
Online Guide

Find

Books
Online

 Again

Help

Find
��WinRunner®

User’s Guide
��������	
�

������



Contents Summary 

WinRunner User’s Guide Page 2

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

0
Contents Summary

Welcome to WinRunner ................................................................. 25

PART I:  STARTING THE TESTING PROCESS

Chapter 1: Introduction.................................................................. 33

Chapter 2: WinRunner at a Glance ............................................... 43

PART I I:  UNDERSTANDING THE GUI MAP

Chapter 3: Introducing the GUI Map............................................. 55

Chapter 4: Creating the GUI Map .................................................. 67

Chapter 5: Editing the GUI Map..................................................... 92

Chapter 6: Configuring the GUI Map .......................................... 123

Chapter 7: Learning Virtual Objects ........................................... 157

PART I I I :  CREATING TESTS

Chapter 8: Creating Tests............................................................ 167

Chapter 9: Checking GUI Objects ............................................... 208

Chapter 10: Working with ActiveX and Visual Basic
 Controls ...................................................................................... 291

Chapter 11: Checking PowerBuilder Applications.................... 316

Chapter 12: Checking Table Contents........................................ 332



Contents Summary

WinRunner User’s Guide Page 3

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 13: Checking Databases................................................ 353

Chapter 14: Checking Bitmaps ................................................... 433

Chapter 15: Checking Text .......................................................... 443

Chapter 16: Creating Data-Driven Tests..................................... 465

Chapter 17: Synchronizing the Test Run ................................... 542

Chapter 18: Handling Unexpected Events and Errors .............. 562

Chapter 19: Using Regular Expressions.................................... 588

PART IV:  PROGRAMMING WITH TSL

Chapter 20: Enhancing Your Test Scripts with Programming. 600

Chapter 21: Generating Functions.............................................. 620

Chapter 22: Calling Tests ............................................................ 636

Chapter 23: Creating User-Defined Functions........................... 655

Chapter 24: Creating Compiled Modules ................................... 671

Chapter 25: Calling Functions from External Libraries ............ 683

Chapter 26: Creating Dialog Boxes for Interactive Input.......... 694

PART V: RUNNING TESTS

Chapter 27: Running Tests.......................................................... 709

Chapter 28: Analyzing Test Results ........................................... 739



Contents Summary

WinRunner User’s Guide Page 4

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 29: Running Batch Tests .............................................. 786

Chapter 30: Running Tests from the Command Line .............. 795

PART VI:  DEBUGGING TESTS

Chapter 31: Debugging Test Scripts .......................................... 822

Chapter 32: Using Breakpoints ................................................... 829

Chapter 33: Monitoring Variables ............................................... 843

PART VII:  CONFIGURING WINRUNNER

Chapter 34: Customizing WinRunner’s User Interface ............. 855

Chapter 35: Customizing the Test Script Editor........................ 887

Chapter 36: Setting Global Testing Options.............................. 902

Chapter 37: Setting Testing Options from a Test Script........... 961

Chapter 38: Customizing the Function Generator ................. 1004

Chapter 39: Initializing Special Configurations....................... 1026

PART VII I :  WORKING WITH TESTSUITE

Chapter 40: Managing the Testing Process............................. 1030

Chapter 41: Testing Client/Server Systems ............................ 1077

Chapter 42: Reporting Defects.................................................. 1093

Index ............................................................................................ 1103



Table of Contents

WinRunner User’s Guide Page 5

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Table of Contents

Welcome to WinRunner ................................................................. 25
Using This Guide.............................................................................. 26
WinRunner Documentation Set ........................................................ 28
Online Resources............................................................................. 29
Typographical Conventions .............................................................. 31

PART I:  STARTING THE TESTING PROCESS

Chapter 1:  Introduction................................................................. 33
WinRunner Testing Modes............................................................... 34
The WinRunner Testing Process...................................................... 36
Sample Application........................................................................... 39
Working with TestSuite..................................................................... 41



Table of Contents

WinRunner User’s Guide Page 6

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 2:  WinRunner at a Glance .............................................. 43
Starting WinRunner .......................................................................... 44
The Main WinRunner Window.......................................................... 46
The Test Window.............................................................................. 47
Using WinRunner Commands.......................................................... 48
Loading WinRunner Add-Ins ............................................................ 52

PART I I:  UNDERSTANDING THE GUI MAP

Chapter 3:  Introducing the GUI Map............................................ 55
About the GUI Map........................................................................... 56
How a Test Identifies GUI Objects ................................................... 58
Physical Descriptions ....................................................................... 59
Logical Names.................................................................................. 61
The GUI Map Editor.......................................................................... 62
Setting the Window Context ............................................................. 66



Table of Contents

WinRunner User’s Guide Page 7

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 4:  Creating the GUI Map ................................................. 67
About Creating the GUI Map ............................................................ 68
Viewing GUI Object Properties......................................................... 70
Learning the GUI with the RapidTest Script Wizard ........................ 73
Learning the GUI by Recording ........................................................ 75
Learning the GUI Using the GUI Map Editor .................................... 76
Saving the GUI Map ......................................................................... 79
Loading the GUI Map File................................................................. 83
Guidelines for Working with GUI Maps............................................. 88

Chapter 5:  Editing the GUI Map.................................................... 92
About Editing the GUI Map............................................................... 93
The Run Wizard................................................................................ 95
The GUI Map Editor.......................................................................... 98
Modifying Logical Names and Physical Descriptions ..................... 102
How WinRunner Handles Varying Window Labels......................... 106
Using Regular Expressions in the Physical Description ................. 110
Copying and Moving Objects between Files .................................. 112
Finding an Object in a GUI Map File .............................................. 115
Finding an Object in Multiple GUI Map Files .................................. 116
Manually Adding an Object to a GUI Map File ............................... 117
Deleting an Object from a GUI Map File......................................... 118
Clearing a GUI Map File ................................................................. 119
Filtering Displayed Objects............................................................. 120
Saving Changes to the GUI Map.................................................... 122



Table of Contents

WinRunner User’s Guide Page 8

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 6:  Configuring the GUI Map ......................................... 123
About Configuring the GUI Map ..................................................... 124
Understanding the Default GUI Map Configuration........................ 127
Mapping a Custom Object to a Standard Class ............................. 129
Configuring a Standard or Custom Class ....................................... 134
Creating a Permanent GUI Map Configuration............................... 142
Deleting a Custom Class ................................................................ 145
The Class Property......................................................................... 146
All Properties .................................................................................. 148
Default Properties Learned............................................................. 154
Properties for Visual Basic Objects ................................................ 155
Properties for PowerBuilder Objects .............................................. 156

Chapter 7:  Learning Virtual Objects .......................................... 157
About Learning Virtual Objects....................................................... 158
Defining a Virtual Object................................................................. 160
Understanding a Virtual Object’s Physical Description................... 165



Table of Contents

WinRunner User’s Guide Page 9

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

PART I I I :  CREATING TESTS

Chapter 8:  Creating Tests........................................................... 167
About Creating Tests...................................................................... 168
The WinRunner Test Window......................................................... 170
Context Sensitive Recording .......................................................... 171
Solving Common Context Sensitive Recording Problems.............. 176
Analog Recording........................................................................... 179
Checkpoints.................................................................................... 181
Data-Driven Tests........................................................................... 182
Synchronization Points ................................................................... 182
Planning a Test............................................................................... 183
Documenting Test Information ....................................................... 184
Associating Add-ins with a Test...................................................... 188
Recording a Test ............................................................................ 190
Activating Test Creation Commands Using Softkeys ..................... 194
Programming a Test ....................................................................... 197
Editing a Test.................................................................................. 198
Managing Test Files ....................................................................... 199



Table of Contents

WinRunner User’s Guide Page 10

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 9:  Checking GUI Objects .............................................. 208
About Checking GUI Objects.......................................................... 209
Checking a Single Property Value.................................................. 212
Checking a Single Object ............................................................... 215
Checking Two or More Objects in a Window.................................. 221
Checking All Objects in a Window.................................................. 225
Understanding GUI Checkpoint Statements................................... 230
Using an Existing GUI Checklist in a GUI Checkpoint.................... 233
Modifying GUI Checklists ............................................................... 236
Understanding the GUI Checkpoint Dialog Boxes.......................... 245
Property Checks and Default Checks............................................. 262
Specifying Arguments for Property Checks.................................... 273
Editing the Expected Value of a Property....................................... 284
Modifying the Expected Results of a GUI Checkpoint.................... 287



Table of Contents

WinRunner User’s Guide Page 11

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 10:  Working with ActiveX and Visual Basic
 Controls ...................................................................................... 291
About Working with ActiveX and Visual Basic Controls ................. 292
Choosing Appropriate Support for Visual Basic Applications ......... 294
Activating an ActiveX Control Method ............................................ 297
Viewing ActiveX and Visual Basic Control Properties .................... 297
Retrieving and Setting the Values of ActiveX and 
  Visual Basic Control Properties .................................................... 301
Working with Visual Basic Label Controls ...................................... 304
Checking Sub-Objects of ActiveX and Visual Basic Controls......... 309
Using TSL Table Functions with ActiveX Controls ......................... 314

Chapter 11:  Checking PowerBuilder Applications................... 316
About Checking PowerBuilder Applications .................................. 317
Checking Properties of DropDown Objects .................................... 318
Checking Properties of DataWindows............................................ 323
Checking Properties of Objects within DataWindows..................... 327
Working with Computed Columns in DataWindows ....................... 331

Chapter 12:  Checking Table Contents....................................... 332
About Checking Table Contents..................................................... 333
Checking Table Contents with Default Checks .............................. 336
Checking Table Contents while Specifying Checks ....................... 338
Understanding the Edit Check Dialog Box ..................................... 342



Table of Contents

WinRunner User’s Guide Page 12

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 13:  Checking Databases............................................... 353
About Checking Databases ............................................................ 354
Choosing a Database..................................................................... 358
Creating a Default Check on a Database ...................................... 363
Creating a Custom Check on a Database...................................... 368
Messages in the Database Checkpoint Dialog Boxes.................... 377
Working with the Database Checkpoint Wizard ............................. 378
Understanding the Edit Check Dialog Box ..................................... 391
Modifying a Database Checkpoint.................................................. 400
Modifying the Expected Results of a Database Checkpoint........... 415
Parameterizing Database Checkpoints .......................................... 419
Using TSL Functions to Work with a Database.............................. 426

Chapter 14:  Checking Bitmaps .................................................. 433
About Checking Bitmaps ................................................................ 434
Checking Window and Object Bitmaps .......................................... 438
Checking Area Bitmaps.................................................................. 441

Chapter 15:  Checking Text ......................................................... 443
About Checking Text ...................................................................... 444
Reading Text .................................................................................. 446
Searching for Text .......................................................................... 451
Comparing Text .............................................................................. 458
Teaching Fonts to WinRunner ....................................................... 459



Table of Contents

WinRunner User’s Guide Page 13

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 16:  Creating Data-Driven Tests.................................... 465
About Creating Data-Driven Tests.................................................. 466
The Data-Driven Testing Process .................................................. 467
Creating a Basic Test for Conversion............................................. 468
Converting a Test to a Data-Driven Test ........................................ 472
Preparing the Data Table ............................................................... 492
Importing Data from a Database .................................................... 503
Running and Analyzing Data-Driven Tests..................................... 516
Assigning the Main Data Table for a Test ...................................... 518
Using Data-Driven Checkpoints and Bitmap 
  Synchronization Points ................................................................. 521
Using TSL Functions with Data-Driven Tests................................. 529
Guidelines for Creating a Data-Driven Test.................................... 539

Chapter 17:  Synchronizing the Test Run .................................. 542
About Synchronizing the Test Run................................................. 543
Waiting for Objects and Windows................................................... 547
Waiting for Property Values of Objects and Windows.................... 549
Waiting for Bitmaps of Objects and Windows................................. 556
Waiting for Bitmaps of Screen Areas.............................................. 559



Table of Contents

WinRunner User’s Guide Page 14

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 18:  Handling Unexpected Events and Errors ............. 562
About Handling Unexpected Events and Errors ............................. 563
Handling Pop-Up Exceptions.......................................................... 565
Handling TSL Exceptions ............................................................... 573
Handling Object Exceptions ........................................................... 580
Activating and Deactivating Exception Handling ............................ 587

Chapter 19:  Using Regular Expressions................................... 588
About Regular Expressions ............................................................ 589
When to Use Regular Expressions................................................. 590
Regular Expression Syntax ............................................................ 595



Table of Contents

WinRunner User’s Guide Page 15

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

PART IV:  PROGRAMMING WITH TSL

Chapter 20:  Enhancing Your Test Scripts with Programming 600
About Enhancing Your Test Scripts with Programming.................. 601
Statements ..................................................................................... 602
Comments and White Space.......................................................... 603
Constants and Variables ................................................................ 605
Performing Calculations ................................................................. 606
Creating Stress Conditions............................................................. 608
Decision-Making ............................................................................. 611
Sending Messages to the Test Results Window ............................ 615
Starting Applications from a Test Script ......................................... 616
Defining Test Steps ........................................................................ 617
Comparing Two Files...................................................................... 618

Chapter 21:  Generating Functions............................................. 620
About Generating Functions........................................................... 621
Generating a Function for a GUI Object ......................................... 624
Selecting a Function from a List ..................................................... 629
Assigning Argument Values ........................................................... 631
Modifying the Default Function in a Category................................. 634



Table of Contents

WinRunner User’s Guide Page 16

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 22:  Calling Tests ........................................................... 636
About Calling Tests ........................................................................ 637
Using the Call Statement................................................................ 639
Returning to the Calling Test .......................................................... 641
Setting the Search Path.................................................................. 644
Defining Test Parameters............................................................... 646

Chapter 23:  Creating User-Defined Functions.......................... 655
About Creating User-Defined Functions......................................... 656
Function Syntax.............................................................................. 658
Return Statements.......................................................................... 661
Variable, Constant, and Array Declarations ................................... 662
Example of a User-Defined Function.............................................. 670

Chapter 24:  Creating Compiled Modules .................................. 671
About Creating Compiled Modules................................................. 672
Contents of a Compiled Module .................................................... 673
Creating a Compiled Module .......................................................... 675
Loading and Unloading a Compiled Module................................... 678
Example of a Compiled Module...................................................... 682



Table of Contents

WinRunner User’s Guide Page 17

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 25:  Calling Functions from External Libraries ........... 683
About Calling Functions from External Libraries ............................ 684
Dynamically Loading External Libraries ......................................... 686
Declaring External Functions in TSL .............................................. 688
Windows API Examples ................................................................. 692

Chapter 26:  Creating Dialog Boxes for Interactive Input......... 694
About Creating Dialog Boxes for Interactive Input.......................... 695
Creating an Input Dialog Box.......................................................... 697
Creating a List Dialog Box.............................................................. 699
Creating a Custom Dialog Box ....................................................... 701
Creating a Browse Dialog Box........................................................ 704
Creating a Password Dialog Box.................................................... 706



Table of Contents

WinRunner User’s Guide Page 18

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

PART V: RUNNING TESTS

Chapter 27:  Running Tests......................................................... 709
About Running Tests ...................................................................... 710
WinRunner Test Run Modes .......................................................... 712
WinRunner Run Commands........................................................... 716
Choosing Run Commands Using Softkeys .................................... 720
Running a Test to Check Your Application..................................... 722
Running a Test to Debug Your Test Script..................................... 724
Running a Test to Update Expected Results.................................. 726
Controlling the Test Run with Testing Options ............................... 731
Reviewing Current Test Settings .................................................... 732
Solving Common Test Run Problems ............................................ 735



Table of Contents

WinRunner User’s Guide Page 19

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 28:  Analyzing Test Results .......................................... 739
About Analyzing Test Results......................................................... 740
The Test Results Window............................................................... 741
Viewing the Results of a Test Run ................................................. 746
Viewing the Results of a Property Check ....................................... 751
Viewing the Results of a GUI Checkpoint....................................... 753
Viewing the Results of a GUI Checkpoint on Table Contents ........ 757
Viewing the Expected Results of a GUI Checkpoint 
  on Table Contents ........................................................................ 763
Viewing the Results of a Bitmap Checkpoint.................................. 768
Viewing the Results of a Database Checkpoint.............................. 770
Viewing the Expected Results of a Content Check
  in a Database Checkpoint ............................................................ 774
Updating the Expected Results of a Checkpoint ............................ 779
Viewing the Results of a File Comparison...................................... 783
Reporting Defects Detected during a Test Run.............................. 785

Chapter 29:  Running Batch Tests ............................................. 786
About Running Batch Tests ........................................................... 787
Creating a Batch Test..................................................................... 789
Running a Batch Test ..................................................................... 791
Storing Batch Test Results ............................................................. 792
Viewing Batch Test Results............................................................ 794



Table of Contents

WinRunner User’s Guide Page 20

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 30:  Running Tests from the Command Line ............. 795
About Running Tests from the Command Line ............................. 796
Using the Windows Command Line ............................................... 798
Command Line Options.................................................................. 800

PART VI:  DEBUGGING TESTS

Chapter 31:  Debugging Test Scripts ......................................... 822
About Debugging Test Scripts........................................................ 823
Running a Single Line of a Test Script ........................................... 825
Running a Section of a Test Script ................................................. 826
Pausing Test Execution.................................................................. 827

Chapter 32:  Using Breakpoints .................................................. 829
About Breakpoints .......................................................................... 830
Breakpoint Types............................................................................ 832
Setting Break at Location Breakpoints ........................................... 834
Setting Break in Function Breakpoints ........................................... 837
Modifying Breakpoints .................................................................... 840
Deleting Breakpoints ...................................................................... 842



Table of Contents

WinRunner User’s Guide Page 21

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 33:  Monitoring Variables .............................................. 843
About Monitoring Variables ............................................................ 844
Adding Variables to the Watch List................................................. 847
Viewing Variables in the Watch List ............................................... 849
Modifying Variables in the Watch List............................................. 851
Assigning a Value to a Variable in the Watch List .......................... 852
Deleting Variables from the Watch List .......................................... 853

PART VII:  CONFIGURING WINRUNNER

Chapter 34:  Customizing WinRunner’s User Interface ............ 855
About Customizing WinRunner’s User Interface ............................ 856
Customizing the User Toolbar ........................................................ 857
Using the User Toolbar................................................................... 879
Configuring WinRunner Softkeys ................................................... 881

Chapter 35:  Customizing the Test Script Editor....................... 887
About Customizing the Test Script Editor....................................... 888
Setting Display Options .................................................................. 889
Personalizing Editing Commands................................................... 899



Table of Contents

WinRunner User’s Guide Page 22

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 36:  Setting Global Testing Options............................. 902
About Setting Global Testing Options ............................................ 903
Setting Global Testing Options from the General Options
  Dialog Box .................................................................................... 904
Global Testing Options................................................................... 906
Choosing Appropriate Timeout and Delay Settings........................ 956

Chapter 37:  Setting Testing Options from a Test Script.......... 961
About Setting Testing Options from a Test Script .......................... 962
Setting Testing Options with setvar ................................................ 963
Retrieving Testing Options with getvar........................................... 965
Controlling the Test Run with setvar and getvar............................. 968
Test Script Testing Options ............................................................ 969

Chapter 38:  Customizing the Function Generator ................ 1004
About Customizing the Function Generator ................................. 1005
Adding a Category to the Function Generator.............................. 1006
Adding a Function to the Function Generator............................... 1008
Associating a Function with a Category ....................................... 1020
Adding a Subcategory to a Category............................................ 1022
Setting a Default Function for a Category .................................... 1024



Table of Contents

WinRunner User’s Guide Page 23

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 39:  Initializing Special Configurations...................... 1026
About Initializing Special Configurations ...................................... 1026
Creating Startup Tests.................................................................. 1027
Sample Startup Test..................................................................... 1028

PART VII I :  WORKING WITH TESTSUITE

Chapter 40:  Managing the Testing Process............................ 1030
About Managing the Testing Process........................................... 1031
Using WinRunner with TestDirector ............................................. 1035
Connecting to and Disconnecting from a Project ......................... 1038
Saving Tests to a Project.............................................................. 1045
Opening Tests in a Project ........................................................... 1048
Managing Test Versions in WinRunner ........................................ 1052
Saving GUI Map Files to a Project ............................................... 1057
Opening GUI Map Files in a Project ............................................. 1060
Running Tests in a Test Set ......................................................... 1062
Running Tests on Remote Hosts.................................................. 1064
Viewing Test Results from a Project............................................. 1065
Using TSL Functions with TestDirector ........................................ 1068
Command Line Options for Working with TestDirector ................ 1073



Table of Contents

WinRunner User’s Guide Page 24

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 41:  Testing Client/Server Systems ........................... 1077
About Testing Client/Server Systems........................................... 1078
Emulating Multiple Users.............................................................. 1079
Virtual User (Vuser) Technology .................................................. 1080
Developing and Running Scenarios ............................................. 1082
Creating GUI Vuser Scripts .......................................................... 1084
Measuring Server Performance.................................................... 1085
Synchronizing Virtual User Transactions...................................... 1087
Creating a Rendezvous Point....................................................... 1088
A Sample Vuser Script ................................................................. 1090

Chapter 42:  Reporting Defects................................................. 1093
About Reporting Defects .............................................................. 1094
Using the Web Defect Manager ................................................... 1095
Setting Up the Remote Defect Reporter....................................... 1097
The Remote Defect Reporter Window.......................................... 1099
Reporting New Defects from the Remote Defect Reporter .......... 1101

Index ............................................................................................ 1103



Welcome to WinRunner

WinRunner User’s Guide Page 25

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Welcome to WinRunner

Welcome to WinRunner, Mercury Interactive’s enterprise functional testing tool 
for Microsoft Windows applications. With WinRunner you can quickly create and 
run sophisticated automated tests on your application.



Welcome to WinRunner

WinRunner User’s Guide Page 26

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using This Guide

This guide describes the main concepts behind automated software testing. It 
provides step-by-step instructions to help you create, debug, and run tests, and 
to report defects detected during the testing process. 

This guide contains 8 parts:

 Part  I: Starting the Testing Process

Provides an overview of WinRunner and the main stages of the testing process.

 Part  II: Understanding the GUI Map

Describes Context Sensitive testing and the importance of the GUI map for 
creating adaptable and reusable test scripts.

 Part  III: Creating Tests

Describes how to create test scripts, insert checkpoints, assign parameters, use 
regular expressions, and handle unexpected events that occur during a test run. 

 Part  IV: Programming with TSL 

Describes how to enhance your test scripts using variables, control-flow 
statements, arrays, user-defined and external functions, WinRunner’s visual 
programming tools, and interactive input during a test run.



Welcome to WinRunner

WinRunner User’s Guide Page 27

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 Part  V: Running Tests 

Describes how to run tests, including batch tests, both from within WinRunner and 
from the command line, and analyze test results.

 Part  VI: Debugging Tests 

Describes how to control test runs to identify and isolate bugs in test scripts, by 
using breakpoints and monitoring variables during the test run.

 Part  VII: Configuring WinRunner 

Describes how to customize WinRunner’s user interface, test script editor and the 
Function Generator. You can also change WinRunner’s default settings, both 
globally and per test, and initialize special configurations to adapt WinRunner to 
your testing environment.

 Part  VIII:Working with TestSuite

Describes how to report defects detected in your application and how WinRunner 
interacts with TestDirector and LoadRunner.



Welcome to WinRunner

WinRunner User’s Guide Page 28

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Documentation Set

In addition to this guide, WinRunner comes with a complete set of documentation:

WinRunner Installation Guide describes how to install WinRunner on a single 
computer or a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how to 
start testing your application.

WinRunner Customization Guide explains how to customize WinRunner to 
meet the special testing requirements of your application.

WebTest User’s Guide teaches you how to use the WebTest add-in to test your 
Web site.

TSL Reference Guide describes Test Script Language (TSL) and the functions it 
contains.



Welcome to WinRunner

WinRunner User’s Guide Page 29

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Online Resources

WinRunner includes the following online resources:

Read Me First provides last-minute news and information about WinRunner.

What’s New in WinRunner describes the newest features in the latest versions 
of WinRunner.

Books Online displays the complete documentation set in PDF format. Online 
books can be read and printed using Adobe Acrobat Reader 4.0, which is 
included in the installation package. Check Mercury Interactive’s Customer 
Support web site for updates to WinRunner online books.

WinRunner Context-Sensitive Help provides immediate answers to questions 
that arise as you work with WinRunner. It describes menu commands and dialog 
boxes, and shows you how to perform WinRunner tasks. Check Mercury 
Interactive’s Customer Support Web site for updates to WinRunner help files.

TSL Online Reference describes Test Script Language (TSL), the functions it 
contains, and examples of how to use the functions. Check Mercury Interactive’s 
Customer Support Web site for updates to the TSL Online Reference.

WinRunner Sample Tests includes utilities and sample tests with accompanying 
explanations. Check Mercury Interactive’s Customer Support Web site for 
updates to WinRunner help files.



Welcome to WinRunner

WinRunner User’s Guide Page 30

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Technical Support Online uses your default Web browser to open Mercury 
Interactive’s Customer Support Web site. The URL for this Web site is 
http://web.merc-int.com.

Support Information presents Mercury Interactive’s Customer Support Web site 
and home page, the e-mail address for requesting information, the name of the 
relevant news group, the location of Mercury Interactive’s public FTP site, and a 
list of Mercury Interactive’s offices around the world.

Mercury Interactive on the Web uses your default Web browser to open 
Mercury Interactive’s home page. This site provides the most up-to-date 
information on Mercury Interactive and its products. This includes new software 
releases, seminars and trade shows, customer support, educational services, 
and more. The URL for this Web site is http://www.merc-int.com.



Welcome to WinRunner

WinRunner User’s Guide Page 31

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Typographical Conventions

This book uses the following typographical conventions:

������� Bold numbers indicate steps in a procedure.

• Bullets indicate options and features.

> The greater than sign separates menu levels (for 
example, File > Open).

Bold Bold text indicates function names.

Italics Italic text indicates variable names.

Helvetica The Helvetica font is used for examples and statements 
that are to be typed in literally.

[  ] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values 
must be assigned to the current parameter. 

... In a line of syntax, an ellipsis indicates that more items of 
the same format may be included. In a program example, 
an ellipsis is used to indicate lines of a program that were 
intentionally omitted.

| A vertical bar indicates that either of the two options 
separated by the bar should be selected.



WinRunner User’s Guide Page 32

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part I

Starting the Testing Process



Starting the Testing Process
Introduction

WinRunner User’s Guide Chapter 1, page 33

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Introduction

Welcome to WinRunner, Mercury Interactive’s enterprise functional testing tool 
for Microsoft Windows applications. This guide provides detailed descriptions of 
WinRunner’s features and automated testing procedures.

Recent advances in client/server software tools enable developers to build 
applications quickly and with increased functionality. Quality Assurance 
departments must cope with software that has dramatically improved, but is 
increasingly complex to test. Each code change, enhancement, defect fix, or 
platform port necessitates retesting the entire application to ensure a quality 
release. Manual testing can no longer keep pace in this dynamic development 
environment.

WinRunner helps you automate the testing process, from test development to 
execution. You create adaptable and reusable test scripts that challenge the 
functionality of your application. Prior to a software release, you can run these 
tests in a single overnight run—enabling you to detect defects and ensure 
superior software quality.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 34

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Testing Modes

WinRunner facilitates easy test creation by recording how you work on your 
application. As you point and click GUI (Graphical User Interface) objects in your 
application, WinRunner generates a test script in the C-like Test Script Language 
(TSL). You can further enhance your test scripts with manual programming. 
WinRunner includes the Function Generator, which helps you quickly and easily 
add functions to your recorded tests.

WinRunner includes two modes for recording tests:

Context Sensitive
Context Sensitive mode records your actions on the application being tested in 
terms of the GUI objects you select (such as windows, lists, and buttons), while 
ignoring the physical location of the object on the screen. Every time you perform 
an operation on the application being tested, a TSL statement describing the 
object selected and the action performed is generated in the test script.

As you record, WinRunner writes a unique description of each selected object to 
a GUI map. The GUI map consists of files maintained separately from your test 
scripts. If the user interface of your application changes, you have to update only 
the GUI map, instead of hundreds of tests. This allows you to easily reuse your 
Context Sensitive test scripts on future versions of your application.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 35

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To run a test, you simply play back the test script. WinRunner emulates a user by 
moving the mouse pointer over your application, selecting objects, and entering 
keyboard input. WinRunner reads the object descriptions in the GUI map and 
then searches in the application being tested for objects matching these 
descriptions. It can locate objects in a window even if their placement has 
changed.

Analog
Analog mode records mouse clicks, keyboard input, and the exact 
x- and y-coordinates traveled by the mouse. When the test is run, WinRunner 
retraces the mouse tracks. Use Analog mode when exact mouse coordinates are 
important to your test, such as when testing a drawing application.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 36

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The WinRunner Testing Process

Testing with WinRunner involves six main stages:

Create the GUI Map
The first stage is to create the GUI map so WinRunner can recognize the GUI 
objects in your application being tested. Use the RapidTest Script wizard to review 
the user interface of your application and systematically add descriptions of every 
GUI object to the GUI map. Alternatively, you can add descriptions of individual 
objects to the GUI map by clicking objects while recording a test.

���
��������

���
��
�����
�

���������

����������� ������������

��������������



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 37

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Create Tests
Next, you create test scripts by recording, programming, or a combination of both. 
While recording tests, insert checkpoints where you want to check the response 
of the application being tested. You can insert checkpoints that check GUI 
objects, bitmaps, and databases. During this process, WinRunner captures data 
and saves it as expected results—the expected response of the application being 
tested.

Debug Tests
You run tests in Debug mode to make sure they run smoothly. You can set 
breakpoints, monitor variables, and control how tests are run to identify and 
isolate defects. Test results are saved in the debug folder, which you can discard 
once you finished debugging the test. 

Run Tests
You run tests in Verify mode to test your application. Each time WinRunner 
encounters a checkpoint in the test script, it compares the current data of the 
application being tested to the expected data captured earlier. If any mismatches 
are found, WinRunner captures them as actual results.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 38

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

View Results
You determine the success or failure of the tests. Following each test run, 
WinRunner displays the results in a report. The report details all the major events 
that occurred during the run, such as checkpoints, error messages, system 
messages, or user messages.

If mismatches are detected at checkpoints during the test run, you can view the 
expected results and the actual results from the Test Results window. In cases of 
bitmap mismatches, you can also view a bitmap that displays only the difference 
between the expected and actual results.

Report Defects
If a test run fails due to a defect in the application being tested, you can report 
information about the defect directly from the Test Results window. This 
information is sent via e-mail to the quality assurance manager, who tracks the 
defect until it is fixed.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 39

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Sample Application

Many examples in this book use the sample Flight Reservation application 
provided with WinRunner. Note that this application is Year 2000 compliant.

Starting the Sample Application
You can start this application by choosing Start > Programs > WinRunner > 
Sample Applications and then choosing the version of the flight application you 
want to open: Flight 1A or Flight 1B.

Multiple Versions of the Sample Application
The sample Flight Reservation application comes in two versions: Flight 1A and 
Flight 1B. Flight 1A is a fully working application, while Flight 1B has some “bugs” 
built into it. These versions are used together in the WinRunner Tutorial to 
simulate the development process, in which the performance of one version of an 
application is compared with that of another. You can use the examples in this 
guide with either Flight 1A or Flight 1B.

When WinRunner is installed with Visual Basic support, Visual Basic versions of 
Flight 1A and Flight 1B applications are installed in addition to the regular sample 
applications.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 40

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Logging In
When you start the sample Flight Reservation application, the Login dialog box 
opens. You must log in to start the application. To log in, enter a name of at least 
four characters and password. The password is “Mercury” and is not case 
sensitive.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 41

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with TestSuite

WinRunner works with other TestSuite tools to provide an integrated solution for 
all phases of the testing process: test planning, test development, GUI and load 
testing, defect tracking, and client load testing for multi-user systems.

TestDirector
TestDirector is Mercury Interactive’s software test management tool. It helps 
quality assurance personnel plan and organize the testing process. With 
TestDirector you can create a database of manual and automated tests, build test 
cycles, run tests, and report and track defects. You can also create reports and 
graphs to help review the progress of planning tests, running tests, and tracking 
defects before a software release.

When you work with WinRunner, you can choose to save your tests directly to 
your TestDirector database. You can also run tests in WinRunner and then use 
TestDirector to review the overall results of a testing cycle.



Starting the Testing Process • Introduction

WinRunner User’s Guide Chapter 1, page 42

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

LoadRunner
LoadRunner is Mercury Interactive’s testing tool for client/server applications. 
Using LoadRunner, you can emulate an environment in which many users are 
simultaneously engaged in a single server application. Instead of human users, it 
substitutes virtual users that run automated tests on the application being tested. 
You can test an application’s performance “under load” by simultaneously 
activating virtual users on multiple host computers.



Starting the Testing Process
WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 43

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
WinRunner at a Glance

This chapter explains how to start WinRunner and introduces the WinRunner 
window.

This chapter describes:

• Starting WinRunner

• The Main WinRunner Window

• The Test Window

• Using WinRunner Commands

• Loading WinRunner Add-Ins



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 44

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Starting WinRunner

To start WinRunner, click Start > Programs > WinRunner > WinRunner. After 
several seconds, the WinRunner window opens. Note that the WinRunner 
Record/Run Engine icon appears in the status area of the Windows taskbar. This 
engine establishes and maintains the connection between WinRunner and the 
application being tested.



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 45

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The first time you start WinRunner, the Welcome to WinRunner window opens. 
You can choose to create a new test, open an existing test, or run the RapidTest 
Script wizard. 

If you do not want this window to appear the next time you start WinRunner, 
clear the Show at Startup check box. To show the Welcome to WinRunner 
window upon startup from within WinRunner, choose Settings > General 
Options, click the Environment tab, and select the Show Welcome Screen 
check box.



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 46

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Main WinRunner Window

The main WinRunner window contains the following key elements:

• WinRunner title bar

• Menu bar, with drop-down menus of WinRunner commands

• Standard toolbar, with buttons of commands commonly used when running a 
test

• User toolbar, with commands commonly used while creating a test

• Status bar, with information on the current command, the line number of the 
insertion point, and the name of the current results folder

WinRunner title bar

Menu bar

Standard toolbar

User toolbar

Status bar



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 47

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Test Window

You create and run WinRunner tests in the test window. It contains the following 
key elements:

• Test window title bar, with the name of the open test

• Test script, with statements generated by recording and/or programming in TSL, 
Mercury Interactive’s Test Script Language

• Execution arrow, which indicates the line of the test script being executed (to 
move the marker to any line in the script, click the mouse in the left window 
margin next to the line)

• Insertion point, which indicates where you can insert or edit text

Execution arrow

Test script

Insertion point

Test window title bar



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 48

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using WinRunner Commands

You can select WinRunner commands from the menu bar or from a toolbar. 
Certain WinRunner commands can also be executed by pressing softkeys.

Choosing Commands on a Menu
You can choose all WinRunner commands from the menu bar. 

Clicking Commands on a Toolbar
You can execute some WinRunner commands by clicking buttons on the toolbars. 
WinRunner has two built-in toolbars: the Standard toolbar and the User toolbar. 
You can customize the User toolbar with the commands you use most frequently.

Creating a Floating Toolbar

You can change a toolbar to a floating toolbar. This enables you to minimize 
WinRunner while maintaining access to the commands on a floating toolbar, so 
you can work freely with the application being tested.



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 49

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Standard Toolbar

The Standard toolbar contains buttons for the commands used in running a test. 
It also contains buttons for opening and saving test scripts, viewing test reports, 
and accessing help. The default location of the Standard toolbar is docked below 
the WinRunner menu bar. For more information about the Standard toolbar, see 
Chapter 27, Running Tests.  The following buttons appear on the Standard 
toolbar:

The User Toolbar

The User toolbar contains buttons for commands used when creating tests. By 
default, the User toolbar is hidden. To display the User toolbar, select it on the 
Window menu. When it is displayed, its default position is docked at the right edge 
of the WinRunner window. For information about creating tests, see Part III, 
Creating Tests.

Pause
Run from 
Arrow

Record - 
Context SensitiveOpen

Help Toggle 
Breakpoint

Step Into

StopRun from TopRun ModeSaveNew

Break in 
Function

Add Watch 

Test Results

Step



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 50

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The User toolbar is a customizable toolbar. You can add or remove buttons to 
facilitate access to commands commonly used for an application being tested . 
For information on customizing the User toolbar, see Customizing the User 
Toolbar on page 857. The following buttons appear by default on the User 
toolbar: 

Insert Function for Object/Window

Record - Context Sensitive

Stop

GUI Checkpoint for Object/Window

GUI Checkpoint for Multiple Objects

Bitmap Checkpoint for Object/Window

Bitmap Checkpoint for Screen Area

Synchronization Point for Object/Window Property

Synchronization Point for Object/Window Bitmap

Get Text from Object/Window

Get Text from Screen Area

Synchronization Point for Screen Area Bitmap

Database Checkpoint

Insert Function from Function Generator



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 51

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Executing Commands Using Softkeys
You can execute some WinRunner commands by pressing softkeys. WinRunner 
reads input from softkeys even when the WinRunner window is not the active 
window on your screen, or when it is minimized.

Softkey assignments are configurable. If the application being tested uses a 
default softkey that is preconfigured for WinRunner, you can redefine it using 
WinRunner’s softkey configuration utility.

For a list of default WinRunner softkey configurations and information about 
redefining WinRunner softkeys, see Configuring WinRunner Softkeys on page 
881.



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 52

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Loading WinRunner Add-Ins

If you installed add-ins such as support for Visual Basic, PowerBuilder, or ActiveX 
controls while installing WinRunner or afterward, you can specify which add-ins 
to load at the beginning of each WinRunner session. 

When you start WinRunner, the Add-In Manager dialog box opens. It displays a 
list of all installed add-ins for WinRunner. You can select which add-ins to load for 
the current session of WinRunner. If you do not make a change within a certain 
amount of time, the window closes. The progress bar displays how much time is 
left before the window closes.



Starting the Testing Process • WinRunner at a Glance

WinRunner User’s Guide Chapter 2, page 53

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The first time WinRunner is started, by default, no add-ins are selected. At the 
beginning of each subsequent WinRunner session, your selection from the 
previous session is the default setting. Once you make a change to the list, the 
timer stops running, and you must click OK to close the dialog box.

You can determine whether to display the Add-In Manager dialog box and, if so, 
for how long using the Display the Add-In Manager dialog option in the 
Environment tab of the General Options dialog box. For information on working 
with the General Options dialog box, see Chapter 36, Setting Global Testing 
Options.  You can also specify these options using the -addins and 
-addins_select_timeout command line options. For information on working with 
command line options, see Chapter 30, Running Tests from the Command 
Line.  



WinRunner User’s Guide Page 54

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part II

Understanding the GUI Map



Understanding the GUI Map
Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 55

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Introducing the GUI Map

This chapter introduces Context Sensitive testing and explains how WinRunner 
identifies the Graphical User Interface (GUI) objects in your application.

This chapter describes:

• How a Test Identifies GUI Objects

• Physical Descriptions

• Logical Names

• The GUI Map Editor

• Setting the Window Context



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 56

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About the GUI Map

When you work in Context Sensitive mode, you can test your application as the 
user sees it—in terms of GUI objects—such as windows, menus, buttons, and 
lists. Each object has a defined set of properties that determines its behavior and 
appearance. WinRunner learns these properties and uses them to identify and 
locate GUI objects during a test run. In Context Sensitive mode, WinRunner does 
not need to know the physical location of a GUI object to identify it.

In order to test in Context Sensitive mode, WinRunner must learn the properties 
of each GUI object in your application. The simplest and most thorough way for 
WinRunner to learn your application is by using the RapidTest Script wizard, 
which guides you through the learning process. The wizard systematically opens 
each window in your application and learns the properties of the GUI objects it 
contains. WinRunner provides additional methods for learning the properties of 
individual objects. For more information on the learning process, see Chapter 4, 
Creating the GUI Map. 



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 57

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner stores the properties of the GUI objects it learns in the GUI map. It 
uses the GUI map to locate objects during a test run. It reads an object’s 
description in the GUI map and then looks for an object with the same properties 
in the application being tested. You can view the GUI map in order to gain a 
comprehensive picture of the objects in your application. 

As the user interface of your application changes, you can continue to use tests 
you developed previously. You simply add, delete, or edit object descriptions in 
the GUI map so that WinRunner can continue to find the objects in your modified 
application.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 58

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

How a Test Identifies GUI Objects

You create tests by recording or programming test scripts. A test script consists 
of statements in Mercury Interactive’s test script language (TSL). Each TSL 
statement represents mouse and keyboard input to the application being tested. 
For more information, see Chapter 8, Creating Tests. 

WinRunner uses a logical name to identify each object: for example “Print” for a 
Print dialog box, or “OK” for an OK button. The logical name is actually a 
nickname for the object’s physical description. The physical description contains 
a list of the object’s physical properties: the Print dialog box, for example, is 
identified as a window with the label “Print”. The logical name and the physical 
description together ensure that each GUI object has its own unique identification. 



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 59

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Physical Descriptions

�

���	�
��
�	 �������

WinRunner reads the 
logical name in the test 
script and refers to the GUI 
map

� WinRunner matches 
the logical name with 
the physical 
description

�

WinRunner uses the 
physical description to 
find an object in the 
application

����
��	
�����
������	��

logical name

logical 
name

physical 
description

“Open” window label



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 60

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner identifies each GUI object in the application under test by its physical 
description: a list of physical properties and their assigned values. These 
property–value pairs appear in the following format in the GUI map:

{property1:value1, property2:value2, property3:value3, ...}

For example, the description of the “Open” window contains two properties: 
class and label. In this case the class property has the value window, while the 
label property has the value Open:

{class:window, label:Open}

The class property indicates the object’s type. Each object belongs to a different 
class, according to its functionality: window, push button, list, radio button, menu, 
etc.

Each class has a set of default properties, which WinRunner learns. For a detailed 
description of all properties, see Chapter 6, Configuring the GUI Map. 

Note that WinRunner always learns an object’s physical description in the context 
of the window in which it appears. This creates a unique physical description for 
each object. For more information, see Setting the Window Context on page 66.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 61

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Logical Names

In the test script, WinRunner does not use the full physical description for an 
object. Instead, it assigns a short name to each object: the logical name. 

An object’s logical name is determined by its class. In most cases, the logical 
name is the label that appears on an object: for a button, the logical name is its 
label, such as OK or Cancel; for a window, it is the text in the window’s title bar; 
and for a list, the logical name is the text appearing next to or above the list.

For a static text object, the logical name is a combination of the text and the string 
“(static)”. For example, the logical name of the static text “File Name” is: “File 
Name (static)”.

In certain cases, several GUI objects in the same window are assigned the same 
logical name, plus a location selector (for example: LogicalName_1, 
LogicalName_2). The purpose of the selector property is to create a unique name 
for the object.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 62

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The GUI Map Editor

You can view the contents of the GUI map at any time by choosing Tools > GUI 
Map Editor. The GUI map is actually the sum of one or more GUI map files. In 
most cases, you store all the GUI object information for your application in a single 
GUI map file.

In the GUI Map Editor, you can view either the contents of the entire GUI map or 
the contents of individual GUI map files. GUI objects are grouped according to the 
window in which they appear in the application.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 63

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Window

Click to expand dialog box 
and display the physical 
description of the selected 
object or window

This view shows the contents of 
the entire GUI map.

Objects within 
the window

The GUI map file contains the logical names and 
physical descriptions of GUI objects.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 64

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The GUI map enables you to easily keep up with changes made to the user 
interface of the application being tested. Instead of editing your entire suite of 
tests, you only have to update the relevant object descriptions in the GUI map.

For example, suppose the Open button in the Open dialog box is changed to an 
OK button. You do not have to edit every test script that uses this Open button. 
Instead, you can modify the Open button’s physical description in the GUI map, 
as shown in the example below. The value of the label property for the button is 
changed from Open to OK:

Open button: {class:push_button, label:OK}

During a test run, when WinRunner encounters the logical name “Open” in the 
Open dialog box in the test script, it searches for a push button with the label 
“OK”.

�������
test1
test2

test3
test4
test5

test6
test7
test8

test9
test10



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 65

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can use the GUI Map Editor to modify the logical names and physical 
descriptions of GUI objects at any time during the testing process. In addition, you 
can use the Run wizard to update the GUI map during a test run. The Run wizard 
opens automatically if WinRunner cannot locate an object in the application being 
tested. See Chapter 5, Editing the GUI Map, for more information.



Understanding the GUI Map • Introducing the GUI Map

WinRunner User’s Guide Chapter 3, page 66

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Window Context

WinRunner learns and performs operations on objects in the context of the 
window in which they appear. When you record a test, WinRunner automatically 
inserts a set_window statement into the test script each time the active window 
changes and an operation is performed on a GUI object. All objects are then 
identified in the context of that window. For example:

set_window ("Print", 12);
button_press ("OK");

The set_window statement indicates that the Print window is the active window. 
The OK button is learned within the context of this window. 

When programming a test, you need to enter the set_window statement 
manually when the active window changes. When editing a script, take care not 
to delete necessary set_window statements.



Understanding the GUI Map
Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 67

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Creating the GUI Map

This chapter explains how to teach WinRunner the Graphical User Interface (GUI) 
of the application being tested and save the information for use during testing.

This chapter describes:

• Viewing GUI Object Properties

• Learning the GUI with the RapidTest Script Wizard

• Learning the GUI by Recording

• Learning the GUI Using the GUI Map Editor

• Saving the GUI Map

• Loading the GUI Map File

• Guidelines for Working with GUI Maps



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 68

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating the GUI Map

WinRunner can learn the GUI of your application in several ways. Usually, you 
use the RapidTest Script wizard before you start to test in order to learn all the 
GUI objects in your application at once. This ensures that WinRunner has a 
complete, well-structured basis for all your Context Sensitive tests. The 
descriptions of GUI objects are saved in GUI map files. Since all test users can 
share these files, there is no need for each user to individually relearn the GUI.

If the GUI of your application changes during the software development process, 
you can use the GUI Map Editor to learn individual windows and objects in order 
to update the GUI map. You can also learn objects while recording: you simply 
start to record a test and WinRunner learns the properties of each GUI object you 
use in your application. This approach is fast and enables a beginning user to 
create test scripts immediately. This is an unsystematic method, however, and 
should not be used as a substitute for the RapidTest Script wizard if you plan to 
develop comprehensive test suites.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 69

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You must load the appropriate GUI map files before you run tests. WinRunner 
uses these files to help locate the objects in the application being tested. You 
should insert a GUI_load statement into your startup test. When you start 
WinRunner, it automatically runs the startup test and loads the specified GUI map 
files. For more information on startup tests, see Chapter 39, Initializing Special 
Configurations.  Alternatively, you can insert a GUI_load statement into 
individual tests, or use the GUI Map Editor to load GUI map files manually.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 70

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing GUI Object Properties

When WinRunner learns the description of a GUI object, it looks at the object’s 
physical properties. Each GUI object has many properties, such as “class,” 
“label,” “width,” “height”, “handle,” and “enabled”. WinRunner, however, only 
learns a selected set of these properties in order to uniquely distinguish the object 
from all other objects in the application. 

Before you create the GUI map for an application, or before adding a GUI object 
to the GUI map, you may want to view the properties of the GUI object. Using the 
GUI Spy, you can view the properties of any GUI object on your desktop. You use 
the Spy pointer to point to an object, and the GUI Spy displays the properties and 
their values in the GUI Spy dialog box. You can choose to view all the properties 
of an object, or only the selected set of properties that WinRunner learns. 

WinRunner enables you to modify the set of properties that is learned for a given 
object class using the GUI Map Configuration dialog box. For more information on 
GUI Map Configuration, refer to Chapter 6, Configuring the GUI Map. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 71

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To spy on a GUI object:

 1 Choose Tools > GUI Spy to open the GUI Spy dialog box. 

By default, the GUI Spy displays the properties of objects within windows. (To 
view the properties of a window, click Windows in the Spy on box.)

 2 To view all the properties defined for an object, Click All properties in the Show 
in description box. If the All properties option is not selected, the GUI Spy 
displays only the default set of properties for the object.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 72

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click Spy and point to an object on the screen. The object is highlighted and the 
active window name, object name, and object description (properties and their 
values) appear in the appropriate fields. 

Note that as you move the pointer over other objects, each one is highlighted in 
turn and its description appears in the Description pane.

 4 To capture an object description in the GUI Spy dialog box, point to the desired 
object and press the STOP softkey.

 5 Click Close to close the dialog box.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 73

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Learning the GUI with the RapidTest Script Wizard 

The RapidTest Script wizard enables WinRunner to learn all windows and objects 
in your application being tested at once. It systematically opens every window in 
the application and learns the GUI objects it contains. WinRunner then instructs 
you to save the information in a GUI map file. A GUI_load command that loads 
this file is added to a startup test. For information on startup tests, see Chapter 39, 
Initializing Special Configurations. 

Note: The RapidTest Script wizard is not available for when working with the 
Terminal Emulator or WebTest add-ins. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 74

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To start the RapidTest Script wizard, either:

• Click RapidTest Script Wizard in the WinRunner Welcome screen when you 
start WinRunner.

• Choose Create > RapidTest Script Wizard at any time.

For step-by-step information on using the RapidTest Script wizard, refer to the 
online WinRunner Context Sensitive Help.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 75

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Learning the GUI by Recording

When you record a test, WinRunner first checks whether the objects you select 
are in the GUI map. If they are not in the GUI map, WinRunner learns the objects 
and inserts them into the temporary GUI map file.

In general, you should use recording as a learning tool for small, temporary tests 
only. Use the RapidTest Script wizard to learn the entire GUI of your application.

Tip: You can instruct WinRunner not to load the temporary GUI map file in the 
Environment tab of the General Options dialog box. For more information, see 
Chapter 36, Setting Global Testing Options. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 76

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Learning the GUI Using the GUI Map Editor

You can use the GUI Map Editor to learn an individual object or window, or all 
objects in a window. 

To learn GUI objects using the GUI Map Editor:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 77

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click Learn. The mouse pointer becomes a pointing hand. (To cancel the 
operation, click the right mouse button.)

Learns the objects in a window.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 78

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Place the pointing hand on the object to learn and click the left mouse button. To 
learn all the objects in a window, place the pointing hand over the window’s title 
bar and click with the left mouse button.

GUI information about the learned objects is placed in the active GUI map file. 
See Loading the GUI Map File on page 83 for more information.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 79

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Saving the GUI Map

When you learn GUI objects by recording, the object descriptions are added to 
the temporary GUI map file. The temporary file is always open, so that any objects 
it contains are recognized by WinRunner. When you start WinRunner, the 
temporary file is loaded with the contents of the last testing session.

To avoid overwriting valuable GUI information during a new recording session, 
save the temporary GUI map file in a permanent GUI map file.

To save the contents of the temporary file in a permanent GUI map file:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens. 

 2 Choose View > GUI Files. 

 3 Make sure the <Temporary> file is displayed in the GUI File list. An asterisk (*) 
preceding the file name indicates the GUI map file was changed. The asterisk 
disappears when the file is saved.

 4 In the GUI Map Editor, choose File > Save to open the Save GUI File dialog box.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 80

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you add new windows from a loaded GUI map file to the temporary GUI 
map file, the New Windows dialog box opens. You are prompted to add the new 
windows to the loaded GUI map file or save them in a new GUI map file. For 
additional information, refer to the online WinRunner Context Sensitive Help. 

 5 Click a folder. Type in a new file name or click an existing file.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 81

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Click Save. The saved GUI map file is loaded and appears in the GUI Map 
Editor.

You can also move objects from the temporary file to an existing GUI map file. 
For details, see Chapter 5, Editing the GUI Map. 

To save the contents of a GUI map file to a TestDirector database:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files. 

 3 Make sure the <Temporary> file is displayed in the GUI File list. An asterisk (*) 
next to the file name indicates the GUI map file was changed. The asterisk 
disappears when the file is saved.

 4 In the GUI Map Editor, choose File > Save.

Note: If you add new windows from a loaded GUI map file to the temporary GUI 
map file, the New Windows dialog box opens. You are prompted to add the new 
windows to the loaded GUI map file or save them in a new GUI map file. For 
additional information, refer to the online WinRunner Context Sensitive Help.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 82

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Save GUI File to TestDirector Project dialog box opens.

 5 In the File Name text box, enter a name for the GUI map file. Use a descriptive 
name that will help you easily identify it later.

 6 Click Save to save the GUI map file to a TestDirector database and to close the 
dialog box.

Note: You can only save GUI map files to a TestDirector database if you are 
working with TestDirector. For additional information, see Chapter 40, Managing 
the Testing Process. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 83

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Loading the GUI Map File

When WinRunner learns the objects in an application, it stores the information in 
a GUI map file. In order for WinRunner to use a GUI map file to locate objects in 
your application, you must load it into the GUI map. Although the GUI map my 
contain one or more GUI map files, you can load only one GUI map file at a time. 
You must load the appropriate GUI map files before you run tests on your 
application being tested.

You can load GUI map files in one of two ways:

• using the GUI_load function

• from the GUI Map Editor

You can view a loaded GUI map file in the GUI Map Editor. A loaded file is 
indicated by the letter “L” and a number preceding the file name. You can also 
open the GUI map file for editing without loading it.

Loading GUI Map Files Using the GUI_load Function
The GUI_load statement loads any GUI map file you specify. To load several files, 
use a separate statement for each. You can insert the GUI_load statement at the 
beginning of any test, but it is preferable to place it in your startup test. In this way, 
GUI map files are loaded automatically each time you start WinRunner. For more 
information, see Chapter 39, Initializing Special Configurations.  



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 84

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To load a file using GUI_load:

 1 Choose File > Open to open the test from which you want to load the file.

 2 In the test script, type the GUI_load statement as follows, or click the GUI_load 
function in the Function Generator and type in the file path:

GUI_load ("file_name_full_path");

For example:

GUI_load ("c:\\qa\\flights.gui")

See Chapter 21, Generating Functions, for more information on the Function 
Generator.

 3 Run the test to load the file. See Chapter 27, Running Tests, for more 
information.

Note: You can use the GUI_open function to open a GUI map file for editing, 
without loading it. You can use the GUI_close function to close an open GUI 
map file. You can use the GUI_unload and GUI_unload_all functions to unload 
loaded GUI map files. For information on working with TSL functions, see 
Chapter 20, Enhancing Your Test Scripts with Programming.  For more 
information about specific TSL functions and examples of usage, refer to the 
TSL Online Reference.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 85

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Loading GUI Map Files Using the GUI Map Editor
You can load a GUI map file manually, using the GUI Map Editor.

To load a GUI map file using the GUI Map Editor:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens.

 2 Choose View > GUI Files.

 3 Choose File > Open.

 4 In the Open GUI File dialog box, select a GUI map file.

Note that by default, the file is loaded into the GUI map. If you only want to edit 
the GUI map file, click Open for Editing Only. See Chapter 5, Editing the GUI 
Map, for more information.

 5 Click Open. The GUI map file is added to the GUI file list. The letter “L” and a 
number preceding the file name indicates that the file has been loaded.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 86

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To load a GUI map file from a TestDirector database using the GUI Map 
Editor:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose File > Open.

The Open GUI File from TestDirector Project dialog box opens. All the GUI map 
files that have been saved to the open database are listed in the dialog box.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 87

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Select a GUI map file from the list of GUI map files in the open database. The 
name of the GUI map file appears in the File Name text box.

To load the GUI map file to open into the GUI Map Editor, make sure the 
Load into the GUI Map default setting is checked. Alternatively, if you only want 
to edit the GUI map file, click Open for Editing Only. For more information, see 
Chapter 5, Editing the GUI Map. 

 4 Click Open to open the GUI map file. The GUI map file is added to the GUI file 
list. The letter “L” indicates that the file is loaded.

Note: For more information on loading GUI map files from a TestDirector 
database, see Chapter 40, Managing the Testing Process. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 88

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Guidelines for Working with GUI Maps 

Consider the following guidelines when working with GUI map files:

• To improve performance, use smaller GUI map files for testing your application 
instead of one larger file. You can use one GUI map per test. Alternatively, you 
can divide your application’s user interface into different GUI map files by 
window or in another logical manner. 

One GUI Map per Test
One GUI Map per Application or 
Window

Method Record on your 
application and save 
the GUI map file.

Before you record, have 
WinRunner learn your application 
by clicking the Learn button in 
the GUI Map Editor and clicking 
your application window. You 
repeat this process for all 
windows in the application. You 
save the GUI map for each 
window or set of windows as a 
GUI map file. When the 
application changes, the GUI 
map file administrator updates 
the GUI map files.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 89

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

One GUI Map per Test
One GUI Map per Application or 
Window

Advantages 1. Each test has GUI 
map file 
independence.
2. There is no need for 
a GUI map file 
administrator.
3. The GUI map file is 
very easy to create: 
record the application 
and save the GUI 
map.

1. You can use descriptive 
names for objects windows in the 
GUI map and in test scripts. For 
more information, see the note 
following this table.
2. If an object or window 
description changes, you only 
have to modify one GUI map file 
for all tests to run properly.

Recommendation This is the preferred 
method if the GUI of 
your application is not 
expected to change.

This is the preferred method if 
the GUI of your application may 
change.



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 90

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: Sometimes the logical name of an object is not descriptive. If you use the 
GUI Map Editor to learn your application before you record, then you can modify 
the name of the object in the GUI map to a descriptive name by highlighting the 
object and clicking the Modify button. When WinRunner records on your 
application, the new name will appear in the test script. For more information on 
modifying the logical name of an object, see Modifying Logical Names and 
Physical Descriptions on page 102.

• A single GUI map file cannot contain two windows with the same logical name.

• Do not store information that WinRunner learns about the GUI of an application 
in the temporary GUI map file, since this information is not automatically saved 
when you close WinRunner. Unless you are creating a small, temporary test that 
you do not intend to reuse, it is suggested that you save the GUI map from the 
GUI Map Editor (by choosing File > Save) before closing your test.

• You can instruct WinRunner not to load the temporary GUI map file in the 
Environment tab of the General Options dialog box. For more information on this 
option, see Chapter 36, Setting Global Testing Options. 



Understanding the GUI Map • Creating the GUI Map

WinRunner User’s Guide Chapter 4, page 91

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• When WinRunner learns the GUI of your application by recording, it learns only 
those objects upon which you perform operations: it does not learn all the 
objects in your application. Therefore, unless you are creating a small, 
temporary test that you do not intend to reuse, it is better for WinRunner to learn 
the GUI of an application from the Learn button in the GUI Map Editor before you 
start recording than for WinRunner to learn your application once you start 
recording. For more information, see Learning the GUI by Recording on page 
75.

• In the GUI Map Editor, you can use the Options > Filter command to open the 
Filters dialog box and filter the objects in the GUI map by logical name, physical 
description, or class. For more information, see Filtering Displayed Objects on 
page 120.



Understanding the GUI Map
Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 92

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Editing the GUI Map

This chapter explains how to extend the life of your tests by modifying 
descriptions of objects in the GUI map.

This chapter describes:

• The Run Wizard

• The GUI Map Editor

• Modifying Logical Names and Physical Descriptions

• How WinRunner Handles Varying Window Labels

• Using Regular Expressions in the Physical Description

• Copying and Moving Objects between Files

• Finding an Object in a GUI Map File

• Finding an Object in Multiple GUI Map Files

• Manually Adding an Object to a GUI Map File

• Deleting an Object from a GUI Map File

• Clearing a GUI Map File

• Filtering Displayed Objects

• Saving Changes to the GUI Map



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 93

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Editing the GUI Map

WinRunner uses the GUI map to identify and locate GUI objects in your 
application. If the GUI of your application changes, you must update object 
descriptions in the GUI map so you can continue to use existing tests.

You can update the GUI map in two ways:

• during a test run, using the Run wizard

• at any time during the testing process, using the GUI Map Editor

The Run wizard opens automatically during a test run if WinRunner cannot 
locate an object in the application being tested. It guides you through the process 
of identifying the object and updating its description in the GUI map. This 
ensures that WinRunner will find the object in subsequent test runs.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 94

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also:

• manually edit the GUI map using the GUI Map Editor

• modify the logical names and physical descriptions of objects, add new 
descriptions, and remove obsolete descriptions 

• move or copy descriptions from one GUI map file to another

Before you can update the GUI map, the appropriate GUI map files must be 
loaded. You can load files by using the GUI_load statement in a test script or by 
choosing File > Open in the GUI Map Editor. See Chapter 4, Creating the GUI 
Map, for more information.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 95

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Run Wizard

The Run wizard detects changes in the GUI of your application that interfere with 
the test run. During a test run, the Run wizard automatically happens when 
WinRunner cannot locate an object. The Run wizard prompts you to point to the 
object in your application, determines why the object cannot be found, and then 
offers a solution. The Run wizard suggests loading an appropriate GUI map file; 
in most cases, a new description is automatically added to the GUI map or the 
existing description is modified. When this process is completed, the test run 
continues. (In future test runs, WinRunner can successfully locate the object.)

For example, suppose you run a test in which you click the Network button in an 
Open window in your application.

set_window ("Open");
button_press ("Network");



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 96

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If the Network button is not in the GUI map, the Run wizard opens and describes 
the problem.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 97

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Click the Hand button in the wizard and point to the Network button. The Run 
wizard offers a solution.

When you click OK, the Network object description is automatically added to the 
GUI map and WinRunner resumes the test The next time you run the test, 
WinRunner will be able to identify the Network button.

In some cases, the Run wizard edits the test script, not the GUI map. For 
example, if WinRunner cannot locate an object because the appropriate window 
is inactive, the Run wizard inserts a set_window statement in the test script.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 98

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The GUI Map Editor

You can edit the GUI map at any time using the GUI Map Editor. To open the GUI 
Map Editor, choose Tools > GUI Map Editor.

Two views in the GUI Map Editor display the contents of either:

• the entire GUI map

• an individual GUI map file



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 99

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 

Objects within windows are indented.

Displays all windows and objects in the GUI map.

When selected, displays the physical description of 
the selected object or window.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 100

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When viewing the contents of specific GUI map files, you can expand the GUI 
Map Editor to view two GUI map files simultaneously. This enables you to easily 
copy or move descriptions between files. To view the contents of individual GUI 
map files, choose View > GUI Files.

Lists the open GUI map files.

Shows the windows and objects in the 
currently displayed GUI map file.

Displays the physical description of 
the selected window or object.

Expands the dialog box so you can view 
the contents of two GUI map files.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 101

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the GUI Map Editor, objects are displayed in a tree under the icon of the 
window in which they appear. When you double-click a window name or icon in 
the tree, you can view all the objects it contains. To concurrently view all the 
objects in the tree, choose View > Expand Objects Tree. To view windows only, 
choose View > Collapse Objects Tree.

When you view the entire GUI map, you can select the Show Physical 
Description check box to display the physical description of any object you select 
in the Windows/Objects list. When you view the contents of a single GUI map 
file, the GUI Map Editor automatically displays the physical description.

Suppose the WordPad window is in your GUI map file. If you select 
Show Physical Description and click the WordPad window name or icon in the 
window list, the following physical description is displayed in the middle pane of 
the GUI Map Editor:

{
class: window,
label: "Document - WordPad",
MSW_class: WordPadClass
}

Note: If the value of a property contains any spaces or special characters, that 
value must be enclosed by quotation marks. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 102

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying Logical Names and Physical Descriptions

You can modify the logical name or the physical description of an object in a GUI 
map file using the GUI Map Editor.

Changing the logical name of an object is useful when the assigned logical name 
is not sufficiently descriptive or is too long. For example, suppose WinRunner 
assigns the logical name “Employee Address” (static) to a static text object. You 
can change the name to “Address” to make test scripts easier to read.

Changing the physical description is necessary when the property value of an 
object changes. For example, suppose the label of a button is changed from 
“Insert” to “Add”. You can modify the value of the label property in the physical 
description of the Insert button as shown below:

Insert button:{class:push_button, label:Add}

During a test run, when WinRunner encounters the logical name “Insert” in a test 
script, it searches for the button with the label “Add”. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 103

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify an object’s logical name or physical description in a GUI map 
file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 If the appropriate GUI map file is not loaded, choose File > Open to open the 
file.

 4 To see the objects in a window, double-click the window name in the 
Windows/Objects field. Note that objects within a window are indented.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 104

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Select the name of the object or window to modify. 

Click Modify. 

Select a window or an object.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 105

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Click Modify to open the Modify dialog box. 

 7 Edit the logical name or physical description as desired and click OK. The 
change appears immediately in the GUI map file. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 106

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

How WinRunner Handles Varying Window Labels

Windows often have varying labels. For example, the main window in a text 
application might display a file name as well as the application name in the title 
bar.

If WinRunner cannot recognize a window because its name changed after 
WinRunner learned it, the Run wizard opens and prompts you to identify the 
window in question. Once you identify the window, WinRunner realizes the 
window has a varying label, and it modifies the window’s physical description 
accordingly.

