.rex c

EDM000010 99.202 14:25:08 REXX Environment set up
 completed successfully
EDM000010 99.202 14:25:08 127.56
EDM000010 99.202 14:25:08 NOW IN SUBROUTINE
EDM000010 99.202 14:25:08 REXX host cmd env cleanup
 completed successfully

Example 4
Logged output from: radpnlwr traceit.rex e

 (No errors occurred)

EDM000010 99.202 14:27:50 REXX Environment set up
 completed successfully
EDM000010 99.202 14:27:50 127.56
EDM000010 99.202 14:27:50 NOW IN SUBROUTINE
EDM000010 99.202 14:27:50 REXX host cmd env cleanup
 completed successfully

Example 5
Logged output from: radpnlwr traceit.rex f

 (No failure occurred)

EDM000010 99.202 14:29:07 REXX Environment set up
 completed successfully
EDM000010 99.202 14:29:07 127.56
EDM000010 99.202 14:29:07 NOW IN SUBROUTINE
EDM000010 99.202 14:29:07 REXX host cmd env cleanup
 completed successfully

Example 6
Logged output from: radpnlwr traceit.rex l

EDM000010 99.202 14:30:25 REXX Environment set up completed successfully
EDM000010 99.202 14:30:25 127.56
EDM000010 99.202 14:30:25 15 *-* Subrtn:
EDM000010 99.202 14:30:25 NOW IN SUBROUTINE
EDM000010 99.202 14:30:25 REXX host cmd env cleanup
 completed successfully

 Chapter 4

101

Example 7
Logged output from: radpnlwr traceit.rex n

 (No failure occurred)

EDM000010 99.202 14:31:34 REXX Environment set up
 completed successfully
EDM000010 99.202 14:31:34 127.56
EDM000010 99.202 14:31:34 NOW IN SUBROUTINE
EDM000010 99.202 14:31:34 REXX host cmd env cleanup
 completed successfully

Example 8
Logged output from: radpnlwr traceit.rex o

EDM000010 99.202 14:32:36 REXX Environment set up
 completed successfully
EDM000010 99.202 14:32:36 127.56
EDM000010 99.202 14:32:36 NOW IN SUBROUTINE
EDM000010 99.202 14:32:36 REXX host cmd env cleanup
 completed successfully

Example 9
Logged output from: radpnlwr traceit.rex i

EDM000010 99.202 14:33:51 REXX Environment set up
 completed successfully
EDM000010 99.202 14:33:51 4 *-* file = 'infile.txt'
EDM000010 99.202 14:33:51 >L> "infile.txt"
EDM000010 99.202 14:33:51 >>> "infile.txt"
EDM000010 99.202 14:33:51 5 *-* line = linein(file)
EDM000010 99.202 14:33:51 >V> "infile.txt"
EDM000010 99.202 14:33:51 >F> "123"
EDM000010 99.202 14:33:51 >>> "123"
EDM000010 99.202 14:33:51 6 *-* x = word(line, 1)
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >L> "1"
EDM000010 99.202 14:33:51 >F> "123"
EDM000010 99.202 14:33:51 >>> "123"
EDM000010 99.202 14:33:51 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >F> "NUM"
EDM000010 99.202 14:33:51 >L> "NUM"
EDM000010 99.202 14:33:51 >O> "1"
EDM000010 99.202 14:33:51 >>> "1"
EDM000010 99.202 14:33:51 7 *-* then

Instructions

102

EDM000010 99.202 14:33:51 7 *-* do
EDM000010 99.202 14:33:51 8 *-* y = x + 456 / 100
EDM000010 99.202 14:33:51 >V> "123"
EDM000010 99.202 14:33:51 >L> "456"
EDM000010 99.202 14:33:51 >L> "100"
EDM000010 99.202 14:33:51 >O> "4.56"
EDM000010 99.202 14:33:51 >O> "127.56"
EDM000010 99.202 14:33:51 >>> "127.56"
EDM000010 99.202 14:33:51 9 *-* say y
EDM000010 99.202 14:33:51 >V> "127.56"
EDM000010 99.202 14:33:51 >>> "127.56"
EDM000010 99.202 14:33:51 127.56
EDM000010 99.202 14:33:51 10 *-* end
EDM000010 99.202 14:33:51 11 *-* call Subrtn
EDM000010 99.202 14:33:51 15 *-* Subrtn:
EDM000010 99.202 14:33:51 16 *-* say now in subroutine
EDM000010 99.202 14:33:51 >L> "NOW"
EDM000010 99.202 14:33:51 >L> "IN"
EDM000010 99.202 14:33:51 >O> "NOW IN"
EDM000010 99.202 14:33:51 >L> "SUBROUTINE"
EDM000010 99.202 14:33:51 >O> "NOW IN SUBROUTINE"
EDM000010 99.202 14:33:51 >>> "NOW IN SUBROUTINE"
EDM000010 99.202 14:33:51 NOW IN SUBROUTINE
EDM000010 99.202 14:33:51 17 *-* return 4
EDM000010 99.202 14:33:51 >L> "4"
EDM000010 99.202 14:33:51 >>> "4"
EDM000010 99.202 14:33:51 12 *-* if result > 4
EDM000010 99.202 14:33:51 >V> "4"
EDM000010 99.202 14:33:51 >L> "4"
EDM000010 99.202 14:33:51 >O> "0"
EDM000010 99.202 14:33:51 >>> "0"
EDM000010 99.202 14:33:51 13 *-* exit
EDM000010 99.202 14:33:51 REXX host cmd env cleanup
 completed successfully

 Chapter 4

103

Example 10
Logged output from: radpnlwr traceit.rex r

EDM000010 99.202 14:38:14 REXX Environment set up
 completed successfully
EDM000010 99.202 14:38:14 4 *-* file = 'infile.txt'
EDM000010 99.202 14:38:14 >>> "infile.txt"
EDM000010 99.202 14:38:14 5 *-* line = linein(file)
EDM000010 99.202 14:38:14 >>> "123"
EDM000010 99.202 14:38:14 6 *-* x = word(line, 1)
EDM000010 99.202 14:38:14 >>> "123"
EDM000010 99.202 14:38:14 7 *-* if datatype(x) = 'NUM'
EDM000010 99.202 14:38:14 >>> "1"
EDM000010 99.202 14:38:14 7 *-* then
EDM000010 99.202 14:38:14 7 *-* do
EDM000010 99.202 14:38:14 8 *-* y = x + 456 / 100
EDM000010 99.202 14:38:14 >>> "127.56"
EDM000010 99.202 14:38:14 9 *-* say y
EDM000010 99.202 14:38:14 >>> "127.56"
EDM000010 99.202 14:38:14 127.56
EDM000010 99.202 14:38:14 10 *-* end
EDM000010 99.202 14:38:14 11 *-* call Subrtn
EDM000010 99.202 14:38:14 15 *-* Subrtn:
EDM000010 99.202 14:38:14 16 *-* say now in subroutine
EDM000010 99.202 14:38:14 >>> "NOW IN SUBROUTINE"
EDM000010 99.202 14:38:14 NOW IN SUBROUTINE
EDM000010 99.202 14:38:14 17 *-* return 4
EDM000010 99.202 14:38:14 >>> "4"
EDM000010 99.202 14:38:14 12 *-* if result > 4
EDM000010 99.202 14:38:14 >>> "0"
EDM000010 99.202 14:38:14 13 *-* exit
EDM000010 99.202 14:38:14 REXX host cmd env cleanup
 completed successfully

Instructions

104

UPPER
Syntax UPPER var_list

Description The UPPER instruction converts one or more variables to uppercase.

Parameters
Parameter Explanation

var_list var_list is the list of variables to be converted to uppercase. var_list must be a list of
symbols separated by blanks. Variable references (symbols enclosed in parentheses) are
not permitted.

Example 1
For the following example:

a = 'Hello world'
upper a say a

The output is:
HELLO WORLD

Example 2
For the following example:

a = 'c3po'
b = 'r2d2'
upper a b say a 'and' b

The output is:
C3PO and R2D2

105

Chapter 5

Built-In Functions

This chapter explores the powerful set of built-in functions found in Radia REXX. These functions
can be called by any program.

Built-In Functions Overview
Typically, a function is invoked as a term in an expression. The general form of a function call is:

function_name([expression][, [expression]] ...)

A function returns a single result that is substituted in the expression just as the value of a
variable is used. A function call can be used in any expression wherever any other term would be
valid. The argument expressions can also be function calls. There cannot be intervening blanks
between the function_name and the opening parenthesis. The presence of such blanks will cause
the expression to be interpreted as two unrelated symbols or expressions.

You can also invoke a function using the CALL instruction. In this case, the proper syntax is:
CALL function_name [expression] [, [expression]]...

If you CALL a built-in function, the value that it returns is assigned to the special variable
RESULT.

5

Built-in Functions

106

The following built-in functions are available in Radia REXX and will be explained in this
chapter:
• ABBREV • FIND * • SOURCELINE

• ABS • FORM • SPACE

• ADDRESS • FORMAT • STREAM

• ARG • FUZZ • STRIP

• B2X • GETCWD • SUBSTR

• BITAND • GETENV • SUBWORD

• BITOR • INDEX * • SYMBOL

• BITXOR • INSERT • TIME

• C2D • JUSTIFY * • TRACE

• C2X • LASTPOS • TRANSLATE

• CENTER • LEFT • TRUNC

• CHARIN • LENGTH • UPPER

• CHAROUT • LINEIN • USERID

• CHARS • LINEOUT • VALUE

• CHDIR • LINES • VERIFY

• COMPARE • LOWER • WORD

• CONDITION • MAX • WORDINDEX

• COPIES • MIN • WORDLENGTH

• CUSERID • OVERLAY • WORDPOS

• D2C • POS • WORDS

• D2X • POPEN • X2B

• DATATYPE • PUTENV • X2C

• DATE • QUEUED • X2D

• DELSTR • RANDOM • XRANGE

• DELWORD • REVERSE

• DIGITS • RIGHT

• ERRORTEXT • SIGN

* Functions provided for compatibility with IBM

 Chapter 5

107

General Rules for Built-In Functions
We strongly recommend that you follow these general rules when invoking built-in functions,
unless otherwise noted in the description of a particular function.

■ The parentheses in a function call are required—even when no arguments are specified.

■ The opening parenthesis must immediately follow the function name with no intervening
blanks. This is required to distinguish a function call from a reference to a simple symbol or
an instruction keyword.

■ Any argument identified as a string can be specified as a null string.

■ Any argument identified as a number is rounded, if necessary, according to the current
setting of NUMERIC DIGITS, before it is used in the function.

■ Any argument identified as a length must be specified as a non-negative integer.

■ Any argument identified as a pad must be exactly one character in length.

■ Optional arguments can be omitted from the right of the function call; taking out the comma
is optional.

■ Any function name or function argument can be specified in upper-, lower-, or mixed case.

■ Functions with arguments that are one of a specified set of characters should have the
argument enclosed in quotes. Without the quotes, the argument is interpreted as an un-
initialized symbol. As long as the symbol remains un-initialized, the function behaves as
expected since the value of the un-initialized symbol is the symbol in uppercase (e.g., when
un-initialized, the value of the symbol foo is FOO).

If, however, an assignment statement sets the value of that symbol to something else, the
function results in Error 40: Incorrect call to routine. See Appendix A: Message Summary for
more information.

Built-in Functions

108

ABBREV
Syntax ABBREV(information, info [, length])

Description The ABBREV function determines if one string is a valid abbreviation of a longer string. It returns
1 if the abbreviation is valid and 0 if the abbreviation is invalid.

Parameters
Parameter Explanation

information The unabbreviated string.

info The abbreviated string. When info is the null string, it matches any value of
information as long as length is omitted or specified as 0.

length Specifies the minimum length of info. If length is omitted, the default is the length of
info.

Usage Notes
If info is exactly equal to the leading characters of information and if the length of info is
greater than or equal to length, then info is a valid abbreviation of information, and the
function returns 1.

If either of the above conditions is not met, then the abbreviation is invalid and the function
returns 0.

Example 1
The output of:

valid = abbrev('month', 'mo')

is:
valid = 1

Example 2
The output of:

valid = abbrev('month','mo',2)

is:
valid = 1

Example 3
The output of:

valid = abbrev('month', 'mo', 3)

 Chapter 5

109

is:
valid = 0

Example 4
The output of:

valid = abbrev('month', m)

is:
valid = 0

The value of the symbol m, when not specifically assigned a value, is M.

Example 5
The value of:

valid = abbrev('month','')

is:
valid = 1

The null string matches any value of information.

Example 6
The output of:

month = 'January'
mo = 'Jan'
if abbrev(month, mo) then say 'valid'
 else say 'invalid'

is:
'valid'

Built-in Functions

110

ABS
Syntax ABS(number)

Description The ABS function returns the absolute value of a number.

Parameters
Parameter Explanation

number Any valid number. The result is formatted according to the current NUMERIC settings.

Example 1
The output of the following program fragment:

value = abs(-98.6)

is:
value = 98.6

Example 2
The output of the following program fragment:

numeric digits 4
number = abs(-123456.7890)
say number

is:
1.235E+5

 Chapter 5

111

ADDRESS
Syntax ADDRESS()

Description The ADDRESS function returns the name of the current host command environment.

Usage Notes
The host command environment can be changed using the ADDRESS instruction. For more
information see Chapter 4: Instructions.

Example 1
The output of the following:

env = address()

is:
env = EDMWIN

Example 2
The following program fragment sets the default host command environment to cmd before
executing a DOS command.

address cmd
'dir > filelist'
say address()

The output is:
CMD

Built-in Functions

112

ARG
Syntax ARG([n [, option]])

Description The ARG function returns the argument string or information about the argument string. This is
useful for verifying arguments passed to a subroutine or function before using them in the
subroutine or function.

Parameters
Parameter Explanation

n Indicates the argument number to be returned and must be a positive integer. When
only n is specified, ARG returns the nth argument string.

option Can be either E or O. Used in conjunction with n.

• Exists. If the nth argument exists, ARG returns 1; otherwise, it returns 0.

• Omitted. If the nth argument is omitted, ARG returns 1; otherwise, it returns 0.

When both arguments are specified, ARG tests for the existence of the nth argument
string.

Usage Notes
With no parameters specified, ARG returns the number of arguments passed to the subroutine or
function.

Example 1
In the following example where no argument is specified:

call subr
 :
subr:
arglist = arg() /* arglist = 0 */
arg1 = arg(1) /* arg1 = '' */
arg1_exist = arg(1,'e')

The output is arg1_exist = 0; i.e., the first argument does not exist.

 Chapter 5

113

Example 2
In the following example:

call subr a,,b
 :
subr:
arglist = arg() /* arglist = 3 */
arg1 = arg(1) /* arg1 = "A" */
arg2_omitted = arg(2,'o')

The output is arg2_omitted = 1; i.e., the second argument is omitted.

Built-in Functions

114

BITAND
Syntax BITAND(string1 [, [string2] [, pad]])

Description The BITAND function returns the results of a logical AND of two strings.

Parameters
Parameter Explanation

string1

string2

The two strings upon which the AND operation is performed. If the strings are of unequal
length, the length of the result is that of the longer of the two strings. If string2 is
omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the AND is
performed. If pad is omitted, the AND operation terminates at the end of the shorter
string, and the remaining portion of the longer string is appended to the result.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

anded = bitand('52'x, '43'x)

is:
anded = '42'x

Example 2
The output of the following program fragment:

anded = bitand('52'x, '4343'x)

is:
anded = '4243'x

 Chapter 5

115

BITOR
Syntax BITOR(string1 [, [string2] [, pad]])

Description The BITOR function returns the logical inclusive OR of two strings.

Parameters
Parameter Explanation

string1

string2

The two strings on which the OR operation is performed. If the strings are of unequal
length, the length of the result is that of the longer of the two strings. If string2 is
omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the OR is
performed. If pad is omitted, the OR operation terminates at the end of the shorter
string, and the remaining portion of the longer string is appended to the result.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

ord = bitor('52'x, '43'x')

is:
ord = '53'x'

Example 2
The output of the following program fragment:

ord = bitor('52x', '4343'x)

is:
ord = '5343'x

Built-in Functions

116

BITXOR
Syntax BITXOR(string1 [, [string2] [, pad]])

Description The BITXOR function returns the logical exclusive OR of two strings.

Parameters
Parameter Explanation

string1

string2

The two strings on which the exclusive OR operation is performed. If the strings are of
unequal length, the length of the result is that of the longer of the two strings. If string2
is omitted, the default is the null string.

pad A character specified to pad the shorter string if string1 and string2 are of unequal
length. Pad characters are added on the right of the shorter string before the exclusive
OR is performed. If pad is omitted, the exclusive OR operation terminates at the end of
the shorter string, and the remaining portion of the longer string is appended to the
result.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

xord = bitxor('52'x, '43'x)

is:
xord = '11'x

Example 2
The output of the following program fragment:

xord = bitxor('52'x, '4343'x)

is:
xord = '1143'x

 Chapter 5

117

B2X
Syntax B2X(string)

Description The B2X function converts a binary string to a hexadecimal string.

Parameters
Parameter Explanation

string The character representation of the binary data to be converted. It can be any length and
can contain embedded blanks at four-digit boundaries. If string does not contain an
even multiple of four digits, zeros are added on the left to make an even multiple. string
is not a binary string literal—i.e., it is not specified in the form '1010'b.

The value returned is a character representation of the equivalent hexadecimal string. It
does not contain embedded blanks.

The results of B2X() can be used as the input for the functions X2D() or X2C() to convert
binary strings into other representations.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

hexval = b2x('0110 0001')

is:
hexval = '61'

Example 2
The output of the following program fragment:

charval = x2c(b2x('01100001'))

is:
charval = 'a'

Built-in Functions

118

CENTER
Syntax CENTER(string, length [, pad])

CENTRE(string, length [, pad])

Description The CENTER function centers a string within a specified number of character positions. The
alternative spelling CENTRE is also supported.

Parameters
Parameter Explanation

string The character string to be centered.

length Specifies the total number of character positions within which string is to be centered. If
string is longer than length, it is truncated to fit, as necessary, at both ends.

pad The character that occupies character positions at either end of string. If pad is omitted,
the default is blank.

Usage Note
If an odd number of characters must be truncated or padded, the excess is added or dropped on
the right side of string.

Example 1
The output of the following program fragment:

greeting = center('Hello!',10)

is:
greeting = " Hello! "

Example 2
The output of the following program fragment:

news = center('Headline', 12, '*')

is:
news = "**Headline**"

 Chapter 5

119

Example 3
The output of the following program fragment:

quote = 'To be or not to be?'
line_length = 18
sayit = center(quote, line_length)
say sayit

is:
"To be or not to be"

Built-in Functions

120

CHARIN
Syntax CHARIN([name] [, [start] [, length]])

Description The CHARIN function returns a string of characters from a character input stream.

Parameters
Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

start Specifies an explicit read position. It must be a positive integer and within the bounds of
the input stream specified. If start is omitted, the default is the current read position.
start cannot be specified for a transient input stream.

length Specifies the number of characters to be read. If length is omitted, the default is 1. If
length is specified as 0, then the function resets the read position to the value of start
and returns a null string. If there are fewer characters in the stream than length, the
program can wait for additional characters to become available. If it is not possible for
additional characters to become available, the function returns fewer than the specified
number of characters and raises the NOTREADY condition. The built-in function STREAM
can be used to determine the state of a character stream.

Usage Notes
When reading disk files, use CHARIN to read less than a full line or files in which the lines do not
have normal line-end terminators. For files that have normal line-end terminators, you may want
to use the built-in function LINEIN to read an entire line.

When the input stream is a disk file, use of an I/O function such as CHARIN can leave the file in
an open state. Thus, it may be necessary to close the file using CHAROUT, LINEOUT, or
STREAM before performing subsequent read or write operations to the file.

Example 1
This example returns 5 characters from the current read position and assigns that value to the
variable emp_number.

emp_number = charin('personnel.txt',,5)

 Chapter 5

121

Example 2
The following program fragment displays a prompt to the user. It then pauses until data is
available on STDIN (in this case, characters typed at the keyboard). CHARIN returns a single
character and assigns that value to the variable num. A host command then prints a file whose
name is a concatenation of report and the character entered on the keyboard.

say 'Enter report number'
num = charin()
address cmd 'print report.'num

Built-in Functions

122

CHAROUT
Syntax CHAROUT([name] [, [string] [, start]])

Description The CHAROUT function writes a string to a character output stream and returns the number of
characters remaining in the string after the write is performed.

Parameters
Parameter Explanation

name The name of the character output stream. This can be a persistent stream, such as a disk
file, or a transient stream such as STDOUT or a pipe (including a named pipe). If name
is omitted, the default is STDOUT.

string The character string to be written.

start The character position within the output stream at which writing of output characters
begins.

Usage Notes
If name is a persistent stream (usually a disk file), then string can be omitted. In this case, one
of the following actions is taken:

■ If start is specified, CHAROUT resets the write position to the start value and the function
returns 0.

■ If start is also omitted, CHAROUT closes the output stream and the function returns 0.

Start specifies an explicit write position. It must be a positive integer and within the bounds of
the output stream specified. If start is omitted, the default is the current write position. Start
cannot be specified for a transient output stream.

The program waits until the write operation is complete. If it is not possible to write all the
characters to the output stream, the function returns the number of characters not written and
raises the NOTREADY condition.

When the output stream is a disk file, use of an I/O function such as CHAROUT can leave the file
in an open state. Thus, it may be necessary to close the file using CHAROUT, LINEOUT, or
STREAM before performing subsequent read or write operations to the file.

 Chapter 5

123

Example 1
The following program fragment writes the string specified by the variable emp_number to the
file personnel.txt; rc is normally 0.

emp_number = 'DEV003'
rc = charout('personnel.txt', emp_number)

Example 2
The following program fragment writes the string specified by the variable emp_number to the
file personnel.txt beginning at the 75th character position. Note the use of CALL to invoke the
function.

emp_number = 'DEV003'
call charout 'personnel.txt', emp_number, 75

Example 3
The following program fragment writes Hello world to STDOUT, usually the terminal.
out_rc is normally 0.

out_rc = charout(, 'Hello world')

Example 4
The following program fragment writes the string Hello world followed by a new-line character
to STDOUT, usually the terminal. This produces the same output as say 'Hello world'.

call charout ,'Hello world'||'0a'x

Example 5
The following program fragment:

Call charout 'foo.txt'

closes the file foo.txt.

Built-in Functions

124

CHARS
Syntax CHARS([name])

Description The CHARS function returns the number of characters remaining in a character input stream.

Parameters
Parameter Explanation

name The name of the character input stream. This can be a persistent stream, such as a disk
file, or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

Usage Notes
When the input stream is a transient stream, CHARS returns 1 if there is any data available in
the stream, and 0 if there is no data available in the stream.

When the input stream is a disk file, use of an I/O function such as CHARS can leave the file in
an open state. Thus, it may be necessary to close the file using CHAROUT, LINEOUT, or
STREAM before performing subsequent read or write operations to the file.

Example 1
In the following example count is set to the number of characters in the disk file named myfile.

count = chars('myfile')

Example 2
The following program fragment tests for the existence of a file. If the file exists (the value of the
CHARS function is greater than zero), the file is deleted before proceeding.

if chars('myfile') > 0 then
 address CMD 'erase myfile'

 Chapter 5

125

CHDIR
Syntax CHDIR([directory])

Description The CHDIR function changes the current working directory for the process in which the Radia
REXX program is running.

