
Peregrine Systems, Inc.
3611 Valley Centre Drive
San Diego, CA 92130
www.peregrine.com

���������	
���
����	���
�����	����

© 2000 Peregrine Systems, Inc. 3611 Valley Centre Drive, San Diego, California 92130 U.S.A.

All Rights Reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be
used or disclosed only with written permission from Peregrine Systems, Inc. This book, or any part
thereof, may not be reproduced without the prior written permission of Peregrine Systems, Inc. This
document refers to numerous products by their trade names. In most, if not all, cases these designations
are claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems is a registered trademarks of Peregrine Systems, Inc.

This document and the related software described in this manual is supplied under license or
nondisclosure agreement and may be used or copied only in accordance with the terms of the agreement.
The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc.

The names of companies and individuals used in the sample database and in examples in the manuals
are fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies
or individuals, whether past or present, is purely coincidental.

This edition applies to version 1 of the licensed program

Contents
Introduction

About this Manual ...1-1

Organization of the Manual ..1-2

Conventions Used in this Manual..1-3

Buttons, Directories, and File Names...1-3

Get.It! Architectural Overview

High Level Architecture..2-2

Archway Internal Architecture ...2-4

Archway Requests ...2-6

Scripting ...2-8

The Document Manager ..2-10

Weblications...2-11

Introduction to Document Schemas

Definition of a Document Schema...3-2

Using Schemas in a Weblication ...3-5

Tailoring Get.It!

Archway Architecture ...4-1

Weblication Toolset ..4-2
Contents 3/14/00 i

Before You Make Changes .. 4-3

Showing Form Information... 4-3

Debugging the Changes You Make... 4-4

Where to Make the Modifications .. 4-4

Information You Must Have ... 4-5

Running the wbuild Command... 4-5

Changing the Contents of a Form... 4-6

Adding a Field to a Form ... 4-6

Data for the New Field (Scripts) ...4-9

Adding Fields to a Document.. 4-10

When the Field is not Defined in the Schema..4-10

Changing Script Behavior ... 4-13

Changing a jscript .. 4-13

Changing the Components and Layout of a Weblication (XSL)... 4-16

When Would I Change the XML? .. 4-16

Integrating a New Product into Get.It! .. 4-17

Integrating a URL... 4-17

Adding the URL as a Module ...4-18
Adding a URL as an Activity ..4-19

Adding a ServiceCenter or AssetCenter Feature as a New Module.. 4-20

Adding a Feature from AssetCenter ... 4-22

Weblication Reference

Weblication Structure...A-1

Imports...A-2

Weblication Tags ..A-3

<application> ...A-3

<module>...A-3

<activity>..A-5

<form> ...A-7

<redirect>...A-9

form fields ...A-11
ii 3/14/00 Get.It! Tailoring Guide

<fieldtable>.. A-12

<action> .. A-15

TARGET.. A-16

TEXT ... A-17

$$(X) ... A-18

<menu> ... A-19
Link Attributes..A-19

<table> .. A-19
Column Types ...A-21

<columns>... A-23

<listbox>.. A-25

<field> ... A-26

<input> .. A-26

<input> (Text Field) ...A-27
<input> (Text Area)..A-28
<input> (Combo/Selection Box)...A-29
<input> (Checkbox) ...A-30
<input> (Radio)..A-30
<input> (Hidden)..A-31

<link>... A-32

Reusable Form Components (Subforms) .. A-33

Additional Tags .. A-35

<html>..A-35
<header> ...A-35
<sidebar>...A-35

Document Scheme DTD

Document Schema Files ... B-2

Schema Attributes ... B-3

<document> .. B-3

Nested <document> Tags... B-3

<attribute> ... B-4

<collection> ... B-6

ServiceCenter Specific Attributes.. B-7
Contents 3/14/00 iii

Contacting Peregrine Systems

North and South America ..C-1

United Kingdom regional office..C-2

France regional office ..C-2

Germany regional office...C-2

Nordic regional office ...C-3

Benelux regional office ..C-3

Asia-Pacific regional offices...C-3

Index
iv 3/14/00 Get.It! Tailoring Guide

Ge
Chapter 1
Introduction
Peregrine Systems’ Get.It! product suite is a line of employee self-service
applications. The Get.It! applications empower employees to help themselves
to functions once requiring numerous e-mails, phone calls, inter-office
correspondence, and paperwork to complete. For example, the Get.Resources!
application streamlines the MRO procurement cycle by drastically reducing
cost and time while simultaneously increasing employee productivity and
satisfaction.

Get.It! applications are accessible on the corporate intranet via Web browsers.
The user interface, a best of the web experience, is role-based and you can
tailor it to meet your needs.

Get.It! applications benefit organizations both by freeing employees from
time-consuming tasks and by automating inefficient processes such as
procurement, service, and searching for answers to common questions.

About this Manual
The Get.It! Tailoring Guide describes the underlying architecture of Peregrine
Systems’ Get.It! applications and how to tailor the applications to suit your
needs.

The Get.It! Tailoring Guide is used with several other manuals, which are:

• Operating guides, reference manuals, and other documentation for your PC
hardware and operating software.

• The Get.It! Installation Guide which describes how to install and configure
Get.It! on both a Windows and Solaris server.

• The Get.It! Administration Guide which describes the administration
functions of Get.It! including the Administration Module and user ID
maintenance.

To use this manual effectively, you should have a working knowledge of XML
and java scripting.
t.It! Installation Guide 3/14/00 1-1

Organization of the Manual

This manual is organized around the main functions associated with tailoring
Get.It!. The following chart shows you which parts of the manual you need to
reference to find the information you need.

To Find This Look Here

Background information; how to use this
manual

Chapter 1: Introduction

Information about the Archway Architecture;
archway requests; scripting; the Document
Manager; basic information about
weblications.

Chapter 2: Get.It! Architectural
Overview

Introduction to document schema
definitions; definition of a document
schema; and using a schema in a
weblication.

Chapter 3: Introduction to
Document Schemas

Steps on how to tailor Get.It!; what to do before
you change anything; where to save your
changes; changing scripts; changing schemas;
changing components of a weblication;
integrating a new module into Get.It!

Chapter 4: Tailoring Get.It!

The weblication structure; descriptions of
individual elements and attributes (tags) used
in documents; reusable form components.

Appendix A: Weblication
Reference

Document schema files; schema attributes;
tags you can use in schemas.

Appendix B: Document Scheme
DTD

Contacting Peregrine Systems. Appendix C: Contacting
Peregrine Systems
1-2 3/14/00 About this Manual

Conventions Used in this Manual
Most screen shots in this manual come from the Windows version of Get.It!.
The action you should take on the window is usually explained in the step
below the sample. If information is printed next to the window, it is important
and you should pay special attention to it. For example:

Buttons, Directories, and File Names

The following conventions are used when describing buttons on the windows,
paths for directories, and file names.

• Buttons you click on are shown in bold such as “Click Next.”

• Directory paths are shown in italics, such as C:\Program Files\getit\. The
directories used in this manual are the default directories assigned during
the installation. If you change the directory into which you install Get.It! or
JRun, make sure you make note of the correct directory and replace the
default path with the one that is correct for your system.

• File names are also shown in italics, such as login.asp.

Fig. 3-8 Adding a field to a form.

Make sure your
form statistics are
displayed. See
“Showing Form
Information” on
page 4-3 for
instructions
Introduction 3/14/00 1-3

• When showing XML codes in the samples, “...” is often used to signify that
some of the lines have been removed because they are unnecessary to the
topic being discussed. The samples of code are not entire files; they are only
representative of the information being discussed in that section.
1-4 3/14/00 Conventions Used in this Manual

Ge
Chapter 2
Get.It! Architectural Overview
This document introduces the architecture behind Get.It!, Peregrine Systems’
product suite that includes applications like Get.Resources! and
Get.Service!. The Get.It! suite is built on top of the Archway architecture.
This architecture offers a simple and extensible way of creating new
applications and interfacing with Peregrine's existing systems, including
AssetCenter and ServiceCenter.

The architecture has been designed with specific goals:

• Offer services to everyone in an organization

• Offer access everywhere users need it

• Offer support related to everything in the infrastructure that helps
employees get things done

These goals mean that the Get.It! architecture is designed to make services
available to users through common interfaces like Web Browsers, handheld
computing, and even mobile phones. The applications are designed to provide
a wide range of services, from helping a user with a PC problem, to allowing
the creation of a purchase request, to reporting a problem with the employee's
office space. Peregrine's Infrastructure Management applications offer many
of these services, and the Get.It! suite makes the services available to
everyone, everywhere.
t.It! Tailoring Guide 3/15/00 2-1

High Level Architecture
Get.It! applications and interfaces are implemented using basic building
blocks that include:

The following diagram illustrates the architecture:

HTTP A simple and widely supported protocol for sending client
requests to a server. Variations such as HTTPS provide
security as well.

XML This rising technology is a very natural way to represent data
rich documents.

Commercial web
servers

The services provided by the Archway architecture can be
served from any commercial Web Server, including IIS,
Apache, Netscape Enterprise Server, or the Java Web Server.

Common clients Applications can be built to be deployed via Web Browsers (IE,
Netscape), handheld devices (Palm Pilot), or mobile phones
(through HDML).

Fig. 2.1 The architecture
2-2 3/15/00 High Level Architecture

At the center of the architecture is a component named Archway. This
component is designed for a simple purpose: it listens to HTTP requests from
arbitrary clients, routes the requests to an appropriate server, and returns
data or documents. The requests supported by Archway can vary, but they
fundamentally consist of queries, data updates, or system events.

For example, a client can contact Archway and ask to query ServiceCenter for
a list of tickets. Another client could contact Archway and supply it with a new
purchase request that should be entered into AssetCenter’s database. Yet
another client could contact Archway to open a new problem ticket through an
Event Services event (e.g., a PMO).

All requests and responses are formatted using XML (Extensible Markup
Language). XML provides a human readable self-describing syntax for
defining documents. For example, a problem ticket expressed in XML could
appear as follows:

<problem>
 <number> PM5670 </number>
 <contact> Joe Smith </contact>
 <description> My printer is out of paper </description>
</problem>

Clients that interact with Archway can do anything they need with the XML
that is returned as a response. Very frequently, the client initiating the
request is a user interface such as a Web Browser. Such a client could easily
display the XML documents returned by Archway. However, to be of better
use, the XML documents are often displayed within a formatted HTML page.
This is accomplished by using popular and commercially supported
technologies such as Microsoft’s ASP (Active Server Pages) or Java’s JSP
(Java Sever Pages).

Both JSP and ASP provide a syntax for creating HTML pages that is pre-
processed by the web server before being sent to the browser. During this
processing, XML data obtained from Archway is merged into the HTML page.
Later in this document we introduce the related concept of a Weblication. A
Weblication is a term used to refer to an application running on the Web.
Archway’s architecture includes special support for automatically generating
the pages (i.e. HTML, JSP) that make up a Weblication.
Get.It! Architectural Overview 3/15/00 2-3

Archway Internal Architecture
The internal design of Archway is simple and very flexible. Archway is
implemented as a Java servlet--a Java application that is executed by a web
server. HTTP requests sent to the Web Server are forwarded to the Archway
servlet for processing. When the processing is done, the web server returns the
output generated by Archway.

Each request is interpreted to determine its destination. Specifically, Archway
is able to communicate with a variety of back-end systems like AssetCenter or
ServiceCenter. Requests can be handled in three ways:

1. A request can be sent directly to an adapter that talks to a back-end
server. For instance, a query request for opened tickets could be forwarded
to an adapter capable of communicating with ServiceCenter.

2. A request can be sent to a script interpreter hosted by Archway. This is a
very powerful feature. It allows Peregrine and customer developers to
define their own application specific services. Within a script, calls can be
made back to Archway to access the back-end system with database
operations and events.

3. Finally, a request can be sent to a component known as a Document
Manager. This component provides automated services for putting
together logical documents.
2-4 3/15/00 Archway Internal Architecture

The following diagram illustrates the internal Archway architecture.

As illustrated, Archway communicates with back-end systems with the help of
specialized adapters that support a predefined set of interfaces for performing
connections, database operations, events, authentication, etc. Currently,
adapters have been written for AssetCenter and ServiceCenter; however,
preparation have been made for writing adapters for other Peregrine products
and for external systems. The existing adapters utilize DLLs for each product
to accomplish their communication.

Archway

Script Runner
Adapter

SCAdapter ACAdapter

JS JS

sccl32.dll aamapi.dll

DocManager

Schema Schema

Fig. 2.2 Archway’s internal architecture
Get.It! Architectural Overview 3/15/00 2-5

Messages can be routed to a script interpreter hosted by Archway. The
interpreter supports ECMA Scripts, a standardized language that is also
known as JavaScript or JScript.

Finally, messages can be routed to the Document Manager component. This
component reads special schema definitions that describe application
documents for logical entities like a Purchase Request, a Problem Ticket, or a
Product Catalog. The Document Manager uses the schemas to automatically
generate database operations that query, insert, or update such documents.

Archway Requests

Archway supports a variety of requests, all of which are based on two basic
technologies: HTTP and XML. The HTTP protocol defines a simple way for
clients to request data from a server. The requests are stateless and a
client/server connection is maintained only during the duration of the request.
All this brings several advantages to Archway, including the ability to support
a large load of requests with the help of any of today’s commercial Web
Servers.

Another important advantage is that any system capable of making HTTP
requests can contact Archway. This includes Web Browsers, of course. But in
addition, all modern programming environments support HTTP. This makes
it very simple to write new adapters that communicate with Peregrine’s
servers without the need of specialized APIs.

From a simple point of view, an HTTP connection consists of:

• A client request

• A server response

The messages exchanged normally have a number of header lines and some
content lines. For this discussion, lets focus on two principal parts of a
request:

Query String This represents the parameters sent along with the URL for
the HTTP connection.

For instance, consider the following HTTP URL:
http://prgn/archway?hello&world. This URL is made up of a
server locator (http://prgn/archway) and a query string
(hello&world).