Suppose you record a test on the main window of Microsoft Word in Windows 95. 
WinRunner learns the following physical description:

{
 class: window,
 label: "Microsoft Word - Document1",
 MSW_class: OpusApp
}



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 107

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Suppose you run your test when Document 2 is open in Microsoft Word. When 
WinRunner cannot find the window, the Run wizard opens:



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 108

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You click the Hand button and click the appropriate Microsoft Word window, so 
that WinRunner will learn it. You are prompted to instruct WinRunner to update 
the window’s description in the GUI map.

If you click Edit, you can see that WinRunner has modified the window’s physical 
description to include regular expressions:

{
class: window,
label: "!Microsoft Word - Document.*",
MSW_class: OpusApp
}

(To continue running the test, you click OK.)



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 109

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

These regular expressions enable WinRunner to recognize the Microsoft Word 
window regardless of the name appearing after the dash in the window title. For 
additional information on regular expressions, see Chapter 19, Using Regular 
Expressions. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 110

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using Regular Expressions in the Physical Description

WinRunner uses two “hidden” properties in order to use a regular expression in 
an object’s physical description. These properties are regexp_label and 
regexp_MSW_class.

The regexp_label property is used for windows only. It operates “behind the 
scenes” to insert a regular expression into a window’s label description. Note that 
when using WinRunner for Windows 95, this property is not obligatory, and 
therefore it is neither recorded nor learned.

The regexp_MSW_class property inserts a regular expression into an object’s 
MSW_class. It is obligatory for all types of windows and for the object class object.

Adding a Regular Expression
You can add the regexp_label and the regexp_MSW_class properties as 
needed to the GUI configuration for a class. You would add a regular expression 
in this way when either the label or the MSW class of objects in your application 
has characters in common that can safely be ignored. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 111

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Suppressing a Regular Expression
You can suppress the use of a regular expression in the physical description of a 
window. Suppose the label of all the windows in your application begins with “AAA 
Wingnuts — ”. For WinRunner to distinguish between the windows, you could 
replace the regexp_label property in the list of obligatory learned properties for 
windows in your application with the label property. See Chapter 6, Configuring 
the GUI Map, for more information. 

For more information about regular expressions, see Chapter 19, Using Regular 
Expressions. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 112

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Copying and Moving Objects between Files

You can update GUI map files by copying or moving the description of GUI objects 
from one GUI map file to another. Note that you can only copy objects from a GUI 
file that you have opened for editing only.

To copy or move objects between two GUI map files:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 113

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click Expand in the GUI Map Editor. The dialog box expands to display two GUI 
map files simultaneously. 



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 114

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 View a different GUI map file on each side of the dialog box by clicking the file 
names in the GUI File lists.

 5 In one file, select the objects you want to copy or move. Use the Shift key and/or 
Control key to select multiple objects. To select all objects in a window, choose 
Edit > Select All.

 6 Click Copy or Move.

 7 To restore the GUI Map Editor to its original size, click Collapse.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 115

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Finding an Object in a GUI Map File

You can easily find the description of a specific object in a GUI map file by pointing 
to the object in the application being tested.

To find an object in a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open to load the GUI map file.

 4 Click Find. The mouse pointer turns into a pointing hand.

 5 Click the object in the application being tested. The object is highlighted in the 
GUI map file.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 116

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Finding an Object in Multiple GUI Map Files

If an object is described in more than one GUI map file, you can quickly locate all 
the object descriptions using the Trace button in the GUI Map Editor. This is 
particularly useful if you want WinRunner to learn a new description of an object 
and want to find and delete older descriptions in other GUI map files.

To find an object in multiple GUI map files:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Click File > Open to open the GUI map files in which the object description might 
appear. 

For each file, choose File > Open to open the Open GUI File dialog box. 
Choose the GUI map file you want to open and click Open for Editing Only. 
Click OK.

 4 Display the contents of the file with the most recent description of the object by 
displaying the GUI map file in the GUI File box.

 5 Select the object in the Windows/Objects field.

 6 Click Expand to expand the GUI Map Editor dialog box.

 7 Click Trace. The GUI map file in which the object is found is displayed on the 
other side of the dialog box, and the object is highlighted.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 117

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Manually Adding an Object to a GUI Map File

You can manually add an object to a GUI map file by copying the description of 
another object, and then editing it as needed. 

To manually add an object to a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open to open the appropriate GUI map file.

 4 Select the object to use as the basis for editing.

 5 Click Add to open the Add dialog box.

 6 Edit the appropriate fields and click OK. The object is added to the GUI map file.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 118

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Deleting an Object from a GUI Map File

If an object description is no longer needed, you can delete it from the GUI map 
file.

To delete an object from a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map file.

 4 Select the object to be deleted. If you want to delete more than one object, use 
the Shift key and/or Control key to make your selection. 

 5 Click Delete.

 6 Choose File > Save to save the changes to the GUI map file.

To delete all objects in a window:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map file.

 4 Choose Edit > Clear All.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 119

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Clearing a GUI Map File

You can quickly clear the entire contents of the temporary GUI map file, or any 
other GUI map file.

To delete the entire contents of a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Open the appropriate GUI map file.

 4 Display the GUI map file at the top of the GUI File list.

 5 Choose Edit > Clear All.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 120

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Filtering Displayed Objects

You can filter the list of objects displayed in the GUI Map Editor by using any of 
the following filters:

• Logical name displays only objects with the specified logical name (e.g. “Open”) 
or substring (e.g. “Op”).

• Physical description displays only objects matching the specified physical 
description. Use any substring belonging to the physical description. (For 
example, specifying “w” filters out all objects containing a “w” in their physical 
description.)

• Class displays only objects of the specified class, such as all the push buttons.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 121

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To apply a filter:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose Options > Filters to open the Filters dialog box. 

 3 Select the type of filter you want by selecting a check box and entering the 
appropriate information.

 4 Click Apply. The GUI Map Editor displays objects according to the filter applied.



Understanding the GUI Map • Editing the GUI Map

WinRunner User’s Guide Chapter 5, page 122

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Saving Changes to the GUI Map

If you edit the logical names and physical descriptions of objects in the GUI map, 
you must save the changes in the GUI Map Editor before ending the testing 
session and exiting WinRunner.

To save changes to the GUI map, do one of the following:

• Choose File > Save in the GUI Map Editor to save changes in the appropriate 
GUI map file.

• Choose File > Save As to save the changes in a new GUI map file.



Understanding the GUI Map
Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 123

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Configuring the GUI Map

This chapter explains how to change the way WinRunner identifies GUI objects 
during Context Sensitive testing.

This chapter describes:

• Understanding the Default GUI Map Configuration

• Mapping a Custom Object to a Standard Class

• Configuring a Standard or Custom Class

• Creating a Permanent GUI Map Configuration

• Deleting a Custom Class

• The Class Property

• All Properties

• Default Properties Learned



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 124

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Configuring the GUI Map

Each GUI object in the application being tested is defined by multiple properties, 
such as class, label, MSW_class, MSW_id, x (coordinate), y (coordinate), width, 
and height. WinRunner uses these properties to identify GUI objects in your 
application during Context Sensitive testing.

When WinRunner learns the description of a GUI object, it does not learn all its 
properties. Instead, it learns the minimum number of properties to provide a 
unique identification of the object. For each object class (such as push_button, 
list, window, or menu), WinRunner learns a default set of properties: its GUI map 
configuration.

For example, a standard push button is defined by 26 properties, such as 
MSW_class, label, text, nchildren, x, y, height, class, focused, enabled. In most 
cases, however, WinRunner needs only the class and label properties to create a 
unique identification for the push button.

Many applications also contain custom GUI objects. A custom object is any object 
not belonging to one of the standard classes used by WinRunner. These objects 
are therefore assigned to the generic “object” class. When WinRunner records an 
operation on a custom object, it generates obj_mouse_ statements in the test 
script.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 125

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If a custom object is similar to a standard object, you can map it to one of the 
standard classes. You can also configure the properties WinRunner uses to 
identify a custom object during Context Sensitive testing. The mapping and the 
configuration you set are valid only for the current WinRunner session. To make 
the mapping and the configuration permanent, you must add configuration 
statements to your startup test script. Each time you start WinRunner, the startup 
test activates this configuration.

Note: If your application contains owner-drawn custom buttons, you can map 
them all to one of the standard button classes instead of mapping each button 
separately. You do this: by either choosing a standard button class in the Record 
Owner-Drawn Buttons box in the Record tab in the General Options dialog box; 
or, setting the rec_owner_drawn testing option with the setvar function from 
within a test script. For more information, see Chapter 37, Setting Testing 
Options from a Test Script. 



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 126

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Object properties vary in their degree of portability. Some are non-portable 
(unique to a specific platform), such as MSW_class or MSW_id. Some are semi-
portable (supported by multiple platforms, but with a value likely to change), such 
as handle, or Toolkit_class. Others are fully portable (such as label, 
attached_text, enabled, focused or parent).



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 127

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding the Default GUI Map Configuration

For each class, WinRunner learns a set of default properties. Each default 
property is classified “obligatory” or “optional”. (For a list of the default properties, 
see All Properties on page 148.)

• An obligatory property is always learned (if it exists).

• An optional property is used only if the obligatory properties do not provide 
unique identification of an object. These optional properties are stored in a list. 
WinRunner selects the minimum number of properties from this list that are 
necessary to identify the object. It begins with the first property in the list, and 
continues, if necessary, to add properties to the description until it obtains unique 
identification for the object. 

If you use the GUI Spy to view the default properties of an OK button, you can 
see that WinRunner learns the class and label properties. The physical 
description of this button is therefore:

{class:push_button, label:"OK"}



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 128

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In cases where the obligatory and optional properties do not uniquely identify an 
object, WinRunner uses a selector. For example, if there are two OK buttons with 
the same MSW_id in a single window, WinRunner would use a selector to 
differentiate between them. Two types of selectors are available: 

• A location selector uses the spatial position of objects. 

• An index selector uses a unique number to identify the object in a window. 

The location selector uses the spatial order of objects within the window, from 
the top left to the bottom right corners, to differentiate among objects with the 
same description. 

The index selector uses numbers assigned at the time of creation of objects to 
identify the object in a window. Use this selector if the location of objects with the 
same description may change within a window. See Configuring a Standard or 
Custom Class on page 134 for more information.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 129

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Mapping a Custom Object to a Standard Class

A custom object is any GUI object not belonging to one of the standard classes 
used by WinRunner. WinRunner learns such objects under the generic “object” 
class. WinRunner records operations on custom objects using obj_mouse_ 
statements.

Using the GUI Map Configuration dialog box, you can teach WinRunner a custom 
object and map it to a standard class. For example, if your application has a 
custom button that WinRunner cannot identify, clicking this button is recorded as 
obj_mouse_click. You can teach WinRunner the “Borbtn” custom class and map 
it to the standard push_button class. Then, when you click the button, the 
operation is recorded as button_press.

Note that a custom object should be mapped only to a standard class with 
comparable behavior. For example, you cannot map a custom push button to the 
edit class.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 130

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To map a custom object to a standard class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration 
dialog box.

The Class List displays all standard and custom classes identified by 
WinRunner.

 2 Click Add to open the Add Class dialog box.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 131

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click the pointing hand and then click the object whose class you want to add. 
The name of the custom object appears in the Class Name box. Note that this 
name is the value of the object’s MSW_class property.

 4 Click OK to close the dialog box. The new class appears highlighted at the 
bottom of the Class List in the GUI Map Configuration dialog box, preceded by 
the letter “U” (user-defined).



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 132

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click Configure to open the Configure Class dialog box.

The Mapped to Class box displays the object class. The object class is the class 
that WinRunner uses by default for all custom objects.

The custom class
you are mapping

The list of standard 
classes 



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 133

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 From the Mapped to Class list, click the standard class to which you want to 
map the custom class. Remember that you should map the custom class only to 
a standard class of comparable behavior.

Once you choose a standard class, the dialog box displays the GUI map 
configuration for that class.

You can also modify the GUI map configuration of the custom class (the 
properties learned, the selector, or the record method). For details, see 
Configuring a Standard or Custom Class on page 134.

 7 Click OK to complete the configuration. 

Note that the configuration is valid only for the current testing session. To make 
the configuration permanent, you should paste the TSL statements into a startup 
test script. See Creating a Permanent GUI Map Configuration on page 142 for 
more information.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 134

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring a Standard or Custom Class

For any of the standard or custom classes, you can modify the following:

• the properties learned

• the selector

• the recording method

To configure a standard or custom class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration 
dialog box.

The Class List contains all standard classes, as well as any custom classes you 
add.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 135

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click the class you want to configure and click Configure. The Configure Class 
dialog box opens.

The Class Name field at the top of the dialog box displays the name of the class 
to configure.

Class you want to 
configure

Record method for the 
class

Selector for the class

All available properties 

Obligatory and 
Optional properties 
learned for the class



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 136

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Modify the learned properties, the selector, or the recording method as desired. 
See Configuring Learned Properties on page 137, Configuring the Selector 
on page 140, and Configuring the Recording Method on page 141 for details.

 4 Click OK. 

Note that the configuration is valid only for the current testing session. To make 
the configuration permanent, you should paste the TSL statements into a startup 
test script. See Creating a Permanent GUI Map Configuration on page 142 for 
more information.

 5 Click OK in the GUI Map Configuration dialog box. 



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 137

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring Learned Properties
The Learned Properties area of the Configure Class dialog box allows you to 
configure which properties are recorded and learned for a class. You do this by 
moving properties from one list to another within the dialog box in order to specify 
whether they are obligatory, optional, or available. Each property can appear in 
only one of the lists. 

• The Obligatory list contains properties always learned (provided that they are 
valid for the specific object).

• The Optional list contains properties used only if the obligatory properties do not 
provide a unique identification for an object. WinRunner selects the minimum 
number of properties needed to identify the object, beginning with the first 
property in the list.

• The Available Properties list contains all remaining properties not in either of the 
other two lists.

When the dialog box is displayed, the Obligatory and Optional lists display the 
properties learned for the class appearing in the Class Name field.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 138

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify the property configuration:

 1 Click a property to move from any of the lists. Then click Insert under the target 
list. For example:

To move the MSW_class property from the Obligatory list to the Optional list, 
click it in the Obligatory list, then click Insert under the Optional list.

To remove a property so that it is not learned, click it in the Obligatory or Optional 
list, then click Insert under the Available Properties list.

 2 To modify the order of properties within a list (particularly important in the 
Optional list), click one or more properties and click Insert under the same list. 
The properties are moved to the bottom of the list.

 3 Click OK to save the changes.

Note that not all properties apply to all classes. The following table lists each 
property and the classes to which it can be applied.

Property Classes

abs_x All classes

abs_y All classes

active All classes

attached_text combobox, edit, listbox, scrollbar

class All classes



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 139

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

displayed All classes

enabled All classes

focused All classes

handle All classes

height All classes

label check_button, push_button, radio_button, static_text, window

maximizable calendar, window

minimizable calendar, window

MSW_class All classes

MSW_id All classes, except window

nchildren All classes

obj_col_name edit

owner mdiclient, window

pb_name
check_button, combobox, edit, list, push_button, radio_button, 
scroll, window (object)

regexp_label All classes with labels

regexp_
MSWclass

All classes

Property Classes



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 140

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring the Selector
In cases where both obligatory and optional properties cannot uniquely identify an 
object, WinRunner applies one of two selectors: location or index.

A location selector performs the selection process based on the position of 
objects within the window: from top to bottom and from left to right. An index 
selector performs a selection according to a unique number assigned to an object 
by the application developer. For an example of how selectors are used, see 
Understanding the Default GUI Map Configuration on page 127.

text All classes

value
calendar, check_button, combobox, edit, listbox, radio_button, 
scrollbar, static_text

vb_name All classes

virtual list, push_button, radio_button, table, object (virtual objects only)

width All classes

x All classes

y All classes

Property Classes



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 141

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

By default, WinRunner uses a location selector for all classes. To change the 
selector, click the appropriate radio button.

Configuring the Recording Method
By setting the recording method you can determine how WinRunner records 
operations on objects belonging to the same class. Three recording methods are 
available:

• Record instructs WinRunner to record all operations performed on a GUI object. 
This is the default record method for all classes. (The only exception is the static 
class (static text), for which the default is Pass Up.)

• Pass Up instructs WinRunner to record an operation performed on this class as 
an operation performed on the element containing the object. Usually this 
element is a window, and the operation is recorded as win_mouse_click.

• As Object instructs WinRunner to record all operations performed on a GUI 
object as though its class were “object” class.

• Ignore instructs WinRunner to disregard all operations performed on the class.

To modify the recording method, click the appropriate radio button. 



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 142

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Permanent GUI Map Configuration

By generating TSL statements describing the configuration you set and inserting 
them into a startup test, you can ensure that WinRunner always uses the correct 
GUI map configuration for your standard and custom object classes.

To create a permanent GUI map configuration for a class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration 
dialog box.

 2 Click a class and click Configure. The Configure Class dialog box opens.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 143

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Set the desired configuration for the class. Note that in the bottom pane of the 
dialog box, WinRunner automatically generates the appropriate TSL statements 
for the configuration.

TSL statements 
describing the GUI map 
configuration



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 144

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Paste the TSL statements into a startup test using the Paste button.

For example, assume that in the WinRunner configuration file wrun.ini (located in 
your Windows folder), your startup test is defined as follows:

[WrEnv]
XR_TSL_INIT = GS:\tests\my_init

You would open the my_init test in the WinRunner window and paste in the 
generated TSL lines.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 145

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For more information on startup tests, see Chapter 39, Initializing Special 
Configurations.  For more information on the TSL functions defining a custom 
GUI map configuration (set_class_map, set_record_attr, and 
set_record_method), refer to the TSL Online Reference.

Deleting a Custom Class

You can delete only custom object classes. The standard classes used by 
WinRunner cannot be deleted.

To delete a custom class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration 
dialog box.

 2 Click the class you want to delete from the Class list.

 3 Click Delete.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 146

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Class Property

The class property is the primary property that WinRunner uses to identify the 
class of a GUI object. WinRunner categorizes GUI objects according to the 
following classes:

Class Description

calendar A standard calendar object that belongs to the CDateTimeCtrl 
or CMonthCalCtrl MSW_class.

check_button A check box

edit An edit field

frame_mdiclient Enables WinRunner to treat a window as an mdiclient object.

list A list box. This can be a regular list or a combo box.

menu_item A menu item

mdiclient An mdiclient object

mic_if_win Enables WinRunner to defer all record and run operations on 
any object within this window to the mic_if library. Refer to the 
WinRunner Customization Guide for more information.

object Any object not included in one of the classes described in this 
table. 

push_button A push (command) button



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 147

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

radio_button A radio (option) button

scroll A scroll bar or slider

spin A spin object

static_text Display-only text not part of any GUI object

status bar A status bar on a window

tab A tab item

toolbar A toolbar object

window
Any application window, dialog box, or form, including MDI 
windows.

Class Description



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 148

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

All Properties

The following tables list all properties used by WinRunner in Context Sensitive 
testing. Properties are listed by their portability levels: portable, semi-portable, 
and non-portable.

Note for XRunner users: You cannot use GUI maps created in XRunner in 
WinRunner test scripts. You must create new GUI maps in WinRunner. For 
information on running XRunner test scripts recorded in Analog mode, see 
Chapter 8, Creating Tests.  For information on using GUI checkpoints created in 
XRunner in WinRunner test scripts, see Chapter 9, Checking GUI Objects.  For 
information on using bitmap checkpoints created in XRunner in WinRunner test 
scripts, see Chapter 14, Checking Bitmaps. 



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 149

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Portable Properties

Property Description

abs_x The x-coordinate of the top left corner of an object, relative to the 
origin (upper left corner) of the screen display.

abs_y The y-coordinate of the top left corner of an object, relative to the 
origin (upper left corner) of the screen display.

attached_text The static text located near the object.

class See The Class Property on page 146.

class_index An index number that identifies an object, relative to the position 
of other objects from the same class in the window (Java add-in 
only).

count The number of menu items contained in a menu.

displayed A Boolean value indicating whether the object is displayed: 1 if 
visible on screen, 0 if not.

enabled A Boolean value indicating whether the object can be selected or 
activated: 1 if enabled, 0 if not.

focused A Boolean value indicating whether keyboard input will be 
directed to this object: 1 if object has keyboard focus, 0 if not.

height Height of object in pixels.

html_url A URL (WebTest only).



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 150

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

label The text that appears on the object, such as a button label.

maximizable A Boolean value indicating whether a window can be maximized: 
1 if the window can be maximized, 0 if not.

minimizable A Boolean value indicating whether a window can be minimized: 
1 if the window can be minimized, 0 if not.

module_name The name of an executable file which created the specified 
window.

nchildren The number of children the object has: the total number of 
descendants of the object.

NSTBTitle The title of a toolbar in a browser (WebTest only).

NSTitle The title of a browser (WebTest only).

num_columns A table object in Terminal Emulator applications only.

num_rows A table object in Terminal Emulator applications only.

parent The logical name of the parent of the object.

part_value The name of a radio button or a check box in a group (WebTest 
only).

position The position (top to bottom) of a menu item within the menu (the 
first item is at position 0).

Property Description



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 151

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

submenu A Boolean value indicating whether a menu item has a submenu: 
1 if menu has submenu, 0 if not.

value Different for each class:
Radio and check buttons: 1 if the button is checked, 0 if not.
Menu items: 1 if the menu is checked, 0 if not.
List objects: indicates the text string of the selected item.
Edit/Static objects: indicates the text field contents.
Scroll objects: indicates the scroll position.
All other classes: the value property is a null string.

width Width of object in pixels.

x The x-coordinate of the top left corner of an object, relative to the 
window origin.

y The y-coordinate of the top left corner of an object, relative to the 
window origin.

Property Description



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 152

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Semi-Portable Properties

Non-Portable Microsoft Windows Properties 

Property Description

handle A run-time pointer to the object: the HWND handle.

TOOLKIT_class The value of the specified toolkit class. The value of this 
property is the same as the value of the MSW_class in 
Windows, or the X_class in Motif.

Property Description

active A Boolean value indicating whether this is the top-level window 
associated with the input focus.

MSW_class The Microsoft Windows class.

MSW_id The Microsoft Windows ID.

obj_col_name A concatenation of the DataWindow and column names. For edit 
field objects in WinRunner with PowerBuilder add-in support, 
indicates the name of the column.

owner (For windows), the application (executable) name to which the 
window belongs.



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 153

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

pb_name A text string assigned to PowerBuilder objects by the developer. 
(The property applies only to WinRunner with PowerBuilder add-
in support.)

regexp_label The text string and regular expression that enables WinRunner to 
identify an object with a varying label.

regexp_MSWcl
ass

The Microsoft Windows class combined with a regular 
expression. Enables WinRunner to identify objects with a varying 
MSW_class.

sysmenu A Boolean value indicating whether a menu item is part of a 
system menu.

text The visible text in an object or window.

vb_name A text string assigned to Visual Basic objects by the developer 
(the name property). (The property applies only to WinRunner 
with Visual Basic add-in support.)

Property Description



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 154

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Default Properties Learned

The following table lists the default properties learned for each class. (The default 
properties apply to all methods of learning: the RapidTest Script Wizard, the GUI 
Map Editor, and recording.)  

Class
Obligatory 
Properties

Optional Properties Selector

All buttons class, label MSW_id location

list, edit, scroll, 
combobox

class, attached_text MSW_id location

frame_mdiclient class, 
regexp_MSWclass, 
regexp_label

label, MSW_class location

menu_item class, label, sysmenu position location

object class, 
regexp_MSWclass, 
label

attached_text, 
MSW_id, MSW_class

location

mdiclient class, label regexp_MSWclass, 
MSW_class



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 155

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Properties for Visual Basic Objects

The label and vb_name properties are obligatory properties: they are learned for 
all classes of Visual Basic objects.

Note: To test Visual Basic applications, you must install Visual Basic support. 
For more information, refer to your WinRunner Installation Guide.

static_text class, MSW_id label location

window class, 
regexp_MSWclass, 
label

attached_text, 
MSW_id, MSW_class

location

Class
Obligatory 
Properties

Optional Properties Selector



Understanding the GUI Map • Configuring the GUI Map

WinRunner User’s Guide Chapter 6, page 156

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Properties for PowerBuilder Objects

The following table lists the standard object classes and the properties learned for 
each PowerBuilder object. 

Note: In order to test PowerBuilder applications, you must install PowerBuilder 
support. For more information, refer to your WinRunner Installation Guide.

Class
Obligatory 
Properties

Optional Properties Selector

all buttons class, pb_name label, MSW_id location

list, scroll, 
combobox

class, pb_name attached_text, 
MSW_id

location

edit class, pb_name, 
obj_col_name

attached_text, 
MSW_id

location

object class, pb_name label, attached_text, 
MSW_id, 
MSW_class

location

window class, pb_name label, MSW_id location



Understanding the GUI Map
Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 157

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�
Learning Virtual Objects

You can teach WinRunner to recognize any bitmap in a window as a GUI object 
by defining the bitmap as a virtual object. 

This chapter describes:

• Defining a Virtual Object

• Understanding a Virtual Object’s Physical Description



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 158

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Learning Virtual Objects

Your application may contain bitmaps that look and behave like GUI objects. 
WinRunner records operations on these bitmaps using win_mouse_click 
statements. By defining a bitmap as a virtual object, you can instruct WinRunner 
to treat it like a GUI object such as a push button, when you record and run tests. 
This makes your test scripts easier to read and understand.

For example, suppose you record a test on the Windows 95/Windows NT 
Calculator application in which you click buttons to perform a calculation. Since 
WinRunner cannot recognize the calculator buttons as GUI objects, by default it 
creates a test script similar to the following:

set_window("Calculator");
win_mouse_click ("Calculator", 87, 175);
win_mouse_click ("Calculator", 204, 200);
win_mouse_click ("Calculator", 121, 163);
win_mouse_click ("Calculator", 242, 201);



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 159

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This test script is difficult to understand. If, instead, you define the calculator 
buttons as virtual objects and associate them with the push button class, 
WinRunner records a script similar to the following:

set_window ("Calculator");
button_press("seven");
button_press("plus");
button_press("four");
button_press("equal");

You can create virtual push buttons, radio buttons, check buttons, lists, or tables, 
according to the bitmap’s behavior in your application. If none of these is 
suitable, you can map a virtual object to the general object class. 

You define a bitmap as a virtual object using the Virtual Object wizard. The wizard 
prompts you to select the standard class with which you want to associate the 
new object. Then you use a crosshairs pointer to define the area of the object. 
Finally, you choose a logical name for the object. WinRunner adds the virtual 
object’s logical name and physical description to the GUI map.



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 160

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining a Virtual Object

Using the Virtual Object wizard, you can assign a bitmap to a standard object 
class, define the coordinates of that object, and assign it a logical name. 

To define a virtual object using the Virtual Object wizard:

 1 Choose Tools > Virtual Object Wizard. The Virtual Object wizard opens. Click 
Next.

 2 In the Class list, select a class for the new virtual object. 



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 161

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you select the list class, select the number of visible rows that are displayed in 
the window. For a table class, select the number of visible rows and columns.

Click Next.

 3 Click Mark Object. Use the crosshairs pointer to select the area of the virtual 
object. You can use the arrow keys to make precise adjustments to the area you 
define with the crosshairs.

Note: The virtual object should not overlap GUI objects in your application 
(except for those belonging to the generic “object” class, or to a class configured 
to be recorded as "object”). If a virtual object overlaps a GUI object, WinRunner 
may not record or execute tests properly on the GUI object. 



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 162

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Press Enter or click the right mouse button to display the virtual object’s 
coordinates in the wizard.

If the object marked is visible on the screen, you can click the Highlight button to 
view it. Click Next.



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 163

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Assign a logical name to the virtual object. This is the name that appears in the 
test script when you record on the virtual object. If the object contains text that 
WinRunner can read, the wizard suggests using this text for the logical name. 
Otherwise, WinRunner suggests virtual_object, virtual_push_button, virtual_list, 
etc.

You can accept the wizard’s suggestion or type in a different name. WinRunner 
checks that there are no other objects in the GUI map with the same name 
before confirming your choice. Click Next.



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 164

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Finish learning the virtual object:

• If you want to learn another virtual object, click Yes. Click Next.

• To close the wizard, click Finish.

When you exit the wizard, WinRunner adds the object’s logical name and 
physical description to the GUI map. The next time that you record operations on 
the virtual object, WinRunner generates TSL statements instead of 
win_mouse_click statements.



Understanding the GUI Map • Learning Virtual Objects

WinRunner User’s Guide Chapter 7, page 165

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding a Virtual Object’s Physical Description

When you create a virtual object, WinRunner adds its physical description to the 
GUI map. The physical description of a virtual object does not contain the label 
property found in the physical description of “real” GUI objects. Instead it contains 
a special property, virtual. Its function is to identify virtual objects, and its value is 
always TRUE.

Since WinRunner identifies a virtual object according to its size and its position 
within a window, the x, y, width, and height properties are always found in a virtual 
object’s physical description. 

For example, the physical description of a virtual_push_button includes the 
following properties:

{
 class: push_button, 
 virtual: TRUE,
 x: 82,
 y: 121,
 width: 48,
 height: 28,
}

If these properties are changed or deleted, WinRunner cannot recognize the 
virtual object. If you move or resize an object, you must use the wizard to create 
a new virtual object.



WinRunner User’s Guide Page 166

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part III

Creating Tests



Creating Tests
Creating Tests

WinRunner User’s Guide Chapter 8, page 167

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

	
Creating Tests

Using recording, programming, or a combination of both, you can create 
automated tests quickly.

This chapter describes:

• The WinRunner Test Window

• Context Sensitive Recording

• Solving Common Context Sensitive Recording Problems

• Analog Recording

• Checkpoints

• Data-Driven Tests

• Synchronization Points

• Planning a Test

• Documenting Test Information

• Associating Add-ins with a Test

• Recording a Test

• Activating Test Creation Commands Using Softkeys

• Programming a Test

• Editing a Test

• Managing Test Files



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 168

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating Tests

You can create tests using both recording and programming. Usually, you start by 
recording a basic test script. As you record, each operation you perform 
generates a statement in Mercury Interactive’s Test Script Language (TSL). 
These statements appear as a test script in a test window. You can then enhance 
your recorded test script, either by typing in additional TSL functions and 
programming elements or by using WinRunner’s visual programming tool, the 
Function Generator.

Two modes are available for recording tests:

• Context Sensitive records the operations you perform on your application by 
identifying Graphical User Interface (GUI) objects.

• Analog records keyboard input, mouse clicks, and the precise 
x- and y-coordinates traveled by the mouse pointer across the screen.

You can add GUI, bitmap, text, and database checkpoints, as well as 
synchronization points to your test script. Checkpoints enable you to check your 
application by comparing its current behavior to its behavior in a previous 
version. Synchronization points solve timing and window location problems that 
may occur during a test run.

You can create a data-driven tests, which are tests driven by data stored in an 
internal table. 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 169

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To create a test script, you perform the following main steps:

 1 Decide on the functionality you want to test. Determine the checkpoints and 
synchronization points you need in the test script.

 2 Document general information about the test in the Test Properties dialog box.

 3 Choose a Record mode (Context Sensitive or Analog) and record the test on 
your application.

 4 Assign a test name and save the test in the file system or in your TestDirector 
project.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 170

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The WinRunner Test Window

You develop and run WinRunner tests in the test window, which contains the 
following elements:

• Test window title bar, which displays the name of the open test

• Test script, which consists of statements generated by recording and/or 
programming in TSL, Mercury Interactive’s Test Script Language

• Execution arrow, which indicates the line of the test script being executed (to 
move the marker to any line in the script, click the mouse in the left window 
margin next to the line)

• Insertion point, which indicates where you can insert or edit text

Execution arrow

Test script

Test window title bar

Insertion point



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 171

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Context Sensitive Recording

Context Sensitive mode records the operations you perform on your application 
in terms of its GUI objects. As you record, WinRunner identifies each GUI object 
you click (such as a window, button, or list), and the type of operation performed 
(such as drag, click, or select).

For example, if you click the Open button in an Open dialog box, WinRunner 
records the following:

button_press ("Open");



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 172

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When it runs the test, WinRunner looks for the Open dialog box and the Open 
button represented in the test script. If, in subsequent runs of the test, the button 
is in a different location in the Open dialog box, WinRunner is still able to find it. 

Use Context Sensitive mode to test your application by operating on its user 
interface. For example, WinRunner can perform GUI operations (such as button 
clicks and menu or list selections), and then check the outcome by observing the 
state of different GUI objects (the state of a check box, the contents of a text box, 
the selected item in a list, etc.).

In version 1, the Open button is 
above the Cancel button.

In version 2, the Open button is 
below the Cancel button.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 173

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Remember that Context Sensitive tests work in conjunction with the GUI map and 
GUI map files. We strongly recommend that you read the “Understanding the GUI 
Map” section of this guide before you start recording.

The following example illustrates the connection between the test script and the 
GUI map. It also demonstrates the connection between the logical name and the 
physical description. Assume that you record a test in which you print a readme 
file by choosing the Print command on the File menu to open the Print dialog box, 
and then clicking the OK button. The test script might look like this:

# Activate the Readme.doc - WordPad window.
win_activate ("Readme.doc - WordPad");

# Direct the Readme.doc - WordPad window to receive input.
set_window ("Readme.doc - WordPad", 10);

# Choose File > Print.
menu_select_item ("File;Print... Ctrl+P");

# Direct the Print window to receive input.
set_window ("Print", 10);

# Click the OK button.
button_press ("OK");

WinRunner learns the actual description—the list of properties and their 
values—for each object involved and writes this description in the GUI map.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 174

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When you open the GUI map and highlight an object, you can view the physical 
description. In the following example, the Readme.doc window is highlighted in 
the GUI map.

Logical name of window

Window icon

Physical description of window

Push button icon

Menu item icon



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 175

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner writes the following descriptions for the other window and objects in 
the GUI map: 

File menu: {class:menu_item, label:File, parent:None}
Print command: {class: menu_item, label: "Print... Ctrl+P", parent: File}
Print window: {class:window, label:Print}
OK button: {class:push_button, label:OK}

(To see these descriptions, you would highlight the windows or objects in the 
GUI map, and the physical description appears below.) WinRunner also assigns 
a logical name to each object. As WinRunner runs the test, it reads the logical 
name of each object in the test script and refers to its physical description in the 
GUI map. WinRunner then uses this description to find the object in the 
application being tested.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 176

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Solving Common Context Sensitive Recording Problems

This section discusses common problems that can occur while creating Context 
Sensitive tests.

WinRunner Does Not Record the Appropriate TSL Statements 
for Your Object
You record on an object, but WinRunner does not record the appropriate TSL 
statements for the object class. Instead, WinRunner records obj_mouse 
statements. This occurs when WinRunner does not recognize the class to which 
your object belongs, and therefore it assigns it to the generic “object” class. 

There are several possible causes and solutions:

Possible 
Causes

Possible Solutions

Add-in support 
for the object is 
not loaded.

You must install and load add-in support for the required object. 
For example, for HTML objects, you must load the WebTest add-
in. For information on loading add-in support, see Loading 
WinRunner Add-Ins on page 52.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 177

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The object is a 
custom class 
object. 

If a custom object is similar to a standard object, you can map 
the custom class to a standard class, as described in Mapping 
a Custom Object to a Standard Class on page 129.

You can add a custom GUI object class. For more information on 
creating custom GUI object classes and checking custom 
objects, refer to the WinRunner Customization Guide. You can 
also create GUI checks for custom objects. For information on 
checking GUI objects, see Chapter 4, Creating the GUI Map. 

You can create custom record and execution functions. If your 
object changes, you can modify your functions instead of 
updating all your test scripts. For more information on creating 
custom record and execution functions, refer to the WinRunner 
Customization Guide. 

Possible 
Causes

Possible Solutions



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 178

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Cannot Read Text from HTML Pages in Your 
Application
There are several possible causes and solutions:

For more information, refer to the WebTest User’s Guide or the TSL Online 
Reference.

For more information on solving Context Sensitive testing problems, refer to 
WinRunner context-sensitive help.

Possible Causes Possible Solutions

The WebTest add-in 
is not loaded.

You must install and load add-in support for Web objects. For 
information on loading add-in support, see Loading 
WinRunner Add-Ins on page 52.

WinRunner does 
not identify the text 
as originating in an 
HTML frame or 
table.

Use the Create > Get Text > From Selection (Web 
only) command to retrieve text from an HTML page. For a 
frame, WinRunner inserts a web_frame_get_text 
statement. For any other GUI object class, WinRunner inserts 
a web_obj_get_text statement.

Use the Create > Get Text > Web Text Checkpoint 
command to check whether a specified text string exists in an 
HTML page. For a frame, WinRunner inserts a 
web_frame_text_exists statement. For any other GUI 
object class, WinRunner inserts a web_obj_text_exists 
statement.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 179

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Analog Recording

Analog mode records keyboard input, mouse clicks, and the exact path traveled 
by your mouse. For example, if you choose the Open command from the File 
menu in your application, WinRunner records the movements of the mouse 
pointer on the screen. When WinRunner executes the test, the mouse pointer 
retraces the coordinates.

In your test script, the menu selection described above might look like this:

# mouse track
move_locator_track (1);

# left mouse button press
mtype ("<T110><kLeft>-");

# mouse track
move_locator_track (2);

# left mouse button release
mtype ("<kLeft>+");

Use Analog mode when exact mouse movements are an integral part of the test, 
such as in a drawing application. Note that you can switch to and from Analog 
mode during a Context Sensitive recording session.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 180

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note for XRunner users:  You cannot run test scripts in WinRunner that were 
recorded in XRunner in Analog mode. The portions of XRunner test scripts 
recorded in Analog mode must be rerecorded in WinRunner before running them 
in WinRunner. For information on configuring GUI maps created in XRunner for 
WinRunner, see Chapter 6, Configuring the GUI Map.  For information on using 
GUI checkpoints created in XRunner in WinRunner test scripts, see Chapter 9, 
Checking GUI Objects.  For information on using bitmap checkpoints created in 
XRunner in WinRunner test scripts, see Chapter 14, Checking Bitmaps. 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 181

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checkpoints

Checkpoints allow you to compare the current behavior of the application being 
tested to its behavior in an earlier version. 

You can add four types of checkpoints to your test scripts:

• GUI checkpoints verify information about GUI objects. For example, you can 
check that a button is enabled or see which item is selected in a list. See 
Chapter 9, Checking GUI Objects, for more information.

• Bitmap checkpoints take a “snapshot” of a window or area of your application 
and compare this to an image captured in an earlier version. See Chapter 14, 
Checking Bitmaps, for more information.

• Text checkpoints read text in GUI objects and in bitmaps and enable you to verify 
their contents. See Chapter 15, Checking Text, for more information.

• Database checkpoints check the contents and the number of rows and columns 
of a result set, which is based on a query you create on your database. See 
Chapter 13, Checking Databases, for more information.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 182

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Data-Driven Tests

When you test your application, you may want to check how it performs the same 
operations with multiple sets of data. You can create a data-driven test with a loop 
that runs ten times: each time the loop runs, it is driven by a different set of data. 
In order for WinRunner to use data to drive the test, you must link the data to the 
test script which it drives. This is called parameterizing your test. The data is 
stored in a data table. You can perform these operations manually, or you can use 
the DataDriver Wizard to parameterize your test and store the data in a data table. 
For additional information, see Chapter 16, Creating Data-Driven Tests. 

Synchronization Points

Synchronization points enable you to solve anticipated timing problems between 
the test and your application. For example, if you create a test that opens a 
database application, you can add a synchronization point that causes the test to 
wait until the database records are loaded on the screen.

For Analog testing, you can also use a synchronization point to ensure that 
WinRunner repositions a window at a specific location. When you run a test, the 
mouse cursor travels along exact coordinates. Repositioning the window enables 
the mouse pointer to make contact with the correct elements in the window. See 
Chapter 17, Synchronizing the Test Run, for more information.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 183

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Planning a Test

Plan a test carefully before you begin recording or programming. Following are 
some points to consider:

• Determine the functionality you are about to test. It is better to design short, 
specialized tests that check specific functions of the application, than long tests 
that perform multiple tasks.

• Decide on the types of checkpoints and synchronization points you want to use 
in the test.

• If you plan to use recording, decide which parts of your test should use the 
Analog recording mode and which parts should use the Context Sensitive mode. 

• Determine the types of programming elements (such as loops, arrays, and user-
defined functions) that you want to add to the recorded test script.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 184

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Documenting Test Information

Before creating a test, you can document information about the test in the General 
and Description tabs of the Test Properties dialog box. You can enter the name of 
the test author, the type of functionality tested, a detailed description of the test, 
and a reference to the relevant functional specifications document.

You can also use the Test Properties dialog box to define which add-ins to load 
for the test, assign the main data table for a test, define parameters for a test, 
designate a test as a compiled module, and to review current information about 
the test. These functions are described in this chapter and chapters 16, 22, 24, 
and 27 respectively.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 185

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To document test information:

 1 Choose File > Test Properties to open the Test Properties dialog box.

 2 Click the General tab.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 186

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This tab displays the following information:

Option Description

Displays the name of the test.

Location Displays the test’s location within the TestDirector tree 
if the test is stored in TestDirector. Otherwise, this field 
displays the test’s location within the file system.

Author Displays the test author’s name.

Created Displays the date and time that the test was created.

Read/write 
status

Indicates whether the test is read-only (either the test 
directory or the script is marked as read only in the file 
system) or writable. If the test is read-only, all editable 
property fields in the Test Properties dialog box are 
disabled.

Test type Indicates whether the test is a Main Test or a 
Compiled Module. For more information about 
compiled modules, see Creating a Compiled 
Module on page 675.

Main data 
table

Displays the main data table for the test. For more 
information, see Assigning the Main Data Table 
for a Test on page 518.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 187

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Enter your name in the Author field. 

 4 Click the Description tab.

 5 Add information about the test including a short summary, description of the 
application function(s) you are testing, reference to the functional specifications 
for the application and a detailed description of the test. 

 6 Click OK to save the test information and close the dialog box.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 188

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Associating Add-ins with a Test

You can indicate the WinRunner add-ins that are required for a test by selecting 
them in the Add-ins tab of the Test Properties dialog box.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 189

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Add-ins tab contains one check box for each add-in you currently have 
installed. This information reminds you or others which add-ins to load in order to 
successfully run this test.

To associate add-ins with a test:

 1 Choose File > Test Properties to open the Test Properties dialog box.

 2 Click the Add-ins tab.

 3 Select the add-in(s) that are required for this test.

Running Tests with Add-ins from TestDirector
In addition to providing information for people running your test from WinRunner, 
the Add-ins tab instructs TestDirector to load the selected Add-ins when it runs 
WinRunner tests.

When you run a test from TestDirector, TestDirector will load the add-ins selected 
in the Add-ins tab for the test. If WinRunner is already open, but does not have 
the required add-ins loaded, TestDirector closes and re-opens WinRunner with 
the proper add-ins. If one or more of the required add-ins are not installed, 
TestDirector displays a “Cannot open test.” error message.

For more information about running WinRunner tests from TestDirector, refer to 
the TestDirector User’s Guide.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 190

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Recording a Test

Consider the following guidelines when recording a test:

• Before you start to record, close all applications not required for the test.

• Use an invoke_application statement to open the application you are testing. 
For information on working with TSL functions, see Chapter 20, Enhancing 
Your Test Scripts with Programming.  For more information about the 
invoke_application function and an example of usage, refer to the TSL Online 
Reference.

• Before you record on objects within a window, click the title bar of the window to 
record a win_activate statement. This activates the window. For information on 
working with TSL functions, see Chapter 20, Enhancing Your Test Scripts with 
Programming.  For more information about the win_activate function and an 
example of usage, refer to the TSL Online Reference.

• Create your test so that it “cleans up” after itself. When the test is completed, the 
environment should resemble the pre-test conditions. (For example, if the test 
started with the application window closed, then the test should also close the 
window and not minimize it to an icon.)

• When you record a test, you can minimize WinRunner and turn the User toolbar 
into a floating toolbar. This enables you to record on a full screen of your 
application, while maintaining access to important menu commands. To 
minimize WinRunner and work from the floating User toolbar: undock the User 
toolbar from the WinRunner window, start recording, and minimize WinRunner. 
The User toolbar stays on top of all other applications. Note that you can 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 191

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

customize the User toolbar with the menu commands you use most frequently 
when creating a test. For additional information, see Chapter 34, Customizing 
WinRunner’s User Interface. 

• When recording, use mouse clicks rather than the Tab key to move within a 
window in the application being tested.

• When recording in Analog mode, use softkeys rather than the WinRunner menus 
or toolbars to insert checkpoints. 

• When recording in Analog mode, avoid typing ahead. For example, when you 
want to open a window, wait until it is completely redrawn before continuing. In 
addition, avoid holding down a mouse button when this results in a repeated 
action (for example, using the scroll bar to move the screen display). Doing so 
can initiate a time-sensitive operation that cannot be precisely recreated. 
Instead, use discrete, multiple clicks to achieve the same results.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 192

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• WinRunner supports recording and running tests on applications with RTL-style 
window properties. RTL-style window properties include right-to-left menu order 
and typing, a left scroll bar, and attached text at the top right corner of GUI 
objects. WinRunner supports pressing the CTRL and SHIFT keys together or the 
ALT and SHIFT keys together to change language and direction when typing. 
The default setting for attached text supports recording and running tests on 
applications with RTL-style windows. For more information on attached text 
options, see Chapter 36, Setting Global Testing Options, and Chapter 37, 
Setting Testing Options from a Test Script. 

• WinRunner supports recording and running tests on applications with drop-down 
and menu-like toolbars, which are used in Microsoft Internet Explorer 4.0 and 
Windows 98. Although menu-like toolbars may look exactly like menus, they are 
of a different class, and WinRunner records them differently. When an item is 
selected from a drop-down or a menu-like toolbar, WinRunner records a 
toolbar_select_item statement. (This function resembles the 
menu_select_item function, which records selecting menu commands on 
menus.) For more information, refer to the TSL Online Reference.

• If the test folder or the test script file is marked as read-only in the file system, 
you cannot perform any WinRunner operations which change the test script or 
the expected results folder.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 193

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To record a test:

 1 Choose either Create > Record–Context Sensitive or 
Create > Record–Analog or click the Record–Context Sensitive button.

 2 Perform the test as planned using the keyboard and mouse.

Insert checkpoints and synchronization points as needed by choosing the 
appropriate commands from the User toolbar or from the Create menu: GUI 
Checkpoint, Bitmap Checkpoint, Database Checkpoint, or Synchronization 
Point.

 3 To stop recording, click Create > Stop Recording or click Stop.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 194

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Activating Test Creation Commands Using Softkeys

You can activate several of WinRunner’s commands using softkeys. WinRunner 
reads input from softkeys even when the WinRunner window is not the active 
window on your screen, or when it is minimized. Note that you can configure the 
softkeys. For more information, see Chapter 34, Customizing WinRunner’s 
User Interface. 

The following table lists the default softkey configurations for test creation:

Command
Default Softkey 
Combination

Function

RECORD F2 Starts test recording. While 
recording, this softkey toggles 
between the Context Sensitive and 
Analog modes.

CHECK GUI FOR SINGLE 
PROPERTY

Alt Right + F12 Checks a single property of a GUI 
object.

CHECK GUI FOR 
OBJECT/WINDOW

Ctrl Right + F12 Creates a GUI checkpoint for an 
object or a window.

CHECK GUI FOR 
MULTIPLE OBJECTS

F12 Opens the Create GUI Checkpoint 
dialog box.

CHECK BITMAP OF 
OBJECT/WINDOW

Ctrl Left + F12 Captures an object or a window 
bitmap.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 195

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

CHECK BITMAP OF 
SCREEN AREA

Alt Left + F12 Captures an area bitmap.

CHECK DATABASE 
(DEFAULT)

Ctrl Right + F9 Creates a check on the entire 
contents of a database.

CHECK DATABASE 
(CUSTOM)

Alt Right + F9 Checks the number of columns, rows 
and specified information of a 
database.

SYNCHRONIZE 
OBJECT/WINDOW 
PROPERTY

Ctrl Right + F10 Instructs WinRunner to wait for a 
property of an object or a window to 
have an expected value.

SYNCHRONIZE BITMAP 
OF OBJECT/WINDOW

Ctrl Left + F11 Instructs WinRunner to wait for a 
specific object or window bitmap to 
appear.

SYNCHRONIZE BITMAP 
OF SCREEN AREA

Alt Left + F11 Instructs WinRunner to wait for a 
specific area bitmap to appear.

GET TEXT FROM 
OBJECT/WINDOW

F11 Captures text in an object or a 
window.

GET TEXT FROM 
WINDOW AREA

Alt Right + F11 Captures text in a specified area and 
adds an obj_get_text statement to 
the test script.

Command
Default Softkey 
Combination

Function



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 196

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

GET TEXT FROM 
SCREEN AREA

Ctrl Right + F11 Captures text in a specified area and 
adds a get_text statement to the 
test script.

INSERT FUNCTION FOR 
OBJECT/WINDOW

F8 Inserts a TSL function for a GUI 
object.

INSERT FUNCTION 
FROM FUNCTION 
GENERATOR

F7 Opens the Function Generator dialog 
box.

STOP Ctrl Left + F3 Stops test recording.

MOVE LOCATOR Alt Left + F6 Records a move_locator_abs 
statement with the current position 
(in pixels) of the screen pointer.

Command
Default Softkey 
Combination

Function



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 197

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Programming a Test

You can use programming to create an entire test script, or to enhance your 
recorded tests. WinRunner contains a visual programming tool, the Function 
Generator, which provides a quick and error-free way to add TSL functions to your 
test scripts. To generate a function call, simply point to an object in your 
application or select a function from a list. For more information, see Chapter 21, 
Generating Functions. 

You can also add general purpose programming features such as variables, 
control-flow statements, arrays, and user-defined functions to your test scripts. 
You may type these elements directly into your test scripts. For more information 
on creating test scripts with programming, see the “Programming with TSL” 
section of this guide.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 198

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Editing a Test

To make changes to a test script, use the commands in the Edit menu or the 
corresponding toolbar buttons. The following commands are available:

Edit Command Description

Undo Cancels the last editing operation.

Cut Deletes the selected text from the test script and places it onto 
the Clipboard.

Copy Makes a copy of the selected text and places it onto the 
Clipboard.

Paste Pastes the text on the Clipboard at the insertion point.

Delete Deletes the selected text.

Select All Selects all the text in the active test window.

Find Finds the specified characters in the active test window.

Find Next Finds the next occurrence of the specified characters.

Find Previous Finds the previous occurrence of the specified characters.

Replace Finds and replaces the specified characters with new 
characters.

Go To Moves the insertion point to the specified line in the test script.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 199

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Managing Test Files

You use the commands in the File menu to create, open, save, print, and close 
test files.

Creating a New Test
Choose File > New or click New. A new window opens, titled Noname, and 
followed by a numeral (for example, Noname7). You are ready to start recording 
or programming a test script. 

Opening an Existing Test
To open an existing test, choose File > Open or click Open.

Note: No more than 100 tests may be open at the same time.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 200

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To open a test from the file system:

 1 Choose File > Open or click Open to open the Open Test dialog box.

 2 In the Look in box, click the location of the test you want to open.

 3 In the File name box, click the name of the test to open.

 4 If the test has more than one set of expected results, click the folder you want to 
use on the Expected list. The default folder is called exp.

 5 Click Open to open the test.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 201

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To open a test from a TestDirector project:

 1 Choose File > Open or click Open. If you are connected to a TestDirector 
project, the Open Test from TestDirector Project dialog box opens and displays 
the test plan tree.

Note that the Open Test from TestDirector Project dialog box opens only when 
WinRunner is connected to a TestDirector project.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 202

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click the relevant subject in the test plan tree. To expand the tree and view 
sublevels, double-click closed folders. To collapse the tree, double-click open 
folders.

Note that when you select a subject, the tests that belong to the subject appear 
in the Test Name list.

 3 Select a test in the Test Name list. The test appears in the read-only Test Name 
box.

 4 If desired, enter an expected results folder for the test in the Expected box. 
(Otherwise, the default folder is used.)

 5 Click OK to open the test. The test opens in a window in WinRunner. Note that 
the test window’s title bar shows the full subject path.

Note: You can click the File System button to open the Open Test dialog box and 
open a test from the file system.

For more information on opening tests in a TestDirector project, see Chapter 40, 
Managing the Testing Process. 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 203

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Saving a Test
The following options are available for saving tests:

• Save changes to a previously saved test by choosing File > Save or by clicking 
Save.

• Save two or more open tests simultaneously by choosing File > Save All.

• Save a new test script by choosing File > Save As or by clicking Save.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 204

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To save a test to the file system:

 1 On the File menu, choose a Save command or click Save, as described above. 
The Save Test dialog box opens.

 2 In the Save in box, click the location where you want to save the test.

 3 Enter the name of the test in the File name box.

 4 Click Save to save the test.



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 205

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To save a test to a TestDirector project:

 1 On the File menu, choose a Save command or click Save, as described above. 
If you are connected to a TestDirector project, the Save Test to TestDirector 
Project dialog box opens.

Note that the Save Test to TestDirector Project dialog box opens only when 
WinRunner is connected to a TestDirector project. 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 206

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Select the relevant subject in the test plan tree. To expand the tree and view a 
sublevel, double-click a closed folder. To collapse a sublevel, double-click an 
open folder.

 3 In the Test Name text box, enter a name for the test. Use a descriptive name 
that will help you easily identify the test.

 4 Click OK to save the test and close the dialog box.

Note: You can click the File System button to open the Save Test dialog box and 
save a test in the file system.

The next time you start TestDirector, the new test will appear in the TestDirector’s 
test plan tree. Refer to the TestDirector User’s Guide for more information.

For more information on saving tests to a TestDirector project, see Chapter 40, 
Managing the Testing Process. 



Creating Tests • Creating Tests

WinRunner User’s Guide Chapter 8, page 207

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Printing a Test
To print a test script, choose File > Print to open the Print dialog box.

• Choose the print options you want.

• Click OK to print.

Closing a Test
• To close the current test, choose File > Close.

• To simultaneously close two or more open tests, choose Window > Close All.



Creating Tests
Checking GUI Objects

WinRunner’s User Guide Chapter 9, page 208

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again



Checking GUI Objects

By adding GUI checkpoints to your test scripts, you can compare the behavior of 
GUI objects in different versions of your application.

This chapter describes:

• Checking a Single Property Value

• Checking a Single Object

• Checking Two or More Objects in a Window

• Checking All Objects in a Window

• Understanding GUI Checkpoint Statements

• Using an Existing GUI Checklist in a GUI Checkpoint

• Modifying GUI Checklists

• Understanding the GUI Checkpoint Dialog Boxes

• Property Checks and Default Checks

• Specifying Arguments for Property Checks

• Editing the Expected Value of a Property

• Modifying the Expected Results of a GUI Checkpoint



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 209

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking GUI Objects

You can use GUI checkpoints in your test scripts to help you examine GUI objects 
in your application and detect defects. For example, you can check that when a 
specific dialog box opens, the OK, Cancel, and Help buttons are enabled.

You point to GUI objects and choose the properties you want WinRunner to 
check. You can check the default properties recommended by WinRunner, or you 
can specify which properties to check. Information about the GUI objects and the 
selected properties is saved in a checklist. WinRunner then captures the current 
property values for the GUI objects and saves this information as expected 
results. A GUI checkpoint is automatically inserted into the test script. This 
checkpoint appears in your test script as an obj_check_gui or a win_check_gui 
statement.

Check list
ob jec ts  an d  p rop erties  to  ch eck

E xpected Results
cap tu red  p rop erty va lu es

G UI Checkpoint



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 210

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When you run the test, the GUI checkpoint compares the current state of the 
GUI objects in the application being tested to the expected results. If the 
expected results and the current results do not match, the GUI checkpoint fails. 
The results of the checkpoint can be viewed in the Test Results window. For 
more information, see Chapter 28, Analyzing Test Results. 

Note that any GUI object you check that is not already in the GUI map is added 
automatically to the temporary GUI map file. See Chapter 3, Introducing the GUI 
Map, for additional information.

You can use a regular expression to create a GUI checkpoint on an edit object or 
a static text object with a variable name. For additional information, see 
Chapter 19, Using Regular Expressions. 

WinRunner provides special built-in support for ActiveX control, Visual Basic, and 
PowerBuilder application development environments. When you load the 
appropriate add-in support, WinRunner recognizes these controls, and treats 
them as it treats standard GUI objects. You can create GUI checkpoints for these 
objects as you would create them for standard GUI objects. WinRunner provides 
additional special built-in support for checking ActiveX and Visual Basic sub-
objects. For additional information, see Chapter 10, Working with ActiveX and 
Visual Basic Controls.  For information on WinRunner support for PowerBuilder, 
see Chapter 11, Checking PowerBuilder Applications. 

You can also create GUI checkpoints that check the contents and properties of 
tables. For information, see Chapter 12, Checking Table Contents. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 211

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note for XRunner users: You cannot use GUI checkpoints created in XRunner 
when you run test scripts in WinRunner. You must recreate the GUI checkpoints 
in WinRunner. 

For information on using GUI maps created in XRunner, see Chapter 6, 
Configuring the GUI Map.  For information on using test scripts recorded in 
XRunner in Analog mode, see Chapter 8, Creating Tests.  For information on 
using bitmap checkpoints created in XRunner, see Chapter 14, Checking 
Bitmaps. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 212

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking a Single Property Value

You can check a single property of a GUI object. For example, you can check 
whether a button is enabled or disabled or whether an item in a list is selected. To 
create a GUI checkpoint for a property value, use the Check Property dialog box 
to add one of the following functions to the test script: 

For information about working with these functions, refer to the TSL Online 
Reference.

button_check_info scroll_check_info

edit_check_info static_check_info

list_check_info win_check_info

obj_check_info



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 213

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To create a GUI checkpoint for a property value:

 1 Choose Create > GUI Checkpoint > For Single Property. If you are recording 
in Analog mode, press the CHECK GUI FOR SINGLE PROPERTY softkey in order to 
avoid extraneous mouse movements. 

The WinRunner window is minimized, the mouse pointer becomes a pointing 
hand, and a help window opens on the screen.

 2 Click an object.

The Check Property dialog box opens and shows the default function for the 
selected object. WinRunner automatically assigns argument values to the 
function.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 214

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 You can modify the arguments for the property check.

• To modify assigned argument values, choose a value from the Attribute list. 
The expected value is updated in the Expected text box. 

• To choose a different object, click the pointing hand and then click an object 
in your application. WinRunner automatically assigns new argument values 
to the function.

Note that if you click an object that is not compatible with the selected 
function, a message states that the current function cannot be applied to the 
selected object. Click OK to clear the message, and then click Close to close 
the Check Property dialog box. Repeat steps 1 and 2.

 4 Click Paste to paste the statement into your test script. 

The function is pasted into the script at the insertion point. The Check Property 
dialog box closes.

Note: To change to another function for the object, click Change. The Function 
Generator dialog box opens and displays a list of functions. For more information 
on using the Function Generator, see Chapter 21, Generating Functions. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 215

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking a Single Object

You can create a GUI checkpoint to check a single object in the application being 
tested. You can either check the object with its default properties or you can 
specify which properties to check.

Each standard object class has a set of default checks. For a complete list of 
standard objects, the properties you can check, and default checks, see Property 
Checks and Default Checks on page 262. 

Note: You can set the default checks for an object using the 
gui_ver_set_default_checks function. For more information, refer to the TSL 
Online Reference and the WinRunner Customization Guide. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 216

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a GUI Checkpoint using the Default Checks
You can create a GUI checkpoint that performs a default check on the property 
recommended by WinRunner. For example, if you create a GUI checkpoint that 
checks a push button, the default check verifies that the push button is enabled.

To create a GUI checkpoint using default checks:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. If you are 
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in 
order to avoid extraneous mouse movements. Note that you can press the 
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer becomes a pointing 
hand, and a help window opens on the screen.

 2 Click an object. 

 3 WinRunner captures the current value of the property of the GUI object being 
checked and stores it in the test’s expected results folder. The WinRunner 
window is restored and a GUI checkpoint is inserted in the test script as an 
obj_check_gui statement. For more information, see Understanding GUI 
Checkpoint Statements on page 230.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 217

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a GUI Checkpoint by Specifying which Properties to 
Check
You can specify which properties to check for an object. For example, if you create 
a checkpoint that checks a push button, you can choose to verify that it is in focus, 
instead of enabled.

To create a GUI checkpoint by specifying which properties to check:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the 
GUI Checkpoint for Object/Window button on the User toolbar. If you are 
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in 
order to avoid extraneous mouse movements. Note that you can press the 
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer becomes a pointing 
hand, and a help window opens on the screen.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 218

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Double-click the object or window. The Check GUI dialog box opens.

 3 Click an object name in the Objects pane. The Properties pane lists all the 
properties for the selected object. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 219

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Select the properties you want to check.

• To edit the expected value of a property, first select it. Next, either click the 
Edit Expected Value button, or double-click the value in the Expected Value 
column to edit it. For more information, see Editing the Expected Value of a 
Property on page 284.

• To add a check in which you specify arguments, first select the property for 
which you want to specify arguments. Next, either click the Specify 
Arguments button, or double-click in the Arguments column. Note that if an 
ellipsis (three dots) appears in the Arguments column, then you must specify 
arguments for a check on this property. (You do not need to specify 
arguments if a default argument is specified.) When checking standard 
objects, you only specify arguments for certain properties of edit and static 
text objects. You also specify arguments for checks on certain properties of 
nonstandard objects. For more information, see Specifying Arguments for 
Property Checks on page 273.

• To change the viewing options for the properties of an object, use the Show 
Properties buttons. For more information, see The Check GUI Dialog Box 
on page 248.

 5 Click OK to close the Check GUI dialog box.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 220

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and a GUI checkpoint is 
inserted in the test script as an obj_check_gui or a win_check_gui statement. 
For more information, see Understanding GUI Checkpoint Statements on 
page 230.

For more information on the Check GUI dialog box, see Understanding the GUI 
Checkpoint Dialog Boxes on page 245. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 221

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Two or More Objects in a Window

You can use a GUI checkpoint to check two or more objects in a window. For a 
complete list of standard objects and the properties you can check, see Property 
Checks and Default Checks on page 262. 

To create a GUI checkpoint for two or more objects:

 1 Choose Create > GUI Checkpoint > For Multiple Objects or click the
GUI Checkpoint for Multiple Objects button on the User toolbar. If you are 
recording in Analog mode, press the CHECK GUI FOR MULTIPLE OBJECTS softkey in 
order to avoid extraneous mouse movements. The Create GUI Checkpoint 
dialog box opens.

 2 Click the Add button. The mouse pointer becomes a pointing hand and a help 
window opens.

 3 To add an object, click it once. If you click a window title bar or menu bar, a help 
window prompts you to check all the objects in the window. For more information 
on checking all objects in a window, see Checking All Objects in a Window on 
page 225.

 4 The pointing hand remains active. You can continue to choose objects by 
repeating step 3 above for each object you want to check.

Note: You cannot insert objects from different windows into a single checkpoint.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 222

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click the right mouse button to stop the selection process and to restore the 
mouse pointer to its original shape. The Create GUI Checkpoint dialog box 
reopens.

 6 The Objects pane contains the name of the window and objects included in the 
GUI checkpoint. To specify which objects to check, click an object name in the 
Objects pane. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 223

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Properties pane lists all the properties of the object. The default properties 
are selected. 

• To edit the expected value of a property, first select it. Next, either click the 
Edit Expected Value button, or double-click the value in the Expected Value 
column to edit it. For more information, see Editing the Expected Value of a 
Property on page 284.

• To add a check in which you specify arguments, first select the property for 
which you want to specify arguments. Next, either click the Specify 
Arguments button, or double-click in the Arguments column. Note that if an 
ellipsis appears in the Arguments column, then you must specify arguments 
for a check on this property. (You do not need to specify arguments if a 
default argument is specified.) When checking standard objects, you only 
specify arguments for certain properties of edit and static text objects. You 
also specify arguments for checks on certain properties of nonstandard 
objects. For more information, see Specifying Arguments for Property 
Checks on page 273.

• To change the viewing options for the properties of an object, use the Show 
Properties buttons. For more information, see The Create GUI Checkpoint 
Dialog Box on page 252.

 7 To save the checklist and close the Create GUI Checkpoint dialog box, click OK. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 224

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner captures the current property values of the selected GUI objects and 
stores it in the expected results folder. A win_check_gui statement is inserted in 
the test script. For more information, see Understanding GUI Checkpoint 
Statements on page 230.

For more information on the Create GUI Checkpoint dialog box, see 
Understanding the GUI Checkpoint Dialog Boxes on page 245.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 225

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking All Objects in a Window

You can create a GUI checkpoint to perform default checks on all GUI objects in 
a window. Alternatively, you can specify which checks to perform on all GUI 
objects in a window.

Each standard object class has a set of default checks. For a complete list of 
standard objects, the properties you can check, and default checks, see Property 
Checks and Default Checks on page 262. 

Note: You can set the default checks for an object using the 
gui_ver_set_default_checks function. For more information, refer to the TSL 
Online Reference and the WinRunner Customization Guide. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 226

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking All Objects in a Window using Default Checks
You can create a GUI checkpoint that checks the default property of every GUI 
object in a window.