Parameters
Parameter Explanation

directory Specifies the path to which the current working directory is to be set. directory can be
any valid directory path on your system. The value you specify for directory can be
any character string that would validly effect a directory change if typed in at the
command prompt. If directory is omitted, the default is the path specified by the
HOME environment variable.

Usage Notes
CHDIR returns 0 if the current working directory is successfully changed. Otherwise, it returns
non-zero.

To effect a directory change for operations within the current program, you must use CHDIR. If
you use the host command CD, that command is executed in a different process from your Radia
REXX program and has no effect on the current working directory for the program.

Example
In the following example, the current directory was c:\progra~1\novadigm when the program
was started.

olddir = getcwd()
cd_rc = chdir('lib')
newdir = getcwd()
say olddir
say newdir

The output is:
c:\progra~1\novadigm
c:\progra~1\novadigm\lib

Built-in Functions

126

COMPARE
Syntax COMPARE(string1, string2 [, pad])

Description The COMPARE function determines if two strings are identical.

Parameters
Parameter Explanation

string1

string2

The two strings to be compared. If the strings are of unequal length, the shorter string
is padded before the comparison is performed.

pad Specifies the character to be appended to the shorter of the two strings. If pad is
omitted, the default is blank.

Usage Notes
The COMPARE function returns 0 if the strings are identical. If the strings are not identical, the
function returns the number of the left-most character position at which a discrepancy was
detected.

Example 1
In the following example comp_rc is 0. The first string is padded with blanks to make it equal in
length to the second string; this also makes it identical to the second string.

comp_rc = compare('a', 'a ')

Example 2
In the following comp_rc is 1; the first argument (the symbol q) has the value Q since it has not
been assigned a value; Q and q are not identical.

comp_rc = compare(q, 'q')

Example 3
In the following example c is 6. Pad is omitted so the value of a is padded with blanks, making
the string effectively
"alpha ". The first discrepancy is in position 6, where a has a blank and b has a b.

a = 'alpha'
b = 'alphabet'
c = compare(a, b)

 Chapter 5

127

CONDITION
Syntax CONDITION([option])

Description The CONDITION function returns information about the current trapped condition.

Parameters
Parameter Explanation

option Specifies the type of information to be returned. Can be any string beginning with one of
the characters shown below. If option is omitted, the default value is I. If option is
specified, it must be one of the following: C, D, I, or S.

• C (condition name)
The name of the current trapped condition.

• D (description)
The descriptive string associated with the current trapped condition. If no
descriptive string is available, this option returns a null string.

• I (instruction)
The instruction executed when the condition was trapped. This is either CALL or
SIGNAL.

• S (state)
The state of the current trapped condition. This is ON, OFF, or DELAY.

Usage Notes
The descriptive strings for each condition are as follows:

Condition Explanation

ERROR
FAILURE

The string that was passed to the external environment which resulted in the condition
being raised.

HALT Any string associated with the halt request by the external environment. This can be a null
string.

NOVALUE The derived name of the variable referenced, which raised the condition.

NOTREADY The name of the stream being accessed when the condition was raised. If this is a default
stream, then a null string is returned.

SYNTAX Any string associated with the error by the interpreter. This can be a null string.

Built-in Functions

128

Example
The following program fragment illustrates the use of the CONDITION function to implement a
generic condition trap.

signal on novalue name trapit
signal on syntax name trapit
signal on notready name trapit
signal on halt name trapit
signal on error name trapit
signal on failure name trapit
 :
 :
exit
trapit:
say condition('c') 'raised at line:' sigl
select
 when condition('c') = 'NOVALUE' then
 str = 'Bad variable is:'
 when condition('c') = 'ERROR' then
 str = 'Bad command is:'
 when condition('c') = 'FAILURE' then
 str = 'Bad command is:'
 otherwise
 str = 'Condition string (may be null):'
 end
say ''
say str condition('d')
exit

 Chapter 5

129

COPIES
Syntax COPIES(string, n)

Description The COPIES function returns a string composed of a specific number of concatenated copies of
an original string.

Parameters
Parameter Explanation

string The original string to be copied.

n Specifies the number of copies of string to concatenate. n must be a positive number or
zero.

Example 1
The output of the following program fragment:

newstring = copies('ho',3)

is:
newstring = 'hohoho'

Example 2
The output of the following program fragment:

str = '616263'x
newstring = copies(str, 2)
say newstring

is:
abcabc

Example 3
The output of the following program fragment:

do i = 0 to 3
 say copies('ho', i)
 end

is:
ho
hoho
hohoho

The first line of output is a null string since n is 0.

Built-in Functions

130

Example 4
The following program fragment uses COPIES to provide leading zeroes so that each number is
exactly six characters long.

num.0 = 37
 :
 :
do i = 1 to num.0
 num.i = copies('0',6-length(num.i))||num.i
 end

 Chapter 5

131

CUSERID
Syntax CUSERID()

Description The CUSERID function returns the User ID of the user currently logged on to the computer. It is
identical to the USERID built-in function.

Example
The following program fragment displays the User ID of the individual running the program.

say cuserid()

Built-in Functions

132

C2D
Syntax C2D(string [, n])

Description The C2D function converts a character string to the decimal value of its ASCII representation.

Parameters
Parameter Explanation

string The character string to be converted.

n If n is specified, then string is interpreted as a signed number. If the left-most bit is
zero, then the number is positive. Otherwise, the number is a twos-complement negative
number. If n is 0, the function returns 0. If n is omitted, the return value is positive.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

decval = c2d('abc')

is:
decval = '979899'

Example 2
The output of the following program fragment:

hexval = d2x(c2d('abc'))

is:
hexval = '616263'

 Chapter 5

133

C2X
Syntax C2X(string)

Description The C2X function converts a character string to its hexadecimal representation.

Parameters
Parameters Explanation

string The string to be converted. The function returns the character representation of its
hexadecimal value. If string is the null string, then C2X returns the null string.

Usage Note
C2X can be used in conjunction with X2B to convert character strings to their binary
representation.

The examples below are in United States ASCII.

Example 1
The output of the following program fragment:

hexval = c2x('a')

is:
hexval = '61'

Example 2
The output of the following program fragment:

hexval = c2x('61'x)

is:
hexval = '61'

Example 3
The output of the following program fragment:

bval = x2b(c2x('a'))

is:
bval = '01100001'

Built-in Functions

134

DATATYPE
Syntax DATATYPE (string [,type])

Description The DATATYPE function tests the data type of a string. It can be used to determine the data type
or to determine if the data is of the desired type.

Parameters
Parameters Explanation

string The string for which the data type is to be tested.

type If specified, is one of the valid data types.

Return Values
Return
Value

Explanation

NUM string is a number that can be added to zero without error

CHAR string does not meet the criteria for NUM.

0 or 1 The function returns 1 if string matches the specified type; otherwise, it returns 0. type must
be one of the following: A, B, L, M, N, S, U, W, X.

A (alphanumeric) string contains only the characters a-z, A-Z, or 0-9.

B (binary) string contains only binary digits (0 and 1), possibly with
embedded blanks between groups of four digits.

L (lowercase) string contains only the characters a-z.

M (mixed case) string contains only the characters a-z or A-Z.

N (number) string is a number; DATATYPE without the type argument would
return NUM.

S (symbol) string contains only those characters that are valid in a Radia REXX
symbol.

U (uppercase) string contains only the characters A-Z.

W (whole number) string is a valid whole number under the current setting of
NUMERIC DIGITS.

X (hexadecimal) string contains only valid hexadecimal digits (a-f, A-F, or 0-9),
possibly with embedded blanks, or string is the null string.

 Chapter 5

135

Example 1
The output of the following fragment:

type = datatype('abc')

is:
type = 'CHAR'

Example 2
The output of the following fragment:

val = 10
type = datatype(val)

is:
type = 'NUM'

Example 3
 The output of the following fragment:

string = 'April 15'
type = datatype(string, 'A')

is:
type = 1

Example 4
The following program fragment tests the data type of a variable to determine if it is composed
entirely of lowercase characters. If so, the string is converted to uppercase.

val = 'abc'
if datatype(val,'L') = 1 then
 upper_val = translate(val)

Built-in Functions

136

Example 5
The following program fragment prompts for user input and then verifies that the user typed a
valid whole number. The DATATYPE function is used as a logical symbol since its value will be
either 0 or 1. If the user input is a whole number, DATATYPE returns 1 (true).

 say 'Enter menu selection (1, 2, or 3)'
 pull answer
 if datatype(answer, 'W') then call mysub
else call error1

Example 6
The following program fragment extends the previous example to validate not only the type of
user input but also that it is within the valid range.

say 'Enter menu selection (1-8)'
pull answer
if \datatype(answer, 'w') | answer < 1 | ,
 answer > 8 then call error1

 Chapter 5

137

DATE
Syntax DATE ([out_option [, date_string, in_option]])

Description The DATE function returns the current date or converts dates from one format to another. Date
format conversion occurs when DATE is coded with the date_string and in_option arguments; it
permits arithmetic operations to be performed on dates of any format.

Parameters
Parameter Explanation

out_option Specifies the format in which the date is returned. Valid values for out_option are:
B, C, D, E, J, M, N, O, S, U, and W.

B (base) The number of complete days since the base date of 1 January
0001. Complete days include the base date but do not include
the current day. The date format returned is ddddd.

C (century) The number of days in the current century. The count of days
includes 1 January of the century year (such as 1900) and the
current day. The date format returned is ddddd.

D (days) The number of days in the current year. The count includes the
current day. The date format returned is ddd.

E (European) The current date in the standard European format of dd/mm/yy.

J (Julian) The current date in the format yyddd. yy is the last two digits of
the current year. ddd is the number of days, including today, in
the current year.

M (month) The full English name of the current month, beginning with a
capital letter.

N (normal) The current date in the format dd Mmm yyyy. This is the same
format as the default returned when out_option is omitted.

O (ordered) The current date in the format yy/mm/dd.

S (standard) The current date in the format yyyymmdd.

U (USA) The current date in the standard United States format of
mm/dd/yy.

W (weekday) The full English name for the current day of the week, beginning
with a capital letter.

date_string Specifies the date to be converted. It may be a literal string, a variable reference, or an
expression that evaluates to a date. It must be in one of the valid out-option date
formats, except Weekday or Month. These are: B, C, D, E, J, N, O, S, and U.

in_option Specifies the format of date_string and must be one of the date format options for
out_option, other than Weekday or Month. Thus, valid values for in_option are:

B, C, D, E, J, N, O, S, and U.

Built-in Functions

138

Usage Note
If out_option is omitted, the format returned is: dd mmm yyyy
where:

dd is the current day of the month, without leading zeroes.

mmm is the first three characters of the English name of the current month.

yyyy is the four-digit representation of the current year.

Example 1
The output of the following program fragment:

today = date()

could be:
today = '4 Jul 1994'

Example 2
The output of the following program fragment:

thisdate = date('U')

could be:
thisdate = '07/04/94'

Example 3
The output of the following program fragment:

sdate = date('s')

could be:
sdate = '19940704'

Dates in this format are suitable for sorting and other ordering operations.

 Chapter 5

139

Example 4
The following program fragment converts a data in "normal" REXX format to a format suitable for
sorting:

newdate = date('s',_ '04 Jul 1998', 'n')

The converted date format in newdate is "19980704".

Example 5
The following program fragment adds 90 days to the current date:

today = date()
plus90=date('u', date('b', today, 'n')+90, 'b')

If today is 04/30/98, plus 90 is "07/29/98".

Example 6
The following program fragment runs a quarterly report only if the current month is one of those
included in the list of reporting months.

report_months = 'March June September December'
if wordpos(date('M'), report_months) \= 0 then
 call quarterly_report
 else say 'Not a reporting month'

Example 7
The following program fragment calls a different subroutine for each day of the week. When run
on Monday, it calls report_Monday and so forth.

today = date('w')
 interpret 'call report_'today

Built-in Functions

140

Example 8
The following program fragment is a slightly different approach to the previous example. In this
case, the subroutines do not have names that can easily be related to any date format. This
example takes advantage of the fact that date('b')//7 returns a numeric value for the day of
the week (Monday = 0).

sub.0 = 'start_week'
sub.1 = 'two_days'
sub.2 = 'hump_day'
sub.4 = 'four_days'
sub.5 = 'tgif'
sub.6 = 'weekend'
sub.7 = 'weekend'
daynum = date('b')//7
interpret 'call' sub.daynum

 Chapter 5

141

DELSTR
Syntax DELSTR (string, n [, length])

Description The DELSTR function deletes one or more characters within a string.

Parameters
Parameter Explanation

string The string from which characters are to be deleted.

n Specifies the character position within string where deletion begins. n must be a positive
number. If n is greater than the length of string, then string remains unchanged.

length Specifies the number of characters to be deleted. length must be non-negative. If
length is omitted, all remaining characters in the string, beginning at position n, are
deleted.

Example 1
The output of the following program fragment:

str = delstr('string', 4)

is:
str = 'str'

Example 2
The output of the following program fragment:

airborne = 'paratroops'
infantry = delstr(airborne, 1, 4)

is:
infantry = 'troops'

Example 3
The following program fragment reads lines of an input file of addresses, parses for the zip code,
and puts all zip codes into the five-digit form rather than the "zip plus four" form. Any zip codes
longer than five digits (as in 60018-6300) have the sixth and all subsequent characters deleted;
any zip codes in the five-digit form remain unchanged.

do i = 1 to lines('addrfile')
 parse value linein('addrfile') with +95 zip .
 5digit_zip.i = delstr(zip, 6)
 end

Built-in Functions

142

DELWORD
Syntax DELWORD (string, n [, length])

Description The DELWORD function deletes one or more blank-delimited words in a string.

Parameters
Parameter Explanation

string Is the string from which words are to be deleted.

n Specifies the number of the first word to be deleted. n must be a positive number. If n is
greater than the number of words in string, then string remains unchanged.

length Specifies the number of words to be deleted. length must be non-negative. If length is
omitted, all remaining words in the string, beginning with word n, are deleted.

Example 1
The output of the following program fragment:

s = delword('how now brown cow', 2)

is:
s = 'how'

Example 2
The output of the following program fragment:

s = delword('hi there world', 2, 1)

is:
s = hi world'

Example 3
In the following program fragment:

parse var var1 first . . rest
newvar = first rest
newvar2 = delword(var1, 2, 2)

■ When var1='Raining cats and dogs', then both newvar and newvar2 have the value
'Raining dogs'.

■ When var1='Raining cats and dogs', then newvar='Raining dogs' but
newvar2='Raining dogs'.

 Chapter 5

143

DIGITS
Syntax DIGITS()

Description The DIGITS function returns the current setting of NUMERIC DIGITS.

Usage Notes
The description of the NUMERIC instruction in the previous chapter, Chapter 4: Instructions,
contains information on using NUMERIC DIGITS to control the precision of arithmetic operations
and the evaluation of arithmetic functions.

Example 1
In the following example x = 9 if the default for NUMERIC DIGITS is in effect.

x = digits()

Example 2
The following program fragment tests the current setting of NUMERIC DIGITS and resets it if
necessary before evaluating the FORMAT function. If precision is not tested and reset, the FORMAT
function would raise Error 40: Incorrect call to routine. By testing and, if necessary, resetting
NUMERIC DIGITS, the FORMAT function can be evaluated and x = '-1.2E+2' (assuming the
default setting of NUMERIC FORM).

if digits() > 2 then numeric digits 2
x = format(-123,3)

Built-in Functions

144

D2C
Syntax D2C(whole-number [, n])

Description The D2C function converts the decimal representation of a number to its character
representation.

Parameters
Parameter Explanation

whole-number The decimal representation of the number to be converted. It must be a whole number -
that is, it must be a number that can be represented entirely in digits within the current
setting of NUMERIC DIGITS. If n is omitted, whole-number must be non-negative.

n The length of the result in characters. It must be non-negative. If n is specified, the
result is sign-extended to the specified length. If the result will not fit in n characters, it is
truncated on the left.

Example 1
The output of the following program fragment:

charval = d2c(97)

is:
charval = 'a'

Example 2
The output of the following program fragment:

charval = d2c(979899)

is:
charval = 'abc'

 Chapter 5

145

D2X
Syntax D2X(whole-number [, n])

Description The D2X function converts the decimal representation of a number to its hexadecimal
representation.

Parameters
Parameter Explanation

whole-number The decimal representation of the number to be converted. It must be a whole number –
that is, it must be a number that can be represented entirely in digits within the current
setting of NUMERIC DIGITS. If n is omitted, whole-number must be non-negative.

n The length of the result in characters. It must be non-negative. If n is specified, the
result is sign-extended to the specified length. If the result will not fit in n characters, it is
truncated on the left.

Example 1
The output of the following program fragment:

hexval = d2x(97)

is:
hexval = '61'

Example 2
The output of the following program fragment:

bval = x2b(d2x(97))

is:
bval = '01100001'

Built-in Functions

146

ERRORTEXT
Syntax ERRORTEXT(n)

Description The ERRORTEXT function returns the message text associated with the specified Radia REXX
error number.

Parameters
Parameter Explanation

n Is a number in the range 0-99. If n is not a currently defined Radia REXX error, then
ERRORTEXT returns a null string. If n is not within the valid range, then ERRORTEXT
results in Error 40: Incorrect call to routine.

Example 1
The output of the following program fragment:

msg = errortext(11)

is:
msg = 'Control stack full'

Example 2
The following program fragment illustrates the use of the special variable rc to retrieve the
appropriate message text when a processing error occurs. When the SYNTAX condition is raised,
the value of rc is the number of the error that raised the condition.

signal on syntax
a = 10
b = max(a, x)
say b
syntax:
say errortext(rc)
say 'detected at line' sigl
exit

The output is:
Bad arithmetic conversion detected at line 3

Note

The processing error occurs because the variable x used in the MAX function, is un-
initialized and therefore has the value X. Arguments of MAX must be numeric.

 Chapter 5

147

FIND
Syntax FIND(string1, string2)

Description The FIND function searches a string of blank-delimited words for the first occurrence of another
string of blank-delimited words.

Parameters
Parameter Explanation

string1 The string to be searched.

string2 The search string.

Usage Notes
FIND returns the number of the first word in string1 where a match is found. If no match is
found, FIND returns 0.

For purposes of comparison, multiple blanks between words in either string1 or string2 are
treated as a single blank.

FIND is included in Radia REXX for compatibility with the VM and TSO/E implementations of
REXX. It may not be available in other implementations and is not included in the standard
language definition. Use WORDPOS to ensure portability of an application across all
implementations of REXX.

Example 1
The output of the following program fragment:

x = find("How now brown cow", "brown cow")

is:
x = 3

Example 2
The output of the following program fragment:

y = find("Once upon a time", "a time")

is:
y = 3

Built-in Functions

148

Example 3
The following program fragment uses FIND to verify user response to a prompt; if the answer
provided by the user does not match one of the words in the list, FIND returns 0.

list = 'REXX C FORTRAN LISP PL/I'
say 'What language for this program?'
pull lang
if find(list, lang) = 0 then
 say 'Language not available'

 Chapter 5

149

FORM
Syntax FORM()

Description The FORM function returns the current setting of NUMERIC FORM.

Usage Notes
The description of the NUMERIC instruction in the previous chapter, Chapter 4: Instructions,
contains information on using NUMERIC FORM to control the precision and format of numbers
used in the results of arithmetic operations, and the evaluation of arithmetic functions.

Example 1
In the following program fragment:

expform = form()

expform = 'SCIENTIFIC' if the default setting of NUMERIC FORM is in effect.

Example 2
The following program fragment ensures that NUMERIC FORM is set correctly for this application
before proceeding with other operations.

if form() \= 'ENGINEERING' then
 numeric form engineering

Built-in Functions

150

FORMAT
Syntax FORMAT(num [,[before] [,[after] [,[expp] [, expt]]]])

Description The FORMAT function rounds and formats a number.

Parameters
Parameter Explanation

num Is the number to be formatted. If no additional arguments are specified, FORMAT simply
rounds the number.

before The number of places to the left of the decimal point (the integer portion) of the result.
before must be a positive integer. If before is omitted, the number of places to the left
of the decimal point is exactly the number contained in the result. If before is greater
than the number of places to the left of the decimal in the result, the result is padded on
the left with blanks. If before is less than the number of places to the left of the decimal
in the result, Error 40 results.

after The number of places to the right of the decimal point (the decimal portion) of the result.
after can be a positive integer or zero. If after is omitted, the number of places to the
right of the decimal point is exactly the number contained in the result. If after is greater
than the number of decimal places in the result, the result is padded with zeros. If after
is less than the number of decimal places in the result, the result is rounded to fit. If
after is specified as 0, then num is rounded to the nearest integer.

expp

expt

Used to override the current settings of NUMERIC DIGITS and NUMERIC FORM in the
result of FORMAT.

expp Specifies the number of digits to be used in the exponent portion of the result. expp
must be a positive integer or zero. If expp is greater than the number of digits required
for the exponent, it is padded on the left with zeros. If expp is less than the number of
digits required for the exponent, Error 40 results. If expp is specified as 0, no exponent
is supplied in the result, and zeros are added as necessary to express the result without
exponential notation. If expp is non-zero and the exponent of the result is zero, then the
result is padded on the right with expp+2 blanks.

expt The trigger point for exponential notation. expt must be a positive integer or zero. If the
number of places to the left of the decimal point in the result is greater than expt, the
result is expressed exponentially. If the number of places to the right of the decimal in
the result is greater than 2*expt, the result is expressed exponentially. If expt is
specified as 0, the result is always expressed exponentially unless the exponent of the
result is 0.

Usage Notes
FORMAT first rounds the number using the standard REXX rules that would be applied if the
operation num + 0 were performed. It then formats the number. By default, the number is
formatted according to the current settings of NUMERIC DIGITS and NUMERIC FORM. The
last two arguments of FORMAT allow you to override these defaults.

 Chapter 5

151

Example 1
The output of the following program fragment:

x = format(12,5)

is:
x = ' 12'

Example 2
The following program fragment outputs a right-justified column of numbers.

numlist = '10 456 2 1034'
do i = 1 to words(numlist)
 say format(word(numlist,i),4)
 end

The output is:
 10
 456
 2
 1034

Example 3
The following program fragment outputs a decimal-aligned column of numbers with exactly two
decimal places in each number.

numlist = '10.567 456 .2 1034.6 45.25'
do i=1 to words(numlist)
 say format(word,numlist,i),4,2)
 end

The output is:
 10.57
 456.00
 0.20
 1034.60
 45.25

Built-in Functions

152

Example 4
The following program fragment illustrates the effect of the exponent trigger point on the
formatted results.

numlist = '10 120 10.123 9.12345 123.12345'
do i = 1 to words(numlist)
 say format(word(numlist,i),,,,2)
 end

The output is:
 10
 1.2E+2
 10.123
 9.12345
 1.2312345E+2

Example 5
The following program fragment illustrates use of the exponent trigger point to over-ride the
current setting of NUMERIC DIGITS.

numeric digits 3
numlist = '10 100 1000 10000 100000'
do i = 1 to words(numlist)
 say format(word(numlist,i))
 end
say ''
do j = 1 to words(numlist)
 say format(word(numlist,j),,,,5)
 end

The output is:
 10
 100
 1.00E+3
 1.00E+4
 1.00E+5

 10
 100
 1000
 10000
 1.00E+5

 Chapter 5

153

Example 6
The following program fragment illustrates use of the expp argument of format().

numeric digits 3
list = 0 1 2 3
num = 12345
do i = 1 to words(list)
 say format(num,,,word(list,i))
 end

The output is:
 12300
 1.23E+4
 1.23E+04
 1.23E+004

Built-in Functions

154

FUZZ
Syntax FUZZ()

Description The FUZZ function returns the current setting of NUMERIC FUZZ.