Content A request can also include an arbitrary amount of data
appended to the request. This data could follow any format,
but for Archway, the data is always formatted as XML.
2-6 3/15/00 Archway Internal Architecture

Archway uses the query string of a request to determine what it has been
asked to do. The following query string syntax is expected:

archway?target.command¶m=value¶m=value&…

Let’s consider each part of the request.

The following are some sample URLs that illustrate the power of contacting
Archway with HTTP requests that return XML documents. These samples are
intended as introduction. See Chapter 4, "Tailoring Get.It!." for more details
regarding the construction of Archway HTTP requests.

archway?sc.query&_table=probsummary&priority.code=1

This sends a query request to ServiceCenter for all records in the
probsummary table with a with priority code value of 1.

archway?ac.query&_table=amProduct&_return=Brand;mPrice;Model&_count=2

This sends a query request to AssetCenter for the first two records in the
amProduct table. Only the Brand and mPrice fields are returned for each
record.

 archway?sc.pmo&contact.name=David+Baron&$ax.field.name=This+is+a+demo

The sample above creates a new ticket in SC by sending a pmo request with
two parameters.

 archway?test.helloWorld&greeting=Hollo

This sample sends a helloWorld request to a script object named test.

Target The name of a target object that should handle the request.
Remember that Archway’s job is to forward requests to a
system and return the response. Thus, the target could be
ServiceCenter, AssetCenter, etc. As we will see, the target may
also be the name of a Script Object that contains customizable
logic for handling the request.

Command The command describes the action that the target object
should take. By default, there are five basic actions that may
be supported: query, update, insert, delete, and event.
However, when the target is a Script Object, the action can be
any function defined by the script.

Param=Value An arbitrary number of parameters can be passed along with
the request. The encoding of these parameters is the same as
that used by CGI (the common gateway interface). This makes
it seamless to make Archway calls from a web page. As with
CGI, data sent by a browser is provided by fields embedded in
an HTML form. This data is automatically formatted as a CGI
request in a way that Archway understands.
Get.It! Architectural Overview 3/15/00 2-7

You could try URLs like these from a web browser to see first hand how the
Archway requests work. The figure below illustrates this by showing the XML
results of a query for products from AssetCenter.

Scripting

A great deal of Archway’s flexibility and power comes from its support of the
ECMA Script language. This enables application developers to define
arbitrary code that handles client requests. ECMA Script is a standard
version of the language originally made popular by Netscape (JavaScript) and
later adopted by Microsoft (JScript).

ECMA Script is a very powerful language, but it allows for simple tasks to be
accomplished in a simple manner. Its syntax is similar to that of Java, and yet
traditional JavaScript is not Java. While this is true, one interesting aspect of
Archway’s ECMA support is that it includes the ability to access any arbitrary
Java object. This makes Archway scripts even more powerful since they have
all the power of Java available within the easy programming syntax of ECMA
Script.

It is beyond the scope of this document to describe all aspects of ECMA
Scripting. One reasons for adopting this language is that it is standard, well
known, and widely documented. Numerous references and guides exist for the
language. To start, the ECMA web site can be located at http://www.ecma.ch.
A good book with very comprehensive language description and references is
JavaScript - The Definitive Guide by David Flanagan (O’Reilly).

Fig. 2.3 Testing URLs from a web browser
2-8 3/15/00 Archway Internal Architecture

ECMAScript, JavaScript, and JScript tend to vary in some way or another.
This is especially true in the APIs for what is known as Client Side
JavaScript. This is the type of scripting supported by a browser to allow
dynamic manipulation of what gets displayed within a web page. However,
none of this really matters in the context of Archway. Archway uses what is
known as Core JavaScript. This is the subset of the language that is
independent of any client side (Browser) features. Archway executes all script
code on the server while processing a request. When the script is done
executing, its response is sent back as XML to the client.

Much of the ability to write useful scripts comes from a very small set of
Scriptable Objects that are supplied with the Archway architecture. Two of
the main objects provided are:

Below is a sample ECMA Script that illustrates the ease of programming
provided by these objects. The script executes a query against AssetCenter:

function getCatalog(msg)
{
 var msgProducts;
 msgProducts = archway.sendQuery(
 "ac", "SELECT Brand,mPrice FROM AmProduct", 0, 10);
 return msgProducts;
}

Here is another sample script that sends a PMO event to ServiceCenter:

function getCatalog(msg)
{
 var msgEvent;
 var msgResponse;

 msgEvent = new Message("pmo");
 msgEvent.set("contact.name", msg.get("UserName"));
 msgEvent.set($ax.field.name, msg.get("Description"));
 msgResponse = archway.sendEvent("sc", msgEvent);

 return msgResponse;
}

Messenger This object allows any script to send messages back to
Archway. For example, through the messenger, a script can
ask Archway to send a query to a AssetCenter or event to
ServiceCenter.

Message This object encapsulates XML documents in a very easy to use
API. With this object, scripts can very easily build and
interpret complex XML documents.
Get.It! Architectural Overview 3/15/00 2-9

These examples are shown to demonstrate the basic concept of scripting in
Archway. Details on script design and the Object interfaces that they may use
are documented in Chapter 3, "Introduction to Document Schemas."

The Document Manager

The Archway uses XML to exchange data and documents between clients and
the supported back-end systems. Fundamentally, the XML data returned by
Archway is obtained by executing queries against one or more systems. The
queries could be executed by a direct URL request or indirectly within an
ECMA Script.

Simple queries are only capable of returning record sets of data. However,
clients are more often interested in exchanging documents. A Document is a
logical entity built up of several pieces of data that can come from various
physical database sources. For example, consider a Product document.
Products have a number of individual fields such as Price or Brand. They
also may have collections of other related documents, such as a collection of
Vendors. Below is sample XML for a Product document:

<product>
 <brand> IBM </brand>
 <model> ThinkPad 770 </model>
 <price> 1250 </brand>
 <vendors>
 <vendor>
 <name> Best Buy </name>
 <phone> 267-8967 </phone>
 </vendor>
 <vendor>
 <name> Super City </name>
 <phone> 267-8967 </phone>
 <vendor>
 </vendors>
</product>

Building such a Product document can certainly be accomplished by running
several queries and putting the results together in an XML message. An
ECMA script is a perfect place to code such logic.

However, there is an even better way to build documents with the use of
Archway’s Document Manager. This component provides the very important
service of processing logical Document Schema Definitions and automatically
generating queries or database operations to create and process these
documents.
2-10 3/15/00 Archway Internal Architecture

Here is a small example of a document schema that defines what Product
documents should look like:

 <document name="Product">
 <attribute name="Id" type="num"/>
 <attribute name="Brand" type="string"/>
 <attribute name="Model" type="string"/>
 <attribute name="Price" type="money"/>

 <collection name="Suppliers">
 <document name="Supplier">
 <attribute name="Name" type="string"/>
 <attribute name="Phone" type="string"/>
 </document>
 </collection>
 </document>

Note: The principal concept to notice is that a document schema describes the
fields and collections that make up a document. The details on how to
construct document schemas are documented in Chapter 3,
"Introduction to Document Schemas.".

The Document Manager can be accessed with direct URL calls to Archway, as
well as from ECMA scripts. Here is a sample script that retrieves Product
documents:

function Product(msg)
{
 return archway.sendDocQuery("ac", "Product", msg);

}

Weblications

So far we’ve described architecture components that make up the plumbing of
Get.It! applications. If an application is to be deployed on a Web Browser,
there remains one piece that must be defined to create the application: the
screens and the flow for navigating among them.

Web Browsers display screens defined in HTML. The screens can contain data
retrieved from the server, and they may also provide entry fields for sending
input data back to the server.

To understand how Archway fits in with the creation of browser interfaces,
let’s start by considering the example of setting up a web page that lets a user
create a new ServiceCenter ticket. Defining this page in HTML might appear
as follows:
Get.It! Architectural Overview 3/15/00 2-11

<form action="http://prgn/archway?sc.pmo" method="GET">
 Name: <input type="text" name="contact.name">

 Description: <input type="text" name="$ax.field.name">

 <input type="submit" value="Open"/>
</form>

Even if you are not familiar with HTML, the code above should be simple to
understand. The first line defines an HTML form. All forms have an action
property that tells the browser where to send the data typed in by the user. In
this case, we see that data will be sent to http://prgn/archway?sc.pmo. The next
two lines contain input fields, each associated with a named field:
contact.name and $ax.field.name.

In essence, the HTML above sends a pmo message to ServiceCenter though
Archway. The data typed into the entry fields are passed in as PMO
parameters.

What about using HTML to display data retrieved via Archway? As
mentioned earlier, Archway is designed to return XML documents that can be
merged into an HTML page using technologies such as JSP or ASP. Below is a
sample snippet of JSP that sends Archway a query for ServiceCenter tickets
and displays the results in an HTML table.

 <html>
 <table>
 <%
 Message msg = messanger.sendQuery(
 "SELECT number,brief.description FROM probsummary");
 List list = msg.getList("probsummary");
 for (int iCurrent = 0; iCurrent < list.getLength(); iCurrent++)
 {
 %>
 <tr>
 <td> <%= list.get(iCurrent, "number") %> </td>
 <td> <%= list.get(iCurrent, "brief.description") %> </td>
 </tr>
 <%
 }
 %>
 </table>
 </html>

The code above is basically an HTML page with Java code mixed in. The Java
code uses a few objects defined by Archway. These are shown in bold, and they
include a messenger that talks to Archway, a message class that encapsulates
XML responses, and a list object that allows easy navigation of a result set.

While these two samples of code are interesting to understand, it is not
necessary to learn much if anything about HTML, JSP, or ASP development to
2-12 3/15/00 Archway Internal Architecture

write a Weblication with Archway. This is because Archway provides some
additional tools that automatically generate the underlying HTML and JSP
code that makes up an application.

Before introducing these tools, lets consider the Get.It! Weblications as an
example. Below is a screenshot of a page in Get.Resources. The page shows a
table with results from a catalog search.

.

This page is part of a Get.It! Weblication. As such, it conforms to a predefined
template that determines a regular layout and placement of several
components within a browser page. The actual template is customizable, and
therefore not all Weblications have to look as the one pictured above.

The creation of the page above is made possible by three ingredients:

1. XSL Layout templates - These templates define the layout and
organization of items in a Web page. They are defined using the
Extensible Stylesheet Language (XSL). This is an XML based language
that is becoming more and more widely used to format Web pages out of
XML data. Out of the box, Peregrine may supply one or more XSL
templates. Customers could choose among templates in a similar way that
tools like Microsoft Word or Powerpoint allow writers to choose from
predefined document types or templates.

Modules

Form Title

Form
Contents

Application
TItle

Activities

Actions

Fig. 2.4 Sample Get.It! Weblication window
Get.It! Architectural Overview 3/15/00 2-13

To learn more about XSL, you can consult the W3C web site. Their XSL
specification is found at http://www.w3.org/TR/1999/WD-xslt-19990421.html.
Microsoft also posts information on XSL at
http://msdn.microsoft.com/xml/xslguide/.

Note: Microsoft’s XSL support varies slightly from the W3C specs. Therefore,
consult the W3C specs for the most accurate information. Because
Archway’s support for XSL is implemented on the server, browser
support is not necessary or relevant.

2. Cascading Style Sheets (CSS) - All aesthetic aspects of a web page are
defined separately in a CSS file. This includes specifications for colors,
fonts, alignment rules, and even some special effects.

3. Weblication Definition - The actual application specific portions of a
Weblication are defined using a concise high level XML description.

Defining Weblications in this manner has several advantages. First, it is much
simpler than having to hand code numerous HTML and JSP pages. Second, it
makes it easy to define a consistent look and feel to a web site. A simple
change to a template is quickly propagated to what could be hundreds of page
files. Finally, the pages created automatically for a Weblication include a
number of features to deal with user authentication, security, access rights,
and session tracking.

To illustrate this further, here is the XML Weblication description for the form
displayed above:

<form name="catalog" onload="procure.getCatalog">
 <title> Go Get Desktop </title>
 <instructions>
 Here are the items found in this category. You may click on any
 one to see a detailed description, or you may simply enter a
 count to add items to your order.
 </instructions>
 <table record="Product" rows="10">
 <link target-form="product" field="Id"/>
 <column label="Count" field="nCount" type="select">
 <column label="Brand" field="Brand"/>
 <column label="Model" field="Model"/>
 <column label="Price" field="Price"/>
 </table>
 <actions target-activity="review">
 <submit name="bTable"> Add to shopping cart </submit>
 <back/>
 </actions>
</form>

Just this small amount of XML is responsible for almost the entire window in
figure 2.4. An Archway tool parses this definition and generates the necessary
HTML and JSP code that creates proper input to the browser. Compare this to
2-14 3/15/00 Archway Internal Architecture

the JSP and HTML code shown at the top of this section, and it is quickly
evident that the Weblication approach provides a much simpler way to define
applications.

There are a few things worth highlighting in this XML definition. First notice
that the form has an onload property. It specifies that when constructing the
page, an Archway script named getCatalog should be invoked. This script is
defined to return Product documents.

For instance, each product could have the following XML definition:

 <Product>
 <Brand> X </Brand>
 <Model> Y </Model>
 <Price> Z </Price>
 </Product>

This XML data is easily incorporated into the HTML page. The form defines a
table element that references fields in the XML Product description, and
Archway takes care of generating the proper code to extract the fields from the
XML documents.

Again, this is just an introduction to the concept of a Weblication. This is
probably the most important part of the Archway architecture to understand
because it is directly related to the ability to customize the Get.It! applications
or to define new ones. Details on the Weblication definition language are
documented in the Appendix A, "Weblication Reference." In addition, related
information can be found in Chapter 4, "Tailoring Get.It!."
Get.It! Architectural Overview 3/15/00 2-15

2-16 3/15/00 Archway Internal Architecture

Ge
Chapter 3
Introduction to Document Schemas
The Archway "Document" class provides Archway Weblications and scripts
with the very important service of processing logical Document Schema
Definitions and implementing the physical database access operations for
querying and constructing documents.