To create a GUI checkpoint that performs a default check on every GUI 
object in a window:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the 
GUI Checkpoint for Object/Window button on the User toolbar. If you are 
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in 
order to avoid extraneous mouse movements. Note that you can press the 
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a pointing 
hand, and a help window opens.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 227

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click the title bar or the menu bar of the window you want to check. 

The Add All dialog box opens. 

 3 Select Objects, Menus, or both to indicate the types of objects to include in the 
checklist. When you select only Objects (the default setting), all objects in the 
window except for menus are included in the checklist. To include menus in the 
checklist, select Menus. 

 4 Click OK to close the dialog box. 

WinRunner captures the expected property values of the GUI objects and/or 
menu items and stores this information in the test’s expected results folder. The 
WinRunner window is restored and a win_check_gui statement is inserted in 
the test script.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 228

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying which Checks to Perform on All Objects in a 
Window
You can use a GUI checkpoint to specify which checks to perform on all GUI 
objects in a window.

To create a GUI checkpoint in which you specify which checks to perform 
on all GUI objects in a window:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the 
GUI Checkpoint for Object/Window button on the User toolbar. If you are 
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in 
order to avoid extraneous mouse movements. Note that you can press the 
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a pointing 
hand, and a help window opens.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 229

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Double-click the title bar or the menu bar of the window you want to check.

WinRunner generates a new checklist containing all the objects in the window. 
This may take a few seconds. 

The Check GUI dialog box opens. Specify which checks to perform, and click 
OK to close the dialog box. For more information, see The Check GUI Dialog 
Box on page 248.

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and a win_check_gui 
statement is inserted in the test script. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 230

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding GUI Checkpoint Statements

A GUI checkpoint for a single object appears in your script as an obj_check_gui 
statement. A GUI checkpoint that checks more than one object in a window 
appears in your script as a win_check_gui statement. Both the obj_check_gui 
and win_check_gui statements are always associated with a checklist and store 
expected results in a expected results file.

• A checklist lists the objects and properties that need to be checked. For an 
obj_check_gui statement, the checklist lists only one object. For a 
win_check_gui statement, a checklist contains a list of all objects to be checked 
in a window. When you create a GUI checkpoint, you can create a new checklist 
or use an existing checklist. For information on using an existing checklist, see 
Using an Existing GUI Checklist in a GUI Checkpoint on page 233.

• An expected results file contains the expected property values for each object in 
the checklist. These property values are captured when you create a checkpoint, 
and can later be updated manually or by running the test in Update mode. For 
more information, see Running a Test to Update Expected Results on page 
726. Each time you run the test, the expected property values are compared to 
the current property values of the objects.

The obj_check_gui function has the following syntax:

obj_check_gui ( object, checklist, expected results file, time );



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 231

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The object is the logical name of the GUI object. The checklist is the name of the 
checklist defining the objects and properties to check. The expected results file 
is the name of the file that stores the expected property values. The time is the 
interval marking the maximum delay between the previous input event and the 
capture of the current property values, in seconds. This interval is added to the 
timeout_msec testing option during the test run. For more information on the 
timeout_msec testing option, see Chapter 37, Setting Testing Options from a 
Test Script. 

For example, if you click the OK button in the Login window in the Flight 
application, the resulting statement might be:

obj_check_gui ("OK", "list1.ckl", "gui1", 1);

The win_check_gui function has the following syntax:

win_check_gui (�window, checklist, expected results file, time�);

The window is the logical name of the GUI window. The checklist is the name of 
the checklist defining the objects and properties to check. The expected results 
file is the name of the file that stores the expected property values. The time is 
the interval marking the maximum delay between the previous input event and 
the capture of the current property values, in seconds. This interval is added to 
the timeout_msec testing option during the test run. For more information on the 
timeout_msec testing option, see Chapter 37, Setting Testing Options from a 
Test Script. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 232

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, if you click the title bar of the Login window in the sample Flight 
application, the resulting statement might be:

win_check_gui ("Login", "list1.ckl", "gui1", 1);

Note that WinRunner names the first checklist in the test list1.ckl and the first 
expected results file gui1. For more information on the obj_check_gui and 
win_check_gui functions, refer to the TSL Online Reference.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 233

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using an Existing GUI Checklist in a GUI Checkpoint

You can create a GUI checkpoint using an existing GUI checklist. This is useful 
when you want to use a GUI checklist to create new GUI checkpoints, either in 
your current test or in a different test. For example, you may want to check the 
same properties of certain objects at several different points during your test. 
These object properties may have different expected values, depending on when 
you check them. 

Although you can create a new GUI checklist whenever you create a new GUI 
checkpoint, it is expedient to “reuse” a GUI checklist in as many checkpoints as 
possible. Using a single GUI checklist in many GUI checkpoints facilitates the 
testing process by reducing the time and effort involved in maintaining the GUI 
checkpoints in your test.

In order for WinRunner to locate the objects to check in your application, you must 
load the appropriate GUI map file before you run the test. For information about 
loading GUI map files, see Loading the GUI Map File on page 83.

Note: If you want a checklist to be available to more than one test, you must 
save it in a shared folder. For information on saving a GUI checklist in a shared 
folder, see Saving a GUI Checklist in a Shared Folder on page 236.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 234

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To use an existing GUI checklist in a GUI checkpoint:

 1 Choose Create > GUI Checkpoint > For Multiple Objects or click the
GUI Checkpoint for Multiple Objects button on the User toolbar.

The Create GUI Checkpoint dialog box opens.

 2 Click Open. The Open Checklist dialog box opens. 

 3 To see checklists in the Shared folder, click Shared. 

 4 Select a checklist and click OK. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 235

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Open Checklist dialog box closes and the selected list appears in the Create 
GUI Checkpoint dialog box.

 5 Open the window in the application being tested that contains the objects shown 
in the checklist (if it is not already open).

 6 Click OK. WinRunner captures the current property values and a 
win_check_gui statement is inserted into your test script.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 236

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying GUI Checklists

You can make changes to a checklist you created for a GUI checkpoint. Note that 
a checklist includes only the objects and properties that need to be checked. It 
does not include the expected results for the values of those properties. 

You can:

• make a checklist available to other users by saving it in a shared folder

• edit a checklist

Note: In addition to modifying GUI checklists, you can also modify the expected 
results of GUI checkpoints. For more information, see Modifying the Expected 
Results of a GUI Checkpoint on page 287.

Saving a GUI Checklist in a Shared Folder
By default, checklists for GUI checkpoints are stored in the folder of the current 
test. You can specify that a checklist be placed in a shared folder to enable wider 
access, so that you can use a checklist in multiple tests. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 237

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The default folder in which WinRunner stores your shared checklists is 
WinRunner installation folder/chklist. To choose a different folder, you can use the 
Shared Checklists box in the Folders tab of the General Options dialog box. For 
more information, see Chapter 36, Setting Global Testing Options. 

To save a GUI checklist in a shared folder:

 1 Choose Create > Edit GUI Checklist. 

The Open Checklist dialog box opens. Note that GUI checklists have the .ckl 
extension, while database checklists have the .cdl extension. For information on 
database checklists, see Modifying a Database Checkpoint on page 400.

 2 Select a GUI checklist and click OK. 

The Open Checklist dialog box closes. The Edit GUI Checklist dialog box 
displays the selected checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 238

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Save the checklist by clicking Save As. 

The Save Checklist dialog box opens.

 4 Under Scope, click Shared. Type in a name for the shared checklist. Click OK to 
save the checklist and close the dialog box.

 5 Click OK to close the Edit GUI Checklist dialog box.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 239

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Editing GUI Checklists
You can edit an existing GUI checklist. Note that a GUI checklist includes only the 
objects and the properties to be checked. It does not include the expected results 
for the values of those properties. 

You may want to edit a GUI checklist if you add a checkpoint for a window that 
already has a checklist.

When you edit a GUI checklist, you can: 

• change which objects in a window to check

• change which properties of an object to check

• change the arguments for an existing property check

• specify the arguments for a new property check

Note that before you start working, the objects in the checklist must be loaded 
into the GUI map. For information about loading the GUI map, see Loading the 
GUI Map File on page 83.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 240

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To edit an existing GUI checklist:

 1 Choose Create > Edit GUI Checklist. The Open Checklist dialog box opens.

 2 A list of checklists for the current test is displayed. If you want to see checklists in 
a shared folder, click Shared.

For more information on sharing GUI checklists, see Saving a GUI Checklist in 
a Shared Folder on page 236.

Lists the available checklists.

Displays checklists created for the current test.

Displays checklists created in a shared 
folder.

Describes the selected checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 241

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Select a GUI checklist. 

 4 Click OK. 

The Open Checklist dialog box closes. The Edit GUI Checklist dialog box opens 
and displays the selected checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 242

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 To see a list of the properties to check for a specific object, click the object name 
in the Objects pane. The Properties pane lists all the properties for the selected 
object. To change the viewing options for the properties for an object, use the 
Show Properties buttons. For more information, see The Edit GUI Checklist 
Dialog Box on page 257.

• To check additional properties of an object, select the object in the Objects 
pane. In the Properties pane, select the properties to be checked.

• To delete an object from the checklist, select the object in the Objects pane. 
Click the Delete button and then select the Object option. 

• To add an object to the checklist, make sure the relevant window is open in 
the application being tested. Click the Add button. The mouse pointer 
becomes a pointing hand and a help window opens.

Click each object that you want to include in your checklist. Click the right 
mouse button to stop the selection process. The Edit GUI Checklist dialog 
box reopens.

In the Properties pane, select the properties you want to check or accept the 
default checks.

Note: You cannot insert objects from different windows into a single checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 243

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• To add all objects or menus in a window to the checklist, make sure the 
window of the application you are testing is active. Click the Add All button 
and select Objects or Menus. 

Note: If the edited checklist is part of an obj_check_gui statement, do not add 
additional objects to it, as by definition this statement is for a single object only.

• To add a check in which you specify arguments, first select the property for 
which you want to specify arguments. Next, either click the Specify 
Arguments button, or double-click in the Arguments column. Note that if an 
ellipsis appears in the Arguments column, then you must specify arguments 
for a check on this property. (You do not need to specify arguments if a 
default argument is specified.) When checking standard objects, you only 
specify arguments for certain properties of edit and static text objects. You 
also specify arguments for checks on certain properties of nonstandard 
objects. For more information, see Specifying Arguments for Property 
Checks on page 273.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 244

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Save the checklist in one of the following ways:

• To save the checklist under its existing name, click OK to close the Edit GUI 
Checklist dialog box. A WinRunner message prompts you to overwrite the 
existing checklist. Click OK. 

• To save the checklist under a different name, click the Save As button. The 
Save Checklist dialog box opens. Type a new name or use the default name. 
Click OK. Note that if you do not click the Save As button, WinRunner 
automatically saves the checklist under its default name when you click OK to 
close the Edit GUI Checklist dialog box.

A new GUI checkpoint statement is not inserted in your test script.

For more information on the Edit GUI Checklist dialog box, see Understanding 
the GUI Checkpoint Dialog Boxes on page 245.

Note: Before you run your test in Verify run mode, you must update the expected 
results to match the changes you made in the checklist. To update the expected 
results, run your test in Update run mode. For more information on running a test 
in Update run mode, see WinRunner Test Run Modes on page 712.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 245

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding the GUI Checkpoint Dialog Boxes

When creating a GUI checkpoint to check your GUI objects, you can specify the 
objects and properties to check, create new checklists, and modify existing 
checklists. Three dialog boxes are used to create and maintain your GUI 
checkpoints: the Check GUI dialog box, the Create GUI Checkpoint dialog box, 
and the Edit GUI Checklist dialog box.

Note that by default, the toolbar at the top of each GUI Checkpoint dialog box 
displays large buttons with text. You can choose to see dialog boxes with smaller 
buttons without titles. Examples of both kinds of buttons are illustrated below. 

To display the GUI Checkpoint dialog boxes with small buttons:

 1 Click the top-left corner of the dialog box.

 2 Clear the Large Buttons option.

Large Add All button Small Add All button



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 246

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Messages in the GUI Checkpoint Dialog Boxes
The following messages may appear in the GUI Checkpoint dialog boxes:

Message Meaning Dialog Box Location

Complex 
Value

The expected or actual value 
of the selected property 
check is too complex to 
display in the column. This 
message often appears for 
content checks on tables.

Check GUI , 
Create GUI 
Checkpoint, GUI 
Checkpoint 
Results* (see 
note below)

Properties 
pane, 
Expected 
Value column 
or Actual 
Value column

N/A The expected value of the 
selected property check was 
not captured: either 
arguments need to be 
specified before this check 
can have an expected value, 
or the expected value of this 
check is captured only once 
this check is added to the 
checkpoint.

Check GUI ,
Create GUI 
Checkpoint, GUI 
Checkpoint 
Results* (see 
note below)

Properties 
pane, 
Expected 
Value column 

Cannot 
Capture

The expected or actual value 
of the selected property 
could not be captured.

Check GUI ,
Create GUI 
Checkpoint, GUI 
Checkpoint 
Results* (see 
note below)

Properties 
pane, 
Expected 
Value column 
or Actual 
Value



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 247

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: For information on the GUI Checkpoint Results dialog box, see Modifying 
the Expected Results of a GUI Checkpoint on page 287 or Chapter 28, 
Analyzing Test Results. 

No 
properties 
are available 
for this 
object

The specified object did not 
have any properties.

Check GUI ,
Create GUI 
Checkpoint,
Edit GUI 
Checklist

Properties 
pane

No 
properties 
were 
captured for 
this object

When this checkpoint was 
created, no property checks 
were selected for this object.

GUI Checkpoint 
Results* (see 
note below)

Properties 
pane

Message Meaning Dialog Box Location



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 248

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI Dialog Box
You can use the Check GUI dialog box to create a GUI checkpoint with the checks 
you specify for a single object or a window. This dialog box opens when you 
choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar, and double-click an 
object or a window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 249

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains the name of the window and objects that will be 
included in the GUI checkpoint. The Properties pane lists all the properties of a 
selected object. A checkmark indicates that the item is selected and is included 
in the checkpoint.

When you select an object in the Objects pane, the Highlight Selected Object 
option highlights the actual GUI object if the object is visible on the screen.

Note: When arguments have not been specified for a property check that 
requires arguments, <N/A> appears in the Expected Value column for that 
check. The arguments specified for a check determine its expected value, and 
therefore the expected value is not available until the arguments are specified. 

The Check GUI dialog box includes the following options:

Button Description

Add All adds all objects or menus in a window to your checklist.

Select All selects all objects, properties, or objects of a given 
class in the Check GUI dialog box. If you want to select all objects 
of a given class, the Classes of Objects dialog box opens. Specify 
the class of objects to select.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 250

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Clear All clears all objects, properties, or objects of a given class 
in the Check GUI dialog box. If you want to clear all objects of a 
given class, the Classes of Objects dialog box opens. Specify the 
class of objects to clear.

Property List calls the ui_function parameter that is defined only 
for classes customized using the gui_ver_add_class function. 
Note that this button appears only if at least one object in the 
Objects pane belongs to a class for which the ui_function 
parameter has been defined using the gui_ver_add_class 
function. For additional information, refer to the WinRunner 
Customization Guide. 

Edit Expected Value enables you to edit the expected value of 
the selected property. For more information, see Editing the 
Expected Value of a Property on page 284.

Specify Arguments enables you to specify the arguments for a 
check on the selected property. For more information, see 
Specifying Arguments for Property Checks on page 273.

Show Selected Properties Only displays only properties 
whose check boxes are selected. (Toggles between viewing all 
properties and viewing selected properties only.) By default, all 
properties are shown.

Show Standard Properties Only displays only standard 
properties.

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 251

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When you click OK to close the dialog box, WinRunner captures the current 
property values and stores them in the test’s expected results folder. The 
WinRunner window is restored and a GUI checkpoint is inserted in the test script 
as an obj_check_gui or a win_check_gui statement. 

Show Nonstandard Properties Only displays only 
nonstandard properties, such as Visual Basic, PowerBuilder, and 
ActiveX control properties.

Show User Properties Only displays only user-defined 
property checks. To create user-defined property checks, refer to 
the WinRunner Customization Guide.

Show All Properties displays all properties, including standard, 
nonstandard, and user-defined properties. 

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 252

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Create GUI Checkpoint Dialog Box
You can use the Create GUI Checkpoint dialog box to create a GUI checklist with 
default checks for multiple objects or by specifying which properties to check. To 
open the Create GUI Checkpoint dialog box, choose Create > GUI Checkpoint 
> For Multiple Objects or click the GUI Checkpoint for Multiple Objects button 
on the User toolbar.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 253

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains the name of the window and objects that will be 
included in the GUI checkpoint. The Properties pane lists all the properties of a 
selected object. A checkmark indicates that the item is selected and is included 
in the checkpoint.

When you select an object from the Objects pane, the Highlight Selected Object 
option highlights the actual GUI object if the object is visible on the screen. 

Note: When arguments have not been specified for a property check that 
requires arguments, <N/A> appears in the Expected Value column for that 
check. The arguments specified for a check determine its expected value, and 
therefore the expected value is not available until the arguments are specified.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 254

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Create GUI Checkpoint dialog box includes the following options:

Button Description

Open opens an existing GUI checklist.

Save As saves the open GUI checklist to a different name. Note 
that if you do not click the Save As button, WinRunner 
automatically saves the checklist under its default name when you 
click OK to close the Create GUI Checkpoint dialog box. The Save 
As option is particularly useful for saving a checklist to the “shared 
checklist” folder.

Add adds an object to your GUI checklist.

Add All adds all objects or menus in a window to your GUI 
checklist.

Delete deletes an object, or all of the objects that appear in the 
GUI checklist.

Select All selects all objects, properties, or objects of a given 
class in the Create GUI Checkpoint dialog box. If you want to select 
all objects of a given class, the Classes of Objects dialog box 
opens. Specify the class of objects to select.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 255

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Clear All clears all objects, properties, or objects of a given class 
in the Create GUI Checkpoint dialog box. If you want to clear all 
objects of a given class, the Classes of Objects dialog box opens. 
Specify the class of objects to clear.

Property List calls the ui_function parameter that is defined only 
for classes customized using the gui_ver_add_class function. 
Note that this button appears only if at least one object in the 
Objects pane belongs to a class for which the ui_function 
parameter has been defined using the gui_ver_add_class 
function. For additional information, refer to the WinRunner 
Customization Guide. 

Edit Expected Value enables you to edit the expected value of 
the selected property. For more information, see Editing the 
Expected Value of a Property on page 284.

Specify Arguments enables you to specify the arguments for a 
check on the selected property. For more information, see 
Specifying Arguments for Property Checks on page 273.

Show Selected Properties Only displays only properties 
whose check boxes are selected. (Toggles between viewing all 
properties and viewing selected properties only.) By default, all 
properties are shown.

Show Standard Properties Only displays only standard 
properties.

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 256

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When you click OK to close the dialog box, WinRunner saves your changes, 
captures the current property values, and stores them in the test’s expected 
results folder. The WinRunner window is restored and a GUI checkpoint is 
inserted in the test script as a win_check_gui statement. 

Show Nonstandard Properties Only displays only 
nonstandard properties, such as Visual Basic, PowerBuilder, and 
ActiveX control properties.

Show User Properties Only displays only user-defined 
property checks. To create user-defined property checks, refer to 
the WinRunner Customization Guide.

Show All Properties displays all properties, including standard, 
nonstandard, and user-defined properties.

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 257

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Edit GUI Checklist Dialog Box
You can use the Edit GUI Checklist dialog box to modify your checklist. A checklist 
contains a list of objects and properties. It does not capture the current values for 
those properties. Consequently you cannot edit the expected values of an 
object’s properties in this dialog box.

To open the Edit GUI Checklist dialog box, choose Create > Edit GUI Checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 258

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains the name of the window and objects that are 
included in the checklist. The Properties pane lists all the properties for a 
selected object. A checkmark indicates that the item is selected and will be 
checked in checkpoints that use this checklist.

When you select an object from the Objects pane, the Highlight Selected Object 
option highlights the actual GUI object if the object is visible on the screen. 

The Edit GUI Checklist dialog box includes the following options:

Button Description

Open opens an existing GUI checklist.

Save As saves your GUI checklist to another location. Note that if 
you do not click the Save As button, WinRunner will automatically 
save the checklist under its default name when you click OK to 
close the Edit GUI Checklist dialog box. This option is particularly 
useful for saving a checklist to the “shared checklist” folder.

Add adds an object to your GUI checklist.

Add All adds all objects or all menus in a window to your GUI 
checklist.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 259

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Delete deletes the specified object, or all objects that appear in 
the GUI checklist.

Select All selects all objects, properties, or objects of a given 
class in the Edit GUI Checklist dialog box. If you want to select all 
objects of a given class, the Classes of Objects dialog box opens. 
Specify the class of objects to select.

Clear All clears all objects, properties, or objects of a given class 
in the Edit GUI Checklist dialog box. If you want to clear all objects 
of a given class, the Classes of Objects dialog box opens. Specify 
the class of objects to clear.

Property List calls the ui_function parameter that is defined only 
for classes customized using the gui_ver_add_class function. 
Note that this button appears only if at least one object in the 
Objects pane belongs to a class for which the ui_function 
parameter has been defined using the gui_ver_add_class 
function. For additional information, refer to the WinRunner 
Customization Guide. 

Specify Arguments enables you to specify the arguments for a 
check on the selected property. For more information, see 
Specifying Arguments for Property Checks on page 273.

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 260

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When you click OK to close the dialog box, WinRunner prompts you to overwrite 
your checklist. Note that when you overwrite a checklist, any expected results 
captured earlier in checkpoints using the edited checklist remain unchanged.

A new GUI checkpoint statement is not inserted in your test script.

Show Selected Properties Only displays only properties 
whose check boxes are selected. (Toggles between viewing all 
properties and viewing selected properties only.) By default, 
selected properties are shown.

Show Standard Properties Only displays only standard 
properties.

Show Nonstandard Properties Only displays only 
nonstandard properties, such as Visual Basic, PowerBuilder, and 
ActiveX control properties.

Show User Properties Only displays only user-defined 
property checks. To create user-defined property checks, refer to 
the WinRunner Customization Guide.

Show All Properties displays all properties, including standard, 
nonstandard, and user-defined properties.

Button Description



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 261

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: Before you run your test in Verify run mode, you must update the expected 
results to match the changes you made in the checklist. To update the expected 
results, run your test in Update run mode. For more information on running a test 
in Update run mode, see WinRunner Test Run Modes on page 712.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 262

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Property Checks and Default Checks

When you create a GUI checkpoint, you can determine the types of checks to 
perform on GUI objects in your application. For each object class, WinRunner 
recommends a default check. For example, if you select a push button, the default 
check determines whether the push button is enabled. Alternatively, you can 
specify in a dialog box which properties of an object to check. For example, you 
can choose to check a push button’s width, height, label, and position in a window 
(x- and y-coordinates).

To use the default check, you choose a Create > GUI Checkpoint command. 
Click a window or an object in your application. WinRunner automatically 
captures information about the window or object and inserts a GUI checkpoint into 
the test script.

To specify which properties to check for an object, you choose a Create > GUI 
Checkpoint command. Double-click a window or an object. In the Check GUI 
dialog box, choose the properties you want WinRunner to check. Click OK to save 
the checks and close the dialog box. WinRunner captures information about the 
GUI object and inserts a GUI checkpoint into the test script.

The following sections show the types of checks available for different object 
classes.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 263

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Calendar Class
You can check the following properties for a calendar class object:

Enabled: Checks whether the calendar can be selected. 

Focused: Checks whether keyboard input will be directed to the calendar.

Height: Checks the calendar’s height in pixels.

Selection: The selected date in the calendar (default check).

Width: Checks the calendar’s width in pixels.

X: Checks the x-coordinate of the top left corner of the calendar, relative to the 
window.

Y: Checks the y-coordinate of the top left corner of the calendar, relative to the 
window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 264

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Check_button Class and Radio_button Class
You can check the following properties for a check box (an object of check_button 
class) or a radio button:

Enabled: Checks whether the button can be selected. 

Focused: Checks whether keyboard input will be directed to this button.

Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

State: Checks the button’s state (on or off) (default check).

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to the 
window.

Y: Checks the y-coordinate of the top left corner of the button, relative to the 
window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 265

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Edit Class and Static Text Class
You can check the properties below for edit class and static_text class objects.

Checks on any of these five properties (Compare, DateFormat, Range, 
RegularExpression, and TimeFormat) require you to specify arguments. For 
information on specifying arguments for property checks, see Specifying 
Arguments for Property Checks on page 273.

Compare: Checks the contents of the object (default check). This check has 
arguments. You can specify the following arguments: 

• a case-sensitive check on the contents as text (default setting)

• a case-insensitive check on the contents as text

• numeric check on the contents 

DateFormat: Checks that the contents of the object are in the specified date 
format. You must specify arguments (a date format) for this check. WinRunner 
supports a wide range of date formats. For a complete list of available date 
formats, see Date Formats on page 277.

Enabled: Checks whether the object can be selected. 

Focused: Checks whether keyboard input will be directed to this object.

Height: Checks the object’s height in pixels.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 266

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Range: Checks that the contents of the object are within the specified range. You 
must specify arguments (the upper and lower limits for the range) for this check. 

RegularExpression: Checks that the string in the object meets the requirements 
of the regular expression. You must specify arguments (the string) for this check. 
Note that you do not need to precede the regular expression with an exclamation 
point. For more information, see Chapter 19, Using Regular Expressions. 

TimeFormat: Checks that the contents of the object are in the specified time 
format. You must specify arguments (a time format) for this check. WinRunner 
supports the time formats shown below, with an example for each format.

hh.mm.ss 10.20.56

hh:mm:ss 10:20:56

hh:mm:ss ZZ 10:20:56 AM

Width: Checks the text object’s width in pixels.

X: Checks the x-coordinate of the top left corner of the object, relative to the 
window.

Y: Checks the y-coordinate of the top left corner of the object, relative to the 
window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 267

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

List Class
You can check the following properties for a list object:

Content: Checks the contents of the entire list.

Enabled: Checks whether an entry in the list can be selected. 

Focused: Checks whether keyboard input will be directed to this list.

Height: Checks the list’s height in pixels.

ItemsCount: Checks the number of items in the list.

Selection: Checks the current list selection (default check).

Width: Checks the list’s width in pixels.

X: Check the x-coordinate of the top left corner of the list, relative to the window.

Y: Check the y-coordinate of the top left corner of the list, relative to the window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 268

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Menu_item Class
Menus cannot be accessed directly, by clicking them. To include a menu in a GUI 
checkpoint, click the window title bar or the menu bar. The Add All dialog box 
opens. Select the Menus option. All menus in the window are added to the 
checklist. Each menu item is listed separately.

You can check the following properties for menu items:

HasSubMenu: Checks whether a menu item has a submenu.

ItemEnabled: Checks whether the menu is enabled (default check).

ItemPosition: Checks the position of each item in the menu.

SubMenusCount: Counts the number of items in the submenu.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 269

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Object Class
You can check the following properties for an object that is not mapped to a 
standard object class:

Enabled: Checks whether the object can be selected. 

Focused: Checks whether keyboard input will be directed to this object.

Height: Checks the object’s height in pixels (default check).

Width: Checks the object’s width in pixels (default check).

X: Checks the x-coordinate of the top left corner of the GUI object, relative to the 
window (default check).

Y: Checks the y-coordinate of the top left corner of the GUI object, relative to the 
window (default check).



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 270

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Push_button Class
You can check the following properties for a push button:

Enabled: Checks whether the button can be selected (default check).

Focused: Checks whether keyboard input will be directed to this button.

Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to the 
window.

Y: Checks the y-coordinate of the top left corner of the button, relative to the 
window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 271

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Scroll Class
You can check the following properties for a scrollbar:

Enabled: Checks whether the scrollbar can be selected. 

Focused: Checks whether keyboard input will be directed to this scrollbar.

Height: Checks the scrollbar’s height in pixels.

Position: Checks the current position of the scroll thumb within the scrollbar 
(default check).

Width: Checks the scrollbar’s width in pixels.

X: Checks the x-coordinate of the top left corner of the scrollbar, relative to the 
window.

Y: Checks the y-coordinate of the top left corner of the scrollbar, relative to the 
window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 272

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Window Class
You can check the following properties for a window:

CountObjects: Counts the number of GUI objects in the window (default check).

Enabled: Checks whether the window can be selected. 

Focused: Checks whether keyboard input will be directed to this window.

Height: Checks the window’s height in pixels.

Label: Checks the window’s label.

Maximizable: Checks whether the window can be maximized.

Maximized: Checks whether the window is maximized.

Minimizable: Checks whether the window can be minimized.

Minimized: Checks whether the window is minimized.

Resizable: Checks whether the window can be resized.

SystemMenu: Checks whether the window has a system menu.

Width: Checks the window’s width in pixels.

X: Checks the x-coordinate of the top left corner of the window.

Y: Checks the y-coordinate of the top left corner of the window.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 273

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying Arguments for Property Checks

You can perform many different property checks on objects. If you want to perform 
the property checks listed below on edit class and static_text class objects, you 
must specify arguments for those checks:

• Compare

• DateFormat

• Range

• RegularExpression

• TimeFormat

To specify arguments for a property check on an edit class or static_text 
class object:

 1 Make sure that one of the GUI Checkpoint dialog boxes containing the object for 
whose property you want to specify arguments is open. If necessary, choose 
Create > GUI Checkpoint > For Multiple Objects or Create > Edit GUI 
Checklist to open the relevant dialog box. 

 2 In the Objects pane of the dialog box, select the object to check.

 3 In the Properties pane of the dialog box, select the desired property check.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 274

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Do one of the following:

• Click the Specify Arguments button.

• Double-click the default argument (for the Compare check) or the ellipsis in 
the corresponding Arguments column (for the other checks).

• Right-click with the mouse and choose Specify Arguments from the pop-up 
menu.

A dialog box for the selected property check opens. 

Note: When you select the check box beside a property check for which you 
need to specify arguments, the dialog box for the selected property check opens 
automatically. 

 5 Specify the arguments in the dialog box that opens. For example, for a Date 
Format check, specify the date format. For information on specifying arguments 
for a particular property check, see the relevant section below. 

 6 Click OK to close the dialog box for specifying arguments.

 7 When you are done, click OK to close the GUI Checkpoint dialog box that is 
open.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 275

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Compare Property Check
Checks the contents of the edit class or static_text class object (default check). 
Opens the Specify ‘Compare’ Arguments dialog box.

• Click Text to check the contents as text (default setting).

• To ignore the case when checking text, select the Ignore Case check box.

• Click Numeric to check the contents as a number.

Note that the default argument setting for the Compare property check is a case-
sensitive comparison of the object as text.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 276

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

DateFormat Property Check
Checks that the contents of the edit or static_text class object are in the specified 
date format. To specify a date format, select it from the drop-down list in the Check 
Arguments dialog box.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 277

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Date Formats 

WinRunner supports the following date formats, shown with an example for each:

mm/dd/yy 09/24/99

dd/mm/yy 24/09/99

dd/mm/yyyy 24/09/1999

yy/dd/mm 99/24/09

dd.mm.yy 24.09.99

dd.mm.yyyy 24.09.1999

dd-mm-yy 24-09-99

dd-mm-yyyy 24-09-1999

yyyy-mm-dd 1999-09-24

Day, Month dd, yyyy Friday (or Fri), September (or Sept) 24, 1999

dd Month yyyy 24 September 1999

Day dd Month yyyy Friday (or Fri) 24 September (or Sept) 1999

Note: When the day or month begins with a zero (such as 09 for September), 
the 0 is not required for a successful format check.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 278

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Range Property Check
Checks that the contents of the edit class or static_text class object are within the 
specified range. In the Check Arguments dialog box, specify the lower limit in the 
top edit field, and the upper limit in the bottom edit field.

Note: Any currency sign preceding the number is removed prior to making the 
comparison for this check.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 279

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

RegularExpression Property Check
Checks that the string in the edit class or static_text class object meets the 
requirements of the regular expression. In the Check Arguments dialog box, enter 
a string into the Regular Expression box. You do not need to precede the regular 
expression with an exclamation point. For more information, see Chapter 19, 
Using Regular Expressions.  

Note: Two “\” characters (“\\”) are interpreted as a single “\” character. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 280

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

TimeFormat Property Check
Checks that the contents of the edit class or static_text class object are in the 
specified time format. To specify the time format, select it from the drop-down list 
in the Check Arguments dialog box.

WinRunner supports the following time formats, shown with an example for 
each:

Time Formats

hh.mm.ss 10.20.56

hh:mm:ss 10:20:56

hh:mm:ss ZZ 10:20:56 AM



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 281

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Closing the GUI Checkpoint Dialog Boxes
If you select property checks that requires arguments without specifying the 
actual arguments for them, and then click OK to close the dialog box, you are 
prompted to specify the arguments.

Specifying Arguments for One Property Check

If you click OK to close a GUI checkpoint dialog box when you have selected a 
check on a property that requires arguments, without first specifying arguments 
for that property check, the Check Arguments dialog box for that property check 
opens. 

Specifying Arguments for Multiple Property Checks

If you select check boxes for multiple property checks that need arguments, and 
you did not specify arguments, then when you try to close to open dialog box, the 
Argument Specification dialog box opens. This dialog box enables you to specify 
arguments for the relevant property checks.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 282

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the example below, the user clicked OK to close the Create GUI Checkpoint 
dialog before specifying arguments for the Date Format, Time Format, Range and 
RegularExpression property checks on the “Departure Time:” edit object in the 
sample Flights application:

The property check appears in the Check column. The logical name of the 
object appears in the Object column. An ellipsis appears in the Arguments 
column to indicate that the arguments for the property check have not been 
specified.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 283

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To specify arguments from the Argument Specification dialog box:

 1 In the Check column, select a property check.

 2 Click the Specify Arguments button. Alternatively, double-click the property 
check.

 3 The dialog box for specifying arguments for that property check opens.

 4 Specify the arguments for the property check, as described above.

 5 Click OK to close the dialog box for specifying arguments.

 6 Repeat the above steps until arguments appear in the Arguments column for all 
property checks.

 7 Once arguments are specified for all property checks in the dialog box, click 
Close to close it and return to the GUI Checkpoint dialog box that is open.

 8 Click OK to close the GUI Checkpoint dialog box that is open.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 284

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Editing the Expected Value of a Property

When you create a GUI checkpoint, WinRunner captures the current property 
values for the objects you check. These current values are saved as expected 
values in the expected results folder.

When you run your test, WinRunner captures these property values again. It 
compares the new values captured during the test with the expected values that 
were stored in the test’s expected results folder.

Suppose that you want to change the value of a property after it has been 
captured in a GUI checkpoint but before you run your test script. You can simply 
edit the expected value of this property in the Check GUI dialog box or the Create 
GUI Checkpoint dialog box.

Note that you cannot edit expected property values in the Edit GUI Checklist 
dialog box: When you open the Edit GUI Checklist dialog box, WinRunner does 
not capture current values. Therefore, this dialog box does not display expected 
values that can be edited.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 285

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you want to edit the expected value for a property check that is already 
part of a GUI checkpoint, you must change the expected results of the GUI 
checkpoint. For more information, see Modifying the Expected Results of a 
GUI Checkpoint on page 287.

To edit the expected value of an object:

 1 If the Check GUI dialog box or the Create GUI Checkpoint dialog box is not 
already open, choose Create > GUI Checkpoint > For Multiple Objects to 
open the Create GUI Checkpoint dialog box and click Open to open the 
checklist in which to edit the expected value. Note that the Check GUI dialog box 
opens only when you create a new GUI checkpoint.

 2 In the Objects pane, select an object.

 3 In the Properties pane, select the property whose expected value you want to 
edit. 

 4 Do one of the following:

• Click the Edit Expected Value button.

• Double-click the existing expected value (the current value).

• Right-click with the mouse and choose Edit Expected Value from the pop-up 
menu.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 286

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Depending on the property, an edit field, an edit box, a list box, a spin box, or a 
new dialog box opens. 

For example, when you edit the expected value of the Enabled property for a 
push_button class object, a list box opens: 

 5 Edit the expected value of the property, as desired.

 6 Click OK to close the dialog box.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 287

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying the Expected Results of a GUI Checkpoint

You can modify the expected results of an existing GUI checkpoint by changing 
the expected value of a property check within the checkpoint. You can make this 
change before or after you run your test script.

To modify the expected results for an existing GUI checkpoint:

 1 Choose Tools > Test Results or click Test Results.

The WinRunner Test Results window opens. 

 2 In the Results box, choose your expected results folder (by default, “exp”). 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 288

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the test log, locate the GUI checkpoint by looking for entries that list “end GUI 
capture” in the Event column. Note that the line number in the test script 
appears in the Line column of the test log. 

Note: You can use the Show TSL button to open the test script to the 
highlighted line number.

 4 Double-click the desired “end GUI capture” entry, or click this entry and click 
Display. 



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 289

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The GUI Checkpoint Results dialog box opens. 

 5 Select the property check whose expected results you want to modify. Click the 
Edit expected value button. In the Expected Value column, modify the value, 
as desired. Click OK to close the dialog box.



Creating Tests • Checking GUI Objects

WinRunner User’s Guide Chapter 9, page 290

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can also modify the expected value of a property check while creating 
a GUI checkpoint. For more information, see Editing the Expected Value of a 
Property on page 284.

Note: You can also modify the expected value of a GUI checkpoint to the actual 
value after a test run. For more information, see Updating the Expected 
Results of a Checkpoint on page 779.



Creating Tests
Working with ActiveX and Visual Basic Controls

WinRunner’s User Guide Chapter 10, page 291

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Working with ActiveX and Visual Basic
 Controls

WinRunner supports Context Sensitive testing on ActiveX controls (also called 
OLE or OCX controls) and Visual Basic controls in Visual Basic applications. 

This chapter describes:

• Choosing Appropriate Support for Visual Basic Applications

• Activating an ActiveX Control Method

• Viewing ActiveX and Visual Basic Control Properties

• Retrieving and Setting the Values of ActiveX and Visual Basic Control 
Properties

• Working with Visual Basic Label Controls

• Checking Sub-Objects of ActiveX and Visual Basic Controls

• Using TSL Table Functions with ActiveX Controls



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 292

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Working with ActiveX and Visual Basic Controls

Many applications include ActiveX and Visual Basic controls developed by third-
party organizations. WinRunner can record and run Context Sensitive operations 
on these controls, as well as check their properties.

WinRunner provides two types of support for ActiveX and Visual Basic controls 
within a Visual Basic application. You can either:

• compile a WinRunner agent into your application, and install and load add-in 
support for Visual Basic controls

• install and load add-in support for ActiveX and Visual Basic controls

When you work with the appropriate support, WinRunner recognizes ActiveX 
and Visual Basic controls, and treats them as it treats standard GUI objects. You 
can check the properties of ActiveX and Visual Basic controls as you check the 
properties of any standard GUI object. For more information, see Chapter 9, 
Checking GUI Objects. 

At any time, you can view the current values of the properties of an ActiveX or a 
Visual Basic control using the ActiveX Properties Viewer. In addition, you can 
retrieve and set the values of properties for ActiveX controls and Visual Basic 
label controls using TSL functions. You can also use a TSL function to activate an 
ActiveX control method.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 293

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You must start WinRunner before launching the application containing 
ActiveX controls.

WinRunner provides special built-in support for checking Visual Basic label 
controls and the contents or properties of ActiveX controls that are tables. For 
information on which TSL table functions are supported for specific ActiveX 
controls, see Using TSL Table Functions with ActiveX Controls on page 314. 
For information on checking the contents of an ActiveX table control, see 
Chapter 12, Checking Table Contents. 

This chapter provides step-by-step instructions for checking ActiveX Control 
properties.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 294

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Choosing Appropriate Support for Visual Basic Applications

WinRunner provides two types of support for ActiveX and Visual Basic controls 
within a Visual Basic application. You can either:

• compile a WinRunner agent into your application, and install and load add-in 
support for Visual Basic controls

• install and load add-in support for ActiveX and Visual Basic controls

Before you test a Visual Basic application, it is best to add the WinRunner agent 
to your application, compile them together, and install the Visual Basic add-in 
from the WinRunner setup program, and load it from the Add-In Manager. If this 
is not possible, install and load both the ActiveX and Visual Basic add-ins from 
the WinRunner setup program, and load them both from the Add-In Manager. 
The different levels of support are described below.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 295

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with the WinRunner Agent and Visual Basic Add-In 
Support
You can add a WinRunner agent, called WinRunnerAddIn.Connect, to your 
application and compile them together. The agent is in the vbdev folder on the 
WinRunner CD-ROM. For information on how to install and compile the agent, 
refer to the readme.wri file in the same folder. You can install add-in support for 
Visual Basic applications when you install WinRunner. For additional information, 
refer to your WinRunner Installation Guide. You can choose which installed add-
ins to load for each session of WinRunner. For additional information, see 
Loading WinRunner Add-Ins on page 52.

When you add the WinRunner agent to your application and compile them 
together, you can:

• record and run tests with operations on ActiveX and standard Visual Basic 
controls

• uniquely identify names of internal ActiveX and Visual Basic controls

• create GUI checkpoints which check the properties of standard Visual Basic 
controls

• use the ActiveX_get_info and ActiveX_set_info TSL functions with ActiveX 
and Visual Basic controls



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 296

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with ActiveX and Visual Basic Add-In Support 
without the WinRunner Agent
You can install add-in support for ActiveX and Visual Basic applications when you 
install WinRunner. For additional information, refer to your WinRunner Installation 
Guide. You can choose which installed add-ins to load for each session of 
WinRunner. For additional information, see Loading WinRunner Add-Ins on 
page 52.

When you install and load the ActiveX and Visual Basic add-ins without using the 
WinRunner agent, you can:

• record and run tests with operations on ActiveX and standard Visual Basic 
controls

• use the ActiveX_get_info and ActiveX_set_info TSL functions with ActiveX 
controls only



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 297

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Activating an ActiveX Control Method

You use the ActiveX_activate_method function to invoke an ActiveX method of 
an ActiveX control. You can insert this function into the test script using the 
Function Generator. The syntax of this function is:

ActiveX_activate_method ( object, ActiveX_method, return_value [ ,
parameter1,..., parameter8 ] );

For more information on this function, refer to the TSL Online Reference.

Viewing ActiveX and Visual Basic Control Properties

You use the ActiveX Properties Viewer to see the properties and property values 
for an ActiveX or Visual Basic control. You open the ActiveX Properties Viewer 
from the Tools menu. Note that you must load the ActiveX add-in in order to open 
the ActiveX Properties Viewer. You may also view ActiveX and Visual Basic 
control properties using the GUI checkpoint dialog boxes. For information on 
using the GUI checkpoint dialog boxes, see Chapter 9, Checking GUI Objects. 



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 298

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To view the properties of an ActiveX or a Visual Basic control:

 1 Choose Tools > ActiveX Properties Viewer to open the ActiveX Properties 
Viewer. 

 2 Click the pointing hand and click an ActiveX or Visual Basic control.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 299

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 The names and current values of the properties appear in the viewer. 

In this example, the control is a Visual 
Basic object in a Visual Basic 
application.

For ActiveX�controls, the class name 
appears in this box.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 300

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: When “Object Reference” appears in the Value column, it refers to the 
object’s sub-objects and their properties. When “Array...” appears in the Value 
column, this indicates either an array of type or a two-dimensional array. You can 
use the ActiveX_get_info function to retrieve these values. For information on 
the ActiveX_get_info function, see Retrieving the Value of an ActiveX or 
Visual Basic Control Property on page 301 or refer to the TSL Online 
Reference.

 4 Click Done to close the dialog box.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 301

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Retrieving and Setting the Values of ActiveX and 
Visual Basic Control Properties

The ActiveX_get_info and ActiveX_set_info TSL functions enable you to 
retrieve and set the values of properties for ActiveX and Visual Basic controls in 
your application. You can insert these functions into your test script using the 
Function Generator. For information on using the Function Generator, see 
Chapter 21, Generating Functions. 

Retrieving the Value of an ActiveX or Visual Basic Control 
Property
Use the ActiveX_get_info function to retrieve the value of any ActiveX or Visual 
Basic control property. The syntax of this function is:

ActiveX_get_info ( object, property, out_value [ , is_window ] );

object The name of the label control.

property The control property.

out_value The output variable that stores the property value.

is_window The parameter indicating whether the operation is 
performed on a window. If so, set this parameter to TRUE.

This function returns the value of a control property.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 302

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: The is_window parameter should be used only when this function is 
applied to a Visual Basic form to retrieve its property or a property of its sub-
object. In order to retrieve a property of a label control you should set this 
parameter to TRUE. For information on retrieving label control properties, see 
Working with Visual Basic Label Controls on page 304.

Setting the Value of an ActiveX or Visual Basic Control 
Property
Use the ActiveX_set_info function to set the value for any ActiveX or Visual 
Basic control property. The syntax of this function is:

ActiveX_set_info ( object, property, value ��
 type ��
�is_window ������

object The name of the ActiveX/Visual Basic control.

property Any ActiveX/Visual Basic control property.

value The value to be applied to the property.

type The value type to be applied to the property. For a list of 
value types, refer to the TSL Online Reference or the TSL 
Reference Guide.

is_window An indication of whether the operation is performed on a 
window. If it is, set this parameter to TRUE.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 303

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: The is_window parameter should be used only when this function is 
applied to a Visual Basic form to set its property or a property of its sub-object. In 
order to set a property of a label control you should set this parameter to TRUE. 
For information on setting label control properties, see Working with Visual 
Basic Label Controls on page 304.

For more information on these functions, refer to the TSL Online Reference.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 304

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with Visual Basic Label Controls

WinRunner includes the following support for labels (static text controls) within 
Visual Basic applications:

• Creating GUI Checkpoints

• Retrieving Label Control Names

• Retrieving Label Properties

• Setting Label Properties

Note: The application should be compiled with the WinRunner agent, as 
described in Choosing Appropriate Support for Visual Basic Applications 
on page 294.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 305

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating GUI Checkpoints
You can create GUI checkpoints on Visual Basic label controls.

To check Visual Basic Label controls:

 1 Choose Create > GUI Checkpoint > For Multiple Objects. The Create GUI 
Checkpoint dialog box opens. 

 2 Click the Add button and click on the Visual Basic form containing Label 
controls. 

 3 The Add All dialog box opens. If you are not checking anything else in this 
checkpoint, you can clear the Objects check box. Click OK. Right-click to finish 
adding the objects. In the Create GUI Checkpoint dialog box, all labels are listed 
in the Objects pane as sub-objects of the VB form window. The names of these 
sub-objects are vb_names prefixed by the "[Label]" string.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 306

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 When you select a label control in the Object pane, its properties and their 
values are displayed in the Properties pane. The default check for the label 
control is the Caption property check. You can also select other property checks 
to perform.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 307

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Retrieving Label Control Names
You use the vb_get_label_names function to retrieve the list of label controls 
within the Visual Basic form. This function has the following syntax:

���������������������window
 name_array
 count���

window The logical name of the Visual Basic form.

name_array The out parameter containing the name of the storage 
array.

count The out parameter containing the number of elements in 
the array.

This function retrieves the names of all label controls in the given form window. 
The names are stored as subscripts of an array. 

Note: The first element in the array index is numbered 1.

For more information on this function and an example of usage, refer to the TSL 
Online Reference.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 308

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Retrieving Label Properties
You use the ActiveX_get_info function to retrieve the property value of a label 
control within a Visual Basic form. This function is described in Retrieving and 
Setting the Values of ActiveX and Visual Basic Control Properties on page 
301.

Setting Label Properties
You use the ActiveX_set_info function to set the property value of the label 
control. This function is described in Retrieving and Setting the Values of 
ActiveX and Visual Basic Control Properties on page 301.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 309

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Sub-Objects of ActiveX and Visual Basic Controls

ActiveX and Visual Basic controls may contain sub-objects, which contain their 
own properties. An example of a sub-object is Font. Note that Font is a sub-object 
because it cannot be highlighted in the application you are testing. When you load 
the appropriate add-in support, you can create a GUI checkpoint that checks the 
properties of a sub-object using the Check GUI dialog box. For information on GUI 
checkpoints, see Chapter 9, Checking GUI Objects. 

In the example below, WinRunner checks the properties of the Font sub-object of 
an ActiveX table control. The example in the procedure below uses WinRunner 
with add-in support for Visual Basic and the Flights table in the sample Visual 
Basic Flights application.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 310

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To check the sub-objects of an ActiveX or a Visual Basic control:

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Double-click the control in the application you are testing. 

WinRunner may take a few seconds to capture information about the control.

The Check GUI dialog box opens. 



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 311

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the Objects pane, click the Expand sign (+) beside the object to display its 
sub-objects, and select a sub-object to display its ActiveX control properties.

The Objects pane displays the object and its sub-objects. In this example, the 
sub-objects are displayed under the “grdFlightTable” object. The Properties 
pane displays the properties of the sub-object that is highlighted in the Objects 
pane. Note that each sub-object has one or more default property checks. In this 
example, the properties of the Font sub-object are displayed, and the Name 
property of the Font sub-object is selected as a default check.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 312

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specify which sub-objects of the table to check: first, select a sub-object in the 
Objects pane; next, select the properties to check in the Properties pane.

Note that since this ActiveX control is a table, by default, checks are selected on 
the Height, Width, and Table Content properties. If you do not want to perform 
these checks, clear the appropriate check boxes. For information on checking 
table contents, see Chapter 12, Checking Table Contents. 



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 313

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more 
information on the obj_check_gui function, see Chapter 9, Checking GUI 
Objects,or refer to the TSL Online Reference.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 314

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using TSL Table Functions with ActiveX Controls

You can use the TSL tbl_ functions to work with a number of ActiveX controls. 
WinRunner contains built-in support for the ActiveX controls and the functions in 
the table below. For detailed information about each function, examples of usage, 
and supported versions of ActiveX controls, refer to the TSL Online Reference.



Creating Tests • Working with ActiveX and Visual Basic Controls

WinRunner User’s Guide Chapter 10, page 315

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

D
at

a 
B

o
u

n
d

 
G

ri
d

 C
o

n
tr

o
l

F
ar

P
o

in
t 

S
p

re
ad

sh
ee

t 
C

o
n

tr
o

l

M
ic

ro
H

el
p

 
M

H
3d

 L
is

t 
C

o
n

tr
o

l

M
ic

ro
so

ft
 

G
ri

d
 C

o
n

tr
o

l

S
h

er
id

an
 D

at
a

G
ri

d
 C

o
n

tr
o

l

Tr
u

e 
D

B
G

ri
d

C
o

n
tr

o
l

tbl_activate_cell ✔ ✔ ✔ ✔ ✔ ✔

tbl_activate_header ✔ ✔ ✔ ✔ ✔ ✔

tbl_get_cell_data ✔ ✔ ✔ ✔ ✔ ✔

tbl_get_cols_count ✔ ✔ ✔ ✔ ✔ ✔

tbl_get_column_name ✔ ✔ ✔ ✔ ✔ ✔

tbl_get_rows_count ✔ ✔ ✔ ✔ ✔

tbl_get_selected_cell ✔ ✔ ✔ ✔ ✔ ✔

tbl_get_selected_row ✔ ✔ ✔ ✔ ✔

tbl_select_col_header ✔ ✔ ✔ ✔ ✔ ✔

tbl_set_cell_data ✔ ✔ ✔ ✔ ✔ ✔

tbl_set_selected_cell ✔ ✔ ✔ ✔ ✔ ✔

tbl_set_selected_row ✔ ✔ ✔ ✔ ✔



Creating Tests
Checking PowerBuilder Applications

Chapter 11, page 316

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Checking PowerBuilder Applications

When you work with WinRunner with added support for PowerBuilder 
applications, you can create GUI checkpoints to check PowerBuilder objects in 
your application.

This chapter describes:

• Checking Properties of DropDown Objects

• Checking Properties of DataWindows

• Checking Properties of Objects within DataWindows

• Working with Computed Columns in DataWindows



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 317

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking PowerBuilder Applications 

You can use GUI checkpoints to check the properties of PowerBuilder objects in 
your application. When you check these properties, you can check the contents 
of PowerBuilder objects as well as their standard GUI properties. This chapter 
provides step-by-step instructions for checking the properties of the following 
PowerBuilder objects:

• DropDown objects

• DataWindows

• DataWindow columns

• DataWindow text

• DataWindow reports

• DataWindow graphs

• computed columns in a DataWindow



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 318

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Properties of DropDown Objects

You can create a GUI checkpoint that checks the properties, including contents, 
of a DropDown list or a DropDown DataWindow. You can check the same 
properties, including contents, for a DropDown DataWindow that you can check 
for a regular DataWindow. Note that before creating a GUI checkpoint on a 
DropDown object, you should first record a tbl_set_selected_cell statement in 
your test script. Use the CHECK GUI FOR OBJECT/WINDOW softkey to create the GUI 
checkpoint while recording. You create a GUI checkpoint that checks the contents 
of a DropDown object as you would create one for a table. For information on 
checking tables, see Chapter 12, Checking Table Contents. 

Checking Properties of a DropDown Object with Default 
Checks
You can create a GUI checkpoint that performs a default check on a DropDown 
object. A default check on a DropDown object includes a case-sensitive check on 
the contents of the entire object. WinRunner uses column names and the index 
number of rows to check the cells in the object.

You can also perform a check on a DropDown object in which you specify which 
checks to perform. For additional information, see Checking Properties of a 
DropDown Object while Specifying which Checks to Perform on page 320.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 319

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To check the properties of a DropDown object with default checks:

 1 Choose Create > Record–Context Sensitive or click the Record–Context 
Sensitive button.

 2 Click in the DropDown object to record a tbl_set_selected_cell statement in 
your test script

 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey.

 4 Click in the DropDown object once.

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and an obj_check_gui 
statement is inserted into the test script. For more information on the 
obj_check_gui function, refer to the TSL Online Reference.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 320

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Properties of a DropDown Object while Specifying 
which Checks to Perform
You can create a GUI checkpoint in which you specify which checks to perform 
on a DropDown object. When you double-click in a DropDown object while 
creating a GUI checkpoint, the Check GUI dialog box opens. For example, if you 
are checking a DropDownListBox, you double-click the 
DropDownListBoxContent property check in the Check GUI dialog box to open 
the Edit Check dialog box. In the Edit Check dialog box, you can specify the scope 
of the content check on the object, select the verification types and method, and 
edit the expected value of the DataWindow contents.

To check the properties of a DropDown object while specifying which 
checks to perform:

 1 Choose Create > Record–Context Sensitive or click the Record–Context 
Sensitive button.

 2 Click in the DropDown object to record a tbl_set_selected_cell statement in 
your test script.

 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey.

 4 Double-click in the DropDown object. 



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 321

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI dialog box opens.

The example above displays the Check GUI dialog box for a DropDown list. The 
Check GUI dialog box for a DropDown DataWindow is identical to the dialog box 
for a DataWindow.

 5 In the Properties pane, select the DropDownListBoxContent check and click 
the Edit Expected Value button, or double-click the “<complex value>” entry in 
the Expected Value column.

The Edit Check dialog box opens. 



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 322

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 You can select which checks to perform and edit the expected data. For 
additional information on using this dialog box, see Understanding the Edit 
Check Dialog Box on page 342.

 7 When you are done, click OK to save your changes, close the Edit Check dialog 
box, and restore the Check GUI dialog box.

 8 Click OK to close the Check GUI dialog box.

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and an obj_check_gui 
statement is inserted into the test script. For more information on the 
obj_check_gui function, refer to the TSL Online Reference.

Note: If you wish to check additional objects while performing a check on the 
contents, use the Create > GUI Checkpoint > For Multiple Objects command 
(instead of the Create > GUI Checkpoint > For Object/Window command), 
which inserts a win_check_gui statement into your test script. For information 
on checking the standard GUI properties of DropDown objects, see Chapter 9, 
Checking GUI Objects. 



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 323

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Properties of DataWindows

You can create a GUI checkpoint that checks the properties of a DataWindow. 
One of the properties you can check is DWTableContent, which is a check on the 
contents of the DataWindow. You create a content check on a DataWindow as 
you would create one on a table. For additional information on checking table 
contents, see Chapter 12, Checking Table Contents. 

Checking Properties of a DataWindow with Default Checks
You can create a GUI checkpoint that checks the properties of a DataWindow with 
default checks. There are different default checks for different types of 
DataWindows.

To check the properties of a DataWindow with default checks:

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Click in the DataWindow once.

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and an obj_check_gui 
statement is inserted into the test script. For more information on the 
obj_check_gui function, refer to the TSL Online Reference.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 324

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Properties of a DataWindow while Specifying which 
Checks to Perform
You can create a GUI checkpoint that checks the properties of a DataWindow 
while specifying which checks to perform.

To check the properties of a DataWindow while specifying which checks to 
perform:

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Double-click in the DataWindow.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 325

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 The Check GUI dialog box opens.

Note that the properties of objects within a DataWindow are displayed in the 
dialog box. WinRunner can perform checks on these objects. For additional 
information, see Checking Properties of Objects within DataWindows on 
page 327.

 4 Select the DWTableContent check and click the Edit Expected Value button, or 
double-click the “<complex value>” entry in the Expected Value column.

The Edit Check dialog box opens. 



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 326

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 You can select which checks to perform and edit the expected data. For 
additional information on using this dialog box, see Understanding the Edit 
Check Dialog Box on page 342.

 6 When you are done, click OK to save your changes, close the Edit Check dialog 
box, and restore the Check GUI dialog box.

 7 Click OK to close the Check GUI dialog box.

WinRunner captures the GUI information and stores it in the test’s expected 
results folder. The WinRunner window is restored and an obj_check_gui 
statement is inserted into the test script. For more information on the 
obj_check_gui function, refer to the TSL Online Reference.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 327

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Properties of Objects within DataWindows

You can create a GUI checkpoint that checks the properties of the following 
DataWindow objects:

• DataWindows

• DataWindow columns

• DataWindow text

• DataWindow reports

• DataWindow graphs

• DataWindow computed columns

DataWindow objects cannot be highlighted in the application you are testing. 
You can create a GUI checkpoint that checks the properties of objects within 
DataWindows using the Check GUI dialog box. For information on GUI 
checkpoints, see Chapter 9, Checking GUI Objects. 

To check the properties of objects in a DataWindow:

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Double-click the DataWindow in the application you are testing. 

WinRunner may take a few seconds to capture information about the 
DataWindow.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 328

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI dialog box opens. 



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 329

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the Objects pane, click the Expand sign (+) beside the DataWindow to display 
its objects, and select an object to display its properties.

The Objects pane displays the DataWindow and the objects within it. The 
Properties pane displays the properties of the object in the DataWindow that is 
highlighted in the Objects pane. These objects can be columns, computed 
columns, text, graphs, and reports. Note that each object has one or more 
default property checks.

Specify which objects of the DataWindow to check: first, select an object in the 
Objects pane; next, select the properties to check in the Properties pane.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 330

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more 
information on the obj_check_gui function, see Chapter 9, Checking GUI 
Objects, or refer to the TSL Online Reference.

Note: If an object in a DataWindow is displayed in the Objects pane of the GUI 
checkpoint dialog boxes as “NoName,” then the object has no internal name.



Creating Tests • Checking PowerBuilder Applications

WinRunner User’s Guide Chapter 11, page 331

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with Computed Columns in DataWindows

If computed columns are placed in detail band of the DataWindow, WinRunner 
can record and run tests on them. WinRunner uses the tbl_get_selected_cell, 
tbl_activate_cell, and tbl_get_cell_data TSL functions to record and run tests 
on computed columns. For information on using these TSL functions, refer to the 
TSL Online Reference.

WinRunner can also retrieve data about computed columns which are not placed 
in detail band of the DataWindow, using the tbl_get_cell_data TSL function. For 
information about this TSL function, refer to the TSL Online Reference.

To check the contents of computed columns in detail band of the DataWindow, 
use the DWComputedContent property check.

You cannot refer to a computed column by its index, since the computed column 
is not part of the database. Therefore, you must refer to a computed column by 
its name.

• Record a selection on the computed column. The name of the column appears in 
the tbl_selected_cell statement inserted in your test script.

• Perform a GUI checkpoint on the DataWindow in which the computed column 
appears. The name of the computed column appears in the Objects pane below 
the name of the parent DataWindow. 



Creating Tests
Checking Table Contents

WinRunner User’s Guide Chapter 12, page 332

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Checking Table Contents

When you work with WinRunner with added support for application development 
environments such as Visual Basic, PowerBuilder, Delphi, and Oracle, you can 
create GUI checkpoints that check the contents of tables in your application.

This chapter describes:

• Checking Table Contents with Default Checks

• Checking Table Contents while Specifying Checks

• Understanding the Edit Check Dialog Box



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 333

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking Table Contents

Tables are generally part of a specific development environment application, such 
as Visual Basic, PowerBuilder, Delphi, and Oracle. These toolkits can display 
database information in a grid. In order to perform the checks on a table described 
in this chapter, you must install and load add-in support for the relevant 
development environment. You can choose to install support for Visual Basic or 
PowerBuilder applications when you install WinRunner. In addition, you can 
install support for other development environments, such as Delphi and Oracle, 
separately. You can use the Add-In Manager dialog box to choose which add-in 
support to load for each session of WinRunner. For information on the Add-In 
Manager dialog box, see Chapter 2, WinRunner at a Glance.  For information on 
displaying the Add-In Manager dialog box, see Chapter 36, Setting Global 
Testing Options. 

Once you install WinRunner support for any of these tools, you can add a GUI 
checkpoint to your test script that checks the contents of a table.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 334

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can create a GUI checkpoint for table contents by clicking in the table and 
choosing the properties that you want WinRunner to check. You can check the 
default properties recommended by WinRunner, or you can specify which 
properties to check. Information about the table and the properties to be checked 
is saved in a checklist. WinRunner then captures the current values of the table 
properties and saves this information as expected results. A GUI checkpoint is 
automatically inserted into the test script. This checkpoint appears in your test 
script as an obj_check_gui or a win_check_gui statement. For more 
information about GUI checkpoints and checklists, see Chapter 9, Checking GUI 
Objects. 

When you run the test, WinRunner compares the current state of the properties 
in the table to the expected results. If the expected results and the current results 
do not match, the GUI checkpoint fails. You can view the results of the checkpoint 
in the WinRunner Test Results Window. For more information, see Chapter 28, 
Analyzing Test Results. 

Note that any GUI object you check that is not already in the GUI map is added 
automatically to the temporary GUI map file. See Chapter 3, Introducing the GUI 
Map, for more information.

This chapter provides step-by-step instructions for checking the contents of 
tables. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 335

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also create a GUI checkpoint that checks the contents of a PowerBuilder 
DropDown list or a DataWindow: you check a DropDown list as you would check 
a single-column table; you check a DataWindow as you would check a multiple-
column table. For additional information, see Chapter 11, Checking 
PowerBuilder Applications. 

In addition to checking a table’s contents, you can also check its other properties. 
If a table contains ActiveX properties, you can check them in a GUI checkpoint. 
WinRunner also has built-in support for ActiveX controls that are tables. For 
additional information, see Chapter 10, Working with ActiveX and Visual Basic 
Controls.  You can also check a table’s standard GUI properties in a GUI 
checkpoint. For additional information, see Chapter 9, Checking GUI Objects. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 336

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Table Contents with Default Checks

You can create a GUI checkpoint that performs a default check on the contents of 
a table. 

A default check performs a case-sensitive check on the contents of the entire 
table. WinRunner uses column names and the index number of rows to locate the 
cells in the table.

You can also perform a check on table contents in which you specify which checks 
to perform. For additional information, see Checking Table Contents while 
Specifying Checks on page 338.

To check table contents with a default check: 

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Click in the table in the application you are testing. 

WinRunner may take a few seconds to capture information about the table.

An obj_check_gui statement is inserted into your test script. For more 
information on the obj_check_gui function, refer to the TSL Online Reference.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 337

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you wish to check other table object properties while performing a check 
on the table contents, use the Create > GUI Checkpoint > For Multiple 
Objects command (instead of the Create > GUI Checkpoint > For 
Object/Window command), which inserts a win_check_gui statement into your 
test script. For information on checking the standard GUI properties of tables, 
see Chapter 9, Checking GUI Objects.  For information on checking the 
ActiveX control properties of a tables, see Chapter 10, Working with ActiveX 
and Visual Basic Controls. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 338

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Table Contents while Specifying Checks

You can use a GUI checkpoint to specify which checks to perform on the contents 
of a table. To create a GUI checkpoint on table contents in which you specify 
checks, you choose a GUI checkpoint command and double-click in the table. 

The example in the procedure below uses WinRunner with add-in support for 
Visual Basic and the Flights table in the sample Visual Basic Flights application.

To check table contents while specifying which checks to perform: 

 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI 
Checkpoint for Object/Window button on the User toolbar. 

 2 Double-click in the table in the application you are testing. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 339

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner may take a few seconds to capture information about the table, and 
then the Check GUI dialog box opens.

The dialog box displays the table’s unique table properties as nonstandard 
objects. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 340

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Scroll down in the dialog box or resize it so that the TableContent property 
check is displayed in the Properties pane. Note that the table contents property 
check may have a different name than TableContent, depending on which 
toolkit is used.