Usage Notes
The description of the NUMERIC instruction in the previous chapter, Chapter 4: Instructions,
contains information on using NUMERIC FUZZ to control how many digits are ignored in a
numeric comparison.

Example
In the following program fragment:

expfuzz = fuzz()

expfuzz = 0 if the default setting of NUMERIC FUZZ is in effect.

 Chapter 5

155

GETCWD
Syntax GETCWD()

Description The GETCWD function returns the full path name of the current working directory.

Example 1
In the following program fragment:

dir = getcwd()

if the current directory is c:\progra~1\novadigm, then dir = 'c:\progra~1\novadigm'

Example 2
The following program fragment creates an output file name within the current working
directory:

dir = getcwd()
outfile = dir'\output.txt'

Built-in Functions

156

GETENV
Syntax GETENV(string)

Description The GETENV function returns the current setting of an environment variable.

Parameters
Parameter Explanation

string The name of the environment variable for which the current setting is to be returned. If
the environment variable specified by string is not set, GETENV returns a null string.

Usage Note
It is recommended that the string argument be enclosed in quotes. Without the quotes, string is
an un-initialized symbol. As long as the symbol remains un-initialized, GETENV behaves as
expected since the value of the un-initialized symbol is the symbol in uppercase. If, however, an
assignment statement sets the value of that symbol to something else, the GETENV function
would attempt to determine the setting of the environment variable specified by the value
assigned to string.

Example
In the following program fragment:

home = getenv('HOME')

home = the current value of HOME. This is the same value that would result from typing the DOS
command:

set HOME

 Chapter 5

157

INDEX
Syntax INDEX(string1, string2 [, start])

Description The INDEX function searches a string for the first occurrence of another string.

Parameters
Parameter Explanation

string1 The string to be searched.

string2 The search string.

start The character position in string1 where the search begins. start must be a positive
integer. If start is greater than the length of string1, INDEX returns 0.

Usage Notes
INDEX is included in Radia REXX for compatibility with the VM and TSO/E implementations of
REXX. It may not be available in other implementations and it is not included in the standard
language definition. Use POS to ensure portability of an application across all implementations of
REXX.

INDEX returns the position of the first character in string1 where a match is found. If no match
is found, INDEX returns 0.

Example 1
The output of the following program fragment:

where = index('abcdef', 'c')

is:
where = 3

Example 2
The output of the following program fragment:

where = index('abrakadabra', 'a', 5)

is:
where = 6

Example 3
The following program fragment uses INDEX to verify user response to a prompt. If the answer
provided by the user does not match one of the characters in the list, INDEX returns 0.

Built-in Functions

158

options = abcxyz
 say 'Select a processing option'
 pull which_option
 if index(options, which_option) = 0 then
 call bad_option
 else call got_it_right

 Chapter 5

159

INSERT
Syntax INSERT(string1, string2 [, [n] [, [length][, pad]]])

Description The INSERT function inserts one string into another string.

Parameters
Parameter Explanation

string1 The string to be inserted.

string2 The inserted string.

n The character position in string2 after which insertion begins. n must be a non-negative
number. If n is specified as 0, string1 is inserted before the first character of string2. If
n is omitted, the default value is 0.

length The number of characters to be inserted. length must be a non-negative number. If
string1 is shorter than length, it is padded on the right to the value of length before
insertion. If n is greater than the length of string2, string1 is also padded on the left
before insertion. If length is 0, none of the characters in string1 are inserted. If length
is omitted, the default is the length of string1.

pad Character used to pad string1 before insertion. If pad is omitted, the default pad
character is a blank.

Example
This program fragment illustrates various combinations of the arguments to INSERT.

ins = 'scotty '
 string = 'beam me up now'
 say insert(ins, string)
 say insert(ins, string, length(string)+1)
 say insert(ins, string, 11)
 say insert(ins, string, 20)
 say insert(ins, string, 20, 0, '!')

The output is:
 scotty beam me up now
 beam me up now scotty
 beam me up scotty now
 beam me up now scotty
 beam me up now!!!!!!

Built-in Functions

160

JUSTIFY
Syntax JUSTIFY(string, length [, pad])

Description The JUSTIFY function adds pad characters between words in a string of blank-delimited words to
justify both margins.

Parameters
Parameter Explanation

string String of blank-delimited words.

length length is the length of the string returned by the function.

pad Character used to pad string. If pad is omitted, the default pad character is a blank.

Usage Note
JUSTIFY is included in Radia REXX for compatibility with the VM and TSO/E implementations
of REXX. It may not be available in other implementations and is not included in the standard
language definition. Use POS to ensure portability of an application across all implementations of
REXX.

Example
The output of the following program fragment:

str = 'To be or not to be'
outstr = justify(str, 25)

is:
outstr = 'To be or not to be'

 Chapter 5

161

LASTPOS
Syntax LASTPOS(string1, string2 [, start])

Description The LASTPOS function finds the right-most occurrence of one string within another string. It
scans string2 from right to left looking for string1.

Parameters
Parameter Explanation

string1 Search string.

string2 String to be searched.

start Character position within string2 where the backward search begins. start must be a
positive integer. If start is greater than the length of string2, it defaults to the length of
string2. If start is omitted, the default is the length of string2.

Usage Notes
It returns the character position of the right-most occurrence of string1 in string2. If string1 is
not found in string2, then LASTPOS returns 0.

Example 1
The output of the following program fragment:

x = lastpos('a', 'abrakadabra')

is:
x = 11

Example 2
The output of the following program fragment:

x = lastpos('a', 'abrakadabra', 7)

is:
x = 6

Built-in Functions

162

Example 3
In the following program fragment, LASTPOS returns 0 if there is only one entry in
product_list (no blanks in the list) or non- zero if there is more than one entry in the list.

product_list = 'RADIA REXX uni-XEDIT uni-SPF'
if lastpos(' ', product_list) = 0 then
 say 'Only one RADIA product installed'
 else say 'Several RADIA products installed'

The output is
Several RADIA products installed

 Chapter 5

163

LEFT
Syntax LEFT(string, n [, pad])

Description The LEFT function returns the left-most characters in a string.

Parameters
Parameter Explanation

string The original string.

n The number of characters to be returned. n must be non-negative. If n is zero, the
LEFT function returns a null string. If n is greater than the length of string, the value
returned by LEFT is padded on the right to the length of n.

pad Character used to pad the result. If pad is omitted, the default is a blank character.

Example 1
The output of the following program fragment:

x = left('abcdefg', 3)

is:
x = 'abc'

Example 2
The output of the following program fragment:

alphabet = left('abc', 26)

is:
alphabet = 'abc '

Example 3
The output of the following program fragment:

alphabet = left('abc', 6, '.')

The output is:
alphabet = 'abc...'

Built-in Functions

164

Example 4
The following program fragment processes an input file by selecting data only from those lines
that do not begin with a comment character (#).

input = 'mydata.txt'
j = 1
do lines(input)
 line = linein(input)
 if left(line, 1) \= '#' then do
 parse var line num.j descr.j .

 j = j + 1
 end
 end

Example 5
The following program fragment uses the LEFT and RIGHT functions to format output data.

line.1 = 'Jan East 1500 West 975 Total $ 2475'
line.2 = 'Feb East 24660 West 975 Total $34635'
line.3 = 'Mar East 800 West 8500 Total $ 9300'
 :
 :
do i = 1 to 12
 say left(line.i, 3) right(line.i, 6)
 end

The output is:
 Jan $ 2475
 Feb $34635
 Mar $ 9300
 :
 :

 Chapter 5

165

LENGTH
Syntax LENGTH(string)

Description The LENGTH function determines the number of characters in a string.

Parameters
Parameter Explanation

string The string for which the length is to be determined.

Example 1
The output of the following program fragment:

x = length('Hello')

is:
x = 5

Example 2
The following program fragment validates user input based on the number of characters in that
input.

say 'Enter part number'
pull reply
if length(reply) \= 4 then do
 say 'Invalid part number:' reply
 say 'Part numbers have exactly 4 digits'
 end

Built-in Functions

166

LINEIN
Syntax LINEIN([name] [, [line] [, count]])

Description The function reads a line from a character input stream. It can also be used to set the read
position in a persistent input stream. Use LINEIN for input streams that have normal line-end
terminators (usually CR/LF).

Parameters
Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

line Specifies an explicit read position in a persistent input stream such as a disk file. It must
be a positive integer and must be within the bounds of the input stream specified. If line
is omitted, the default is the current read position. line cannot be specified for a
transient input stream.

count Specifies the number of lines to be read. count must be 0 or 1. If count is omitted, the
default is 1. If count is specified as 0, then the read position is set to the beginning of
line, and the function returns a null string.

Usage Notes
If a complete line is not available in the stream, the program can wait until the line is complete. If
it is not possible for a line to be completed, the function returns all available characters and raises
the NOTREADY condition. The built-in function STREAM can be used to determine the state of a
character stream.

Use LINEIN to read complete lines that have normal line-end terminators. This means that it is
important to know the kind of data contained in a file that you read using LINEIN. Trying to read
a large file that lacks normal line-end terminators (such as a binary file) using LINEIN can result
in unexpected and undesirable results. Use CHARIN to read less than a complete line, or to read
lines that do not have normal line-end terminators.

Use of an I/O function such as LINEIN can leave a persistent input stream in an open state.
Thus, it may be necessary to close it using LINEOUT, CHAROUT, or STREAM before performing
subsequent read or write operations.

 Chapter 5

167

Example 1
The following example reads one line from the current read position and assigns that value to the
variable emp_record.

emp_record = linein('personnel.txt')

Example 2
The following program fragment displays a prompt to the user. It then pauses until data is
available on STDIN (in this case, characters typed at the keyboard); LINEIN returns everything
that was typed at the keyboard before ENTER was pressed and assigns that value to the variable
num; a host command then prints a file.

say 'Enter report number'
num = linein()
address cmd 'print report.'num

Example 3
The following program fragment processes all lines in an input file, one line at a time.

infile = 'foo.txt'
do i = 1 while lines(infile) > 0
 line.i = linein(infile)
 end

Built-in Functions

168

LINEOUT
Syntax LINEOUT([name] [, [string] [, line]])

Description The LINEOUT function writes a line to a character output stream and returns the number of lines
remaining in the stream after the write has been attempted.

Parameters
Parameter Explanation

name The name of the character output stream. This can be a persistent stream such as a
disk file or a transient stream such as STDOUT or a pipe (including a named pipe). If
name is omitted, the default is STDOUT.

string The character string to be written. If name is a persistent stream, then string can be
omitted. In this case, one of the following actions is taken:

• If line is specified, LINEOUT resets the write position to the start value, and the
function returns 0.

• If line is omitted, LINEOUT closes the output stream, and the function returns
0.

line Specifies an explicit write position. It must be a positive integer and must be within the
bounds of the output stream specified. If line is omitted, the default is the current write
position. line may not be specified for a transient output stream.

Example 1
The following program fragment writes the string specified by the variable emp_data to the file
personnel.txt. rc is normally 0.

emp_data = 'DEV003 Smith Joe Software Engineer'
rc = lineout('personnel.txt', emp_data)
if rc \= 0 then
 say 'Error in writing to personnel file'

Example 2
The following program fragment:

out_rc = lineout(, 'Hello world')

writes "Hello world" to STDOUT, usually the terminal. out_rc is normally 0.

 Chapter 5

169

Example 3
The following program fragment writes the lines specified by the compound variables emp.<n> to
the file personnel.txt. After the last line is written, it closes the file. Note the use of CALL to
invoke the function.

outfile = 'personnel.txt'
emp.0 = 57
emp.1 = 'DEV003 Smith Joe Software Engineer'
emp.2 = 'DEV004 Jones Anne AI Specialist'
 :
 :
do i = 1 to emp.0
 call lineout outfile, emp.i
 end
call lineout outfile

Built-in Functions

170

LINES
Syntax LINES([name])

Description The LINES function returns the number of complete lines remaining in a character input stream.

Parameters
Parameter Explanation

name The name of the character input stream. This can be a persistent stream such as a disk
file or a transient stream such as STDIN or a pipe (including a named pipe). If name is
omitted, the default is STDIN.

Example 1
In the following program fragment:

count = lines('foo.txt')

count is set to the number of lines in the disk file named foo.txt.

Example 2
The following program fragment tests for the existence of a file. If the file exists (the value of the
LINES function is greater than zero), the file is deleted before proceeding.

if lines('foo.txt') > 0 then
 address cmd 'erase foo.txt'

 Chapter 5

171

Example 3
The following program named anydata gives different results depending on whether or not data
is waiting.

if lines() then say 'Data available'
 else say 'No data'

When you run this program by typing:
 anydata

the output is:
 No data

When you run this program by typing:
 echo 'Hello world' | anydata

the output is:
 Data available

Built-in Functions

172

LOWER
Syntax LOWER(string)

Description The LOWER function converts characters in a string to lowercase.

Parameters
Parameter Explanation

string The string of characters to be converted. string can be upper-, lower-, or mixed-case.

Example 1
The output of the following program fragment:

low = lower('ABCD')

is:
low = 'abcd'

Example 2
The following program fragment converts user input to lowercase before validating the input.

say 'Enter authorization'
parse pull reply
if wordpos(lower(reply), auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

Example 3
The following program is functionally equivalent to the previous example but ensures that reply
is taken from the terminal (STDIN) rather than from data that might be on the program stack.

say 'Enter authorization'
reply = lower(linein())
if wordpos(reply, auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

 Chapter 5

173

MAX
Syntax MAX(number [, number] ...)

Description The MAX function returns the largest number in a list of numbers.

Parameters
Parameter Explanation

number Any valid number.

Example
The output of the following program fragment:

x = max(10, 12, 9)

is:
x = 12

Built-in Functions

174

MIN
Syntax MIN(number [, number] ...)

Description The MIN function returns the smallest number in a list of numbers.

Parameters
Parameter Explanation

number Any valid number.

Example 1
The output of the following program fragment:

x = min(10, 12, 9)

is:
x = 9

Example 2
The following program fragment uses MIN to get the length of the shortest word in a string.

list = 'the a an'
shortest = length(word(list, 1))
do while list \= ''
 parse var list next list
 shortest = min(shortest, length(next))
 end
say shortest

The output is:
1

 Chapter 5

175

OVERLAY
Syntax OVERLAY(string1, string2 [, [n][, [length] [, pad]]]

Description The OVERLAY function overlays one string with characters from another string.

Parameters
Parameter Explanation

string1 This is the overlay string, that is, the string that supplies characters for the overlay
operation.

string2 The original string in which characters are to be replaced by characters from string1.

n The character position in string2 where the overlay begins. n must be a positive integer.
If n is greater than the length of string2, string1 is padded on the left before the
overlay is performed. If n is omitted, the default value is 1.

length Number of characters to overlay. length must be non-negative. If length is greater than
the number of characters in string1, string1 is padded on the right before the overlay
is performed. If length is less than the number of characters in string1, string1 is
truncated from the right before the overlay is performed. If length is omitted, the
default value is the length of string1.

pad Character to be used for padding string1. If pad is omitted, the default is a blank
character.

Example 1
The output of the following program fragment:

str = overlay('old', 'new data')

is:
str = 'old data'

Example 2
The output of the following program fragment:

str = overlay('old', 'Some new data', 6)

is:
str = 'Some old data'

Built-in Functions

176

Example 3
The output of the following program fragment:

str = overlay('change', 'New data', 12, 8, '*')

is:
str = 'New data***change**'

Example 4
The following program fragment takes a template reply message and uses OVERLAY to replace a
placeholder string with the current date before mailing the message.

parse arg inquirer
auto_reply = 'template.txt'
mail_msg = 'msg.txt'
d = "Insert today's date here"
do lines(auto_reply)
 line = linein(auto_reply)
 if wordpos(d, line) \= 0 then
line=overlay(date(),line,pos(d,line),(length(d))
 call lineout mail_msg, line
 end
call lineout mail_msg /*be sure file is closed */

 Chapter 5

177

POPEN
Syntax POPEN(command [, option])

Description The POPEN function executes a host command and places the results on the REXX program
stack. It returns the completion code of the host command.

Parameters
Parameter Explanation

command Any host command that is valid in the Bourne shell.

option Indicates whether command output should be placed on the stack in FIFO or LIFO
order. ‘P’ specifies LIFO order; ‘Q’ specifies FIFO order. If option is omitted, the default
value is ‘Q’.

Usage Note
POPEN redirects STDOUT to the program stack. Use POPEN to:

■ Capture the output of a host command for subsequent processing.

■ Execute any host command that may write to STDOUT when you do not wish that output to
appear on the terminal screen.

Example 1
The following program invokes the UNIX test command to check for existence of a file. If the file
exists, test sets a completion code of 0 and therefore state = 0. If the file does not exist, test sets
a completion code of 1 and therefore state = 1.

state = popen("test -f myfile")

Example 2
The following program fragment processes all files in the current directory with a date/time
stamp matching the current month.

x = 5
rc = popen("ls –l")
if rc \= 0 then call error1
do queued()
parse pull nextfile
if word(nextfile, x) = left(date(m),3) then
call prog2
end

Note that the output of "ls" is system-dependent. This example is for SunOS. Change value of "x"
for other systems as needed.

Built-in Functions

178

POS
Syntax POS(string1, string2 [, start])

Description The POS function searches a string for the left-most occurrence of another string.

Parameters
Parameter Explanation

string1 The search string.

string2 The string to be searched.

start The character position in string2 where the search begins. start must be a positive
integer. If start is greater than the length of string2, POS returns 0.

Usage Note
POS returns the position of the left-most character in string2 where a match is found. If no
match is found, POS returns 0.

Example 1
The output of the following program fragment:

where = pos('c', 'abcdef')

is:
where = 3

Example 2
The output of the following program fragment:

where = pos('a', 'abrakadabra', 5)

is:
where = 6

 Chapter 5

179

Example 3
The following program fragment uses POS to verify user response to a prompt; if the answer
provided by the user does not match one of the characters in the list, POS returns 0.

options = abcxyz
say 'Select a processing option'
pull which_option
if pos(which_option, options) = 0 then
 call bad_option
 else call value which_option

Built-in Functions

180

PUTENV
Syntax PUTENV(string)

Description The PUTENV function sets the value of an environment variable.

Parameters
Parameter Explanation

string A command to set the value of an environment variable. The command is of the form
VARIABLE=value.

Usage Notes
Blanks are not permitted around the equal sign.

Use PUTENV to set or modify the value of an environment variable used by the process in which
the Radia REXX program is running. Environment variables set by PUTENV are not retained
after the Radia REXX program terminates.

Example
The following program fragment:

rc = putenv('MYVAR=FOO')

sets the MYVAR environment variable. If PUTENV executes successfully, the value of rc is 0. If
an error occurs, the value of rc is non-zero.

 Chapter 5

181

QUEUED
Syntax QUEUED()

Description The QUEUED function returns the number of lines remaining on the Radia REXX external data
queue.

Example
The following program processes every line remaining on the Radia REXX external data queue,
based on some pre-determined criterion.

do queued()
 pull nextone
 if word(nextone, 3) > checkit then call bigger
 else call smaller
 end

Built-in Functions

182

RANDOM
Syntax RANDOM([min] [, [max] [, seed]])

Description The RANDOM function returns a quasi-random, non-negative whole number.

Parameters
Parameter Explanation

min The lower value of the range. min must be non-negative. If min is omitted, the default
is 0.

max The upper value of the range. max must be non-negative. If max is omitted, the default
is 999.

seed An initial seed value that can be used to create a repeatable series of results. seed must
be a whole number. If seed is omitted, the default is an arbitrary value, which can be
time-dependent.

Usage Note
The magnitude of the range specified cannot exceed 100000. Specifically, the following must be
true:

max - min <= 100000

Example 1
The output of the following program fragment:

x = random()

could be:
x = 983

Example 2
The output of the following program fragment:

x = random(9)

could be:
x = 2

Example 3
The following program fragment generates a random number for use as the extension on a
temporary file required by the program.

ext = random()
tmpfile = '\tmp\thisprog.'ext

 Chapter 5

183

REVERSE
Syntax REVERSE(string)

Description The REVERSE function reverses the characters in a string.

Parameters
Parameter Explanation

string The original string in which the characters are to be reversed.

Example 1
The output of the following program fragment:

str = reverse('string')

is:
str = 'gnirts'

Example 2
The output of the following program fragment:

time = reverse('noon ')

is:
time = ' noon'

Built-in Functions

184

RIGHT
Syntax RIGHT(string, n [, pad])

Description The RIGHT function returns the right-most characters in a string.

Parameters
Parameter Explanation

string The original string.

n The number of characters to be returned. n must be non-negative. If n is zero, the
RIGHT function returns a null string. If n is greater than the length of string, the value
returned by RIGHT is padded on the left to the length of n.

pad The character used to pad the result. If pad is omitted, the default is a blank character.

Example 1
The output of the following program fragment:

x = right('abcdefg', 3)

is:
x = 'efg'

Example 2
The output of the following program fragment:

alphabet = right('xyz', 26)

is:
alphabet = ' xyz'

Example 3
The output of the following program fragment:

alphabet = right('xyz', 6, '.')

is:
alphabet = '...xyz'

 Chapter 5

185

Example 4
The following program fragment removes 6-character sequence numbers from the beginning of
each line of a file.

input = 'foo.txt'
output = 'bar.txt'
do lines(input)
 line = linein(input)
 line = right(line, length(line)-6)
 call lineout output, line
 end
 call lineout output

Example 5
The following program fragment uses the LEFT and RIGHT functions to format output data.

line.1 = 'Jan East 1500 West 975 Total $ 2475'
line.2 = 'Feb East 24660 West 975 Total $34635'
line.3 = 'Mar East 800 West 8500 Total $ 9300'
 :
 :
do i = 1 to 12
 say left(line.i, 3) right(line.i, 6)
 end

The output is:
 Jan $ 2475
 Feb $34635
 Mar $ 9300
 :
 :

Built-in Functions

186

SIGN
Syntax SIGN(number)

Description The SIGN function returns a value that indicates the sign of a number.

Parameters
Parameter Explanation

number The number for which the sign is to be determined. If number is negative, then SIGN
returns -1. If number is zero, then SIGN returns 0. If number is positive, then SIGN
returns 1.

Example 1
The output of the following program fragment:

x = sign(10)

is:
x = 1

Example 2
The output of the following program fragment raises 2 to the power chosen by the user. It does not
permit negative or zero exponents.

say 'Enter exponent'
pull power
if sign(power) > 0 then say 2**power
 else say power 'invalid here'

 Chapter 5

187

SOURCELINE
Syntax SOURCELINE([n])

Description The SOURCELINE function returns either the number of lines in the current program or the
contents of the specified line.

Parameters
Parameter Explanation

n A line number within the range of the current program. n must be positive and cannot
exceed the line number of the last line in the program. When n is specified, SOURCELINE
returns the contents of the nth line in the program. If n is omitted, SOURCELINE returns
the line number of the last line in the program.

If no source lines are available (as in the case of a compiled program), SOURCELINE
returns 0.