For example, consider a "Product" document. Products have a number of
individual fields such as "Price" and "Brand." They also have collections of
other sub-documents, such as a collection of "Vendors," etc.

The queries that create a document vary depending on the physical schema of
the system hosting the "Product" data (Get.It! supports AssetCenter and
ServiceCenter communications but you can integrate with some other
products as well). To understand how to construct these queries, the class
reads an XML "Document Type Definition" file.

The DTD file contains Base Document Definitions that define the fields,
collections, and nested documents that make up a logical Document.

In addition, the DTD file defines Derived Document Definitions with physical
database schema information for building a base document out of data found
in a specific system (like AssetCenter, ServiceCenter, etc.) A Derived
Definition may define physical table and field information for some (but not
all) of the fields in a Base Document.
t.It! Tailoring Guide 3/13/00 3-1

Definition of a Document Schema
A document is defined as a collection of:

• One or more Attributes. Each attribute is in essence a "field" in the
document. For example, a Product document may have a Price attribute.

• Zero or more nested Documents. This allows documents to be nested
inside each other recursively.

• Zero or more nested Collections. A collection is a Document attribute
which in turn has a list of one or more nested documents. For instance, a
Product may have a Suppliers collection with one or more Supplier
documents.

The following is an example that demonstrates most elements of the XML
schema for defining documents:

<documents name="base">

 <!-- Product Document -->
 <document name="Product">
 <attribute name="Id" type="num"/>
 <attribute name="Brand" type="string"/>
 <attribute name="Model" type="string"/>
 <attribute name="Price" type="money"/>

 <!-- Here is an example of a nested document reference -->
 <collection name="Suppliers">
 <document name="Supplier"/>
 </collection>
 </document>

 <!-- Supplier Document -->
 <document name="Supplier">
 <attribute name="Name" type="string"/>
 <attribute name="Price" type="money"/>
 </document>

</documents>

Attached is a more complete sample XML DTD of a Product document. The
sample shows some additional, important concepts such as:

• Schemas are organized into "base" and "derived" versions. In the examples
that follow, the first is a base schema and the second is a derived schema.

• Derived (system specific) schemas map to a specific system and are used to
generate queries. A derived schema must map to a system from which the
information will be accessed.

• Nested documents can be defined in place or as references.
3-2 3/13/00 Definition of a Document Schema

<?xml version="1.0"?>

<!--===
 Name: schema.xml
 Author: David Baron
 Date: 10/99
==-->

<schema>

<!--===
 Generic Schema Definitions
==-->

<documents name="base">

 <!-- Product Document -->
 <document name="Product">

 <attribute name="Id" type="num"/>
 <attribute name="Certification" type="string"/>
 <attribute name="Category" type="string"/>
 <attribute name="Brand" type="string"/>
 <attribute name="Model" type="string"/>
 <attribute name="Comment" type="string"/>
 <attribute name="Price" type="money"/>
 <attribute name="Description" type="string"/>
 <attribute name="PhotoId" type="number"/>
 <attribute name="IconId" type="number"/>

 <!-- Here is an example of a nested document reference -->
 <collection name="Suppliers">
 <document name="Supplier"/>
 </collection>

 <!-- Here is an example of a nested document definition -->
 <collection name="Stocks">
 <document name="Stock">
 <attribute name="Name" type="string"/>
 <attribute name="Quantity" type="string"/>
 </document>
 </collection>

 </document>

 <!-- Supplier Document -->
 <document name="Supplier">
 <attribute name="Name" type="string"/>
 <attribute name="Price" type="money"/>
 <attribute name="Delivery" type="time"/>
 <attribute name="Available" type="number"/>
 <attribute name="URL" type="url"/>
 </document>

<!-- Catalog Document -->
 <document name="catalog">
 <collection name="Products">
 <document name="Product"/>
 </collection>
 </document>

</documents>

This is an example
of a nested docu-
ment as a reference.

This is an example of
a nested document in
place.

In a “base” schema
the document is
defined within the
schema itself.
Introduction to Document Schemas 3/13/00 3-3

<!--===
 AssetCenter Schema Derivations
==-->

<documents name="ac">

 <!-- AC Product Document -->
 <document name="Product" table="amProduct">

 <attribute name="Id" path="lProdId"/>
 <attribute name="Catergory" path="Category.Name"/>
 <attribute name="Comment" path="Comment.memComment"/>
 <attribute name="Price" path="mPrice"/>
 <attribute name="PhotoId" path="lPhotoId"/>
 <attribute name="IconId" path="lIconId"/>
 <attribute name="Description" path="cf_Description"/>

 <collection name="Stocks">
 <document name="Stock" table="amProdStockLine">
 <attribute name="Name" path="Stock.Name"/>
 <attribute name="Quantity" path="lTotalQty"/>
 </document>
 </collection>

 </document>

 <!-- Supplier Document -->
 <document name="Supplier" table="amProdSupp">
 <attribute name="Name" path="Supplier.Name"/>
 <attribute name="Price" path="mPrice"/>
 <attribute name="Delivery" path="tsDelivDelay"/>
 <attribute name="Available" path="lQtyAvail"/>
 <attribute name="URL" path="Product.fv_ManufacturerURL"/>
 </document>

</documents>

<!--
===
 Done
==-
->

</schema>

In a derived schema,
the document is cre-
ated by information
which is accessed from
another system. In this
example, the data will
be accessed in the
“amProduct” table from
within AssetCenter.
3-4 3/13/00 Definition of a Document Schema

Using Schemas in a Weblication
In using Document and Schema support, "document" type archway messages
are available to ECMA scripts. Here is a script that queries for a list of
Product documents (sendDocQuery):

function getCatalog(msg)
{
return archway.sendDocQuery("ac", "Product", msg);

}

The DocumentManager also supports SQL like queries. For instance, you can
query as in the following example:

 archway.sendDocQuery("ac",
 "SELECT Brand,Description FROM Product WHERE Category=’Desktop’
 ORDER BY Brand", 0, -1);

You can also accomplish Document querying in the following manner:

 msgParam.set("_return", "Brand;Description");
 msgParam.set("Category", "Desktop");
 msgParam.set("_sort", "Brand");
 archway.sendDocQuery("ac", "Product", msgParam, 0, -1);

Use the SQL queries sparingly, especially in a Weblication, because this
method defeats one of the main purposes for setting up the
DocumentManager: In a Weblication setting, we do not want hard coded
queries in our scripts.

All fields that go in the "msgParam" are served for us by the Weblication
forms. This makes tailoring much easier. However, for certain script
situations, the new syntax offers some coding comfort.

Other calls include sendDocInsert and sendDocUpdate. See the Messenger API
for details.

The "document" object works together with data provided by wbuild to do the
following:

• Automatically create all the queries that build up a document.

• Use parameters passed into a script to filter the resulting Document result
set. For instance, to search for Products with a particular Brand, Model, or
Certification, the calling Weblication simply needs a form with Brand,
Model, or Certification fields. These are automatically added to the query if
they are applicable to the document search
Introduction to Document Schemas 3/13/00 3-5

• While wbuild generates forms from an XML Weblication, it builds a list of
document fields used by the form. This list is passed to the document
search, allowing the Document class to limit the queries to those fields that
will be used. This is very significant as it can eliminate the need for
numerous sub-queries.
3-6 3/13/00 Using Schemas in a Weblication

Ge
Chapter 4
Tailoring Get.It!
The Get.It! applications provided by Peregine are designed to be functional
out-of-the-box. However, you may want to customize and tailor the
applications to better fit your company’s needs.

You can tailor Get.It! to do almost anything you need. The types of tailoring
include things such as:

• Changing the wording or labels in a form

• Adding or removing fields to a form

• Adding fields to the Documents exchanged with the system

• Changing the behavior of a script

• Changing the colors or fonts of a Weblication

• Changing the layout of a Weblication

• Adding or removing modules

This chapter describes how to customize individual features of the
weblications appearance and performance. It guides you through these
different scenarios and provides several examples.

Archway Architecture

The Archway architecture is designed to accommodate the types of tailoring
mentioned above.

Before you tailor Get.It!, we highly recommend you have an understanding of
the archway architecture. See “Get.It! Architectural Overview” on page 2-1 for
explanations of several concepts and terms that are used throughout this
chapter. For a description of the weblication tags, see the Weblication
Reference at the back of this book.
t.It! Tailoring Guide 3/16/00 4-1

Weblication Toolset
Before doing any customization, it is useful to review the various ingredients
that make up a Weblication. These are introduced in more detail in the Get.It!
Architectural Overview.

The components listed here play different roles in the overall Weblication
definition. The deployment of a Weblication requires a compilation step that
takes all of the ingredients and generates a set of web pages that are installed
into a web server directory:

Weblication XML
Definitions

The XML files that define application modules, activities, and
forms.

Archway ECMA
Scripts

ECMA script files that implement application specific
behavior.

Document Schema
Definitions

The XML definitions that describe the data that should be
queried or updated to create XML documents that can be
interchanged with Archway by a client such as a Weblication.

Stylesheets The colors and fonts used for pages in a Weblication.

Layout Templates Define the layout and component construction rules for
creating pages in a Weblication.

WBUILD Executable tool used to create a Weblication.

Before you make
changes to the
weblication, use the
Admin Module to set
“Show form info” in
the Weblication Set-
tings and “Debug
mode” in the ECMA
Scripts Execution
Settings to true.

When you make changes to a Weblication definition, you need to re-generate the web
pages by running wbuild from a command prompt at the directory ~getit/bin/.

(XSL)

(CSS)

Fig. 4.1 The Weblication toolset at work
4-2 3/16/00 Weblication Toolset

Before You Make Changes
Since the source for the Weblication is provided with the product, you can
make any changes you want to the Get.It! weblication. Before you start to
modify Get.It! there are a few items you will need to know regardless of the
change you are making. These tips make the process of modifying Get.It!
much easier.

Showing Form Information

In a Weblication, a form contains detail fields for the product, including the
model, brand, list price, etc. We have created an option in the Settings activity
in the Administration Module that allows you to display information you can
use to find the form you want to change.

If the Show for info” is set to true, a box is displayed on the left of the window
as shown in the sample below:

Use the form statistics to determine the XML file you want to use in your
modification and to search this file to find the exact for to change.

Module= The name
of the XML file in the
...getit/apps/ direc-
tory.
Activity and Form=
Use these as search
criteria to locate the
exact form you want
to change.

Fig. 4.2 Showing the forms information
Tailoring Get.It! 3/16/00 4-3

Now that you know how to find the form you want to modify, lets see how you
ensure the changes you make are not removed when you apply a future
release of Get.It!

Debugging the Changes You Make

We recommend you set all “debug” options in the archway.ini file to true to
make it easier on yourself to determine what is going on in the changes you
make.

1. Log in to the Get.It! Administration Module by logging into Get.It! with a
user ID that has administration rights.

2. Click Admin to access Get.It!’s Administration Module.

3. In the activities, click Settings.

4. In the section titled General Execution Options, set the Debug logging
option to true.

5. In the section titled ECMA Script Execution Settings, set the Debug Mode
option to true.

6. Click Save to save your changes (scroll down to below the settings table to
find the Save button).

7. Be sure to set these options back to false before you release your changes
your entire user base.

Where to Make the Modifications

If you change the files we send with the Get.It! weblication, your changes will
be lost the next time you install a new version of Get.It! To keep your changes
safe, we have devised a method for you to use.

1. Create a directory called “user” within the directory where the original file
resides. (So if you want to change the request.xml file in the ...getit/apps/
directory, you would create a directory called ...getit/apps/user.) If you
wanted to update a schema (directory ...getit/schema), you would create a
directory called ...getit/schema/user. If you change a script, save the files
in the directory you specified in the Get.It! Administration Module
Settings.

2. Open the file you want to change. This could be a schema file, an
application file, or a script.

3. Use the Save As command to save the file into the new “user” directory.

4. Make your changes and save the file.
4-4 3/16/00 Before You Make Changes

5. If you have changed an application, tell Get.It! to use your new file instead
of the one provided out-of-the-box by entering an import command in the
user.xml file in the ...getit/apps/ directory.

 <import href:”user/filename.xml”/>

where filename = the name you gave the file when you saved it into the
“user” directory)

6. Run wbuild.

Information You Must Have

If you create your own file, or if you want to save just the part of the module
you change in the ...getit/apps/user/ directory, there are four items you must
have at the beginning and end of every file. (In the sample below, replace xxx
with the name of the module and yyy with the name of the activity.)

 <module name="xxx">
 <activities>
 <activity name="yyy">
 <forms>
 ...

 </forms>
 </activity>
 </activities>
 </module>

Running the wbuild Command

The wbuild command, as explained earlier in this chapter, takes all of the
ingredients and generates a set of web pages that are installed into a web
server directory

1. Display a command prompt. One method of doing this is to use
Start>Programs>Command Prompt. Change the directory to
C:>Program Files\GetIt\bin. (To change the directory, first ensure you
are at a C:> by typing C: and pressing Enter. You should see C:\> as your
prompt. Then type cd program files\getit\bin and press Enter. You
should now see C:>Program Files\GetIt\bin> as your prompt.)

2. Type wbuild at the prompt and press Enter. The wbuild command will
list all the processing it is going through. When you see “Done” the
processing is complete. Minimize this window.
Tailoring Get.It! 3/16/00 4-5

Changing the Contents of a Form
Each form in a Weblication is defined by a <form> element in its appropriate
module file. This is where form contents are declared, including things like:

• Title

• Instructions

• Fields

• Menus

• Tables

• Links

• Action buttons

You can add to or delete from these contents. In the example below, we will
add a field to a form.

Adding a Field to a Form

To add a field to a form, consider the following example. The sample below is
taken from the Get.Resources! application, and it shows the details for a
specific product in the company catalog.

Make sure you store
you changes in a
“user” directory. See
“Where to Make the
Modifications” on
page 4-4 for details.

Fig. 4.3 Adding a field to a form

Make sure your
form statistics are
displayed. See
“Showing Form
Information” on
page 4-3 for
instructions
4-6 3/16/00 Changing the Contents of a Form

The form contains detail fields for the product, including the model, brand, list
price, etc. The Form Statistics tells us exactly where to go for the form
definition: we’re viewing the product form in the catalog activity of the request
module (and, therefore, found in request.xml).