 4 Select the TableContent (or corresponding) property check and click the Edit 
Expected Value button. Note that <complex value> appears in the Expected 
Value column for this property check, since the expected value of this check is 
too complex to be displayed in this column.

The Edit Check dialog box opens. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 341

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 You can select which cells to check and edit the expected data. For additional 
information on using this dialog box, see Understanding the Edit Check Dialog 
Box on page 342.

 6 When you are done, click OK to save your changes, close the Edit Check dialog 
box, and restore the Check GUI dialog box.

 7 Click OK to close the Check GUI dialog box.

An obj_check_gui statement is inserted into your test script. For more 
information on the obj_check_gui function, refer to the TSL Online Reference.

Note: If you wish to check other table object properties while performing a check 
on the table contents, use the Create > GUI Checkpoint > For Multiple 
Objects command (instead of the Create > GUI Checkpoint > For 
Object/Window command), which inserts a win_check_gui statement into your 
test script. For information on checking the standard GUI properties of tables, 
see Chapter 9, Checking GUI Objects.  For information on checking the 
ActiveX control properties of a tables, see Chapter 10, Working with ActiveX 
and Visual Basic Controls. 



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 342

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells in a table to 
check, and which verification method and verification type to use. You can also 
edit the expected data for the table cells included in the check.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 343

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the Select Checks tab, you can specify the information that is saved in the 
GUI checklist:

• which table cells to check

• the verification method

• the verification type

Note that if you are creating a check on a single-column table, the contents of 
the Select Checks tab of the Edit Check dialog box differ from what is shown 
above. For additional information, see Specifying the Verification Method for 
a Single-Column Table on page 348.

Specifying which Cells to Check
The List of Checks pane displays all the checks that will be performed, including 
the verification type. When the Edit Check dialog box is opened for the first time 
for a checkpoint, the default check is displayed:

• The default check for a multiple-column table is a case sensitive check on the 
entire table by column name and row index. 

• The default check for a single-column table is a case sensitive check on the 
entire table by row position.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 344

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If your table contains multiple columns with the same name, WinRunner 
disregards the duplicate columns and does not perform checks on them. 
Therefore, you should select the column index option.

If you do not wish to accept the default settings, you must delete the default check 
before you specify the checks to perform. Select the “Entire Table - Case 
Sensitive check” entry in the List of Checks box and click the Delete button. 
Alternatively, double-click this entry in the List of Checks box. A WinRunner 
message prompts you to delete the highlighted check. Click Yes.

Next, specify the checks to perform. You can choose different verification type for 
different selections of cells. Therefore, specify the verification type before 
selecting cells. For more information, see Specifying the Verification Type on 
page 349.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 345

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Highlight the cells on which you want to perform the content check. Next, click the 
Add button toolbar to add a check for these cells. Alternatively, you can:

• double-click a cell to check it

• double-click a row header to check all the cells in a row

• double-click a column header to check all the cells in a column

• double-click the top-left corner to check the entire table

A description of the cells to be checked appears in the List of Checks box.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 346

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying the Verification Method
You can select the verification method to control how WinRunner identifies 
columns or rows within a table. The verification method applies to the entire 
table. Specifying the verification method is different for multiple-column and 
single-column tables.

Specifying the Verification Method for a Multiple-Column Table

 Column

• Name: WinRunner looks for the selection according to the column names. A 
shift in the position of the columns within the table does not result in a 
mismatch.

• Index: WinRunner looks for the selection according to the index, or position, 
of the columns. A shift in the position of the columns within the table results in 
a mismatch. Select this option if your table contains multiple columns with the 
same name. For additional information, see the note on page 344. Choosing 
this option enables the Verify column headers check box, which enables 
you to check column headers as well as cells.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 347

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Row

• Key: WinRunner looks for the rows in the selection according to the data in 
the key column(s) specified in the Select key columns list box. For example, 
you could tell WinRunner to identify the second row in the table on page x 
based on the arrival time for that row. A shift in the position of the rows does 
not result in a mismatch. If the key selection does not uniquely identify a row, 
WinRunner checks the first matching row. You can use more than one key 
column to uniquely identify the row.

Note: If the value of a cell in one or more of the key columns changes, 
WinRunner will not be able to identify the corresponding row, and a check of that 
row will fail with a “Not Found” error. If this occurs, select a different key column 
or use the Index verification method.

• Index (default setting): WinRunner looks for the selection according to the 
index, or position, of the rows. A shift in the position of any of the rows results 
in a mismatch.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 348

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying the Verification Method for a Single-Column Table

The Verification Method box in the Select Checks tab for a single-column table is 
different from that for a multiple-column table. The default check for a single-
column table is a case sensitive check on the entire table by row position.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 349

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• By position: WinRunner checks the selection according to the location of the 
items within the column.

• By content: WinRunner checks the selection according to the content of the 
items, ignoring their location in the column.

Specifying the Verification Type
WinRunner can verify the contents of a table in several different ways. You can 
choose different verification types for different selections of cells.

• Case Sensitive (the default): WinRunner compares the text content of the 
selection. Any difference in case or text content between the expected and 
actual data results in a mismatch.

• Case Insensitive: WinRunner compares the text content of the selection. Only 
differences in text content between the expected and actual data result in a 
mismatch.

• Numeric Content: WinRunner evaluates the selected data according to numeric 
values. WinRunner recognizes, for example, that “2” and “2.00” are the same 
number. 

• Numeric Range: WinRunner compares the selected data against a numeric 
range. Both the minimum and maximum values are any real number that you 
specify. This comparison differs from text and numeric content verification in that 
the actual table data is compared against the range that you defined and not 
against the expected results.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 350

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Case Sensitive Ignore Spaces: WinRunner checks the data in the cell 
according to case and content, ignoring differences in spaces. WinRunner 
reports any differences in case or content as a mismatch.

• Case Insensitive Ignore Spaces: WinRunner checks the content in the cell 
according to content, ignoring differences in case and spaces. WinRunner 
reports only differences in content as a mismatch.

Click OK to save your changes to both tabs of the Edit Check dialog box. The 
dialog box closes and the Check GUI dialog box is restored.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 351

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Editing the Expected Data
To edit the expected data in the table, click the Edit Expected Data tab. If you 
previously saved changes in the Select Checks tab, you can click Reload Table 
to reload the table selections from the checklist. A WinRunner message prompts 
you to reload the saved data. Click Yes. 

Note that if you previously saved changes to the Select Checks tab, and then 
reopened the Edit Check dialog box, the table appears color coded in the Edit 
Expected Data tab. The cells included in the check appear in blue on a white 
background. The cells excluded from the check appear in green on a yellow 
background.



Creating Tests • Checking Table Contents

WinRunner User’s Guide Chapter 12, page 352

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To edit the expected value of data in a cell, double-click inside the cell. A cursor 
appears in the cell. Change the contents of the cell, as desired. Click OK to save 
your changes to both tabs of the Edit Check dialog box. The dialog box closes 
and the Check GUI dialog box is restored.



Creating Tests
Checking Databases

Chapter 13, page 353

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Checking Databases

By adding database checkpoints to your test scripts, you can check the contents 
of databases in different versions of your application.

This chapter describes:

• Choosing a Database

• Creating a Default Check on a Database

• Creating a Custom Check on a Database

• Messages in the Database Checkpoint Dialog Boxes

• Working with the Database Checkpoint Wizard

• Understanding the Edit Check Dialog Box

• Modifying a Database Checkpoint

• Modifying the Expected Results of a Database Checkpoint

• Parameterizing Database Checkpoints

• Using TSL Functions to Work with a Database



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 354

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking Databases

You can use database checkpoints in your test script to check databases in your 
application and detect defects. You define a query on your database, and then 
you create a database checkpoint that checks the properties of the results of the 
query. When you check these properties, you can check the contents of the 
results or how many rows or columns the results contains.

There are three ways to create a database checkpoint:

• You can use Microsoft Query to create a query on a database. The results of a 
query on a database are known as a result set.You can install Microsoft Query 
from the custom installation of Microsoft Office. 

• You can define an ODBC query manually, by creating its SQL statement.

• You can use Data Junction to create a conversion file that converts a database 
to a target text file. Note that Data Junction is not automatically included in your 
WinRunner package. To purchase Data Junction, contact your Mercury 
Interactive representative. For detailed information on working with Data 
Junction, refer to the documentation in the Data Junction package.

When you run your test, the database checkpoint compares the current values of 
the properties of the result set or target file to the expected results. If the 
expected results and the current results do not match, the database checkpoint 
fails. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 355

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For purposes of simplicity, this chapter will refer to the result of the ODBC query 
or the target of the Data Junction conversion as a result set.

In WinRunner, you create a database checkpoint based on the results of the 
query you defined on a database. A database checkpoint can be either a default 
check or a custom check, in which you specify which properties to check.

You can use a default check to check the entire contents of a result set, or you 
can use a custom check to check the partial contents, the number of rows, and 
the number of columns of a result set. Information about which result set 
properties to check is saved in a checklist. WinRunner captures the current 
information about the database and saves this information as expected results. A 
database checkpoint is automatically inserted into the test script. This checkpoint 
appears in your test script as a db_check statement.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 356

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, when you check the database of an application for the first time in 
a test script, the following statement is generated:

db_check("list1.cdl", "dbvf1");

where list1.cdl is the name of the checklist containing information about the 
database and the properties to check, and dbvf1 is the name of the expected 
results file. The checklist is stored in the test’s chklist folder. If you are working 
with Microsoft Query or ODBC, it references a *.sql query file, which contains 
information about the database and the SQL statement. If you are working with 
Data Junction, it references a *.djs conversion file, which contains information 
about the database and the conversion. When you define a query, WinRunner 
creates a checklist and stores it in the test’s chklist folder. The expected results 
file is stored in the test’s exp folder. For more information on the db_check 
function, refer to the TSL Online Reference.

When you run the test, the database checkpoint compares the current state of the 
database in the application being tested to the expected results. If the expected 
results and the current results do not match, the database checkpoint fails. The 
results of the checkpoint can be viewed in the Test Results window. For more 
information, see Chapter 28, Analyzing Test Results. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 357

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can modify the expected results of an existing database checkpoint before or 
after you run your test. You can also make changes to the query in an existing 
database checkpoint. This is useful if you move the database to a new location 
on the network.

When you create a database checkpoint using ODBC/Microsoft Query, you can 
add parameters to an SQL statement to parameterize your checkpoint. This is 
useful if you want to create a database checkpoint on a query in which the SQL 
statement defining your query changes. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 358

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Choosing a Database

Before you can choose which database to check, you must start creating a 
database checkpoint. You can create either a default or a custom database 
checkpoint. For additional information, see Creating a Default Check on a 
Database on page 363 and Creating a Custom Check on a Database on page 
368. While you are creating a checkpoint, you must specify which database to 
check. You can use the following tools to specify which database to check:

• ODBC/Microsoft Query

• Data Junction

Creating a Query in ODBC/Microsoft Query
You can use Microsoft Query to choose a data source and define a query within 
the data source, or you can define a connection string and an SQL statement 
manually. WinRunner supports the following versions of Microsoft Query:

• version 2.00 (in Microsoft Office 95) 

• version 8.00 (in Microsoft Office 97) 

• version 2000 (in Microsoft Office 2000)

To create a query in ODBC without using Microsoft Query, specify the connection 
string and the SQL statement in the Database Checkpoint wizard. For additional 
information, see Specifying an SQL Statement on page 384.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 359

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To choose a data source and define a query in Microsoft Query:

 1 Choose a new or an existing data source.

 2 Define a query.

Note: If you want to parameterize the SQL statement in the db_check 
statement which will be generated, then in the last wizard screen in Microsoft 
Query 8.00, click View data or edit query in Microsoft Query. Follow the 
instructions in Guidelines for Parameterizing SQL Statements on page 425.

 3 When you are done:

• In version 2.00, choose File > Exit and return to WinRunner to close 
Microsoft Query and return to WinRunner. 

• In version 8.00, in the Finish screen of the Query Wizard, click Exit and 
return to WinRunner and click Finish to exit Microsoft Query. Alternatively, 
click View data or edit query in Microsoft Query and click Finish. After 
viewing or editing the data, choose File > Exit and return to WinRunner to 
close Microsoft Query and return to WinRunner.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 360

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Continue creating a database checkpoint in WinRunner:

• To create a default check on a database, follow the instructions starting at 
step 5 on page 365. 

• To create a custom check on a database, follow the instructions starting at 
step 5 on page 370.

For additional information on working with Microsoft Query, refer to the Microsoft 
Query documentation.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 361

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Conversion File in Data Junction
You can use Data Junction to create a conversion file which converts a database 
to a target text file. WinRunner supports versions 6.5 and 7.0 of Data Junction. 

To create a conversion file in Data Junction:

 1 Specify and connect to the source database.

 2 Select an ASCII (delimited) target spoke type and specify and connect to the 
target file. Choose the “Replace File/Table” output mode.

Note: If you are working with Data Junction version 7.0 and your source 
database includes values with delimiters (CR, LF, tab), then in the Target 
Properties dialog box, you must specify “\r\n\t” as the value for the 
TransliterationIn property. The value for the TransliterationOut property must 
be blank.

 3 Map the source file to the target file.

 4 When you are done, click File > Export Conversion to export the conversion to 
a *.djs conversion file.

 5 The Database Checkpoint wizard opens to the Select conversion file screen. 
Follow the instructions in Selecting a Data Junction Conversion File on page 
389.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 362

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Continue creating a database checkpoint in WinRunner:

• To create a default check on a database, follow the instructions starting at 
step 5 on page 365. 

• To create a custom check on a database, follow the instructions starting at 
step 5 on page 370.

For additional information on working with Data Junction, refer to the Data 
Junction documentation.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 363

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Default Check on a Database 

When you create a default check on a database, you create a database 
checkpoint that checks the entire result set.

• The default check for a multiple-column query on a database is a case sensitive 
check on the entire result set by column name and row index.

• The default check for a single-column query on a database is a case sensitive 
check on the entire result set by row position.

If you want to check only part of the contents of a result set, edit the expected 
value of the contents, or count the number of rows or columns, you should 
create a custom check instead of a default check. For information on creating a 
custom check on a database, see Creating a Custom Check on a Database on 
page 368.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 364

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Default Check on a Database Using ODBC or 
Microsoft Query
You can create a default check on a database using ODBC or Microsoft Query.

To create a default check on a database using ODBC or Microsoft Query:

 1 Choose Create > Database Checkpoint > Default Check or click the Default 
Database Checkpoint button on the User toolbar. If you are recording in Analog 
mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid extraneous 
mouse movements. Note that you can press the CHECK DATABASE (DEFAULT) 
softkey in Context Sensitive mode as well.

Note: The first time you create a default database checkpoint, either Microsoft 
Query or the Database Checkpoint wizard opens. Each subsequent time you 
create a default database checkpoint, the last tool used is opened. If the 
Database Checkpoint wizard opens, follow the instructions in Working with the 
Database Checkpoint Wizard on page 378.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 365

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 If Microsoft Query is installed and you are creating a new query, an instruction 
screen opens for creating a query. 

If you do not want to see this message next time you create a default database 
checkpoint, clear the Show this message next time check box. 

Click OK to close the instruction screen.

 3 If Microsoft Query is not installed, the Database Checkpoint wizard opens to a 
screen where you can define the ODBC query manually. For additional 
information, see Specifying an SQL Statement on page 384.

 4 Define a query, copy a query, or specify an SQL statement. For additional 
information, see Choosing a Database on page 358.

Note: If you want to be able to parameterize the SQL statement in the db_check 
statement which will be generated, then in the last wizard screen in Microsoft 
Query, click View data or edit query in Microsoft Query. Follow the 
instructions in Guidelines for Parameterizing SQL Statements on page 425.

 5 WinRunner takes several seconds to capture the database query and restore the 
WinRunner window. 

WinRunner captures the data specified by the query and stores it in the test’s 
exp folder. WinRunner creates the msqr*.sql query file and stores it and the 
database checklist in the test’s chklist folder. A database checkpoint is inserted 
in the test script as a db_check statement. For more information on the 
db_check function, refer to the TSL Online Reference.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 366

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Default Check on a Database Using Data Junction
You can create a default check on a database using Data Junction.

To create a default check on a database:

 1 Choose Create > Database Checkpoint > Default Check or click the Default 
Database Checkpoint button on the User toolbar. If you are recording in Analog 
mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid extraneous 
mouse movements. Note that you can press the CHECK DATABASE (DEFAULT) 
softkey in Context Sensitive mode as well.

Note: The first time you create a default database checkpoint, either Microsoft 
Query or the Database Checkpoint wizard opens. Each subsequent time you 
create a default database checkpoint, the last client used is opened: if you used 
Microsoft Query, then Microsoft Query opens; if you use Data Junction, then the 
Database Checkpoint wizard opens. Note that the Database Checkpoint wizard 
must open whenever you use Data Junction to create a database checkpoint.

For information on working with the Database Checkpoint wizard, see Working 
with the Database Checkpoint Wizard on page 378.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 367

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 An instruction screen opens for creating a query. 

If you do not want to see this message next time you create a default database 
checkpoint, clear the Show this message next time check box. 

Click OK to close the instruction screen.

 3 Create a new conversion file or use an existing one. For additional information, 
see Choosing a Database on page 358.

 4 WinRunner takes several seconds to capture the database query and restore the 
WinRunner window. 

WinRunner captures the data specified by the query and stores it in the test’s 
exp folder. WinRunner creates the *.djs conversion file and stores it in the 
checklist in the test’s chklist folder. A database checkpoint is inserted in the test 
script as a db_check statement. For more information on the db_check 
function, refer to the TSL Online Reference.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 368

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Custom Check on a Database

When you create a custom check on a database, you create a database 
checkpoint in which you can specify which properties to check on a result set. 

You can create a custom check on a database in order to:

• check the contents of part or the entire result set

• edit the expected results of the contents of the result set

• count the rows in the result set

• count the columns in the result set



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 369

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Custom Check on a Database Using ODBC or 
Microsoft Query
You can create a custom check on a database using ODBC or Microsoft Query.

To create a custom check on a database using ODBC or Microsoft Query:

 1 Choose Create > Database Checkpoint > Custom Check. If you are recording 
in Analog mode, press the CHECK DATABASE (CUSTOM) softkey in order to avoid 
extraneous mouse movements. Note that you can press the CHECK DATABASE 
(CUSTOM) softkey in Context Sensitive mode as well.

The Database Checkpoint wizard opens. 

 2 Follow the instructions on working with the Database Checkpoint wizard, as 
described in Working with the Database Checkpoint Wizard on page 378.

 3 If you are creating a new query, an instruction screen opens for creating a query. 

If you do not want to see this message next time you create a default database 
checkpoint, clear the Show this message next time check box. 

 4 Define a query, copy a query, or specify an SQL statement. For additional 
information, see Choosing a Database on page 358.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 370

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you want to be able to parameterize the SQL statement in the db_check 
statement which will be generated, then in the last wizard screen in Microsoft 
Query, click View data or edit query in Microsoft Query. Follow the 
instructions in Parameterizing Database Checkpoints on page 419.

 5 WinRunner takes several seconds to capture the database query and restore the 
WinRunner window. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 371

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check Database dialog box opens.

The Objects pane contains “Database check” and the name of the *.sql query 
file that will be included in the database checkpoint. The Properties pane lists 
the different types of checks that can be performed on the result set. A check 
mark indicates that the item is selected and is included in the checkpoint.

�



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 372

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Select the types of checks to perform on the database. You can perform the 
following checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in Creating a 
Default Check on a Database on page 363.

RowsCount: Counts the number of rows in the result set.

 7 If you want to edit the expected value of a property, first select it. Next, either 
click the Edit Expected Value button, or double-click the value in the Expected 
Value column. 

• For ColumnsCount or RowCount checks on a result set, the expected value 
is displayed in the Expected Value field corresponding to the property check. 
When you edit the expected value for these property checks, a spin box 
opens. Modify the number that appears in the spin box. 

• For a Content check on a result set, <complex value> appears in the 
Expected Value field corresponding to the check, since the content of the 
result set is too complex to be displayed in this column. When you edit the 
expected value, the Edit Check dialog box opens. In the Select Checks tab, 
you can select which checks to perform on the result set, based on the data 
captured in the query. In the Edit Expected Data tab, you can modify the 
expected results of the data in the result set. 

For more information, see Understanding the Edit Check Dialog Box on 
page 391.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 373

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 8 Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the test’s 
exp folder. WinRunner stores the database query in the test’s chklist folder. A 
database checkpoint is inserted in the test script as a db_check statement. For 
more information on the db_check function, refer to the TSL Online Reference.

Creating a Custom Check on a Database Using Data Junction
You can create a custom check on a database using Data Junction.

To create a custom check on a database using Data Junction:

 1 Choose Create > Database Checkpoint > Custom Check. If you are recording 
in Analog mode, press the CHECK DATABASE (CUSTOM) softkey in order to avoid 
extraneous mouse movements. Note that you can press the CHECK DATABASE 
(CUSTOM) softkey in Context Sensitive mode as well.

The Database Checkpoint wizard opens. 

 2 Follow the instructions on working with the Database Checkpoint wizard, as 
described in Working with the Database Checkpoint Wizard on page 378.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 374

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 If you are creating a new query, an instruction screen opens. 

If you do not want to see this message next time you create a default database 
checkpoint, clear the Show this message next time check box. 

 4 Create a new conversion file or use an existing one. For additional information, 
see Choosing a Database on page 358.

 5 WinRunner takes several seconds to capture the database query and restore the 
WinRunner window. 

The Check Database dialog box opens.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 375

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains “Database check” and the name of the *.djs 
conversion file that will be included in the database checkpoint. The Properties 
pane lists the different types of checks that can be performed on the result set. A 
check mark indicates that the item is selected and is included in the checkpoint.

 6 Select the types of checks to perform on the database. You can perform the 
following checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in Creating a 
Default Check on a Database on page 363.

RowsCount: Counts the number of rows in the result set.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 376

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 If you want to edit the expected value of a property, first select it. Next, either 
click the Edit Expected Value button, or double-click the value in the Expected 
Value column. 

• For ColumnsCount or RowCount checks on a result set, the expected value 
is displayed in the Expected Value field corresponding to the property check. 
When you edit the expected value for these property checks, a spin box 
opens. Modify the number that appears in the spin box. 

• For a Content check on a result set, <complex value> appears in the 
Expected Value field corresponding to the check, since the content of the 
result set is too complex to be displayed in this column. When you edit the 
expected value, the Edit Check dialog box opens. In the Select Checks tab, 
you can select which checks to perform on the result set, based on the data 
captured in the query. In the Edit Expected Data tab, you can modify the 
expected results of the data in the result set. 

For more information, see Understanding the Edit Check Dialog Box on 
page 391.

 8 Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the test’s 
exp folder. WinRunner stores the database query in the test’s chklist folder. A 
database checkpoint is inserted in the test script as a db_check statement. For 
more information on the db_check function, refer to the TSL Online Reference. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 377

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Messages in the Database Checkpoint Dialog Boxes

The following messages may appear in the Properties pane in the Expected Value 
or the Actual Value fields in the Check Database or the Database Checkpoint 
Results dialog boxes:

Note: For information on the Database Checkpoint Results dialog box, see 
Chapter 28, Analyzing Test Results.  

Message Meaning

Complex Value The expected or actual value of the selected property check is 
too complex to display in the column. This message will appear 
for the content checks.

Cannot Capture The expected or actual value of the selected property could not 
be captured.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 378

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Working with the Database Checkpoint Wizard

The wizard opens whenever you create a custom database checkpoint and 
whenever you work with Data Junction. You can also use an SQL statement to 
create a database checkpoint. When working with SQL statements, create a 
custom database check and choose the ODBC (Microsoft Query) option.

You can work in either ODBC/Microsoft Query mode or Data Junction mode. 
Depending on the last tool used, a screen opens for either ODBC (Microsoft 
Query) or Data Junction. You can change from one mode to another in the first 
wizard screen.

The Database Checkpoint wizard enables you to:

• switch between ODBC (Microsoft Query) mode and Data Junction mode

• specify an SQL statement without using Microsoft Query

• use existing queries and conversions in your database checkpoint



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 379

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

ODBC (Microsoft Query) Screens
There are three screens in the Database Checkpoint wizard for working with 
ODBC (Microsoft Query). These screens enable you to:

• set general options:

• switch to Data Junction mode

• choose to create a new query, use an existing one, or specify an SQL 
statement

• limit the number of rows in the query

• display an instruction screen 

• select an existing source query file

• specify an SQL statement



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 380

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting ODBC (Microsoft Query) Options

The following screen opens if you are creating a custom database checkpoint or 
working in ODBC mode.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 381

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can choose from the following options:

• Create new query: Opens Microsoft Query, enabling you to create a new ODBC 
*.sql query file with the name specified below. Once you finish defining your 
query:

• If you are creating a default database checkpoint, a db_check statement is 
inserted into your test script.

• If you are creating a custom database checkpoint, the Check Database 
dialog box opens. For information on the Check Database dialog box, see 
Creating a Custom Check on a Database on page 368.

• Copy existing query: Opens the Select source query file screen in the wizard, 
which enables you to copy an existing ODBC query from another query file. For 
additional information, see Selecting a Source Query File on page 382.

• Specify SQL statement: Opens the Specify SQL statement screen in the 
wizard, which enables you to specify the connection string and an SQL 
statement. For additional information, see Specifying an SQL Statement on 
page 384.

• New query file: Displays the default name of the new *.sql query file for this 
database checkpoint. You can use the browse button to browse for a different 
*.sql query file.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 382

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Maximum number of rows: Select this check box and enter the maximum 
number of database rows to check. If this check box is cleared, there is no 
maximum. Note that this option adds an additional parameter to your db_check 
statement. For more information, refer to the TSL Online Reference.

• Show me how to use Microsoft Query: Displays an instruction screen.

Selecting a Source Query File

The following screen opens if you chose to use an existing query file in this 
database checkpoint. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 383

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Enter the pathname of the query file or use the Browse button to locate it. Once 
a query file is selected, you can use the View button to open the file for viewing.

• If you are creating a default database checkpoint, a db_check statement is 
inserted into your test script.

• If you are creating a custom database checkpoint, the Check Database dialog 
box opens. For information on the Check Database dialog box, see Creating a 
Custom Check on a Database on page 368.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 384

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying an SQL Statement

The following screen opens if you chose to specify an SQL statement to use in 
this database checkpoint.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 385

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In this screen you must specify the connection string and the SQL statement:

• Connection String: Enter the connection string, or click Create to open the 
ODBC Select Data Source dialog box, in which you can select a *.dsn file, which 
inserts the connection string in the box.

• SQL: Enter the SQL statement.

Note: If you create an SQL statement containing parameters, an instruction 
screen opens. For information on parameterizing SQL statements, see 
Parameterizing Database Checkpoints on page 419. 

• If you are creating a default database checkpoint, a db_check statement is 
inserted into your test script.

• If you are creating a custom database checkpoint, the Check Database dialog 
box opens. For information on the Check Database dialog box, see Creating a 
Custom Check on a Database on page 368.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 386

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Data Junction Screens in the Database Checkpoint Wizard
There are two screens in the Database Checkpoint wizard for working with Data 
Junction. These screens enable you to:

• set general options:

• switch to ODBC (Microsoft Query) mode

• choose to create a new conversion or use an existing one

• display an instruction screen 

• specify the conversion file



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 387

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Data Junction Options

The following screen opens if you last worked with Data Junction or if you are 
creating a default database checkpoint for the first time when only Data Junction 
is installed:



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 388

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can choose from the following options:

• Create new conversion: Opens Data Junction and enables you to create a new 
conversion file. For additional information, see Creating a Conversion File in 
Data Junction on page 361. Once you have created a conversion file, the 
Database Checkpoint wizard screen reopens to enable you to specify this file. 
For additional information, see Selecting a Data Junction Conversion File on 
page 389.

• Use existing conversion: Opens the Select conversion file screen in the 
wizard, which enables you to specify an existing conversion file. For additional 
information, see Selecting a Data Junction Conversion File on page 389.

• Show me how to use Data Junction (available only when Create new 
conversion is selected): Displays instructions for working with Data Junction.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 389

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Selecting a Data Junction Conversion File

The following wizard screen opens when you are working with Data Junction.

Enter the pathname of the conversion file or use the Browse button to locate it. 
Once a conversion file is selected, you can use the View button to open the file 
for viewing.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 390

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also choose from the following options:

• Copy conversion to test folder: Copies the specified conversion file to the test 
folder.

• Maximum number of rows: Select this check box and enter the maximum 
number of database rows to check. If this check box is cleared, there is no 
maximum.

When you are done:

• If you are creating a default database checkpoint, a db_check statement is 
inserted into your test script.

• If you are creating a custom database checkpoint, the Check Database dialog 
box opens. For information on the Check Database dialog box, see Creating a 
Custom Check on a Database on page 368. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 391

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells to check, and 
which verification method and verification type to use. You can also edit the 
expected data for the database cells included in the check.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 392

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the Selected Checks tab, you can specify the information that is saved in the 
database checklist:

• which database cells to check

• the verification method

• the verification type

Note that if you are creating a check on a single-column result set, the contents 
of the Select Checks tab of the Edit Check dialog box differ from what is shown 
above. For additional information, see Specifying the Verification Method for 
a Single-Column Result Set on page 396.

Specifying which Cells to Check
The List of Checks pane displays all the checks that will be performed, including 
the verification type. When the Edit Check dialog box is opened for the first time 
for a checkpoint, the default check is displayed:

• The default check for a multiple-column result set is a case sensitive check on 
the entire result set by column name and row index. 

• The default check for a single-column result set is a case sensitive check on the 
entire result set by row position.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 393

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If your result set contains multiple columns with the same name, 
WinRunner disregards the duplicate columns and does not perform checks on 
them. Therefore, you should create a custom check on the database and select 
the column index option.

If you do not wish to accept the default settings, you must delete the default check 
before you specify the checks to perform. Select the “Entire Table - Case 
Sensitive check” entry in the List of Checks pane and click the Delete button. 
Alternatively, double-click this entry in the List of Checks pane. A WinRunner 
message prompts you to delete the highlighted check. Click Yes.

Next, specify the checks to perform. You can choose different verification types 
for different selections of cells. Therefore, specify the verification type before 
selecting cells. For more information, see Specifying the Verification Type on 
page 397.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 394

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Highlight the cells on which you want to perform the content check. Next, click the 
Add button to add a check for these cells. Alternatively, you can:

• double-click a cell to check it

• double-click a row header to check all the cells in a row

• double-click a column header to check all the cells in a column

• double-click the top-left corner to check the entire result set

A description of the cells to be checked appears in the List of Checks pane.

Specifying the Verification Method
You can select the verification method to control how WinRunner identifies 
columns or rows within a result set. The verification method applies to the entire 
result set. Specifying the verification method is different for multiple-column and 
single-column result sets.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 395

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying the Verification Method for a Multiple-Column Result Set

Column

• Name: (default setting): WinRunner looks for the selection according to the 
column names. A shift in the position of the columns within the result set does 
not result in a mismatch.

• Index: WinRunner looks for the selection according to the index, or position, 
of the columns. A shift in the position of the columns within the result set 
results in a mismatch. Select this option if your result set contains multiple 
columns with the same name. For additional information, see the note on 
page 393. Choosing this option enables the Verify column headers check 
box, which enables you to check column headers as well as cells.

Row

• Key: WinRunner looks for the rows in the selection according to the key(s) 
specified in the Select key columns list box, which lists the names of all 
columns in the result set. A shift in the position of any of the rows does not 
result in a mismatch. If the key selection does not identify a unique row, only 
the first matching row will be checked.

• Index: (default setting): WinRunner looks for the selection according to the 
index, or position, of the rows. A shift in the position of any of the rows results 
in a mismatch.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 396

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying the Verification Method for a Single-Column Result Set

The Verification Method box in the Select Checks tab for a single-column result 
set is different from that for a multiple-column result set. The default check for a 
single-column result set is a case sensitive check on the entire result set by row 
position.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 397

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• By position: WinRunner checks the selection according to the location of the 
items within the column.

• By content: WinRunner checks the selection according to the content of the 
items, ignoring their location in the column.

Specifying the Verification Type
WinRunner can verify the contents of a result set in several different ways. You 
can choose different verification types for different selections of cells.

• Case Sensitive (the default): WinRunner compares the text content of the 
selection. Any difference in case or text content between the expected and 
actual data results in a mismatch.

• Case Insensitive: WinRunner compares the text content of the selection. Only 
differences in text content between the expected and actual data result in a 
mismatch.

• Numeric Content: WinRunner evaluates the selected data according to numeric 
values. WinRunner recognizes, for example, that “2” and “2.00” are the same 
number. 

• Numeric Range: WinRunner compares the selected data against a numeric 
range. Both the minimum and maximum values are any real number that you 
specify. This comparison differs from text and numeric content verification in that 
the actual database data is compared against the range that you defined and not 
against the expected results.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 398

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Case Sensitive Ignore Spaces: WinRunner checks the data in the field 
according to case and content, ignoring differences in spaces. WinRunner 
reports any differences in case or content as a mismatch.

• Case Insensitive Ignore Spaces: WinRunner checks the content in the cell 
according to content, ignoring differences in case and spaces. WinRunner 
reports only differences in content as a mismatch.

Click OK to save your changes to both tabs of the Edit Check dialog box. The 
dialog box closes and the Check Database dialog box is restored.

Editing the Expected Data
To edit the expected data in the result set, click the Edit Expected Data tab. If 
you previously saved changes in the Select Checks tab, you can click Reload 
Table to reload the selections from the checklist. A WinRunner message 
prompts you to reload the saved data. Click Yes. 

Note that if you previously saved changes to the Select Checks tab, and then 
reopened the Edit Check dialog box, the table appears color coded in the Edit 
Expected Data tab. The cells included in the check appear in blue on a white 
background. The cells excluded from the check appear in green on a yellow 
background.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 399

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To edit the expected value of data in a cell, double-click inside the cell. A cursor 
appears in the cell. Change the contents of the cell, as desired. Click OK to save 
your changes to both tabs of the Edit Check dialog box. The dialog box closes 
and the Check Database dialog box is restored.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 400

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying a Database Checkpoint

You can make the following changes to an existing database checkpoint:

• make a checklist available to other users by saving it in a shared folder

• change which database properties to check in an existing checklist

• modify a query in an existing checklist

Note: In addition to modifying database checklists, you can also modify the 
expected results of database checkpoints. For more information, see Modifying 
the Expected Results of a Database Checkpoint on page 415. 

Saving a Database Checklist in a Shared Folder
By default, checklists for database checkpoints are stored in the folder of the 
current test. You can specify that a checklist be placed in a shared folder to enable 
wider access, so that you can use a checklist in multiple tests.

The default folder in which WinRunner stores your shared checklists is 
WinRunner installation folder/chklist. To choose a different folder, you can use the 
Shared Checklists box in the Folders tab of the General Options dialog box. For 
more information, see Chapter 36, Setting Global Testing Options. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 401

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To save a database checklist in a shared folder:

 1 Choose Create > Edit Database Checklist. 

The Open Checklist dialog box opens.

 2 Select a database checklist and click OK. Note that database checklists have 
the .cdl extension, while GUI checklists have the .ckl extension. For information 
on GUI checklists, see Modifying GUI Checklists on page 236.

The Open Checklist dialog box closes. The Edit Database Checklist dialog box 
displays the selected database checklist.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 402

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Save the checklist by clicking Save As. 

The Save Checklist dialog box opens.

 4 Under Scope, click Shared. Type in a name for the shared checklist. Click OK to 
save the checklist and close the dialog box.

 5 Click OK to close the Edit Database Checklist dialog box.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 403

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Editing Database Checklists 
You can edit an existing database checklist. Note that a database checklist 
includes only a reference to the msqr*.sql query file or the *.djs conversion file of 
the database and the properties to be checked. It does not include the expected 
results for the values of those properties. 

You may want to edit a database checklist to change which properties in a 
database to check.

To edit an existing database checklist:

 1 Choose Create > Edit Database Checklist. The Open Checklist dialog box 
opens.

 2 A list of checklists for the current test is displayed. If you want to see checklists in 
a shared folder, click Shared.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 404

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For more information on sharing database checklists, see Saving a Database 
Checklist in a Shared Folder on page 400.

 3 Select a database checklist. 

 4 Click OK. 

The Open Checklist dialog box closes. The Edit Database Checklist dialog box 
opens and displays the selected checklist.

Lists the available checklists.

Displays checklists created for the current test.

Displays checklists created in a shared 
folder.

Describes the selected checklist.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 405

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains “Database check” and the name of the *.sql query 
file or *.djs conversion file that will be included in the database checkpoint. The 
Properties pane lists the different types of checks that can be performed on 
databases. A check mark indicates that the item is selected and is included in 
the checkpoint.

You can use the Modify button to modify the database checkpoint, as described 
in Modifying a Query in an Existing Database Checklist on page 407.

In the Properties pane, you can edit your database checklist to include or 
exclude the following types of checks:

Name of *.sql query 
file or *.djs 
conversion file 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 406

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in Creating a 
Default Check on a Database on page 363.

RowsCount: Counts the number of rows in the result set.

 5 Save the checklist in one of the following ways:

• To save the checklist under its existing name, click OK to close the Edit 
Database Checklist dialog box. A WinRunner message prompts you to 
overwrite the existing checklist. Click OK. 

• To save the checklist under a different name, click the Save As button. The 
Save Checklist dialog box opens. Type a new name or use the default name. 
Click OK. Note that if you do not click the Save As button, WinRunner 
automatically saves the checklist under its current name when you click OK 
to close the Edit Database Checklist dialog box.

A new database checkpoint statement is not inserted in your test script.

Note: Before you run your test in Verify run mode, you must update the expected 
results to match the changes you made in the checklist. To update the expected 
results, run your test in Update run mode. For more information on running a test 
in Update run mode, see WinRunner Test Run Modes on page 712.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 407

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying a Query in an Existing Database Checklist
You can modify a query in an existing database checklist from the Edit Database 
Checklist dialog box. You may want to do this if, for example, you move the 
database to a new location on the network. You must use the same tool to modify 
the query that you used to create it.

Modifying a Query Created with ODBC/Microsoft Query

You can modify a query created with ODBC/Microsoft Query from the Edit 
Database Checklist dialog box.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 408

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify a database checkpoint created with ODBC/Microsoft Query:

 1 Choose Create > Edit Database Checklist. The Open Checklist dialog box 
opens.

 2 A list of checklists for the current test is displayed. If you want to see checklists in 
a shared folder, click Shared.

For more information on sharing database checklists, see Saving a Database 
Checklist in a Shared Folder on page 400.

 3 Select a database checklist. 

 4 Click OK. 

Lists the available checklists.

Displays checklists created for the current test.

Displays checklists created in a shared 
folder.

Describes the selected checklist.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 409

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Open Checklist dialog box closes. The Edit Database Checklist dialog box 
opens and displays the selected checklist.

The Objects pane contains “Database check” and the name of the *.sql query 
file that will be included in the database checkpoint. The Properties pane lists 
the different types of checks that can be performed on databases. A check mark 
indicates that the item is selected and is included in the checkpoint. To modify 
the properties to check, see Editing Database Checklists on page 403.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 410

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 In the Objects column, highlight the name of the query file or the conversion file, 
and click Modify.

The Modify ODBC Query dialog box opens. 

 6 Modify the ODBC query by changing the connection string and/or the SQL 
statement. You can click Database to open the ODBC Select Data Source dialog 
box, in which you can select a *.dsn file, which inserts the connection string in 
the box. You can click Microsoft Query to open Microsoft Query.

 7 Click OK to return to the Edit Checklist dialog box.

 8 Click OK to close the Edit Checklist dialog box.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 411

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You must run all tests that use this checklist in Update mode before you 
run them in Verify mode.

Modifying a Query Created with Data Junction

You can modify a Data Junction conversion file used in a database checkpoint 
directly in Data Junction. To see the pathname of the conversion file, follow the 
instructions below.

To see the pathname of a Data Junction conversion file in a database 
checkpoint:

 1 Choose Create > Edit Database Checklist. The Open Checklist dialog box 
opens.

 2 A list of checklists for the current test is displayed. If you want to see checklists in 
a shared folder, click Shared.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 412

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For more information on sharing database checklists, see Saving a Database 
Checklist in a Shared Folder on page 400.

 3 Select a database checklist. 

 4 Click OK. 

The Open Checklist dialog box closes. The Edit Database Checklist dialog box 
opens and displays the selected checklist.

Lists the available checklists.

Displays checklists created for the current test.

Displays checklists created in a shared 
folder.

Describes the selected checklist.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 413

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Objects pane contains “Database check” and the name of the *.djs 
conversion file that will be included in the database checkpoint. The Properties 
pane lists the different types of checks that can be performed on databases. A 
check mark indicates that the item is selected and is included in the checkpoint. 
To modify the properties to check, see Editing Database Checklists on page 
403.

 5 In the Objects column, highlight the name of the conversion file, and click 
Modify.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 414

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The program displays a message to use Data Junction to modify the conversion 
file and the pathname of the conversion file. 

 6 Click OK to close the message and return to the Edit Checklist dialog box.

 7 Click OK to close the Edit Checklist dialog box.

 8 Modify the conversion file directly in Data Junction.

Note: You must run all tests that use this checklist in Update mode before you 
run them in Verify mode. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 415

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying the Expected Results of a Database Checkpoint

You can modify the expected results of an existing database checkpoint by 
changing the expected value of a property check within the checkpoint. You can 
make this change before or after you run your test script.

To modify the expected results for an existing database checkpoint:

 1 Choose Tools > Test Results or click Test Results.

The WinRunner Test Results window opens. 

 2 In the Results box, choose your expected results directory (by default, “exp”). 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 416

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the test log, locate the database checkpoint by looking for entries that list “end 
database capture” in the Event column. Note that the line number in the test 
script appears in the Line column of the test log. 

Note: You can use the Show TSL button to open the test script to the 
highlighted line number.

 4 Double-click the desired “end database capture” entry, or click this entry and 
click Display. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 417

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Database Checkpoint Results dialog box opens. 

 5 Select the property check whose expected results you want to modify. Click the 
Edit expected value button. In the Expected Value column, modify the value, 
as desired. Click OK to close the dialog box.

Name of *.sql query 
file or *.djs 
conversion file 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 418

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can also modify the expected value of a property check while creating 
a database checkpoint. For more information, see Creating a Custom Check 
on a Database on page 368.

Note: You can also update the expected value of a database checkpoint to the 
actual value after a test run. For more information, see Updating the Expected 
Results of a Checkpoint on page 779.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 419

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Parameterizing Database Checkpoints

When you create a database checkpoint using ODBC (Microsoft Query), you can 
add parameters to an SQL statement to parameterize your checkpoint. This is 
useful if you want to create a database checkpoint with a query in which the SQL 
statement defining your query changes. For example, suppose you are working 
with the sample Flight application, and you want to select all the records of flights 
departing from Denver on Monday when you create the query. You might also 
want to use an identical query to check all the flights departing from San 
Francisco on Tuesday. Instead of creating a new query or rewriting the SQL 
statement in the existing query to reflect the changes in day of the week or 
departure points, you can parameterize the SQL statement so that you can use a 
parameter for the departure value. You can replace the parameter with either 
value: “Denver,” or “San Francisco.” Similarly, you can use a parameter for the 
day of the week value, and replace the parameter with either “Monday” or 
Tuesday.”



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 420

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding Parameterized Queries
A parameterized query is a query in which at least one of the fields of the WHERE 
clause is parameterized, i.e., the value of the field is specified by a question mark 
symbol ( ? ). For example, the following SQL statement is based on a query on the 
database in the sample Flight Reservation application:

SELECT Flights.Departure, Flights.Flight_Number, Flights.Day_Of_Week
FROM Flights Flights
WHERE (Flights.Departure=?) AND (Flights.Day_Of_Week=?)

• SELECT defines the columns to include in the query.

• FROM specifies the path of the database.

• WHERE (optional) specifies the conditions, or filters to use in the query.

• Departure is the parameter that represents the departure point of a flight.

• Day_Of_Week is the parameter that represents the day of the week of a flight.

In order to execute a parameterized query, you must specify the values for the 
parameters.

Note for Microsoft Query users: When you use Microsoft Query to create a 
query, the parameters are specified by brackets. When Microsoft Query generates 
an SQL statement, the bracket symbols are replaced by a question mark symbol 
( ? ). You can click the SQL button in Microsoft Query to view the SQL statement 
which will be generated, based on the criteria you add to your query. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 421

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Parameterized Database Checkpoint
You use a parameterized query to create a parameterized checkpoint. When you 
create a database checkpoint, you insert a db_check statement into your test 
script. When you parameterize the SQL statement in your checkpoint, the 
db_check function has a fourth, optional, argument: the parameter_array 
argument. A statement similar to the following is inserted into your test script: 

db_check("list1.cdl", "dbvf1", NO_LIMIT, dbvf1_params);

The parameter_array argument will contain the values to substitute for the 
parameters in the parameterized checkpoint. 

WinRunner cannot capture the expected result set when you record your test. 
Unlike regular database checkpoints, recording a parameterized checkpoint 
requires additional steps to capture the expected results set. Therefore, you must 
use array statements to add the values to substitute for the parameters. The array 
statements could be similar to the following:

dbvf1_params[1] = "Denver";
dbvf1_params[2] = "Monday";

You insert the array statements before the db_check statement in your test 
script. You must run the test in Update mode once to capture the expected 
results set before you run your test in Verify mode. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 422

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To insert a parameterized SQL statement into a db_check statement:

 1 Create the parameterized SQL statement using one of the following methods:

• In Microsoft Query, once you have defined your query, add criteria whose 
values are a set of square brackets ( [ ] ). When you are done, click 
File > Exit and return to WinRunner. It may take several seconds to return 
to WinRunner.

• If you are working with ODBC, enter a parameterized SQL statement, with a 
question mark symbol ( ? ) in place of each parameter, in the Database 
Checkpoint wizard. For additional information, see Specifying an SQL 
Statement on page 384.

 2 Finish creating the database checkpoint.

• If you are creating a default database checkpoint, WinRunner captures the 
database query.

• If you are creating a custom database checkpoint, the Check Database 
dialog box opens. You can select which checks to perform on the database. 
For additional information, see Creating a Custom Check on a Database 
Using ODBC or Microsoft Query on page 369. Once you close the Check 
Database dialog box, WinRunner captures the database query.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 423

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you are creating a custom database checkpoint, then when you try to 
close the Check Database dialog box, you are prompted with the following 
message: “The expected value of one or more selected checks is not valid. 
Continuing might cause these checks to fail. Do you wish to modify your 
selection?” Click No. (This message appears because <Cannot Capture> 
appears under the Expected Value column in the dialog box. In fact, WinRunner 
only finishes capturing the database query once you specify a value and run 
your test in Update mode.) For additional information on messages in the Check 
Database dialog box, see 7Messages in the Database Checkpoint Dialog 
Boxes on page 377.

 3 A message box prompts you with instructions, which are also described below. 
Click OK to close the message box.

The WinRunner window is restored and a db_check statement similar to the 
following is inserted into your test script.

db_check("list1.cdl", "dbvf1", NO_LIMIT, dbvf1_params);



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 424

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Create an array to provide values for the variables in the SQL statement, and 
insert these statements above the db_check statement. For example, you could 
insert the following lines in your test script:

dbvf1_params[1] = "Denver";
dbvf1_params[2] = "Monday";

The array replaces the question marks ( ? ) in the SQL statement on page 420 
with the new values. Follow the guidelines below for adding an array in TSL to 
parameterize your SQL statements.

 5 Run your test in Update mode to update the SQL statement with these values.

After you have completed this procedure, you can run your test in Verify mode 
with the SQL statement. To change the parameters in the SQL statement, you 
modify the arrays in TSL.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 425

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Guidelines for Parameterizing SQL Statements
Follow the guidelines below when parameterizing SQL statements in db_check 
statements:

• If the column is numeric, the parameter value can be either a text string or a 
number.

• If the column is textual and the parameter value is textual, it can be a simple text 
string.

• If the column is textual and the parameter value is a number, it should be 
enclosed in simple quotes ( ' ' ), e.g. “'100'”. Otherwise the user will receive a 
syntax error.

• Special syntax is required for dates, times, and time stamps, as shown below:

Date {d '1999-07-11'}

Time {t '19:59:27'}

Time Stamp {ts '1999-07-11 19:59:27'}

Note: The date and time format may change from one ODBC driver to another. 



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 426

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using TSL Functions to Work with a Database

WinRunner provides several TSL functions (db_ ) that enable you to work with 
databases.

You can use the Function Generator to insert the database functions in your test 
script, or you can manually program statements that use these functions. For 
information about working with the Function Generator, see Chapter 21, 
Generating Functions.  For more information about these functions, refer to the 
TSL Online Reference.

Checking Data in a Database
You use the db_check function to create a database checkpoint with ODBC 
(Microsoft Query) and Data Junction. For information on this function, see 
Creating a Default Check on a Database on page 363 and Creating a Custom 
Check on a Database on page 368. For information on parameterizing 
db_check statements, see Parameterizing Database Checkpoints on page 
419.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 427

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

TSL Functions for Working with ODBC (Microsoft Query)
When you work with ODBC (Microsoft Query), you must perform the following 
steps in the following order:

 1 Connect to the database.

 2 Execute a query and create a result set based an SQL statement. (This step is 
optional. You must perform this step only if you do not create and execute a 
query using Microsoft Query.)

 3 Retrieve information from the database.

 4 Disconnect from the database.

The TSL functions for performing these steps are described below:

 1 Connecting to a Database

The db_connect function creates a new database session and establishes a 
connection to an ODBC database. This function has the following syntax:

db_connect ( session_name, connection_string );

The session_name is the logical name of the database session. The 
connection_string is the connection parameters to the ODBC database.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 428

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Executing a Query and Creating a Result Set Based on an SQL Statement

The db_execute_query function executes the query based on the SQL 
statement and creates a record set. This function has the following syntax:

db_execute_query ( session_name, SQL, record_number�);

The session_name is the logical name of the database session. The SQL is the 
SQL statement. The record_number is an out parameter returning the number of 
records in the result set. 

 3 Retrieving Information from the Database

Returning the Value of a Single Field in the Database

The db_get_field_value function returns the value of a single field in the 
database. This function has the following syntax:

db_get_field_value ( session_name, row_index, column�);

The session_name is the logical name of the database session. The row_index 
is the numeric index of the row. (The first row is always numbered “0”.) The 
column is the name of the field in the column or the numeric index of the column 
within the database. (The first row is always numbered “0”.)



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 429

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Returning the Content and Number of Column Headers

The db_get_headers function returns the number of column headers in a query 
and the content of the column headers, concatenated and delimited by tabs. 
This function has the following syntax:

db_get_headers ( session_name, header_count, header_content );

The session_name is the logical name of the database session. The 
header_count is the number of column headers in the query. The 
header_content is the column headers, concatenated and delimited by tabs.

Returning the Row Content

The db_get_row function returns the content of the row, concatenated and 
delimited by tabs. This function has the following syntax:

db_get_row ( session_name, row_index, row_content );

The session_name is the logical name of the database session. The row_index 
is the numeric index of the row. (The first row is always numbered “0”.) The 
row_content is the row content as a concatenation of the fields values, delimited 
by tabs.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 430

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Writing the Record Set into a Text File

The db_write_records function writes the record set into a text file delimited by 
tabs. This function has the following syntax:

db_write_records ( session_name, output_file ��
 headers 
��
 record_limit ��] );

The session_name is the logical name of the database session. The output_file 
is the name of the text file in which the record set is written. The headers are an 
optional Boolean parameter that will include or exclude the column headers from 
the record set written into the text file. The record_limit is the maximum number 
of records in the record set to be written into the text file. A value of NO_LIMIT 
(the default value) indicates there is no maximum limit to the number of records 
in the record set.

Returning the Last Error Message of the Last Operation

The db_get_last_error function returns the last error message of the last ODBC 
or Data Junction operation. This function has the following syntax:

db_get_last_error ( session_name, error );

The session_name is the logical name of the database session. The error is the 
error message.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 431

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Disconnecting from a Database

The db_disconnect function disconnects WinRunner from the database and 
ends the database session. This function has the following syntax:

db_disconnect ( session_name );

The session_name is the logical name of the database session.

TSL Functions for Working with Data Junction
You can use the following two functions when working with Data Junction.

Running a Data Junction Export File

The db_dj_convert function runs a Data Junction export file (.djs file). This 
function has the following syntax:

db_dj_convert ( djs_file ��
 output_file ��
 headers 
��
 record_limit ������);

The djs_file is the Data Junction export file. The output_file is an optional 
parameter to override the name of the target file. The headers are an optional 
Boolean parameter that will include or exclude the column headers from the 
Data Junction export file. The record_limit is the maximum number of records 
that will be converted.



Creating Tests • Checking Databases

WinRunner User’s Guide Chapter 13, page 432

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Returning the Last Error Message of the Last Operation

The db_get_last_error function returns the last error message of the last ODBC 
or Data Junction operation. This function has the following syntax:

db_get_last_error ( session_name, error );

The session_name is ignored when working with Data Junction. The error is the 
error message. 



Creating Tests
Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 433

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Checking Bitmaps

WinRunner enables you to compare two versions of an application being tested 
by matching captured bitmaps. This is particularly useful for checking non-GUI 
areas of your application, such as drawings or graphs.

This chapter describes:

• Checking Window and Object Bitmaps

• Checking Area Bitmaps



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 434

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking Bitmaps

You can check an object, a window, or an area of a screen in your application as 
a bitmap. While creating a test, you indicate what you want to check. WinRunner 
captures the specified bitmap, stores it in the expected results folder (exp) of the 
test, and inserts a checkpoint in the test script. When you run the test, WinRunner 
compares the bitmap currently displayed in the application being tested with the 
expected bitmap stored earlier. In the event of a mismatch, WinRunner captures 
the current actual bitmap and generates a difference bitmap. By comparing the 
three bitmaps (expected, actual, and difference), you can identify the nature of the 
discrepancy.

Suppose, for example, your application includes a graph that displays database 
statistics. You could capture a bitmap of the graph in order to compare it with a 
bitmap of the graph from a different version of your application. If there is a 
difference between the graph captured for expected results and the one captured 
during the test run, WinRunner generates a bitmap that shows the difference, 
pixel by pixel.



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 435

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the expected graph, captured when the test 
was created, 25 tickets were sold.

In the actual graph, captured during the test 
run, 27 tickets were sold. The last column is 
taller because of the larger quantity of tickets.

The difference bitmap shows where the two 
graphs diverged: in the height of the last 
column, and in the number of tickets sold.



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 436

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When working in Context Sensitive mode, you can capture a bitmap of a window, 
object, or of a specified area of a screen. WinRunner inserts a checkpoint in the 
test script in the form of either a win_check_bitmap or obj_check_bitmap 
statement.

To check a bitmap, you start by choosing Create > Bitmap Checkpoint. To capture 
a window or another GUI object, you click it with the mouse. To capture an area 
bitmap, you mark the area to be checked using a crosshairs mouse pointer.

Note that when you record a test in Analog mode, you should press the CHECK 
BITMAP OF WINDOW softkey or the CHECK BITMAP OF SCREEN AREA softkey to create 
a bitmap checkpoint. This prevents WinRunner from recording extraneous mouse 
movements. If you are programming a test, you can also use the Analog function 
check_window to check a bitmap. For more information refer to the TSL Online 
Reference.

If the name of a window or object varies each time you run a test, you can define 
a regular expression in the GUI Map Editor. This instructs WinRunner to ignore all 
or part of the name. For more information on using regular expressions in the GUI 
Map Editor, see Chapter 5, Editing the GUI Map. 



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 437

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note for XRunner users: You cannot use bitmap checkpoints created in 
XRunner when you run a test script in WinRunner. You must recreate these 
checkpoints in WinRunner. For information on using GUI maps created in 
XRunner in WinRunner test scripts, see Chapter 6, Configuring the GUI Map.  
For information on using XRunner test scripts recorded in Analog mode, see 
Chapter 8, Creating Tests.  For information on using GUI checkpoints created in 
XRunner, see Chapter 9, Checking GUI Objects. 

Note about data-driven testing: In order to use bitmap checkpoints in data-
driven tests, you must parameterize the statements in your test script that 
contain them. For information on using bitmap checkpoints in data-driven tests, 
see Using Data-Driven Checkpoints and Bitmap Synchronization Points on 
page 521.



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 438

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Window and Object Bitmaps

You can capture a bitmap of any window or object in your application by pointing 
to it. The method for capturing objects and for capturing windows is identical. You 
start by choosing Create > Bitmap Checkpoint > For Object/Window. As you 
pass the mouse pointer over the windows of your application, objects and 
windows flash. To capture a window bitmap, you click the window’s title bar. To 
capture an object within a window as a bitmap, you click the object itself.

Note that during recording, when you capture an object in a window that is not the 
active window, WinRunner automatically generates a set_window statement.

To capture a window or object as a bitmap: 

 1 Choose Create > Bitmap Checkpoint > For Object/Window or click the 
Bitmap Checkpoint for Object/Window button on the User toolbar. 
Alternatively, if you are recording in Analog mode, press the CHECK BITMAP OF 
OBJECT/WINDOW softkey. 

The WinRunner window is minimized, the mouse pointer becomes a pointing 
hand, and a help window opens.

 2 Point to the object or window and click it. WinRunner captures the bitmap and 
generates a win_check_bitmap or obj_check_bitmap statement in the script. 

The TSL statement generated for a window bitmap has the following syntax:

win_check_bitmap ( object, bitmap, time );



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 439

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For an object bitmap, the syntax is:

obj_check_bitmap (�object, bitmap, time );

For example���hen you click the title bar of the main window of the Flight 
Reservation application, the resulting statement might be:

win_check_bitmap ("Flight Reservation", "Img2", 1);

However, if you click the Date of Flight box in the same window, the statement 
might be:

obj_check_bitmap ("Date of Flight:", "Img1", 1); 

For more information on the win_check_bitmap and obj_check_bitmap 
functions, refer to the TSL Online Reference.



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 440

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: The execution of the win_check_bitmap and obj_check_bitmap 
functions is affected by the current values specified for the delay_msec, 
timeout_msec and min_diff testing options. For more information on these 
testing options and how to modify them, see Chapter 37, Setting Testing 
Options from a Test Script.  You can also set the corresponding Delay for 
Window Synchronization, Timeout for Checkpoints and CS Statements, 
and Threshold for Difference between Bitmaps testing options globally using 
the General Options dialog box. For more information, see Chapter 36, Setting 
Global Testing Options. 



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 441

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Area Bitmaps

You can define any rectangular area of the screen and capture it as a bitmap for 
comparison. The area can be any size: it can be part of a single window, or it can 
intersect several windows. The rectangle is identified by the coordinates of its 
upper left and lower right corners, relative to the upper left corner of the window 
in which the area is located. If the area intersects several windows or is part of a 
window with no title (for example, a popup window), its coordinates are relative to 
the entire screen (the root window).

To capture an area of the screen as a bitmap:

 1 Choose Create > Bitmap Checkpoint > For Screen Area or click the Bitmap 
Checkpoint for Screen Area button. Alternatively, if you are recording in Analog 
mode, press the CHECK BITMAP OF SCREEN AREA softkey. 

The WinRunner window is minimized, the mouse pointer becomes a crosshairs 
pointer, and a help window opens.

 2 Mark the area to be captured: press the left mouse button and drag the mouse 
pointer until a rectangle encloses the area; then release the mouse button.

 3 Press the right mouse button to complete the operation. WinRunner captures the 
area and generates a win_check_bitmap statement in your script. 



Creating Tests • Checking Bitmaps

WinRunner User’s Guide Chapter 14, page 442

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: Execution of the win_check_bitmap function is affected by the current 
settings specified for the delay_msec, timeout_msec and min_diff test options. 
For more information on these testing options and how to modify them, see 
Chapter 37, Setting Testing Options from a Test Script.  You can also set the 
corresponding Delay for Window Synchronization, Timeout for Checkpoints 
and CS Statements, and Threshold for Difference between Bitmaps testing 
options globally using the General Options dialog box. For more information, see 
Chapter 36, Setting Global Testing Options. 

The win_check_bitmap statement for an area of the screen has the following 
syntax:

win_check_bitmap ( window, bitmap, time, x, y, width, height );

For example, when you define an area to check in the Flight Reservation 
application, the resulting statement might be:

win_check_bitmap ("Flight Reservation", "Img3", 1, 9, 159, 104, 88);

For more information on win_check_bitmap, refer to the TSL Online Reference.



Creating Tests
Checking Text

WinRunner User’s Guide Chapter 15, page 443

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Checking Text

WinRunner enables you to read and check text in a GUI object or in any area of 
your application.

This chapter describes:

• Reading Text

• Searching for Text

• Comparing Text

• Teaching Fonts to WinRunner



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 444

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Checking Text

You can use text checkpoints in your test scripts to read and check text in GUI 
objects and in areas of the screen. While creating a test you point to an object or 
a window containing text. WinRunner reads the text and writes a TSL statement 
to the test script. You may then add simple programming elements to your test 
scripts to verify the contents of the text.

You can use a text checkpoint to:

• read text from a GUI object or window in your application, using obj_get_text 
and win_get_text

• search for text in an object or window, using win_find_text and obj_find_text

• move the mouse pointer to text in an object or window, using 
obj_move_locator_text and win_move_locator_text

• click on text in an object or window, using obj_click_on_text and 
win_click_on_text

• compare two strings, using compare_text 



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 445

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that you should use a text checkpoint on a GUI object only when a GUI 
checkpoint cannot be used to check the text. For example, suppose you want to 
check the text on a custom graph object. Since this custom object cannot be 
mapped to a standard object class (such as pushbutton, list, or menu), 
WinRunner associates it with the general object class. A GUI checkpoint for 
such an object can check only the object’s width, height, x- and y- coordinates, 
and whether the object is enabled or focused. It cannot check the text in the 
object. To do so, you must create a text checkpoint.

The following script segment uses the win_get_text function to read text in a 
graph in a Flight Reservation application. 

set_window ("Graph", 10);
win_get_text ("Graph", text);
if (text=="Total Tickets Sold: 26")

report_msg ("The total is correct.");

WinRunner can read the visible text from the screen in nearly any situation. 
Usually this process is automatic. In certain situations, however, WinRunner 
must first learn the fonts used by your application. Use the Learn Fonts utility to 
teach WinRunner the fonts. An explanation of when and how to perform this 
procedure appears in Teaching Fonts to WinRunner on page 459.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 446

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reading Text

You can read the entire text contents of any GUI object or window in your 
application, or the text in a specified area of the screen. You read text using the 
win_get_text, obj_get_text, and get_text functions. These functions can be 
generated automatically, using a Create > Get Text command, or manually, by 
programming. In both cases, the read text is assigned to an output variable. 

To read all the text in a GUI object, you choose Create > Get Text > From 
Object/Window and click an object with the mouse pointer. To read the text in an 
area of an object or window, you choose Create > Get Text > From Screen Area 
and then use a crosshairs pointer to enclose the text in a rectangle.

In most cases, WinRunner can identify the text on GUI objects automatically. 
However, if you try to read text and the comment “#no text was found” is inserted 
into the test script, this means WinRunner was unable to identify your application 
font. To enable WinRunner to identify text, you must teach WinRunner your 
application fonts. For more information, see Teaching Fonts to WinRunner on 
page 459. 



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 447

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reading All the Text in a Window or an Object 
You can read all the visible text in a window or other object using win_get_text 
or obj_get_text.

To read all the visible text in a window or an object:

 1 Choose Create > Get Text > From Object/Window or click the 
Get Text from Object/Window button on the User toolbar. Alternatively, if you 
are recording in Analog mode, press the GET TEXT FROM OBJECT/WINDOW softkey.

WinRunner is minimized, the mouse pointer becomes a pointing hand, and a 
Help window opens.

 2 Click the window or object. WinRunner captures the text in the object and 
generates a win_get_text or obj_get_text statement. 

In the case of a window, this statement has the following syntax:

win_get_text (�window, text�);

The window is the name of the window. The text is an output variable that holds 
all of the text displayed in the window. To make your script easier to read, this 
text is inserted into the script as a comment when the function is recorded.

For example, if you choose Create > Get Text > From Object/Window and click 
on the Windows Clock application, a statement similar to the following is recorded 
in your test script:



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 448

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

# Clock settings 10:40:46 AM 8/8/95
win_get_text("Clock", text);

In the case of an object other than a window, the syntax is as follows:

obj_get_text ( object, text );

The parameters of obj_get_text are identical to those of win_get_text. 

Note: When the WebTest add-in is loaded and a Web object is selected, 
WinRunner generates a web_frame_get_text or web_obj_get_text statement 
in your test script. For more information, refer to the WebTest User’s Guide and 
the TSL Online Reference.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 449

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reading the Text from an Area of an Object or a Window
The win_get_text and obj_get_text functions can be used to read text from a 
specified area of a window or other GUI object. 

To read the text from an area of a window or an object:

 1 Choose Create > Get Text > From Screen Area or click the Get Text from 
Screen Area button on the User toolbar. Alternatively, if you are recording in 
Analog mode, press the GET TEXT FROM SCREEN AREA softkey.

WinRunner is minimized and the recording of mouse and keyboard input stops. 
The mouse pointer becomes a crosshairs pointer.