Example 1
In the following program fragment:

prog_length = sourceline()

if the current program contains 50 lines, then
prog_length = 50

Example 2
The following program fragment illustrates the use of SOURCELINE to identify errors occurring
during program execution.

call on error name uhoh
parse arg program_name
address CMD program_name
 :
 :
exit
uhoh:
parse value sourceline(sigl) with 'CMD' failed
say 'Host command failed'
interpret 'say' failed "'not found in PATH'"
return

Built-in Functions

188

SPACE
Syntax SPACE(string [, [n] [, pad]])

Description The SPACE function reformats a string of blank-delimited words such that the specified number
of pad characters appears between each word.

Parameters
Parameter Explanation

string The string of blank-delimited words to be formatted.

n The number of pad characters to appear between each word in the result. n must be
non-negative. If n is specified as zero, all blanks in string are removed. If n is omitted,
the default value is 1.

pad Character used between each word in the result. If pad is omitted, the default pad
character is a blank.

Example 1
The output of the following program fragment:

x = space('Good morning')

is:
x = 'Good morning'

Example 2
The following program fragment creates a header line for a report.

str = date time userid status
header = space(str, 6, '-')

The header line looks like:
DATE------TIME------USERID------STATUS

 Chapter 5

189

Example 3
The following program uses SPACE in conjunction with TRANSLATE to remove characters from a
string.

string = 'work group'
string = translate(string, 'o', ' ou')
string = space(string, 0)
string = translate(string, 'o', ' o')
string = space(string, 0)
say string

The output is:
wrkgrp

Built-in Functions

190

STREAM
Syntax STREAM(name [, operation[, strmcmd]])

Description The STREAM function is used to determine the state of a stream, or to perform an operation on a
stream and return the result.

Parameters
Parameter Explanation

name The name of the stream of interest.

operation Describes the action to be carried out. If operation is omitted, the default value is S. If
operation is specified, it must have one of the following values: C, D, or S.

C (command) The command to execute on this stream as specified by the strmcmd
argument.

D (description) Descriptive string associated with the current state of the stream; the
descriptive strings are available only when the state of the stream is
READY. strmcmd must not be specified.

S (state) The current state of the specified stream. strmcmd must not be
specified; the value returned, if you specify S, is one of the following:

ERROR An erroneous operation has been attempted on the stream.

NOTREADY Normal input or output operations would raise the
NOTREADY condition.

READY The stream is ready for normal input or output operations.
UNKNOWN The state of the stream cannot be determined.

strmcmd A command to be executed on the stream. strmcmd must be enclosed in quotes and
must be one of the following:

open Open the stream for input or output operations; the function returns the
state of the stream.

close Close the stream for input or output operations; the function returns the
state of the stream.

delete Remove the file; the function returns a null string.

query exists Test for existence of the stream; the function returns the name of the
stream, if it exists; otherwise it returns a null string.

query size Determine the number of characters in the file; the function returns the
number of characters.

query datetime Retrieve the date/time stamp of the file; the function returns the
information in the form mm-dd-yy hh:mm:ss.

seek offset Position the file for the next input or output operation; offset must be a
positive integer preceded by one of the following characters:

= Offset is from the beginning of the file.
< Offset is from the end of the file.
+ Offset is forward from the current position.
- Offset is backward from the current position.

 Chapter 5

191

Example
The following program fragment illustrates the use of the STREAM function:

strm = 'sales.txt'
state = stream(strm, 'c', 'query exists')
if state \= '' then
 if stream(strm, 'c', 'open') \= 'READY' then
 say 'error opening file' strm
 else
 :
 /* Process the file.. */
 :
 :

Built-in Functions

192

STRIP
Syntax STRIP(string [, [option] [, char]])

Description The STRIP function removes leading, trailing, or both leading and trailing characters from a
string.

Parameters
Parameter Explanation

string The string from which characters are to be removed.

option Specifies whether leading, trailing, or both leading and trailing characters are to be
removed. option can be any string beginning with the character L, T, or B, in any case.

• If the first character of option is L, only leading characters are removed.

• If the first character of option is T, only trailing characters are removed.

• If the first character of option is B, both leading and trailing characters are
removed.

• If option begins with any other character, Error 40 results.

• If option is omitted, the default is B.

char Character to be removed from string. If specified, char can be only one character. If
char is omitted, the default is a blank.

Example 1
The output of the following program fragment:

x = strip(' Gypsy Rose ')

is:
x = 'Gypsy Rose'

Example 2
The output of the following program fragment:

x = strip('000123', 'l')

is:
x = '123'

 Chapter 5

193

Example 3
The output of the following program fragment:

x = strip('In retrospect....', 'Trail', '.')

is:
x = 'In retrospect'

Example 4
The following program fragment removes leading and trailing blanks from a value to be used as
the tail in referencing a compound symbol.

pfile = 'params.txt'
 do lines(pfile)
 parse value linein(pfile) with arg1 arg2 prog
 prog = strip(upper(prog))
 interpret 'call subr.'prog arg1',' arg2
 end

Built-in Functions

194

SUBSTR
Syntax SUBSTR(string, n [, [length][, pad]])

Description The SUBSTR function returns a sub-string of a string.

Parameters
Parameter Explanation

string The string from which the sub-string is to be extracted.

n Character position within string where the sub-string begins. n must be positive. If n is
greater than the length of string, then only pad characters are returned.

length The length of the sub-string to be returned. length must be non-negative. If length is
greater than the number of characters from n to the end of string, then the result is
padded on the right. If length is specified as 0, then the null string is returned. If
length is omitted, the result includes all characters from n to the end of string.

pad The pad character to be used. If pad is omitted, the default is a blank character.

Example 1
The output of the following program fragment:

x = substr('Radia REXX', 7)

is:
x = 'REXX'

Example 2
The output of the following program fragment:

herbs = 'parsley sage rosemary thyme'
herb2 = substr(herbs, 9, 4)

is:
herb2 = 'sage'

 Chapter 5

195

Example 3
The output of the following program fragment:

today = substr(date(u), 4, 2)

is:
today = '18'

on the 18th day of any month.

Example 4
The following program fragment extracts a sub-string from a series of numbers, and pads the
short ones with zeroes.

numlist = '14 144 4114 41'
do i = 1 to words(numlist)
 x = substr(word(numlist, i), 2, 3, 0)
 say x
 end

The output is:
 400
 440
 114
 100

Built-in Functions

196

SUBWORD
Syntax SUBWORD(string, n [, length])

Description The SUBWORD function returns a sub-string from a string of blank-delimited words.

Parameters
Parameter Explanation

string The string from which the sub-string is to be extracted.

n The number of the word within string where the sub-string begins. n must be positive.
If n is greater than the number of words in string, then the null string is returned.

length Number of words to be returned. length must be non-negative. If length is specified as
0, then the null string is returned. If length is omitted, the result includes all remaining
words in string.

Example 1
The output of the following program fragment:

n = subword('over the rainbow', 3)

is:
n = 'rainbow'

Example 2
The output of the following program fragment:

days = 'Mon Tue Wed Thur Fri Sat Sun'
weekend = subword(days, 6)

is:
weekend = 'Sat Sun'

 Chapter 5

197

SYMBOL
Syntax SYMBOL(name)

Description The SYMBOL function returns the status of a symbol.

Parameters
Parameter Explanation

name Specifies the symbol name for which status is to be determined. name is, itself, a symbol
- that is, normal conversion to uppercase and substitution of assigned values occurs
before the SYMBOL function is evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure that the status returned is for the
symbol intended.

Return Values
Return Value Explanation

BAD Indicates that name is not a valid REXX symbol.

VAR Indicates that name is a variable (a symbol to which a value has been assigned).

LIT Indicates that name is a literal; this could be either a constant symbol or a symbol to
which no value has yet been assigned.

Built-in Functions

198

Example 1
The following program fragment illustrates the various results from the SYMBOL function.

a = 14
b = 3
c. = 0
c.3 = 'hello'
say symbol(a)
say symbol('a')
say symbol('c.1')
say symbol('c.b')
say symbol('d')
say symbol('%')

The output is:
LIT /* after substitution, is symbol(14) */
VAR /* no substitution */
VAR
VAR
LIT /* no value yet assigned */
BAD /* "%" not permitted as symbol name */

Example 2
The following program fragment illustrates using SYMBOL instead of setting a flag to test for
successful processing.

drop testvar
do i = 1 to lines('in_file')
 line = linein('in_file')
 if word(line, 5) \= 'temp' then
 testvar = word(line, 5)
 end
if symbol('testvar') \= 'LIT' then
 say 'Good data'
 else say 'All temps'

 Chapter 5

199

TIME
Syntax TIME([out_option [, time_string, in_option]])

Description The TIME function returns the current time of day, or converts times from one format to another.
The second and third arguments of TIME provide support for converting time formats. Time
format conversion permits arithmetic operations to be performed on times of any format.

Parameters
Parameter Explanation

out_option Specifies the format in which the time is returned. If out_option is omitted, the format
returned is: hh:mm:ss. The valid format values for out_option are: C, E, H, L, M, N, R,
S.

C (civil) The time in civil format - hh:mmxx. The value of hh (hours) is
between 1 and 12, without leading zeros. The value of mm
(minutes) reflects the current minute. The value of xx is either am
or pm, to indicate the midnight-to-noon or noon-to-midnight period,
respectively.

E (elapsed) The number of seconds since the elapsed time clock was started or
reset. The format is sssss, without leading zeros or blanks. The first
execution of TIME(E) starts the elapsed time clock and returns a
value of 0.

H (hours) The number of complete hours since midnight. The format is hh,
without leading zeros or blanks. In the case of the period from
midnight to 1:00, the value returned is 0.

L (long) Extended time. The format is hh:mm:ss.uuuuuu. Hours, minutes,
and seconds conform to the rules for the normal format. uuuuuu
represents fractional seconds, given in microseconds. Fractional
seconds are not available in some implementations. In these cases,
TIME(L) returns the same value as TIME(N).

M (minutes) The number of complete minutes since midnight. The format is
mmmm, without leading zeros or blanks. In the case of the period
from 12:00 midnight to 12:01 A.M., the value returned is 0.

N (normal) The time of day using the 24-hour clock. The format is hh:mm:ss.
The value of hh is from 00 through 23, with leading zeros. The value
of mm and of ss is from 00 through 59, with leading zeros.
Fractional seconds are ignored. This is the default result of TIME
when no option is specified.

R (reset) The number of seconds since the elapsed time clock was started or
reset. The format is sssss, without leading zeros or blanks. In
addition to returning elapsed time, TIME(R) resets the elapsed time
clock.

S (seconds) The number of complete seconds since midnight. The format is
sssss, without leading zeros or blanks. In the case of the period from
12:00 midnight to 12:00:01, the value returned is 0.

time_string Specifies the time to be converted. Time_string must be in one of the time formats
described above. It may be a literal string, a variable reference, or an expression that

Built-in Functions

200

Parameter Explanation

evaluates to a time.

in_option Specifies the format of time_string and must be one of the time formats described above.
It should not be (E) Elapsed or (R) Reset.

Example 1
The output of the following program fragment:

now = time()

could be:
now = '10:30:15'

Example 2
The output of the following program fragment:

cnow = time('c')

could be:
cnow = '10:30am'

Example 3
The following program fragment measures the elapsed time required to run specified programs.

do forever
 say 'Enter program name or "Q"'
 parse pull prog
 if upper(prog) = 'Q' then leave
 call time('r')
 address cmd prog
 prog_time = time('e')
 say 'Time to run' prog':' prog_time
 end
 exit

 Chapter 5

201

Example 4
The output of the following program fragment:

now = time('c', '17:17:00', 'n')

could be:
now = '5:17 pm'

Example 5
If it is currently 4:40 pm, the output of the following program fragment:

plus45 = time('c', time('m') + 45,'m')

could be:
plus45=5:25 pm)

Built-in Functions

202

TRACE
Syntax TRACE([option])

Description The TRACE function returns the current setting of TRACE. It can also be used to change the
TRACE setting.

Parameters
Parameter Explanation

option One of the valid TRACE settings as described in Chapter 4: Instructions. Valid trace
settings are A, C, E, F, I, L, N, O, R.

Example 1
The output of the following program fragment:

setting = trace()

could be:
setting = 'N'

Example 2
The following program fragment uses the TRACE function both to capture the initial TRACE
setting and to change the setting prior to calling a subroutine; after the subroutine returns, the
TRACE instruction restores the TRACE setting to its original value.

set1 = trace('o')
call subr
trace value set1

 Chapter 5

203

TRANSLATE
Syntax TRANSLATE(string [, [out_tbl] [, [in_tbl] [, pad]]])

Description The TRANSLATE function translates the characters in a string according to the specified
translation tables.

Parameters
Parameter Explanation

string The string to be translated. Each character in string is looked up in in_tbl.

If the character is found in in_tbl, the position in in_tbl at which it was found is used as
an index into out_tbl. The character at that position in out_tbl is substituted for the
character that was looked up, in the result string returned by the TRANSLATE function.

If the character is not found in in_tbl, the character that was looked up is appended to
the result string returned by the TRANSLATE function.

If neither in_tbl nor out_tbl are specified, the TRANSLATE function returns string in
uppercase.

out_tbl The set of characters used in the result string. The default value is the null string.
out_tbl is padded with pad or truncated so that out_tbl and in_tbl are the same
length.

in_tbl The set of characters from the original string that are to be translated in the result. The
default value is XRANGE('00'x, 'FF'x).

pad The character used to pad out_tbl, if necessary. If pad is omitted, the default is a
blank.

Example 1
The output of the following program fragment:

upper_str = translate('Hello')

is:
upper_str = 'HELLO'

This is a fully portable equivalent to the Radia REXX UPPER function, which may not be available
in other REXX implementations.

Built-in Functions

204

Example 2
The following program fragment converts a string to lowercase. This is a fully portable equivalent
to the Radia REXX LOWER function, which may not be available in other REXX implementations.

parse arg string
uppers = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
lowers = 'abcdefghijklmnopqrstuvwxyz'
lstring = translate(string, lowers, uppers)

Example 3
This example shows how to use TRANSLATE to reorder the characters in an input string.

intab = 'abcdefgh'
pattern = 'ef/gh/abcd'
reorder = translate(pattern, '19940704',intab)

The output is:
reorder = '07/04/1994'

 Chapter 5

205

TRUNC
Syntax TRUNC(number [, n])

Description The TRUNC function returns the integer portion of a number and, optionally, a specified number
of decimal places.

Parameters
Parameter Explanation

number The numeric value to be truncated.

n The number of decimal positions in the result. n must be non-negative. If n is omitted,
the default value is 0.

Example 1
The output of the following program fragment:

x = trunc(3.1416)

is:
x = 3

Example 2
The output of the following program fragment:

y = trunc(3.1416, 2)

is:
y = 3.14

Example 3
The output of the following program fragment:

z = trunc(3.14, 3)

is:
z = 3.140

Built-in Functions

206

UPPER
Syntax UPPER(string)

Description The UPPER function converts characters in a string to uppercase.

Parameters
Parameter Explanation

string The string of characters to be converted. string can be upper-, lower-, or mixed-case.

Example 1
The output of the following program fragment:

up = upper('abcd')

is:
up = 'ABCD'

Example 2
The output of the following program fragment:

up = upper ('Hello world')

is:
up = 'HELLO WORLD'

Example 3
The following program fragment ensures that user input is in uppercase for validation while also
insuring that reply is taken from the terminal (STDIN) rather than from data that might be on
the program stack.

say 'Enter authorization'
reply = upper(linein())
if wordpos(reply, auth_list) \= 0 then
 call run_prog
 else say 'Sorry, not authorized'

 Chapter 5

207

USERID
Syntax USERID()

Description The USERID function returns the userid of the user currently logged on to the computer. It is
identical to the CUSERID built-in function.

Example
The output of the following program fragment displays the User ID of the individual running the
program.

say userid()

Built-in Functions

208

VALUE
Syntax VALUE(name)

Description The VALUE function returns the value of a symbol.

Parameters
Parameters Explanation

name name specifies the symbol name for which status is to be determined. name is, itself,
a symbol. Normal conversion to uppercase and substitution of assigned values occurs
before the VALUE function is evaluated. It is therefore recommended that name be
enclosed in quotes to prevent substitution and ensure that the status returned is for the
symbol intended.

Example 1
The output of the following program:

x = 10
say value('x')

is:
10

Example 2
The output of the following program fragment:

x = 10
y = 'x'
say value(y)

is:
10

Example 3
This example results in Error 31: Name starts with number or '.', because the value of x (10) is
substituted before the VALUE function is evaluated.

x = 10
say value(x)

 Chapter 5

209

Example 4
The output of the following program fragment:

x = qqq
qqq = 10
y.10 = 'hello'
y.x = 'goodbye'
say value('y.x')
say value(y.x)
say value('y.'||x)

is:
 goodbye
 GOODBYE
 hello

Built-in Functions

210

VERIFY
Syntax VERIFY(string, char_list [, [option]

[, start]])

Description The VERIFY function verifies whether or not a string is composed only of characters in a specified
character list.

Parameters
Parameters Explanation

string Is the string to be verified.

char_list Is the list of acceptable characters.

option Controls whether the function verifies the presence or absence of characters in
char_list. Can be any string beginning with the character M or N, in any case. If
option is omitted, the default is N.

M (match) The function returns the position of the first character In string
that is present in char_list.

N (nomatch) The function returns the position of the first character in string
that is not present in char_list.

start Is the character position in string where the verification begins. start must be a
positive integer. If start is greater than the length of string, the function returns 0. If
start is omitted, the default value is 1.

Usage Notes
With no additional arguments, the function returns the character position in string of the first
character that is not present in char_list. If all characters in string are present in char_list, the
function returns 0. If string is the null string, the function also returns 0.

Example 1
The output of the following program fragment:

x = verify('abc', 'abcdefg')

is:
x = 0

 Chapter 5

211

Example 2
The output of the following program fragment:

x = verify(abc, 'abcdefg')

is:
x = 1;

The value of the symbol abc is ABC, and none of these characters is in abcdefg.

Example 3
The following program fragment verifies that all date values in a file contain only numbers or
slash before processing the file.

infile = 'orders.txt'
bad_data = 0
OK_chars = '1234567890/'
do lines(infile)
 parse value linein(infile) with order_date .
 bad_data = verify(order_date, OK_chars)
 end
call lineout infile
if bad_data > 0 then do
 say 'Some orders have invalid dates'
 say 'These must be corrected to proceed'
 exit
 end
 else call run_orders

Example 4
The following program fragment verifies that employee numbers include a valid department
designator in position >=6 before proceeding.

infile = 'personnel.txt'
bad_data = 0
dept_letters = 'RDAFL'
do lines(infile)
 parse value linein(infile) with empno .
 if verify(empno, dept_letters, 'M', 6) = 0
 then bad_data = 1
 end
call lineout infile
if bad_data then do
 say 'Found some invalid employee numbers'
 exit
 end
 else call do_payroll

Built-in Functions

212

WORD
Syntax WORD(string, n)

Description The WORD function returns a single word from a string of blank-delimited words.

Parameters
Parameters Explanation

string The string of blank-delimited words.

n The number of the word to be returned. n must be a positive integer. If n is greater
than the number of words in string, the function returns a null string.

Example 1
The output of the following program fragment:

x = word('Happy New Year', 2)

is:
x = 'New'

Example 2
The following program fragment determines the compiler to use based on user input.

say 'Enter language, program name, and userid'
pull reply /* gets user input in uppercase */
select
 when word(reply, 1) = 'REXX' then comp = 'rxc'
 when word(reply, 1) = 'C' then comp = 'cc'
 otherwise comp = 'unknown'
 end

 Chapter 5

213

WORDINDEX
Syntax WORDINDEX(string, n)

Description The WORDINDEX function returns the character position, of the start of a specified word in a
string of blank-delimited words.

Parameters
Parameters Explanation

string Is the string of blank-delimited words.

n n must be a positive integer. If n is greater than the number of words in string, the
function returns 0.

Example 1
The output of the following program fragment:

x = wordindex('Happy New Year', 2)

is:
x = 7

Example 2
The following program fragment uses WORDINDEX to set the right position for parsing lines of
data that are not consistently formatted.

output = ''
line.0 = 3
line.1 = 'Benjamin Franklin'
line.2 = 'George Washington'
line.3 = 'Abe Lincoln'
do i = 1 to lines.0
 x = wordindex(line.i, 2) - 1
 parse var line.i +(x) last_name
 output = output last_name
 end
say strip(output)

The output is:
Franklin Washington Lincoln

Built-in Functions

214

WORDLENGTH
Syntax WORDLENGTH(string, n)

Description The WORDLENGTH function returns the length of a specified word in a string of blank-delimited
words.

Parameters
Parameters Explanation

string Is the string of blank-delimited words.

n The number of the word whose length is to be returned. n must be a positive integer. If
n is greater than the number of words in string, the function returns 0.

Example 1
The output of the following program fragment:

x = wordlength('Happy New Year', 2)

is:
x = 3

Example 2
The following program fragment uses WORDLENGTH to set the right position for verifying part
numbers.

part.0 = 3
part.1 = 'Mouse 1046'
part.2 = 'Keyboard 90772'
part.3 = 'Monitor 806'
do i = 1 to part.0
 x = wordlength(part.i, 1) + 2
 if verify(part.i, '1234567890', , x) \= 0
 then say 'Bad part number for:' line.i
 end

 Chapter 5

215

WORDPOS
Syntax WORDPOS(string1, string2 [, start])

Description The WORDPOS function searches a string of blank-delimited words for the first occurrence of
another string of blank delimited words.

Parameters
Parameters Explanation

string1 string1 is the search string.

string2 string2 is the string to be searched.

start The number of the word in string2 where the search begins. start must be a positive
integer. If start is omitted, the default value is 1.

Usage Notes
Multiple blanks between words in both string1 and string2 are treated as a single blank for
comparison purposes.

The function returns the word number of the first word in string2 that matches string1. If
string1 is not found in string2, the function returns 0.

Example 1
The output of the following program fragment:

z = wordpos('time', 'time and time again')

is:
z = 1

Example 2
The output of the following program fragment:

z = wordpos(time, 'Time flies')

is:
z = 0

Built-in Functions

216

Example 3
The output of the following program fragment:

a = 'the best of times'
b = 'It was the best of times'
c = wordpos(a, b)

is:
c = 3

Example 4
The output of the following program fragment:

a = 'the best of times, the worst of times'
b = 'times'
say wordpos(b, a, 5)

is:
8

Example 5
The following program fragment uses WORDPOS to verify user input.

prod_list = 'Radia REXX uni-XEDIT uni-SPF'
say 'Name a Radia product'
parse pull answer
if wordpos(answer, prod_list) = 0 then
 say "Sorry, that product's not from Radia"

 Chapter 5

217

WORDS
Syntax WORDS(string)

Description The WORDS function returns the number of words in a string of blank-delimited words.

Parameters
Parameters Explanation

string The string of blank-delimited words.

Example 1
The output of the following program fragment:

x = words('Hip, hip, hooray')

is:
x = 3

Example 2
The following program fragment processes a file, discarding all blank lines.

file = 'foo.txt'
do lines(file)
 line = linein(file)
 if words(line) \= 0 then call reports line
 end

Built-in Functions

218

XRANGE
Syntax XRANGE([start] [, end])

Description The XRANGE function returns a string of all the valid character encodings within a range.

Parameters
Parameters Explanation

start The beginning of the range. If start is omitted, the default value is '00'x.

end The end of the range. If end is omitted, the default is 'ff'x.

Usage Note
If start is greater than end, then the result will automatically wrap from 'ff'x to '00'x.