1. Open the request.xml file from the ...getit/apps directory.

2. Use the Save As command to save the file into your ...getit/apps/user
directory.

3. Find the form named product in the activity named catalog. The form is
defined in the following manner:

<form name="product" onload="procure.getProduct">
 <title field="Model"> $$(Model) </title>
 <fields>
 <field name="image" type="image" field="PhotoId"/>
 <break/>
 <field name="brand" label="Brand" field="Brand"/>
 <field name="description" label="Description" field="Description"/>
 <field name="price" label="List Price" field="Price"/>
 <field name="comments" label="Comments" field="Comment"/>
 <link name="infos" label="More Info" target-field="URL" window="true"/>
 <break/>
 <field name="vendor" label="Availability from Vendor"/>
 </fields>
 <table record="Supplier">
 <column label="Vendor Name" field="Name"/>
 <column label="Availability" field="Available"/>
 <column label="Delay" field="Delivery"/>
 <column label="Price" field="Price"/>
 </table>
 ...
 <actions target-form="additem">
 <submit> Add to shopping cart </submit>
 <back/>
 </actions>
</form>

4. Consider how to add a Delivery field to the form that displays the
average time it takes for the catalog item to be available once ordered.
This is achieved by adding a field entry to the form, as shown below. The
revised XML below contains this new field:

<form name="product" onload="procure.getProduct">
 <title field="Model"> $$(Model) </title>
 <fields>
 <field name="image" type="image" field="PhotoId"/>
 <break/>
 <field name="brand" label="Brand" field="Brand"/>
 <field name="description" label="Description" field="Description"/>
 <field name="price" label="List Price" field="Price"/>
 <field label="Delivery" field="Delivery"/>
 <field name="comments" label="Comments" field="Comment"/>

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
directory instead.
Tailoring Get.It! 3/16/00 4-7

 <link name="infos" label="More Info" target-field="URL" window="true"/>
 <break/>
 <field name="vendor" label="Availability from Vendor"/>
 </fields>
 <table record="Supplier">
 <column label="Vendor Name" field="Name"/>
 <column label="Availability" field="Available"/>
 <column label="Delay" field="Delivery"/>
 <column label="Price" field="Price"/>
 </table>
 ...
 <actions target-form="additem">
 <submit> Add to shopping cart </submit>
 <back/>
 </actions>
</form>

5. After making this modification, run wbuild to regenerate the form. See
“Running the wbuild Command” on page 4-5 if you need instructions.

The modified screen in the browser is displayed below.

Fig. 4.4 With the new field.
4-8 3/16/00 Changing the Contents of a Form

Data for the New Field (Scripts)

A remaining question is where does the Delivery field actually come from?
All data available to a script is provided by its onload script. This is defined in
the form’s declaration:

 <form name="product" onload="procure.getProduct">

As shown, the form in our example relies on the getProduct function of the
procure script file. This script is designed to return product documents. The
product document schema includes the Delivery field we just added.

Of course, this tells us that the type of change described in this section is
possible as long as the data for a new field is already provided by the form’s
script. This is not always the case. In order to display new fields, it is
sometimes necessary to modify Document Schemas or even the script logic.
The next two sections describe how to do this.
Tailoring Get.It! 3/16/00 4-9

Adding Fields to a Document
Most of the scripts in Peregrine Systems’ Weblications use Archway's
Document Manager to exchange data with back-end systems like
ServiceCenter or AssetCenter. See “The Document Manager” on page 2-10 for
an introduction on the Document Manager.

One of the main reasons for using the Document Manager is that it makes
customization possible without the need to modify database operations hard
coded in scripts. If your customization needs call for adding more data to a
document, you can do it by extending the appropriate Document Schema.

When the Field is not Defined in the Schema

To add a field that is not yet defined in the schema, consider the following
example. When a user enters a request in the Get.Resources! application, the
following screen queries for various fields describing the request:

The form allows the user to specify a request purpose, delivery date, cost
center, etc. Now let's assume that we want to add a new field to track the

Modifications of the
schema are
restricted to fields
that actually exist in
the database.

Fig. 4.5 Adding information to a schema
4-10 3/16/00 Adding Fields to a Document

requester’s Internal Credit Number - a company specific number given to each
employee.

The new company specific field obviously does not exist out-of-the-box in the
document associated with this form. The document used by this particular
form is the request document and the schema is the file that defines which
fields are available. Each schema file contains a generic document definition,
followed by one or more system-specific derivations. In other word, the first
portion of the schema defines the fields for Get.It!, and the second portion of
the schema maps the Get.It! field to the field in a table in one of the back-end
systems. To begin to add a new field:

1. Open the request.xml file from the ...getit/schema directory.

2. Use the Save As command to save the file into your ...getit/schema/user
directory.

3. Find the “request” generic document definition, which is shown below:

 <document name="Request">
 <attribute name="Id" type="num"/>
 <attribute name="ApprovalStatus" type="num"/>
 <attribute name="Budget" type="string"/>
 <attribute name="Comment" type="string"/>
 <attribute name="CostCenter" type="string"/>
 …
 </document>

4. To add our new Internal Credit Number, we start by inserting the field
into the “request” generic document definition:

 <document name="Request">
 <attribute name="Id" type="num"/>
 <attribute name="ApprovalStatus" type="num"/>
 <attribute name="Budget" type="string"/>
 <attribute name="Comment" type="string"/>
 <attribute name="CostCenter" type="string"/>
 <attribute name="ICN" type="num"/>
 …
 </document>

This new line defines a new numeric field named ICN. The field has been
added to the generic request schema definition. This definition is generic
because it is not tied to any specific back-end system. However, because
the Get.Resources! application is implemented on top of AssetCenter, we
also need to extend the AssetCenter specific request schema.

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
directory instead.
Tailoring Get.It! 3/16/00 4-11

5. Each schema file contains a generic document definition followed by one
or more system-specific derivations. You can see the AssetCenter schema
for request in schema/request.xml file. Here is the line added to that
definition:

 <documents name="ac">

 <!-- AC Request Document -->
 <document name="Request" table="amRequest">
 <attribute name="Id" field="lReqId"/>
 <attribute name="ApprovalStatus" field="seApprStatus"/>
 <attribute name="Budget" field="Budget.Name"
 link="lBudgId" linktable="amBudget" linkfield="Name"/>
 <attribute name="Comment" field="Comment.memComment"
 link="lCommentId" linktable="amComment"
 linkfield="memComment" linktype="hard"/>
 <attribute name="CostCenter" field="CostCenter.Title"
 link="lCostId" linktable="amCostCenter" linkfield="Title"/>
 <attribute name="ICN" field="Field2"/>
 …
 </document>
 </documents>

The purpose of entries in the AssetCenter specific schema is to define the
mapping between a logical document field and its AssetCenter physical
database counterpart. In this case, we’ve mapped the new ICN attribute to
Field2 in the amRequest table. Field2 is a customizable generic field in
the AC database, and in this example we have chosen to use it for storing
the ICN number.

6. Save the changes you made to the ...getit/schema/user/request.xml file.

7. After making this modification, run wbuild to regenerate the form. See
“Running the wbuild Command” on page 4-5 if you need instructions.

With just these two new lines in the request document schema, the
Weblication is now capable of tracking a new field with every request. Now we
can add the field to any form in the same way described in the previous
section.
4-12 3/16/00 Adding Fields to a Document

Changing Script Behavior
The Get.It! architecture is designed to minimize the need for script changes,
however, you can customize the logic of an Archway script. The Document
Manager minimizes the number of modifications you might make, because, as
described in the last section, you can modify the type of data returned by a
script by simply updating the appropriate Document Schema.

However, for those times when you must modify a script, the Archway’s script
model allows you to make modifications without having to alter the base code
shipped by Peregrine Systems. You just create your own version of the
function in a user-derived script. As with all other items you modify, store your
user-derived scripts in a directory separate from the scripts shipped by
Peregrine Systems. This directory is different in that you can choose where to
locate it via the Settings in the Administration module. The default is to look
for user scripts in ...getit/jscript/user/.

Changing a jscript

Consider the following example. The following screenshot shows a form in the
Resources module. The form is used to enter data describing a request.

Fig. 4.6 Changing jscripts.
Tailoring Get.It! 3/16/00 4-13

This form includes selection boxes that are populated with valid choices
obtained by queries against the database. For this example, we will add
another field to this form to capture the requester’s Department in the
company. To accomplish this, we will need to modify the form’s script to query
for a list of valid department names that can be shown in a new select box.

1. Determine which script is used. You can do this by looking at the form’s
onload script, which is specified in the form's XML definition. Use the
Form Statistics to determine where to look in the XML file. In figure 4.6
above, the form is defined in the submit activity of the request module.

2. Open the ...getit/apps/request.xml file.

3. Search for the form named submit, in the activity named submit. Here is
the form's declaration:

<form name="submit" onload="procure.getOrderParameters">

4. Determine the name of the jscript file by looking at the onload element.
The getOrderParameters function of the procure script is responsible for
gathering data for the form. The contents of the script can be found in the
procure.js script file.

5. Open the file called procure.js from the ...getit/jscript/ directory.

6. Save the file in the user directory you specified. The default is
...getit/jscript/user/.

7. Within this file, find the following code:

function getOrderParameters(msg)
{
 …
 // Get the list of Budgets
 msg = new Message();
 msg.add("_return", "Name");
 msg.add("_sort", "Name");
 msg = archway.sendDocQuery("ac", "Budget", msg);
 msgResponse.add(msg);
 …

8. Now you need to extend the work of the default script to include a new
query for company department names. The following is the new user
function in its entirety and then consider each of its lines of code:

function getOrderParameters(msg)
{
 var msgResult;
 var msgDepartments;

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
directory instead.
4-14 3/16/00 Changing Script Behavior

 // Call base function to perform standard queries
 msgResult = this.parent.getOrderParameters(msg);

 // Query for departments
 msgDepartments = archway.sendDocQuery(
 "ac", "SELECT Name from amEmplDept WHERE bDepartment=1");

 // Add departments to overall resopnse
 msgResult.add(msgDepartments);

 return msgResult;
}

9. Save your changes.

10. This defines a new function with the same name as the one we’re trying to
extend (getOrderParameters). The new function is stored in a new user
script file with the same name as the base script file (procure.js). By doing
this, we’re guaranteed that Archway will invoke our new function instead
of the base version.

11. Within the function, included a call to the base function:

 msgResult = this.parent.getOrderParameters(msg);

It is not mandatory to do this. However, by calling the parent function, we
preserve the base queries and only add our new query on top. In some
cases, you will want to bypass the original behavior altogether.

12. Next, we query for the data of interest:

 msgDepartments = archway.sendQuery(
 "ac", "SELECT Name from amEmplDept WHERE bDepartment=1");

13. This gives us a result set with a list of department names. Finally, the list
is added to the result set obtained from the base function:

 msgResult.add(msgDepartments);

14. The only remaining task is to add the actual department field to the
Weblication form. We already saw how to do this in an earlier section.
Tailoring Get.It! 3/16/00 4-15

Changing the Components
and Layout of a Weblication (XSL)

The layout and organization of each form is determined by a set of template
files. The templates are defined in the Extensible Stylesheet Language (XSL).

The purpose of XSL is to process an XML document and convert it into a
different desired format. For instance, an XSL template could define rules for
converting an XML document into HTML that can be displayed by a browser.
A different XSL document could generate an RTF like document better fit for
printing.

The XSL templates provided with the product are used by the wbuild
command in conjunction with the Weblication XML definition to generate web
pages. Get.It! includes a set of templates that generate Java Server Pages
(JSP) files.

When Would I Change the XML?

There are two reasons for extending or customizing the templates provided by
Peregrine Systems.

• To add support for a new type of Weblication component.

• To change the layout or organization of a web site.

In both cases you can make the modifications without altering the existing
template source files. Again, this is important for upgrade purposes. The
source for XSL templates can be found in the templates/jsp/ directory. The
directory also contains a file named user.xsl. This is where you can enter your
own customization.

You may consult user.xsl for basic instructions and examples for
customization. Template customization with XSL is currently an advanced
topic and further description is beyond the scope of this guide.
4-16 3/16/00 Changing the Components and Layout of a Weblication

Integrating a New Product into Get.It!
The method you use to integrate new products into Get.It! depends on the type
of product you want to integrate.

Integrating a URL

If you are linking a product that can be accessed through a web browser using
a URL you can add the product in as a new module or as an activity on an
existing module.

If you integrate a
URL as a module,
the product will be
available to users in
the menu bar and
from the users main
menu.
If you integrate a
URL as an activity, it
will be available to
users as part of the
activity list for an
existing module.

Fig. 4.7 Adding a URL as a module or as an activity
Tailoring Get.It! 3/16/00 4-17

Adding the URL as a Module

If you add the URL as a module, users can access it through a button on the
main menu and on the menu bar.

1. Create a new XML file.

2. Open the e.xml file (from the default path C:\Program Files\GetIt\apps).

3. Search the e.xml file for the following:

<!--==
 Sample link to external module. This generates a
 link to the Peregrine Company Web Site.
===-->
 <module name="prgn">
 <title> Peregrine Home </title>
 <description
 image="images/smallglobe.gif"
 short="PRGN"
 long="Peregrine Home Page"
 target-url="http://www.peregrine.com"/>
 </module>

4. Copy these tags and paste them into the new file.

5. Update the module name with the name of the product you are
integrating. Make sure to change the module name, title, image, short
description, and long description to match the product. Update the
“target-url” with the URL of the product you are integrating.

6. Save the new file in the ...getit/apps/user/ directory. Make sure it has an
extension of “.xml”.

7. Update the user.xml file to import the module into Get.It!. The user.xml
file contains a number of sample imports which you can copy, such as:

<!--==
 Sample 1: Adding a new module
 This sample adds a module menu entry associated with another web site.
===-->
 <Ximport href="samples/prgn.xml"/>

8. Enter the same information to have Get.It! import your new module. If
you create a new XML file named prgn.xml, the import would be as
follows:

 <!--===
 Peregrine Web Module
 ==-->
 <import href="user/prgn.xml"/>

The default path is
the path we
recommended at
installation. If you
installed Get.It! into
a different folder,
your default path will
be the path you
chose at installation.
4-18 3/16/00 Integrating a New Product into Get.It!