 2 Use the crosshairs pointer to enclose the text to be read within a rectangle. 
Move the mouse pointer to one corner of the text you want to capture. Press and 
hold down the left mouse button. Drag the mouse until the rectangle 
encompasses the entire text, then release the mouse button. Press the right 
mouse button to capture the string.

You can preview the string before you capture it. Press the right mouse button 
before you release the left mouse button. (If your mouse has three buttons, 
release the left mouse button after drawing the rectangle and then press the 
middle mouse button.) The string appears under the rectangle or in the upper left 
corner of the screen. 

WinRunner generates a win_get_text statement with the following syntax in the 
test script:



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 450

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

win_get_text ( window, text, x1,y1,x2,y2 );

For example, if you choose Get Text > Area and use the crosshairs to enclose 
only the date in the Windows Clock application, a statement similar to the 
following is recorded in your test script:

win_get_text ("Clock", text, 38, 137, 166, 185); # 8/13/95

The window is the name of the window. The text is an output variable that holds 
all of the captured text. x1,y1,x2,y2 define the location from which to read text, 
relative to the specified window. When the function is recorded, the captured text 
is also inserted into the script as a comment.

The comment occupies the same number of lines in the test script as the text 
being read occupies on the screen. For example, if three lines of text are read, 
the comment will also be three lines long. 

You can also read text from the screen by programming the Analog TSL function 
get_text into your test script. For more information, refer to the TSL Online 
Reference.

Note: When you read text with a learned font, WinRunner reads a single line of 
text only. If the captured text exceeds one line, only the leftmost line is read. If 
two or more lines have the same left margin, then the bottom line is read. See 
Teaching Fonts to WinRunner on page 459 for more information.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 451

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Searching for Text

You can search for text on the screen using the following TSL functions:

• The win_find_text, obj_find_text, and find_text functions determine the 
location of a specified text string. 

• The obj_move_locator_text, win_move_locator_text, and 
move_locator_text functions move the mouse pointer to a specified text string.

• The win_click_on_text, obj_click_on_text, and click_on_text functions move 
the pointer to a string and click it.

Note that you must program these functions in your test scripts. You can use the 
Function Generator to do this, or you can type the statements into your test 
script. For information about programming functions into your test scripts, see 
Chapter 21, Generating Functions.  For information about specific functions, 
refer to the TSL Online Reference.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 452

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Getting the Location of a Text String
The win_find_text and obj_find_text functions perform the opposite of 
win_get_text and obj_get_text. Whereas the get_text functions retrieve any 
text found in the defined object or window, the find_text functions look for a 
specified string and return its location, relative to the window or object.

The win_find_text and obj_find_text functions are Context Sensitive and have 
similar syntax, as shown below:

win_find_text ( window, string, result_array�� ,x1,y1,x2,y2���
� ,string_def ��);

obj_find_text ( object, string, result_array�� ,x1,y1,x2,y2���
� ,string_def ��);

The window or object is the name of the window or object within which 
WinRunner searches for the specified text. The string is the text to locate. The 
result_array is the name you assign to the four-element array that stores the 
location of the string. The optional x1,y1,x2,y2 specify the x- and y-coordinates of 
the upper left and bottom right corners of the region of the screen that is 
searched. If these parameters are not defined, WinRunner treats the entire 
window or object as the search area. The optional string_def defines how 
WinRunner searches for the text.

The win_find_text and obj_find_text functions return 1 if the search fails and 0 
if it succeeds. 



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 453

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following example, win_find_text is used to determine where the total appears 
on a graph object in a Flight Reservation application. 

set_window ("Graph", 10);
win_find_text ("Graph", "Total Tickets Sold:", result_array, 640,480,366,284, 
FALSE);

You can also find text on the screen using the Analog TSL function find_text. 

For more information on the find_text functions, refer to the TSL Online Reference.

Note: When win_find_text, obj_find_text, or find_text is used with a learned font, 
then WinRunner searches for a single, complete word only. This means that any 
regular expression used in the string must not contain blank spaces, and only the 
default value of string_def, FALSE, is in effect.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 454

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Moving the Pointer to a Text String
The win_move_locator_text and obj_move_locator_text functions search for 
the specified text string in the indicated window or other object. Once the text is 
located, the mouse pointer moves to the center of the text. 

The win_move_locator_text and obj_move_locator_text functions are 
Context Sensitive and have similar syntax, as shown:

win_move_locator_text (�window, string, � ,x1,y1,x2,y2���� ,string_def ��);

obj_move_locator_text ( object, string,�� ,x1,y1,x2,y2���� ,string_def���);

The window or object is the name of the window or object that WinRunner 
searches. The string is the text to which the mouse pointer moves. The optional 
x1,y1,x2,y2 parameters specify the x- and y-coordinates of the upper left and 
bottom right corners of the region of the window or object that is searched. The 
optional string_def defines how WinRunner searches for the text.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 455

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following example, obj_move_locator_text moves the mouse pointer to a topic 
string in a Windows on-line help index. 

function verify_cursor(win,str)
{

auto text,text1,rc;

 # Search for topic string and move locator to text. Scroll to end of document,
# retry if not found.

 set_window (win, 1);
 obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT);

 type ("<kCtrl_L-kHome_E>");
 while(rc=obj_move_locator_text("MS_WINTOPIC",str,TRUE)){

type ("<kPgDn_E>");
obj_get_text("MS_WINTOPIC", text);
if(text==text1)

return E_NOT_FOUND;
text1=text;
}

 }

You can also move the mouse pointer to a text string using the TSL Analog function 
move_locator_text. For more information on move_locator_text, refer to the TSL 
Online Reference.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 456

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Clicking a Specified Text String
The win_click_on_text and obj_click_on_text functions search for a specified 
text string in the indicated window or other GUI object, move the screen pointer 
to the center of the string, and click the string.

The win_click_on_text and obj_click_on_text functions are Context Sensitive 
and have similar syntax, as shown:

win_click_on_text ( window, string, � ,x1,y1,x2,y2���� ,string_def �
�� ,mouse_button���);

The window or object is the window or object to search. The string is the text the 
mouse pointer clicks. The optional x1,y1,x2,y2 parameters specify the region of 
the window or object that is searched. The optional string_def defines how 
WinRunner searches for the text. The optional mouse_button specifies which 
mouse button to use.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 457

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following example, obj_click_on_text clicks a topic in an online help index 
in order to jump to a help topic. 

function show_topic(win,str)

{
auto text,text1,rc,arr[];

 # Search for the topic string within the object. If not found, scroll down to 
end

# of document.
set_window (win, 1);
obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT);
 type ("<kCtrl_L-kHome_E>");
 while(rc=obj_click_on_text("MS_WINTOPIC",str,TRUE,LEFT)){

type ("<kPgDn_E>");
obj_get_text("MS_WINTOPIC", text);
if(text==text1)

return E_GENERAL_ERROR;
text1=text;
}

}

For information about the click_on_text functions, refer to the TSL Online 
Reference.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 458

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Comparing Text

The compare_text function compares two strings, ignoring any differences that 
you specify. You can use it alone or in conjunction with the win_get_text and 
obj_get_text functions.

The compare_text function has the following syntax:

variable = compare_text ( str1, str2 ��,chars1, chars2 ��);

The str1 and str2 parameters represent the literal strings or string variables to be 
compared.

The optional chars1 and chars2 parameters represent the literal characters or 
string variables to be ignored during comparison. Note that chars1 and chars2 
may specify multiple characters.

The compare_text function returns 1 when the compared strings are considered 
the same, and 0 when the strings are considered different. For example, a portion 
of your test script compares the text string “File” returned by get_text. Because 
the lowercase “l” character has the same shape as the uppercase “I”, you can 
specify that these two characters be ignored as follows:

t = get_text (10, 10, 90, 30);
if (compare_text (t, "File", "l", "I"))

  move_locator_abs (10, 10);



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 459

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Teaching Fonts to WinRunner 

You use the Fonts Expert utility only when WinRunner cannot automatically read 
the text used by your application. In this case, you must teach your application’s 
fonts to WinRunner.

To teach fonts to WinRunner, you perform the following main steps:

 1 Use the Fonts Expert tool to have WinRunner learn the set of characters (fonts) 
used by your application.

 2 Create a font group that contains one or more fonts.

A font group is a collection of fonts that are bound together for specific testing 
purposes. Note that at any time, only one font group may be active in 
WinRunner. In order for a learned font to be recognized, it must belong to the 
active font group. However, a learned font can be assigned to multiple font 
groups.

 3 Use the TSL setvar function to activate the appropriate font group before using 
any of the text functions.

Note that all learned fonts and defined font groups are stored in a font library. 
This library is designated by the XR_GLOB_FONT_LIB parameter in the wrun.ini 
file; by default, it is located in the WinRunner installation folder/fonts subfolder.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 460

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Learning a Font
If WinRunner cannot read the text in your application, use the Font Expert to learn 
the font.

To learn a font:

 1 Choose Tools > Fonts Expert or choose Start > Programs > WinRunner > 
Fonts Expert. The Fonts Expert opens.

 2 Choose Font > Learn. The Learn Font dialog box opens. 



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 461

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Type in a name for the new font in the Font Name box (maximum of eight 
characters, no extension). 

 4 Click Select Font. The Font dialog box opens.

 5 Choose the font name, style, and size on the appropriate lists.

 6 Click OK. 

 7 Click Learn Font. 

When the learning process is complete, the Existing Characters box displays all 
characters learned and the Properties box displays the properties of the fonts 
learned. WinRunner creates a file called font_name.mfn containing the learned 
font data and stores it in the font library.

 8 Click Close.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 462

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Font Group
Once a font is learned, you must assign it to a font group. Note that the same font 
can be assigned to more than one font group. 

Note: Put only a couple of fonts in each group, because text recognition 
capabilities tend to deteriorate as the number of fonts in a group increases.

To create a new font group:

 1 In the Fonts Expert, choose Font > Groups. The Font Groups dialog box opens. 



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 463

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Type in a unique name in the Group Name box (up to eight characters, no 
extension).

 3 In the Fonts in Library list, select the name of the font to include in the font 
group.

 4 Click New. WinRunner creates the new font group. When the process is 
complete, the font appear in the Fonts in Group list. 

WinRunner creates a file called group_name.grp containing the font group data 
and stores it in the font library.

To add fonts to an existing font group:

 1 In the Fonts Expert, choose Font > Groups. The Font Groups dialog box opens.

 2 Select the desired font group from the Group Name list.

 3 In the Fonts in Library list, click the name of the font to add.

 4 Click Add.

To delete a font from a font group:

 1 In the Fonts Expert, choose Font > Groups. The Font Groups dialog box opens.

 2 Select the desired font group from the Group Name list.

 3 In the Fonts in Group list, click the name of the font to delete.

 4 Click Delete.



Creating Tests • Checking Text

WinRunner User’s Guide Chapter 15, page 464

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Designating the Active Font Group
The final step before you can use any of the text functions is to activate the font 
group that includes the fonts your application uses.

To designate the active font:

 1 Choose Settings > General Options. 

The General Options dialog box opens.

 2 Click the Text Recognition tab.

 3 In the Font Group box, enter a font group.

 4 Click OK to save your selection and close the dialog box.

Only one group can be active at any time. By default, this is the group 
designated by the XR_FONT_GROUP system parameter in the wrun.ini file. 
However, within a test script you can activate a different font group or the setvar 
function together with the fontgrp test option.

For example, to activate the font group named editor from within a test script, add 
the following statement to your script:

setvar ("fontgrp", "editor");

For more information about choosing a font group from the General Options 
dialog box, see Chapter 36, Setting Global Testing Options.  For more 
information about using the setvar function to choose a font group from within a 
test script, see Chapter 37, Setting Testing Options from a Test Script. 



Creating Tests
Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 465

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Creating Data-Driven Tests

WinRunner enables you to create and run tests which are driven by data stored 
in an external table.

This chapter describes:

• The Data-Driven Testing Process

• Creating a Basic Test for Conversion

• Converting a Test to a Data-Driven Test

• Preparing the Data Table

• Importing Data from a Database

• Running and Analyzing Data-Driven Tests

• Assigning the Main Data Table for a Test

• Using Data-Driven Checkpoints and Bitmap Synchronization Points

• Using TSL Functions with Data-Driven Tests

• Guidelines for Creating a Data-Driven Test



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 466

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating Data-Driven Tests

When you test your application, you may want to check how it performs the same 
operations with multiple sets of data. For example, suppose you want to check 
how your application responds to ten separate sets of data. You could record ten 
separate tests, each with its own set of data. Alternatively, you could create a 
data-driven test with a loop that runs ten times. In each of the ten iterations, the 
test is driven by a different set of data. In order for WinRunner to use data to drive 
the test, you must substitute fixed values in the test with variables. The variables 
in the test are linked with data stored in a data table. You can create data-driven 
tests using the DataDriver Wizard or by manually adding data-driven statements 
to your test scripts.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 467

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Data-Driven Testing Process

For non-data-driven tests, the testing process is performed in three steps: 
creating a test; running the test; analyzing test results. When you create a data-
driven test, you perform an extra two-part step between creating the test and 
running it: converting the test to a data-driven test and creating a corresponding 
data table.

The following diagram outlines the stages of the data-driven testing process in 
WinRunner:



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 468

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Basic Test for Conversion

In order to create a data-driven test, you must first create a basic test and then 
convert it.

You create a basic test by recording a test, as usual, with one set of data. In the 
following example, the user wants to check that opening an order and updating 
the number of tickets in the order is performed correctly for a variety of orders. 
The test is recorded using one passenger’s flight data. 

To record this test, you open an order and use the Create > GUI Checkpoint > 
For Single Property command to check that the correct order is open. You 
change the number of tickets in the order and then update the order. A test script 
similar to the following is created:



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 469

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The purpose of this test is to check that the correct order has been opened. 
Normally you would use the Create > GUI Checkpoint > For Object/Window 
command to insert an obj_check_gui statement in your test script. All 
_check_gui statements contain references to checklists, however, and because 
checklists do not contain fixed values, they cannot be parameterized from within 
a test script while creating a data-driven test. You have two options:

• As in the example above, you use the Create > GUI Checkpoint > For Single 
Property command to create a property check without a checklist. In this case, 
an edit_check_info statement checks the content of the edit field in which the 
order number is displayed. For information on checking a single property of an 
object, see Chapter 9, Checking GUI Objects.  WinRunner can write an event 
to the Test Results window whenever these statements fail during a test run. To 
set this option, select the Fail when single property check fails check box in 
the Run tab of the General Options dialog box or use the setvar function to set 
the single_prop_check_fail testing option. For additional information, see 
Chapter 36, Setting Global Testing Options, or Chapter 37, Setting Testing 
Options from a Test Script. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 470

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can use the Create > GUI Checkpoint > For Single Property command to 
create property checks using the following _check_ functions:

button_check_info scroll_check_info

edit_check_info static_check_info

list_check_info win_check_info

obj_check_info



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 471

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also use the following _check functions to check single properties of 
objects without creating a checklist. You can create statements with these 
functions manually or using the Function Generator. For additional information, 
see Chapter 21, Generating Functions. 

For information about specific functions, refer to the TSL Online Reference.

• Alternatively, you can create data-driven GUI and bitmap checkpoints and 
bitmap synchronization points. For information on creating data-driven GUI and 
bitmap checkpoints and bitmap synchronization points, see Using Data-Driven 
Checkpoints and Bitmap Synchronization Points on page 521.

button_check_state list_check_selected

edit_check_selection scroll_check_pos

edit_check_text static_check_text

list_check_item



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 472

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Converting a Test to a Data-Driven Test

The procedure for converting a test to a data-driven test is composed of the 
following main steps:

 1 Replacing fixed values in checkpoint statements and in recorded statements 
with parameters, and creating a data table containing values for the parameters. 
This is known as parameterizing the test.

 2 Adding statements and functions to your test so that it will read from the data 
table and run in a loop while it reads each iteration of data.

 3 Adding statements to your script that open and close the data table.

 4 Assigning a variable name to the data table (mandatory when using the 
DataDriver Wizard and otherwise optional).

You can use the DataDriver Wizard to perform these steps, or you can modify 
your test script manually.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 473

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Data-Driven Test with the DataDriver Wizard
You can use the DataDriver Wizard to convert your entire script or a part of your 
script into a data-driven test. For example, your test script may include recorded 
operations, checkpoints, and other statements which do not need to be repeated 
for multiple sets of data. You need to parameterize only the portion of your test 
script that you want to run in a loop with multiple sets of data. 

To create a data-driven test:

 1 If you want to turn only part of your test script into a data-driven test, first select 
those lines in the test script.

 2 Choose Tools > DataDriver Wizard. 

• If you selected part of the test script before opening the wizard, proceed to 
step 3. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 474

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• If you did not select any lines of script, the following screen opens:

If you want to turn only part of the test into a data-driven test, click Cancel. 
Select those lines in the test script and reopen the DataDriver Wizard.

If you want to turn the entire test into a data-driven test, click Next.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 475

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 The following wizard screen opens:

The Use a new or existing Excel table box displays the name of the Excel file 
that WinRunner creates, which stores the data for the data-driven test. Accept 
the default data table for this test, enter a different name for the data table, or 
use the browse button to locate the path of an existing data table. By default, the 
data table is stored in the test folder.

In the Assign a name to the variable box, enter a variable name with which to 
refer to the data table, or accept the default name, “table.”



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 476

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

At the beginning of a data-driven test, the Excel data table you selected is 
assigned as the value of the table variable. Throughout the script, only the table 
variable name is used. This makes it easy for you to assign a different data table 
to the script at a later time without making changes throughout the script.

Choose from among the following options:

• Add statements to create a data-driven test� Automatically adds 
statements to run your test in a loop: sets a variable name by which to refer to 
the data table; adds braces ( { and } ), a for statement, and a 
ddt_get_row_count statement to your test script selection to run it in a loop 
while it reads from the data table; adds ddt_open and ddt_close statements 
to your test script to open and close the data table, which are necessary in 
order to iterate rows in the table. 

Note that you can also add these statements to your test script manually. For 
more information and sample statements, see Adding Statements to Your 
Test Script to Open and Close the Data Table and Run Your Test in a 
Loop on page 487. 

If you do not choose this option, you will receive a warning that your data-
driven test must contain a loop and statements to open and close your data 
table.

Note: You should not select this option if you have chosen it previously while 
running the DataDriver Wizard on the same portion of your test script.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 477

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Import data from a database: Imports data from a database. This option 
adds ddt_update_from_db, and ddt_save statements to your test script 
after the ddt_open statement. For more information, see Importing Data 
from a Database on page 494.

Note that in order to import data from a database, either Microsoft Query or 
Data Junction must be installed on your machine. You can install Microsoft 
Query from the custom installation of Microsoft Office. Note that Data 
Junction is not automatically included in your WinRunner package. To 
purchase Data Junction, contact your Mercury Interactive representative. For 
detailed information on working with Data Junction, refer to the 
documentation in the Data Junction package.

Note: If the Add statements to create a data-driven test option is not selected 
along with the Import data from a database option, the wizard also sets a 
variable name by which to refer to the data table. In addition, it adds ddt_open 
and ddt_close statements to your test script. Since there is no iteration in the 
test, the ddt_close statement is at the end of the block of ddt_ statements, 
rather than at the end of the block of selected text.

• Parameterize the test: Replaces fixed values in selected checkpoints and in 
recorded statements with parameters, using the ddt_val function, and in the 
data table, adds columns with variable values for the parameters. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 478

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Line by line: Opens a wizard screen for each line of the selected test script, 
which enables you to decide whether to parameterize a particular line, and if 
so, whether to add a new column to the data table or use an existing column 
when parameterizing data.

Automatically: Replaces all data with ddt_val statements and adds new 
columns to the data table. The first argument of the function is the name of 
the column in the data table. The replaced data is inserted into the table.

Note: You can also parameterize your test manually. For more information, see 
Parameterizing Values in a Test Script on page 488.

Note: The ddt_func.ini file in the dat folder lists the TSL functions that the 
DataDriver Wizard can parameterize while creating a data-driven test. This file 
also contains the index of the argument that by default can be parameterized for 
each function. You can modify this list to change the default argument that can 
be parameterized for a function. You can also modify this list to include user-
defined functions or any other TSL functions, so that you can parameterize 
statements with these functions while creating a test. For information on creating 
user-defined functions, see Chapter 23, Creating User-Defined Functions. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 479

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Click Next.

Note that if you did not select any check boxes, only the Cancel button is 
enabled.

 4 If you selected the Import data from a database check box in the previous 
screen, continue at Importing Data from a Database on page 494. Otherwise, 
the following wizard screen opens:

The Test script line to parameterize box displays the line of the test script to 
parameterize. The highlighted value can be replaced by a parameter.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 480

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Argument to be replaced box displays the argument (value) that you can 
replace with a parameter. You can use the arrows to select a different argument 
to replace.

Choose whether and how to replace the selected data:

• Do not replace this data: Does not parameterize this data.

• An existing column: If parameters already exist in the data table for this 
test, select an existing parameter from the list. 

• A new column: Creates a new column for this parameter in the data table for 
this test. Adds the selected data to this column of the data table. The default 
name for the new parameter is the logical name of the object in the selected 
TSL statement above. Accept this name or assign a new name.

In the sample Flight application test script shown earlier on page 468, there are 
several statements that contain fixed values entered by the user.

In this example, a new data table is used, so no parameters exist yet. In this 
example, for the first parameterized line in the test script, the user clicks the 
Data from a new parameter radio button. By default, the new parameter is the 
logical name of the object. You can modify this name. In the example, the name 
of the new parameter was modified to “Date of Flight.”



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 481

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following line in the test script:

edit_set ("Edit", "6");

is replaced by:

edit_set("Edit",ddt_val(table,"Edit"));

The following line in the test script:

edit_check_info("Order No:","value",6);

is replaced by:

edit_check_info("Order No:","value",ddt_val(table,"Order_No"));

• To parameterize additional lines in your test script, click Next. The wizard 
displays the next line you can parameterize in the test script selection. 
Repeat the above step for each line in the test script selection that can be 
parameterized. If there are no more lines in the selection of your test script 
that can be parameterized, the final screen of the wizard opens.

• To proceed to the final screen of the wizard without parameterizing any 
additional lines in your test script selection, click Skip.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 482

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 The final screen of the wizard opens.

• To perform the tasks specified in previous screens and close the wizard, click 
Finish.

• To close the wizard without making any changes to the test script, click 
Cancel. 

Note: If you clicked Cancel after parameterizing your test script but before the 
final wizard screen, the data table will include the data you added to it. If you 
want to save the data in the data table, then open the data table and then save it. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 483

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Once you have finished running the DataDriver Wizard, the sample test script for 
the example on page 468 is modified, as shown below:

Parameterized 
statement

Parameterized 
property check

Statements to 
open data 
table and run 
test in a loop

Statement to 
close data table

End of loop



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 484

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you open the data table (Tools > Data Table), the Open or Create a Data 
Table dialog box opens. Select the data table you specified in the DataDriver 
Wizard. When the data table opens, you can see the entries made in the data 
table and edit the data in the table. For the previous example, the following entry 
is made in the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 485

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Data-Driven Test Manually
You can create a data-driven test manually, without using the DataDriver Wizard. 
Note that in order to create a data-driven test manually, you must complete all the 
steps described below:

• defining the data table

• add statements to your test script to open and close the data table and run your 
test in a loop

• import data from a database (optional)

• create a data table and parameterize values in your test script 

Defining the Data Table

Add the following statement to your test script immediately preceding the 
parameterized portion of the script. This identifies the name and the path of your 
data table. Note that you can work with multiple data tables in a single test, and 
you can use a single data table in multiple tests. For additional information, see 
Guidelines for Creating a Data-Driven Test on page 539.

table="Default.xls";

Note that if your data table has a different name, substitute the correct name. By 
default, the data table is stored in the folder for the test. If you store your data 
table in a different location, you must include the path in the above statement.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 486

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example:

table1 = “default.xls”;

is a data table with the default name in the test folder.

table2 = “table.xls”;

is a data table with a new name in the test folder.

table3 = “C:\\Data-Driven Tests\\Another Test\\default.xls”;

is a data table with the default name and a new path. This data table is stored in 
the folder of another test.

Note: Scripts created in WinRunner versions 5.0 and 5.01 may contain the 
following statement instead. 

table=getvar("testname") & "\\Default.xls";

This statement is still valid. However, scripts created in WinRunner 6.0 use 
relative paths and therefore the full path is not required in the statement.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 487

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Statements to Your Test Script to Open and Close the Data Table 
and Run Your Test in a Loop

Add the following statements to your test script immediately following the table 
declaration. 

rc=ddt_open (table);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table."); 
ddt_get_row_count(table,table_RowCount);
for(table_Row = 1; table_Row <= table_RowCount ;table_Row ++ )
{

ddt_set_row(table,table_Row);

These statements open the data table for the test and run the statements 
between the curly brackets that follow for each row of data in the data table.

Add the following statements to your test script immediately following the 
parameterized portion of the script:

}
ddt_close (table);



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 488

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

These statements run the statements that appear within the curly brackets 
above for every row of the data table. They use the data from the next row of the 
data table to drive each successive iteration of the test. When the next row of the 
data table is empty, these statements stop running the statements within the 
curly brackets and close the data table.

Importing Data from a Database

You must add ddt_update_from_db and ddt_save statements to your test script 
after the ddt_open statement. You must use Microsoft Query to define a query in 
order to specify the data to import. For more information, see Importing Data 
from a Database on page 494. For more information on the ddt_ functions, see 
Using TSL Functions with Data-Driven Tests on page 529 or refer to the TSL 
Online Reference.

Parameterizing Values in a Test Script

In the sample test script in Creating a Basic Test for Conversion on page 468, 
there are several statements that contain fixed values entered by the user: 

edit_set("Edit", "6");

edit_check_info("Order No:","value",6);

You can use the Parameterize Data dialog box to parameterize the statements 
and replace the data with parameters. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 489

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To parameterize statements using a data table:

 1 In your test script, select the first instance in which you have data that you want 
to parameterize. For example, in the first edit_set statement in the test script 
above, select: "6".

 2 Choose Tools > Parameterize Data. The Parameterize Data dialog box opens.

 3 In the Parameterize using box, select Data table. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 490

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 In the Excel table file name box, you can accept the default name and location 
of the data table, enter the different name for the data table, or use the browse 
button to locate the path of a data table. Note that by default the name of the 
data table is default.xls, and it is stored in the test folder. If you previously worked 
with a different data table in this test, then it appears here instead.

Click A new column. WinRunner suggests a name for the parameter in the box. 
You can accept this name or choose a different name. WinRunner creates a 
column with the same name as the parameter in the data table. 

The data with quotation marks that was selected in your test script appears in 
the Add the data to the table box. 

• If you want to include the data currently selected in the test script in the data 
table, select the Add the data to the table check box. You can modify the 
data in this box.

• If you do not want to include the data currently selected in the test script in the 
data table, clear the Add the data to the table check box.

• You can also assign the data to an existing parameter, which assigns the data 
to a column already in the data table. If you want to use an existing 
parameter, click An existing column, and select an existing column from the 
list.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 491

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click OK.

In the test script, the data selected in the test script is replaced with a ddt_val 
statement which contains the name of the table and the name of the parameter 
you created, with a corresponding column in the data table. 

In the example, the value "6" is replaced with a ddt_val statement which 
contains the name of the table and the parameter “Edit”, so that the original 
statement appears as follows:

edit_set ("Edit",ddt_val(table,"Edit"));

In the data table, a new column is created with the name of the parameter you 
assigned. In the example, a new column is created with the header Edit.

 6 Repeat steps 1 to 5 for each argument you want to parameterize.

For more information on the ddt_val function, see Using TSL Functions with 
Data-Driven Tests on page 529 or refer to the TSL Online Reference.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 492

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Preparing the Data Table

For each data-driven test, you need to prepare at least one data table. The data 
table contains the values that WinRunner uses to replace the variables in your 
data-driven test.

You usually create the data table as part of the test conversion process, either 
using the Data-Driver Wizard or the Parameterize Data dialog box. You can also 
create tables separately in Excel and then link them to the test.

After you create the test, you can add data to the table manually or import it from 
an existing database.

The following data table displays three sets of data that were entered for the test 
example described in this chapter. The first set of data was entered using the 
Tools > Parameterize Value command in WinRunner. The next two sets of data 
were entered into the data table manually. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 493

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Each row in the data table generally represents the values that WinRunner 
submits for all the parameterized fields during a single iteration of the test. For 
example, a loop in a test that is associated with a table with ten rows will run ten 
times.

• Each column in the table represents the list of values for a single parameter, one 
of which is used for each iteration of a test.

Note: The first character in a column header must be an underscore ( _ ) or a 
letter. Subsequent characters may be underscores, letters, or numbers.

Adding Data to a Data Table Manually
You can add data to your data table manually by opening the data table and 
entering values in the appropriate columns.

To add data to a data table manually:

 1 Choose Tools > Data Table. The Open or Create a Data Table dialog box 
opens. Select the data table you specified in the test script to open it, or enter a 
new name to create a new data table. The data table opens in the data table 
viewer. 

 2 Enter data into the table manually.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 494

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Move the cursor to an empty cell and choose File > Save from within the data 
table.

Note: Closing the data table does not automatically save changes to the data 
table. You must use the File > Save command from within the data table or a 
ddt_save statement to save the data table. For information on menu commands 
within the data table, see Editing the Data Table on page 494. For information 
on the ddt_save function, see Using TSL Functions with Data-Driven Tests 
on page 529. Note that the data table viewer does not need to be open in order 
to run a data-driven test.

Importing Data from a Database
In addition to, or instead of, adding data to a data table manually, you can import 
data from an existing database into your table. You can use either Microsoft 
Query or Data Junction to import the data. For more information on importing data 
from a database, see Importing Data from a Database on page 503.

Editing the Data Table
The data table contains the values that WinRunner uses for parameterized input 
fields and checks when you run a test. You can edit information in the data table 
by typing directly into the table. You can use the data table in the same way as an 
Excel spreadsheet. You can also insert Excel formulas and functions into cells.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 495

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you do not want the data table editor to reformat your data (e.g. change 
the format of dates), then strings you enter in the data table should start with a 
quotation mark ( ' ). This instructs the editor not to reformat the string in the cell.

To edit the data table:

 1 Open your test. 

 2 Choose Tools > Data Table. The Open or Create a Data Table dialog box 
opens. 

 3 Select a data table for your test. The data table for the test opens.

 4 Use the menu commands described below to edit the data table.

 5 Move the cursor to an empty cell and select File > Save to save your changes.

 6 Select File > Close to close the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 496

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

File Menu

Use the File menu to import and export, close, save, and print the data table. 
WinRunner automatically saves the data table for a test in the test folder and 
names it default.xls. You can open and save data tables other than the default.xls 
data table. This enables you to use several different data tables in one test script, 
if desired. 

The following commands are available in the File menu:

File Command Description

New Creates a new data table.

Open Opens an existing data table. If you open a data table that was 
already opened by the ddt_open function, you are prompted to 
save and close it before opening it in the data table editor.

Save Saves the active data table with its existing name and location. 
You can save the data table as a Microsoft Excel file or as a 
tabbed text file.

Save As Opens the Save As dialog box, which enables you to specify the 
name and location under which to save the data table. You can 
save the data table as a Microsoft Excel file or as a tabbed text 
file.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 497

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Import Imports an existing table file into the data table. This can be a 
Microsoft Excel file or a tabbed text file. If you open a file that 
was already opened by the ddt_open function, you are 
prompted to save and close it before opening it in the data table 
editor.
Note that the cells in the first row of an Excel file become the 
column headers in the data table viewer. Note that the new table 
file replaces any data currently in the data table. 

Export Saves the data table as a Microsoft Excel file or as a tabbed text 
file. 
Note that the column headers in the data table viewer become 
the cells in the first row of an Excel file.

Close Closes the data table. Note that changes are not automatically 
saved when you close the data table. Use the Save command to 
save your changes.

Print Prints the data table. 

Print Preview Previews how the data table will print. 

Print Setup Enables you to select the printer, the page orientation, and 
paper size.

File Command Description



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 498

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Edit Menu

Use the Edit menu to move, copy, and find selected cells in the data table. The 
following commands are available in the Edit menu:

Edit Command Description

Cut Cuts the data table selection and writes it to the Clipboard.

Copy Copies the data table selection to the Clipboard.

Paste Pastes the contents of the Clipboard to the current data table 
selection.

Paste Values Pastes values from the Clipboard to the current data table 
selection. Any formatting applied to the values is ignored. In 
addition, only formula results are pasted; formulas are ignored.

Clear All Clears both the format of the selected cells, if the format was 
specified using the Format menu commands, and the values 
(including formulas) of the selected cells.

Clear Formats Clears the format of the selected cells, if the format was 
specified using the Format menu commands. Does not clear 
values (including formulas) of the selected cells. 

Clear Contents Clears only values (including formulas) of the selected cells. 
Does not clear the format of the selected cells.

Insert Inserts empty cells at the location of the current selection. Cells 
adjacent to the insertion are shifted to make room for the new 
cells.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 499

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Delete Deletes the current selection. Cells adjacent to the deleted cells 
are shifted to fill the space left by the vacated cells.

Copy Right Copies data in the leftmost cell of the selected range to the right 
to fill the range.

Copy Down Copies data in the top cell of the selected range down to fill the 
range.

Find Finds a cell containing a specified value. You can search by row 
or column in the table and specify to match case or find entire 
cells only.

Replace Finds a cell containing a specified value and replaces it with a 
different value. You can search by row or column in the table 
and specify to match case or find entire cells only. You can also 
replace all.

Go To Goes to a specified cell. This cell becomes the active cell.

Edit Command Description



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 500

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Data Menu

Use the Data menu to recalculate formulas, sort cells and edit autofill lists. The 
following commands are available in the Data menu:

Data Command Description

Recalc Recalculates any formula cells in the data table. 

Sort Sorts a selection of cells by row or column and keys.

AutoFill List Creates, edits or deletes an autofill list.
An autofill list contains frequently-used series of text such as 
months and days of the week. When adding a new list, 
separate each item with a semi-colon.
To use an autofill list, enter the first item into a cell in the data 
table. Drag the cursor across or down and WinRunner 
automatically fills in the cells in the range according to the 
autofill list.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 501

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Format Menu

Use the Format menu to set the format of data in a selected cell or cells. The 
following commands are available in the Format menu:

Format Command Description

General Sets format to General. General displays numbers with as 
many decimal places as necessary and no commas.

Currency(0) Sets format to currency with commas and no decimal 
places.

Currency(2) Sets format to currency with commas and two decimal 
places.

Fixed Sets format to fixed precision with commas and no 
decimal places.

Percent Sets format to percent with no decimal places. Numbers 
are displayed as percentages with a trailing percent sign 
(%).

Fraction Sets format to fraction.

Scientific Sets format to scientific notation with two decimal places.

Date: (MM/dd/yyyy) Sets format to Date with the MM/dd/yyyy format.

Time: h:mm AM/PM Sets format to Time with the h:mm AM/PM format.

Custom Number Sets format to a custom number format that you specify. 

Validation Rule Sets validation rule to test data entered into a cell or range 
of cells. A validation rule consists of a formula to test, and 
text to display if the validation fails.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 502

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Technical Specifications for the Data Table
The following table displays the technical specifications for a data table. 

maximum number of columns 256

maximum number of rows 16,384

maximum column width 255 characters

maximum row height 409 points

maximum formula length 1024 characters

number precision 15 digits

largest positive number 9.99999999999999E307

largest negative number -9.99999999999999E307

smallest positive number 1E-307

smallest negative number -1E-307

table format Tabbed text file or Microsoft Excel file. 

valid column names Columns names must not include spaces. 
They can include only letters, numbers, and 
underscores ( _ ). 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 503

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Importing Data from a Database

In order to import data from an existing database into a data table, you must 
specify the data to import using the DataDriver Wizard. If you selected the Import 
data from a database check box, the DataDriver Wizard prompts you to specify 
the program you will use to connect to the database. You can select either 
ODBC/Microsoft Query or Data Junction.

Note that in order to import data from a database, Microsoft Query or Data 
Junction must be installed on your machine. You can install Microsoft Query from 
the custom installation of Microsoft Office. Note that Data Junction is not 
automatically included in your WinRunner package. To purchase Data Junction, 
contact your Mercury Interactive representative. For detailed information on 
working with Data Junction, refer to the documentation in the Data Junction 
package.

Note: If you chose to replace data in the data table with data from an existing 
column in the database, and there is already a column with the same header in 
the data table, then the data in that column is automatically updated from the 
database. The data from the database overwrites the data in the relevant column 
in the data table for all rows that are imported from the database. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 504

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Importing Data from a Database Using Microsoft Query
You can use Microsoft Query to choose a data source and define a query within 
the data source.

Note that WinRunner supports the following versions of Microsoft Query:

• version 2.00 (part of Microsoft Office 95) 

• version 8.00 (part of Microsoft Office 97)

• version 2000 (part of Microsoft Office 2000)



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 505

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Microsoft Query Options

After you select Microsoft Query in the Connect to database using option, the 
following wizard screen opens: 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 506

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can choose from the following options:

• Create new query: Opens Microsoft Query, enabling you to create a new ODBC 
*.sql query file with the name specified below. For additional information, see 
Creating a New Source Query File on page 507.

• Copy existing query: Opens the Select source query file screen in the wizard, 
which enables you to copy an existing ODBC query from another query file. For 
additional information, see Selecting a Source Query File on page 508.

• Specify SQL statement: Opens the Specify SQL statement screen in the 
wizard, which enables you to specify the connection string and an SQL 
statement. For additional information, see Specifying an SQL Statement on 
page 509.

• New query file: Displays the default name of the new *.sql query file for the data 
to import from the database. You can use the browse button to browse for a 
different *.sql query file.

• Maximum number of rows: Select this check box and enter the maximum 
number of database rows to import. If this check box is cleared, there is no 
maximum. Note that this option adds an additional parameter to your db_check 
statement. For more information, refer to the TSL Online Reference.

• Show me how to use Microsoft Query: Displays an instruction screen.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 507

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a New Source Query File

Microsoft Query opens if you chose Create new query in the last step. Choose 
a new or existing data source, define a query, and when you are done:

• In version 2.00, choose File > Exit and return to WinRunner to close 
Microsoft Query and return to WinRunner. 

• In version 8.00, in the Finish screen of the Query Wizard, click Exit and 
return to WinRunner and click Finish to exit Microsoft Query. Alternatively, 
click View data or edit query in Microsoft Query and click Finish. After 
viewing or editing the data, choose File > Exit and return to WinRunner to 
close Microsoft Query and return to WinRunner.

Once you finish defining your query, you return to the DataDriver Wizard to finish 
converting your test to a data-driven test. For additional information, see step 4 
on page 479.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 508

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Selecting a Source Query File

The following screen opens if you chose Copy existing query in the last step.

Enter the pathname of the query file or use the Browse button to locate it. Once 
a query file is selected, you can use the View button to open the file for viewing.

Once you are done, you click Next to finish creating your data-driven test. For 
additional information, see step 4 on page 479.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 509

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying an SQL Statement

The following screen opens if you chose Specify SQL statement in the last step.

In this screen you must specify the connection string and the SQL statement:

• Connection String: Enter the connection string, or click Create to open the 
ODBC Select Data Source dialog box, in which you can select a *.dsn file, which 
inserts the connection string in the box.

• SQL: Enter the SQL statement.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 510

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Once you are done, you click Next to finish creating your data-driven test. For 
additional information, see step 4 on page 479.

Once you import data from a database using Microsoft Query, the query 
information is saved in a query file called msqrN.sql (where N is a unique 
number). By default, this file is stored in the test folder (where the default data 
table is stored). The DataDriver Wizard inserts a ddt_update_from_db 
statement using a relative path and not a full path. During the test run, when a 
relative path is specified, WinRunner looks for the query file in the test folder. If 
the full path is specified for a query file in the ddt_update_from_db statement, 
then WinRunner uses the full path to find the location of the query file.

For additional information on using Microsoft Query, refer to the Microsoft Query 
documentation.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 511

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Importing Data from a Database Using Data Junction
You can use Data Junction to create a conversion file that converts a database to 
a target text file.

Note that WinRunner supports versions 6.5 and 7 of Data Junction.

Setting the Data Junction Options

If Data Junction is installed on your machine, the following wizard screen opens 
once you choose to import data from a Data Junction database:



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 512

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can choose from the following options:

• Create new conversion: Opens Data Junction and enables you to create a new 
conversion file. For additional information, see Creating a Conversion File in 
Data Junction on page 512. 

• Use existing conversion: Opens the Select conversion file screen in the 
wizard, which enables you to specify an existing conversion file. 
For additional information, see Selecting a Data Junction Conversion File on 
page 514.

• Show me how to use Data Junction (available only when Create new 
conversion is selected): Displays instructions for working with Data Junction.

Creating a Conversion File in Data Junction

 1 Specify and connect to the source database.

 2 Select an ASCII (delimited) target spoke type and specify and connect to the 
target file. Choose the “Replace File/Table” output mode.

Note: If you are working with Data Junction version 7.0 and your source 
database includes values with delimiters (CR, LF, tab), then in the Target 
Properties dialog box, you must specify “\r\n\t” as the value for the 
TransliterationIn property. The value for the TransliterationOut property must 
be blank.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 513

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Map the source file to the target file.

 4 When you are done, click File > Export Conversion to export the conversion to 
a *.djs conversion file.

 5 The DataDriver Wizard opens to the Select conversion file screen. Follow the 
instructions in Selecting a Data Junction Conversion File on page 514.

For additional information on working with Data Junction, refer to the Data 
Junction documentation.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 514

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Selecting a Data Junction Conversion File

The following wizard screen opens when you are working with Data Junction.

Enter the pathname of the conversion file or use the Browse button to locate it. 
Once a conversion file is selected, you can use the View button to open the Data 
Junction Conversion Manager if you want to view the file.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 515

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also choose from the following options:

• Copy conversion to test folder: Copies the specified conversion file to the test 
folder.

• Maximum number of rows: Select this check box and enter the maximum 
number of database rows to import. If this check box is cleared, there is no 
maximum.

Once you are done, you click Next to finish creating your data-driven test. For 
additional information, see step 4 on page 479. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 516

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running and Analyzing Data-Driven Tests

You run and analyze data-driven tests much the same as for any WinRunner test. 
The following two sections describe these two procedures.

Running a Test
After you create a data-driven test, you run it as you would run any other 
WinRunner test. WinRunner substitutes the parameters in your test script with 
data from the data table. While WinRunner runs the test, it opens the data table. 
For each iteration of the test, it performs the operations you recorded on your 
application and conducts the checks you specified. For more information on 
running a test, see Chapter 27, Running Tests. 

Note that if you chose to import data from a database, then when you run the test, 
the ddt_update_from_db function updates the data table with data from the 
database. For information on importing data from a database, see Importing 
Data from a Database on page 494. For information on the 
ddt_update_from_db function, see Using TSL Functions with Data-Driven 
Tests on page 529 or refer to the TSL Online Reference. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 517

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Analyzing Test Results
When a test run is complete, you can view the test results as you would for any 
other WinRunner test. The Test Results window contains a description of the 
major events that occurred during the test run, such as GUI and bitmap 
checkpoints, file comparisons, and error messages. If a certain event occurs 
during each iteration, then the test results will record a separate result for the 
event for each iteration.

For example, if you inserted a ddt_report_row statement in your test script, then 
WinRunner prints a row of the data table to the test results. Each iteration of a 
ddt_report_row statement in your test script creates a line in the Test Log table 
in the Test Results window, identified as “Table Row” in the Event column. Double-
clicking this line displays all the parameterized data used by WinRunner in an 
iteration of the test. For more information on the ddt_report_row function, see 
Reporting the Active Row in a Data Table to the Test Results on page 537 or 
refer to the TSL Online Reference. For more information on viewing test results, 
see Chapter 28, Analyzing Test Results. 



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 518

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Assigning the Main Data Table for a Test

You can easily set the main data table for a test in the General tab of the Test 
Properties dialog box. The main data table is the table that is selected by default 
when you choose Tools > Data Table or open the DataDriver Wizard.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 519

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To assign the main data table for a test:

 1 Choose File > Test Properties and click the General tab.

 2 Choose the data table you want to assign from the Main data table list.

All tests that are stored in the Test folder are displayed in the list.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 520

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click OK. The test you selected is assigned as the new main data table.

Note: If you open a different data table after selecting the main data table from 
the Test Properties dialog box, the last data table opened becomes the main 
data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 521

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using Data-Driven Checkpoints and Bitmap 
Synchronization Points 

When you create a data-driven test, you parameterize fixed values in TSL 
statements. However, GUI and bitmap checkpoints and bitmap synchronization 
points do not contain fixed values. Instead, these statements contain the 
following:

• A GUI checkpoint statement (obj_check_gui or win_check_gui) contains 
references to a checklist stored in the test’s chklist folder and expected results 
stored in the test’s exp folder.

• A bitmap checkpoint statement (obj_check_bitmap or win_check_bitmap) or 
a bitmap synchronization point statement (obj_wait_bitmap or 
win_wait_bitmap) contains a reference to a bitmap stored in the test’s exp 
folder.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 522

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: When you check properties of GUI objects in a data-driven test, it is better 
to create a single property check than to create a GUI checkpoint: A single 
property check does not contain checklist, so it can be easily parameterized. You 
use the Create > GUI Checkpoint > For Single Property command to create a 
property check without a checklist. For additional information on using single 
property checks in a data-driven test, see Creating a Basic Test for 
Conversion on page 468. For information on checking a single property of an 
object, see Chapter 9, Checking GUI Objects. 

In order to parameterize GUI and bitmap checkpoints and bitmap synchronization 
points statements, you insert dummy values into the data table for each expected 
results reference. First you create separate columns for each checkpoint or 
bitmap synchronization point. Then you enter dummy values in the columns to 
represent captured expected results. Each dummy value should have a unique 
name (for example, gui_exp1, gui_exp2, etc.). When you run the test in Update 
mode, WinRunner captures expected results during each iteration of the test (i.e. 
for each row in the data table) and saves all the results in the test’s exp folder.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 523

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• For a GUI checkpoint statement, WinRunner captures the expected values of the 
object properties. 

• For a bitmap checkpoint statement or a bitmap synchronization point statement, 
WinRunner captures a bitmap.

To create a data-driven checkpoint or bitmap synchronization point:

 1 Create the initial test by recording or programming.

In the example below, the recorded test opens the Search dialog box in the 
Notepad application, searches for a text and checks that the appropriate 
message appears. Note that a GUI checkpoint, a bitmap checkpoint, and a 
synchronization point are all used in the example.

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
set_window ("Find", 5);
edit_set ("Find what:", "John");
button_press ("Find Next");
set_window("Notepad", 10);
obj_check_gui("Message", "list1.ckl", "gui1", 1);
win_check_bitmap("Notepad", "img1", 5, 30, 23, 126, 45);
obj_wait_bitmap("Message", "img2", 13);
set_window ("Notepad", 5);
button_press ("OK");
set_window ("Find", 4);
button_press ("Cancel");



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 524

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Use the DataDriver Wizard (Tools > DataDriver Wizard) to turn your script into 
a data-driven test and parameterize the data values in the statements in the test 
script. For additional information, see Creating a Data-Driven Test with the 
DataDriver Wizard on page 473. Alternatively, you can make these changes to 
the test script manually. For additional information, see Creating a Data-Driven 
Test Manually on page 485.

In the example below, the data-driven test searches for several different strings. 
WinRunner reads all these strings from the data table.

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
table = "default.xls"; 
rc = ddt_open(table, DDT_MODE_READ);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table.");
ddt_get_row_count(table,RowCount);
for (i = 1; i <= RowCount; i++) {

ddt_set_row(table,i);
set_window ("Find", 5);
edit_set ("Find what:", ddt_val(table, "Str"));
button_press ("Find Next");
set_window("Notepad", 10);

# The GUI checkpoint statement is not yet parameterized.
obj_check_gui("message", "list1.ckl", "gui1", 1);

# The bitmap checkpoint statement is not yet parameterized.
win_check_bitmap("Notepad", "img1", 5, 30, 23, 126, 45);



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 525

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

# The synchronization point statement is not yet parameterized.
obj_wait_bitmap("message", "img2", 13);
set_window ("Notepad", 5);
button_press ("OK");

}
ddt_close(table);
set_window ("Find", 4);
button_press ("Cancel");

For example, the data table might look like this:



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 526

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that the GUI and bitmap checkpoints and the synchronization point in this 
data-driven test will fail on the 2nd and 3rd iteration of the test run. The 
checkpoints and the synchronization point would fail because the values for 
these points were captured using the "John" string, in the original recorded test. 
Therefore, they will not match the other strings taken from the data table.

 3 Create a column in the data table for each checkpoint or synchronization point to 
be parameterized. For each row in the column, enter dummy values. Each 
dummy value should be unique.

For example, the data table in the previous step might now look like this:

 4 Choose Tools > Parameterize Data to open the Assign Parameter dialog box. 
In the Existing Parameter box, change the expected values of each checkpoint 
and synchronization point to use the values from the data table. For additional 
information, see Parameterizing Values in a Test Script on page 488. 
Alternatively, you can edit the test script manually.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 527

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, the sample script will now look like this:

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
table = "default.xls"; 
rc = ddt_open(table, DDT_MODE_READ);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table.");
ddt_get_row_count(table,RowCount);
for (i = 1; i <= RowCount; i++) {

ddt_set_row(table,i);
set_window ("Find", 5);
edit_set ("Find what:", ddt_val(table, "Str"));
button_press ("Find Next");
set_window("Notepad", 10);

# The GUI checkpoint statement is now parameterized.
obj_check_gui("message", "list1.ckl", 

ddt_val(table, "GUI_Check1"), 1);

# The bitmap checkpoint statement is now parameterized.
win_check_bitmap("Notepad",

ddt_val(table, "BMP_Check1"), 5, 30, 23, 126, 45);

# The synchronization point statement is now parameterized.
obj_wait_bitmap("message", 

ddt_val(table, "Sync1"), 13);
set_window ("Notepad", 5);



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 528

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

button_press ("OK");
} 
ddt_close(table);
set_window ("Find", 4);
button_press ("Cancel");

 5 Select Update in the run mode box to run your test in Update mode. Choose a 
Run command to run your test. 

While the test runs in Update mode, WinRunner reads the names of the 
expected values from the data table. Since WinRunner cannot find the expected 
values for GUI checkpoints, bitmaps checkpoints, and bitmap synchronization 
points in the data table, it recaptures these values from your application and 
save them as expected results in the exp folder for your test. Expected values for 
GUI checkpoints are saved as expected results. Expected values for bitmap 
checkpoints and bitmap synchronization points are saved as bitmaps. 

Once you have run your test in Update mode, all the expected values for all the 
sets of data in the data table are recaptured and saved. 

Later you can run your test in Verify mode to check the behavior of your 
application.

Note: When you run your test in Update mode, WinRunner recaptures expected 
values for GUI and bitmap checkpoints automatically. WinRunner prompts you 
before recapturing expected values for bitmap synchronization points.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 529

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using TSL Functions with Data-Driven Tests

WinRunner provides several TSL functions that enable you to work with data-
driven tests.

You can use the Function Generator to insert the following functions in your test 
script, or you can manually program statements that use these functions. For 
information about working with the Function Generator, see Chapter 21, 
Generating Functions.  For more information about these functions, refer to the 
TSL Online Reference.

Note: You must use the ddt_open function to open the data table before you 
use any other ddt_ functions. You must use the ddt_save function to save the 
data table, and use the ddt_close function to close the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 530

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Opening a Data Table
The ddt_open function creates or opens the specified data table. The data table 
is a Microsoft Excel file or a tabbed text file. The first row in the Excel/tabbed text 
file contains the names of the parameters. This function has the following syntax:

ddt_open (�data_table_name,�mode�);

The data_table_name is the name of the data table. The mode is the mode for 
opening the data table: DDT_MODE_READ (read-only) or 
DDT_MODE_READWRITE (read or write).

Saving a Data Table
The ddt_save function saves the information in the specified data table. This 
function has the following syntax:

ddt_save ( data_table_name );

The data_table_name is the name of the data table.

Note that ddt_save does not close the data table. Use the ddt_close function, 
described below, to close the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 531

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Closing a Data Table
The ddt_close function closes the specified data table. This function has the 
following syntax:

ddt_close ( data_table_name�);

The data_table_name is the name of the data table.

Note that ddt_close does not save changes made to the data table. Use the 
ddt_save function, described above, to save changes before closing the data 
table.

Exporting a Data Table
The ddt_export function exports the information of one table file into a different 
table file. This function has the following syntax:

ddt_export ( data_table_filename1
 data_table_filename2 );

The data_table_filename1 is the name of the source data table file. The 
data_table_filename2 is the name of the destination data table file.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 532

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Displaying the Data Table Editor
The ddt_show function shows or hides the editor of a given data table. This 
function has the following syntax:

ddt_show ( data_table_name ��
�show_flag � );

The data_table_name is the name of the table. The show_flag is the value 
indicating whether the editor should be displayed (default=1) or hidden (0).

Returning the Number of Rows in a Data Table
The ddt_get_row_count function returns the number of rows in the specified 
data table. This function has the following syntax:

ddt_get_row_count (�data_table_name
 out_rows_count );

The data_table_name is the name of the data table. The out_rows_count is the 
output variable that stores the total number of rows in the data table.

Changing the Active Row in a Data Table to the Next Row
The ddt_next_row function changes the active row in the specified data table to 
the next row. This function has the following syntax:

ddt_next_row ( data_table_name�);

The data_table_name is the name of the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 533

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Active Row in a Data Table
The ddt_set_row function sets the active row in the specified data table. This 
function has the following syntax:

ddt_set_row ( data_table_name
 row�);

The data_table_name is the name of the data table. The row is the new active 
row in the data table.

Setting a Value in the Current Row of the Table
The ddt_set_val function writes a value into the current row of the table. This 
function has the following syntax:

ddt_set_val (�data_table_name
 parameter
 value );

The data_table_name is the name of the data table. The parameter is the name 
of the column into which the value will be inserted. The value is the value to be 
written into the table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 534

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can only use this function if the data table was opened in 
DDT_MODE_READWRITE (read or write mode).

To save the new contents of the table, add a ddt_save statement after the 
ddt_set_val statement. At the end of your test, use a ddt_close statement to 
close the table.

Setting a Value in a Row of the Table
The ddt_set_val_by_row function sets a value in a specified row of the table. 
This function has the following syntax:

ddt_set_val_by_row (�data_table_name
 row
 parameter
 value�);

The data_table_name is the name of the data table. The row is the row number 
in the table. It can be any existing row or the current row number plus 1, which 
will add a new row to the data table. The parameter is the name of the column 
into which the value will be inserted. The value is the value to be written into the 
table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 535

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can only use this function if the data table was opened in 
DDT_MODE_READWRITE (read or write mode).

To save the new contents of the table, add a ddt_save statement after the 
ddt_set_val statement. At the end of your test, use a ddt_close statement to 
close the table.

Retrieving the Active Row of a Data Table
The ddt_get_current_row function retrieves the active row in the specified data 
table. This function has the following syntax:

ddt_get_current_row (�data_table_name
 out_row�);

The data_table_name is the name of the data table. The out_row is the output 
variable that stores the specified row in the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 536

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Determining Whether a Parameter in a Data Table is Valid
The ddt_is_parameter function determines whether a parameter in the specified 
data table is valid. This function has the following syntax:

ddt_is_parameter (�data_table_name
 parameter�);

The data_table_name is the name of the data table. The parameter is the name 
of the parameter in the data table.

Returning a List of Parameters in a Data Table
The ddt_get_parameters function returns a list of all parameters in the specified 
data table. This function has the following syntax:

ddt_get_parameters (�data_table_name
 params_list, params_num );

The data_table_name is the name of the data table. The params_list is the out 
parameter that returns the list of all parameters in the data table, separated by 
tabs. The params_name is the out parameter that returns the number of 
parameters in params_list.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 537

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Returning the Value of a Parameter in the Active Row in a 
Data Table
The ddt_val function returns the value of a parameter in the active row in the 
specified data table. This function has the following syntax:

ddt_val (�data_table_name
 parameter�);

The data_table_name is the name of the data table. The parameter is the name 
of the parameter in the data table.

Returning the Value of a Parameter in a Row in a Data Table
The ddt_val_by_row function returns the value of a parameter in the specified 
row of the specified data table. This function has the following syntax:

ddt_val_by_row (�data_table_name
 row_number
 parameter�);

The data_table_name is the name of the data table. The parameter is the name 
of the parameter in the data table. The row_number is the number of the row in 
the data table.

Reporting the Active Row in a Data Table to the Test Results
The ddt_report_row function reports the active row in the specified data table to 
the test results. This function has the following syntax:

ddt_report_row ( data_table_name�);

The data_table_name is the name of the data table.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 538

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Importing Data from a Database into a Data Table
The ddt_update_from_db function imports data from a database into a data 
table. It is inserted into your test script when you select the Import data from a 
database option in the DataDriver Wizard. When you run your test, this function 
updates the data table with data from the database. This function has the 
following syntax:

ddt_update_from_db ( data_table_name
 file,out_row_count 
��
 max_rows � );

The data_table_name is the name of the data table.

The file is an *.sql file containing a query defined by the user in Microsoft Query 
or *.djs file containing a conversion defined by Data Junction. The out_row_count 
is an out parameter containing the number of rows retrieved from the data table. 
The max_rows is an in parameter specifying the maximum number of rows to be 
retrieved from a database. If no maximum is specified, then by default the number 
of rows is not limited.

Note: You must use the ddt_open function to open the data table in 
DDT_MODE_READWRITE (read or write) mode. After using the 
ddt_update_from_db function, the new contents of the table are not 
automatically saved. To save the new contents of the table, use the ddt_save 
function before the ddt_close function.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 539

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Guidelines for Creating a Data-Driven Test

Consider the following guidelines when creating a data-driven test:

• A data-driven test can contain more than one parameterized loop. 

• You can open and save data tables other than the default.xls data table. This 
enables you to use several different data tables in one test script. You can use 
the New, Open, Save, and Save As commands in the data table to open and 
save data tables. For additional information, see Editing the Data Table on 
page 494.

Note: If you open a data table from one test while it is open from another test, 
the changes you make to the data table in one test will not be reflected in the 
other test. To save your changes to the data table, you must save and close the 
data table in one test before opening it in another test.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 540

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Before you run a data-driven test, you should look through it to see if there are 
any elements that may cause a conflict in a data-driven test. The DataDriver and 
Parameterization wizards find all fixed values in selected checkpoints and 
recorded statements, but they do not check for things such as object labels that 
also may vary based on external input. There are two ways to solve most of 
these conflicts:

• Use a regular expression to enable WinRunner to recognize objects based 
on a portion of its physical description.

• Use the GUI Map Configuration dialog box to change the physical properties 
that WinRunner uses to recognize the problematic object.

• You can change the active row during the test run by using TSL statements. For 
more information, see Using TSL Functions with Data-Driven Tests on page 
529.

• You can read from a non-active row during the test run by using TSL statements. 
For more information, see Using TSL Functions with Data-Driven Tests on 
page 529.

• You can add tl_step or other reporting statements within the parameterized loop 
of your test so that you can see the result of the data used in each iteration.

• It is not necessary to use all the data in a data table when running a data-driven 
test.

• If you want, you can parameterize only part of your test script or a loop within it.

• If WinRunner cannot find a GUI object that has been parameterized while 
running a test, make sure that the parameterized argument is not surrounded by 
quotes in the test script.



Creating Tests • Creating Data-Driven Tests

WinRunner User’s Guide Chapter 16, page 541

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• You can parameterize statements containing GUI checkpoints, bitmap 
checkpoints, and bitmap synchronization points. For more information, see 
Using Data-Driven Checkpoints and Bitmap Synchronization Points on 
page 521.

• You can parameterize constants as you would any other string or value.

• You can use the data table in the same way as an Excel spreadsheet, including 
inserting formulas into cells.

• It is not necessary for the data table viewer to be open when you run a test. 

• You can use the ddt_set_val and ddt_set_val_by_row functions to insert data 
into the data table during a test run. Then use the ddt_save function to save 
your changes to the data table.

Note: By default, the data table is stored in the test folder.



Creating Tests
Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 542

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Synchronizing the Test Run

Synchronization compensates for inconsistencies in the performance of your 
application during a test run. By inserting a synchronization point in your test 
script, you can instruct WinRunner to suspend the test run and wait for a cue 
before continuing the test.

This chapter describes:

• Waiting for Objects and Windows

• Waiting for Property Values of Objects and Windows

• Waiting for Bitmaps of Objects and Windows

• Waiting for Bitmaps of Screen Areas



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 543

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Synchronizing the Test Run

Applications do not always respond to user input at the same speed from one test 
run to another. This is particularly common when testing applications that run over 
a network. A synchronization point in your test script instructs WinRunner to 
suspend running the test until the application being tested is ready, and then to 
continue the test.

There are three kinds of synchronization points: object/window synchronization 
points, property value synchronization points, and bitmap synchronization points.

• When you want WinRunner to wait for an object or a window to appear, you 
create an object/window synchronization point.

• When you want WinRunner to wait for an object or a window to have a specified 
property, you create a property value synchronization point. 

• When you want WinRunner to wait for a visual cue to be displayed, you create a 
bitmap synchronization point. In a bitmap synchronization point, WinRunner 
waits for the bitmap of an object, a window, or an area of the screen to appear. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 544

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, suppose that while testing a drawing application you want to import 
a bitmap from a second application and then rotate it. A human user would know 
to wait for the bitmap to be fully redrawn before trying to rotate it. WinRunner, 
however, requires a synchronization point in the test script after the import 
command and before the rotate command. Each time the test is run, the 
synchronization point tells WinRunner to wait for the import command to be 
completed before rotating the bitmap.

In another example, suppose that while testing an application you want to check 
that a button is enabled. Suppose that in your application the button becomes 
enabled only after your application completes an operation over the network. The 
time it takes for the application to complete this network operation depends on the 
load on the network. A human user would know to wait until the operation is 
completed and the button is enabled before clicking it. WinRunner, however, 
requires a synchronization point after launching the network operation and before 
clicking the button. Each time the test is run, the synchronization point tells 
WinRunner to wait for the button to become enabled before clicking it. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 545

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can synchronize your test to wait for a bitmap of a window or a GUI object in 
your application, or on any rectangular area of the screen. You can also 
synchronize your test to wait for a property value of a GUI object, such as 
“enabled,” to appear. To create a synchronization point, you choose a Create > 
Synchronization Point command indicate an area or an object in the application 
being tested. Depending on which Synchronization Point command you choose, 
WinRunner either captures the property value of a GUI object or a bitmap of a GUI 
object or area of the screen, and stores it in the expected results folder (exp). You 
can also modify the property value of a GUI object that is captured before it is 
saved in the expected results folder. 

A bitmap synchronization point is a synchronization point that captures a bitmap. 
It appears as a win_wait_bitmap or obj_wait_bitmap statement in the test 
script. A property value synchronization point is a synchronization point that 
captures a property value. It appears as a _wait_info statement in your test 
script, such as button_wait_info or list_wait_info. When you run the test, 
WinRunner suspends the test run and waits for the expected bitmap or property 
value to appear. It then compares the current actual bitmap or property value with 
the expected bitmap or property value saved earlier. When the bitmap or property 
value appears, the test continues.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 546

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that when recording a test in Analog mode, you should press the 
SYNCHRONIZE BITMAP OF OBJECT/WINDOW or the SYNCHRONIZE BITMAP OF SCREEN 
AREA softkey to create a bitmap synchronization point. This prevents WinRunner 
from recording extraneous mouse movements. If you are programming a test, you 
can use the Analog TSL function wait_window to wait for a bitmap. For more 
information, refer to the TSL Online Reference.

Note about data-driven testing: In order to use bitmap synchronization points 
in data-driven tests, you must parameterize the statements in your test script 
that contain them. For information on using bitmap synchronization points in 
data-driven tests, see Using Data-Driven Checkpoints and Bitmap 
Synchronization Points on page 521.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 547

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Waiting for Objects and Windows

You can create a synchronization point that instructs WinRunner to wait for a 
specified object or window to appear. For example, you can tell WinRunner to wait 
for a window to open before performing an operation within that window, or you 
may want WinRunner to wait for an object to appear in order to perform an 
operation on that object. 

WinRunner waits no longer than the default timeout setting before executing the 
subsequent statement in a test script. You can set this default timeout setting in a 
test script by using the timeout_msec testing option with the setvar function. For 
more information, see Chapter 37, Setting Testing Options from a Test Script.  
You can also set this default timeout setting globally using the Timeout for 
Checkpoints and CS Statements box in the Run tab of the General Options 
dialog box. For more information, see Chapter 36, Setting Global Testing 
Options.  



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 548

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You use the obj_exists function to create an object synchronization point, and 
you use the win_exists function to create a window synchronization point. These 
functions have the following syntax:

obj_exists (�object��
 time���);

win_exists (�window �
 time ��);

The object is the logical name of the object. The object may belong to any class. 
The window is the logical name of the window. The time is the amount of time (in 
seconds) that is added to the default timeout setting, yielding a new maximum 
wait time before the subsequent statement is executed.