Example 1
The output of the following program fragment:

x = xrange('m', 'r')

is:
x = 'mnopqr'

Example 2
For the following program fragment:

y = xrange('fa'x, '04'x)
say y

the output is the character representation of the hexadecimal string:
'fafbfcfdfeff01020304'x

Example 3
The output of the following program fragment:

a = x2c(b2x('01100011'))
b = d2c(112)
say xrange(a, b)

is:
cdefghijklmnop

 Chapter 5

219

X2B
Syntax X2B(string)

Description The X2B function converts a string of hexadecimal characters to a string of binary characters.

Parameters
Parameters Explanation

string String of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves.

Usage Note
You can use X2B in combination with other conversion functions to convert various formats to
their equivalent binary value.

Example 1
The output of the following program fragment:

x = x2b('63')

is:
x = '01100011'

Example 2
The output of the following program fragment:

y = x2b(c2x('a'))

is:
y = '01100001'

Built-in Functions

220

X2C
Syntax X2C(string)

Description The X2C function converts a string of hexadecimal characters to character format.

Parameters
Parameters Explanation

string A string of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves. string can contain embedded
blanks, which are ignored, between pairs of characters.

Usage Notes
If the length of string is not an even multiple of 2, it is automatically padded with a leading zero
before the conversion is performed.

If string is null, the function returns a null string.

Example 1
The output of the following program fragment:

x = x2c('616263')

is:
x = 'abc'

Example 2
The output of the following program fragment:

say x2c('f')

is the character representation of '0f'x

Example 3
The output of the following program fragment:

z = x2c(d2x('112'))

is:
z = 'p'

 Chapter 5

221

X2D
Syntax X2D(string {, n})

Description The X2D function converts a string of hexadecimal characters to its decimal equivalent.

Parameters
Parameters Explanation

string A string of hexadecimal characters. This is not a hexadecimal string literal in the form
'nnnn'x. It is simply the hexadecimal digits themselves. string can contain embedded
blanks, which are ignored, between pairs of characters. If string is null, the function
returns 0.

n n indicates that the string represents a signed number expressed in n characters. If
necessary, string is padded on the left with zeroes or truncated on the left so that the
length of string is n characters. If n is specified, the left-most bit determines the sign;
if it is zero, the number is positive; otherwise it is a negative number in twos-
complement form. If n is 0, the function returns 0.

Usage Note
The value returned by X2D is expressed as a whole number. If it cannot be expressed as a whole
number within the current setting of NUMERIC DIGITS, the Error 40: Incorrect call to routine,
results.

Example 1
The output of the following program fragment:

x = x2d('76')

is:
x = '112'

Example 2
The output of the following program fragment:

y = x2d(b2x('01100011'))

is:
y = 99

Built-in Functions

222

Example 3
The output of the following program fragment:

z = x2d(b2x('01100001'),1)

is:
z = 1

Example 4
The output of the following program fragment:

q = x2d('f063', 4)

is:
q = -3997

223

Chapter 6

Using Extensions

Radia Client REXX Methods
Radia Client REXX Methods enable you to attach logic to Radia objects in the form of methods.
Methods are programs that apply to an object or a specific class of objects. Methods can perform
virtually any type of operation against Radia objects or any other Radia-managed elements in the
desktop environment. At a minimum, every object class includes a create method and a delete
method.

Methods enable the base Radia software to be enhanced, extended, and interfaced to external
services. The Radia Client software includes a number of Radia REXX methods and various other
methods that serve as templates for specific functions.

Overview of Radia REXX Extensions
Radia provides function extensions that support access to Radia data through compound symbols
and stem variables. These Radia REXX extensions act on Radia objects that reside in the Radia
Client's internal storage object pool, enabling access to Radia variables, including Z-named
variables. The extensions reference multi-heap object variables much like arrays of variables.

6

Using Extensions

224

Multiheap reference techniques are more efficient than explicit references to the Radia variables,
and, therefore, are strongly encouraged.

REXX, Radia, Objects and Object Paths/Folders
Included in the Radia (client) extensions for REXX is the ability to read and write Radia Objects.
When processing objects, REXX internally maintains a list/queue of objects being processed.
Objects are added to the queue via EDMGET(RADGET) or EDMBLD (REXX) functions. Objects
are saved to disk via the EDMSET(RADSET) function and objects are deleted/removed from the
REXX queue via the EDMFREE function. There is no Radia extension to delete/erase the object
file from disk, but the REXX "stream" function can be used to do this.

By default when an object is added to the REXX queue, the default path/directory is the (current)
value of IDMLIB. The REXX queue of object names is unique by the object name (case neutral),
regardless of the folder that the object resides in, thus if ZFOO is opened in IDMLIB we would
have to close ZFOO (EDMFREE) before we can (re)open it in the C:\Bar directory.

The first time EDMGET(RADGET) is called for an object, it will always tied to read it from disk
at the specified (or default) directory. If the object exists, the first heap is read and loaded into
(REXX) storage. If the object does not exist on disk, then an empty object is allocated with the
default heap size of 1024 bytes. If a larger heap size is need for an empty object, EDMBLD can be
used to create it. The heap size is the sum all the lengths of the variables/attributes in the object.

Directory paths can be any valid path that exists. If a specified path does not exit, the "current
directory" will be used in its place. The specified directory can be specified with or without a
trailing slash. Internally this is checked and handled correctly when building the actual file name
of the object file. Generally, once an object is added to the REXX queue, the initial directory
(default or specified) can't be changed via EDMSET(RADSET). There is an exception. If the
object in the REXX queue was built (EDMBLD) or never existed on disk, then, if a directory is
specified via the call to EDMSET(RADSET), it will then be come the directory that the specified
object will be save to.

In addition to the absolute path, relative paths can be specified. The relative paths are (NOTE:
there are two underscores on each size of the names) __lib__ for IDMLIB, __adm__ for IDMADM,
__sys__ for IDMSYS, __data__ for IDMDATA, __log__ for IDMLOG and __root__ for IDMROOT.

Using Extensions
This chapter explains how to use Radia REXX function extensions when you customize Radia
processing at your site. Radia Client REXX Methods enables you to attach logic to Radia objects
in the form of methods. Methods are programs that apply to an object or a specific class of objects.
Methods can perform virtually any type of operation against Radia objects and/or any other
Radia-managed elements in the desktop environment. At a minimum, every object class includes
a create method and a delete method. Methods enable the base Radia software to be enhanced,

 Chapter 6

225

extended, and interfaced to external services. The Radia Client software includes a number of
Radia REXX methods and various other methods that serve as templates for specific functions.
Overview of Radia REXX Extensions Radia provides function extensions that support access to
Radia data through compound symbols and stem variables. These Radia REXX extensions act on
Radia objects that reside in the Radia Client's in storage object pool, enabling access to Radia
variables, including Z-named variables. The extensions reference multi-heap object variables
much like arrays of variables. Multi heap reference techniques are more efficient than explicit
references to the Radia variables, and, therefore, are strongly encouraged.

Function Calls and Return Values
Function calls can be made in either of two ways:

■ Use the CALL statement.

■ Place the return value into a variable.

When you use the CALL statement, Radia REXX sets the special variable RESULT to the value
returned by the function. Unless otherwise noted, all Radia REXX extensions return a value of 0
upon successful execution, and the value 8 if execution fails. The following example contains a
CALL statement on the first line, and a return value on the second. Note the use of parentheses
in the second example. Also note that REXX is a "case neutral" language. REXX variables
function and instructions and be specified in mix case so EdmGet edmget EDMGET are all the
same.

The following example contains a CALL statement on the first line, and a return value on the
second. Note the use of parentheses in the second example.

Example
CALL EDMGET 'ZMASTER',0,'NOLOAD';
rc=EDMGET('ZMASTER',0,'NOLOAD');

Using Extensions

226

Identifying Variables
When an object is fetched/open with EDMGET(RADGET), in addition to returning an error/return
code of 0 or 8, the function also creates REXX variables. So if we issue the call:

 call EDMGET 'myobject'

EDMGET will create the REXX variable myobject and save to it the number of heap in the object.
So ff we issue:

 call EDMGET 'myobject'

 say myobject /* (might) output 10 */

A more programmatic way to do this would be like this:

 object = 'myobject'

 call edmget object

 say value(object)

The REXX function VALUE will return the value of the specified variable name. Check the
description of VALUE for more information on this function.

In addition to the REXX variable that contains the name of the object being processed, edmget
also sets the variable <objectname>vars to the one more than the total number of variables in the
object. So extending the above example we can issue:

 object = 'myobject'

 call edmget object

 heaps = value(object)

 vars = value(object || "vars") - 1

 say heaps /* 10, maybe */

 say vars /* 62, maybe */

Appending n to a Radia object name (where n is an integer between 1 and the number of
variables) returns the variable name. Note, however, that the suffix n does not return the
variable value. For example:

 do vv = 1 to vars

 attr_name = value(object || vv)

 say attr_name /* might show "ZOS" */

 end vv

 Chapter 6

227

We need to know the attribute/variable name saved in the object to get its value. The
attribute/variable values are saved in two forms, which are:

 <objectname>.<attribute>

 <objectname>.resolved.<attribute>

Where <objectname>.<attribute> is the exact data of the attribute in the object. So, if the value is
&(ZMASTER.ZFOO), then that is the value saved to REXX. In the second form, the value that
would be saved to REXX for <objectname>.resolved.<attribute> would be the "value" of
&(ZMASTER.ZFOO) which (might) be "BAR."

There is a form used for debugging which is:

 <objectname>.ventry.<ordinal>

In this form, the <ordinal> is the numeric entry (starting from 1) of the attribute in the template.
The value of <objectname>.ventry.<ordinal> is a string of seven "REXX words" which contain the
attribute name(1), offset in the object(2), length(3) and flag bytes F1 F2 F2 and F4

REXX variables and Radia object values

REXX variables in the form of Name.a.b.c are known as "compound variables," which contain a
"stem" and a "tail." The "stem" name is the string of characters up to and including the first
period. The characters after the first period are the "tail." The tail is actually composed tokens
glued together with periods. So when REXX tries to read or write a compound variable like
item.red.green, it breaks it down as follows:

It first looks at the tail,

red.green

Then checks to see if any of the "tokens" are REXX variables. In this case we have the tokens red
and green. REXX will look up these variables to see if they have a value. If they have a value, that
value will be replace the variable name in the tail. So if "red" was 24 and green was 48 the tail
would look like this:

24.48

Then REXX would look up the value of the (REXX) variable "ITEM.24.48" If the (tail) token is not
a valid REXX variable (see datatype('s') REXX function) or a value variable has no value, then the
token is left as is, and converted to uppercase, so green would become GREEN if "green" is
undefined and red would become RED and the REXX variable fetched would be:
"ITEM.RED.GREEN"

So when working with Radia objects in REXX, care needs to be taken after EDMGET reads an
object into REXX variables. For example:

 call edmget 'zmaster'

Using Extensions

228

There might be a variable in the zmaster object call zos, so see its value we would write:

 say zmaster.zos /* maybe show "NT" */

But if we were to write:

 zos = 'fred'

 call edmget 'zmaster'

 say zmaster.zos /* this will fetch the REXX variable zmaster.fred */

REXX first will look to see if the "tail" could be resolved as a REXX variable. In this case, it could
because we assigned 'zos' the value of 'fred.'

To safeguard for this condition we could start all the REXX variable we use in our REXX code to
start with "@" or "?" which we usually don't see in attribute name, or can use the REXX drop
instruction to make sure that REXX will leave the stem as is:

 zos = 'fred'

 call edmget 'zmaster'

 drop zos

 say zmaster.zos /* this will fetch the REXX variable zmaster.zos */

Example 1
In this example, rc1 is set to the number of variables in the ZMASTER object, and rc2 is set to the
name of the first variable. Had the ZMASTER object not been found on the desktop, then rc1
would have been set to ZMASTERVARS. Had the first variable not been defined, or if it had no
value, then rc2 would have been set to ZMASTER1.

 CALL EDMGET 'ZMASTER','0','NOLOAD'
 rc1 = ZMASTERVARS - 1
 SAY 'There are' RC1 'variables in the ZMASTER object.'
 rc2 = ZMASTER1
 SAY 'The 1st variable is ' rc2

 Chapter 6

229

Example 2
A more sophisticated and practical example follows below.

This program returns how many variables there are in the first heap of the ZCLIENT object, the
name of each variable, and the value of each variable.

object = 'zclient'
 CALL EDMGET object, 0, 'NOLOAD'
 number_variables = values(object || 'vars') - 1
 SAY 'There are' number_variables,
 'variables in the first heap of the' object,
 "object"
 do n = 1 to number_variables
 variable_name = value(object || n)
 full_name = space(object variable_name, 1, '.')
 variable_value = value(full_name)
 SAY 'The value of ZCLIENT.'variable_name,
 'is' variable_value
 end n
 exit 0

Example 3
This program will show the contents of the ZERRMSG variable in each heap of the ZERROR
object in the PNLREXX.LOG file.

CALL EDMGET('ZERROR',0)
Nheaps = ZERROR
Nheaps = Nheaps -1
 /* Loop through all heaps in the object. */
do CurrHeap = 0 to Nheaps by 1
 CALL EDMGET 'ZERROR',CurrHeap
 say ZERROR.ZERRMSG

end /* Loop through all heaps in the object. */

Using Extensions

230

The Radia REXX Extension List
The following sections document the Radia REXX method extensions.
• EDMADD • NvdVerQueryValueStringFileInfo

• EDMATTR • RADGET

• EDMBLD • RADSET

• EDMCMD • RXXCOMMANDKILL

• EDMDELHEAP • RXXCOMMANDSPAWN

• EDMDELVAR • RXXCOMMANDWAIT

• EDMFREE • RXXOSENDOFLINESTRING

• EDMGET • RXXOSENVIRONMENTSEPARATOR

• EDMLOC • RXXOSNAME

• EDMRST • RXXOSPATHSEPARATOR

• EDMSET • RXXSLEEP

• EDMSORT • WinMessageBox

• GET_CHILD_OBJ • WinExpandEnvironmentString

• LOAD_CHILDREN • WinGetVersion

• NOWAIT

 Chapter 6

231

EDMADD
Syntax EDMADD(object_name)

Description Calling EDMADD adds an empty heap to the end of the specified Radia object in memory, and
the newly added heap becomes the currently selected heap. The total heap-count (stored in a
variable with the same name as the name of the object) is incremented. The newly added heap
will not be stored in the object on disk until EDMSET is called.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long. The object name
has to already exist in the REXX object queue. If the names does not exist, the call
fails.

Example 1
This Radia REXX method reads in the lines of an input file, (AUTOEXEC.BAT), and creates
SAMPLE.EDM, a multi-heap object with one variable per heap. Each variable contains the value of
a single line from that file.

 /* Create a 'sample' object. */
 CALL EDMBLD 'SAMPLE'

 /* Define a file to read. */
 infile1='C:\AUTOEXEC.BAT'

 heapcount = 0
 do while lines(infile1) > 0
 /* Loop through the input file. If it's */
 /* not the first heap then we need to add */
 /* a new heap to the object. */
 if heapcount > 0
 then CALL EDMADD 'SAMPLE'

 /* Read in a line of the input file. */
 /* Set the SAMPLE object variable. */
 SAMPLE.LINE1 = linein(infile1)

 /* Save the current heap. */
 CALL EDMSET 'SAMPLE'

 /* Increase the heap counter. */
 heapcount = heapcount +1
 end

Using Extensions

232

EDMATTR
Syntax EDMATTR(filename)

Description The value returned from EDMATTR contains a string with the following file attribute information:

� File exists (or does not exist).
� File size (in bytes).
� Date file was last updated
� Time file was last updated (in 24 hour format).
� Time file was updated (in AM/PM format).

If the file does not exist, a string with the character value of 8 is returned.

Parameters
Parameter Explanation

filename The full name and path of the file you are querying.

Usage Note
We recommend using the REXX built-in function STREAM instead of EDMATTR. For more
information on the STREAM function, see Chapter 5: Built-In Functions.

Example
The output of the following program fragment:

CALL EDMATTR 'C:\AUTOEXEC.BAT'

is:
0 126848 02-14-96 03:12:00 03:12a

In the above return value:

 0 indicates the file exists.
 126848 is the size of the file in bytes.
 02-14-96 is the date the file was last updated.
 03:12:00 is the time the file was last updated.
 03:12a is the time the file was last updated.

 Chapter 6

233

EDMBLD
Syntax Call EDMBLD object_name[,heap_size[,path]]

Description Calling EDMBLD adds a new object to the REXX object queue.

Parameters
Parameter Explanation

object_name A valid Radia object name. object_name can be up to eight characters long. The object
name has to be a new object. If the object name already exists in the REXX object
queue, the call fails.

heap_size The size of each heap within the object to be built. The default is 1K (1024 bytes). The
heap_size option can be between 1 to 6144 bytes. If the object already is present in
REXX (via a EDM/RADGET), the function call will fail. Thus, EDMBLD creates a new
entry in the REXX object queue. Each additional heap adds only heap_size bytes to the
size of the object.

path Is the location/directory that the object will be saved to. The default is the (current)
value of IDMLIB. When this object/heap is save, on the first call to EDMSET, if a path is
specified, then that path becomes the allocated path for this object.

Example
CALL EDMBLD 'MAINT', 256, "c:\myobjects"

Using Extensions

234

EDMCMD
Syntax EDMCMD('modifier command_line')

Description Calling EDMCMD allows you to use Radia Extended Batch command line modifiers to execute a
platform-specific command.

Parameters
Parameter Explanation

modifier Enhances your control over the desktop during execution of the command. Modifiers can
be grouped together but must be placed before command_line. Radia REXX supports
only the following modifiers: SHOW, HIDE, WAIT, NOWAIT, and FULLSCR.

SHOW Specify SHOW to see the command or program as it executes in its default sized
window.

HIDE Specify HIDE to prohibit the display of a window during startup and execution of a
program or command.

WAIT Specify WAIT to force Radia REXX to wait for the completion of the command before
resuming execution of the REXX program.

NOWAIT Specify NOWAIT to continue execution of the REXX program as soon as the command is
launched, without waiting for completion of the command.

FULLSCR Specify FULLSCR to display the command's execution in a full screen window, rather
than its default window size.

command_line A platform-specific, valid command with proper syntax and parameters.

Usage Note
Radia REXX interprets the command line modifier and passes the command to the local operating
system.

Example
CALL EDMCMD 'NOWAIT HIDE EDMDEMON'

 Chapter 6

235

EDMDELHEAP
Syntax EDMDELHEAP(object_name)

Description Calling EDMDELHEAP deletes the current heap from a Radia object. The heap is immediately
deleted from both the object in memory, and from the object as stored on disk.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

Example
This example deletes heap 5 from the SAMPLE object.

CALL EDMGET 'sample', 5
CALL EDMDELHEAP 'sample'

Using Extensions

236

EDMDELVAR
Syntax EDMDELVAR(object_name,variable)

Description Calling EDMDELVAR deletes a specified variable from a Radia object. The variable is deleted
immediately from both the object in memory, and from the object as stored on disk.

Parameters
Parameter Explanation

object_name The name of a valid Radia object. object_name can be up to eight characters long.

variable The name of a variable contained in the object. variable can be up to eight characters
long.

Example
This example deletes the VAR1 variable from the SAMPLE object.

CALL EDMGET 'SAMPLE'
CALL EDMDELVAR 'SAMPLE', 'VAR1'

 Chapter 6

237

EDMFREE
Syntax EDMFREE(object_name)

Description Calling EDMFREE removes the specified Radia object from the REXX object queue. In addition to
the "REXX object queue" there is an internal object queue. For the most part the REXX and
internal queue are process in parallel. There are certain cases were this is not true, namely
when invoking REXX via radpnlwr.exe. In this case, radpnlwr is the owner of ZMASTER, so if
EDMFREE is call with ZMASTER, it would be purged from the REXX object queue, and not the
internal object queue. The term "managed" is used to describe this. (See nvdobjects function
call) Object that REXX has full control over are "managed," otherwise they are unmanaged. This
should not be a concern when running REXX via radrexxw.exe or radrexx on unix.

There is a finite number of objects that can be loaded in the internal object queue. For Unix it is
50, otherwise 20.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long. If the object is not
in the REXX object queue, the call return 8.

Example
CALL EDMFREE 'MYOBJECT'

Using Extensions

238

EDMGET
Syntax Call EDMGET object_name,[heap_number [,'NOLOAD'[,path]]]

Description Calling EDMGET reads the specified heap from a Radia object into memory, making it the
currently selected heap. If you specify an non-existent heap, EDMGET returns a value of 8.

 NOTE: You can use this command on the Radia Configuration Server OR the Radia Client.
However, you must note that heap numbers on the RCS start at 1, while heap numbers on the
client start at 0.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the object. Default is 0.

'NOLOAD' If you include the NOLOAD option, EDMGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Path Is the location/directory that the object will be read/written to. The default is the
(current) value of IDMLIB. Once the path is established via a "GET", (for the most part),
this directory will stay in effect until the object is purged from the REXX object queue via
EDMFREE.

Example
This program will show the contents of the ZERRMSG variable in each heap of the ZERROR
object written to the log file.

 Object = "ZERROR"
 Dir = "c:\Temp\Objects"

 CALL EDMGET Object, 0,, Dir /* NOLOAD was omitted as a null argument */

 Nheaps = value(Object)
 NVars = value(Object || "vars")
 Nheaps = Nheaps - 1

 /* Loop through all heaps in the object. */
 for CurrHeap = 0 to Nheaps by 1
 CALL EDMGET Object, CurrHeap
 errorvar = Object || ".ZERRMSG"
 say ZERROR.ZERRMSG
 end /* Loop through all heaps in the object. */

 Chapter 6

239

RCS: You can use this function on the Radia Configuration Server. Note that only the first two
arguments are supported. Also, note that heap numbers on the RCS start at 1, while heap
numbers on the client start at 0. A heap number of 0 on the RCS means "the current heap."

Using Extensions

240

EDMGETV
Syntax EDMGETV object_name, var_name, [heap_number [,'NOLOAD' , path]]]

Description Calling EDMGETV reads and returns the specified variable from a Radia object.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

Var_name Name of the variable to access.

Heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the abject. The default is 0. If the specified heap is out of
range is out of range, a REXX syntax error will be raised.

NOLOAD If you include the NOLOAD option, EDMGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Path The location/directory that the object will be read/written to. The default is the (current)
value of IDMLIB. Once the path is established via a "GET", (for the most part), this
directory will stay in effect until the object is purged from the REXX object queue via
EDMFREE,

Example
Say EDMGETV("ZMASTER", "ZOS") /* outputs (maybe) WINXP */

Radia Configuration Server note - You can use this function on the Radia Configuration Server.
Note that only the first three arguments are supported. The Radia Configuration Server supports
a fourth argument which is a flag. If its value is 1, then if the value fetched is in the form of
&(object.variable), the Radia Configuration Server will try to find this value. If the fourth
argument is missing or is 0, then the value is returned as-is. Also note that heap numbers on the
Radia Configuration Server start at 1, while heap numbers on the client start at 0. A heap
number of 0 on the Radia Configuration Server means the "current heap."

 Chapter 6

241

EDMLOC
Syntax EDMLOC(filename)

Description The value returned from EDMLOC specifies whether or not a file exists. A return value of 0
indicates the file exists. If the file does not exist, 8 is returned.

Parameters
Parameter Explanation

filename The full name and path of the file you are querying.