9. Save and close the user.xml file.

10. Run wbuild. See “Running the wbuild Command” on page 4-5 if you need
detailed instructions.

11. Log out and back in to Get.It! and the new module is available.

Adding a URL as an Activity

If you add a URL as an activity, users can access it through a link on the
activity list in an existing module.

1. Log into Get.It! and determine the module in which you want the new
activity to be available.

2. Determine if there is an activity that behaves similarly to the activity you
are adding. For example, is there an existing activity that links to a
different URL?

3. Open the XML file (from the ...getit/apps/ directory) for the module into
which you want to integrate the new activity.

4. Use the Save As command to save this file into the ...getit/apps/user/
directory.

5. Find the section of the XML file where the activities are defined and enter
the following, replacing the Peregrine Systems information with the
information for the URL you want to integrate.

<!--==
 Activity: link to Peregrine
===-->

 <activity name="prgn">
 <description
 short="Peregrine"
 long="Link to Peregrine’s web site."
 target-url="http://www.peregrine.com
 </activity>

6. Update the name of the activity to be the name of the product you are
integrating. Make sure to change the activity name, short description, and
long description to match the product you are integrating. Update the
“target-url” with the URL of the product you are integrating.

7. Save your changes.

8. Update the user.xml file to import the module into Get.It!. The user.xml
file contains a number of sample imports which you can copy, such as:
Tailoring Get.It! 3/16/00 4-19

<!--==
 Sample 3: Adding a new activity
 This sample adds a new activity to the Service module to allow
 searching for an arbitrary ticket.
==-->
<Ximport href="samples/service.xml"/>

9. Enter the same information to have Get.It! import your change. If you
updated the service.xml file the import would be as follows:

 <!--===
 Service with New Activity
 ==-->
 <import href="user/service.xml"/>

10. Save and close the user.xml file.

11. Run wbuild. See “Running the wbuild Command” on page 4-5 if you need
detailed instructions.

12. Log out and back in to Get.It! and the new activity is available.

Adding a ServiceCenter or
AssetCenter Feature as a New Module

Adding a new module requires you to copy an existing XML file, make your
updates, and then import the new module through the user.xml file. You define
the module in the new XML file and then add it to the Weblication when you
import it.

To start, determine an existing XML file that is the closest to the new module.

1. Open an existing XML file (from the ...getit/apps/ directory) that you
want to change, or that does a similar action to what you want the new
module to do. If no existing XML closely matches what you want to do, we
recommend you still open a file to use as a guide.

2. Use the Save As command to save this file ...getit/apps/user/ directory
with a name that allows you to easily recognize what this module does.
Remember to include the “.xml” extension on the file.

3. Update the applicable portions of the file, including header information,
nested tags, etc. Update the new XML file until it includes all the
functions that you want it to do. Use the instructions in the previous
sections of this chapter.
4-20 3/16/00 Integrating a New Product into Get.It!

4. If you need to populate tables in the new module, you may need to create a
new script in the .../getit/jscript/user/ directory. Copy an existing script,
just as you did to create the new XML file. When you save the new script,
be sure to include the “.js” extension on the file name. See “Changing a
jscript” on page 4-13 for instructions on updating a script file.

5. After you have created the new XML file, and the new jscript (if
necessary), tell Get.It! to import the new module in the user.xml file. The
user.xml file contains a number of imports, such as:

<!--==
 Sample 4: Adding a new activity link
 This sample adds a new activity to the Resources module to display
 company policies regarding requests.
===-->
<Ximport href="samples/request.xml"/>

6. You will need to enter the same information to have Get.It! import your
new module.

If you create a new module named travel.xml to handle travel requests,
the module can be added as follows:

 <!--===
 Travel Module
 ==-->
 <import href="user/travel.xml"/>

7. Save the user.xml file. Saving it in the user.xml file allows you to load new
versions of Get.It! without having all your changes overlaid.

By importing the module, its web pages are automatically generated by
wbuild. In addition, a link to your new module is automatically added to
the Weblication header.

8. Run wbuild. See “Running the wbuild Command” on page 4-5 if you need
detailed instructions.

9. Log out and back into Get.It! to see the changes you have made.

Modules can be removed from a Weblication by removing their imports in
user.xml (if they are modules you created) or from the e.xml file if they are
modules that came with Get.It!.
Tailoring Get.It! 3/16/00 4-21

Adding a Feature from AssetCenter
Within AssetCenter, features may be added to track information not provided
for by the out of box database schemas. The Get.It! weblication allows features
to be incorporated as well, allowing customization of the databases and
screens for use by all users.

1. Add the feature to the desired table within AssetCenter. This should be
done in the typical AssetCenter fashion.

2. Add access to the feature via amUserRight entry. You must give access to
the feature via amUserRight modification. Select the amUserRight
entries for which the new feature is relevant and provide access as
necessary.

3. Add the feature to a schema. Once the feature has been created within
AssetCenter, add it to the weblication’s schema. An excerpt from the
request.xml schema is shown here. The necessary addition has been
highlighted in bold. See “Adding Fields to a Document” on page 4-10 for
details on updating a schema.

<schema>

<documents name="base">
 <!-- Request Document -->
 <document name="Request">
 <attribute name="Id" type="num"/>
 […]

 <attribute name="TestFeature" type="string"/>
 […]

 </document>
</documents>

<!--==
 AssetCenter Schema Derivations
===-->

<documents name="ac">

 <!-- AC Request Document -->
 <document name="Request" table="amRequest">
 <attribute name="Id" field="lReqId"/>
[…]

 <attribute name="TestFeature" field="fv_TestReq"/>
 </document>
</documents>
4-22 3/16/00 Adding a Feature from AssetCenter

4. Add the feature to an application. After the feature is referenced in the
schema, you need to incorporate it in to the screen definitions. See
“Changing the Contents of a Form” on page 4-6 for details on updating an
application.

5. An example is given here from the ...getit/apps/request.xml:

<!-- This form requests order information for submission -->
 <form name="submit" onload="procure.getOrderParameters">
 <title> Request Information </title>
 <instructions>
 Please provide the following information necessary
 for submitting your request.
 </instructions>
 <fields>
 <input label="Purpose" type="text" field="Purpose"
 size="50"/>
 […]

 <input label="Test Feature" type="text"
 field="TestFeature" />
 </fields>

6. Run wbuild. See “Running the wbuild Command” on page 4-5 if you need
detailed instructions.
Tailoring Get.It! 3/16/00 4-23

4-24 3/16/00 Adding a Feature from AssetCenter

Ge
Appendix A
Weblication Reference
This chapter is a reference for the Weblication Extensible Markup Language
Document Type Definition (XML DTD). The XML DTD is the high level XML
language used to define the Get.It! Web Applications (Weblications).

Weblication Structure

The XML structure is made up of tags with supporting attribute and element
information. All Weblications have the following basic structure:

<application>
 <modules>
 <module>
 <activity>
 <forms>
 <form>
 </form>
 </forms>
 </activity>
 </module>
 </modules>
</application>

That is, a Weblication is defined by an XML application entry.

The application is comprised of one or more modules, e.g., service, request,
approval, status, and receiving.

Each module contains one or more activities. E.g., the request module has
the following activities: browse catalog, review shopping cart, submit order,
retrieve saved cart.

Each activity then can have one or more forms. E.g., the request browser
catalog activity has the following forms: category menu, product list, product
detail, bundle list, bundle detail.
t.It! Tailoring Guide 3/16/00 A-1

Imports

Weblication definitions may be divided up into separate files. Typically, each
module, noted in the code by <module>, is saved in its own file. This makes it
quick to identify which modules to include or exclude as necessary.

The <import> statement helps make this possible. This statement is defined
as follows:

 <import href="URL">

Where URL represents the file being imported. Currently, Get.It! supports
URLs that represent an XML file stored in one of the following places:

• the same directory as the file doing the import

• a directory that is nested in the same directory as the file doing the import

For example, if you were adding an <import> tag to the user.xml file found in
the ...getit/apps/ directory, you could import an XML file that is stored in
either the ...getit/apps/ director or in an .../apps/user directory.

To see examples of the <import> tag being used, see the e.xml file, which
contains imports similar to the following:

<import href="login.xml"/>
<import href="service.xml"/>

The user.xml file contains samples of importing a URL from a nested
directory:

<import href=”user/service.xml”/>
A-2 3/16/00

Weblication Tags

<application>

The <application> element is the starting point for defining a Weblication. It
accepts the following attributes and nested elements:

<module>

The <module> element defines an application component designed to offer
users a specific application function. For instance, the request module defines
interfaces that permit users to create purchase requests. This element can
contain the following attributes and nested elements:

Attribute Description

name
(required)

A unique name for the Weblication. The name should be a
single word starting with a letter.

<title> Title used in the application’s main menu.

<modules> List of modules that make up the application.

frame Specify whether you want the Get.It! banner to frame your
windows.

frame=”true” causes the banners to display.

frame=”false” causes the banner to not display.
Weblication Reference 3/16/00 A-3

Attribute Description

name
(required)

A unique name for the module. The name should be a single
word starting with a letter.

access
(optional)

Defines the name assigned to a user-access definition that is
required in order to access the module. User access is defined
by capability words in ServiceCenter and UserRights in
AssetCenter and is set for each user profile. See “User
Authentication” on page 3-3 of the Get.It! Administrator’s
Guide for more information. Enter a valid capability word or
UserRight, or for more general access enter one of the
following:
anonymous = The module can be accessed by any user,

regardless of the user’s profile capabilities.
The module can even be accessed by users
that are not logged into the Weblication.

all = The module can be accessed by all users
who are logged into Get.It!

appmenu
(optional)

Controls whether the module is included in the header
shortcut menu. When set to false the module is not listed in
the Weblication’s header shortcut menu. The default is true.

apphead
(optional)

Controls whether the module is included on the main menu.
When set to false the module is not listed in the Weblication’s
main menu form. The default is true.

<title> The title used to identify the module.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the
module.

• The image attribute defines an image that can be used as
a module logo or link. This is a URL (relative or absolute)
pointing to a specific image of browser-supported filetype.

• The short attribute should be defined by one or two words
that can be used in a link that takes a user to the module.

• The long attribute should contain a longer description
that is used as balloon help for links to the module.

<target URL>
(optional)

Link a different module into this module.You can link any
URL. See “Adding the URL as a Module” on page 4-18 of the
Get.It! Tailoring Guide for details.

<activities> List of activities that comprise the module.
A-4 3/16/00 Weblication Tags

See figure A.1 for a sample of how the <module> weblication tag and its
attributes can be used.

<activity>

The <activity> element defines a step within a module’s functionality. For
instance, the browse activity in the request module defines interfaces that
allow users to browse the catalog in order to make a request.

Fig. A.1 Using the <module> tag

If you did not want this
module included in the
header menu, you
would have included
<appmenu=”false”>
before the <title>
attribute.
Weblication Reference 3/16/00 A-5

This element can contain the following attributes and nested elements:

See figure A.2 for a sample of how the <activity> weblication tag can be used.

Attribute Description

name A unique name for the module. The name should be a single
word starting with a letter.

access This optional attribute defines the name of a user capability
word that is required in order to access the module. The
default value is anonymous, meaning that the module may
be accessed by any user, regardless of that user’s profile
capabilities. An anonymous module can be accessed by
users that are not even logged into the Weblication.

<title> Title used to identify the module.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the
module.

• The image attribute defines an image that can be used as
a module logo or link.

• The short attribute should be defined by one or two words
that can be used in a link that takes a user to the module.

• The long attribute should contain a longer description
that is used as balloon help for links to the module.

<target URL>
(optional)

Link a module as an activity.You can link any URL. See
“Adding a URL as an Activity” on page 4-19 of the Get.It!
Tailoring Guide for details.

<activities> List of activities that comprise the module.
A-6 3/16/00 Weblication Tags

<form>

The <form> element is at the center of attention within a Weblication. This is
where the specific contents for a screen are defined. For instance, the browser
activity in the request module has a number of forms used to show product
categories, product lists, product details, etc.

Fig. A.2 Using the <activity> tag
Weblication Reference 3/16/00 A-7

This element can contain the following attributes and nested elements:

Important: When a form is loaded to send to a client, it is supplied with an
input document. The input document is a representation of an
XML document containing the data to be displayed in the form.
In most cases, the form’s input document is obtained by
executing the form’s onload script. The script returns a Message
object which represents the document.

Another important point to understand is that a form is frequently invoked
with a number of parameters. Normally these parameters are made up of the
values entered in input fields within the previous form. These parameters are
passed on to the form’s onload script.

See figure A.3 for a sample of how the <form> tag can be used.

Attribute Description

name A unique name for the module. The name should be a single
word starting with a letter.

onload Name of script to invoke before displaying the form. The
Message returned by the script is used to populate fields in
the form.

homepage If set to true, the form is created to become the Weblication’s
homepage. Only one form should be given this attribute.

<redirect> This element defines a condition that is evaluated before
displaying the form. If the condition is true, an alternative
form is displayed instead. See “<redirect>” on page A-9 for
more information

<title> TEXT </title> Title used to identify the form. See “TARGET” on page A-16
for more details on this attribute.

<instructions> TEXT
</instructions>

Text giving the user instructions for the form.

<form fields> One or more elements that make up the form, such as entry
fields, labels, tables, menus, etc. See “form fields” on page
A-11 for more information.

<actions> Definition of actions that a user may take when viewing the
form. These are typically displayed as buttons or links that
submit the contents of the form or send the user to another
form.

homepage If set to true, the form is created to become the Weblication's
homepage. Only one form should be given this attribute.
A-8 3/16/00 Weblication Tags

<redirect>

This element defines a condition that is evaluated before displaying the form.
if the condition is true, an alternative form is displayed instead.