You can use the Function Generator to insert this function into your test script or 
you can insert it manually. For information on using the Function Generator, see 
Chapter 21, Generating Functions.  For more information on these functions 
and examples of usage, refer to the TSL Online Reference.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 549

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Waiting for Property Values of Objects and Windows

You can create a property value synchronization point, which instructs WinRunner 
to wait for a specified property value to appear in a GUI object. For example, you 
can tell WinRunner to wait for a button to become enabled or for an item to be 
selected from a list.

The method for synchronizing a test is identical for property values of objects and 
windows. You start by choosing Create > Synchronization Point > For 
Object/Window Property. As you pass the mouse pointer over your application, 
objects and windows flash. To select a window, you click the title bar or the menu 
bar of the desired window. To select an object, you click the object.

A dialog box opens containing the name of the selected window or object. You 
can specify which property of the window or object to check, the expected value 
of that property, and the amount of time that WinRunner waits at the 
synchronization point.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 550

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

A statement with one of the following functions is added to the test script, 
depending on which GUI object you selected: 

GUI Object TSL Function

button button_wait_info

edit field edit_wait_info

list list_wait_info

menu menu_wait_info

an object mapped to the 
generic “object” class

obj_wait_info

scroll bar scroll_wait_info

spin box spin_wait_info

static text static_wait_info

status bar statusbar_wait_info

tab tab_wait_info

window win_wait_info



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 551

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

During a test run, WinRunner suspends the test run until the specified property 
value in a GUI object is detected. It then compares the current value of the 
specified property with its expected value. If the property values match, then 
WinRunner continues the test.

In the event that the specified property value of the GUI object does not appear, 
WinRunner displays an error message, when the mismatch_break testing option 
is on. For information about the mismatch_break testing option, see Chapter 37, 
Setting Testing Options from a Test Script.  You can also set this testing option 
globally using the corresponding Break when Verification Fails option in the 
Run tab of the General Options dialog box. For information about setting this 
testing option globally, see Chapter 36, Setting Global Testing Options. 

If the window or object you capture has a name that varies from run to run, you 
can define a regular expression in its physical description in the GUI map. This 
instructs WinRunner to ignore all or part of the name. For more information, see 
Chapter 5, Editing the GUI Map, and Chapter 19, Using Regular Expressions. 

During recording, when you capture an object in a window other than the active 
window, WinRunner automatically generates a set_window statement. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 552

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To insert a property value synchronization point:

 1 Choose Create > Synchronization Point > For Object/Window Property or 
click the Synchronization Point for Object/Window Property button on the 
User toolbar. The mouse pointer becomes a pointing hand.

 2 Highlight the desired object or window. To highlight an object, place the mouse 
pointer over it. To highlight a window, place the mouse pointer over the title bar 
or the menu bar.

 3 Click the left mouse button. Depending on whether you clicked an object or a 
window, either the Wait for Object or the Wait for Window dialog box opens.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 553

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Specify the parameters of the property check to be carried out on the window or 
object, as follows:

• Window or type of object: The name of the window or object you clicked 
appears in a read-only box. To select a different window or object, click the 
pointing hand.

• Property: Select the property of the object or window to be checked from the 
list. The default property for the window or type of object specified above 
appears by default in this box.

• Expected value: Enter the expected value of the property of the object or 
window to be checked. The current value of this property appears by default 
in this box.

• Timeout: Enter the amount of time (in seconds) that WinRunner waits at the 
synchronization point in addition to the amount of time that WinRunner waits 
specified in the timeout_msec testing option. You can change the default 
amount of time that WinRunner waits using the timeout_msec testing option. 
For more information, see Chapter 37, Setting Testing Options from a Test 
Script.  You can also change the default timeout value in the Timeout for 
Checkpoints and CS Statements box in the Run tab of the General Options 
dialog box. For more information, see Chapter 36, Setting Global Testing 
Options. 

Note: Any changes you make to the above parameters appear immediately in 
the text box at the top of the dialog box.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 554

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click Paste to paste this statement into your test script.

The dialog box closes and a _wait_info statement that checks the property 
values of an object is inserted into your test script. For example, 
button_wait_info has the following syntax:

button_wait_info ( button
 property
 value, time );

The button is the name of the button. The property is any property that is used by 
the button object class. The value is the value that must appear before the test 
run can continue. The time is the maximum number of seconds WinRunner 
should wait at the synchronization point, added to the timeout_msec testing 
option. For more information on _wait_info statements, refer to the TSL Online 
Reference.

For example, suppose that while testing the Flight Reservation application you 
order a plane ticket by typing in passenger and flight information and clicking 
Insert. The application takes a few seconds to process the order. Once the 
operation is completed, you click Delete to delete the order.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 555

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In order for the test to run smoothly, a button_wait_info statement is needed in 
the test script. This function tells WinRunner to wait up to 10 seconds (plus the 
timeout interval) for the Delete button to become enabled. This ensures that the 
test does not attempt to delete the order while the application is still processing it. 
The following is a segment of the test script:

button_press ("Insert");
button_wait_info ("Delete","enabled",1,"10");
button_press ("Delete");

Note: You can also use the Function Generator to create a synchronization point 
that waits for a property value of a window or an object. For information on using 
the Function Generator, see Chapter 21, Generating Functions.  For more 
information about working with these functions, refer to the TSL Online 
Reference.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 556

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Waiting for Bitmaps of Objects and Windows

You can create a bitmap synchronization point that waits for the bitmap of an 
object or a window to appear in the application being tested. 

The method for synchronizing a test is identical for bitmaps of objects and 
windows. You start by choosing Create > Synchronization Point > For 
Object/Window Bitmap. As you pass the mouse pointer over your application, 
objects and windows flash. To select the bitmap of an entire window, you click the 
window’s title bar or menu bar. To select the bitmap of an object, you click the 
object.

During a test run, WinRunner suspends test execution until the specified bitmap 
is redrawn, and then compares the current bitmap with the expected one captured 
earlier. If the bitmaps match, then WinRunner continues the test. 

In the event of a mismatch, WinRunner displays an error message, when the 
mismatch_break testing option is on. For information about the mismatch_break 
testing option, see Chapter 37, Setting Testing Options from a Test Script.  
You can also set this testing option globally using the corresponding Break when 
Verification Fails option in the Run tab of the General Options dialog box. For 
information about setting this testing option globally, see Chapter 36, Setting 
Global Testing Options. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 557

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If the window or object you capture has a name that varies from run to run, you 
can define a regular expression in its physical description in the GUI map. This 
instructs WinRunner to ignore all or part of the name. For more information, see 
Chapter 5, Editing the GUI Map, and Chapter 19, Using Regular Expressions. 

During recording, when you capture an object in a window other than the active 
window, WinRunner automatically generates a set_window statement. 

To insert a bitmap synchronization point for an object or a window:

 1 Choose Create > Synchronization Point > For Object/Window Bitmap or 
click the Synchronization Point for Object/Window Bitmap on the User 
toolbar. Alternatively, if you are recording in Analog mode, press a SYNCHRONIZE 
BITMAP OF OBJECT/WINDOW softkey. The mouse pointer becomes a pointing hand.

 2 Highlight the desired window or object. To highlight an object, place the mouse 
pointer over it. To highlight a window, place the mouse pointer over its title bar or 
menu bar.



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 558

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click the left mouse button to complete the operation. WinRunner captures the 
bitmap and generates an obj_wait_bitmap or a win_wait_bitmap statement 
with the following syntax in the test script. 

obj_wait_bitmap ( object
 image
 time );

win_wait_bitmap ( window
 image
 time );

For example, suppose that while working with the Flight Reservation application, 
you decide to insert a synchronization point in your test script. 
If you point to the Date of Flight box, the resulting statement might be:

obj_wait_bitmap ("Date of Flight:", "Img5", 22);

For more information on obj_wait_bitmap and win_wait_bitmap, refer to the 
TSL Online Reference.

Note: The execution of obj_wait_bitmap and win_wait_bitmap is affected by 
the current values specified for the delay_msec, timeout_msec and min_diff 
testing options. For more information on these testing options and how to modify 
them, see Chapter 37, Setting Testing Options from a Test Script.  You may 
also set these testing options globally, using the corresponding Delay for 
Window Synchronization, Timeout for Checkpoints and CS Statements, 
and Threshold for Difference between Bitmaps boxes in the Run tab of the 
General Options dialog box. For more information about setting these testing 
options globally, see Chapter 36, Setting Global Testing Options. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 559

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Waiting for Bitmaps of Screen Areas

You can create a bitmap synchronization point that waits for a bitmap of a 
selected area in your application. You can define any rectangular area of the 
screen and capture it as a bitmap for a synchronization point. 

You start by choosing Create > Synchronization Point > For Screen Area Bitmap. 
As you pass the mouse pointer over your application, it becomes a crosshairs 
pointer, and a help window opens in the top left corner of your screen. 

You use the crosshairs mouse pointer to outline a rectangle around the area. The 
area can be any size: it can be part of a single window, or it can intersect several 
windows. WinRunner defines the rectangle using the coordinates of its upper left 
and lower right corners. These coordinates are relative to the upper left corner of 
the object or window in which the area is located. If the area intersects several 
objects in a window, the coordinates are relative to the window. If the selected 
area intersects several windows, or is part of a window with no title (a popup 
menu, for example), the coordinates are relative to the entire screen (the root 
window).

During a test run, WinRunner suspends test execution until the specified bitmap 
is displayed. It then compares the current bitmap with the expected bitmap. If the 
bitmaps match, then WinRunner continues the test. 



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 560

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the event of a mismatch, WinRunner displays an error message, when the 
mismatch_break testing option is on. For information about the mismatch_break 
testing option, see Chapter 37, Setting Testing Options from a Test Script.  
You may also set this option using the corresponding Break when Verification 
Fails check box in the Run tab of the General Options dialog box. For information 
about setting this testing option globally, see Chapter 36, Setting Global Testing 
Options. 

To define a bitmap synchronization point for an area of the screen:

 1 Choose Create > Synchronization Point > For Screen Area Bitmap or click 
the Synchronization Point for Screen Area Bitmap button on the User toolbar. 
Alternatively, if you are recording in Analog mode, press the SYNCHRONIZE BITMAP 
OF SCREEN AREA softkey.

The WinRunner window is minimized to an icon, the mouse pointer becomes a 
crosshairs pointer, and a help window opens in the top left corner of your screen.

 2 Mark the area to be captured: press the left mouse button and drag the mouse 
pointer until a rectangle encloses the area; then release the mouse button.

 3 Click the right mouse button to complete the operation. WinRunner captures the 
bitmap and generates a win_wait_bitmap or obj_wait_bitmap statement with 
the following syntax in your test script.

win_wait_bitmap ( window
 image
 time
 x
 y
 width
 height );

obj_wait_bitmap ( object
 image
 time
 x
 y
 width
 height );



Creating Tests • Synchronizing the Test Run

WinRunner User’s Guide Chapter 17, page 561

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, suppose you are  updating an order in the Flight Reservation 
application. You have to synchronize the continuation of the test with the 
appearance of a message verifying that the order was updated. You insert a 
synchronization point in order to wait for an “Update Done” message to appear in 
the status bar. 

WinRunner generates the following statement:

obj_wait_bitmap ("Update Done...", "Img7”, 10);

For more information on win_wait_bitmap and obj_wait_bitmap, refer to the 
TSL Online Reference.

Note: The execution of win_wait_bitmap and obj_wait_bitmap statements is 
affected by the current values specified for the delay_msec, timeout_msec and 
min_diff testing options. For more information on these testing options and how 
to modify them, see Chapter 37, Setting Testing Options from a Test Script.  
You may also set these testing options globally, using the corresponding Delay 
for Window Synchronization, Timeout for Checkpoints and CS Statements, 
and Threshold for Difference between Bitmaps boxes in the Run tab of the 
General Options dialog box. For more information about setting these testing 
options globally, see Chapter 36, Setting Global Testing Options. 



Creating Tests
Handling Unexpected Events and Errors

Chapter 18, page 562

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�	
Handling Unexpected Events and Errors

You can instruct WinRunner to handle unexpected events and errors that occur 
in your testing environment during a test run.

This chapter describes:

• Handling Pop-Up Exceptions

• Handling TSL Exceptions

• Handling Object Exceptions

• Activating and Deactivating Exception Handling



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 563

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Handling Unexpected Events and Errors

Unexpected events and errors during a test run can disrupt your test and distort 
test results. This is a problem particularly when running batch tests unattended: 
the batch test is suspended until you perform the action needed to recover. 

Using exception handling, you can instruct WinRunner to detect an unexpected 
event when it occurs and act to recover the test run. For example, you can instruct 
WinRunner to detect a “Printer out of paper” message and call a handler function. 
The handler function recovers the test run by clicking the OK button to close the 
message. 

To use exception handling, you must define and activate it.

Define exception handling: Describe the event or error you want WinRunner to 
detect, and define the actions it will perform in order to resume test execution. To 
do this, you define the exception and define a handler function.

Activate exception handling: Instruct WinRunner to look for any occurrence of 
the exception you defined.

Define 
Exception Handling

Define Handler Function

Activate
Exception HandlingDefine ExceptionDefine Exception



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 564

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Normally, you define and activate exception handling using the Exceptions dialog 
box. Alternatively, you can program exception handling in your test script using 
TSL statements. Both methods are described in this chapter.

WinRunner enables you to handle the following types of exceptions:

• Pop-up exceptions: Instruct WinRunner to detect and handle the appearance 
of a specific window.

• TSL exceptions: Instruct WinRunner to detect and handle TSL functions that 
return a specific error code.

• Object exceptions: Instruct WinRunner to detect and handle a change in a 
property for a specific GUI object.

Note: When the WebTest add-in is loaded, you can instruct WinRunner to 
handle unexpected events and errors that occur in your Web site during a test 
run. For more information, refer to the WebTest User’s Guide.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 565

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Handling Pop-Up Exceptions

A test run is often disrupted by a window that pops up unexpectedly during a test 
run, such as a message box indicating that the printer is out of paper. Sometimes, 
test execution cannot continue until you close the window.

A pop-up exception instructs WinRunner to detect a specific window that may 
appear during a test run and to recover test execution, for example, by clicking an 
OK button to close a window.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 566

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Pop-Up Exceptions
You use the Pop-Up Exception dialog box to define pop-up exceptions. 

To define a pop-up exception:

 1 Choose Tools > Exception Handling to open the Exceptions dialog box.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 567

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 In the Exception Type box, click Pop-Up. Then click New. 

The Pop-Up Exception dialog box opens. 

 3 In the Exception Name box, type in a new name.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 568

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Choose the pop-up window in one of the following ways: 

• Click the pointing hand and click the window. If the window to which you 
pointed is not in the GUI map, WinRunner adds it to the map. WinRunner 
enters the logical name into the Window Name box.

• Type the name of the window into the Window Name box. You can type in 
the window’s title or its logical name. If the window is not in the GUI map, 
WinRunner assumes that the name you specify is the window’s title. You can 
also specify a regular expression.

 5 Choose a handler function: click a default (press Enter, click Cancel, or click 
OK), or click User Defined Function Name to specify a user-defined handler. If 
you choose the last option, the dialog box changes to display the User Defined 
Function Name box.

If you specify a user-defined handler function in the User Defined Function 
Name box that is undefined or in an unloaded compiled module, the Handler 
Function Definition dialog box opens automatically, displaying a handler 
function template. For more information on defining handler functions, see 
Defining Handler Functions for Pop-Up Exceptions on page 570.

 6 To activate exception handling active at all times, select the Activate by Default 
check box.

 7 Click OK to complete the definition and close the dialog box. The new exception 
appears in the Pop-Up Exception List in the Exceptions dialog box. 



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 569

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner activates handling and adds the new exception to the list of default 
pop-up exceptions in the Exceptions dialog box. Default exceptions are defined 
by the XR_EXCP_POPUP configuration parameter in the wrun.ini file. 

As an alternative to using the Pop-Up Exception dialog box, you can define a pop-
up exception in a test script using the define_popup_exception function, and 
you can activate it using the exception_on function. For more information on 
activating and deactivating exceptions, see Activating and Deactivating 
Exception Handling on page 587. Note that exceptions you define using TSL are 
valid only for the current WinRunner session. For more information on 
define_popup_exception, refer to the TSL Online Reference.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 570

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Handler Functions for Pop-Up Exceptions
The handler function is responsible for recovering test execution. When 
WinRunner detects a specific window, it calls the handler function. You implement 
this function to respond to the unexpected event in a way that meets your specific 
testing needs. 

When defining an exception from the Pop-Up Exception dialog box, you can 
specify one of two types of handler functions:

• Default actions: WinRunner clicks the OK or Cancel button in the pop-up 
window, or presses Enter on the keyboard. To select a default handler, click the 
appropriate button in the dialog box.

• User-defined handler: If you prefer, specify the name of your own handler. Click 
User Defined Function Name and type in a name in the User Defined Function 
Name box.

If you specify a user-defined handler that is either undefined or in an unloaded 
compiled module, WinRunner automatically displays a template in the Handler 
Function Definition dialog box. You can use the template to help you create a 
handler function. The handler function must receive the window_name as a 
parameter.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 571

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To define your own handler function using the Handler Function Definition 
dialog box:

 1 Define an exception using the Pop-Up Exception dialog box, as described in 
Defining Pop-Up Exceptions on page 566. Specify a new name for the handler 
function.

 2 Click OK. The dialog box closes and the Handler Function Definition dialog 
box opens, displaying the handler function template. 

 3 Create a function that closes the window and recovers test execution.

 4 Click Paste to paste the statements into the WinRunner window. 



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 572

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click Close to close the Handler Function Definition dialog box.

 6 You can edit the test script further if necessary. When you are done, save the 
script in a compiled module. 

User-defined handler functions should be stored in a compiled module. For 
WinRunner to call the function, the compiled module must be loaded when the 
exception occurs. For more information, refer to Chapter 24, Creating 
Compiled Modules. 

In the following example, the handler function is edited to handle an error 
message. A Flights Reservation application sometimes displays a “FATAL 
DATABASE ERROR” message, often as the result of a faulty database entry. You 
can create a handler function that gets the faulty entry number and its value, and 
writes the information to the test execution report. Then, it dismisses the error 
message.

The script segment below shows how the handler function (my_win_handler) can 
be edited in the template:

public function my_win_handler(string win_name)
{

auto order_num; 
set_window("Open Order",2);
edit_get_text("Order Value",order_num);
report_msg("Database error. Order number:" & order_num);
set_window(win_name);
button_press (“OK");}



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 573

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Handling TSL Exceptions

A TSL exception enables you to detect and respond to a specific error code 
returned during test execution. 

Suppose you are running a batch test on an unstable version of your application. 
If your application crashes, you want WinRunner to recover test execution. A TSL 
exception can instruct WinRunner to recover test execution by exiting the current 
test, restarting the application, and continuing with the next test in the batch.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 574

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining TSL Exceptions
You use the TSL Exception dialog box to define, modify, and delete TSL 
exceptions.

To define a TSL exception:

 1 Choose Tools > Exception Handling to open the Exceptions dialog box.

 2 In the Exception Type box, click TSL. Then click New. 

The TSL Exception dialog box opens. 

 3 In the Exception Name box, type in a new name.

 4 In the Return Code list, choose a return code.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 575

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 In the Function Name list, choose a TSL function. If you choose <<any 
function>> or do not specify a function, WinRunner defines the exception for 
any TSL function that returns the specified return code.

 6 In the Handler Function box, type in the name of a handler function.

If you specify a handler function that is undefined or is in an unloaded compiled 
module, the Handler Function Definition dialog box opens automatically, 
displaying a handler function template. For more information on defining handler 
functions, see Defining Handler Functions for TSL Exceptions on page 576.

 7 To activate exception handling at all times, select the Activate by Default check 
box.

 8 Click OK to complete the definition and close the dialog box. The new exception 
appears in the TSL Exception List in the Exceptions dialog box.

Once you have defined the exception, WinRunner activates handling and adds 
the exception to the list of default TSL exceptions in the Exceptions dialog box. 
Default TSL exceptions are defined by the XR_EXCP_TSL configuration parameter 
in the wrun.ini configuration file. 



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 576

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

As an alternative to using the TSL Exception dialog box, you can define a TSL 
exception in a test script using the define_TSL_exception function, and you can 
activate it using the exception_on function. For more information on activating 
and deactivating exceptions, see Activating and Deactivating Exception 
Handling on page 587. Note that exceptions you define using TSL are valid only 
for the current WinRunner session. For more information on 
define_TSL_exception, refer to the TSL Online Reference.

Defining Handler Functions for TSL Exceptions
The handler function is responsible for recovering test execution. When 
WinRunner detects a specific error code, it calls the handler function. You 
implement this function to respond to the unexpected error in the way that meets 
your specific testing needs.

If you specify a handler that is either undefined or in an unloaded compiled 
module, WinRunner automatically displays a template in the Handler Function 
Definition dialog box. You can use the template to help you create a handler 
function. The handler function must receive the return_code and the 
function_name as parameters.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 577

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To define a handler function using the Handler Function Definition dialog 
box:

 1 Define an exception using the TSL Exception dialog box, as described in 
Defining TSL Exceptions on page 574. Specify a new name for the handler 
function.

 2 Click OK. The dialog box closes and the Handler Function Definition dialog 
box opens, displaying the handler function template. 

 3 Create a function that recovers test execution.

 4 Click Paste to paste the statements into the WinRunner window. 

 5 Click Close to close the Handler Function Definition dialog box.

 6 You can further edit the test script if necessary. When you are done, save the 
script in a compiled module.

In order for the exception to call the handler function, the compiled module must 
be loaded when the exception occurs. For more information, refer to Chapter 24, 
Creating Compiled Modules. 

The following example uses the Flight Reservation application to demonstrate 
how you can instruct WinRunner to record a specific event in the test report. In 
the application, it is illegal to select an item from the “Fly To:” list without first 
selecting an item from the “Fly From:” list.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 578

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Suppose you program a stress test to create such a situation. The test selects the 
first item in the “Fly From:” list for every selection from the “Fly To:” list. If the “Fly 
From:” list is empty, the command:

list_select_item ("Fly From:","#0"); 

returns the error code E_ITEM_NOT_FOUND.

You could implement exception handling to identify each occurrence of the 
E_ITEM_NOT_FOUND return value for the list_select_item command. You do this 
by defining a handler function that reacts by recording the event in the test report.

Edit the handler function (list_item_handler) in the template as follows:

public function list_item_handler(rc, func_name)
{
report_msg("List Fly From: is empty")
}



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 579

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: The handler function of a TSL exception does not need to return any 
value. However, a TSL exception defined for a TSL Context Sensitive function 
can return one of the following values:

• RETRY: The function is executed again. If the exception recurs, it is not 
handled again. An exception handler should return RETRY if the problem that 
caused the exception is resolved.

• DEF_PROCESSING: The function is handled by default, as though no exception 
was defined. The TSL command that called the exception is processed as 
though an exception was never detected (i.e. messages are generated, the 
Run wizard opens, or the return value is reported).

For example, if a button_press statement returns a value of E_NOT_UNIQUE, and 
this error code is defined as an exception, the exception handler is called. If it 
returns DEF_PROCESSING, the Run wizard opens and tries to resolve the problem 
of the non-unique button. Therefore, an exception handler should return 
DEF_PROCESSING when the handler cannot resolve the exception.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 580

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Handling Object Exceptions

During testing, unexpected changes can occur to GUI objects in the application 
you are testing. These changes are often subtle but they can disrupt the test run 
and distort results. 

One example is a change in the color of a button. Suppose that your application 
uses a green button to indicate that an electrical network is closed; the same 
button may turn red when the network is broken. 

You could use exception handling to detect a different color in the button during 
the test run, and to recover test execution by calling a handler function that closes 
the network and restores the button’s color.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 581

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Object Exceptions
You use the Object Exception dialog box to define, modify, and delete object 
exceptions.

To define an object exception:

 1 Choose Tools > Exception Handling to open the Exceptions dialog box.

 2 In the Exception Type box, click Object. Then click New. 

The Object Exception dialog box opens. 

 3 In the Exception Name box, type in a new name.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 582

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Choose the object in one of the following ways:

• Click the pointing hand and click the object. The names of the object and 
its parent window appear in the boxes.

• Type the names of the object and its parent window. In the Object Name 
box, type in the name of the object. In the Window Name box, type in the 
name of the window in which the object is found.

• If the object exception you are defining is for a window, enter the name of the 
window in the Window Name box and leave the Object Name box empty.

Note that for an object exception, the object and its parent window must be in the 
loaded GUI map when exception handling is activated.

 5 In the Property list, choose the property for which you are defining the object 
exception. 

 6 In the Value box, type in a value for the property you have selected. If you do not 
specify a value, the exception will be defined for any change from the current 
property value.

Note that the property you specify for the exception cannot appear in the object’s 
physical description. If you attempt to specify such a property, WinRunner will 
display an error message. To work around the problem, modify the object’s 
physical description. For more information, refer to Chapter 5, Editing the GUI 
Map. 



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 583

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 In the Handler Function box, enter the name of the handler function.

If you specify a handler function that is undefined or in an unloaded compiled 
module, the Handler Function dialog box opens, displaying a handler function 
template. For more information on defining handler functions, see Defining 
Handler Functions for Object Exceptions on page 584.

 8 To make exception handling active at all times, select the Activate by Default 
check box.

If you have not specified a value for the property, ensure that the object is 
displayed when you press the OK button. You can activate exception handling 
only if WinRunner can learn the current value of the property.

 9 Click OK to complete the definition and close the dialog box. The new exception 
appears in the Object Exception List in the Exceptions dialog box.

Once you have defined the exception, WinRunner activates handling and adds 
the exception to the list of default object exceptions in the Exceptions dialog box. 
Default object exceptions are defined by the XR_EXCP_OBJ configuration variable 
in the wrun.ini file. 

As an alternative to using the Object Exception dialog box, you can define an 
object exception in a test script using the define_object_exception function, and 
you can activate it using the exception_on function. For more information on 
activating and deactivating exceptions, see Activating and Deactivating 
Exception Handling on page 587. Note that exceptions you define with TSL are 
valid only for the current WinRunner session. For more information on 
define_object_exception, refer to the TSL Online Reference.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 584

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Handler Functions for Object Exceptions
The handler function is responsible for recovering test execution. When 
WinRunner detects a changed property, it calls the handler function. You 
implement this function to respond to the unexpected event in a way that meets 
your specific testing needs. 

If you specify a handler function that is either undefined or in an unloaded 
compiled module, WinRunner automatically displays a template in the Handler 
Function Definition dialog box. You can use the template to help you create a 
handler function. The handler function must receive the window, object, property 
and value as parameters.

Note that the first command in the template is exception_off. This is because an 
object exception does not detect the actual change in the specified object 
property; rather, it detects a state in the specified object property. The handler 
function must deactivate exception handling as soon as the function begins to 
execute. If not, the exception will immediately reoccur, calling the handler function 
endlessly. 

Only if the handler function has fixed the problem that caused the exception to 
occur, call exception_on at the bottom of the handler function so that if the 
exception reoccurs, it will be detected again. (Note that the exception_on 
statement appears in the the template, but it is commented out.)



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 585

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To define a handler function using the Handler Function Definition dialog 
box:

 1 Define an exception using the Object Exception dialog box, as described in 
Defining Object Exceptions on page 581.

 2 Click OK. The dialog box closes and the Handler Function Definition dialog 
box opens, displaying the handler function template. 

 3 Create a function that recovers test execution.

 4 Click Paste to paste the statements into WinRunner. The dialog box closes.

 5 Click Close to exit the Handler Function Definition dialog box.

 6 You can further edit the test script if necessary. When you are done, save the 
script in a compiled module. To enable exception detection, ensure that you load 
the compiled module before test execution.

Handler functions must be stored in a compiled module. For WinRunner to call 
the handler function, the compiled module must be loaded at the moment the 
exception occurs. For more information, refer to Chapter 24, Creating 
Compiled Modules. 

For example, the labels of GUI objects may become corrupted during testing, 
often as a result of memory management problems. You could define exception 
handling to take care of such irregularities in the Flights application.



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 586

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The handler function that is called might write the unexpected event to a test 
report, close and restart your application, then exit the current test and continue 
to the next test in the batch. To do this, you would edit the handler function 
(label_handler) in the template as follows:

public function label_handler(in win, in obj, in attr, in val)
{
#ignore this exception while it is handled:
exception_off("label_except");
report_msg("Label has changed");
menu_select_item (“File;Exit”);
invoke_application ("flights", "", "C:\\FRS", "SW_SHOWMAXIMIZED");
#if the value of "attr" no longer equals "val":
exception_on("label_except");
texit;
}



Creating Tests • Handling Unexpected Events and Errors

WinRunner User’s Guide Chapter 18, page 587

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Activating and Deactivating Exception Handling

When you define an exception by using the Exceptions dialog box, exception 
handling is activated by default. To turn off activating exception handling by 
default, clear the Activate by Default check box in each Exception dialog box.

You can also activate exception handling in a test script by using TSL commands: 

• To instruct WinRunner to begin detecting an exception, insert an exception_on 
statement at the appropriate point in your test script. 

• To instruct WinRunner to stop detecting an exception, use the exception_off 
function. Use exception_off_all to stop detection of all active exceptions.

For more information on these functions, refer to the TSL Online Reference.



Creating Tests
Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 588

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�

Using Regular Expressions

You can use regular expressions to increase the flexibility and adaptability of your 
tests. This chapter describes:

• When to Use Regular Expressions

• Regular Expression Syntax



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 589

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Regular Expressions

Regular expressions enable WinRunner to identify objects with varying names or 
titles. You can use regular expressions in TSL statements or in object descriptions 
in the GUI map. For example, you can define a regular expression in the physical 
description of a push button so that WinRunner can locate the push button if its 
label changes.

A regular expression is a string that specifies a complex search phrase. In most 
cases the string is preceded by an exclamation point (!). (In descriptions or 
arguments of functions where a string is expected, such as the match function, 
the exclamation point is not required.) By using special characters such as a 
period (.), asterisk (*), caret (^), and brackets ([ ]), you define the conditions of the 
search. For example, the string “!windo.*” matches both “window” and “windows”. 
See Regular Expression Syntax on page 595 for more information.

Note that WinRunner regular expressions include options similar to those offered 
by the UNIX grep command. 



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 590

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When to Use Regular Expressions

Use a regular expression when the name of a GUI object can vary each time you 
run a test. For example, you can use a regular expression in the following 
instances:

• the physical description of an object in the GUI map

• a GUI checkpoint, when evaluating the contents of an edit object or static text 
object with a varying name

• a text checkpoint, to locate a varying text string using win_find_text or 
object_find_text

Using a Regular Expression in an Object’s Physical 
Description in the GUI Map
You can use a regular expression in the physical description of an object in the 
GUI map, so that WinRunner can ignore variations in the object’s label. For 
example, the physical description:

{
class: push_button
label: "!St.*"
}

enables WinRunner to identify a push button if its label toggles from “Start” to 
“Stop”.



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 591

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using a Regular Expression in a GUI Checkpoint
You can use a regular expression in a GUI checkpoint, when evaluating the 
contents of an edit object or a static text object with a varying name. You define 
the regular expression by creating a GUI checkpoint on the object in which you 
specify the checks. The example below illustrates how to use a regular 
expression if you choose Create > GUI Checkpoint > For Object/Window and 
double-click a static text object. Note that you can also use a regular expression 
with the Create > GUI Checkpoint > For Multiple Objects command. For 
additional information about GUI checkpoints, see Chapter 9, Checking GUI 
Objects. 

To define a regular expression in a GUI checkpoint:

 1 Create a GUI checkpoint for an object in which you specify the checks. In this 
example, choose Create > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized, the mouse pointer becomes a pointing 
hand, and a help window opens on the screen.

 2 Double-click a static text object. 



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 592

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 The Check GUI dialog box opens:

 4 In the Properties pane, highlight the “Regular Expression” property check and 
then click the Specify Arguments button.



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 593

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check Arguments dialog box opens:

 5 Enter the regular expression in the Regular Expression box, and then click OK. 

Note: When a regular expression is used to perform a check on a static text or 
edit object, it should not be preceded by an exclamation point. 

 6 If desired, specify any additional checks to perform, and then click OK to close 
the Check GUI dialog box.

An obj_check_gui statement is inserted into your test script.

For additional information on specifying arguments, see Specifying Arguments 
for Property Checks on page 273.



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 594

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using a Regular Expression in a Text Checkpoint
You can use a regular expression in a text checkpoint, to locate a varying text 
string using win_find_text or object_find_text. For example, the statement: 

obj_find_text ("Edit", "win.*", coord_array, 640, 480, 366, 284);

enables WinRunner to find any text in the object named “Edit” that begins with 
“win”.

Since windows often have varying labels, WinRunner defines a regular 
expression in the physical description of a window. For more information, see 
Chapter 5, Editing the GUI Map. 



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 595

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Regular Expression Syntax

Regular expressions must begin with an exclamation point (!), except when 
defined in a Check GUI dialog box, a text checkpoint, or a match, obj_find_text, 
or win_find_text statement. All characters in a regular expression are searched 
for literally, except for a period (.), asterisk (*), caret (^), and brackets ([ ]), as 
described below. When one of these special characters is preceded by a 
backslash (\), WinRunner searches for the literal character. For example, if you 
are using a win_find_text statement to search for a phrase beginning with “Sign 
up now!”, then you should use the following regular expression: “Sign up now\!*”.

The following options can be used to create regular expressions:

Matching Any Single Character
A period (.) instructs WinRunner to search for any single character. For example, 

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other 
single character. A series of periods indicates a range of unspecified characters. 



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 596

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Matching Any Single Character within a Range
In order to match a single character within a range, you can use brackets 
([ ]). For example, to search for a date that is either 1968 or 1969, write:

196[89]

You can use a hyphen (-) to indicate an actual range. For instance, to match any 
year in the 1960s, write:

196[0-9]

Brackets can be used in a physical description to specify the label of a static text 
object that may vary:

{
class: static_text,
label: "!Quantity[0-9]"
}

In the above example, WinRunner can identify the static_text object with the 
label “Quantity” when the quantity number varies.



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 597

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

A hyphen does not signify a range if it appears as the first or last character within 
brackets, or after a caret (^).

A caret (^) instructs WinRunner to match any character except for the ones 
specified in the string. For example:

[^A-Za-z]

matches any non-alphabetic character. The caret has this special meaning only 
when it appears first within the brackets.

Note that within brackets, the characters “.”, “*”, “[“ and “\” are literal. If the right 
bracket is the first character in the range, it is also literal. For example:

[]g-m] 

matches the “]“ and g through m.

Note: Two “\” characters together (“\\”) are interpreted as a single “\” character. 
For example, in the physical description in a GUI map, “!D:\\.*” does not mean all 
labels that start with “D:\”. Rather, it refers to all labels that start with “D:.”. To 
specify all labels that start with “D:\”, use the following regular expression: 
“!D:\\\\.*”.



Creating Tests • Using Regular Expressions

WinRunner User’s Guide Chapter 19, page 598

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Matching Specific Characters
An asterisk (*) instructs WinRunner to match one or more occurrences of the 
preceding character. For example:

Q*

causes WinRunner to match Q, QQ, QQQ, etc. 

A period “.” followed by an asterisk “*” instructs WinRunner to locate the preceding 
characters followed by any combination of characters. For example, in the 
following physical description, the regular expression enables WinRunner to 
locate any push button that starts with “O” (for example, On or Off).

{
class: push_button
label: "!O.*"
}

You can also use a combination of brackets and an asterisk to limit the label to a 
combination of non-numeric characters. For example:

{
class: push_button
label: "!O[a-zA-Z]*"
}



WinRunner User’s Guide Page 599

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part IV

Programming with TSL



Programming with TSL
Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 600

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Enhancing Your Test Scripts with Programming

WinRunner test scripts are composed of statements coded in Mercury 
Interactive’s Test Script Language (TSL). This chapter provides a brief 
introduction to TSL and shows you how to enhance your test scripts using a few 
simple programming techniques.

This chapter describes:

• Statements

• Comments and White Space

• Constants and Variables

• Performing Calculations

• Creating Stress Conditions

• Decision-Making

• Sending Messages to the Test Results Window

• Starting Applications from a Test Script

• Defining Test Steps

• Comparing Two Files



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 601

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Enhancing Your Test Scripts with Programming

When you record a test, a test script is generated in Mercury Interactive’s Test 
Script Language (TSL). Each TSL statement in the test script represents 
keyboard and/or mouse input to the application being tested. 

TSL is a C-like programming language designed for creating test scripts. It 
combines functions developed specifically for testing with general purpose 
programming language features such as variables, control-flow statements, 
arrays, and user-defined functions. TSL is easy to use because you do not have 
to compile. You enhance a recorded test script simply by typing programming 
elements into the test window, and immediately execute the test.

TSL includes four types of functions:

• Context Sensitive functions perform specific tasks on GUI objects, such as 
clicking a button or selecting an item from a list. Function names, such as 
button_press and list_select_item, reflect the function’s purpose.

• Analog functions depict mouse clicks, keyboard input, and the exact coordinates 
traveled by the mouse.

• Standard functions perform general purpose programming tasks, such as 
sending messages to a report or performing calculations.

• Customization functions allow you to adapt WinRunner to your testing 
environment.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 602

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner includes a visual programming tool which helps you to quickly and 
easily add TSL functions to your tests. For more information, see Chapter 21, 
Generating Functions.  

This chapter introduces some basic programming concepts and shows you how 
to use a few simple programming techniques in order to create more powerful 
tests. For more information on TSL, refer to the TSL Online Reference.

Statements

When WinRunner records a test, each line it generates in the test script is a 
statement. A statement is any expression that is followed by a semicolon. A single 
statement may be longer than one line in the test script.

For example:

if (button_check_state("Underline", OFF) == E_OK)
report_msg("Underline check box is unavailable.");

If you program a test script by typing directly into the test window, remember to 
include a semicolon at the end of each statement.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 603

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Comments and White Space

When programming, you can add comments and white space to your test scripts 
to make them easier to read and understand.

Comments
A comment is a line or part of a line in a test script that is preceded by a pound 
sign (#). When you run a test, the TSL interpreter does not process comments. 
Use comments to explain sections of a test script in order to improve readability 
and to make tests easier to update.

For example:

# Open the Open Order window in Flight Reservation application
set_window ("Flight Reservation", 10);
menu_select_item ("File;Open Order...");

# Select the reservation for James Brown
set_window ("Open Order_1");
button_set ("Customer Name", ON); 
edit_set ("Value", "James Brown"); # Type James Brown
button_press ("OK");



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 604

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

White Space
White space refers to spaces, tabs, and blank lines in your test script. The TSL 
interpreter is not sensitive to white space unless it is part of a literal string. Use 
white space to make the logic of a test script clear. 



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 605

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Constants and Variables

Constants and variables are used in TSL to manipulate data. A constant is a value 
that never changes. It can be a number, character, or a string. A variable, in 
contrast, can change its value each time you run a test.

Variable and constant names can include letters, digits, and underscores (_). The 
first character must be a letter or an underscore. TSL is case sensitive; therefore, 
y and Y are two different characters. Certain words are reserved by TSL and may 
not be used as names. 

You do not have to declare variables you use outside of function definitions in 
order to determine their type. If a variable is not declared, WinRunner determines 
its type (auto, static, public, extern) when the test is run. 

For example, the following statement uses a variable to store text that appears in 
a text box.

edit_get_text ("Name:", text);
report_msg ("The Customer Name is " & text);

WinRunner reads the value that appears in the File Name text box and stores it 
in the text variable. A report_msg statement is used to display the value of the 
text variable in a report. For more information, see Sending Messages to the 
Test Results Window on page 615. For information about variable and constant 
declarations, see Chapter 23, Creating User-Defined Functions. 



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 606

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Performing Calculations

You can create tests that perform simple calculations using mathematical 
operators. For example, you can use a multiplication operator to multiply the 
values displayed in two text boxes in your application. TSL supports the following 
mathematical operators:

+ addition

- subtraction

- negation (a negative number - unary
operator)

* multiplication

/ division

% modulus

^ or ** exponent

++ increment (adds 1 to its operand - unary operator)

-- decrement (subtracts 1 from its operand - unary
operator)

TSL supports five additional types of operators: concatenation, relational, logical, 
conditional, and assignment. It also includes functions that can perform complex 
calculations such as sin and exp. See the TSL Online Reference for more 
information.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 607

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following example uses the Flight Reservation application. WinRunner reads 
the price of both an economy ticket and a business ticket. It then checks whether 
the price difference is greater than $100.

# Select Economy button
set_window ("Flight Reservation");
button_set ("Economy", ON);

# Get Economy Class ticket price from price text box
edit_get_text ("Price:", economy_price);

# Click Business.
button_set ("Business", ON);

# Get Business Class ticket price from price box
edit_get_text ("Price:", business_price);

# Check whether price difference exceeds $100
if ((business_price - economy_price) > 100)
tl_step ("Price_check", 1, "Price difference is too large.");



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 608

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating Stress Conditions

You can create stress conditions in test scripts that are designed to determine the 
limits of your application. You create stress conditions by defining a loop which 
executes a block of statements in the test script a specified number of times. TSL 
provides three statements that enable looping: for, while, and do/while. Note that 
you cannot define a constant within a loop.

For Loop
A for loop instructs WinRunner to execute one or more statements a specified 
number of times. It has the following syntax:

for ( [ expression1 ]; [ expression2 ]; [ expression3 ] ) 
statement

First, expression1 is executed. Next, expression2 is evaluated. If expression2 is 
true, statement is executed and expression3 is executed. The cycle is repeated 
as long as expression2 remains true. If expression2 is false, the for statement 
terminates and execution passes to the first statement immediately following.

For example, the for loop below selects the file UI_TEST from the File Name list 
in the Open window. It selects this file five times and then stops.

set_window ("Open")
for (i=0; i<5; i++)

list_select_item ("File Name:_1", "UI_TEST"); # Item Number 2



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 609

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

While Loop
A while loop executes a block of statements for as long as a specified condition 
is true. It has the following syntax:

while ( expression ) 
statement ;

While expression is true, the statement is executed. The loop ends when the 
expression is false.

For example, the while statement below performs the same function as the for 
loop above.

set_window ("Open");
i=0;
while (i<5)

{
i++;
list_select_item ("File Name:_1", "UI_TEST"); # Item Number 2
}



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 610

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Do/While Loop
A do/while loop executes a block of statements for as long as a specified condition 
is true. Unlike the for loop and while loop, a do/while loop tests the conditions at 
the end of the loop, not at the beginning. A do/while loop has the following syntax:

do
statement 

while (expression);

The statement is executed and then the expression is evaluated. If the 
expression is true, then the cycle is repeated. If the expression is false, the cycle 
is not repeated.

For example, the do/while statement below opens and closes the Order dialog 
box of Flight Reservation five times.

set_window ("Flight Reservation");
i=0;
do

{
menu_select_item ("File;Open Order...");
set_window ("Open Order");
button_press ("Cancel");
i++;
}

while (i<5);



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 611

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Decision-Making

You can incorporate decision-making into your test scripts using if/else or switch 
statements.

If/Else Statement
An if/else statement executes a statement if a condition is true; otherwise, it 
executes another statement. It has the following syntax:

if ( expression )
statement1;

[ else
statement2; ]

expression is evaluated. If expression is true, statement1 is executed. If 
expression1 is false, statement2 is executed.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 612

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, the if/else statement below checks that the Flights button in the 
Flight Reservation window is enabled. It then sends the appropriate message to 
the report.

#Open a new order
set_window ("Flight Reservation_1");
menu_select_item ("File; New Order");

#Type in a date in the Date of Flight: box
edit_set_insert_pos ("Date of Flight:", 0, 0);
type ("120196");

#Type in a value in the Fly From: box
list_select_item ("Fly From:", "Portland");

#Type in a value in the Fly To: box
list_select_item ("Fly To:", "Denver");

#Check that the Flights button is enabled
button_get_state ("FLIGHT", value);
if (value != ON)

report_msg ("The Flights button was successfully enabled");
else

report_msg ("Flights button was not enabled. Check that values for 
Fly From and Fly To are valid");



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 613

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Switch Statement
A switch statement enables WinRunner to make a decision based on an 
expression that can have more than two values. It has the following syntax:

switch (expression )
{

case case_1: 
statements

case case_2:
statements

case case_n: 
statements

default: statement(s)
}

The switch statement consecutively evaluates each case expression until one is 
found that equals the initial expression. If no case is equal to the expression, 
then the default statements are executed. The default statements are optional.

Note that the first time a case expression is found to be equal to the specified 
initial expression, no further case expressions are evaluated. However, all 
subsequent statements enumerated by these cases are executed, unless you 
use a break statement to pass execution to the first statement immediately 
following the switch statement.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 614

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following test uses the Flight Reservation application. It randomly clicks 
either the First, Business or Economy Class button. Then it uses the appropriate 
GUI checkpoint to verify that the correct ticket price is displayed in the Price text 
box.

arr[1]="First";arr[2]="Business";arr[3]="Economy";
while(1)
{

num=int(rand()*3)+1;

# Click class button
set_window ("Flight Reservation");
button_set (arr[num], ON);

# Check the ticket price for the selected button
switch (num)
{

case 1:  #First
obj_check_gui("Price:", "list1.ckl", "gui1", 1);
break;
case 2:  #Business
obj_check_gui("Price:", "list2.ckl", "gui2", 1);
break;
case 3:  #Economy
obj_check_gui("Price:", "list3.ckl", "gui3", 1);
}

}



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 615

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Sending Messages to the Test Results Window

You can define a message in your test script and have WinRunner send it to the 
test results window. To send a message to a test results window, add a 
report_msg statement to your test script. The function has the following syntax:

report_msg ( message );

The message can be a string, a variable, or a combination of both.

In the following example, WinRunner gets the value of the label property in the 
Flight Reservation window and enters a statement in the test results containing 
the message and the label value.

win_get_info("Flight Reservation", "label", value);
report_msg("The label of the window is " & value);



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 616

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Starting Applications from a Test Script

You can start an application from a WinRunner test script using the 
invoke_application function. For example, you can open the application being 
tested every time you start WinRunner by adding an invoke_application 
statement to a startup test. See Chapter 39, Initializing Special Configurations, 
for more information.

The invoke_application function has the following syntax:

invoke_application ( file, command_option, working_dir, show );

The file designates the full path of the application to invoke. The 
command_option parameter designates the command line options to apply. The 
work_dir designates the working directory for the application and show specifies 
how the application’s main window appears when open.

For example, the statement:

invoke_application("c:\\flight1a.exe", "", "", SW_MINIMIZED);

starts the Flight Reservation application and displays it as an icon.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 617

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Test Steps

After you run a test, WinRunner displays the overall result of the test (pass/fail) in 
the Report form. To determine whether sections of a test pass or fail, add tl_step 
statements to the test script.

The tl_step function has the following syntax:

tl_step ( step_name, status, description );

The step_name is the name of the test step. The status determines whether the 
step passed (0), or failed (any value except 0). The description describes the 
step.

For example, in the following test script segment, WinRunner reads text from 
Notepad. The tl_step function is used to determine whether the correct text is 
read.

win_get_text("Document - Notepad", text, 247, 309, 427, 329);
if (text=="100-Percent Compatible")

tl_step("Verify Text", 0, "Correct text was found in Notepad");
else

tl_step("Verify Text", 1,"Wrong text was found in Notepad");

When the test run is completed, you can view the test results in the WinRunner 
Report. The report displays a result (pass/fail) for each step you defined with 
tl_step.

Note that if you are using TestDirector to plan and design tests, you should use 
tl_step to create test steps in your automated test scripts. For more information, 
refer to the TestDirector User’s Guide.



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 618

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Comparing Two Files

WinRunner enables you to compare any two files during a test run and to view 
any differences between them using the file_compare function.

While creating a test, you insert a file_compare statement into your test script, 
indicating the files you want to check. When you run the test, WinRunner opens 
both files and compares them. If the files are not identical, or if they could not be 
opened, this is indicated in the test report. In the case of a file mismatch, you can 
view both of the files directly from the report and see the lines in the file that are 
different.

Suppose, for example, your application enables you to save files under a new 
name (Save As...). You could use file comparison to check whether the correct 
files are saved or whether particularly long files are truncated.

To compare two files during a test run, you program a file_compare statement at 
the appropriate location in the test script. This function has the following syntax:

file_compare ( file_1, file_2 [ ,save_file ] );

The file_1 and file_2 parameters indicate the names of the files to be compared. 
If a file is not in the current test folder, then the full path must be given. The 
optional save_file parameter saves the name of a third file, which contains the 
differences between the first two files. 



Programming with TSL • Enhancing Your Test Scripts with Programming

WinRunner User’s Guide Chapter 20, page 619

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following example, WinRunner tests the Save As capabilities of the 
Notepad application. The test opens the win.ini file in Notepad and saves it under 
the name win1.ini. The file_compare function is then used to check whether one 
file is identical to the other and to store the differences file in the test directory.

# Open win.ini using WordPad.
system("write.exe c:\win95\win.ini");
set_window("win.ini - WordPad",1);

# Save win.ini as win1.ini
menu_select_item("File;Save As...");
set_window("Save As");
edit_set("File Name:_0","c:\Win95\win1.ini");
set_window("Save As", 10);
button_press("Save");

# Compare win.ini to win1.ini and save both files to "save".
file_compare("c:\\win95\\win.ini","c:\\win95\\win1.ini","save");

For information on viewing the results of file comparison, see Chapter 28, 
Analyzing Test Results. 



Programming with TSL
Generating Functions

WinRunner User’s Guide Chapter 21, page 620

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Generating Functions

Visual programming helps you add TSL statements to your test scripts quickly 
and easily.

This chapter describes:

• Generating a Function for a GUI Object

• Selecting a Function from a List

• Assigning Argument Values

• Modifying the Default Function in a Category



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 621

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Generating Functions

When you record a test, WinRunner generates TSL statements in a test script 
each time you click a GUI object or use the keyboard. In addition to the recordable 
functions, TSL includes many functions that can increase the power and flexibility 
of your tests. You can easily add functions to your test scripts using WinRunner’s 
visual programming tool, the Function Generator.

The Function Generator provides a quick, error-free way to program scripts. You 
can:

• Add Context Sensitive functions that perform operations on a GUI object or get 
information from the application being tested.

• Add Standard and Analog functions that perform non-Context Sensitive tasks 
such as synchronizing test execution or sending user-defined messages to a 
report.

• Add Customization functions that enable you to modify WinRunner to suit your 
testing environment.

You can add TSL statements to your test scripts using the Function Generator in 
two ways: by pointing to a GUI object, or by choosing a function from a list. 
When you choose the Insert Function command and point to a GUI object, 
WinRunner suggests an appropriate Context Sensitive function and assigns 
values to its arguments. You can accept this suggestion, modify the argument 
values, or choose a different function altogether.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 622

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

By default, WinRunner suggests the default function for the object. In many 
cases, this is a get function or another function that gets information about the 
object. For example, if you choose Create > Insert Function > For Object/Window 
and then click an OK button, WinRunner opens the Function Generator dialog box 
and generates the following statement:

button_check_state("OK",1); 

This statement examines the OK button and gets the current value of the 
enabled property. The value can be 1 (enabled), or 0 (disabled).

To change to another function for the object, click Change. Once you have 
generated a statement, you can use it in two different ways, separately or 
together:

• Paste the statement into your test script. When required, a set_window 
statement is inserted automatically into the script before the generated 
statement. 

• Execute the statement from the Function Generator. 



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 623

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that if you point to an object that is not in the GUI map, the object is added 
automatically to the temporary GUI map file when the generated statement is 
executed or pasted into the test script.

Note: You can customize the Function Generator to include the user-defined 
functions that you most frequently use in your test scripts. You can add new 
functions and new categories and sub-categories to the Function Generator. You 
can also set the default function for a new category. For more information, see 
Chapter 38, Customizing the Function Generator.  You can also change the 
default function for an existing category. For more information, see Modifying 
the Default Function in a Category on page 634.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 624

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Generating a Function for a GUI Object

With the Function Generator, you can generate a Context Sensitive function 
simply by pointing to a GUI object in your application. WinRunner examines the 
object, determines its class, and suggests an appropriate function. You can 
accept this default function or select another function from a list.

Using the Default Function for a GUI Object
When you generate a function by pointing to a GUI object in your application, 
WinRunner determines the class of the object and suggests a function. For most 
classes, the default function is a get function. For example, if you click a list, 
WinRunner suggests the list_get_selected function.

To use the default function for a GUI object:

 1 Choose Create > Insert Function > For Object/Window or click the 
Insert Function for Object/Window button on the User toolbar. WinRunner 
shrinks to an icon and the mouse pointer becomes a pointing hand.

 2 Point to a GUI object in the application being tested. Each object flashes as you 
pass the mouse pointer over it.

 3 Click an object with the left mouse button. The Function Generator dialog box 
opens and shows the default function for the selected object. WinRunner 
automatically assigns argument values to the function.

To cancel the operation without selecting an object, click the right mouse button.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 625

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 To paste the statement into the script, click Paste. The function is pasted into the 
test script at the insertion point and the Function Generator dialog box closes.

To execute the function, click Execute. The function is executed but is not 
pasted into the test script. 

 5 Click Close to close the dialog box.

Executes the function only

Pastes the function into the script



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 626

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Selecting a Non-Default Function for a GUI Object
If you do not want to use the default function suggested by WinRunner, you can 
choose a different function from a list.

To select a non-default function for a GUI object:

 1 Choose Create > Insert Function > For Object/Window or click the Insert 
Function for Object/Window button on the User toolbar. WinRunner is 
minimized and the mouse pointer becomes a pointing hand.

 2 Point to a GUI object in the application being tested. Each object flashes as you 
pass the mouse pointer over it.

 3 Click an object with the left mouse button. The Function Generator dialog box 
opens and displays the default function for the selected object. WinRunner 
automatically assigns argument values to the function.

To cancel the operation without selecting an object, click the right mouse button.

 4 In the Function Generator dialog box, click Change. The dialog box expands 
and displays a list of functions. The list includes only functions that can be used 
on the GUI object you selected. For example, if you select a push button, the list 
displays button_get_info, button_press, etc.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 627

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 In the Function Name list, select a function. The generated statement appears 
at the top of the dialog box. Note that WinRunner automatically fills in argument 
values. A description of the function appears at the bottom of the dialog box. 

 6 If you want to modify the argument values, click Args. The dialog box expands 
and displays a text box for each argument. See Assigning Argument Values 
on page 631 to learn how to fill in the argument text boxes.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 628

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 To paste the statement into the test script, click Paste. The function is pasted 
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed but 
is not pasted into the test script.

 8 You can continue to generate function statements for the same object by 
repeating the steps above without closing the dialog box. The object you 
selected remains the active object and arguments are filled in automatically for 
any function selected.

 9 Click Close to close the dialog box.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 629

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Selecting a Function from a List

When programming a test, perhaps you know the task you want the test to 
perform but not the exact function to use. The Function Generator helps you to 
quickly locate the function you need and insert it into your test script. Functions 
are organized by category; you select the appropriate category and the function 
you need from a list. A description of the function is displayed along with its 
parameters. 

To select a function from a list:

 1 Choose Create > Insert Function > From Function Generator or click the 
Insert Function from Function Generator button on the User toolbar to open 
the Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to view 
menu functions, select menu. If you do not know which category you need, use 
the default all_functions, which displays all the functions listed in alphabetical 
order.

 3 In the Function Name list, choose a function. If you select a category, only the 
functions that belong to the category are displayed in the list. The generated 
statement appears at the top of the dialog box. Note that WinRunner 
automatically fills in the default argument values. A description of the function 
appears at the bottom of the dialog box.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 630

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 To define or modify the argument values, click Args. The dialog box expands 
and displays a text box for each argument. See Assigning Argument Values 
on page 631 to learn how to fill in the argument text boxes.

 5 To paste the statement into the test script, click Paste. The function is pasted 
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed but 
is not pasted into the test script.

 6 You can continue to generate additional function statements by repeating the 
steps above without closing the dialog box. 

 7 Click Close to close the dialog box.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 631

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Assigning Argument Values

When you generate a function using the Function Generator, WinRunner 
automatically assigns values to the function’s arguments. If you generate a 
function by clicking a GUI object, WinRunner evaluates the object and assigns the 
appropriate argument values. If you choose a function from a list, WinRunner fills 
in default values where possible, and you type in the rest.

To assign or modify argument values for a generated function:

 1 Choose Create > Insert Function > From Function Generator or click the 
Insert Function from Function Generator button on the User toolbar to open 
the Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to view 
menu functions, select menu. If you do not know which category you need, use 
the default all_functions, which displays all the functions listed in alphabetical 
order.

 3 In the Function Name list, choose a function. If you select a category, only the 
functions that belong to the category are displayed in the list. The generated 
statement appears at the top of the dialog box. Note that WinRunner 
automatically fills in the default argument values. A description of the function 
appears at the bottom of the dialog box.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 632

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click Args. The dialog box expands based on the number of arguments in the 
function. 



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 633

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Assign values to the arguments. You can assign a value either manually or 
automatically.

To manually assign values, type in a value in the argument text box. For some 
text boxes, you can choose a value from a list. 

To automatically assign values, click the pointing hand and then click an object in 
your application. The appropriate values appear in the argument text boxes.

Note that if you click an object that is not compatible with the selected function, a 
message states “The current function cannot be applied to the pointed object.” 
Click OK to clear the message and return to the Function Generator.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 634

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying the Default Function in a Category

In the Function Generator, each function category has a default function. When 
you generate a function by clicking an object in your application, WinRunner 
determines the appropriate category for the object and suggests the default 
function. For most Context Sensitive function categories, this is a get function. 
For example, if you click a text box, the default function is edit_get_text. For 
Analog, Standard and Customization function categories, the default is the most 
commonly used function in the category. For example, the default function for the 
system category is invoke_application.

If you find that you frequently use a function other than the default for the 
category, you can make it the default function.

To change the default function in a category:

 1 Choose Create > Insert Function > From Function Generator or click the 
Insert Function from Function Generator button on the User toolbar to open 
the Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to view 
menu functions, select menu.

 3 In the Function Name list, select the function that you want to make the default.

 4 Click Set as Default.

 5 Click Close.



Programming with TSL • Generating Functions

WinRunner User’s Guide Chapter 21, page 635

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The selected function remains the default function in its category until it is 
changed or until you end your WinRunner session. To save changes to the 
default function setting, add a generator_set_default_function statement to 
your startup test. For more information on startup tests, see Chapter 39, 
Initializing Special Configurations. 

The generator_set_default_function function has the following syntax:

generator_set_default_function ( category_name, function_name );

For example:

generator_set_default_function ("push_button", "button_press");

sets button_press as the default function for the push_button category. 



Programming with TSL
Calling Tests

WinRunner User’s Guide Chapter 22, page 636

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Calling Tests

The tests you create with WinRunner can call, or be called by, any other test. 
When WinRunner calls a test, parameter values can be passed from the calling 
test to the called test.

This chapter describes:

• Using the Call Statement

• Returning to the Calling Test

• Setting the Search Path

• Defining Test Parameters



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 637

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Calling Tests

By adding call statements to test scripts, you can create a modular test tree 
structure containing an entire test suite. A modular test tree consists of a main test 
that calls other tests, passes parameter values, and controls test execution.

When WinRunner interprets a call statement in a test script, it opens and runs the 
called test. Parameter values may be passed to this test from the calling test. 
When the called test is completed, WinRunner returns to the calling test and 
continues the test run. Note that a called test may also call other tests.

By adding decision-making statements to the test script, you can use a main test 
to determine the conditions that enable a called test to run.

For example:

rc= call login ("Jonathan", "Mercury");
if (rc == E_OK)
{

call insert_order();
}
else
{

tl_step ("Call Login", 1, "Login test failed");
call open_order ();

}



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 638

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This test calls the login test. If login is executed successfully, WinRunner calls 
the insert_order test. If the login test fails, the open_order test runs. 

You commonly use call statements in a batch test. A batch test allows you to call 
a group of tests and run them unattended. It suppresses messages that are 
usually displayed during execution, such as one reporting a bitmap mismatch. For 
more information, see Chapter 29, Running Batch Tests. 



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 639

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the Call Statement

You can use two types of call statements to invoke one test from another:

• A call statement invokes a test from within another test. 

• A call_close statement invokes a test from within a script and closes the test 
when the test is completed. 

The call statement has the following syntax:

call test_name ( [ parameter1
 parameter2
 ...parametern ] );

The call_close statement has the following syntax:

call_close�test_name�����parameter1
 parameter2
�... parametern ��);

The test_name is the name of the test to invoke. The parameters are the 
parameters defined for the called test.

The parameters are optional. However, when one test calls another, the call 
statement should designate a value for each parameter defined for the called 
test. If no parameters are defined for the called test, the call statement must 
contain an empty set of parentheses.

Any called test must be stored in a folder specified in the search path, or else be 
called with the full pathname enclosed within quotation marks. 



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 640

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example:

call "w:\\tests\\my_test" ();

While running a called test, you can pause execution and view the current call 
chain. To do so, choose Debug > Calls.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 641

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Returning to the Calling Test

The treturn and texit statements are used to stop execution of called tests. 

• The treturn statement stops the current test and returns control to the calling 
test.

• The texit statement stops test execution entirely, unless tests are being called 
from a batch test. In this case, control is returned to the main batch test.

Both functions provide a return value for the called test. If treturn or texit is not 
used, or if no value is specified, then the return value of the call statement is 0.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 642

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

treturn
The treturn statement terminates execution of the called test and returns control 
to the calling test. The syntax is:

treturn [( expression )];

The optional expression is the value returned to the call statement used to 
invoke the test. 

For example:

# test a
if (call test b() == "success")

report_msg("test b succeeded");

# test b
if
(win_check_bitmap ("Paintbrush - SQUARES.BMP", "Img_2", 1))

treturn("success");
else

treturn("failure");

In the above example, test_a calls test_b. If the bitmap comparison in test_b is 
successful, then the string “success” is returned to the calling test, test_a. If 
there is a mismatch, then test_b returns the string “failure” to test_a.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 643

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

texit
When tests are run interactively, the texit statement discontinues test execution. 
However, when tests are called from a batch test, texit ends execution of the 
current test only; control is then returned to the calling batch test. The syntax is:

texit [( expression )];

The optional expression is the value returned to the call statement that invokes 
the test. 

For example:

# batch test
return val = call help_test();
report msg("help returned the value " return val);

# help test
call select menu(help, index);
msg = get text(4,30,12,100);
if (msg == "Index help is not yet implemented")

texit("index failure");
...

In the above example, batch_test calls help_test. In help_test, if a particular 
message appears on the screen, execution is stopped and control is returned to 
the batch test. Note that the return value of the help_test is also returned to the 
batch test, and is assigned to the variable return_val. If texit is not used, 
return_val is 0.

For more information on batch tests, see Chapter 29, Running Batch Tests. 



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 644

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Search Path

The search path determines the directories that WinRunner will search for a 
called test. 

To set the search path, choose Settings > General Options. The General Options 
dialog box opens. Click the Folders tab and choose a search path in the Search 
Path for Called Tests box. WinRunner searches the directories in the order in 
which they are listed in the box. Note that the search paths you define remain 
active in future testing sessions. 



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 645

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• To add a folder to the search path, type in the folder name in the text box. Use 
the Add, Up, and Down buttons to position this folder in the list.

• To delete a search path, select its name from the list and click Delete.

For more information about how to set a search path in the General Options 
dialog box, see Chapter 36, Setting Global Testing Options. 

You can also set a search path by adding a setvar statement to a test script. A 
search path set using setvar is valid for the current test run only.

For example:

setvar ("searchpath", "<c:\\ui_tests>");

This statement tells WinRunner to search the c:\ui_tests folder for called tests. 
For more information on using the setvar function, see Chapter 37, Setting 
Testing Options from a Test Script.  

Note: If WinRunner is connected to TestDirector, you can also set a search path 
within a TestDirector database. For more information, see Using TSL Functions 
with TestDirector on page 1068.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 646

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Test Parameters

A parameter is a variable that is assigned a value from outside the test in which 
it is defined. You can define one or more parameters for a test; any calling test 
must then supply values for these parameters.

For example, suppose you define two parameters, starting_x and starting_y for a 
test. The purpose of these parameters is to assign a value to the initial mouse 
pointer position when the test is called. Subsequently, two values supplied by a 
calling test will supply the x- and y-coordinates of the mouse pointer.

You can define parameters in a test in the Parameters tab of the Test Properties 
dialog box, or in the Parameterize Data dialog box. 

• Use the Parameters tab of the Test Properties dialog box when you want to 
manage the parameters of the test including adding, modifying, and deleting the 
parameters list for the test.

• Use the Parameterize Data dialog box when you want to replace data from the 
test with existing parameters. You can also create new parameters from this 
dialog box.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 647

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Test Parameters in the Test Properties Dialog Box
You can define and manage test parameters in the Parameters tab of the Test 
Properties dialog box. To open this tab, choose File > Test Properties and click 
the Parameters tab.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 648

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To define a new parameter:

 1 In the Parameters tab of the Test Properties dialog box, click Add. The 
Parameter Properties dialog box opens.

 2 Enter a Name and a Description for the parameter.

 3 Click OK. The parameter is added to the Test parameters list. 

 4 Use the Up and Down arrow buttons to change the order of the parameters.

Note: Because parameter values are assigned sequentially, the order in which 
parameters are listed determines the value that is assigned to a parameter by 
the calling test.