Usage Note
We recommend using the built-in function STREAM with the QUERY EXISTS option instead of
EDMLOC. For more information on the STREAM function, see Chapter 5: Built-In Functions.

Example
CALL EDMLOC 'C:\autoexec.bat'

Using Extensions

242

EDMRST
Syntax EDMRST(object_name)

Description Calling EDMRST resets the specified Radia object to a single heap object in memory. A call to
EDMSET must be made to save this change to disk.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

Example
This example demonstrates that the values in the current heap will be saved in the only heap
remaining after EDMSET is called.

CALL EDMGET 'MYOBJECT', 5
 /* Get sixth heap of object. */
CALL EDMRST 'MYOBJECT'
 /* Reset object to single heap. */
CALL EDMSET 'MYOBJECT'
 /* The single heap object's variables */
 /* have the values that were in the sixth */
 /* heap, originally. */

 Chapter 6

243

EDMSET
Syntax Call EDMSET object_name [,path]

Description Calling EDMSET saves the current heap for object_name to disk.

NOTE: You can use this command on the Radia Configuration Server OR the Radia Client.
However, you must note that heap numbers on the RCS start at 1, while heap numbers on the
client start at 0.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

Path Is the location/directory that the object will be written to. The default is the (current)
value of IDMLIB. Once the path is established via a GET/BLD, this directory will stay in
effect until the object is purged from the REXX object queue via EDMFREE. EDMSET
can override the path if the object did not exist on disk or was add to the REXX object
queue via EDMBLD.

Examples
This Radia REXX method reads in the lines of an input file, (AUTOEXEC.BAT), and creates
SAMPLE.EDM, a multi-heap object with one variable per heap. Each variable contains the value
of a single line from that file.

/* Create a 'sample' object. */
 CALL EDMBLD 'SAMPLE'

 /* Define a file to read. */
 infile1='C:\AUTOEXEC.BAT'

 heapcount = 0
 do while lines(infile1) > 0
 /* Loop through the input file. If it's */
 /* not the first heap then we need to add */
 /* a new heap to the object. */
 if heapcount > 0
 then CALL EDMADD 'SAMPLE'

 /* Read in a line of the input file. */
 /* Set the SAMPLE object variable. */
 SAMPLE.LINE1 = linein(infile1)

 /* Save the current heap. */
 CALL EDMSET 'SAMPLE'

 /* Increase the heap counter. */

Using Extensions

244

 heapcount = heapcount +1
 end

RCS: You can use this function on the Radia Configuration Server. Note that on the RCS there is
a second argument, the heap number. The specified heap number can be set from 1 to MAX+1,
where MAX is the total number of heap in the (RCS) object. If MAX+1 is specified then that heap
is created. NOTE that EDMBLD is not available on the RCS. Also, note that heap numbers on
the RCS start at 1, while heap numbers on the client start at 0. A heap number of 0 on the RCS
means "the current heap."

 Chapter 6

245

EDMSORT
Syntax EDMSORT(object_name,variable)

Description Calling EDMSORT will sort the heaps of a multi-heap Radia object into alphabetic ascending order
by the contents of a specific variable, and save the changes to disk.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

variable The name of a variable contained within the object. variable can be up to eight
characters long, and must be specified in uppercase.

Example
CALL EDMSORT 'MYOBJECT', 'VAR1'

Using Extensions

246

GET_CHILD_OBJ
Description This function is equivalent to EDMGET, and is no longer supported. Use EDMGET instead. See

LOAD_CHILDREN for information describing how to access and manipulate child and grandchild
objects.

 Chapter 6

247

LOAD_CHILDREN
Syntax call LOAD_CHILDREN 'object_name'

Description Calling the LOAD_CHILDREN function provides visibility to child and grandchild objects of an
object. Once visibility is established, the child and/or grandchild objects can be read into storage
with EDMGET and written to disk by EDMSET.

Parameters
Parameter Explanation

object_name The name of the object whose children and grandchildren objects you need to access.

Usage
Radia objects pertinent to a service are stored in the service's IDMLIB location and its sub-
directories. The IDMLIB location is the directory identified by the IDMLIB setting in the
[NOVAEDM] section of WIN.INI. This setting is dynamically changed by the Radia Client to a
unique directory associated with the service being installed or otherwise manipulated. For
example, if the subscriber is installing a service named HELLO, the IDMLIB directory for the
HELLO service might be:

C:\Program Files\Novadigm\Lib\username\ABC\SOFTWARE \ZSERVICE\HELLO

The components comprising the service are stored in a tree of sub-directories, for which the
service's IDMLIB directory is the root. Child and grandchild objects of an object stored within this
tree structure are stored in sub-directories of the directory in which the parent object is stored.

EDMGET and EDMSET normally only have the ability to access objects that are stored in the
IDMLIB directory. The LOAD_CHILDREN function provides EDMGET and EDMSET the ability
to access child and grandchild objects of parent objects located in the IDMLIB directory.

Parent objects contain information identifying their child objects. You can inspect an object using
Radia Client Explorer to determine which objects will be made accessible by calling
LOAD_CHILDREN for that object. For example, the DMSYNC object for the HELLO service may
appear as follows in Radia Client Explorer:

Using Extensions

248

Figure 6.1 ~ DMSYNC object.

This object is stored in the IDMLIB location for the HELLO service, which is:

C:\Program Files\Novadigm\Lib\username\ABC\SOFTWARE \ZSERVICE\HELLO

Child objects for an object are listed in ZOBJCnnn variables (where nnn is 001 to the number of
child objects belonging to the parent object), in the parent object. The number of child objects
belonging to the parent object is stored in the ZOBJCNUM variable. If the ZOBJCNUM variable
is not present in the object, or if its value is 00000000, the object has no child objects.

Each ZOBJCnnn variable contains a fixed format text string providing information about the
child object, as follows:

 Chapter 6

249

Characters Contains

1 – 8 Number of instances (heaps) in the child object.

9 - 16 Child object name

17 – 24 Child object CRC

25 – 40 Latest child object date and time stamp

41 - 48 Tree CRC

The ZOBJID variable contains the object ID. The name of the sub-directory containing child
objects for this object is derived from the object ID value by concatenating the rightmost eight
characters of the object ID (in this case 00000000) with characters 2-4 of the object ID (in this case
000), separated by a period. Thus, the sub-directory name containing the child object of the
DMSYNC object, in this case, is 00000000.000.

This DMSYNC object has one child object – DIALOG. It is stored in the following directory:
 C:\Program Files\Novadigm\Lib\username\ABC\SOFTWARE \ZSERVICE\HELLO\00000000.000

When viewed in the Radia Client Explorer, the DIALOG object appears as follows:

Figure 6.2 ~ DIALOG object.

Using Extensions

250

The DIALOG object has four child objects: INSTALL (1 heap), PANEL (9 heaps), PATH (2 heaps)
and BEHAVIOR (4 heaps). These objects are grandchildren of the DMSYNC object. They are
stored in a sub-directory named 3E247F11.ABC (name derived from the ZOBJID variable),
beneath the directory in which the DIALOG object is stored.

The current implementation of LOAD_CHILDREN provides visibility to child and grandchild
objects only. If identically named objects are both a child and a grandchild object, only the
grandchild object is made visible by LOAD_CHILDREN.

Warning

Do not modify the ZOBJCnnn, ZOBJID, or ZOBJCNUM variables.

 Chapter 6

251

Example 1
The following program fragment:

CALL LOAD_CHILDREN 'DMSYNC'

will make children and grandchildren of DMSYNC object visible.

Example 2
The following program fragment:

CALL EDMGET 'INSTALL'

will get the grandchild INSTALL object.

Using Extensions

252

NOWAIT
Syntax call NOWAIT 'command_line'

Description Calling the NOWAIT function allows Radia REXX to start a process, then immediately begin
processing the next command.

Parameters
Parameter Explanation

command_line A platform-specific, valid command with proper syntax and parameters.

Example
This example leaves the display message: Exiting Radia REXX on the screen and exits Radia
REXX.

NOWAIT 'EDMBOX.EXE "Exiting Radia REXX."';EXIT

 Chapter 6

253

NVDOBJECTS
Syntax Count = NvdObjects("AllObjects")

Description Calling NVDOBJECTS returns in the specified REXX (stem) variable, all

the objects in the REXX object queue and information about these objects.

Parameters
Parameter Explanation

Count The name of the (REXX) variable that will be built as a stem list containing the objects
allocated. If the (REXX) variable name is "objs", then objs.0 contains the number of
allocated objects and each object can be found in the variables objs.1, objs.2 objs.n

Example
count = nvdobjects('curobjs')
 do oo = 1 to curobjs.0
 say curobjs.oo
 end oo

The output for this might be:
Name=ZPOOLTAB VTAB=00835D40 Size=1024 Built=No OnDisk=No Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=
Name=ZMASTER VTAB=00838578 Size=4096 Built=No OnDisk=Yes Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=E:\RadClient\Lib
Name=ZLOCAL VTAB=0083ADB0 Size=1024 Built=No OnDisk=Yes Managed=Yes
PathReset=No Saves=0 ForcedPath=No Path=E:\RadClient\Lib

Where Name= is the object name, VTAB= is the internal buffer address, Built= is if the object
was created by EDMBLD.

If Managed=Yes ,the object can be removed from the internal object queue (not the REXX object
queue). If No, the object will remain in the internal queue even after a EDMFREE removes the
object from the REXX object queue.

PathReset if the path was reset via a EDM/RAD "SET".

Saves determines how many times the object was saved to disk.

ForcedPath if the specified directory was invalid and the path was reset to the current directory.

Path= is the path the object is allocated to.

Using Extensions

254

This output can be (REXX) parsed like this:

 count = nvdobjects('curobjs')

 do oo = 1 to curobjs.0

 parse var curobjs.oo 1 "Name=" Objname .

 parse var curobjs.oo 1 "Path=" Objpath .

 say curobjs.oo

 end oo

 Chapter 6

255

NVDPATHS

Syntax RealPath = NvdPaths(PsuedoPath)

Description Calling NVDPATHS will return the value if the pseudo path specified. If the psuedopath is undefined,
the value returned is the value passed to nvdpaths

Parameters
Parameter Explanation

RealPath The relative/pseudo paths are __lib__ for IDMLIB, __adm__ for IDMADM, __sys__ for
IDMSYS, __data__ for IDMDATA, __log__ for IDMLOG and __root__ for IDMROOT.
Note, that there are two underscores around each of the pseudo names and they are
case neutral.

Example
current_idmlib = nvdpaths("__lib__")
say current_ibmlib /* outputs (maybe) c:\program files\novadigm\lib */

test = nvdpaths("fred")
say test /* outputs: fred */

Using Extensions

256

NvdVerQueryValueStringFileInfo
Syntax PropValue = nvdVerQueryValueStringFileInfo(DLL, PropName)

Description Returns the properties of a DLL or EXE.

Parameters
Parameter Explanation

DLL The name of the DLL or EXE to examine.

PropName The name of the property to extract, which can be:

Comments LegalTrademarks

CompanyName OriginalFilename

FileDescription PrivateBuild

FileVersion ProductName

InternalName ProductVersion

LegalCopyright SpecialBuild

If no property is specified, the attributes of the file are returned.

 Chapter 6

257

RADGET
Syntax RADGET(object_name,directory,heap_number[,'NOLOAD'])

Description Calling RADGET reads the specified heap from a Radia object (located in the specified directory
or folder) into memory, making it the currently selected heap. If you specify a non-existent heap,
RADGET returns a value of 8.

 NOTE: You can use this command on the Radia Configuration Server OR the Radia Client.
However, you must note that heap numbers on the RCS start at 1, while heap numbers on the
client start at 0.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

directory Folder to read object_name. Enter a fully qualified directory name, or one of the
following Radia folder names. IDMROOT for the value of the IDMROOT folder set in
NVD.INI. IDMLIB for the value of the IDMLIB folder set in NVD.INI or RADSETUP, the
Bootstrap priming folder (IDMROOT/RADSETUP).

heap_number Specifies the relative position of the heap or instance in the object. heap_number must
be an integer between 0 and 65,536. The maximum value of heap_number is one less
than the number of heaps in the object.

'NOLOAD' If you include the NOLOAD option, RADGET will NOT "reload" the object template off
from disk. If the object being process can "change" (variables/attributes added and/or
deleted) while the REXX program/script is running, it best not to specify this argument.
If the template does not change then specifying NOLOAD will save a (disk) read of the
object's template.

Using Extensions

258

Example
This program first reads MYOBJECT from a fully qualified location, and assigns test variables.
After the read, the object is purged from the (REXX) object queue by EDMFREE, them allocated
again with EDMBLD, and then written to a different folder location.

Successive parts of this program illustrate reading and writing MYOBJECT variables from and to
the current heaps of the IDMROOT and IDMLIB folders (specified in NVD.INI), and the
RADSETUP bootstrap folder. At the end of this program, MYOBJECT contains different variables
in each of the folder locations specified by RADSET.

 trace i
 CALL RADGET "MYOBJECT","C:\PROGRA~1\NOVADIGM\LIB\RADSETUP"
 SAY "Opened Object"

 MYOBJECT.IP="1.1.2.2"
 MYOBJECT.TESTVAR1="Hello"
 MYOBJECT.TESTVAR2="World"
 CALL EDMFREE "MYOBJECT"

 CALL EDMBLD "MYOBJECT"
 CALL RADSET "MYOBJECT","C:\PROGRA~1\NOVADIGM\LIB\"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","IDMROOT","0"
 MYOBJECT.TESTVAR1="Jello"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","IDMROOT"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","RADSETUP","0"
 MYOBJECT.TESTVAR1="Merry"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","RADSETUP"
 CALL EDMFREE "MYOBJECT"

 CALL RADGET "MYOBJECT","IDMLIB","0"
 MYOBJECT.TESTVAR1="Hello"
 MYOBJECT.TESTVAR2="World"
 CALL RADSET "MYOBJECT","IDMLIB"
 CALL EDMFREE "MYOBJECT"

 SAY "Saving Objects"

 RETURN 2

 Chapter 6

259

RADSET
Syntax call RADSET (object_name,directory)

Description Calling RADSET saves the current heap for object_name to disk.

Parameters
Parameter Explanation

object_name A valid Radia object. object_name can be up to eight characters long.

directory The location/directory to which the object is written. The default is the (current) value
of IDMLIB. Once the path is established via a GET/BLD, this directory will stay in effect
until the object is purged from the REXX object queue via EDMFREE. RADSET can
override the path if the object did not exist on disk or was add to the REXX object
queue via EDMBLD. In addition to actual directory names, a pseudo Radia folder name
can be used. Their values are:

IDMROOT - The IDMROOT folder set in NVD.INI

IDMLIB - The IDMLIB folder set in NVD.INI

RADSETUP - The Bootstrap priming folder (IDMROOT/RADSETUP)

Using Extensions

260

RXXCommandKill
Syntax Call RxxCommandKill Handle

Description Exits the current process. Always returns 0.

Example
In this example, we "spawn" the command myapp.exe, checking every 2 seconds to see if it is
finished. If 120 seconds pass before it is finished, then we kill the process and continue with the
REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

 Chapter 6

261

RXXCommandSpawn
Syntax Handle = RxxCommandSpawn(CmdName)

Description Returns the "handle" of the spawned command. If the call fails, -1 is returned. Use this value
with the RxxCommandKill and RxxCommandWait functions.

Example
In this example, we "spawn" the command myapp.exe, checking every 2 seconds to see if it is
finished. If 120 seconds pass before it is finished, then we kill the process and continue with the
REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

Using Extensions

262

RXXCommandWait
Syntax Status = RxxCommandWait(Handle, Option)

Description Waits for a command spawned with RXXCommandSpawn. See RXXCommandSpawn.

Parameters
Parameter Explanation

Handle Value is returned by RXXCommandSpawn

Option This option can be omitted. If omitted, RXXCommandWait will wait until the spawn
command completes.

If Option is specified as t, RXXCommandWait returns immediately with the numeric exit
code of the completed command. If the command is not completed, it returns
WAITPENDING.

Example
In this example, we "spawn" the command myapp.exe, checking every 2 seconds to see if it is
finished. If 120 seconds pass before it is finished, then we kill the process and continue with the
REXX program.

 TotalSleep = 0
 SleepFor = 2
 CMD = "MyApp.Exe"
 CMD_Handle = RxxCommandspawn(CMD)

 Do Until DataType(RC, 'n')
 TotalSleep = TotalSleep + SleepFor
 Call RxxSleep SleepFor
 If TotalSleep > 120
 Then Do
 Call RxxCommandKill CMD_Handle
 Leave
 End
 Else Say "Waiting ..."
 RC = RxxCommandwait(CMD_Handle, "t")
 End

 Chapter 6

263

RXXOSEndOfLineString
Syntax EOL = RxxOSEndOfLineString()

Description Returns the character(s) that mark the End of Line (EOL) for a text file for the OS. For UNIX EOL
= LF (0x0d) and for Windows EOL = CRLF (0x0d0a).

Using Extensions

264

RXXOSEnvironmentSeparator
Syntax PathChar = RxxOSEnvironmentSeparator()

Description Returns the character for building PATH enviromental variable. For UNIX PathChar= : and for
Windows PathChar= ;.

 Chapter 6

265

RXXOSName
Syntax OSClass = RxxOsName()

Description Return the class of the operating system that the REXX program is running on. For UNIX, it
returns the string "UNIX" and for Windows it returns "WINNT", "WIN95" or "WIN98". To get the
actual Windows OS, use the WinGetVersion function. See WinGetVersion for more information.

Using Extensions

266

RXXOSPathSeparator
Syntax SepChar = rxxospathseparator()

Description Returns the character for building file paths. For Unix it returns a forward slash (/) and for
Windows it returns a back slash (\).

 Chapter 6

267

RXXSleep
Syntax RXXSleep <seconds>

Description Suspends the current process for the amount of <seconds> specified.

Parameters
Parameter Explanation

Seconds Number of seconds for which to suspend the process

Example
The example suspends the current process for 2 seconds.
Call RxxSleep 2

Using Extensions

268

WinMessageBox
Syntax KeyTag = WinMessageBox(Text, Title, Flag1, Flag2, Flag3,

Flagn)

Description This function displays a pop-up window (message box). It is available for Windows only.

Parameters
Parameter Explanation

Text The text to display in the message box.

Title The title that appears in the title bar of the message box.

Flags1-n Specifies the buttons available in the message box.

The following flags control the number of buttons in the message box and what the
buttons are labeled. If there is more than one button, the left-most button is the default.

• "MB_OK" – specifies one button labeled OK. The return value is always IDOK.

• "MB_OKCANCEL" – specifies two buttons labeled OK (return value is IDOK) and
CANCEL (return value is IDCANCEL).

• "MB_ABORTRETRYIGNORE" – specifies three buttons labeled ABORT (return
value is IDABORT), RETRY (return value is IDRETRY) and CANCEL (return
value is IDCANCEL).

• "MB_YESNOCANCEL" – specifies three buttons labeled YES (return value is
IDYES), NO (return value is IDNO) and CANCEL (return value is IDCANCEL).

• "MB_YESNO"- specifies two buttons labeled YES (return value is IDYES) and
NO (return value is IDNO).

• "MB_RETRYCANCEL" - specifies two buttons labeled RETRY (return value is
IDRETRY) and CANCEL (return value is IDCANCEL).

The following flags specify which button should be set as the default.

• "MB_DEFBUTTON1" – the first button is the default

• "MB_DEFBUTTON2" – the second button is the default

• "MB_DEFBUTTON3" – the third button is the default

The following flags specify the icons that can appear in the message box.

• "MB_ICONQUESTION" – the message box has a question mark in it.

• "MB_ICONEXCLAMATION" – the message box has an exclamation point in it.

• "MB_ICONERROR" – the message box has a red X in it.

• "MB_ICONINFORMATION" – the message box has the letter I in it.

The following flags specify how the message box is displayed.

• "MB_TOPMOST" – sets the message box as the "top most" window. Without
this flag, the message box may appear underneath other windows. This flag
should always be included.

• "MB_RIGHT" – sets the title and message text to right justified.

 Chapter 6

269

Examples
KeyTag = WinMessageBox("Is it OK to exit", "MyApp", "MB_OKCANCEL",
"MB_DEFBUTTON2", "MB_TOPMOST")

say keytag

KeyTag = WinMessageBox("Continue Processing?", "MyApp", "MB_ABORTRETRYIGNORE",
"MB_DEFBUTTON3", "MB_TOPMOST")

say keytag

Using Extensions

270

WinExpandEnvironmentStrings
Syntax call WinExpandEnvironmentStrings

 string

Description This function expands selected environment variables using a string parameter. It returns the
string parameter with the selected environment variables substituted.

Parameters
This function expands selected environment variables using a string parameter. It returns the
string parameter with the selected environment variables substituted.

Parameter Explanation

string String containing environment variables in the form %variable% to be substituted.

Example
The following string returns the subscriber computer's current path setting:

call WinExpandEnvironmentStrings "%path%"

 Chapter 6

271

WinGetVersion
Syntax Call WinGetVersion

Description Returns the class of Windows OS.

Usage
When invoked, this function creates five REXX variables:

• MajorVersion

• MinorVersion

• BuildNumber

• PlatformID

• CSDVersion

If you call the function with an argument, the value is concatenated with the variables listed
above.

For example, Call WinGetVersion "@" sets and creates:

• @MajorVersion

• @MinorVersion

• @BuildNumber

• @PlatformID

• @CSDVersion

Using Extensions

272

Example
This example gets the exact Windows OS.

 /*--*/
 /* Show OS */
 /*--*/
 Say TheOSName()
 Exit

TheOSName:

 Procedure
 Call WinGetVersion "@"
 OS = "?"
 Wstr = RxxOSName()
 Select
 When Wstr = "WINNT"
 Then Select
 When @MajorVersion = 3 | @MajorVersion = 4
 Then OS = "WINNT"
 When @MajorVersion = 5 & @MinorVersion = 0
 Then OS = "WIN2K"
 When @MajorVersion = 5 & @MinorVersion = 1
 Then OS = "WINXP"
 OtherWise
 OS = "WINNT"
 End
 When Left(Wstr, 4) = "WIN9"
 Then Select
 When @MajorVersion = 4 & @MinorVersion = 0
 Then OS = "WIN95"
 When @MajorVersion = 4 & @MinorVersion = 10
 Then OS = "WIN98"
 When @MajorVersion = 4 & @MinorVersion = 90
 Then OS = "WINME"
 OtherWise
 OS = Wstr
 End
 OtherWise
 OS = Wstr
 End
 Return OS

273

Chapter 7

Registry Manipulation Functions

This chapter describes Radia REXX functions that enable you to inspect and manipulate the
Windows Registry.

Registry Manipulation Functions
The provided functions enable your REXX methods to open, inspect, create, modify, delete and
close registry keys.

When you open access to a registry key, Windows returns a handle to that key. A handle is a
value that Windows recognizes as an alias for the key. The handle is useful in calls to other
functions that manipulate the designated key. You should store the handle value that Windows
provides in a variable so you can provide the handle in subsequent function calls that refer to the
same key. When you close the key, Windows destroys the handle.

In the function descriptions that follow, the type parameter must be chosen from this table:

Value Data that can be stored in the associated Registry key

REG_BINARY Binary data in any form.

REG_DWORD A 32-bit number.

7

Registry Manipulation Functions

274

Value Data that can be stored in the associated Registry key

REG_DWORD
_LITTLE_ENDIAN

A 32-bit number in little-endian format (same as REG_DWORD). In little-endian
format, the most significant byte of a word is the right most. This is the most common
format for computers running Windows NT and Windows 95.