For instance, a Weblication could have the following:

Fig. A.3 Using the <form> tag

The <redirect>,
<table>, and
<action> tags are
explained in detail on
the following pages.
Weblication Reference 3/16/00 A-9

 <form name="hello" onload="weather.getTemperature">
 <redirect target-form="coats" condition="cold"/>
 <redirect target-form="shorts" condition="hot"/>
 </form>

The code above would redirect the user to the coats page when
weather.getTemperature returns a condition of cold.

It redirects to shorts when the condition is hot. It is the script’s responsibility
to setup a condition value that makes the redirection work. This is
accomplished via the Message.setCondition() method.

The <redirect> element can take the following attributes:

Attribute Description

TARGET Defines the target location for the form. There are several
ways to define TARGET location attributes. See “TARGET” on
page A-16 for details on these attributes.

condition This optional attribute defines the condition value that makes
the statement execute. If the condition value matches the
value set in the form's script return Message, the redirection
will take place. If no condition is provided, the redirection is
always executed.
A-10 3/16/00 Weblication Tags

form fields

A form may contain a number of fields or elements that are used to display
and input data. Each is described in detail separately below. The following is
the list of possible elements:

Fig. A.4 Using the <redirect> tag

<!-- This form is shown when the search found nothing -->
 <form name="catalognone">
 <title>Search Results</title>
 <instructions>
 No catalog entries were found to match search criteria.
 </instructions>
 <actions>
 <back/>
 <home> Home </home>
 </actions>
 </form>

<form name="catalog" onload="procure.getCatalog">
 <redirect target-form="catalognone" condition="catalognone"/>
 <title> $$(Title) </title>

In the previous example, we used the following string, which includes the <redirect> tag:

When no catalog can be found (the condition of “catalognone”) the following string of tags is used:

Attribute Description

<fields> Groups one or more "field" elements, which include <input>
and <field> elements. Sample fields include text boxes,
combos, check boxes, static text fields, input fields, etc.
When fields are grouped they are treated as a group by the
weblication, meaning the field labels are aligned and the input
fields are aligned in the window automatically.

<menu> A menu of links.

<table> A table whose rows are obtained dynamically at run-time from
the form’s input message.

<listbox> A table whose rows are pre-defined within the Weblication.
Weblication Reference 3/16/00 A-11

<fieldtable>

A <fieldtable> element allows the creation of a nicely formatted table of entry
fields. For example, the Request form is displayed using an <entrytable>. This
element is used with the following manner:

<html> Allows the insertion of any arbitrary HTML code.

<entry table> A table that allows entries in one column and contains
descriptions in another.

<plug in> Allows you to plug in content from any web page that is
accessible through a URL.

Attribute Description

Fig. A.5 Using the table element of the form fields
A-12 3/16/00 Weblication Tags

<fieldtable>
 <heading> Section heading ... </heading>
 <row>
 <input> or <field>
 <input> or <field>
 ...
 </row>
 ...
</fieldtable>

The sample below shows the tag as it is used in the request form definition in
the request.xml file.

 <component name="requestform">
 <fieldtable>

 <heading> When would you like this and what is it for? </heading>
 <row>
 <input label="Date" type="date" field="RequestedFor" scope="user"/>
 <input label="Purpose" type="text" field="Purpose" size="35"
 scope="user" required="true"/>
 </row>

 <heading> Who is this for and where should it be delivered? </heading>
 <row>
 <input label="First" type="text" field="FirstName" scope="user"
 required="true"/>
 <input label="Location" type="text" field="LocationName"
 scope="user" size="35"/>
 </row>
 <row>
 <input label="Last" type="text" field="LastName" scope="user"
 required="true"/>
 <input label="Address" type="text" field="Address1" scope="user"
 size="35"/>
 <input type="hidden" field="Address2" scope="user"
 value="$$(Address2)"/>
 </row>
...
 <row>
 <input label="Project" type="select" field="Project"
 record="Project" valuelist="Title" displaylist="Title"
 scope="user" />
 <input type="textarea" field="Comment" rows="3" cols="35"
 scope="user" colspan="2" rowspan="2"/>
 </row>
 <row>
 <input label="Budget" type="select" field="Budget" record="Budget"
 valuelist="Name" displaylist="Name" scope="user" />
 </row>

 <heading> Request contents: </heading>

 </fieldtable>
Weblication Reference 3/16/00 A-13

This code, when displayed in Get.It!, is shown below.

The following attributes can be specified within the <input> or <field>
elements in a row:

Fig. A.6 The <fieldtable> tag in use.

Attribute Description

colspan=N Normally an input field fills out two columns in a table: a
column for its label, and a column for the field. However, you
can use colspan to specify that the field should take up both
columns. For example:

 <input type="textarea" field="descriptiom" colspan="2" ...>

The field above is given no label and is defined to span two
columns. Therefore, the textarea takes up both the label and
entry columns in a table. Typical values for colspan are 2 or 4.

rowspan=N Allows a field to span more than one row in height. This is also
typically used with textarea fields in a fieldtable.
A-14 3/16/00 Weblication Tags

<action>

The <action> element contains actions that a user may take when viewing the
form. These are typically displayed as buttons or links that submit the
contents of the form or send the user to another form.

The element may contain several attributes and nested elements. Consider
the following example which is referenced by the descriptions of these
attributes and elements below:

<actions target-activity="review">
<submit> Add to shopping cart" </submit>
<submit name="Remove"> Remove from cart </submit>
<link target-form="help"> Help </link>
<back/>

</actions>

Attribute Description

TARGET Defines the destination where the user is taken when the
current form is submitted. Currently, each form may only have
one submit destination. In the sample above, the TARGET for
the actions is the review activity of the current module.

<submit> Defines a submit button for a form. In the example above, the
first submit entry displays a button with the caption Add to
shopping cart. Clicking the button sends the user to the form’s
action target (the review activity). Any data entered in the
form is sent along to the target form and will be available to
the target form’s onload script.

Forms typically have one submit button. However, forms with
more than one submit button can differentiate between them
using the optional name attribute.

For example, notice the second submit button. It also sends
the user to the form’s target destination (the review activity).
However, the script of the target form can distinguish that is
was invoked with the Remove from cart button because the
button’s name is sent along with the form. The script can
check for this as follows:
if (msg.get("Remove") != "")
// form called with the "Remove" button ...
Weblication Reference 3/16/00 A-15

TARGET

Various Weblication elements support a set of TARGET attributes that are
translated into links to a browser destination. One of the powerful concepts in
a weblication is its ability to make navigation between pages easy without
requiring the developer to hard code actual destination page names.

The goal behind the target’s design is to encapsulate the contents of each
module and activity, reducing inter-dependencies. Therefore, the targets below

<link> Link actions are typically displayed by the Weblication just
like any submit button. However, a link button offers a way to
sent the user to any arbitrary TARGET destination. However,
when a link is used, the form’s data is not submitted to the
target.

<back> Creates a button that takes the user to the previous form.

<home> Creates a button that takes the user to the home menu.

Attribute Description

Fig. A.7 Using the <action> tag
A-16 3/16/00 Weblication Tags

allow a developer to say something like "take me from the current activity to
some other activity in this module." This is done without specifically listing
the target form name, thus reducing dependencies which would make a
weblication harder to maintain as modules and activities are added or
re-arranged.

The following are possible TARGET attributes:

TEXT

Various Weblication elements support the display of arbitrary text. For
example, form instructions are specified by the <instructions> element with
some embedded text:

Attribute Description

target-form Leads to a named form. This target is used for navigation
within the current activity. That is, the target form must be in
the current activity.

target-activity Leads to the first form of the named activity. This target is
used for navigation within activities of the current module.
That is, the target activity must be in the current module.

target-module Links to the first form of the first activity in the named
module.

target-url Links to any URL. Anything that could be used in an HTTP
href tag can appear here.

target-field Sometimes the target is not known until run-time. This
attribute causes the weblication to look for an input document
field that contains a target URL. For example:

<link target-field="VendorURL"> More information </link>

The target above is evaluated at run time by retrieving the
VendorURL from the form’s input document.

param This attribute can accompany any of the target attributes
mentioned above. It defines additional parameters that should
be sent to the target form. For example:

<link target-form="catalog" param="Certification=Desktop"> Desktop Computers
</link>

The link above passes a parameter named Certification with
a value of Desktop to the target catalog form.
Weblication Reference 3/16/00 A-17

 <instructions>
 Press button with mouse
 </instructions>

However, wherever an element is documented to support TEXT, you can enter
more than just plain words. The text can contain embedded HTML mark-up
elements, and it may also contain references to values in the form’s input
document. For instance:

 <instructions>
 Press button with mouse.

 If nothing happens repeat until it works!!
 </instructions>

The instructions above have embedded HTML tags
, , and .
Embedded HTML must be XML compliant. This means that each starting
HTML tag should have an ending tag (e.g., ...) or use the XML
shorthand for the tag (e.g.
 rather than
). Attributes inside HTML
elements also must be quoted (e.g., rather than
).

In addition, you can embed field values in text. For example:

 <instructions>
 Hello $$(UserName), how are you doing?
 </instructions>

The $$(X) syntax is used to extract a field from the form’s input document.

$$(X)

The $$(X) element is used to extract information from a field in the form’s
input document. It embeds field values in text. For example:

 <instructions>
 Hello $$(UserName), how are you doing?
 </instructions>

This example will display the value in the UserName field within the form
instructions.

Within the HTML contents, you can use $$(X) expressions to include values of
fields in the form's input document.
A-18 3/16/00 Weblication Tags

<menu>

The <menu> element creates a menu of links in a form. For example, the
request module uses a menu to show catalog categories. The following
attributes and tags are supported in a menu:

Link Attributes

<table>

The <table> element provides a concise way to create tables in the form. This
tag is specialized in generating tables that are populated with XML
documents obtained from database queries. The following attributes and
embedded elements are supported:

Attribute Description

<link> Defines an item in the menu. Each <menu> tag should have
one or more embedded <link> tags. Link attributes are
described in the table below.

Attributes Description

<link TARGET> Defines the destination target of the link.

<link image=X> Optional attribute that defines an image URL to use for the
menu link.

<link window="true"> If this optional attribute is set, the target of the link is
displayed in a separate browser window.

<link> TEXT </link> The text used in the link.

The <link> elements can also appear inside a <fields>
collection.
Weblication Reference 3/16/00 A-19

Attribute Description

record This attribute identifies the specific record the table is
designed to display. This record type is found in the form’s
input XML document. For instance, consider the following
document:
<recordlist>
 <Product>
 <Brand> X </Brand>
 <Price> 1 </Price>
 <ProductId> 1356 </ProductId>
 <nCount> 1 </nCount>
 </Product>
 ...
 </recordlist>

To display a table with a list of products, the record attribute
is set to Product. (This sample XML is used in the examples
below)

rows This optional attribute specifies the max number of rows to
display in the table. If the query result set for the table is
larger than this number of rows, the table automatically
displays "Next" and "Previous". If this attribute is not
specified, the table is made as large as needed to display all
rows in the record set.

<link TARGET
field=X>

This optional table element is used to make the rows in a table
into links to another form. For example, a catalog table has
rows that when clicked display each product’s detail. This
element takes two attributes. The TARGET attribute
determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It
is intended to uniquely identify the row. For example:

<link target-form="details" field="ProductId"/>

The link above comes from the catalog table. It creates row
links that take the user to the details form. In addition, the
ProductId field of the row’s record is sent along as a
parameter to the target form. This way, the target form can be
initialized to display the correct details.

<column> Each table should have one or more columns. Columns can be
used to display a variety of things, including static text,
pictures, and entry fields. Each type of column is described in
more detail below:
A-20 3/16/00 Weblication Tags

Column Types

Column Type Description

Static text column The default content of a column is static text. The label
attribute specifies the column’s heading. The field attribute
defines the record field to display in the column. For example,

<column label=X field=X>

Entry field column These columns display a text entry field where the user can
type in some text. The label and field attributes serve the
same purpose as those of static text columns. The key
attribute should contain the name of a record field that
uniquely identifies each row in the column.

<column type="entry" label=X field=X key=X size=X>

The optional size attribute defines how wide to make the entry
fields (in number of characters). For example:

<column label="Count" field="nCount" type="entry" key="ProductId"
size="3"/>

This is a column in the product catalog table that lets users
enter a count with the number of products to order. The
column displays the nCount field from the table’s record. The
column uses each row’s ProductId to uniquely identify the
entry fields. This is necessary so that scripts that interpret the
input entered in a table can match up table entries with an
application or item context.
Weblication Reference 3/16/00 A-21

Select-box column

(populated
dynamically)

<column type="select" label=X field=X key=X
record=X valuelist=X displaylist=X >

You can display a select box or combo-box in a column with a
list of valid entry choices from which the user can choose. The
choices are obtained dynamically from the form’s input
document. The attributes listed here work the same way as
described for entry field columns. There are two additional
attributes: valuelist and displaylist. These are used to specify
the name of the record field containing the choices for the
select box. For example:

<column label="Project" type="select" field="ProductProject"
record="Project" valuelist="Id" displaylist="Title"/>

This column displays select boxes with a list of Project choices.
For this to work, the form’s input document should include
Project entries such as:

<recordlist>
 <Project>
 <Id> 123 </Id>
 <Title> New Development 99 </Title>
 </Project>
 ...
</recordlist>

The selected choice is associated with the ProductProject
field of the table’s Product record. The choices displayed are
determined by the Title field on the Project records, and the
actual values submitted for each choice are those of the Id
field in the Project records.

Select box column
(populated
statically

<column type="select" label=X field=X key=X >

Columns can display select boxes with statically defined
choices. The label, field, and key attributes are the same as
those defined above. Here is an example:

<column label="Approval" type="select" field="Approve">
 <option value="1"> Yes </choice>
 <option value="0"> No </choice>
</column>

This column displays Approval choices of Yes and No.

Column Type Description
A-22 3/16/00 Weblication Tags

<columns>

It is possible to split a Weblication form into columns, as shown in the
following example:

 <columns>
 <column>
 Weblication elements for this column
 </column>
 <column>
 Weblication elements for this column
 </column>
 <column>

The sample below shows the tag as it is used in the request.xml catalog
category window.