 5 Click OK to close the dialog box.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 649

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify a parameter in the parameter list:

 1 In the Parameters tab of the Test Properties dialog box, select the name of the 
parameter to modify.

 2 Click Modify. The Parameter Properties dialog box opens with the current name 
and description of the parameter.

 3 Modify the parameter as needed.

 4 Click OK to close the dialog box. The modified parameter is displayed in the Test 
parameters list.

To delete a parameter from the parameter list:

 1 In the Parameters tab of the Test Properties dialog box, select the name of the 
parameter to delete.

 2 Click Delete.

 3 Click OK to close the dialog box.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 650

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Test Parameters in the Parameterize Data Dialog Box
You can replace a selected value in your test script with an existing or new 
parameter using the Parameterize Data dialog box. 

To parameterize statements using test parameters:

 1 In your test script, select the first instance in which you have data that you want 
to parameterize. 

 2 Choose Tools > Parameterize Data. The Parameterize Data dialog box opens. 

 3 In the Parameterize using box, select “Test parameters”.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 651

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 In the Replace value with box, select An existing parameter or A New 
parameter.

• If you select An existing parameter, select the parameter you want to use. 
Note that the parameters listed here are the same as those listed in the 
Parameters tab of the Test Properties dialog box.

• If you select A new parameter, click the Add button. The Parameter 
Properties dialog box opens. Add a new parameter as described on page 
648. The new parameter appears in the new parameter field. The new 
parameter is also added to the Parameters tab of the Test Properties dialog 
box.

 5 Click OK.

The data selected in the test script is replaced with the parameter you created or 
selected. When the test is called by the calling test, the parameter is replaced by 
the value defined in the calling test.

 6 Repeat steps 1 to 5 for each argument you want to parameterize.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 652

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Test Parameter Scope
The parameter defined in the called test is known as a formal parameter. Test 
parameters can be constants, variables, expressions, array elements, or 
complete arrays.

Parameters that are expressions, variables, or array elements are evaluated and 
then passed to the called test. This means that a copy is passed to the called test. 
This copy is local; if its value is changed in the called test, the original value in the 
calling test is not affected. For example:

# test_1 (calling_test)
i = 5;
call test_2(i);
print(i);  # prints "5"

# test_2 (called test), with formal parameter x
x = 8;
print(x);  # prints "8"

In the calling test (test_1), the variable i is assigned the value 5. This value is 
passed to the called test (test_2) as the value for the formal parameter x. Note 
that when a new value (8) is assigned to x in test_2, this change does not affect 
the value of i in test_1.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 653

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Complete arrays are passed by reference. This means that, unlike array 
elements, variables, or expressions, they are not copied. Any change made to the 
array in the called test affects the corresponding array in the calling test. For 
example:

# test_q
a[1] = 17;
call test_r(a);
print(a[1]); # prints "104"

# test_r, with parameter x
x[1] = 104;

In the calling test (test_q), element 1 of array a is assigned the value 17. Array a 
is then passed to the called test (test_r), which has a formal parameter x. In 
test_r, the first element of array x is assigned the value 104. Unlike the previous 
example, this change to the parameter in the called test does affect the value of 
the parameter in the calling test, because the parameter is an array.

All undeclared variables that are not on the formal parameter list of a called test 
are global; they may be accessed from another called or calling test, and altered. 
If a parameter list is defined for a test, and that test is not called but is run directly, 
then the parameters function as global variables for the test run. For more 
information about variables, refer to the TSL Online Reference.

The test segments below illustrates the use of global variables. Note that test_a 
is not called, but is run directly.



Programming with TSL • Calling Tests

WinRunner User’s Guide Chapter 22, page 654

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

# test_a, with parameter k

# Note that the ampersand (&) is a bitwise AND operator. It signifies 
concatenation.
i = 1;
j = 2;
k = 3;
call test_b(i);
print(j & k & l); # prints '256’

# test_b, with parameter j

# Note that the ampersand (&) is a bitwise AND operator. It signifies 
concatenation.
j = 4;
k = 5;
l = 6;
print(i & j & k); # prints '145'



Programming with TSL
Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 655

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Creating User-Defined Functions

You can expand WinRunner’s testing capabilities by creating your own TSL 
functions. You can use these user-defined functions in a test or a compiled 
module. This chapter describes:

• Function Syntax

• Return Statements

• Variable, Constant, and Array Declarations

• Example of a User-Defined Function



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 656

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating User-Defined Functions

In addition to providing built-in functions, TSL allows you to design and implement 
your own functions. You can:

• Create user-defined functions in a test script. You define the function once, and 
then you call it from anywhere in the test (including called tests).

• Create user-defined functions in a compiled module. Once you load the module, 
you can call the functions from any test. For more information, see Chapter 24, 
Creating Compiled Modules.  

• Call functions from the Microsoft Windows API or any other external functions 
stored in a DLL. For more information, see Chapter 25, Calling Functions from 
External Libraries. 

User-defined functions are convenient when you want to perform the same 
operation several times in a test script. Instead of repeating the code, you can 
write a single function that performs the operation. This makes your test scripts 
modular, more readable, and easier to debug and maintain.



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 657

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, you could create a function called open_flight that loads a GUI map 
file, starts the Flight Reservation application, and logs into the system, or resets 
the main window if the application is already open.

A function can be called from anywhere in a test script. Since it is already 
compiled, execution time is accelerated. For instance, suppose you create a test 
that opens a number of files and checks their contents. Instead of recording or 
programming the sequence that opens the file several times, you can write a 
function and call it each time you want to open a file.



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 658

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Function Syntax

A user-defined function has the following structure:

[class] function name ([mode] parameter...)
{
declarations;
statements;
}

Class
The class of a function can be either static or public. A static function is available 
only to the test or module within which the function was defined. 

Once you execute a public function, it is available to all tests, for as long as the 
test containing the function remains open. This is convenient when you want the 
function to be accessible from called tests. However, if you want to create a 
function that will be available to many tests, you should place it in a compiled 
module. The functions in a compiled module are available for the duration of the 
testing session. 

If no class is explicitly declared, the function is assigned the default class, public. 



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 659

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Parameters
Parameters need not be explicitly declared. They can be of mode in, out, or inout. 
For all non-array parameters, the default mode is in. For array parameters, the 
default is inout. The significance of each of these parameter types is as follows:

in: A parameter that is assigned a value from outside the function.

out: A parameter that is assigned a value from inside the function.

inout: A parameter that can be assigned a value from outside or inside the 
function.

A parameter designated as out or inout must be a variable name, not an 
expression. When you call a function containing an out or an inout parameter, 
the argument corresponding to that parameter must be a variable, and not an 
expression. For example, consider a user-defined function with the following 
syntax:

function get_date (out todays_date) { ... }

Proper usage of the function call would be

get_date (todays_date);



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 660

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Illegal usage of the function call would be

get_date (date[i]); or get_date ("Today’s date is"& todays_date); 

because both contain expressions.

Array parameters are designated by square brackets. For example, the following 
parameter list in a user-defined function indicates that variable a is an array:

function my_func (a[], b, c){ ... }

Array parameters can be either mode out or inout. If no class is specified, the 
default mode inout is assumed. 



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 661

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Return Statements

The return statement is used exclusively in functions. The syntax is:

return [( expression )];

This statement passes control back to the calling function or test. It also returns 
the value of the evaluated expression to the calling function or test. If no 
expression is assigned to the return statement, an empty string is returned.



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 662

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Variable, Constant, and Array Declarations

Declaration is usually optional in TSL. In functions, however, variables, constants, 
and arrays must all be declared. The declaration can be within the function itself, 
or anywhere else within the test script or compiled module containing the function. 
You can find additional information about declarations in the TSL Online 
Reference.

Variables

Variable declarations have the following syntax:

class variable [= init_expression];

The init_expression assigned to a declared variable can be any valid expression. 
If an init_expression is not set, the variable is assigned an empty string. The 
class defines the scope of the variable. It can be one of the following:

auto: An auto variable can be declared only within a function and is local to that 
function. It exists only for as long as the function is running. A new copy of the 
variable is created each time the function is called. 

static: A static variable is local to the function, test, or compiled module in which 
it is declared. The variable retains its value until the test is terminated by an Abort 
command. This variable is initialized each time the definition of the function is 
executed. 



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 663

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: In compiled modules, a static variable is initialized whenever the compiled 
module is compiled.

public: A public variable can be declared only within a test or module, and is 
available for all functions, tests, and compiled modules. 

extern: An extern declaration indicates a reference to a public variable declared 
outside of the current test or module. 

Remember that you must declare all variables used in a function within the 
function itself, or within the test or module that contains the function. If you wish 
to use a public variable that is declared outside of the relevant test or module, you 
must declare it again as extern.

The extern declaration must appear within a test or module, before the function 
code. An extern declaration cannot initialize a variable.



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 664

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, suppose that in Test 1 you declare a variable as follows:

public window_color=green;

In Test 2, you write a user-defined function that accesses the variable 
window_color. Within the test or module containing the function, you declare 
window_color as follows:

extern window_color;

With the exception of the auto variable, all variables continue to exist until the 
Stop command is executed. 

Note: In compiled modules, all variables continue to exist until the Stop 
command is executed with the exception of the auto and public variables. (The 
auto variables exist only as long as the function is running; public variables 
exist until exiting WinRunner.)



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 665

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following table summarizes the scope, lifetime, and availability (where the 
declaration can appear) of each type of variable:

Note: In compiled modules, the Stop command initializes static and public 
variables. For more information, see Chapter 24, Creating Compiled Modules. 

Declaration Scope Lifetime Declare the Variable in...

auto local end of function function

static local until abort function, test, or module

public global until abort test or module 

extern global until abort function, test, or module



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 666

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Constants

The const specifier indicates that the declared value cannot be modified. The 
syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. If no class is explicitly 
declared, the constant is assigned the default class public. Once a constant is 
defined, it remains in existence until you exit WinRunner.

For example, defining the constant TMP_DIR using the declaration:

const TMP_DIR = "/tmp";

means that the assigned value /tmp cannot be modified. (This value can only be 
changed by explicitly making a new constant declaration for TMP_DIR.)



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 667

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Arrays

The following syntax is used to define the class and the initial expression of an 
array. Array size need not be defined in TSL.

class array_name [ ] [=init_expression]

The array class may be any of the classes used for variable declarations (auto, 
static, public, extern). 

An array can be initialized using the C language syntax. For example:

public hosts [ ] = {"lithium", "silver", "bronze"};

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that arrays with the class auto cannot be initialized. 



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 668

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In addition, an array can be initialized using a string subscript for each element. 
The string subscript may be any legal TSL expression. Its value is evaluated 
during compilation. For example:

static gui_item [ ]={
"class"="push_button",
"label"="OK",
"X_class"="XmPushButtonGadget",
"X"=10,
"Y"=60
};

creates the following array elements:

gui_item ["class"]="push_button"
gui_item ["label"]="OK"
gui_item ["X_class"]="XmPushButtonGadget"
gui_item ["X"]=10
gui_item ["Y"]=60



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 669

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that arrays are initialized once, the first time a function is run. If you edit the 
array’s initialization values, the new values will not be reflected in subsequent test 
runs. To reset the array with the new initialization values, either interrupt test 
execution with the Stop command, or define the new array elements explicitly. 
For example:

Statements
Any valid statement used within a TSL test script can be used within a function, 
except for the treturn statement.

Regular Initialization Explicit Definitions

public number_list[] = 
{1,2,3};

number_list[0] = 1;

number_list[1] = 2;

number_list[2] = 3;



Programming with TSL • Creating User-Defined Functions

WinRunner User’s Guide Chapter 23, page 670

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example of a User-Defined Function

The following user-defined function opens the specified text file in an editor. It 
assumes that the necessary GUI map file is loaded. The function verifies that the 
file was actually opened by comparing the name of the file with the label that 
appears in the window title bar after the operation is completed. 

function open_file (file)
{

auto lbl;
set_window ("Editor");

# Open the Open form
menu_select_item ("File;Open...");

# Insert file name in the proper field and click OK to confirm
set_window ("Open");
edit_set(“Open Edit”, file);
button_press ("OK");

# Read window banner label
win_get_info("Editor","label",lbl);

#Compare label to file name
if ( file != lbl)

return 1;
else

return 0;
}
rc=open_file("c:\\dash\\readme.tx");
pause(rc);



Programming with TSL
Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 671

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Creating Compiled Modules

Compiled modules are libraries of frequently-used functions. You can save user-
defined functions in compiled modules and then call the functions from your test 
scripts.

This chapter describes:

• Contents of a Compiled Module

• Creating a Compiled Module

• Loading and Unloading a Compiled Module

• Example of a Compiled Module



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 672

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating Compiled Modules

A compiled module is a script containing a library of user-defined functions that 
you want to call frequently from other tests. When you load a compiled module, 
its functions are automatically compiled and remain in memory. You can call them 
directly from within any test.

For instance, you can create a compiled module containing functions that:

• compare the size of two files

• check your system’s current memory resources

Compiled modules can improve the organization and performance of your tests. 
Since you debug compiled modules before using them, your tests will require 
less error-checking. In addition, calling a function that is already compiled is 
significantly faster than interpreting a function in a test script.

You can compile a module in one of two ways:

• Run the module script using the WinRunner Run commands.

• Load the module from a test script using the TSL load function.

If you need to debug a module or make changes, you can use the Step 
command to perform incremental compilation. You only need to run the part of 
the module that was changed in order to update the entire module.

You can add load statements to your startup test. This ensures that the functions 
in your compiled modules are automatically compiled each time you start 
WinRunner. See Chapter 39, Initializing Special Configurations, for more 
information.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 673

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Contents of a Compiled Module 

A compiled module, like a regular test you create in TSL, can be opened, edited, 
and saved. You indicate that a test is a compiled module by clicking Compiled 
Module in the Test Type box in the Test Properties dialog box. For more 
information, see Creating a Compiled Module on page 675.

The content of a compiled module differs from that of an ordinary test: it cannot 
include checkpoints or any analog input such as mouse tracking. The purpose of 
a compiled module is not to perform a test, but to store functions you use most 
frequently so that they can be quickly and conveniently accessed from other tests.

Unlike an ordinary test, all data objects (variables, constants, arrays) in a 
compiled module must be declared before use. The structure of a compiled 
module is similar to a C program file, in that it may contain the following elements:

• function definitions and declarations for variables, constants and arrays. For 
more information, see Chapter 23, Creating User-Defined Functions. 

• prototypes of external functions. For more information, see Chapter 25, Calling 
Functions from External Libraries. 

• load statements to other modules. For more information, see Loading and 
Unloading a Compiled Module on page 678.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 674

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that when user-defined functions appear in compiled modules:

• A public function is available to all modules and tests, while a static function is 
available only to the module within which it was defined. 

• The loaded module remains resident in memory even when test execution is 
aborted. However, all variables defined within the module (whether static or 
public) are initialized.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 675

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Compiled Module

Creating a compiled module is similar to creating a regular test script.

To create a compiled module:

 1 Choose File > Open to open a new test.

 2 Write the user-defined functions.

 3 Choose File > Test Properties and click the General Tab. 



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 676

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 In the Test Type list, choose “Compiled Module” and then click OK. 



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 677

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Choose File > Save.

Save your modules in a location that is readily available to all your tests. When a 
module is loaded, WinRunner locates it according to the search path you define. 
For more information on defining a search path, see Setting the Search Path 
on page 644.

 6 Compile the module using the load function. For more information, see Loading 
and Unloading a Compiled Module below.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 678

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Loading and Unloading a Compiled Module

In order to access the functions in a compiled module you need to load the 
module. You can load it from within any test script using the load command; all 
tests will then be able to access the function until you quit WinRunner or unload 
the compiled module.

If you create a compiled module that contains frequently-used functions, you can 
load it from your startup test. For more information, see Chapter 39, Initializing 
Special Configurations. 

You can load a module either as a system module or as a user module. A system 
module is generally a closed module that is “invisible” to the tester. It is not 
displayed when it is loaded, cannot be stepped into, and is not stopped by a 
pause command. A system module is not unloaded when you execute an unload 
statement with no parameters (global unload).

A user module is the opposite of a system module in these respects. Generally, a 
user module is one that is still being developed. In such a module you might want 
to make changes and compile them incrementally.

Note: If you make changes to a function in a loaded compiled module, you must 
unload and reload the compiled module in order for the changes to take effect.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 679

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

load
The load function has the following syntax:

load (module_name [,1|0] [,1|0] );

The module_name is the name of an existing compiled module. 

Two additional, optional parameters indicate the type of module. The first 
parameter indicates whether the function module is a system module or a user 
module: 1 indicates a system module; 0 indicates a user module.

(Default = 0)

The second optional parameter indicates whether a user module will remain 
open in the WinRunner window or will close automatically after it is loaded: 1 
indicates that the module will close automatically; 0 indicates that the module will 
remain open. 

(Default = 0)

When the load function is executed for the first time, the module is compiled and 
stored in memory. This module is ready for use by any test and does not need to 
be reinterpreted.

A loaded module remains resident in memory even when test execution is 
aborted. All variables defined within the module (whether static or public) are still 
initialized.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 680

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

unload
The unload function removes a loaded module or selected functions from 
memory. It has the following syntax:

unload ( [ module_name | test_name [ , �function_name��] ] );

For example, the following statement removes all functions loaded within the 
compiled module named mem_test.

unload ("mem_test");

An unload statement with empty parentheses removes all modules loaded 
within all tests during the current session, except for system modules.

reload
If you make changes in a module, you should reload it. The reload function 
removes a loaded module from memory and reloads it (combining the functions 
of unload and load).

The syntax of the reload function is:

reload ( module_name [ ,1|0 ] [ ,1|0 ] );

The module_name is the name of an existing compiled module. 



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 681

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Two additional optional parameters indicate the type of module. The first 
parameter indicates whether the module is a system module or a user module: 1 
indicates a system module; 0 indicates a user module. 

(Default = 0)

The second optional parameter indicates whether a user module will remain 
open in the WinRunner window or will close automatically after it is loaded. 1 
indicates that the module will close automatically. 0 indicates that the module will 
remain open. 

(Default = 0)

Note: Do not load a module more than once. To recompile a module, use 
unload followed by load, or else use the reload function.

If you try to load a module that has already been loaded, WinRunner does not 
load it again. Instead, it initializes variables and increments a load counter. If a 
module has been loaded several times, then the unload statement does not 
unload the module, but rather decrements the counter. For example, suppose that 
test A loads the module math_functions, and then calls test B. Test B also loads 
math_functions, and then unloads it at the end of the test. WinRunner does not 
unload the module; it decrements the load counter. When execution returns to 
test A, math_functions is still loaded.



Programming with TSL • Creating Compiled Modules

WinRunner User’s Guide Chapter 24, page 682

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example of a Compiled Module

The following module contains two simple, all-purpose functions that you can call 
from any test. The first function receives a pair of numbers and returns the 
number with the higher value. The second function receives a pair of numbers 
and returns the one with the lower value.

# return maximum of two values
function max (x,y)
{

if (x>=y)
return x;

else
return y;

}

# return minimum of two values
function min (x,y)
{

if (x>=y)
return y;

else
return x;

}



Programming with TSL
Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 683

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Calling Functions from External Libraries

WinRunner enables you to call functions from the Windows API and from any 
external DLL (Dynamic Link Library).

This chapter describes:

• Dynamically Loading External Libraries

• Declaring External Functions in TSL

• Windows API Examples



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 684

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Calling Functions from External Libraries

You can extend the power of your automated tests by calling functions from the 
Windows API or from any external DLL. For example, using functions in the 
Windows API you can:

• Use a standard Windows message box in a test with the MessageBox function.

• Send a WM (Windows Message) message to the application being tested with 
the SendMessage function.

• Retrieve information about your application’s windows with the GetWindow 
function.

• Integrate the system beep into tests with the MessageBeep function.

• Run any windows program using ShellExecute, and define additional 
parameters such as the working directory and the window size.

• Check the text color in a field in the application being tested with GetTextColor. 
This can be important when the text color indicates operation status.

• Access the Windows clipboard using the GetClipboard functions.



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 685

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can call any function exported from a DLL with the _ _ stdcall calling 
convention. You can also load DLLs that are part of the application being tested 
in order to access its exported functions.

Using the load_dll function, you dynamically load the libraries containing the 
functions you need. Before you actually call the function, you must write an extern 
declaration so that the interpreter knows that the function resides in an external 
library.

Note: The Windows API functions appear by default in WinRunner’s Function 
Generator under the WinAPI category. For information on using the Function 
Generator, see Chapter 21, Generating Functions.  For information about 
specific Windows API functions, refer to your Windows API Reference. For 
examples of using the Windows API functions in WinRunner test scripts, refer to 
the read.me file in the \lib\win32api folder in the installation folder.



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 686

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Dynamically Loading External Libraries

In order to load the external DLLs (Dynamic Link Libraries) containing the 
functions you want to call, use the TSL function load_dll. This function performs 
a runtime load of a 32-bit DLL. It has the following syntax:

load_dll ( pathname );

The pathname is the full pathname of the DLL to be loaded.

For example:

load_dll ("h:\\qa_libs\\os_check.dll");

The load_16_dll function performs a runtime load of a 16-bit DLL. It has the 
following syntax:

load_16_dll ( pathname );

The pathname is the full pathname of the 16-bit DLL to be loaded.



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 687

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To unload a loaded external DLL, use the TSL function unload_dll. It has the 
following syntax:

unload_dll ( pathname );

For example:

unload_dll ("h:\\qa_libs\\os_check.dll");

The pathname is the full pathname of the 32-bit DLL to be unloaded.

To unload all loaded 32-bit DLLs from memory, use the following statement:

unload_dll ("");

The unload_16_dll function unloads a loaded external 16-bit DLL. It has the 
following syntax:

unload_16_dll ( pathname );

The pathname is the full pathname of the 16-bit DLL to be unloaded.

To unload all loaded 16-bit DLLs from memory, use the following statement:

unload_16_dll ("");

For more information, refer to the TSL Online Reference.



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 688

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Declaring External Functions in TSL

You must write an extern declaration for each function you want to call from an 
external library. The extern declaration must appear before the function call. It is 
recommended to store these declarations in a startup test. (For more information 
on startup tests, see Chapter 39, Initializing Special Configurations. ) 

The syntax of the extern declaration is:

extern type function_name ( parameter1, parameter2,... );

The type refers to the return value of the function. The type can be one of the 
following:

char (signed and unsigned) float

short (signed and unsigned) double

int (signed and unsigned) string (equivalent to C char*)

Each parameter must include the following information:

[mode] type [name] [<size>]

The mode can be either in, out, or inout. The default is in. Note that these values 
must appear in lowercase letters.

The type can be any of the values listed above.

An optional name can be assigned to the parameter to improve readability.



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 689

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The <size> is required only for an out or inout parameter of type string (see 
below.)

For example, suppose you want to call a function called set_clock that sets the 
time on a clock application. The function is part of an external DLL that you loaded 
with the load_dll statement. To declare the function, write:

extern int set_clock (string name, int time);

The set_clock function accepts two parameters. Since they are both input 
parameters, no mode is specified. The first parameter, a string, is the name of 
the clock window. The second parameter specifies the time to be set on the 
clock. The function returns an integer that indicates whether the operation 
succeeded.

Once the extern declaration is interpreted, you can call the set_clock function the 
same way you call a TSL function:

result = set_clock ("clock v. 3.0", 3);



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 690

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If an extern declaration includes an out or inout parameter of type string, you 
must budget the maximum possible string size by specifying an integer <size> 
after the parameter type or (optional) name. For example, the statement below 
declares the function get_clock_string, that returns the time displayed in a clock 
application as a string value in the format “The time is...”.

extern int get_clock_string (string clock, out string time <20>);

The size should be large enough to avoid an overflow. If no value is specified for 
size, the default is 100.

TSL identifies the function in your code by its name only. You must pass the 
correct parameter information from TSL to the function. TSL does not check 
parameters. If the information is incorrect, the operation fails. 



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 691

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In addition, your external function must adhere to the following conventions:

• Any parameter designated as a string in TSL must correspond to a parameter of 
type char*.

• Any parameter of mode out or inout in TSL must correspond to a pointer in your 
exported function. For instance, a parameter out int in TSL must correspond to a 
parameter int* in the exported function.

• The external function must observe the standard Pascal calling convention 
export far Pascal.

For example, the following declaration in TSL:

extern int set_clock (string name, inout int time);

must appear as follows in your external function:

int set_clock(
char* name,
int* time
);



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 692

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Windows API Examples

The following sample tests call functions in the Windows API.

Checking Window Mnemonics
This test integrates the API function GetWindowTextA into a TSL function that 
checks for mnemonics (underlined letters used for keyboard shortcuts) in object 
labels. The TSL function receives one parameter: the logical name of an object. 
If a mnemonic is not found in an object’s label, a message is sent to a report.

# load the appropriate DLL (from Windows folder)
load (“win32api”);

# define the user-defined function "check_labels"
public function check_labels(in obj)
{

auto hWnd,title,pos,win;
win = GUI_get_window();
obj_get_info(obj,"handle",hWnd);
GetWindowTextA(hWnd,title,128);
 pos = index(title,"&");
if (pos == 0)

report_msg("No mnemonic for object: "& obj & "in window: "& win);
}



Programming with TSL • Calling Functions from External Libraries

WinRunner User’s Guide Chapter 25, page 693

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

# start Notepad application
invoke_application("notepad.exe","","",SW_SHOW);

# open Find window
set_window ("Notepad");
menu_select_item ("Search;Find...");

# check mnemonics in "Up" radio button and "Cancel" pushbutton
set_window ("Find");
check_labels ("Up");
check_labels ("Cancel");

Loading a DLL and External Function
This test fragment uses crk_w.dll to prevent recording on a debugging application. 
To do so, it calls the external set_debugger_pid function.

# load the appropriate DLL
load_dll("crk_w.dll");

# declare function
extern int set_debugger_pid(long);

# load Systems DLLs (from Windows folder)
load ("win32api");

# find debugger process ID
win_get_info("Debugger","handle",hwnd);
GetWindowThreadProcessId(hwnd,Proc);

# notify WinRunner of the debugger process ID
set_debugger_pid(Proc);



Programming with TSL
Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 694

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Creating Dialog Boxes for Interactive Input

WinRunner enables you to create dialog boxes that you can use to pass input to 
your test during an interactive test run.

This chapter describes:

• Creating an Input Dialog Box

• Creating a List Dialog Box

• Creating a Custom Dialog Box

• Creating a Browse Dialog Box

• Creating a Password Dialog Box



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 695

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating Dialog Boxes for Interactive Input

You can create dialog boxes that pop up during an interactive test run, prompting 
the user to perform an action—such as typing in text or selecting an item from a 
list. This is useful when the user must make a decision based on the behavior of 
the application under test (AUT) during runtime, and then enter input accordingly. 
For example, you can instruct WinRunner to execute a particular group of tests 
according to the user name that is typed into the dialog box. 

To create the dialog box, you enter a TSL statement in the appropriate location in 
your test script. During an interactive test run, the dialog box opens when the 
statement is executed. By using control flow statements, you can determine how 
WinRunner responds to the user input in each case. 



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 696

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

There are five different types of dialog boxes that you can create using the 
following TSL functions:

• create_input_dialog creates a dialog box with any message you specify, and 
an edit field. The function returns a string containing whatever you type into the 
edit field, during an interactive run.

• create_list_dialog creates a dialog box with a list of items, and your message. 
The function returns a string containing the item that you select during an 
interactive run.

• create_custom_dialog creates a dialog box with edit fields, check boxes, an 
“execute” button, and a Cancel button. When the “execute” button is clicked, the 
create_custom_dialog function executes a specified function. 

• create_browse_file_dialog displays a browse dialog box from which the user 
selects a file. During an interactive run, the function returns a string containing 
the name of the selected file.

• create_password_dialog creates a dialog box with two edit fields, one for login 
name input, and one for password input. You use a password dialog box to limit 
user access to tests or parts of tests.

Each dialog box opens when the statement that creates it is executed during a 
test run, and closes when one of the buttons inside it is clicked.



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 697

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating an Input Dialog Box

An input dialog box contains a custom one-line message, an edit field, and OK 
and Cancel buttons. The text that the user types into the edit field during a test 
run is returned as a string.

You use the TSL function create_input_dialog to create an input dialog box. This 
function has the following syntax:

create_input_dialog ( message );

The message can be any expression. The text appears as a single line in the 
dialog box. 

For example, you could create an input dialog box that asks for a user name. This 
name is returned to a variable and is used in an if statement in order to call a 
specific test suite for any of several users. 



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 698

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To create such a dialog box, you would program the following statement:

name = create_input_dialog ("Please type in your name.");

The input that is typed into the dialog box during a test run is passed to the 
variable name when the OK button is clicked. If the Cancel button is clicked, an 
empty string (empty quotation marks) is passed to the variable name.

Note that you can precede the message parameter with an exclamation mark. 
When the user types input into the edit field, each character entered is 
represented by an asterisk. Use an exclamation mark to prevent others from 
seeing confidential information. 



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 699

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a List Dialog Box

A list dialog box has a title and a list of items that can be selected. The item 
selected by the user from the list is passed as a string to a variable.

You use the TSL function create_list_dialog to create a list dialog box. This 
function has the following syntax:

create_list_dialog ( title, message, list_items );

• title is an expression that appears in the window banner of the dialog box. 

• message is one line of text that appear in the dialog box. 

• list_items contains the options that appear in the dialog box. Items are separated 
by commas, and the entire list is considered a single string. 



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 700

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, you can create a dialog box that allows the user to select a test to 
open. To do so, you could enter the following statement:

filename = create_list_dialog ("Select an Input File", "Please select one of the 
following tests as input", "Batch_1, clock_2, Main_test, Flights_3, Batch_2");

The item that is selected from the list during a test run is passed to the variable 
filename when the OK button is clicked. If the Cancel button is clicked, an empty 
string (empty quotation marks) is passed to the variable filename.



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 701

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Custom Dialog Box

A custom dialog box has a custom title, up to ten edit fields, up to ten check boxes, 
an “execute” button, and a Cancel button. You specify the label for the “execute” 
button. When you click the “execute” button, a specified function is executed. The 
function can be either a TSL function or a user-defined function.

You use the TSL function create_custom_dialog to create a custom dialog box. 
This function has the following syntax:

create_custom_dialog ( function_name, title, button_name, edit_name1-n, 
check_name1-m );

• function_name is the name of the function that is executed when you click the 
“execute” button.

• title is an expression that appears in the title bar of the dialog box.

• button_name is the label that will appear on the “execute” button. You click this 
button to execute the contained function.

• edit_name contains the labels of the edit field(s) of the dialog box. Multiple edit 
field labels are separated by commas, and all the labels together are considered 
a single string. If the dialog box has no edit fields, this parameter must be an 
empty string (empty quotation marks).



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 702

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• check_name contains the labels of the check boxes in the dialog box. Multiple 
check box labels are separated by commas, and all the labels together are 
considered a single string. If the dialog box has no check boxes, this parameter 
must be an empty string (empty quotation marks).

When the “execute” button is clicked, the values that the user enters are passed 
as parameters to the specified function, in the following order:

edit_name1,... edit_namen ,check_name1,... check_namem

In the following example, the custom dialog box allows the user to specify startup 
parameters for an application. When the user clicks the Run button, the user-
defined function, run_application1, invokes the specified Windows application 
with the initial conditions that the user supplied.

res = create_custom_dialog ("run_application1", "Initial Conditions", "Run", 
"Application:, Geometry:, Background:, Foreground:, Font:", "Sound,
Speed");



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 703

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If the specified function returns a value, this value is passed to the variable res. If 
the Cancel button is clicked, an empty string (empty quotation marks) is passed 
to the variable res.

Note that you can precede any edit field label with an exclamation mark. When 
the user types input into the edit field, each character entered is represented by 
an asterisk. You use an exclamation mark to prevent others from seeing 
confidential information, such as a password. 



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 704

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Browse Dialog Box

A browse dialog box allows you to select a file from a list of files, and returns the 
name of the selected file as a string. 

You use the TSL function create_browse_file_dialog to create a browse dialog 
box. This function has the following syntax:

create_browse_file_dialog ( filter );

where filter sets a filter for the files to display in the Browse dialog box. You can 
use wildcards to display all files (*.*) or only selected files (*.exe or *.txt etc.).

In the following example, the browse dialog box displays all files with extensions 
.dll or .exe. 

filename = create_browse_file_dialog( "*.dll;*.exe"  );



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 705

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When the OK button is clicked, the name and path of the selected file is passed 
to the variable filename. If the Cancel button is clicked, an empty string (empty 
quotation marks) is passed to the variable filename.



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 706

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Password Dialog Box

A password dialog box has two edit fields, an OK button, and a Cancel button. 
You supply the labels for the edit fields. The text that the user types into the edit 
fields during the interactive test run is saved to variables for analysis.

You use the TSL function create_password_dialog to create a password dialog 
box. This function has the following syntax:

create_password_dialog ( login,  password, login_out, password_out );

• login is the label of the first edit field, used for user-name input. If you specify an 
empty string (empty quotation marks), the default label “Login” is displayed.

• password is the label of the second edit field, used for password input. If you 
specify an empty string (empty quotation marks), the default label “Password” is 
displayed. When the user enters input into this edit field, the characters do not 
appear on the screen, but are represented by asterisks.

• login_out is the name the parameter to which the contents of the first edit field 
(login) are passed. Use this parameter to verify the contents of the login edit 
field.

• password_out is the name the parameter to which the contents of the second 
edit field (password) are passed. Use this parameter to verify the contents of the 
password edit field.



Programming with TSL • Creating Dialog Boxes for Interactive Input

WinRunner User’s Guide Chapter 26, page 707

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following example shows a password dialog box created using the default 
edit field labels. 

status = create_password_dialog ("", "", user_name, password);

If the OK button is clicked, the value 1 is passed to the variable status. If the 
Cancel button is clicked, the value 0 is passed to the variable status and the 
login_out and password_out parameters are assigned empty strings.



WinRunner User’s Guide Page 708

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part V

Running Tests



Running Tests
Running Tests

WinRunner User’s Guide Chapter 27, page 709

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Running Tests

Once you have developed a test script, you run the test to check the behavior of 
your application. 

This chapter describes:

• WinRunner Test Run Modes

• WinRunner Run Commands

• Choosing Run Commands Using Softkeys

• Running a Test to Check Your Application

• Running a Test to Debug Your Test Script

• Running a Test to Update Expected Results

• Controlling the Test Run with Testing Options

• Reviewing Current Test Settings

• Solving Common Test Run Problems



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 710

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Running Tests

When you run a test, WinRunner interprets your test script, line by line. The 
execution arrow in the left margin of the test script marks each TSL statement as 
it is interpreted. As the test runs, WinRunner operates your application as though 
a person were at the controls. 

You can run your tests in three modes:

• Verify mode, to check your application

• Debug mode, to debug your test script

• Update mode, to update the expected results

You choose a run mode from the list on the Standard toolbar. The Verify mode is 
the default run mode. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 711

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Use WinRunner’s Run menu commands to run your tests. You can run an entire 
test, or a portion of a test. Before running a Context Sensitive test, make sure the 
necessary GUI map files are loaded. For more information, see Chapter 4, 
Creating the GUI Map. 

You can run individual tests or use a batch test to run a group of tests. A batch 
test is particularly useful when your tests are long and you prefer to run them 
overnight or at other off-peak hours. For more information, see Chapter 29, 
Running Batch Tests.  



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 712

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Test Run Modes

WinRunner provides three modes in which to run tests—Verify, Debug, and 
Update. You use each mode during a different phase of the testing process.

Verify
Use the Verify mode to check your application. WinRunner compares the current 
response of your application to its expected response. Any discrepancies 
between the current and expected responses are captured and saved as 
verification results. When you finish running a test, by default the Test Results 
window opens for you to view the verification results. For more information, see 
Chapter 28, Analyzing Test Results. 

You can save as many sets of verification results as you need. To do so, save the 
results in a new folder each time you run the test. You specify the folder name for 
the results using the Run Test dialog box. This dialog box opens each time you 
run a test in Verify mode. For more information about running a test script in Verify 
mode, see Running a Test to Check Your Application on page 722.

Note: Before your run a test in Verify mode, you must have expected results for 
the checkpoints you created. If you need to update the expected results of your 
test, you must run the test in Update mode, as described on page 715. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 713

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Debug
Use the Debug mode to help you identify bugs in a test script. Running a test in 
Debug mode is the same as running a test in Verify mode, except that debug 
results are always saved in the debug folder. Because only one set of debug 
results is stored, the Run Test dialog box does not open automatically when you 
run a test in Debug mode.

When you finish running a test in Debug mode, the Test Results window does not 
open automatically. To open the Test Results window and view the debug results, 
you can click the Test Results button on the main toolbar or choose Tools > Test 
Results.

Once you run a test in Debug mode, that remains the default run mode for the 
current WinRunner session until you activate another mode. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 714

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Use WinRunner’s debugging facilities when you debug a test script:

• Use the Step commands to control how your tests run. For more information, see 
Chapter 31, Debugging Test Scripts. 

• Set breakpoints at specified points in the test script to pause tests while they run. 
For more information, see Chapter 32, Using Breakpoints. 

• Use the Watch List to monitor variables in a test script while the test runs. For 
more information, see Chapter 33, Monitoring Variables. 

For more information about running a test script in Debug mode, see Running a 
Test to Debug Your Test Script on page 724.

Tip: You should change the timeout variables to zero while you debug your test 
scripts, to make them run more quickly. For more information on how to change 
these variables, see Chapter 36, Setting Global Testing Options, and 
Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 715

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Update
Use the Update mode to update the expected results of a test or to create a new 
expected results folder. For example, you could update the expected results for a 
GUI checkpoint that checks a push button, in the event that the push button 
default status changes from enabled to disabled. You may want to create an 
additional set of expected results if, for example, you have one set of expected 
results when you run your application in Windows 95 and another set of expected 
results when your run your application in Windows NT. For more information 
about generating additional sets of expected results, see Generating Multiple 
Expected Results on page 727.

Note that after a test has run in Update mode or been aborted, Verify 
automatically becomes the default run mode again.

By default, WinRunner saves expected results in the exp folder, overwriting any 
existing expected results. 

You can update the expected results for a test in one of two ways:

• by globally overwriting the full existing set of expected results by running the 
entire test using a Run command

• by updating the expected results for individual checkpoints and synchronization 
points using the Run from Arrow command or a Step command

For more information about running a test script in Update mode, see Running a 
Test to Update Expected Results on page 726.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 716

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Run Commands

You use the Run commands to execute your tests. When a test is running, the 
execution arrow in the left margin of the test script marks each TSL statement as 
it is interpreted. 

Run from Top
Choose the Run from Top command or click the corresponding Run from Top 
button to run the active test from the first line in the test script. If the test calls 
another test, WinRunner displays the script of the called test. Execution stops at 
the end of the test script.

Run from Arrow
Choose the Run from Arrow command or click the corresponding Run from 
Arrow button to run the active test from the line in the script marked by the 
execution arrow. In all other aspects, the Run from Arrow command is the same 
as the Run from Top command.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 717

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Run Minimized Commands
You run a test using a Run Minimized command to make the entire screen 
available to the application being tested during test execution. The Run Minimized 
commands shrink the WinRunner window to an icon while the test runs. The 
WinRunner window automatically returns to its original size at the end of the test, 
or when you stop or pause the test run. You can use the Run Minimized 
commands to run a test either from the top of the test script or from the execution 
arrow. The following Run Minimized commands are available:

• Run Minimized > From Top command

• Run Minimized > From Arrow command



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 718

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Step Commands
You use a Step command or click a Step button to run a single statement in a test 
script. For more information on the Step commands, see Chapter 31, Debugging 
Test Scripts.  The following Step commands are available:

• Step command

• Step Into command

• Step Out command

• Step to Cursor command

The following Step buttons are available:

Step button

Step Into button



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 719

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Stop
You can stop a test run immediately by choosing the Stop command or clicking 
the Stop button. When you stop a test, test variables and arrays become 
undefined. The test options, however, retain their current values. See Controlling 
the Test Run with Testing Options on page 731 for more information.

After stopping a test, you can access only those functions that you loaded using 
the load command. You cannot access functions that you compiled using the Run 
commands. Recompile these functions to regain access to them. For more 
information, see Chapter 24, Creating Compiled Modules. 

Pause
You can pause a test by choosing the Pause command or clicking the Pause 
button. Unlike Stop, which immediately terminates execution, a paused test 
continues running until all previously interpreted TSL statements are executed. 
When you pause a test, test variables and arrays maintain their values, as do the 
test options. See Controlling the Test Run with Testing Options on page 731 
for more information.

To resume running a paused test, choose the appropriate Run command. Test 
execution resumes from the point where you paused the test.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 720

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Choosing Run Commands Using Softkeys

You can activate several of WinRunner’s commands using softkeys. WinRunner 
reads input from softkeys even when the WinRunner window is not the active 
window on your screen, or when it is minimized. Note that you can configure the 
default softkey configurations. For more information about configuring softkeys, 
see Chapter 34, Customizing WinRunner’s User Interface. 

The following table lists the default softkey configurations for running tests:



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 721

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 

Command
Default Softkey 
Combination

Function

RUN FROM TOP Ctrl Left + F5 Runs the test from the beginning.

RUN FROM ARROW Ctrl Left + F7 Runs the test from the line in the 
script indicated by the arrow.

STEP F6 Runs only the current line of the test 
script.

STEP INTO Ctrl Left + F8 Like Step: however, if the current line 
calls a test or function, the called test 
or function appears in the 
WinRunner window but is not 
executed.

STEP TO CURSOR Ctrl Left + F9 Runs a test from the line executed 
until the line marked by the insertion 
point.

PAUSE PAUSE Stops the test run after all previously 
interpreted TSL statements have 
been executed. Execution can be 
resumed from this point.

STOP Ctrl Left + F3 Stops the test run.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 722

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running a Test to Check Your Application

When you run a test to check the behavior of your application, WinRunner 
compares the current results with the expected results. You specify the folder in 
which to save the verification results for the test.

To run a test to check your application:

 1 If your test is not already open, choose File > Open or click the Open button to 
open the test. 

 2 Make sure that Verify is selected from the drop-down list of run modes on the 
Standard toolbar. 

 3 Choose the appropriate Run menu command or click one of the Run buttons.

The Run Test dialog box opens, displaying a default test run name for the 
verification results.  



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 723

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 You can save the test results under the default test run name. To use a different 
name, type in a new name or select an existing name from the list.

To instruct WinRunner to display the test results automatically following the test 
run (the default), select the Display test results at end of run check box.

Click OK. The Run Test dialog box closes and WinRunner runs the test 
according to the Run command you chose. 

 5 Test results are saved with the test run name you specified.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 724

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running a Test to Debug Your Test Script

When you run a test to debug your test script, WinRunner compares the current 
results with the expected results. Any differences are saved in the debug results 
folder. Each time you run the test in Debug mode, WinRunner overwrites the 
previous debug results.

To run a test to debug your test script:

 1 If your test is not already open, choose File > Open to open the test. 

 2 Select Debug from the drop-down list of run modes on the Standard toolbar.

 3 Choose the appropriate Run menu command.

To execute the entire test, choose Run > Run from Top or click the Run from 
Top button. The test runs from the top of the test script and generates a set of 
debug results.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 725

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To run part of the test, choose one of the following commands or click one of the 
corresponding buttons:

Run > Run from Arrow

Run > Run Minimized > From Arrow

Run > Step

Run > Step Into

Run > Step Out

Run > Step to Cursor

The test runs according to the command you chose, and generates a set of 
debug results.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 726

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running a Test to Update Expected Results

When you run a test to update expected results, the new results replace the 
expected results created earlier and become the basis of comparison for 
subsequent test runs.

To run a test to update the expected results:

 1 If your test is not already open, choose File > Open to open the test. 

 2 Select Update from the list of run modes on the Standard toolbar. 

 3 Choose the appropriate Run menu command.

To update the entire set of expected results, choose Run > Run from Top or 
click the Run from Top button. 

To update only a portion of the expected results, choose one of the following 
commands or click one of the corresponding buttons:

Run > Run from Arrow

Run > Run Minimized > From Arrow

Run > Step

Run > Step Into

Run > Step Out

Run > Step to Cursor

WinRunner runs the test according to the Run menu command you chose and 
updates the expected results. The default folder for expected results is exp.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 727

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Generating Multiple Expected Results
You can generate more than one set of expected results for any test. You may 
want to generate multiple sets of expected results if, for example, the response of 
your application varies according to the time of day. In such a situation, you would 
generate a set of expected results for each defined period of the day.

To create a different set of expected results for a test:

 1 Choose File > Open or click the Open button. The Open Test dialog box opens.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 728

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 In the Open Test dialog box, select the test for which you want to create multiple 
sets of expected results. In the Expected box, type in a unique folder name for 
the new expected results. 

Note: To create a new set of expected results for a test that is already open, 
choose File > Open or click the Open button to open the Open Test dialog box, 
select the open test, and then enter a name for a new expected results folder in 
the Expected box.

 3 Click OK. The Open Test dialog box closes.

 4 Choose Update from the list of run modes on the Standard toolbar. 

 5 Choose Run > Run from Top or click the Run from Top button to generate a 
new set of expected results.

WinRunner runs the test and generates a new set of expected results, in the 
folder you specified.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 729

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running a Test with Multiple Sets of Expected Results
If a test has multiple sets of expected results, you specify which expected results 
to use before running the test.

To run a test with multiple sets of expected results:

 1 Choose File > Open or click the Open button. The Open Test dialog box opens.

Note: If the test is already open, but it is accessing the wrong set of expected 
results, you must choose File > Open or click the Open button to open the Open 
Test dialog box again, next select the open test, and then choose the correct 
expected results folder in the Expected box.

 2 In the Open Test dialog box, click the test that you want to run. The Expected 
box displays all the sets of expected results for the test you chose.

 3 Select the required set of expected results in the Expected box, and click Open. 
The Open Test dialog box closes.

 4 Select Verify from the drop-down list of run modes on the Standard toolbar.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 730

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Choose the appropriate Run menu command. The Run Test dialog box opens, 
displaying a default test run name for the verification results—for example, res1. 

 6 Click OK to begin test execution, and to save the test results in the default folder. 
To use a different verification results folder, type in a new name or choose an 
existing name from the list.

The Run Test dialog box closes. WinRunner runs the test according to the Run 
menu command you chose and saves the test results in the folder you specified.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 731

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Controlling the Test Run with Testing Options

You can control how a test is run using WinRunner’s testing options. For example, 
you can set the time WinRunner waits at a bitmap checkpoint for a bitmap to 
appear, or the speed that a test is run.

You set testing options in the General Options dialog box. Choose Settings > 
General Options to open this dialog box. You can also set testing options from 
within a test script using the setvar function.

Each testing option has a default value. For example, the default for the threshold 
for difference between bitmaps option (that defines the minimum number of pixels 
that constitute a bitmap mismatch) is 0. It can be set globally in the Run tab of the 
General Options dialog box. For a more comprehensive discussion of setting 
testing options globally, see Chapter 36, Setting Global Testing Options.  

You can also set the corresponding min_diff option from within a test script using 
the setvar function. For a more comprehensive discussion of setting testing 
options from within a test script, see Chapter 37, Setting Testing Options from 
a Test Script.  

If you assign a new value to a testing option, you are prompted to save this 
change to your WinRunner configuration when you exit WinRunner.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 732

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reviewing Current Test Settings

You can review the settings for the current test in a read-only view in the Current 
Test tab of the Test Properties dialog box. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 733

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Current line number

This box displays the line number of the current location of the execution arrow in 
the test script. 

Note that you can use the getvar function to retrieve the value of the 
corresponding line_no testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

Current folder

This box displays the current working folder for the test. 

Note that you can use the getvar function to retrieve the value of the 
corresponding curr_dir testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script.  

Expected results folder

This box displays the full path of the expected results folder associated with the 
current test run. 

Note that you can use the getvar function to retrieve the value of the 
corresponding exp testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -exp command line 
option, described in Chapter 30, Running Tests from the Command Line. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 734

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Verification results folder

This box displays the full path of the verification results folder associated with the 
current test run.

Note that you can use the getvar function to retrieve the value of the 
corresponding result testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

Run Mode

This box displays the current run mode: Verify, Debug, or Update.

Note that you can use the getvar function to retrieve the value of the 
corresponding runmode testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 735

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Solving Common Test Run Problems

When you run your Context Sensitive test, WinRunner may open the Run wizard. 
Generally, the Run wizard opens when WinRunner has trouble locating an object 
or a window in your application. It displays a message similar to the one below.



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 736

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

There are several possible causes and solutions:

Possible Causes Possible Solutions

You were working with the 
temporary GUI map, which you did 
not save when you exited 
WinRunner: When you record in an 
application, WinRunner learns the 
GUI objects on which you record. 
Unless you specify otherwise, this 
information is stored in the 
temporary GUI map file, which is 
cleared whenever you exit 
WinRunner.

 WinRunner should relearn your application, 
so that the logical names and physical 
descriptions of the GUI objects are stored in 
the GUI map. When you are done, make sure 
to save the GUI map file. When you start your 
test, make sure to load your GUI map file. 
These steps are described in Chapter 4, 
Creating the GUI Map. 

You saved the GUI map file, but it 
is not loaded. 

Load the GUI file for your test. You can load 
the file manually each time with the GUI Map 
Editor, or you can add a GUI_load statement 
to the beginning of your test script. For more 
information, see Chapter 4, Creating the 
GUI Map. 



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 737

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The object is not identified during a 
test run because it has a dynamic 
label. For example, you may be 
testing an application that contains 
an object with a varying label, such 
as any window that contains the 
application name followed by the 
active document name in the title. 
(In the sample Flight Reservation 
application, the “Fax Order” 
window also has a varying label.)

Use a regular expression to enable 
WinRunner to recognize objects based on a 
portion of its physical description. For more 
information on regular expressions, see 
Chapter 19, Using Regular Expressions. 

Use the GUI Map Configuration dialog box to 
change the physical properties that 
WinRunner uses to recognize the problematic 
object. For more information on GUI Map 
configuration, Chapter 6, Configuring the 
GUI Map. 

The physical description of the 
object/window does not match the 
physical description in the GUI 
map. 

 Modify the physical description in the GUI 
map, as described in Modifying Logical 
Names and Physical Descriptions on 
page 102.

The logical name of the 
object/window in the test script 
does not match the logical name in 
the GUI map. 

Modify the logical name of the object/window 
in the GUI map, as described in Modifying 
Logical Names and Physical 
Descriptions on page 102.

Modify the logical name of the object/window 
manually in the test script.

Possible Causes Possible Solutions



Running Tests • Running Tests

WinRunner User’s Guide Chapter 27, page 738

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Tip: WinRunner can learn your application systematically from the GUI Map 
Editor before you start recording on objects within your application. For more 
information, see Chapter 4, Creating the GUI Map. 

Note: For additional information on solving GUI map problems while running a 
test, see Guidelines for Working with GUI Maps on page 88.

The object/window has a different 
number of obligatory or optional 
properties (in the GUI map 
configuration) than in the GUI map. 

In the Configure Class dialog box, configure 
the obligatory or optional properties which are 
learned by WinRunner for that class of object, 
so they will match the physical description in 
the GUI map, as described in Configuring a 
Standard or Custom Class on page 134.

WinRunner should relearn the object/window 
in the GUI map so that it will learn the 
obligatory and optional properties configured 
for that class of object, as described in 
Chapter 4, Creating the GUI Map. 

Possible Causes Possible Solutions



Running Tests
Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 739

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�	
Analyzing Test Results

After you run a test, you can view a report of all the major events that occurred 
during the test run.

This chapter describes:

• The Test Results Window

• Viewing the Results of a Test Run

• Viewing the Results of a GUI Checkpoint

• Viewing the Results of a GUI Checkpoint on Table Contents

• Viewing the Expected Results of a GUI Checkpoint on Table Contents

• Viewing the Results of a Bitmap Checkpoint

• Viewing the Results of a Database Checkpoint

• Viewing the Expected Results of a Content Check in a Database 
Checkpoint

• Updating the Expected Results of a Checkpoint

• Viewing the Results of a File Comparison

• Reporting Defects Detected during a Test Run



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 740

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Analyzing Test Results

After you run a test, test results are displayed in the Test Results window. This 
window contains a description of the major events that occurred during the test 
run, such as GUI, bitmap, or database checkpoints, file comparisons, and error 
messages. It also includes tables and pictures to help you analyze the results.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 741

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Test Results Window

After a test run, you can view test results in the Test Results window. To open the 
window, choose Tools > Test Results or click the Test Results button.

Test tree

Test summary

Test log

Results 



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 742

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Results
The results box enables you to choose which results to display for the test. You 
can view the expected results (exp) or the actual results for a specified test run.

Test Tree
The test tree shows all tests executed during the test run. The first test in the tree 
is the calling test. Tests below the calling test are called tests. To view the results 
of a test, click the test name in the tree.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 743

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Test Summary
The following information appears in the test summary:

Test Results

Indicates whether the test passed or failed. For a batch test, this refers to the 
batch test itself and not to the tests that it called. Double-click the Test Result 
button to view the following details:

Total number of bitmap checkpoints: The total number of bitmap checkpoints 
that occurred during the test run. Double-click to view a detailed list of the 
checkpoints. For example, 

Img1 test1 (5)

indicates the first bitmap checkpoint, in a test called test1, in the fifth line of the 
test script. The number in parentheses indicates the line in the test script that 
contains the obj_check_bitmap or win_check_bitmap statement. Double-click 
the detailed description of the bitmap checkpoint to display the contents of the 
bitmap checkpoint, as shown in the previous example. For more information, see 
Viewing the Results of a Bitmap Checkpoint on page 768.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 744

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Total number of GUI checkpoints: The total number of GUI checkpoints that 
occurred during the test run. Double-click to view a detailed list of the checkpoints. 
For example, 

gui1 test1 (10)

indicates the first GUI checkpoint in a test called test1, in the tenth line of the test 
script. The number in parentheses indicates the line in the test script that contains 
the obj_check_gui or win_check_gui statement. Double-click the detailed 
description of the GUI checkpoint to display the GUI Checkpoint Results dialog 
box for that checkpoint. For more information, see Viewing the Results of a GUI 
Checkpoint on page 753.

General Information

Double-click the General Information icon to view the following test details:

Date: The date and time of the test run.

Operator Name: The name of the user who ran the test.

Expected Results Folder: The name of the expected results folder used for 
comparison by the GUI and bitmap checkpoints.

Total Run Time: Total time (hr:min:sec) that elapsed from start to finish of the test 
run.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 745

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Test Log
The test log provides detailed information on every major event that occurred 
during the test run. These include the start and termination of the test; GUI and 
bitmap checkpoints; file comparisons; changes in the progress of the test flow; 
changes to system variables; displayed report messages; and run time errors. 

A row describing a mismatch or failure appears in red; a row describing a 
successful event appears in green. 

Double-click the event in the log to view the following information.

• For a bitmap checkpoint, you can view the expected bitmap and the actual 
bitmap captured during the run. If a mismatch was detected, you can also view 
an image showing the differences between the expected and actual bitmaps.

• For a GUI checkpoint, you can view the results in a table. The table lists all the 
GUI objects included in the checkpoint and the results of the checks for each 
object. 

• For a file comparison, you can view the two files that were compared to each 
other. If a mismatch was detected, the non-matching lines in the files are 
highlighted.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 746

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a Test Run

After a test run, you can view test results in the Test Results window. The Test 
Results window opens and displays the results of the current test. You can view 
expected, debug, and verification results in the Test Results window. 

To view the results of a test run:

 1 To open the Test Results window, choose Tools > Test Results, or click the Test 
Results button in the main WinRunner window. 

To view the results of a non-active test, choose File > Open. In the Open Test 
Results dialog box, select the test whose results you want to view.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 747

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that if you ran a test in Verify mode and the Display Test Results at End 
of Run check box was selected (the default) in the Run Test dialog box, the Test 
Results window automatically opens when a test run is completed. For more 
information, see Chapter 27, Running Tests. 

 2 By default, the Test Results window displays the results of the most recently 
executed test run. 

To view other test run results, click the Results box and select a test run.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 748

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 To view a text version of a report, choose Tools > Text Report from the Test 
Results window. The report opens in Notepad.

 4 To view only specific types of results in the events column in the test log, choose 
Options > Filters or click the Filters button.

 5 To print test results directly from the Test Results window, choose File > Print or 
click the Print button. 

In the Print dialog box, choose the number of copies you want to print and click 
OK. Test results print in a text format.

 6 To close the Test Results window, choose File > Exit.

To view the results of a test run from a TestDirector database:

 1 Choose Tools > Test Results or click the Test Results button in the main 
WinRunner window.

The Test Results window opens, displaying the test results of the latest test run 
of the active test.

 2 In the Test Results window, choose File > Open.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 749

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Open Test Results from TestDirector Project dialog box opens and 
displays the test plan tree.

 3 In the Test Type box, select the type of test to view in the dialog box: 
WinRunner Tests (the default setting), WinRunner Batch Tests, or All Tests.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 750

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Select the relevant subject in the test plan tree. To expand the tree and view a 
sublevel, double-click a closed folder. To collapse a sublevel, double-click an 
open folder.

 5 Select a test run to view. The Run Name column displays whether your test run 
passed or failed and contains the names of the test runs. The Test Set column 
contains the names of the test sets. Entries in the Status column indicate 
whether the test passed or failed. The Run Date column displays the date and 
time when the test set was run.

 6 Click OK to view the results of the selected test.

See the previous section for an explanation of the options in the Test Results 
window.

Note: For more information on viewing the results of a test run from a 
TestDirector database, see Chapter 40, Managing the Testing Process. 



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 751

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a Property Check

A property check helps you to identify specific changes in the behavior of GUI 
objects in your application. For example, you can check whether a button is 
enabled or disabled or whether an item in a list is selected. The results of a 
property check are displayed in the Property dialog box that you open from the 
Test Results window. The expected and actual results are shown.

For more information, see Chapter 9, Checking GUI Objects. 

To display the results of a property check:

 1 Choose Tools > Test Results or click the Test Results button in the main 
WinRunner window to open the Test Results window.

 2 In the test log, look for entries that list “property check” in the Event column. 
Failed checks appear in red; passed checks appear in green.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 752

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Double-click an “property check” entry in the test log. The Property dialog box 
opens. It displays the expected and actual values.

 4 Click OK to close the dialog box.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 753

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a GUI Checkpoint

A GUI checkpoint helps you to identify changes in the look and behavior of GUI 
objects in your application. The results of a GUI checkpoint are displayed in the 
GUI Checkpoint Results dialog box that you open from the Test Results window. 
It lists each object included in the GUI checkpoint and the type of checks 
performed. Each check is listed as either passed or failed, and the expected and 
actual results are shown. If one or more objects fail, the entire GUI checkpoint is 
marked as failed in the test log.

For more information, see Chapter 9, Checking GUI Objects. 

To display the results of a GUI checkpoint:

 1 Choose Tools > Test Results or click the Test Results button in the main 
WinRunner window to open the Test Results window. 

 2 In the test log, look for entries that list “end GUI checkpoint” in the Event column. 
Failed GUI checkpoints appear in red; passed GUI checkpoints appear in green.

 3 Double-click an “end GUI checkpoint” entry in the test log. Alternatively, highlight 
the entry and choose Options > Display or click the Display button. The GUI 
Checkpoint Results dialog box opens.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 754

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The GUI Checkpoint Results dialog box lists the results of the selected 
checkpoint.

The dialog box lists every object checked and the types of checks performed. 
Each check is marked as either passed or failed and the expected and the actual 
results are shown. 

You can update the expected value of a checkpoint. For additional information 
on see Updating the Expected Results of a Checkpoint on page 779. For a 
description of other options in this dialog box, see Options in the GUI 
Checkpoint Results Dialog Box on page 755. 

Failed check

Passed check



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 755

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click OK to close the dialog box.

Options in the GUI Checkpoint Results Dialog Box
The GUI Checkpoint Results dialog box includes the following options:

Button Description

Edit Expected Value enables you to edit the expected value of 
the selected property. For more information, see Editing the 
Expected Value of a Property on page 284.

Specify Arguments enables you to specify the arguments for a 
check on the selected property. For more information, see 
Specifying Arguments for Property Checks on page 273.

Compare Expected and Actual Values opens the Compare 
Values box, which displays the expected and actual values for the 
selected property check. For a check on table contents, opens the 
Data Comparison Viewer, which displays the expected and actual 
values for the check.

Update Expected Value updates the expected value to the 
actual value. Note that this overwrites the saved expected value.

Show Failures Only displays only failed checks. 

Show Standard Properties Only displays only standard 
properties.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 756

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Show Nonstandard Properties Only displays only 
nonstandard properties, such as Visual Basic, PowerBuilder, and 
ActiveX control properties.

Show User Properties Only displays only user-defined 
property checks. To create user-defined property checks, refer to 
the WinRunner Customization Guide.

Show All Properties displays all properties, including standard, 
nonstandard, and user-defined properties. 

Button Description



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 757

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a GUI Checkpoint on Table Contents

You can view the results of a GUI checkpoint on table contents. The results of a 
GUI checkpoint are displayed in the GUI Checkpoint Results dialog box that you 
open from the Test Results window. It lists each object included in the GUI 
checkpoint and the type of checks performed. Each check is listed as either 
passed or failed, and the expected and actual results are shown. If one or more 
objects fail, the entire GUI checkpoint is marked as failed in the test log. For more 
information on checking the contents of a table, see Chapter 12, Checking Table 
Contents. 

To display the results of a GUI checkpoint on table contents:

 1 Choose Tools > Test Results, or click the Test Results button in the main 
WinRunner window to open the Test Results window.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 758

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Double-click an “end GUI checkpoint” entry in the test log. Alternatively, highlight 
the entry and choose Options > Display or click the Display button. The GUI 
Checkpoint Results dialog box opens and the results of the selected GUI 
checkpoint are displayed.

 3 Highlight the TableContent check and click the Display button, or double-click 
the TableContent check. Note that the table contents property check may not be 
called TableContent, and may have a different name instead, depending on 
which toolkit is used.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 759

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Data Comparison Viewer opens, displaying both expected and actual 
results. All cells are color coded, and all errors and mismatches are listed at the 
bottom of the window. 

List of errors 
and 
mismatches

Cell does not 
contain a 
mismatch.

Cell contains 
a mismatch.

Cell was not 
included in 
the 
comparison.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 760

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Use the following color codes to interpret the differences that are highlighted in 
your window:

• Blue on white background: Cell was included in the comparison and no 
mismatch was found.

• Cyan on ivory background: Cell was not included in the comparison. 

• Red on yellow background: Cell contains a mismatch.

• Magenta on green background: Cell was verified but not found in the 
corresponding table.

• Background color only: cell is empty (no text).

 4 By default, scrolling between the Expected Data and Actual Data tables in the 
Data Comparison Viewer is synchronized. When you click a cell, the 
corresponding cell in the other table flashes red. 

To scroll through the tables separately, clear the Utilities > Synchronize 
Scrolling command or click the Synchronize Scrolling button to deselect it. 
Use the scroll bar as needed to view hidden parts of the table.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 761

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 To filter a list of errors and mismatches that appear at the bottom of the Data 
Comparison Viewer, use the following options:

• To view mismatches for a specific column only: Double-click a column 
heading (the column name) in either table.

• To view mismatches for a single row: Double-click a row number in either 
table.

• To view mismatches for a single cell: Double-click a cell with a mismatch.

• To view the previous mismatch: Click the Previous Mismatch button.

• To view the next mismatch: Click the Next Mismatch button.

• To see all mismatches: Choose Utilities > List All Mismatches or click the 
List All Mismatches button.

• To clear the list: Double-click a cell with no mismatch.

• To see the cell(s) that correspond to a listed mismatch: Click a mismatch 
in the list at the bottom of the dialog box to see the corresponding cells in the 
table flash red. If the cell with the mismatch is not visible, one or both table 
scroll automatically to display it.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 762

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can edit the data in the Edit Check dialog box, which you open from 
the GUI Checkpoint Results dialog box. To do so, highlight the TableContent (or 
corresponding) property check, and click the Edit Expected Value button. For 
information on working with the Edit Check dialog box, see Understanding the 
Edit Check Dialog Box on page 342.

 6 Choose File > Exit to close the Data Comparison Viewer.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 763

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Expected Results of a GUI Checkpoint 
on Table Contents

You can view the expected results of a GUI checkpoint on table contents either 
before or after you run your test. The expected results of a GUI checkpoint are 
displayed in the GUI Checkpoint Results dialog box, which you open from the Test 
Results window. When you view the expected results of a GUI checkpoint on table 
contents from the Test Results window, you must choose the expected (“exp”) 
mode in the Results box.

Note that you can also view the expected results of a GUI checkpoint on a table 
from the Edit Check dialog box. For additional information, see Chapter 12, 
Checking Table Contents. 