REG_DWORD_BIG
_ENDIAN

A 32-bit number in big-endian format. In big-endian format, the most significant byte
of a word is the left most.

REG_EXPAND_SZ A null-terminated string that contains unexpanded references to environment variables
(for example, "%PATH%"). It will be a Unicode or ANSI string depending on whether
you use the Unicode or ANSI functions.

REG_LINK A Unicode symbolic link.

REG_MULTI_SZ An array of null-terminated strings, terminated by two null characters.

REG_NONE No defined value type.

REG_RESOURCE_
LIST

A device-driver resource list.

REG_SZ A null-terminated string. It will be a Unicode or ANSI string depending on whether you
use the Unicode or ANSI functions.

The examples in this chapter are based upon the TestKey key and its sub-keys, as seen here in
the Registry Editor in Windows:

 Chapter 7

275

Figure 7.1 ~ Registry Editor in Windows.

Registry Manipulation Functions

276

WinRegCloseKey
Syntax WinRegCloseKey handle

Description This function closes a key previously opened by one of the other registry manipulation functions.
It returns the Win32 error code (0 if successful).

Parameters
Parameter Usage

handle Handle of key to close.

Example
hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"

w32err=WinRegCreateKey(hive, key, myhandle,
 access,"orgstatus")
say w32err
say myhandle
say orgstatus
 .
 . /* some processing on the key */
 .
w32err=WinRegCloseKey(myhandle)
say w32err /* 0 = key successfully closed */

 Chapter 7

277

WinRegCreateKey
Syntax call WinRegCreateKey handle,

 key,
 hkey,
 access,
 class,
 options,
 disposition

Description This function creates a new registry key or opens an exiting registry key. It returns the Win32
error code (0 if successful).

Parameters
Parameter Usage

handle Handle of parent key.

handle can be a handle returned from a prior call to WinRegCreateKey or
WinRegOpenKey, or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of the key to open or create.

hkey Name of a variable to receive the handle to the key provided by Windows. Enclose the
name in quotes.

access Specifies an access mask that specifies the desired security access for the new key.
Choose one of the following:

"KEY_ALL_ACCESS"
Key can be read and written. All permission granted by KEY_READ and KEY_WRITE plus
permission to create a symbolic link.

"KEY_READ"
The key is read-only. Permission to query subkey data, enumerate subkeys and
permission to receive change notification.

"KEY_WRITE"
Permission to add sub-keys and sub-key values to the key.

class Class for newly created key.

Registry Manipulation Functions

278

Parameter Usage

options How key is created. One of:

"REG_OPTION_NON_VOLATILE"
This key is not volatile; this is the default. The information is stored in a file and is
preserved when the system is restarted. The RegSaveKey function saves keys that are
not volatile.

"REG_OPTION_VOLATILE"
Windows NT:
This key is volatile; the information is stored in memory and is not preserved when the
system is restarted. The RegSaveKey function does not save volatile keys. This flag is
ignored if the key already exists.

Windows 95:
This value is ignored in Windows 95. If REG_OPTION_VOLATILE is specified, the
WinRegCreateKey function creates a nonvolatile key and returns ERROR_SUCCESS.

"REG_OPTION_BACKUP_RESTORE"
Windows NT:
If this flag is set, the function ignores the samDesired parameter and attempts to open
the key with the access required to backup or restore the key. If the calling thread has
the SE_BACKUP_NAME privilege enabled, the key is opened with ACCESS_SYSTEM
_SECURITY and KEY_READ access. If the calling thread has the SE_RESTORE_NAME
privilege enabled, the key is opened with ACCESS_SYSTEM_SECURITY and KEY_WRITE
access. If both privileges are enabled, the key has combined accesses for both privileges.

Windows 95:
This flag is ignored. Windows 95 does not support security in its registry.

disposition Name of the variable that receives whether key already existed. Windows returns one of
the following:

"REG_CREATED_NEW_KEY"
"REG_OPENED_EXISTING_KEY"

Enclose the name of the variable in quotes.

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"
class= "KEY_ALL_ACCESS"
options= REG_OPTION_NON_VOLATILE"

w32err=WinRegCreateKey(hive, key, "myhandle",
 access,class, options, "orgstatus")

say w32err * 0 = no error */
say myhandle /* t44 = the handle assigned by */
 /* Windows. */
say orgstatus /* REG_OPENED_EXISTING_KEY = */
 /* key already existed. */

 Chapter 7

279

WinRegDeleteKey
Syntax WinRegDeleteKey(handle, key)

Description This function deletes a key from the registry, and destroys the handle. It returns the Win32 error
code (0 if successful).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of the key to delete.

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"

w32err=WinRegCreateKey(hive, key, myhandle,
 access,"orgstatus")
 .
 .
 .
w32err=WinRegDeleteKey(hive, key)
say w32err /* 0 = key successfully deleted. */

Registry Manipulation Functions

280

WinRegDeleteValue
Syntax WinRegDeleteValue(handle, value)

Description Delete a value from a key. Returns the Win32 error code (0 if successful).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

value Name of the value to delete.

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
tvalue="TestValue"

w32err=WinRegCreateKey(hive, key, "myhandle",
 access, "orgstatus")
say w32err
say myhandle
say orgstatus /* REG_OPENED_EXISTING_KEY */

w32err=WinRegDeleteValue(myhandle, tvalue)
say w32err /* 0 = TestValue successfully */
 /* deleted. */

 Chapter 7

281

WinRegEnumKey
Syntax call WinRegEnumKey handle,

 index,
 key
 , class
 , timestamp

Description Get sub-key information by index. Returns the Win32 error code (0 if successful). If the index
supplied selects a non-existent key, the function returns error code 259.

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

index index is an integer that selects which sub-key to access. An index value of zero
accesses the first subkey; an index value of 1 accesses the second sub-key, and so
forth.

key Name of the variable that receives the selected sub-key's name. Enclose the name in
quotes.

class Name of the variable that receives the class of the selected sub-key. Enclose the name in
quotes.

timestamp Name of the variable that receives the timestamp of the selected sub-key. Enclose the
name in quotes.

Registry Manipulation Functions

282

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey"
svalue="StringValue"
bvalue="BinaryValue"
keyindex=0
keyname=''
keyclass=''
timestamp=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegEnumKey(myhandle, keyindex,
 "keyname", "keyclass", "timestamp")
say w32err /* 0=successful completion. */
say keyname /* keyname="TestSubKey1" */
say keyclass /* keyclass="" */
say timestamp /* timestamp="08/03/99 15:57:28" */

 Chapter 7

283

WinRegEnumValue
Syntax WinRegEnumValue(handle,

 index,
 name,
 type
 [, data])

Description Get value information by index. Returns the Win32 error code (0 if successful). If the index
supplied selects a non-existent value, the function returns error code 259.

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

index index is an integer that selects which value to access. An index value of zero accesses
the first value; an index value of 1 accesses the second value, and so forth.

name Name of a variable to receive the value name. Enclose the name in quotes.

type Name of the variable that receives the type of data returned; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

Enclose the name in quotes.

data Name of the variable that receives the data. Enclose the name in quotes.

Registry Manipulation Functions

284

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
svalue="StringValue"
bvalue="BinaryValue"
keyindex=0
valname=''
valtype=''
valdata=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegEnumValue(myhandle, keyindex,
 "valname", "valtype", "valdata")
say w32err /* 0=successful completion */
say valname /* valname="StringValue" */
say valtype /* valtype="REG_SZ" */
say valdata /* valdata="TestData" */

 Chapter 7

285

WinRegOpenKey
Syntax WinRegOpenKey(handle,

 key,
 hkey
 [, access])

Description Open a key. Returns the Win32 error code (0 if successful, 2 if the specified key is not found).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

key Name of key to open.

hkey The name of the variable to receive the handle that Windows supplies. Enclose the
name in quotes.

access Access type. Either empty/skipped or one of:

"KEY_ALL_ACCESS"

"KEY_READ"

"KEY_WRITE"

Registry Manipulation Functions

286

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err /* 0=successful open */
say myhandle /* myhandle="t44" (returned by */
 /* Windows) */

 Chapter 7

287

WinRegQueryInfoKey
Syntax WinRegQueryInfoKey(handle

 [, class
 , subkey-count
 , value-count
 , timestamp])

Description Get key information. Returns the Win32 error code (0 if successful).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey,
or a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

class Name of the variable that receives the class of key. Enclose the name in quotes.

subkey-count Name of the variable that receives the sub-key count. Enclose the name in quotes.

value-count Name of the variable that receives the value count. Enclose the name in quotes.

timestamp Name of the variable that receives the timestamp of key. Enclose the name in quotes.

Registry Manipulation Functions

288

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
class=''
skcnt=0
vcnt=0
timestamp=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err

w32err=WinRegQueryInfoKey(myhandle, "class",
 "skcnt", "vcnt", "timestamp")
say w32err /* 0=Successful completion. */
say class /* "" – class returned by Windows*/
say skcnt /* 0=Number of sub-keys of */
 /* TestKey\TestSubKey. */
say vcnt /* 2=Number of values in */
 /* TestKey\TestSubKey. */
say timestamp /* "08/03/99 19:32:29" */

 Chapter 7

289

WinRegQueryValue
Syntax WinRegQueryValue(handle,

 value,
 type
 [, data])

Description Get key value. Returns the Win32 error code (0 if successful, 2 if the value name cannot be
found within the key being queried).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

value Name of the value to be queried.

type Name of the variable that receives the type of data returned; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

Enclose the name in quotes.

data Name of the variable that receives the data. Enclose the name in quotes.

Registry Manipulation Functions

290

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
valname='StringValue'
valtype=''
valdata=''

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegQueryValue(myhandle, valname,
 "valtype", "valdata")
say w32err /* 0=Successful completion */
say valname /* "StringValue" */
say valtype /* "REG_SZ" */
say valdata /* "Test Data" */

 Chapter 7

291

WinRegSetValue
Syntax WinRegSetValue(handle, name, type, data)

Description Set key value. Returns the Win32 error code (0 if successful).

Parameters
Parameter Usage

handle Handle of parent key.

It can be a handle returned from a prior call to WinRegCreateKey or WinRegOpenKey, or
a predefined hive name, one of the following:

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_LOCAL_MACHINE"

"HKEY_USERS"

"HKEY_PERFORMANCE_DATA"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

name A variable containing the name of the value, within the key, to be set.

type A variable that specifies the type of data contained in the value to be set; one of:

"REG_DWORD"

"REG_DWORD_LITTLE_ENDIAN"

"REG_EXPAND_SZ"

"REG_MULTI_SZ"

"REG_SZ"

"REG_LINK"

"REG_RESOURCE_LIST"

"REG_BINARY"

"REG_NONE"

"REG_DWORD_BIG_ENDIAN"

data A variable containing the new data for the key value being set.

Registry Manipulation Functions

292

Example
Refer to the Registry Editor example on page 276.

hive="HKEY_CURRENT_USER"
access="KEY_ALL_ACCESS"
key="TestKey\TestSubKey"
valname='StringValue'
valtype=''
valdata='Live Data'

w32err=WinRegOpenKey(hive, key, "myhandle",
 access)
say w32err
say myhandle

w32err=WinRegSetValue(myhandle, valname,
 valtype,valdata)
say w32err /* 0=Successful completion */
say valname /* "StringValue" */
say valtype /* "REG_SZ"* */
say valdata /* "Live Data" */

As a result, the StringValue value of
HKEY_CURRENT_USER\TestKey\TestSubKey

is set to Live Data.

293

Appendix A

Message Summary

This appendix lists the messages that can be generated by Radia REXX. Each message is followed
by a brief description of its meaning.

Radia REXX Messages

03 Program is unreadable

Radia REXX was unable to locate the program you are trying to execute. A file by this name
does not exist in the current working directory or in any directory on the current PATH.

04 Program interrupted

The system interrupted execution of the program at the user's request. If interrupts are not
trapped by CALL or SIGNAL ON HALT, Radia REXX immediately terminates execution
when an interrupt occurs.

A

Message Summary

294

05 Machine resources exhausted

The Radia REXX program was not able to obtain the system resources required to continue
execution of this program. This can indicate insufficient memory, swap space, or other system
resources.

06 Unmatched /* or quote

A comment or literal string was started but not completed. Comments require a matching '/*
*/' pair. Literal strings require matching single or double quotes. Since comments may span
multiple lines, the absence of a closing '*/' can be reported at the end of the program rather
than on the line where the opening '/*' appears. Unmatched quotes can be reported at the end
of the line on which the opening quote appears.

07 WHEN or OTHERWISE expected

A SELECT construct must include at least one WHEN clause and possibly an OTHERWISE
clause. If no WHEN clause is encountered, or if any other instruction is found, this error
occurs. This can occur if the OTHERWISE clause has been omitted and none of the WHEN
conditions are satisfied. It can also occur if a list of instructions follows a WHEN without the
necessary DO and END.

08 Unexpected THEN or ELSE

A THEN or an ELSE was encountered in the program for which a matching IF or WHEN was
not found. This can occur if the instruction following THEN is DO, and its matching END is
omitted.

09 Unexpected WHEN or OTHERWISE

A WHEN or OTHERWISE keyword was encountered outside the scope of a SELECT
construct. This can occur if a required WHEN or OTHERWISE is inadvertently enclosed in a
DO-END construct (often the result of a missing END somewhere else). It can also occur if an
attempt is made to branch to the WHEN or OTHERWISE clause using SIGNAL.

 Appendix A

295

10 Unexpected WHEN or OTHERWISE

An END was encountered in the program for which a matching DO or SELECT was not
found. This can occur if the END is badly located so that it does not match the DO or SELECT
for which it was intended. Also, this error can occur in the case of heavily nested DOs when
too many ENDs are provided. Including the name of the DO loop control variable on the
corresponding END clause is a good technique to avoid or identify this type of error.

This error can also occur if END immediately follows THEN or ELSE. Still another possible
cause of this error is an attempt to branch into a DO loop using SIGNAL. In this case, the DO
instruction will never have been executed and the END will be unexpected.

11 Control stack full

An implementation-specific limit on levels of nesting of control structures has been exceeded.
This can occur with deeply nested DO-END or IF-THEN-ELSE constructs. It can also occur if
an INTERPRET instruction is looping or if a recursive subroutine or internal function does
not terminate correctly, resulting in an infinite loop.

12 Clause too long

An implementation-specific limit on the length of a clause has been exceeded.

13 Invalid character in program

A character appears in the program, outside of a literal string, that is not a blank or one of
the following characters:

A-Z, a-z, 0-9
@@ # . ? ! _ $ & * () - + = ^ \
' " ; : , % / < > |

This can occur if the program contains accented or other national language-specific characters
not specifically permitted by the implementation.

Message Summary

296

14 Incomplete DO/IF/SELECT

At the end of the program, the language processor has detected a DO or SELECT instruction
without a matching END or an IF instruction that is not followed by a THEN clause.
Including the name of the control variable on the corresponding END clause is a good
technique for avoiding or identifying this type of error.

15 Invalid hexadecimal constant

Hexadecimal constants can contain only the digits 0-9 and the letters a-f and A-F. They
cannot have leading or trailing blanks, and embedded blanks can occur only at byte
boundaries (between pairs of hexadecimal digits).

Binary strings can contain only the digits 0 and 1. They cannot have leading or trailing
blanks, and embedded blanks can occur only between groups of four binary digits.

This error may occur if the character x or b immediately follows a literal string - that is, if
abuttal concatenation is used to append an x or b to the end of a literal string. In this case, it
is necessary to use the concatenation operator to distinguish concatenation from an attempt
to specify a hexadecimal or binary string.

16 Label not found

A SIGNAL instruction has been executed or a trapped condition has been raised, and the
specified label is not found in the program. For trapped conditions, if the SIGNAL ON
instruction does not include the NAME keyword, a label matching the name of the condition
must exist.

17 Unexpected procedure

A PROCEDURE instruction was encountered that was not the first instruction after a CALL
or function invocation. If present, the PROCEDURE instruction must be the first instruction
executed after a subroutine is called or a function invoked. This error can occur if a program
falls through into an internal routine that includes a PROCEDURE instruction.

18 THEN expected

All IF and WHEN clauses must be followed by a THEN clause. Another clause was
encountered at the point where a THEN was expected to be.

 Appendix A

297

19 String or symbol expected

The first token following a CALL or SIGNAL instruction must be a literal string or a symbol.
The string or symbol was omitted or something else, such as an operator, was found.

20 Symbol expected

In an instruction where a symbol is required, the symbol was omitted or some other token
was found.

21 Invalid data on end of clause

A keyword or instruction that has no operand (such as SELECT or NOP) was followed by
something other than a comment.

22 Invalid character string

A literal string contains one or more characters that are not supported in this
implementation.

24 Invalid TRACE request

The first character of the option specified on the TRACE instruction does not match one of the
valid TRACE settings. Refer to the Chapter 4: Instructions for a list of valid TRACE settings.

Message Summary

298

25 Invalid sub-keyword found

An unexpected token was in the position where an instruction expected a specific keyword.
This can occur if the token following NUMERIC is not DIGITS, FORM, or FUZZ. It can also
occur with CALL or SIGNAL ON condition if the token following condition is not NAME.

26 Invalid whole number

One of the following did not evaluate to a whole number, or its value is greater than the
implementation limit:

z The repetitor in a DO instruction.

z The FOR expression in a DO instruction
values specified for DIGITS or FUZZ in a NUMERIC instruction.

z A positional pattern in a parsing template.

z A number used as a trace setting in the TRACE instruction.

z The exponent (right hand operator) of the power operator (**).

This error also occurs when the result of an integer divide (%) is not a whole number or when
the specific value is not permitted in the context where it appears (such as a negative value
for a DO repetitor).

27 Invalid DO syntax

A syntax error was found in the DO instruction. This can occur when a keyword such as TO
appears without a control variable, or when such a keyword appears more than once.

28 Invalid LEAVE or ITERATE

A LEAVE or ITERATE instruction was unexpectedly encountered during execution. Either no
loop is active, or the control variable name specified on the instruction does not match that of
an active loop. This can occur when attempting to use SIGNAL to branch into, or within, a
loop.

 Appendix A

299

29 Environment name too long

The host command environment specified on the ADDRESS instruction is longer than
permitted by the operating system.

30 Name or string too long

The length of the name or string was greater than the implementation maximum.

31 Name starts with number or "."

To avoid confusion with numeric constants, a value cannot be assigned to a variable whose
name begins with a number or a period.

33 Invalid expression result

The result of an expression is invalid in the context where it occurs. This can occur if the
value for NUMERIC FUZZ is greater than that for NUMERIC DIGITS.

34 Logical value not 0 or 1

Any term operated on by a logical operator (^ \ | & &&) must evaluate to 0 or 1. Likewise,
the expression in an IF, WHEN, DO, WHILE, or UNTIL clause must evaluate to 0 or 1.

35 Invalid expression

There is an error in the syntax of an expression. This can be due to the absence or
misplacement of an operator, the placement of two operators adjacent to each other, or the
absence of an expression where one was expected. This can occur when an operator character
is present in what is intended to be a literal string, but the string is not enclosed in quotes.

36 Unmatched "(" in expression

There are more left parentheses than right parentheses in an expression.

Message Summary

300

37 Unmatched "," or ")" in expression

Either a comma was found outside of a function call, or there are too many right parentheses
in an expression.

38 Invalid template or pattern

One of the following errors has been detected:

z A special character (such as "*"), which is not allowed, was found in a parsing template.

z The syntax of a variable pattern is incorrect; this can occur if no symbol follows a left
parenthesis or if a parenthesis is missing.

z The WITH is missing in a PARSE VALUE instruction.

39 Evaluation stack overflow

An expression is too complex to be evaluated within implementation-specific limits.

40 Incorrect call to routine

Arguments passed to a routine are of the wrong type, or the number of arguments passed to
the routine exceeded an implementation-specific maximum. This can also occur if the routine
is not compatible with the Radia REXX language.

41 Bad arithmetic conversion

One of the terms in an arithmetic expression is not a valid number, or its exponent exceeds
the implementation-specific limit.

42 Arithmetic overflow/underflow

The result of an arithmetic operation requires an exponent outside the range supported by the
implementation. This can occur during an attempt to divide by zero.

 Appendix A

301

43 Routine not found

A subroutine that has been called, or a function that has been invoked, cannot be found. It is
neither an internal or external routine nor the name of a built-in function. This can be caused
by the result of a typographical error, or the presence of a literal string or symbol immediately
adjacent to a left parenthesis.

44 Function did not return data

An external function was invoked but it did not return a value for use within the expression.
All functions must return a value.

45 No data specified on function RETURN

A routine was called as a function, but the RETURN instruction did not specify a value to be
returned. All functions must return a value.

46 Invalid variable reference

The syntax of a variable reference is incorrect. The right parenthesis, which must
immediately follow the variable name, is missing.

48 Failure in system service

An operating system service called by Radia REXX resulted in an error. As a result, execution
of the program terminated.

49 Interpretation error

A Radia REXX internal error occurred during execution of the program. Please contact HP
Technical Support for assistance.

Message Summary

302

303

Appendix B

Programming Hints

This appendix is designed to help you avoid common pitfalls when using Radia REXX to write
programs. The more common programming mistakes are identified, and the correct Radia REXX
usage is shown.

Invoking a Built-in Function Like an Instruction
When a built-in function call is the only clause on a line, the function returns a value.

Example
LINEOUT('myfile', 'new data')

This value is then passed to the external environment where it is interpreted as a command. This
usually results in an "Invalid command" message from the operating system. To avoid this, use
CALL to invoke the function.

B

Programming Hints

304

Failure to Use Commas with CALL and PARSE ARG

With CALL
When you CALL a routine or function, the arguments of the called routine must be separated by
commas.

Example 1
The following example passes two arguments to the routine SUB.

CALL SUB X, Y

Example 2
This example passes one argument to SUB.

CALL SUB X Y

This argument is the result of concatenating X and Y.

With PARSE ARG
Commas must also be used between arguments in the template of a PARSE ARG instruction.

Example 3
The following example assigns all of the first argument to a1 and all of the second argument to
a2.

PARSE ARG a1, a2

 Appendix B

305

Example 4
The next example assigns the first word of the first argument to a1 and the rest of the first
argument to a2.

PARSE ARG a1 a2

Note that any arguments supplied on the program invocation command line are treated as one
string by PARSE ARG or ARG.

Incorrect Use of Continuation
The statement:

x = min(1, 2, 3,
 4, 5)

will fail with Error 41: Bad arithmetic conversion, because the comma after the 3 in the first line
is treated as a continuation character, resulting in a function invocation that looks like:

x = min(1, 2, 3 4, 5)

The arguments to the MIN built-in function must be separated by commas. The correct way to
write such a continued clause is to provide an additional comma for continuation on the first line
as in:

x = min(1, 2, 3,,
 4, 5)

Incorrect CALL Syntax
The correct syntax for calling a routine with arguments is:

CALL SUB X, Y

If you use the CALL instruction, it is not proper to enclose the arguments in parentheses. Enclose
the arguments in parentheses when you invoke a routine as a function, as in:

x = SUB(X,Y)

Programming Hints

306

Failure to Enclose Command Arguments Within
Quotes
Consider the example of attempting to set the REXX environment variable:

dir = 'c:\mydir'
putenv(REXX=dir)

The function argument includes an operator and is therefore treated as an expression that must
be evaluated before it is used in the function. The expression is treated as a logical comparison
and returns the value 0 (FALSE). The result is passed to the PUTENV function; but since 0 is not
a valid command to set an environment variable, PUTENV appears to have no effect. The correct
way to write the sample above is shown below:

dir = 'c:\mydir'
rc = putenv('REXX='dir)

Similar pitfalls exist in the use of host commands that include strings that might be interpreted
as operators. In XEDIT macros, for example, the EXTRACT command requires the use of the
forward slash character as in:

extract /curline

If this command is not enclosed in quotes, Radia REXX sees the clause as an attempt to divide the
value of the symbol extract by the value of the symbol curline. Since such variables would not
normally be initialized to a numeric value in an editor macro, execution of the clause results in
Error 41: Bad arithmetic conversion. If the clause is enclosed in quotes, it is treated by Radia
REXX as a literal string and is automatically passed to the host command environment (in this
case, XEDIT) for execution.