<columns>
 <column>
 <fields>
 <link target-form="bundles" image="images/catbundle.gif">
 Employee Bundles </link>
 <link target-form="catalog" param="Certification=Desktop"
 image="images/catdesktop.gif"> Desktop Computers </link>
 <link target-form="catalog" param="Certification=Laptop"
 image="images/catportable.gif"> Portable Computers </link>
 <link target-form="catalog" param="Certification=Server"
 image="images/catserver.gif"> Servers </link>
 <link target-form="catalog" param="Certification=Software"
 image="images/catsoftware.gif"> Software </link>
 </fields>
 </column>

Image column <column label=X field=X>

This column displays an image. The image’s URL is obtained
from the specified field in the table’s input record.

Radio button
column

<column label="Current employee" type=”radio”
field="Field1"/>

The field attribute specifies the record field in the form’s input
document that should be used to populate the field’s value.
See “<columns>” on page A-23 for more information.

Column Type Description
Weblication Reference 3/16/00 A-23

 <column>
 <fields>
 <link target-url="e_b2bshop_return_b2blist.jsp"
 param="ListAction=B2BShopOnly"
 image="images/catshopdirect.gif"> ShopDirect </link>
 <link target-form="catalog"param="Certification=Accessories"
 image="images/cataccessories.gif"> Accessories </link>
 <link target-activity="offcatalog"
 image="images/catoffcat.gif"> Request an item not in the
 catalog </link>
 <link target-form="search" image="images/catsearch.gif">
 Search for a specific item </link>
 </fields>
 </column>
</columns>

This code, when displayed in Get.It!, is shown below.

Fig. A.8 The <column> tag in use.
A-24 3/16/00 Weblication Tags

<listbox>

The <listbox> element is used to display a table in a form. However, unlike the
<table> element, listbox tables contain rows that are statically defined in the
weblication. For example, a listbox is used to display the details of a
Knowledge solution in the service module. (See the solution form in the
service.xml file).

The following attributes and nested elements are supported:

Here is a sample listbox that results in a small table with phone numbers to
call to contact support or sales.

<listbox>
 <heading>
 <field> Name </field>
 <field> Phone </field>
 <heading>
 <row>
 <row>
 <field> Customer Support </field>
 <field> 123-4567 </field>
 </row>
 <field> Sales </field>
 <field> 765-4321 </field>
 </row>
</listbox>

Attribute Description

<heading> Defines the listbox headings. This element should be followed
by one or more nested <field> elements that describe each
heading.

<row> Defines a row in a listbox. This should be followed by one or
more nested <field> elements that are part of the row.

<field image=X
field=X> Text
</field>

A single element that may be placed in a heading or row cell.
The optional image attribute may point to an image URL to
display for the field. The field attribute may point to a field
from the form’s input document. Otherwise, the field displays
its text contents.

<input> You can enter any valid input element. See “<input>” on page
A-26 for types of input elements.
Weblication Reference 3/16/00 A-25

<field>

The <field> element creates a static text or image field on a form. These
elements must be placed within a <fields> parent element. The following
attributes are supported:

<input>

The <input> element is used to create a variety of entry fields. Each type of
field is described in its own section. Here we define a list of attributes shared
by all input fields:

Attribute Description

label This optional attribute specifies the label for the field.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the value text field.

type Specifies the type of data expected for this field. The default is
text type data. If the type is set to image, the field’s value is
assumed to be a URL to an image.

<field> TEXT
<field>

The value displayed in the field, displayed if no field attribute
is already defined.

Attribute Description

label This optional attribute specifies the label for the input field.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type Specifies the type of field.
A-26 3/16/00 Weblication Tags

<input> (Text Field)

The <input> element is used to create a variety of entry fields. Below are the
attributes used to define a single line entry field.

value This is an optional attribute. Normally the value is taken from
the "field" attribute to extract a field value from the form’s
input document. However, if a value is specified explicitly, it
will be used when displaying the form.

scope Normally data entered in fields is sent along to the server and
then forgotten. However, fields can be given a longer term
scope, making their values available beyond a single submit.
Right now, only one scope is supported: scope="user” . When
set, the values entered in a field are stored in the current user
session scope. When the form is displayed again, or when
other forms display <input> elements for a field with user
scope, the last value entered is always remembered.

required If true, the field is flagged as being required. The form will not
be submitted unless the user provides data for the field.

Attribute Description

Attributes Description

label This optional attribute specifies the label for the input field.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="text" To create text entry fields, type should be set to "text". This is
the default value.

value This is an optional attribute. Normally the value is taken from
the "field" attribute to extract a field value from the form’s
input document. However, if a value is specified explicitly, it
will be used when displaying the form.

size Optional attribute that defines the width of the text entry
field in characters.
Weblication Reference 3/16/00 A-27

<input> (Text Area)

The <input> element is used to create a variety of entry fields. Below are the
attributes used to define a multiline entry text area.

Attribute Description

label This optional attribute specifies the label for the input field.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="textarea" To create multiline text entry fields, type should be set to
"textarea".

value This is an optional attribute. Normally the value is taken from
the field attribute to extract a field value from the form’s input
document. However, if a value is specified explicitly, it will be
used when displaying the form.

rows Number of rows in the textarea.

cols Width of the textarea in number of characters.
A-28 3/16/00 Weblication Tags

<input> (Combo/Selection Box)

The <input> element is used to create a variety of entry fields. Below are the
attributes used to define a select box.

For example, consider:

<input label="Budget" type="select" field="RequestBudget"
record="Budget" valuelist="BudgetId" displaylist="Name"/>

This generates a combo box with a label of Budget. The choices in the combo
box are populated by looking at records of type Budget. The current selection
is obtained from the RequestField field in the form’s input document.

You can also define selection boxes with static choices (instead of populating
the choices from a database record). Here is a sample:

<input type="select" label="Approval" field="Approve">
 <option value="1"> Yes </choice>
 <option value="0"> No </choice>
</input>

Attribute Description

label This optional attribute specifies the label for the select box.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="select" To create text entry fields, type should be set to "text". This is
the default value.

record Specifies the record in the form’s input document that
contains the list of display and value lists.

valuelist Specifies the field in the select box record that contains the
values for each of the select choices.

displaylist Specifies the field in the select box record that contains the
labels for each of the select choices.
Weblication Reference 3/16/00 A-29

<input> (Checkbox)

The <input> element is used to create a variety of entry fields. Below are the
attributes used to define a checkbox:

For example:

<input type="checkbox" label="Remember me" field="remember"
value="true"> Enable automatic login </input>

This generates a checkbox associated with the form’s remember field. If
remember is set to true upon building the form, the checkbox will appear
selected. If the user selects the checkbox the remember field is posted as true
with the form.

<input> (Radio)

The <input> element is used to create a variety of entry fields. Below are the
attributes used to define a radio button:

Attribute Description

label This optional attribute specifies the label for the checkbox.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="checkbox" To create checkboxes text entry fields, type should be set to
"checkbox".

value Specifies the value that the checkbox field should have when
the checkbox is selected.

<checkbox> Text
</checkbox>

The checkbox description.

Attribute Description

label
(optional)

Specifies the label for the radio button.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.
A-30 3/16/00 Weblication Tags

For example:

<input type="radio" label="Remember me" field="remember"
value="true"> Enable automatic login </input>

This generates a radio button associated with the form’s remember field. If
remember is set to true upon building the form, the radio button will appear
selected. If the user selects the radio button the remember field is posted as
true with the form.

<input> (Hidden)

Sometimes it is useful to create a hidden field in a form whose only purpose is
to add some data that should be posted when the form’s contents are sent back
to the server. Below are the attributes used to define such a hidden field.

type="radio" To create radio buttons, type should be set to "radio".

value Specifies the value that the radio button should have when
the radio is selected.

<radio> Text
</radio>

The radio button description.

Attribute Description

Attribute Description

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="text" To create text entry fields, type should be set to text. This is
the default value.

value This is an optional attribute. Normally the value is taken from
the field attribute to extract a field value from the form’s input
document. However, if a value is specified explicitly, it will be
used when displaying the form.
Weblication Reference 3/16/00 A-31

<link>

The <link> element creates a hyperlink field in a form. For example, the
request module uses a menu to show catalog categories. The following
attributes and tags are supported in a menu:

Attribute Description

<link TARGET> Defines the destination target of the link. See “TARGET”
on page A-16 for details about the TARGET attribute.

<link image=X> Optional attribute that defines an image URL to use for the
menu link.

<link window="true"> If this optional attribute is set, the target of the link is
displayed in a separate browser window.

<link> TEXT </link> The text used in the link.

<link field>
A-32 3/16/00 Weblication Tags

Reusable Form Components (Subforms)
It is common for a weblication to have several forms that need to display a
common set of components. For example, in Get.Resources!, several forms
display a detailed description of a request containing the request purpose,
description, budget, department, etc. These details appear in places like
approval screens, request status screens, and shopping cart review screens.

To address this need, Weblications support the definition of reusable
component blocks, or subforms, that can be included wherever necessary.
Reusable components are defined at the beginning of a module definition as
shown in this example:

<module name="login">
 ...

<components>
<!-- Basic "login" screen -->
<component name="login">
<fields>
<input type="text" label="User Name" field="loginuser"
record="Employee" valuelist="Name" displaylist="Name"
required="true"/>
<input type="password" label="Password"
field="loginpass"/>
<break/>
<input type="checkbox" label="Remember me"
field="remember" value="true"> Enable automatic login
</input>
</fields>

</component>
 ...

</components>

The example above defines a reusable subform named login. This block can
then be inserted in any form as shown below:

<!-- This form lets the user logon -->
<form name="start" onload="login.init">
<title> Welcome </title>
<instructions>
Please enter your user name and password to enter the
Get,It! site
</instructions>
<component name="login"/>
<actions target-url="appmenu.jsp">
<login> Login </login>
<link target-activity="register"> Register </link>

</actions>
</form>
Weblication Reference 3/16/00 A-33

The contents of a <component> definition can be anything that is a valid form
component, including tables, listboxes, and fields, etc. Forms can use any
number of embedded component blocks, and they may include other form
components as well.

Note: Components referenced in a form must be declared in the form’s
module. This makes most blocks reusable across all forms in a module.
To define components that can be reused across modules, you should
define the components in their own files and use <import> statements
to add them at the top of a <module> definition.

A component definition can include an onload attribute. This optional
attribute names a script that should be invoked to provide data used by the
component code. If this is provided, the document returned by the onload
script is used for fields and $$(X) expressions in the component instead of
using the form’s input document.
A-34 3/16/00 Reusable Form Components (Subforms)

Additional Tags

<html>

The <html> tag allows the insertion of any arbitrary HTML code. This should
be used with care, and only when the use of existing Weblication components
is not sufficient. Within the HTML contents, you can use $$(X) expressions to
include values of fields in the form’s input document.

The following attributes are supported:

Attribute Description

onload
(optional)

Names a script that should be invoked to provide data used by
the HTML code. If this is provided, the document returned by
the onload script is used in $$(X) expressions instead of using
the form’s input document.
Weblication Reference 3/16/00 A-35

A-36 3/16/00 Additional Tags

Ge
Appendix B
Document Scheme DTD
This chapter is a specification reference for defining schemas. Chapter 3,
"Introduction to Document Schemas," for additional information, including
background and a complete example of a schema.

This chapter addresses:

• The Document Schema file template

• Schema attribute tags

• ServiceCenter-specific attributes
t.It! Tailoring Guide 3/13/00 B-1

Document Schema Files
Define each document in its own schema file. The name of the schema file
must match the document’s name. For example, the Problem document is
defined in Problem.xml.

The structure of a schema file must fit the following template:

<?xml version="1.0"?>

<!--==
 Name: filename.xml
 Author: xxx
 Date: xxx
===-->

<schema>

<!--==
 Generic Schema Definitions
===-->

<documents name="base">

 <document name="XXX">
...

 </document>

</documents>

<!--==
 Derivations. You may have several of these sections (for
 ServiceCenter, AssetCenter, user derivations, etc.)
===-->

<documents name="DERIVED_TARGET">

 <document name="XXX">
...

 </document>

</documents>

</schema>
B-2 3/13/00 Document Schema Files

Schema Attributes

<document>

This tag defines a document. The document may contain nested <attribute>,
<collection>, and <document> tags.

A schema file should only define a single top-level document and its
derivations.

The <document> tag can contain the following attributes:

Nested <document> Tags

Top-level documents may include one or more nested documents. These
children (or nested) documents may be defined in two ways.

The first way is to define nested documents in-place. For instance:

<document name="TopLevel">
<document name="Child">
 <attribute name="x">
 ...
 </document>
</document>

More typically, nested documents will reference a document defined in its own
schema file. For instance:

<document name="Product">
 <document name="Vendor"/>
</document>

Attribute Description

name

(required)

Uniquely identifies the document being defined. The name of
the schema file must match the document’s name. For
example, the Problem document is defined in
Problem.xml.

table Defines the primary database table associated with this
document. While not all document fields have to come from
this table, the Primary Key (ID) for the document must reside
in this table. This attribute is normally only defined by
derived document schemas. That is, the derivations for
ServiceCenter, AssetCenter, etc. must define where to get the
document.
Document Scheme DTD 3/13/00 B-3

Here the Product document contains a nested Vendor description. But
because the nested Vendor document is defined to be empty, we assume that
its definition should be looked up in the proper schema file (i.e. vendor.xml).

You can find nested documents by doing a search of the following type:

 SELECT <Fields> FROM <NestedDocTable>
 WHERE <joinfield>=<joinvalue>

The joinfield and joinvalue settings come from the schema’s <collection> entry.
For example:

 <collection name="Assets">
 <document name="Asset" joinfield="lUserId" joinvalue="Id"/>
 </collection>

The entry above defines a nested collection of assets that could appear within
a parent "User" document. The joinfield and joinvalue specify that we want to
find entries in the asset table whose "lUserId" field matches the parent table’s
ID field. (The parent’s joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue" are defined, the default is to use the parent
table’s ID field name as the join field.

<attribute>

The <attribute> tag defines a field within a document. Right now this tag can
only appear within a <document> tag. All documents must define at least one
mandatory attribute:

 <attribute name="Id">

This attribute defines the unique key for locating document instances.
B-4 3/13/00 Schema Attributes

The <attribute> tag can have the following XML attributes:

Attribute Description

name

(required)

Uniquely identifies an attribute within a document.

type

(optional)

Identifies the type of the field being defined. Possible values
are:

id, string, number, date, url

This attribute is currently not used by the document manager.
However, in the future it could be used to verify at run-time
that a document is properly formed.

field The name of the physical field to use in when building queries
or updating the document table. This can be a simple name in
the document’s primary table, or it can be linked field name
(AssetCenter only).

For instance:

<document name="Request" table="amRequest">
 ...
 <attribute name="TotalCost" field="mTotalCost"/>
 <attribute name="Budget" field="Budget.Name"/>
 ...
</document>

• TotalCost is associated with the mTotalCost field in
amRequet.

• Budget is associated with the linked field Budget.Name.
Document Scheme DTD 3/13/00 B-5

<collection>

The <collection> tag allows the nesting of collections inside a top level
document. For example:

 <document name="Request">
 ...
 <collection name="RequestLines">
 <document name="RequestLine"/>
 </collection>
 </document>

This example shows a Request document with a nested collection of
RequestLine documents.

Nested documents are found by doing a search of the following type:

 SELECT <Fields> FROM <NestedDocTable> WHERE
<joinfield>=<joinvalue>

The "joinfield" and "joinvalue" settings come from the schema’s <collection>
entry. For instance:

For instance, consider a list of assets owned by a user:

 <collection name="Assets" joinfield="lUserId" joinvalue="Id">

link, linktable,
linkfield, linktype,
linkkey

These attributes work together to define how a field from a
linked table should be accessed. Consider the following
attribute in the Request document definition for AssetCenter:

<attribute name="Budget" field="Budget.Name" link="lBudgId"
linktable="amBudget" linkfield="Name"/>

Now consider a request to insert a Request document
such as:

 <Request>
 <Budget> 1999 IS Budget </Budget>
 ...
 </Request>

When the DocumentManager updates of inserts a Request
document, the schema tells it to:

• search the linktable (amBudget) for an entry where the
linkfield (Name) matches "1999 IS Budget".

• use the link entry ID (lBudgId) to update the Request doc-
ument table.

Attribute Description

A collection can
only have one thing
inside of it: a nested
document.
B-6 3/13/00 Schema Attributes

The entry above defines a nested collection of assets that could appear within
a parent "User" document. The joinfield and joinvalue specify that we want to
find entries in the asset table whose "lUserId" field matches the parent table’s
Id field. (The parent’s joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue are defined, the default is to use the parent
table’s Id field name as the join field.

ServiceCenter Specific Attributes

Several attributes have been defined specifically for supporting ServiceCenter
derived schemas. These are necessary for the following reasons:

• Documents should not be inserted directly into the ServiceCenter data-
base. Instead, they should be created and updated by related
EventServices calls.

• The basic elements of the schema DTD assumes a relational organization
of data. ServiceCenter’s non-relational database introduces some require-
ments.

Consider the following example or a derived Problem schema where
ServiceCenter specific attributes are shown in bold:

<document name="Problem" table="probsummary" insert="pmo" update="pmu">

 <attribute name="Id" field="number"/>

 <attribute name="OpenTime" field="open.time"/>
 <attribute name="Status" field="status"/>
 <attribute name="AssignedTo" field="assignee.name"/>
 <attribute name="Priority" field="priority.code"/>

 <attribute name="Description" field="brief.description"
 insert="$ax.field.name" update="_null"/>
 <attribute name="Updates" field="update.action"/>
 <attribute name="Resolution" field="resolution"/>

</document>
Document Scheme DTD 3/13/00 B-7

The following attributes are used by SCDocManager, a derived DocManager
class that is used by the SCAdapter:

Note: A field, update, or insert setting with a value of "_null" tells the
DocumentManager that the particular document element is not supported by
the system.

Attribute Description

insert This attribute ties a document to a specific input event. The
attribute can be used in two ways.

Within a <document> tag, the insert attribute names the
event to use for inserting document instances.

Within an <attribute> tag, the insert attribute names an
event parameter name to use for a document field. If no insert
attribute is defined, the default field setting is used instead.

update This attribute ties a document to a specific update event. It
can be used within <document> and <attribute> tags in the
same way as insert.
B-8 3/13/00 Schema Attributes

Ge
Appendix C
Contacting Peregrine Systems
Contact one of the Peregrine Systems Customer Support offices listed here if
you have questions about, or problems with, ServiceCenter systems.

For more information about Customer Support, check the support web site:
http://support.peregrine.com Please contact Customer Support for an
account on this site.

Note: Only the European Customer Support staff is multilingual and can
provide technical support to customers in their native language.

North and South America

To get help immediately, call Peregrine Customer Support at:

(1) (800) 960-9998 (North America only)

(1) (858) 794-7428 (North and South America)

For ServiceCenter questions or information, send a fax or e-mail to:

Fax: (1) (858) 794-6028

E-mail: support@peregrine.com

Send materials that Peregrine Systems Customer Support requests to:

Peregrine Systems, Inc.

ATTN: Customer Support

12670 High Bluff Drive

San Diego, CA 92130

Note: Countries outside North and South America are covered by regional
offices. Customers should contact the regional office under which their
country is listed.
t.It! Tailoring Guide 3/13/00 C-1

United Kingdom regional office

Great Britain, Greece, and South Africa

Peregrine Systems Ltd.

1st Floor

Ambassador House

Paradise Road

Richmond, Surrey, Great Britain, TW9 1SQ

Phone: 0800 834770 (toll free)

or: 0181 334 5844

E-mail: uksupport@peregrine.com

France regional office

France, Spain, Italy, Greece, and Africa (except South Africa)

Peregrine Systems

Tour Franklin-La Défense 8

92042 Paris La Défense Cedex, France

Phone: +33 (0) (800) 505 100 (International Toll Free)

E-mail: frsupport@peregrine.fr

Germany regional office

Germany and Eastern Europe

Peregrine Systems GmbH

Bürohaus Atricom

Lyoner Strasse 15,

60528 Frankfurt, Germany

Phone: 0049 6966 8026917

or: 0800-2773823 (in Germany only)

E-mail: psc@peregrine.de
C-2 3/13/00 Get.It! Tailoring Guide

Nordic regional office

Denmark, Norway, Sweden, Finland, and Iceland

Peregrine Systems A/S

Naverland 2, 12 SAL

DK-2600 Glostrup

Denmark

Denmark Phone:(+45) 80307676

Sweden, Phone:(+45) 77317776

Norway, Iceland

and Finland

E-mail:nordic@peregrine.com

Benelux regional office

Netherlands, Belgium, and Luxembourg

Peregrine Systems BV
Botnische Golf 9a

3446 CN Woerden

Netherlands

NetherlandsPhone:0800 0230 889 (toll free in the Netherlands)

Belgium and Phone:00800 7474 7575 (toll free in Belgium

Luxembourg and Luxenbourg)

E-mail: benelux.support@peregrine.com

Asia-Pacific regional offices

Australia, Hawaii, Hong Kong, Japan, Korea, Malaysia, New Zealand,
Singapore

Australia Phone: (800) 146-849

Hawaii Phone: (1) (800) 960-9998

Hong Kong Phone: (800) 908056

Japan Phone: (0044) 221-22795
Get.It! Tailoring Guide 3/13/00 C-3

Singapore Phone: (800) 1300-949 or -948

E-mail: apsupport@peregrine.com
C-4 3/13/00 Get.It! Tailoring Guide

Ge
Index
Symbols
$$(X) A-18
... 1-3
<action> A-15

<back> A-16
<home> A-16
<link> A-16
<submit> A-15
TARGET A-15

<activity> A-5
<application> A-3
<attribute>

insert B-8
update B-8

<back> A-16
<columns> A-23
<component> A-34
<document>

insert B-8
update B-8

<entrytable> A-12
<field> A-26

colspan A-14
rowspan A-14

<fieldtable> A-12
<form>

adding a field 4-6
<home> A-16
<html> A-35
<import> A-2
<input> A-26

checkbox A-30
colspan A-14
combo box A-29
hidden field A-31
radio button A-30
rowspan A-14
selection box A-29
text area A-28
text field A-27

<link image=X> A-19
<link TARGET> A-19
<link window="true"> A-19
<link> A-16

attributes A-19
hypertext link A-32

<listbox> A-11, A-25
<menu> A-11, A-19
<module> A-3

access to A-4
attributes A-4
importing A-2

<submit> A-15
<table> A-19

<column> A-19
<link TARGET> A-19
record A-19
rows A-19

<target URL> A-4
_null B-8

A
action property 2-12
apphead A-4
appmenu A-4
archway architecture 4-1

building blocks 2-2
clients 2-3
diagram 2-2
document manager 2-10
executing queries against a system 2-10
how it works 2-3
internal architecture 2-5
query string 2-6
requests 2-6
weblications 2-11
XML 2-3

C
cascading style sheets 2-14
t.It! Tailoring Guide 3/15/00 Index-1

Ind
changes
required steps 4-2
where to store 4-3

child documents, See nested documents
clients 2-3
colspan A-14
column

entry A-21
entry field A-21
field to display A-21
headings A-21
image A-23
productid A-21
radio button A-23
select box A-22
static text A-21
uniquely identifying A-21
width A-21

condition A-10
contacting Peregrine Systems C-1
CSS, See cascading style sheets

D
displaylist A-22, A-29
document manager 2-10, 4-10

E
ECMA script 2-8
entry table A-12

F
field table A-12
form

changing contents 4-6
create a menu of links A-19
image A-26
input document A-8
reusable components A-33
static text A-26

form fields
<entry table> A-12
<fields> A-11
<html> A-12
<listbox> A-11
<menu> A-11
<plug in> A-12
<table> A-11

G
getCatalog 2-15
getOrderParameters 4-14

getProduct 4-9

H
hidden field A-31
HTML A-18
HTML codes A-35
hypertext A-35
hypertext link A-32

I
input document A-8

J
joinfield B-4
joinvalue B-4

M
module

adding 4-17
removing from Get.It! 4-21

N
nested documents B-3

finding B-4
in-place B-3
reference B-3

null B-8

O
onload property 2-15
onload script 4-9

P
param A-17
Peregrine Systems, contacting C-1
ProductId A-21

Q
query string 2-6

R
regenerating web pages 4-2
reusable form components A-33
rowspan A-14

S
schema 4-11

<attribute> B-4
<collection> B-6
<document> B-3
attributes B-3
ex-2 3/15/00 Get.It! Tailoring Guide

document file B-2
nested documents B-3
ServiceCenter B-7
structure B-2

script
changing 4-13
user-derived 4-13

scripting 2-8
ServiceCenter

derived schemas B-7
software

linking in to Get.It! 4-17
subforms A-33
submit A-15
support, contacting C-1

T
table 2-15
tailoring

basics 4-3
TARGET

param A-17
target-activity A-17
target-field A-17
target-form A-17
target-module A-17
target-url A-17

technical support, contacting C-1
TEXT A-17

U
user derived script 4-13
user.xml 4-3
user-access A-4

V
valuelist A-22, A-29

W
wbuild 4-2

XSL templates 4-16
web pages

regenerating 4-2
weblication 2-3, 2-11

cascading style sheets
definition 2-14
ingredients 2-13
XSL layout templates 2-13

X
XML 2-3

XSL
purpose of 4-16
to learn more 2-14
wbuild 4-16
when to change 4-16

XSL layout templates 2-13
Get.It! Tailoring Guide 3/15/00 Index-3

I
ndex-4 3/15/00 Get.It! Tailoring Guide

	Contents
	Introduction
	About this Manual
	Organization of the Manual

	Conventions Used in this Manual
	Buttons, Directories, and File Names

	Get.It! Architectural Overview
	High Level Architecture
	Archway Internal Architecture
	Archway Requests
	Scripting
	The Document Manager
	Weblications

	Introduction to Document Schemas
	Definition of a Document Schema
	Using Schemas in a Weblication

	Tailoring Get.It!
	Archway Architecture
	Weblication Toolset
	Before You Make Changes
	Showing Form Information
	Debugging the Changes You Make
	Where to Make the Modifications
	Information You Must Have
	Running the wbuild Command

	Changing the Contents of a Form
	Adding a Field to a Form
	Data for the New Field (Scripts)

	Adding Fields to a Document
	When the Field is not Defined in the Schema

	Changing Script Behavior
	Changing a jscript

	Changing the Components and Layout of a Weblication (XSL)
	When Would I Change the XML?

	Integrating a New Product into Get.It!
	Integrating a URL
	Adding the URL as a Module
	Adding a URL as an Activity

	Adding a ServiceCenter or AssetCenter Feature as a New Module

	Adding a Feature from AssetCenter

	Weblication Reference
	Weblication Structure
	Imports
	Weblication Tags
	<application>
	<module>
	<activity>
	<form>
	<redirect>
	form fields
	<fieldtable>
	<action>
	TARGET
	TEXT
	$$(X)
	<menu>
	Link Attributes

	<table>
	Column Types

	<columns>
	<listbox>
	<field>
	<input>
	<input> (Text Field)
	<input> (Text Area)
	<input> (Combo/Selection Box)
	<input> (Checkbox)
	<input> (Radio)
	<input> (Hidden)

	<link>

	Reusable Form Components (Subforms)
	Additional Tags
	<html>

	Document Scheme DTD
	Document Schema Files
	Schema Attributes
	<document>
	Nested <document> Tags
	<attribute>
	<collection>
	ServiceCenter Specific Attributes

	Contacting Peregrine Systems
	North and South America
	United Kingdom regional office
	France regional office
	Germany regional office
	Nordic regional office
	Benelux regional office
	Asia-Pacific regional offices

	Index