Failure to Close a File
Any I/O operation to a file (CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, LINES, or
EXECIO) can leave the file in an open state. Therefore, it might be necessary to close the file with
CHAROUT, LINEOUT, or STREAM before subsequent attempts to read from or write to the file.

307

Appendix C

System Limitations

Very few implementation-specific limitations exist in Radia REXX. These limitations are
documented in this appendix.

Implementation-Specific Limits

Description of Limitation Limitation

Maximum length of a string. 1 billion characters

Maximum length of a symbol or variable name. 1 billion characters

Maximum number of variables in a program. 60 thousand variables

Maximum setting of numeric digits. 1000

Maximum length of a host command environment
name.

16 characters

In general, all internal maximums are equivalent to
1 billion bytes.

It is likely that your system memory will be
exceeded before you approach these limits.

C

System Limitations

308

309

Bibliography

Amiga Programmers Guide to AREXX, Eric Giguere, Commodore-Amiga, Inc., 1991.
Application Development Using OS/2 REXX, Anthony Rudd, John Wiley and Sons, Inc., 1994.
Mastering OS/2 REXX, Gabriel F. Gargiulo, John Wiley and Sons, Inc., 1994.
Modern Programming Using REXX, Bob O'Hara and Dave Gomberg, Prentice Hall, 1988.
OS/2 2.1 REXX Handbook - Basics, Applications, and Tips, Hallett German, Van Nostrand

Reinhold, 1994.
Practical Usage of REXX, Anthony Rudd, Ellis Horwood Limited, 1990.
Programming in REXX, Charles Daney, McGraw-Hill, Inc., 1992.
REXX Handbook, edited by Gabe Goldberg and Phil Smith, McGraw-Hill, Inc., 1992.
REXX in the TSO Environment, Gabriel F. Gargiulo, QED Information Sciences, Inc., 1990.
REXX Tools and Techniques, Barry Nirmal, QED Publishing Group, 1993.
REXX: Advanced Techniques for Programmers, Peter Kiesel, McGraw-Hill, Inc., 1993.
The AREXX Cookbook, Merrill Callaway, Whitestone, 1992.
The REXX Language: A Practical Approach to Programming, M. F. Cowlishaw, Prentice

Hall, Second Edition, 1990.
Using ARexx on the Amiga, Chris Zamara and Nick Sullivan, Abacus, 1991.

Note

In addition to these references, published proceedings of the annual REXX Symposium are
available from the Stanford Linear Accelerator Center.

Bibliography

Bibliography

310

311

Lists

Figures
Figure 3.1 ~ Run dialog box. ..36
Figure 6.1 ~ DMSYNC object...248
Figure 6.2 ~ DIALOG object. ...249
Figure 7.1 ~ Registry Editor in Windows..275

Lists

Lists

312

Tables
Table P.1 ~ Styles...8
Table P.2 ~ Usage...8
Table P.3 ~ Conventions Used for Sample Code ..9
Table P.4~ Terminology*..10
Table 2.1 ~ Tokens and their Meanings..20
Table 2.2 ~ Clauses and their Meanings ..22
Table 2.3 ~ Symbols and their Meanings..23
Table 2.4 ~ Expressions and their Meanings ...25
Table 2.5 ~ Operators and their Meanings...26
Table 2.6 ~ Functions and their Meanings ...28
Table 2.7 ~ Special Variables and their Meanings...29
Table 2.8 ~ Conditions Traps and their Meanings...30
Table 2.9 ~ Input/Output Operations and their Meanings..31
Table 3.1 ~ ZMASTER Variables ..34
Table 3.2 ~ Host Command Environments...38
Table 4.1 ~ Quick Reference to Instructions ..40

 Lists

313

Procedures
To execute a REXX method from the Windows Run dialog box ..36

Lists

314

315

Index

A
A (All) trace option ..97
ABBREV function..108
ABS function ..110
absolute positional pattern76
ADDRESS [VALUE] expr2 parameter.....................42
ADDRESS function ...111
ADDRESS instruction...................................38, 40, 42
ADDRESS settings ..50
after parameter..150
ARG function ...112
ARG instruction...40, 47
ARG parameter..71
arithmetic operators ..26
arithmetic overflow/underflow message.................300
assignment instructions ..22

B
B2X function ..117
bad arithmetic conversion message........................300
before parameter ...150
binary strings...20
BITAND function...114
BITOR function..115
BITXOR function ...116
built-in functions ...28, 105

invoking ...303
BY parameter...55

C
C (Commands) trace option.......................................97

C2D function.. 132
C2X function.. 133
CALL instruction .. 30, 40, 49
CENTER function ... 118
char parameter.. 192
char_list parameter... 210
CHARIN

function.. 120
operation.. 31

CHAROUT
function.. 122
operation.. 31

CHARS
function.. 124
operation.. 31

CHDIR function... 125
clause

definition ... 20
types of... 22

clause too long message .. 295
client methods ... 223
CMD host command.. 38
command instructions... 22
command output.. 38
command parameter ... 177
command_line parameter 234, 252, 253
comparative operators .. 26

normal.. 27
strict... 27

COMPARE function .. 126
compound symbol

definition ... 23
tail .. 23

Index

Lists

316

concatenation operators.. 26
CONDITION function... 127
CONDITION information... 50
condition parameter .. 49
condition traps... 30

and CALL .. 30
and SIGNAL.. 30
ERROR .. 30
FAILURE... 30
HALT ... 30
LOSTDIGITS .. 30
NOTREADY .. 30
NOVALUE... 30
SYNTAX .. 30

CONDITION traps.. 50
constant symbol, definition....................................... 23
Control stack full message...................................... 295
DATE formats ... 137
COPIES function... 129
count parameter .. 166
CUSERID function.. 131
customer support... 4

D
D2C function.. 144
D2X function.. 145
DATATYPE function... 134
DATE function... 137
date_string parameter .. 137
DELSTR function.. 141
DELWORD function ... 142
DIGITS function.. 143
DIGITS parameter .. 68
directory parameter 125, 257, 259
DO instruction... 40, 54
DROP instruction.. 40, 58

E
E (Error) trace option.. 97
EDM REXX languageSee language structure
EDMADD extension.. 231
EDMATTR extension .. 232

EDMBLD extension...233
EDMCMD extension..234
EDMDELHEAP extension235
EDMDELVAR extension ...236
EDMFREE extension ..237
EDMGET extension...238
EDMGETV extension ..240
EDMLOC extension...241
EDMRST extension ...242
EDMSET extension ...243
EDMSORT extension...245
EDMWIN..38
EDMWIN host command ..38
Elapsed time clocks..50
ELSE parameter ..62
end parameter..218
environment name too long message......................299
environment parameter...42
ERROR condition...50, 94
ERROR condition trap...30
ERROR FAILURE condition...................................127
ERRORTEXT function ..146
evaluation stack overflow message.........................300
executing methods, overview33
EXIT instruction ..40, 60
EXPOSE parameter...80
expp parameter ..150
expr parameter ..49
expr1 parameter ..42, 68
expr3 parameter ..68
expression parameter60, 62, 64, 85, 86, 88, 91, 92
exprl parameter ...54
exprn parameter ..55
expt parameter...150
extensions

EDMADD ...231
EDMATTR ...232
EDMBLD..233
EDMCMD...234
EDMDELHEAP...235
EDMDELVAR..236
EDMFREE ...237

 Index

317

EDMGET ...238
EDMGETV...240
EDMLOC ...241
EDMRST..242
EDMSET..243
EDMSORT ...245
function calls..225
GET_CHILD_OBJECT246
LOAD_CHILDREN ...247
NOWAIT ..252
NVDOBJECTS ..253
NVDPATHS...255
overview ...223
RADGET ..257
RADSET...259
return values ...225
RXXCommandKill ...260
RXXCommandSpawn..261
RXXCommandWait ...262
RXXOSEndOfLineString263
RXXOSEnvironmentSeparator...........................264
RXXOSName ...265
RXXOSPathSeparator...266
RXXSleep ...267
WinExpandEnvironmentStrings270
WinGetVersion ..271
WinMessageBox ..268

external functions..28, 37

F
F (Failure) trace option ...97
FAILURE condition...50, 94
FAILURE condtion trap..30
failure in system service message301
filename parameter ...232, 241
FIND function..147
FOR parameter..55
FOREVER parameter ...55
FORM function ..149
FORM parameter ..68
FORMAT function ...150
FULLSCR parameter ..234

function calls ... 25, 225
function did not return data message 301
functions .. 28

ABBREV.. 108
ABS .. 110
ADDRESS.. 111
ARG.. 112
B2X .. 117
BITAND... 114
BITOR.. 115
BITXOR ... 116
built-in ... 28, 105
C2D .. 132
C2X .. 133
CENTER.. 118
CHARIN .. 120
CHAROUT... 122
CHARS .. 124
CHDIR ... 125
COMPARE... 126
CONDITION ... 127
COPIES ... 129
CUSERID .. 131
D2C .. 144
D2X .. 145
DATATYPE ... 134
DATE ... 137
DELSTR .. 141
DELWORD .. 142
DIGITS .. 143
ERRORTEXT .. 146
external.. 28
FIND.. 147
FORM .. 149
FORMAT ... 150
FUZZ.. 154
general rules.. 107
GETCWD... 155
GETENV.. 156
INDEX ... 157
INSERT ... 159
internal .. 28

Lists

318

JUSTIFY.. 160
LASTPOS .. 161
LEFT.. 163
LENGTH ... 165
LINEIN.. 166
LINEOUT.. 168
LINES.. 170
LOWER.. 172
MAX... 173
MIN.. 174
OVERLAY ... 175
overview... 105
POPEN .. 177
POS .. 178
PUTENV.. 180
QUEUED... 181
RANDOM .. 182
REVERSE.. 183
RIGHT ... 184
SIGN .. 186
SOURCELINE .. 187
SPACE ... 188
STREAM.. 190
STRIP .. 192
SUBSTR .. 194
SUBWORD .. 196
SYMBOL.. 197
TIME.. 199
TRACE... 202
TRANSLATE... 203
TRUNC .. 205
UPPER... 206
USERID... 207
VALUE .. 208
VERIFY ... 210
WORD.. 212
WORDINDEX ... 213
WORDLENGTH.. 214
WORDPOS .. 215
WORDS.. 217
X2B .. 219
X2C .. 220

X2D...221
XRANGE ..218

FUZZ function..154
FUZZ parameter ..68

G
GET_CHILD_OBJECT extension...........................246
GETCWD function...155
GETENV function..156

H
HALT condition..50, 94, 127
HALT condition trap..30
heap_number parameter238, 257
heap_size parameter..233
hexadecimal strings...20
HIDE parameter ..234
host command, executing ..37

I
I (Intermediates) trace option97
I/O operations...31

CHARIN...31
CHAROUT ...31
CHARS ...31
LINEIN ..31
LINEOUT...31
LINES ..31
PARSE LINEIN...31
PARSE PULL...31
PULL..31
PUSH..31
QUEUE ..31
QUEUED ...31
SAY...31
STREAM ..31

IF instruction ...40, 62
in_option parameter ..137
in_tbl parameter ..203
incomplete DO/IF/SELECT message......................296
incorrect call to routine message300
INDEX function ...157

 Index

319

info parameter ...108
information parameter ..108
INSERT function ...159
instruction parameter ...62, 92
instruction, definition..22
instructions

ADDRESS ..42
ARG..47
CALL..49
DO ..54
DROP ...58
EXIT...60
IF 62
INTERPRET..64
ITERATE ...65
LEAVE ...66
NOP..67
NUMERIC ...68
overview ...39
PARSE ...71
PROCEDURE ..80
PULL..84
PUSH ...85
QUEUE ..86
RETURN..88
SAY...91
SELECT ...92
SIGNAL ...94
TRACE ...97
UPPER ...104

instructions, types of
assignment...22
command..22
keyword..22

internal functions ..28
INTERPRET instruction.....................................40, 64
interpretation error message301
invalid character in program message295
invalid character string message............................297
invalid data on end of clause message....................297
invalid DO syntax message.....................................298
invalid expression message.....................................299

invalid expression result message.......................... 299
invalid hexadecimal constant message.................. 296
invalid LEAVE or ITERATE message 298
invalid sub-keyword found message 298
invalid template or pattern message 300
invalid TRACE request message............................ 297
invalid variable reference message 301
invalid whole number message 298
ITERATE instruction.. 65

J
JUSTIFY function ... 160

K
keyword instructions... 22

L
L (Labels) trace option .. 97
label not found message.. 296
label parameter ... 94
label, definition.. 22
language structure

clauses ... 20
condition traps .. 30
expressions .. 25
functions .. 28
input/output operation.. 31
parsing ... 32
special variables.. 29
symbols .. 23

LASTPOS function.. 161
LEAVE instruction.. 40, 66
LEFT function ... 163
LENGTH function... 165
length parameter.... 108, 118, 120, 141, 142, 159, 160,

175, 194, 196
line parameter ... 166, 168
line prefixes ... 98
LINEIN

function.. 166
operation.. 31

LINEIN parameter ... 71

Lists

320

LINEOUT
function.. 168
operation.. 31

LINES
function.. 170
operation.. 31

literal strings ... 20, 25
LOAD_CHILDREN extension 247
logical operators .. 26
logical value not 0 or 1 message 299
LOSTDIGITS condition trap 30
LOWER function ... 172

M
machine resources exhausted message.................. 294
MAX function .. 173
max parameter .. 182
messages

arithmetic overflow/underflow 300
bad arithmetic conversion 300
clause too long ... 295
control stack full.. 295
environment name too long 299
evaluation stack overflow 300
failure in system service 301
function did not return data............................... 301
incomplete DO/IF/SELECT 296
incorrect call to routine....................................... 300
interpretation error... 301
invalid character in program.............................. 295
invalid character string 297
invalid data on end of clause 297
invalid DO syntax ... 298
invalid expression ... 299
invalid expression result 299
invalid hexadecimal constant............................. 296
invalid LEAVE or ITERATE 298
invalid sub-keyword found 298
invalid template or pattern 300
invalid TRACE request....................................... 297
invalid variable reference................................... 301
invalid whole number ... 298

label not found ...296
logical value not 0 or 1 ..299
machine resources exhausted294
name or string too long..299
name starts with number or "."299
no data specified on function RETURN301
program interrupted..293
program is unreadable ..293
routine not found ...301
string or symbol expected....................................297
symbol expected...297
THEN expected..296
unexpected procedure..296
unexpected THEN or ELSE294
unexpected WHEN or OTHERWISE294, 295
unmatched "(" in expression299
unmatched "," or ")" in expression300
unmatched /* or quote ...294
WHEN or OTHERWISE expected......................294

messages generated by Radia REXX......................293
methods, executing ..33
MIN function..174
min parameter ...182
modifier parameter ..234

N
N (Normal) trace option...97
n parameter.....112, 129, 132, 141, 142, 144, 145, 146,

159, 163, 175, 184, 187, 188, 194, 196, 205, 212,
213, 214, 221

name or string too long message.............................299
name parameter......49, 55, 65, 66, 120, 122, 124, 166,

168, 170, 190, 197, 208
name starts with number or "." message................299
NEWPANEL.LOG ...35
no data specified on function RETURN message ..301
NOLOAD parameter..238, 257
NOP instruction...40, 67
NOTREADY condition.................................50, 95, 127
NOTREADY condition trap.......................................30
NOVALUE condition ...95, 127
NOVALUE condition trap ...30
NOWAIT extension..252

 Index

321

NOWAIT parameter ..234
null clause, definition ..22
num parameter ..150
number parameter...................110, 173, 174, 186, 205
NUMERIC instruction ..40, 68
NUMERIC settings ...50
NVDOBJECTS extension..253
NVDPATHS extension ..255

O
O (Off) trace option ..97
object_name parameter ..231, 233, 235, 236, 237, 238,

240, 242, 243, 245, 247, 257, 259, 267
OFF parameter ..49
ON parameter ..49
operation parameter..190
operator tokens ..21
operators ..25, 26
option parameter97, 112, 127, 192, 202, 210
optioneter..177
OTHERWISE parameter ..92
out_option parameter137, 199
out_tbl parameter ..203
OVERLAY function ...175

P
pad parameter.114, 115, 116, 118, 126, 159, 160, 163,

175, 184, 188, 194, 203
PARSE instruction ..40, 71
PARSE LINEIN operation ..31
PARSE PULL operation..31
parsing..32

by patterns...74
by position..75
by words ...73
positional patterns ..76
summary ..79
templates ...73
with placeholders...78

PINSCOMP.EDM ..36
PINSCOMP.LOG...36
PNLREXX.LOG ...35

POPEN function.. 177
POS function.. 178
prefixes... 98
PROCEDURE instruction 40, 80
PROCEDURE parameter ... 80
program interrupted message 293
program is unreadable message............................. 293
programming hints ... 303
PULL instruction .. 40, 84
PULL operation... 31
PULL parameter ... 71
PUSH instruction.. 40, 85
PUSH operation .. 31
PUTENV function ... 180

Q
QUEUE

instruction ... 40, 86
operation.. 31

QUEUED
function.. 181
operation.. 31

R
R (Results) trace option .. 97
RADGET extension ... 257
Radia Client REXX methods 223
Radia REXX executable .. 33
Radia REXX extensionsSee extensions
Radia REXX functions See functions
Radia REXX programs, coding 37
RADPNLWR

functions .. 33
invoking ... 34

RADPNLWR executable ... 33
RADPNLWR log files .. 35
RADREXXW.EXE ... 33
RADSET extension.. 259
RANDOM function.. 182
RC variable .. 29
redirect ... 43
registry manipulation functions

Lists

322

WinRegCloseKey... 276
WinRegCreateKey... 277
WinRegDeleteKey ... 279
WinRegDeleteValue.. 280
WinRegEnumKey.. 281
WinRegEnumValue .. 283
WinRegOpenKey... 285
WinRegQueryInfoKey... 287
WinRegQueryValue .. 289
WinRegSetValue ... 291

registry, manipulating .. 273
relative positional pattern .. 76
RESULT variable .. 29
RETURN instruction .. 41, 88
REVERSE function ... 183
REXX instructionsSee instructions
REXX methods, executing from Windows 36
RIGHT function... 184
routine not found message...................................... 301
RXXCommandKill extension.................................. 260
RXXCommandSpawn extension............................. 261
RXXCommandWait extension 262
RXXOSEndOfLineString extension 263
RXXOSEnvironmentSeparator extension 264
RXXOSName extension .. 265
RXXOSPathSeparator extension............................ 266
RXXSleep extension .. 267

S
SAY

instruction ... 41, 91
operation.. 31

seed parameter .. 182
SELECT instruction.. 41, 92
SELECT parameter .. 92
SHOW parameter.. 234
SIGL variable .. 29
SIGN function.. 186
SIGNAL instruction...................................... 30, 41, 94
simple symbol, defintion ... 24
SOURCE parameter ... 72
SOURCELINE function.. 187

SPACE function ...188
special characters ..21
special variables...29
Standard Error Stream ...37
Standard Output Stream ..37
start parameter120, 122, 157, 161, 178, 210, 215, 218
STDERROR..37
STDIN, definition ..31
STDOUT...37

definition ..31
stem, definition ..24
STREAM

function ..190
operation ..31

string or symbol expected message.........................297
string parameter117, 118, 122, 129, 132, 133, 134,

141, 142, 156, 160, 163, 165, 168, 172, 180, 183,
184, 188, 192, 194, 196, 203, 206, 210, 212, 213,
214, 217, 219, 220, 221, 270

string1 parameter ...114, 115, 116, 126, 147, 157, 159,
161, 175, 178, 215

string2 parameter ...114, 115, 116, 126, 147, 157, 159,
161, 175, 178, 215

strings
binary ...20
hexadecimal ...20
literal ..25

STRIP function ..192
strmcmd parameter ...190
sub-expression..25
subroutines...37
SUBSTR function...194
SUBWORD function ..196
symbol...21, 25

definition ..23
tokens ...21

symbol expected message ..297
SYMBOL function..197
SYNTAX condition...95, 127
SYNTAX condtion trap..30
system limitations ...307

 Index

323

T
tail, definition ..23
technical support ...4
template parameter.......................................47, 71, 84
THEN expected message...296
THEN parameter...62, 92
TIME formats, converting.......................................199
TIME function..199
TO parameter ..55
tokens

binary ...20
hexadecimal ...20
literal string...20
operator..21
special characters ..21
symbol ..21

TRACE function...202
TRACE instruction ..41, 97
TRACE settings ...50
TRANSLATE function...203
troubleshooting ..303

CALL and PARSE ARG304
CALL syntax..305
closing a file ...306
command arguments...306
continuation...305
invoking a built-in function303

TRUNC function ..205
type parameter ..134

U
unexpected procedure message...............................296
unexpected THEN or ELSE message294
unexpected WHEN or OTHERWISE message294,

295
unmatched "(" in expression message299
unmatched "," or ")" in expression message300
unmatched /* or quote message294
UNTIL parameter..54
UPPER function...206
UPPER instruction..41, 104
USERID function...207

V
VALUE function.. 208
VALUE parameter .. 72
VAR parameter ... 72
var_list parameter... 104
variable parameter.. 236, 245
variables

RC .. 29
RESULT .. 29
SIGL... 29

varlist parameter .. 58, 80
VERIFY function... 210
VERSION parameter .. 72

W
WAIT parameter ... 234
WHEN or OTHERWISE expected message 294
when_list parameter ... 92
WHILE parameter .. 54
whole-number parameter 144, 145
Windows registry, manipulating............................ 273
WinExpandEnvironmentStrings extension........... 270
WinGetVersion extension 271
WinMessageBox extension 268
WinRegCloseKey function 276
WinRegCreateKey function 277
WinRegDeleteKey function..................................... 279
WinRegDeleteValue function 280
WinRegEnumKey function 281
WinRegEnumValue function.................................. 283
WinRegOpenKey function 285
WinRegQueryInfoKey function 287
WinRegQueryValue function.................................. 289
WinRegSetValue function....................................... 291
WITH ... 43
WORD function ... 212
WORDINDEX function ... 213
WORDLENGTH function 214
WORDPOS function.. 215
WORDS function ... 217

Lists

324

X
X2B function.. 219
X2C function.. 220
X2D function.. 221
XRANGE function... 218

Z
ZMASTER variables

ZPANEL...34
ZPCONT...35
ZPHEAPNO ...35
ZPREXEC...35
ZPSEL ..35

ZPANEL variable...34
ZPCONT variable ..35
ZPHEAPNO variable...35
ZPREXEC variable ..35
ZPSEL variable..35