To display the expected results of a GUI checkpoint on table contents:

 1 Choose Tools > Test Results, or click the Test Results button in the main 
WinRunner window to open the WinRunner Test Results window.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 764

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 If “exp” does not already appear as the results folder in the Results box, then 
select it.

Note that since you are viewing the expected results of a test, the total number of 
GUI checkpoints performed by WinRunner is zero.

Results box



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 765

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Double-click an “end GUI capture” entry in the test log. Alternatively, highlight the 
entry and choose Options > Display or click the Display button. The GUI 
Checkpoint Results dialog box opens and the expected results of the selected 
GUI checkpoint are displayed.

Note: Since you are viewing the expected results of the GUI checkpoint, the 
actual values are not displayed.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 766

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Highlight the TableContent check and click the Display button, or double-click 
the TableContent check. Note that the table contents property check may not be 
called TableContent, and may have a different name instead, depending on 
which toolkit is used.

The Expected Data Viewer opens, displaying the expected results. 



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 767

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can edit the data in the Edit Check dialog box, which you open from 
the GUI Checkpoint Results dialog box. To do so, highlight the TableContent (or 
corresponding) property check, and click the Edit Expected Value button. For 
information on working with the Edit Check dialog box, see Understanding the 
Edit Check Dialog Box on page 342.

 5 Choose File > Exit to close the Expected Data Viewer.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 768

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a Bitmap Checkpoint

A bitmap checkpoint compares expected and actual bitmaps in your application. 
In the Test Results window you can view pictures of the expected and actual 
results. If a mismatch is detected by a bitmap checkpoint during a verification run, 
you can also view an image showing the differences between the expected and 
the actual results.

To view the results of a bitmap checkpoint:

 1 In the Test Results window, look for entries that list bitmap checkpoints in the 
Event column in the test log.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 769

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 To view the results of a specific bitmap checkpoint, double-click its entry in the 
log. Alternatively, highlight the “bitmap checkpoint” entry and choose Options > 
Display or click the Display button. For a mismatch during a test run in 
Verification or Debug mode, the expected, actual, and difference bitmaps are 
displayed. For a mismatch during a test run in Update mode, only the expected 
bitmaps are displayed.

Note: You can control which types of bitmaps are displayed (expected, actual, 
difference) when you view the results of a bitmap checkpoint. To set the controls, 
choose Options > Bitmap Controls in the Test Results window.

 3 To remove a bitmap from the screen, double-click the system menu button in the 
bitmap window.

Expected Actual Difference



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 770

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a Database Checkpoint

A database checkpoint helps you to identify changes in the contents and structure 
of databases in your application. The results of a database checkpoint are 
displayed in the Database Checkpoint Results dialog box that you open from the 
Test Results window. It displays the database included in the database 
checkpoint and the type of checks performed. Each check is listed as either 
passed or failed, and the expected and actual results are shown. If one or more 
property checks on the database fail, the entire database checkpoint is marked 
as failed in the test log.

For more information, see Chapter 13, Checking Databases. 

To display the results of a database checkpoint:

 1 Choose Tools > Test Results or click the Test Results button in the main 
WinRunner window to open the Test Results window. 

 2 In the test log, look for entries that list “end database checkpoint” in the Event 
column. Failed database checkpoints appear in red; passed database 
checkpoints appear in green.

 3 Double-click an “end database checkpoint” entry in the test log. Alternatively, 
highlight the entry and choose Options > Display or click the Display button. 
The Database Checkpoint Results dialog box opens.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 771

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Database Checkpoint Results dialog box lists the results of the selected 
checkpoint.

The dialog box displays the checked database and the types of checks 
performed on it. Each check is marked as either passed or failed and the 
expected and the actual results are shown. 

You can update the expected value of a checkpoint. For additional information 
on see Updating the Expected Results of a Checkpoint on page 779. For a 
description of other options in this dialog box, see Options in the Database 
Checkpoint Results Dialog Box on page 773. 

Failed check

Passed check



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 772

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click OK to close the dialog box.

Note: You can edit the data in the Edit Check dialog box, which you open from 
the Database Checkpoint Results dialog box. To do so, highlight the Content 
check, and click the Edit Expected Value button. For information on working 
with the Edit Check dialog box, see Understanding the Edit Check Dialog Box 
on page 391.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 773

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Options in the Database Checkpoint Results Dialog Box
The Database Checkpoint Results dialog box includes the following options:

Button Description

Edit Expected Value enables you to edit the expected value of 
the selected property. For more information, see Creating a 
Custom Check on a Database on page 368.

Compare Expected and Actual Values opens the Compare 
Values box, which displays the expected and actual values for the 
selected property check. For a Content check, opens the Data 
Comparison Viewer, which displays the expected and actual 
values for the check. 

Update Expected Value updates the expected value to the 
actual value. Note that this overwrites the saved expected value.

Show Failures Only displays only failed checks. 

Show Standard Properties Only displays only standard 
properties.

Show Nonstandard Properties Only displays only 
nonstandard properties, such as Visual Basic, PowerBuilder, and 
ActiveX control properties.

Show All Properties displays all properties, including standard, 
nonstandard, and user-defined properties. 



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 774

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Expected Results of a Content Check
in a Database Checkpoint

You can view the expected results of a content check in a database checkpoint 
either before or after you run your test. The expected results of a database 
checkpoint are displayed in the Database Checkpoint Results dialog box, which 
you open from the Test Results window. When you view the expected results of a 
content check in a database checkpoint from the Test Results window, you must 
choose the expected (“exp”) mode in the Results box.

Note that you can also view the expected results of a database checkpoint on a 
table from the Edit Check dialog box. For additional information, see Chapter 13, 
Checking Databases. 

To display the expected results of a content check in a database 
checkpoint:

 1 Choose Tools > Test Results, or click the Test Results button in the main 
WinRunner window to open the WinRunner Test Results window.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 775

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 If “exp” does not already appear as the results folder in the Results box, then 
select it.

Note that since you are viewing the expected results of a test, the total number of 
database checkpoints performed by WinRunner is zero.

Results box



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 776

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Double-click an “end database capture” entry in the test log. Alternatively, 
highlight the entry and choose Options > Display or click the Display button. 
The Database Checkpoint Results dialog box opens and the expected results 
of the selected database checkpoint are displayed.

Note that since you are viewing the expected results of the database checkpoint, 
the actual values are not displayed.

 4 Highlight the Content check and click the Display button, or double-click the 
Content check.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 777

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Expected Data Viewer opens, displaying the expected results. 



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 778

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can edit the data in the Edit Check dialog box, which you open from 
the Database Checkpoint Results dialog box. To do so, highlight the Content 
check, and click the Edit Expected Value button. For information on working 
with the Edit Check dialog box, see Understanding the Edit Check Dialog Box 
on page 391.

 5 Choose File > Exit to close the Expected Data Viewer.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 779

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Updating the Expected Results of a Checkpoint

If a bitmap, GUI, or database checkpoint fails, you can update the data in the 
expected results folder (exp). The next time you run the test, the new expected 
results will be compared to the current results in the application.

Updating the Expected Results of a Bitmap Checkpoint
You can update the expected results of a bitmap checkpoint to the actual results 
after a test run.

To update the expected results for a bitmap checkpoint:

 1 In the Test Results window, highlight a mismatched “bitmap checkpoint” entry in 
the test log.

 2 Choose Options > Update or click the Update button.

 3 A dialog box warns that overwriting expected results cannot be undone. Click 
Yes to update the results.

Updating the Expected Results of a GUI Checkpoint
You can update the expected results of a GUI checkpoint to the actual results 
after a test run. You can update the results for the entire GUI checkpoint, or 
update the results for a specific check within the GUI checkpoint.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 780

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To update the expected results for an entire GUI checkpoint:

 1 In the Test Results window, highlight a mismatched “GUI checkpoint” entry in 
the test log.

 2 Choose Options > Update or click the Update button.

 3 A dialog box warns that overwriting expected results cannot be undone. Click 
Yes to update the results.

To update the expected results for a specific check within a GUI 
checkpoint:

 1 Double-click the GUI checkpoint entry in the log, choose Options > Display, or 
click the Display button. 

The GUI Checkpoint Results dialog box opens.

 2 In the Properties pane, highlight a failed check. 

 3 Click the Update Expected Value button.

 4 A dialog box warns that if you replace the expected results with the actual 
results, WinRunner will overwrite the saved expected values. Click Yes to 
update the results.

 5 Click OK to close the dialog box.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 781

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Updating the Expected Results of a Database Checkpoint
You can update the expected results of a database checkpoint to the actual 
results after a test run. You can update the results for the entire database 
checkpoint, or update the results for a specific check within a database 
checkpoint.

To update the expected results for an entire database checkpoint:

 1 In the Test Results window, highlight a mismatched “database checkpoint” entry 
in the test log.

 2 Choose Options > Update or click the Update button.

 3 A dialog box warns that overwriting expected results cannot be undone. Click 
Yes to update the results.

To update the expected results for a specific check within a database 
checkpoint:

 1 Double-click the database checkpoint entry in the log, choose Options > 
Display, or click the Display button. 

The Database Checkpoint Results dialog box opens.

 2 In the Properties pane, highlight a failed check. 

 3 Click the Update Expected Value button.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 782

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 A dialog box warns that if you replace the expected results with the actual 
results, WinRunner will overwrite the saved expected values. Click Yes to 
update the results.

 5 Click OK to close the dialog box.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 783

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing the Results of a File Comparison

If you used a file_compare statement in a test script to compare the contents of 
two files, you can view the results using the WDiff utility. This utility is accessed 
from the Test Results window. 

To view the results of a file comparison:

 1 Choose Tools > Test Results or click the Test Results button to open the Test 
Results window. 

 2 Double-click a “file compare” event in the test log. Alternatively, highlight the 
event and choose Options > Display or click Display. The WDiff utility window 
opens.

Line contains a 
mismatch

Line does not 
contain a 
mismatch



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 784

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The WDiff utility displays both files. Lines in the file that contain a mismatch are 
highlighted. The file defined in the first parameter of the file_compare statement 
is on the left side of the window.

To see the next mismatch in a file, choose View > Next Diff or press the Tab key. 
The window scrolls to the next highlighted line. To see the previous difference, 
choose View > Prev Diff or press the Backspace key.

You can choose to view only the lines in the files that contain a mismatch. To 
filter file comparison results, choose Options > View > Hide Matching Areas. 
The window shows only the highlighted parts of both files.

 3 Choose File > Exit to close the WDiff Utility.



Running Tests • Analyzing Test Results

WinRunner User’s Guide Chapter 28, page 785

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reporting Defects Detected during a Test Run

If a test run detects a defect in the application under test, you can report it directly 
from the Test Results window to a TestDirector project. To report a defect, click 
the Report Bug button or choose Tools > Report Bug. 

• If the TestDirector Web Defect Manager was previously used on the machine, it 
opens. The Web Defect Manager is Mercury Interactive’s system for reporting 
and tracking software defects and errors over the World Wide Web. For 
additional information, see Chapter 42, Reporting Defects, or refer to the Web 
Defect Manager User’s Guide. 

• If the Remote Defect Reporter was installed from the TestDirector CD-ROM, the 
Remote Defect Reporter dialog box opens so that you can type details of the 
defect. You can then send this information to a file or send it by e-mail. The 
information on the defect can later be imported into TestDirector where a quality 
assurance manager determines its severity and assigns it to a developer to be 
fixed. See Chapter 42, Reporting Defects for more information.



Running Tests
Running Batch Tests

WinRunner User’s Guide Chapter 29, page 786

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�

Running Batch Tests 

WinRunner enables you to execute a group of tests unattended. This can be 
particularly useful when you want to run a large group of tests overnight or at other 
off-peak hours. 

This chapter describes:

• Creating a Batch Test

• Running a Batch Test

• Storing Batch Test Results

• Viewing Batch Test Results



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 787

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Running Batch Tests 

You can run a group of tests unattended by creating and executing a single 
batch test. A batch test is a test script that contains call statements to other tests. 
It opens and executes each test and saves the test results.

A batch test looks like a regular test that includes call statements. A test 
becomes a “batch test” when you select the Run in Batch Mode option in the 
Run tab of the General Options dialog box before you execute the test.

When you run a test in Batch mode, WinRunner suppresses all messages that 
would ordinarily be displayed during execution, such as a message reporting a 
bitmap mismatch. WinRunner also suppresses all pause statements and any 
halts in execution resulting from run time errors.

Batch Test

Test
n

Test
3

Test
2

Test
1



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 788

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

By suppressing all messages, WinRunner can run a batch test unattended. This 
differs from a regular, interactive test run in which messages appear on the screen 
and prompt you to click a button in order to resume test execution. A batch test 
enables you to run tests overnight or during off-peak hours, so that you can save 
time while testing your application.

When a batch test run is completed, you can view the results in the Test Results 
window. The window displays the results of all the major events that occurred 
during the run.

Note that you can also execute a group of tests from the command line. For 
details, see Chapter 30, Running Tests from the Command Line.  



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 789

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Batch Test

A batch test is a test script that calls other tests. You program a batch test by 
typing call statements directly into the test window and selecting the Batch Run in 
Batch Mode option in the Run tab of the General Options dialog box before you 
execute the test.

A batch test may include programming elements such as loops and decision-
making statements. Loops enable a batch test to run called tests a specified 
number of times. Decision-making statements such as if/else and switch 
condition test execution on the results of a test called previously by the same 
batch script. See Chapter 20, Enhancing Your Test Scripts with 
Programming, for more information.

For example, the following batch test executes three tests in succession, then 
loops back and calls the tests again. The loop specifies that the batch test should 
call the tests ten times.

for (i=0; i<10; i++)
{
call "c:\\pbtests\\open" ();
call "c:\\pbtests\\setup" ();
call "c:\\pbtests\\save" ();
}



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 790

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To enable a batch test:

 1 Choose Settings > General Options. 

The General Options dialog box opens.

 2 Click the Run tab.

 3 Select the Run in batch mode check box.

 4 Click OK to close the General Options dialog box. 

Run in batch mode check box 



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 791

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For more information on setting the batch option in the General Options dialog 
box, see Chapter 36, Setting Global Testing Options.  

Running a Batch Test

You execute a batch test in the same way that you execute a regular test. Choose 
a mode (Verify, Update, or Debug) from the list on the toolbar and choose Run > 
Run from Top. See Chapter 27, Running Tests, for more information.

When you run a batch test, WinRunner opens and executes each called test. All 
messages are suppressed so that the tests are run without interruption. If you run 
the batch test in Verify mode, the current test results are compared to the 
expected test results saved earlier. If you are running the batch test in order to 
update expected results, new expected results are created in the expected results 
folder for each test. See Storing Batch Test Results below for more information. 
When the batch test run is completed, you can view the test results in the Test 
Results window.

Note that if your tests contain TSL texit statements, WinRunner interprets these 
statements differently for a batch test run than for a regular test run. During a 
regular test run, texit terminates test execution. During a batch test run, texit 
halts execution of the current test only and control is returned to the batch test.



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 792

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Storing Batch Test Results

When you run a regular, interactive test, results are stored in a subfolder under 
the test. The same is true when a test is called by a batch test. WinRunner saves 
the results for each called test separately in a subfolder under the test. A 
subfolder is also created for the batch test that contains the overall results of the 
batch test run.

For example, suppose you create three tests: Open, Setup, and Save. For each 
test, expected results are saved in an exp subfolder under the test folder. 
Suppose you also create a batch test that calls the three tests. Before running the 
batch test in Verify mode, you instruct WinRunner to save the results in a folder 
called res1. When the batch test is run, it compares the current test results to the 
expected results saved earlier. Under each test folder, WinRunner creates a 
subfolder called res1 in which it saves the verification results for the test. A res1 
folder is also created under the batch test to contain the overall verification results 
for the entire run.

���� �!���

Open SaveSetup

exp
res1

exp
res1

exp
res1

exp
res1



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 793

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you run the batch test in Update mode in order to update expected results, 
WinRunner overwrites the expected results in the exp subfolder for each test 
and for the batch test.

Note that if you run the batch test without selecting the Run in Batch Mode check 
box in the General Options dialog box, WinRunner saves results only in a 
subfolder for the batch test. This can cause problems at a later stage if you 
choose to run the tests separately, since WinRunner will not know where to look 
for the previously saved expected and verification results.



Running Tests • Running Batch Tests

WinRunner User’s Guide Chapter 29, page 794

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing Batch Test Results

When a batch test run is completed, you can view information about the events 
that occurred during the run in the Test Results window. If one of the called tests 
fails, then the batch test is marked as failed.

The test log section of the Test Results window lists all the events that occurred 
during the batch test run. Each time a test is called, a call_test entry is listed in 
the log. To view the results of the called test, double-click its call_test entry. For 
more information on viewing test results in the Test Results window, see 
Chapter 28, Analyzing Test Results. 



Running Tests
Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 795

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Running Tests from the Command Line 

You can run tests directly from the Windows command line. 

This chapter describes:

• Using the Windows Command Line

• Command Line Options



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 796

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Running Tests from the Command Line 

You can use the Windows Run command to start WinRunner and run a test 
according to predefined options. You can also save your startup options by 
creating a custom WinRunner shortcut. Then, to start WinRunner with the startup 
options, you simply double-click the icon.

Using the command line, you can:

• start WinRunner

• load the relevant tests

• run the tests

• specify test options

• specify the results directories for the test

Most of the functional options that you can set within WinRunner can also be set 
from the command line. These include test run options and the directories in 
which test results are stored. You can also specify a custom.ini file that contains 
these and other environment variables and system parameters.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 797

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, the following command starts WinRunner, loads a batch test, and 
runs the test:

C\Program Files\Mercury Interactive\WinRunner\WRUN.EXE -t 
c:\batch\newclock -batch on -run_minimized -dont_quit -run 

The test newclock is loaded and then executed in batch mode with WinRunner 
minimized. WinRunner remains open after the test run is completed. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 798

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the Windows Command Line

You can use the Windows command line to start WinRunner with predefined 
options. If you plan to use the same set of options each time you start WinRunner, 
you can create a custom WinRunner shortcut.

Starting WinRunner from the Command Line
This procedure describes how to start WinRunner from the command line.

To start WinRunner from the Run command:

 1 On the Windows Start menu, choose Run. The Run dialog box opens.

 2 Type in the path of your WinRunner wrun.exe file, and then type in any 
command line options you want to use.

 3 Click OK to close the dialog box and start WinRunner.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 799

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a Custom WinRunner Shortcut
You can make the options you defined permanent by creating a custom 
WinRunner shortcut. 

To add a custom WinRunner shortcut:

 1 Create a shortcut for your wrun.exe file in Windows Explorer or My Computer.

 2 Click the right mouse button on the shortcut and choose Properties.

 3 Click the Shortcut tab.

 4 In the Target box, type in any command line options you want to use after the 
path of your WinRunner wrun.exe file. 

 5 Click OK. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 800

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Command Line Options

Following is a description of each command line option.

-addins list of add-ins to load

instructs WinRunner to load the specified add-ins. In the list, the add-ins are 
separated by commas. This can be used in conjunction with the 
-addins_select_timeout command line option.

(Formerly -addons.)

-addins_select_timeout timeout

instructs WinRunner to wait the specified time (in seconds) before closing the 
Add-In Manager dialog box when starting WinRunner. When the timeout is zero, 
the dialog box is not displayed. This can be used in conjunction with the -addins 
command line option.

(Formerly -addons_select_timeout.)

-animate

Instructs WinRunner to execute and run the loaded test, while the execution 
arrow displays the line of the test being run.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 801

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-auto_load {on | off}

Activates or deactivates automatic loading of the temporary GUI map file.

(Default = on)

-auto_load_dir path 

Determines the folder in which the temporary GUI map file (temp.gui) resides. 
This option is applicable only when auto load is on.

(Default = M_Home\dat)

-batch {on | off}

Runs the loaded test in Batch mode.

(Default = off)

Note that you may also set this option using the Run in batch mode check box 
in the Run tab of the Options dialog box, described in Chapter 36, Setting Global 
Testing Options. 

Note that you can use the getvar function to retrieve the value of the 
corresponding batch testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script.  



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 802

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-beep {on | off}

Activates or deactivates the WinRunner system beep.

(Default = on)

Note that you may also set this option using the corresponding Beep when 
checking a window check box in the Run tab of the Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding beep testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 

-create_text_report {on | off}

Instructs WinRunner to write test results to a text report, report.txt, which is saved 
in the results folder. 

(Default = off)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 803

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-cs_fail {on | off}

Determines whether WinRunner fails a test when Context Sensitive errors occur. 
A Context Sensitive error is the failure of a Context Sensitive statement during a 
test. Context Sensitive errors are often due to WinRunner’s failure to identify a 
GUI object. 

For example, a Context Sensitive error will occur if you run a test containing a 
set_window statement with the name of a non-existent window. Context 
Sensitive errors can also occur when window names are ambiguous. For 
information about Context Sensitive functions, refer to the TSL Online Reference.

(Default = off)

Note that you may also set this option using the corresponding Fail test when 
Context Sensitive errors occur check box in the Run tab of the Options dialog 
box, described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding cs_fail testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 804

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-cs_run_delay non-negative integer

Sets the time (in milliseconds) that WinRunner waits between executing Context 
Sensitive statements when running a test.

(Default = 0 [milliseconds])

Note that you may also set this option using the corresponding Delay between 
execution of CS statements box in the Advanced Run Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding cs_run_delay testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 805

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-delay_msec non-negative integer

Directs WinRunner to determine whether a window or object is stable before 
capturing it for a bitmap checkpoint or synchronization point. It defines the time 
(in milliseconds) that WinRunner waits between consecutive samplings of the 
screen. If two consecutive checks produce the same results, WinRunner captures 
the window or object. (Formerly -delay, which was measured in seconds.)

(Default = 1000 [milliseconds])

(Formerly -delay.)

Note: This parameter is accurate to within 20-30 milliseconds.

Note that you may also set this option using the corresponding Delay for window 
synchronization box in the Run tab of the Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding delay_msec testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 806

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-dont_connect

If the “Reconnect on startup” option is selected in the Connection to Test Director 
dialog box, this command line enables you to open WinRunner without 
connecting to Test Director.

To disable the “Reconnect on startup” option, select Tools > TestDirector 
Connection and clear the “Reconnect on startup” checkbox as described in 
Chapter 30, Running Tests from the Command Line.

-dont_quit

Instructs WinRunner not to close after completing the test.

-dont_show_welcome

Instructs WinRunner not to display the Welcome window when starting 
WinRunner.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 807

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-exp expected results folder name

Designates a name for the subfolder in which expected results are stored. In a 
verification run, specifies the set of expected results used as the basis for the 
verification comparison.

(Default = exp)

Note that you may also view this setting using the corresponding Expected 
results folder box in the Current Test tab of the Test Properties dialog box, 
described in Chapter 27, Reviewing Current Test Settings.

Note that you can use the getvar function to retrieve the value of the 
corresponding exp testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

-fast_replay {on | off}

Sets the speed of the test run. on sets tests to run as fast as possible and off sets 
tests to run at the speed at which they were recorded.

Note that you can also specify the test run speed in the Advanced Run Options 
dialog box in WinRunner (select Tools > General Options > Run Tab and click 
the Advanced button).

(Default = on)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 808

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-f file name

Specifies a text file containing command line options. The options can appear on 
the same line, or each on a separate line. This option enables you to circumvent 
the restriction on the number of characters that can be typed into the Target text 
box in the Shortcut tab of the Windows Properties dialog box. 

Note: If a command line option appears both in the command line and in the file, 
WinRunner uses the settings of the option in the file.

-fontgrp group name

Specifies the active font group when WinRunner is started.

Note that you may also set this option using the corresponding Font group box 
in the Text Recognition tab of the Options dialog box, described in Chapter 36, 
Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding fontgrp testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 809

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-ini initialization test name

Defines the wrun.ini file that is used when WinRunner is started. This file is read-
only, unless the -update_ini command line option is also used.

-min_diff non-negative integer

Defines the number of pixels that constitute the threshold for an image mismatch. 

(Default = 0 [pixels])

Note that you may also set this option using the corresponding Threshold for 
difference between bitmaps box in the Run tab of the Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding min_diff testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 810

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-mismatch_break {on | off}

Activates or deactivates Break when Verification Fails before a verification run. 
The functionality of Break when Verification Fails is different than when running a 
test interactively: In an interactive run, the test is paused; For a test started from 
the command line, the first occurrence of a comparison mismatch terminates the 
test run.

Break when Verification Fails determines whether WinRunner pauses the test run 
and displays a message whenever verification fails or whenever any message is 
generated as a result of a Context Sensitive statement during a test that is run in 
Verify mode.

For example, if a set_window statement is missing from a test script, WinRunner 
cannot find the specified window. If this option is on, WinRunner pauses the test 
and opens the Run wizard to enable the user to locate the window. If this option 
is off, WinRunner reports an error in the Test Results window and proceeds to run 
the next statement in the test script.

(Default = off)

Note that you may also set this option using the corresponding Break when 
verification fails check box in the Run tab of the Options dialog box, described 
in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding mismatch_break testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 811

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-rec_item_name {0 | 1}

Determines whether WinRunner records non-unique ListBox and ComboBox 
items by name or by index.

(Default = 0)

Note that you may also set this option using the corresponding Record non-
unique list items by name check box in the Record tab of the General Options 
dialog box, described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding rec_item_name testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 

-run

Instructs WinRunner to run the loaded test. To load a test into the WinRunner 
window, use the -t command line option.

-run_minimized

Instructs WinRunner to open minimized. Note that specifying this option does not 
itself run tests: use the -t command line option to load a test and the -run 
command line option to run the loaded test.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 812

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-search_path path 

Defines the directories to be searched for tests to be opened and/or called. The 
search path is given as a string.

(Default = startup folder and installation folder\lib)

Note that you may also set this option using the corresponding Search path for 
called tests box in the Folders tab of the Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding searchpath testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 813

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-single_prop_check_fail {0 | 1} 

Fails a test run when _check_info statements fail. It also writes an event to the 
Test Results window for these statements. (You can create _check_info 
statements using the Create > GUI Checkpoint > For Single Property 
command.)

You can use this option with the setvar and getvar functions.

(Default = 1)

For information about the check_info functions, refer to the TSL Online 
Reference.

Note that you may also set this option using the corresponding Fail test when 
single property check fails option in the Run tab of the General Options dialog 
box, described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding single_prop_check_fail testing option from within a 
test script, as described in Chapter 37, Setting Testing Options from a Test 
Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 814

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-speed {normal | fast}

Sets the speed for the execution of the loaded test.

(Default = fast)

Note that you may also set this option using the corresponding Run Speed for 
Analog Mode option in the Advanced Run Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding speed testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

(Formerly -run_speed.)

-t test name

Specifies the name of the test to be loaded in the WinRunner window. This can 
be the name of a test stored in a folder specified in the search path or the full 
pathname of any test stored in your system.



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 815

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_connection {on | off}

Activates or deactivates WinRunner’s connection to TestDirector.

(Default = off)

(Formerly -test_director.)

Note that you can use the corresponding td_connection testing option to activate 
or deactivate WinRunner’s connection to TestDirector, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

Note that you can connect to TestDirector from the Connection to TestDirector 
dialog box, which you open by choosing Tools > TestDirector Connection. For 
more information about connecting to TestDirector, see Chapter 40, Managing 
the Testing Process. 

-td_cycle_name cycle name

Specifies the name of the current test cycle. This option is applicable only when 
WinRunner is connected to TestDirector.

Note that you can use the corresponding td_cycle_name testing option to specify 
the name of the current test cycle, as described in Chapter 37, Setting Testing 
Options from a Test Script. 

(Formerly -cycle.)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 816

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_database_name database path

Specifies the active TestDirector database. WinRunner can open, execute, and 
save tests in this database. This option is applicable only when WinRunner is 
connected to TestDirector.

Note that you can use the corresponding td_database_name testing option to 
specify the active TestDirector database, as described in Chapter 37, Setting 
Testing Options from a Test Script. 

Note that when WinRunner is connected to TestDirector, you can specify the 
active TestDirector project database from the Connection to TestDirector dialog 
box, which you open by choosing Tools > TestDirector Connection. For more 
information, see Chapter 40, Managing the Testing Process. 

(Formerly -database.)

-td_log_dirname event log file path

Defines the full pathname for an event log file. Note that this file is not a 
TestDirector file.

(Formerly -td_logname_dir.)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 817

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_password password

Specifies the password for connecting to a database in a TestDirector server.

Note that you can specify the password for connecting to TestDirector from the 
Connection to TestDirector dialog box, which you open by choosing Tools > 
TestDirector Connection. For more information about connecting to 
TestDirector, see Chapter 40, Managing the Testing Process. 

-td_server_name server name

Specifies the name of the TestDirector server to which WinRunner connects.

Note that you can use the corresponding td_server_name testing option to 
specify the name of the TestDirector server to which WinRunner connects, as 
described in Chapter 37, Setting Testing Options from a Test Script. 

In order to connect to the server, use the td_connection option.

(Formerly -td_server.)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 818

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_user_name user name

Specifies the name of the user who is currently executing a test cycle.

Note that you can use the corresponding td_user_name testing option to specify 
the user, as described in Chapter 37, Setting Testing Options from a Test 
Script. 

Note that you can specify the user name when you connect to TestDirector from 
the Connection to TestDirector dialog box, which you open by choosing Tools 
> TestDirector Connection. For more information about connecting to 
TestDirector, see Chapter 40, Managing the Testing Process. 

(Formerly -user_name or user.)



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 819

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-timeout_msec non-negative integer

Sets the global timeout (in milliseconds) used by WinRunner when executing 
checkpoints and Context Sensitive statements. This value is added to the time 
parameter embedded in GUI checkpoint or synchronization point statements to 
determine the maximum amount of time that WinRunner searches for the 
specified window or object. (Formerly timeout, which was measured in seconds.)

(Default = 1000 [milliseconds])

(Formerly -timeout.)

Note: This option is accurate to within 20-30 milliseconds.

Note that you may also set this option using the corresponding Timeout for 
checkpoints and CS statements box in the Run tab of the Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding timeout_msec testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 



Running Tests • Running Tests from the Command Line

WinRunner User’s Guide Chapter 30, page 820

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-tslinit_exp expected results folder

Directs WinRunner to the expected folder to be used when the tslinit script is 
running.

-update_ini

Saves changes to configuration made during a WinRunner session when the 
wrun.ini file is specified by the -ini command line option. 

Note: You can only use this command line option when you also use the -ini 
command line option.

-verify verification results folder name

Specifies that the test is to be run in Verify mode and designates the name of the 
subfolder in which the test results are stored.



WinRunner User’s Guide Page 821

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part VI

Debugging Tests



Debugging Tests
Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 822

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Debugging Test Scripts

Controlling test execution can help you to identify and eliminate defects in your 
test scripts.

This chapter describes:

• Running a Single Line of a Test Script

• Running a Section of a Test Script

• Pausing Test Execution



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 823

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Debugging Test Scripts

After you create a test script you should check that it runs smoothly, without errors 
in syntax or logic. In order to detect and isolate defects in a script, you can use 
the Step and Pause commands to control test execution. 

The following Step commands are available:

• The Step command runs a single line of a test script.

• The Step Into command calls and displays another test or user-defined function.

• The Step Out command—used in conjunction with Step Into—completes the 
execution of a called test or user-defined function. 

• The Step to Cursor command runs a selected section of a test script. 

In addition, you can use the Pause command or the pause function to 
temporarily suspend test execution.

You can also control test execution by setting breakpoints. A breakpoint pauses 
a test run at a pre-determined point, enabling you to examine the effects of the 
test on your application. For more information, see Chapter 32, Using 
Breakpoints. 



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 824

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To help you debug your tests, WinRunner enables you to monitor variables in a 
test script. You define the variables you want to monitor in a Watch List. As the 
test runs, you can view the values that are assigned to the variables. For more 
information, see Chapter 33, Monitoring Variables. 

When you debug a test script, you run the test in the Debug mode. The results of 
the test are saved in a debug folder. Each time you run the test, the previous 
debug results are overwritten. Continue to run the test in the Debug mode until 
you are ready to run it in Verify mode. For more information on using the Debug 
mode, see Chapter 27, Running Tests. 



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 825

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running a Single Line of a Test Script

You can run a single line of a test script using the Step, Step Into and Step Out 
commands.

Step 
Choose the Step command or click the corresponding Step button to execute 
only the current line of the active test script—the line marked by the execution 
arrow.

When the current line calls another test or a user-defined function, the called test 
or function is executed in its entirety but the called test script is not displayed in 
the WinRunner window. 

Step Into
Choose the Step Into command or click the corresponding Step Into button to 
execute only the current line of the active test script. However, in contrast to Step, 
if the current line of the executed test calls another test or a user-defined function 
in compiled mode:

• The test script of the called test or function is displayed in the WinRunner 
window. 

• The called test or function is not executed. Use Step or Step Out to continue test 
execution.



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 826

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Step Out
You use the Step Out command only after entering a test or a user-defined 
function using Step Into. Step Out executes to the end of the called test or user-
defined function, returns to the calling test, and then pauses execution.

Running a Section of a Test Script

You can execute a selected section of a test script using the Step to Cursor 
command.

To use the Step to Cursor command:

 1 Move the execution arrow to the line in the test script from which you want to 
begin test execution. To move the arrow, click inside the margin next to the 
desired line in the test script.

 2 Click inside the test script to move the cursor to the line where you want test 
execution to stop.

 3 Choose Run > Step to Cursor or press the STEP TO CURSOR softkey. WinRunner 
runs the test up to the line marked by the insertion point.



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 827

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Pausing Test Execution

You can temporarily suspend test execution by choosing the Pause command or 
by adding a pause statement to your test script.

Pause Command
You can suspend the execution of a test by choosing Run > Pause, clicking the 
Pause button, or pressing the PAUSE softkey. A paused test stops running when 
all previously interpreted TSL statements have been executed. Unlike the Stop 
command, Pause does not initialize test variables and arrays.

To resume execution of a paused test, choose the appropriate Run command on 
the Run menu. The test run continues from the point that you invoked the Pause 
command, or from the execution arrow if you moved it while the test was 
suspended.



Debugging Tests • Debugging Test Scripts

WinRunner User’s Guide Chapter 31, page 828

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The pause Function
When WinRunner processes a pause statement in a test script, test execution 
halts and a message box is displayed. If the pause statement includes an 
expression, the result of the expression appears in the message box. The syntax 
of the pause function is:

pause ( [expression ] );

In the following example, pause suspends test execution and displays the time 
that elapsed between two points.

t1=get_time();
t2=get_time();
pause ("Time elapsed" is & t2-t1);

For more information on the pause function, refer to the TSL Online Reference.



Debugging Tests
Using Breakpoints

WinRunner User’s Guide Chapter 32, page 829

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Using Breakpoints

A breakpoint marks a place in the test script where you want to pause a test run. 
Breakpoints help to identify flaws in a script.

This chapter describes:

• Breakpoint Types

• Setting Break at Location Breakpoints

• Setting Break in Function Breakpoints

• Modifying Breakpoints

• Deleting Breakpoints



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 830

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Breakpoints

By setting a breakpoint you can stop a test run at a specific place in a test script. 
A breakpoint is indicated by a breakpoint marker (!) in the left margin of the test 
window.

WinRunner pauses the test run when it reaches a breakpoint. You can examine 
the effects of the test run up to the breakpoint, make any necessary changes, and 
then continue running the test from the breakpoint. Use the Run from Arrow 
command to restart the test run. Once restarted, the test continues until the next 
breakpoint is encountered or the test is completed.

You can use breakpoints to:

• suspend test execution and inspect the state of your application

• monitor the entries in the Watch List. See Chapter 33, Monitoring Variables, for 
more information.

• mark a point from which to begin stepping through a test script using the Step 
commands. See Chapter 31, Debugging Test Scripts, for more information.

There are two types of breakpoints: Break at Location and Break in Function. A 
Break at Location breakpoint stops a test at a specified line number in a test 
script. A Break in Function breakpoint stops a test when it calls a specified user-
defined function in a loaded compiled module.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 831

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You set a pass count for each breakpoint you define. The pass count determines 
the number of times the breakpoint is passed before it stops the test run. For 
example, suppose you program a loop that performs a command twenty-five 
times. By default, the pass count is set to zero, so test execution stops after each 
loop. If you set the pass count to 25, execution stops only after the twenty-fifth 
iteration of the loop. 

Note: The breakpoints you define are active only during your current WinRunner 
session. If you terminate your WinRunner session, you have to redefine 
breakpoints to continue debugging the script in another session.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 832

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Breakpoint Types

WinRunner enables you to set two types of breakpoints: Break at Location and 
Break in Function. 

Break at Location
A Break at Location breakpoint stops a test at a specified line number in a test 
script. This type of breakpoint is defined by a test name and a test script line 
number. The breakpoint marker (!) appears in the left margin of the test script, 
next to the specified line. A Break at Location breakpoint might, for example, 
appear in the Breakpoints dialog box as:

ui_test[137] : 0

This means that the breakpoint marker appears in the test named ui_test at line 
137. The number after the colon represents the pass count, which is set here to 
zero (the default). This means that the test will stop every time the breakpoint is 
passed.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 833

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Break in Function
A Break in Function breakpoint stops a test when it calls a specified user-defined 
function in a loaded compiled module. This type of breakpoint is defined by the 
name of a user-defined function and the name of the compiled module in which 
the function is located. When you define a Break in Function breakpoint, the 
breakpoint marker (!) appears in the left margin of the WinRunner window, next 
to the first line of the function. WinRunner halts the test run each time the 
specified function is called. A Break in Function breakpoint might appear in the 
Breakpoints dialog box as:

ui_func [ui_test : 25] : 10

This indicates that a breakpoint has been defined for the line containing the 
ui_func function, in the ui_test compiled module: in this case line 25. The pass 
count is set to 10, meaning that the test will be stopped each time the function 
has been called ten times.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 834

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Break at Location Breakpoints

You set Break at Location breakpoints using the Breakpoints dialog box, the 
mouse, or the Toggle Breakpoint command.

To set a Break at Location breakpoint using the Breakpoints dialog box:

 1 Choose Debug > Breakpoints to open the Breakpoints dialog box. 
Alternatively, click the Break in Function button or choose Debug > Break in 
Function to open the New Breakpoint dialog box and proceed to step 3.

Closes the Breakpoints dialog box.

Opens the New Breakpoints dialog box.

All currently defined Location breakpoints

All currently defined Function breakpoints



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 835

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click New to open the New Breakpoint dialog box. 

 3 Click the breakpoint type and the test name. Modify the line number in the At 
Line box and the pass count in the Pass Count box as required.

 4 Click OK to set the breakpoint and close the New Breakpoint dialog box. The 
new breakpoint appears in the Break at Location list in the Breakpoints dialog 
box.

 5 Click Close to close the Breakpoints dialog box.

The breakpoint marker (!) appears in the left margin of the test script, next to the 
specified line.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 836

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To set a Break at Location breakpoint using the mouse:

 1 Move the execution arrow to the line in the test script at which you want test 
execution to stop. To move the arrow, click inside the margin next to the desired 
line in the test script.

 2 Click the right mouse button. The breakpoint symbol (!) appears in the left 
margin of the WinRunner window.

To set a Break at Location breakpoint using the Toggle Breakpoint 
command:

 1 Move the insertion point to the line of the test script where you want test 
execution to stop.

 2 Choose Debug > Toggle Breakpoint or click the Toggle Breakpoint button. 
The breakpoint symbol (!) appears in the left margin of the WinRunner window.

To remove a Break at Location breakpoint:

 1 Click the breakpoint symbol with the right mouse button.

 2 Choose Debug > Toggle Breakpoint, or click the Toggle Breakpoint button.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 837

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Break in Function Breakpoints

A Break in Function breakpoint stops test execution at the user-defined function 
that you specify. You can set a Break in Function breakpoint using either the 
Breakpoints dialog box or the Break in Function command.

To set a Break in Function breakpoint using the Breakpoints dialog box:

 1 Choose Debug > Breakpoints to open the Breakpoints dialog box. Alternatively, 
click the Break in Function button and proceed to step 3. 

 2 Click New to open the New Breakpoint dialog box. 

Closes the Breakpoints dialog box.

Opens the New Breakpoints dialog box.

All currently defined Location breakpoints

All currently defined Function breakpoints



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 838

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the Type box, click In Function. The dialog box changes so that you can type 
in a function name and a pass count value. 

 4 Enter the name of a user-defined function in the In Function box. The function 
must be compiled by WinRunner. For more information, see Chapter 23, 
Creating User-Defined Functions, and Chapter 24, Creating Compiled 
Modules. 

 5 Type a value in the Pass Count box.

 6 Click OK to set the breakpoint and close the New Breakpoint dialog box. 

The new breakpoint appears in the Break in Function list of the Breakpoints 
dialog box. 

 7 Click Close to close the Breakpoints dialog box.

The breakpoint symbol (!) appears in the left margin of the WinRunner window.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 839

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To set a Break in Function breakpoint using the Break in Function 
command:

 1 Choose Debug > Break in Function. The New Breakpoint dialog box opens. 

 2 Type the name of a user-defined function in the In Function box. The function 
must be compiled by WinRunner. For more information, see Chapter 23, 
Creating User-Defined Functions, and Chapter 24, Creating Compiled 
Modules. 

 3 Type a value in the Pass Count box.

 4 Click OK. The breakpoint symbol (!) appears in the left margin of the WinRunner 
window.

 5 Click Close to set the breakpoint and close the New Breakpoint dialog box.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 840

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying Breakpoints

You can modify the definition of a breakpoint using the Breakpoints dialog box. 
You can change the breakpoint’s type, the test or line number for which it is 
defined, and the value of the pass count.

To modify a breakpoint:

 1 Choose Debug > Breakpoints to open the Breakpoints dialog box.

 2 Select a breakpoint in the Break at Location or the Break in Function list. 

 3 Click Modify to open the Modify Breakpoint dialog box. 



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 841

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 To change the type of breakpoint, select a different breakpoint type in the Type 
box.

To select another test, click its name in the In Test box.

To change the line number at which the breakpoint will appear, type a new value 
in the At Line box.

To change the pass count, type a new value in the Pass Count box.

 5 Click OK to close the dialog box.



Debugging Tests • Using Breakpoints

WinRunner User’s Guide Chapter 32, page 842

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Deleting Breakpoints

You can delete a single breakpoint or all breakpoints defined for the current test 
using the Breakpoints dialog box.

To delete a single breakpoint:

 1 Choose Debug > Breakpoints to open the Breakpoints dialog box.

 2 Select a breakpoint in either the Break at Location or the Break in Function 
list.

 3 Click Delete. The breakpoint is removed from the list.

 4 Click Close to close the Breakpoints dialog box. 

Note that the breakpoint symbol is removed from the left margin of the 
WinRunner window.

To delete all breakpoints:

 1 Open the Breakpoints dialog box.

 2 Click Delete All. All breakpoints are deleted from both lists. 

 3 Click Close to close the dialog box.

Note that all breakpoint symbols are removed from the left margin of the 
WinRunner window.



Debugging Tests
Monitoring Variables

WinRunner User’s Guide Chapter 33, page 843

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Monitoring Variables

The Watch List displays the values of variables, expressions, and array elements 
during a test run. You use the Watch List to enhance the debugging process.

This chapter describes:

• Adding Variables to the Watch List

• Viewing Variables in the Watch List

• Modifying Variables in the Watch List

• Assigning a Value to a Variable in the Watch List

• Deleting Variables from the Watch List



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 844

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Monitoring Variables

The Watch List enables you to monitor the values of variables, expressions, and 
array elements while you debug a test script. Prior to running a test, you add the 
elements that you want to monitor to the Watch List. During a test run, you can 
view the current values at each break in execution—such as after a Step 
command, at a breakpoint, or at the end of a test.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 845

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, in the following test, the Watch List is used to measure and track 
the values of variables a and b. After each loop is executed, the test pauses so 
you can view the current values.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 846

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

After WinRunner executes the first loop, the test pauses. The Watch List 
displays the variables and updates their values: When WinRunner completes the 
test run, the Watch List shows the following results:

a:10
b:22

If a test script has several variables with the same name but different scopes, the 
variable is evaluated according to the current scope of the interpreter. For 
example, suppose both test_a and test_b use a static variable x, and test_a calls 
test_b. If you include the variable x in the Watch List, the value of x displayed at 
any time is the current value for the test that WinRunner is interpreting.

If you choose a test in the Calls list (Debug > Calls), the context of the variables 
and expressions in the Watch List changes. WinRunner automatically updates 
their values in the Watch List.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 847

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Variables to the Watch List

You add variables, expressions, and arrays to the Watch List using the Add Watch 
dialog box.

To add a variable, an expression, or an array to the Watch List:

 1 Choose Debug > Add Watch or click the Add Watch button to open the Add 
Watch dialog box.

Alternatively, you can open the Add Watch dialog box from the Watch List. 
Choose Debug > Watch List and click Add.

 2 In the Expression box, enter the variable, expression, or array that you want to 
add to the Watch List. 

 3 Click Evaluate to see the current value of the new entry. If the new entry 
contains a variable or an array that has not yet been initialized, the message 
“<cannot evaluate>” appears in the Value box. The same message appears if 
you enter an expression that contains an error. 



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 848

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click OK. The Add Watch dialog box closes and the new entry appears in the 
Watch List.

Note: Do not add expressions that assign or increment the value of variables to 
the Watch List; this can affect test execution.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 849

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing Variables in the Watch List

Once you add variables, expressions, and arrays to the Watch List, you can use 
the Watch List to view their values.

To view the values of variables, expressions, and arrays in the Watch List:

 1 Choose Debug > Watch List to open the Watch List dialog box. 

The variables, expressions and arrays are displayed; current values appear after 
the colon.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 850

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 To view values of array elements, double-click the array name. The elements 
and their values appear under the array name. Double-click the array name to 
hide the elements. 

 3 Click Close.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 851

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying Variables in the Watch List

You can modify variables and expressions in the Watch List using the Modify 
Watch dialog box. For example, you can turn variable b into the expression b + 1, 
or you can change the expression b + 1 into b * 10. When you close the Modify 
Watch dialog box, the Watch List is automatically updated to reflect the new value 
for the expression.

To modify an expression in the Watch List:

 1 Choose Debug > Watch List to open the Watch List dialog box.

 2 Select the variable or expression you want to modify.

 3 Click Modify to open the Modify Watch dialog box.

 4 Change the expression in the Expression box as needed. 

 5 Click Evaluate. The new value of the expression appears in the Value box.

 6 Click OK to close the Modify Watch dialog box. The modified expression and its 
new value appear in the Watch List.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 852

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Assigning a Value to a Variable in the Watch List

You can assign new values to variables and array elements in the Watch List. 
Values can be assigned only to variables and array elements, not to expressions. 

To assign a value to a variable or an array element:

 1 Choose Debug > Watch List to open the Watch List dialog box.

 2 Select a variable or an array element.

 3 Click Assign to open the Assign Variable dialog box. 

 4 Type the new value for the variable or array element in the New Value box.

 5 Click OK to close the dialog box. The new value appears in the Watch List.



Debugging Tests • Monitoring Variables

WinRunner User’s Guide Chapter 33, page 853

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Deleting Variables from the Watch List

You can delete selected variables, expressions, and arrays from the Watch List, 
or you can delete all the entries in the Watch List.

To delete a variable, an expression, or an array:

 1 Choose Debug > Watch List to open the Watch List dialog box.

 2 Select a variable, an expression, or an array to delete.

Note: You can delete an array only if its elements are hidden. To hide the 
elements of an array, double-click the array name in the Watch List. 

 3 Click Delete to remove the entry from the list.

 4 Click Close to close the Watch List dialog box.

To delete all entries in the Watch List:

 1 Choose Debug > Watch List to open the Watch List dialog box.

 2 Click Delete All. All entries are deleted.

 3 Click Close to close the dialog box.



WinRunner User’s Guide Page 854

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part VII

Configuring WinRunner



Configuring WinRunner
Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 855

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Customizing WinRunner’s User Interface

You can customize WinRunner’s user interface to adapt it to your testing needs 
and to the application you are testing.

This chapter describes:

• Customizing the User Toolbar

• Using the User Toolbar

• Configuring WinRunner Softkeys



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 856

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Customizing WinRunner’s User Interface

You can adapt WinRunner’s user interface to your testing needs by changing the 
way you access WinRunner commands. 

You may find that when you create and run tests, you frequently use the same 
WinRunner menu commands and insert the same TSL statements into your test 
scripts. You can create shortcuts to these commands and TSL statements by 
customizing the User toolbar. 

The application you are testing may use softkeys that are preconfigured for 
WinRunner commands. If so, you can adapt WinRunner’s user interface to this 
application by using WinRunner’s Softkey utility to reconfigure the conflicting 
WinRunner softkeys.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 857

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Customizing the User Toolbar

The User toolbar contains buttons for commands used when creating tests. In its 
default setting, the User toolbar enables easy access to the following WinRunner 
commands: 

Insert Function for Object/Window

Record - Context Sensitive

Stop

GUI Checkpoint for Object/Window

GUI Checkpoint for Multiple Objects

Bitmap Checkpoint for Object/Window

Bitmap Checkpoint for Screen Area

Synchronization Point for Object/Window Property

Synchronization Point for Object/Window Bitmap

Get Text from Object/Window

Get Text from Screen Area

Synchronization Point for Screen Area Bitmap

Insert Function from Function Generator

Default Database Checkpoint



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 858

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

By default, the User toolbar is hidden. To display the User toolbar, select it on the 
Window menu. When it is displayed, its default position is docked at the right 
edge of the WinRunner window. 

The User toolbar is a customizable toolbar. You can add or remove buttons to 
facilitate access to the commands you most frequently use when testing an 
application. You can use the User toolbar to:

• Execute additional WinRunner menu commands. For example, you can add a 
button to the User toolbar that opens the GUI Map Editor.

• Paste TSL statements into your test scripts. For example, you can add a button 
to the User toolbar that pastes the TSL statement report_msg into your test 
scripts.

• Execute TSL statements. For example, you can add a button to the User toolbar 
that executes the TSL statement load ("my_module");.

• Parameterize TSL statements before pasting them into your test scripts or 
executing them. For example, you can add a button to the User toolbar that 
enables you to add parameters to the TSL statement list_select_item, and then 
either paste it into your test script or execute it. 

Edit GUI Map 

Paste report_msg Execute load ("my_module");

Parameterize list_select_item



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 859

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: None of the buttons that appear by default in the User toolbar appear in 
the illustration above.

Adding Buttons that Execute Menu Commands
You can add buttons to the User toolbar that execute frequently-used menu 
commands.

The tables below illustrate the buttons you can add to the User toolbar and the 
corresponding menu commands. In cases where the name of a button differs from 
the name of the menu command, the menu command appears in italics below the 
button name. Buttons that appear on the User toolbar by default are marked with 
an asterisk (*).



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 860

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

File Menu

Edit Menu

Command Button Command Button

New Save All

Open Test Properties

Save Print

Save As

Command Button Command Button

Undo Delete

Redo Select All

Cut Find

Copy Replace

Paste Go To



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 861

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Create Menu

Command Button Command Button

Record - Context Sensitive 
*

Synchronization Point > 
For Object/Window 
Bitmap *

Stop * Synchronization Point > 
For Screen Area Bitmap *

GUI Checkpoint > For 
Single Property

Edit GUI Checklist

GUI Checkpoint > For 
Object/Window *

Edit Database Checklist

GUI Checkpoint > For 
Multiple Objects *

Get Text > From 
Object/Window *

Bitmap Checkpoint > For 
Object/Window *

Get Text > From Screen 
Area *

Bitmap Checkpoint > For 
Screen Area *

Insert Function > For 
Object/Window *

Default Database 
Checkpoint *

Insert Function > From 
Function Generator *

Synchronization Point > 
For Object/Window 
Property *

RapidTest Script Wizard



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 862

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Run Menu

Command Button Command Button

Run from Top Step Into

Run from Arrow Step Out

Run Minimized (Top)
Run Minimized > From 
Top

Step to Cursor

Run Minimized (Arrow)
Run Minimized > From 
Arrow

Pause

Step Stop



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 863

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Debug Menu

Tools Menu

Command Button Command Button

Breakpoints Watch List

Toggle Breakpoint Add Watch

Break in Function

Command Button Command Button

Spy
GUI Spy

Fonts Expert

Edit GUI Map
GUI Map Editor

Exception Handling

Configure GUI Map
GUI Map Configuration

TestDirector Connection

Learn Virtual Objects
Virtual Object Wizard

Data Table

ActiveX Properties 
Viewer

Parameterize Data

Test Results



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 864

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Settings Menu

Window Menu

Command Button Command Button

General Options Customize User Toolbar

Editor Options

Command Button Command Button

Cascade Arrange Icons

Tile Horizontally Close All

Tile Vertically



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 865

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a menu command to the User toolbar: 

 1 Choose Settings > Customize User Toolbar.

The Customize User Toolbar dialog box opens.

Note that each menu in the menu bar corresponds to a category in the Category 
pane of the Customize User Toolbar dialog box.

 2 In the Category pane, select a menu.

 3 In the Command pane, select the check box next to the menu command. 

 4 Click OK to close the Customize User Toolbar dialog box.

The selected menu command button is added to the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 866

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To remove a menu command from the User toolbar: 

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box.

 2 In the Category pane, select a menu.

 3 In the Command pane, clear the check box next to the menu command.

 4 Click OK to close the Customize User Toolbar dialog box.

The selected menu command button is removed from the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 867

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Buttons that Paste TSL Statements
You can add buttons to the User toolbar that paste TSL statements into test 
scripts. One button can paste a single TSL statement or a group of statements.

To add a button to the User toolbar that pastes TSL statements: 

 1 Choose Settings > Customize User Toolbar. The Customize User Toolbar 
dialog box opens.

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, select the check box next to a button, and then select 
the button.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 868

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click Modify. The Paste TSL Button Data dialog box opens.

 5 In the Button Title box, enter a name for the button.

 6 In the Text to Paste pane, enter the TSL statement(s).

 7 Click OK to close the Paste TSL Button Data dialog box.

The name of the button is displayed beside the corresponding button in the 
Command pane.

 8 Click OK to close the Customize User Toolbar dialog box.

The button is added to the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 869

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify a button on the User toolbar that pastes TSL statements: 

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box. 

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, select the button whose content you want to modify.

 4 Click Modify. 

The Paste TSL Button Data dialog box opens.

 5 Enter the desired changes in the Button Title box and/or the Text to Paste 
pane.

 6 Click OK to close the Paste TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box.

The button on the User toolbar is modified.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 870

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To remove a button from the User toolbar that pastes TSL statements:

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box. 

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box.

The button is removed from the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 871

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Buttons that Execute TSL Statements
You can add buttons to the User toolbar that execute frequently-used TSL 
statements.

To add a button to the User toolbar that executes a TSL statement: 

 1 Choose Settings > Customize User Toolbar.

The Customize User Toolbar dialog box opens.

 2 In the Category pane, select Execute TSL. 

 3 In the Command pane, select the check box next to a button, and then select 
the button.

 4 Click Modify.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 872

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Execute TSL Button Data dialog box opens.

 5 In the TSL Statement box, enter the TSL statement.

 6 Click OK to close the Execute TSL Button Data dialog box.

The TSL statement is displayed beside the corresponding button in the 
Command pane.

 7 Click OK to close the Customize User Toolbar dialog box.

The button is added to the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 873

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify a button on the User toolbar that executes a TSL statement: 

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box. 

 2 In the Category pane, select Execute TSL.

 3 In the Command pane, select the button whose content you want to modify.

 4 Click Modify. 

The Execute TSL Button Data dialog box opens.

 5 Enter the desired changes in the TSL Statement box.

 6 Click OK to close the Execute TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box.

The button on the User toolbar is modified.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 874

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To remove a button from the User toolbar that executes a TSL statement:

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box. 

 2 In the Category pane, select Execute TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box.

The button is removed from the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 875

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Buttons that Parameterize TSL Statements
You can add buttons to the User toolbar that enable you to easily parameterize 
frequently-used TSL statements, and then paste them into your test script or 
execute them.

To add a button to the User toolbar that enables you to parameterize a TSL 
statement: 

 1 Choose Settings > Customize User Toolbar. The Customize User Toolbar 
dialog box opens.

 2 In the Category pane, select Parameterize TSL. 

 3 In the Command pane, select the check box next to a button, and then select 
the button.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 876

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click Modify.

The Parameterize TSL Button Data dialog box opens.

 5 In the TSL Statement box, enter the name of TSL function. You do not need to 
enter any parameters. For example, enter list_select_item.

 6 Click OK to close the Parameterize TSL Button Data dialog box.

The TSL statement is displayed beside the corresponding button in the 
Command pane.

 7 Click OK to close the Customize User Toolbar dialog box.

The button is added to the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 877

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To modify a button on the User toolbar that enables you to parameterize a 
TSL statement:

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box. 

 2 In the Category pane, select Parameterize TSL.

 3 In the Command pane, select the button whose content you want to modify.

 4 Click Modify.

The Parameterize TSL Button Data dialog box opens.

 5 Enter the desired changes in the TSL Statement box.

 6 Click OK to close the Parameterize TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box.

The button on the User toolbar is modified.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 878

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To remove a button from the User toolbar that enables you to parameterize 
a TSL statement:

 1 Choose Settings > Customize User Toolbar to open the Customize User 
Toolbar dialog box.

 2 In the Category pane, select Parameterize TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box.

The button is removed from the User toolbar.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 879

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the User Toolbar

The User toolbar is hidden by default. You can display it by selecting it on the 
Window menu. To execute a command on the User toolbar, click the button that 
corresponds to the command you want. You can also access the same TSL-
based commands that appear on the User toolbar by choosing them on the 
Create menu.

When the User toolbar is a “floating” toolbar, it remains open when you minimize 
WinRunner while recording a test. For additional information, see Chapter 8, 
Creating Tests. 

Parameterizing a TSL Statement
When you click a button on the User toolbar that represents a TSL statement to 
be parameterized, the Set Function Parameters dialog box opens.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 880

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Set Function Parameters dialog box varies in its appearance according to 
the parameters required by a particular TSL function. For example, the 
list_select_item function has three parameters: list, item, and button. For each 
parameter, you define a value as described below:

• To define a value for the list parameter, you click the pointing hand. WinRunner 
is minimized, a help window opens, and the mouse pointer becomes a pointing 
hand. Click the list in your application. 

• To define a value for the item parameter, you type it in the corresponding box. 

• To define a value for the button parameter, you select it from the list.

Accessing TSL Statements on the Menu Bar
All TSL statements that you add to the User toolbar can also be accessed via the 
Create menu. 

To choose a TSL statement from a menu:

• To paste a TSL statement, you click Create > Paste TSL > [TSL Statement].

• To execute a TSL statement, you click Create > Execute TSL > [TSL 
Statement].

• To parameterize a TSL statement, you click Create > Parameterize TSL > [TSL 
Statement].



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 881

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring WinRunner Softkeys

Several WinRunner commands can be carried out using softkeys. WinRunner 
can carry out softkey commands even when the WinRunner window is not the 
active window on your screen, or when it is minimized. 

If the application you are testing uses a softkey combination that is preconfigured 
for WinRunner, you can redefine the WinRunner softkey combination using 
WinRunner’s Softkey Configuration utility. 

Default Settings for WinRunner Softkeys
The following table lists the default softkey configurations and their functions.

Command
Default Softkey 
Combination

Function

RECORD F2 Starts test recording. While 
recording, this softkey toggles 
between Context Sensitive and 
Analog modes. 

CHECK GUI FOR SINGLE 
PROPERTY

Alt Right + F12 Checks a single property of a GUI 
object.

CHECK GUI FOR 
OBJECT/WINDOW

Ctrl Right + F12 Creates a GUI checkpoint for an 
object or a window.



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 882

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

CHECK GUI FOR 
MULTIPLE OBJECTS

F12 Opens the Create GUI Checkpoint 
dialog box.

CHECK BITMAP OF 
OBJECT/WINDOW

Ctrl Left + F12 Captures an object or a window 
bitmap.

CHECK BITMAP OF 
SCREEN AREA

Alt Left + F12 Captures an area bitmap.

CHECK DATABASE 
(DEFAULT)

Ctrl Right + F9 Creates a check on the entire 
contents of a database.

CHECK DATABASE 
(CUSTOM)

Alt Right + F9 Checks the number of columns, rows 
and specified information of a 
database.

SYNCHRONIZE 
OBJECT/WINDOW 
PROPERTY

Ctrl Right + F10 Instructs WinRunner to wait for a 
property of an object or a window to 
have an expected value.

SYNCHRONIZE BITMAP 
OF OBJECT/WINDOW

Ctrl Left + F11 Instructs WinRunner to wait for a 
specific object or window bitmap to 
appear.

SYNCHRONIZE BITMAP 
OF SCREEN AREA

Alt Left + F11 Instructs WinRunner to wait for a 
specific area bitmap to appear.

Command
Default Softkey 
Combination

Function



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 883

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

GET TEXT FROM 
OBJECT/WINDOW

F11 Captures text in an object or a 
window.

GET TEXT FROM 
WINDOW AREA

Alt Right + F11 Captures text in a specified area and 
adds an obj_get_text statement to 
the test script.

GET TEXT FROM 
SCREEN AREA

Ctrl Right + F11 Captures text in a specified area and 
adds a get_text statement to the 
test script.

INSERT FUNCTION FOR 
OBJECT/WINDOW

F8 Inserts a TSL function for a GUI 
object.

INSERT FUNCTION 
FROM FUNCTION 
GENERATOR

F7 Opens the Function Generator dialog 
box.

RUN FROM TOP Ctrl Left + F5 Runs the test from the beginning.

RUN FROM ARROW Ctrl Left + F7 Runs the test from the line in the 
script indicated by the arrow.

STEP F6 Runs only the current line of the test 
script.

Command
Default Softkey 
Combination

Function



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 884

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

STEP INTO Ctrl Left + F8 Like Step: however, if the current line 
calls a test or function, the called test 
or function is displayed in the 
WinRunner window but is not 
executed.

STEP TO CURSOR Ctrl Left + F9 Runs a test from the line indicated by 
the arrow to the line marked by the 
insertion point.

PAUSE PAUSE Stops the test run after all previously 
interpreted TSL statements have 
been executed. Execution can be 
resumed from this point using the 
Run from Arrow command or the 
RUN FROM ARROW softkey.

STOP Ctrl Left + F3 Stops test recording or the test run.

MOVE LOCATOR Alt Left + F6 Records a move_locator_abs 
statement with the current position 
(in pixels) of the screen pointer.

Command
Default Softkey 
Combination

Function



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 885

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Redefining WinRunner Softkeys
The Softkey Configuration dialog box lists the current softkey assignments and 
displays an image of a keyboard. To change a softkey setting, you click the new 
key combination as it appears in the dialog box. 

To change a WinRunner softkey setting:

 1 Choose Start > Programs > WinRunner > Softkey Configuration. The 
Softkey Configuration dialog box opens.

The Commands pane lists all the WinRunner softkeys. 



Configuring WinRunner • Customizing WinRunner’s User Interface

WinRunner User’s Guide Chapter 34, page 886

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 Click the command you want to change. The current softkey definition appears 
in the Softkey box; its keys are highlighted on the keyboard.

 3 Click the new key or combination that you want to define. The new definition 
appears in the Softkey box. 

An error message appears if you choose a definition that is already in use or an 
illegal key combination. Click a different key or combination.

 4 Click Save to save the changes and close the dialog box. The new softkey 
configuration takes effect when you start WinRunner.



Configuring WinRunner
Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 887

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Customizing the Test Script Editor

WinRunner includes a powerful and customizable script editor. This enables you 
to set the size of margins in test windows, change the way the elements of a test 
script appear, and create a list of typing errors that will be automatically corrected 
by WinRunner.

This chapter describes:

• Setting Display Options

• Personalizing Editing Commands



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 888

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Customizing the Test Script Editor

WinRunner’s script editor lets you set display options, and personalize script 
editing commands.

Setting Display Options
Display options let you configure WinRunner’s test windows and how your test 
scripts will be displayed. For example, you can set the size of test window 
margins, and activate or deactivate word wrapping.

Display options also let you change the color and appearance of different script 
elements. These include comments, strings, WinRunner reserved words, 
operators and numbers. For each script element, you can assign colors, text 
attributes (bold, italic, underline), font, and font size. For example, you could 
display all strings in the color red.

Finally, there are display options that let you control how the hard copy of your 
scripts will appear when printed.

Personalizing Script Editing Commands
WinRunner includes a list of default keyboard commands that let you move the 
cursor, delete characters, cut, copy, and paste information to and from the 
clipboard. You can replace these commands with commands you prefer. For 
example, you could change the Set Bookmark [#] command from the default 
CTRL + K + [#] to CTRL + B + [#].



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 889

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Display Options

WinRunner’s display options let you control how test scripts appear in test 
windows, how different elements of test scripts are displayed, and how test scripts 
will appear when they are printed.

Customizing Test Scripts and Windows
You can customize the appearance of WinRunner’s test windows and how your 
scripts are displayed. For example, you can set the size of the test window 
margins, highlight script elements, and show or hide text symbols.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 890

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To customize the appearance of your script:

 1 Choose Settings > Editor Options. The Editor Options dialog box opens.

 2 Click the Options tab.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 891

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Under the General options choose from the following options:

Options Description

Auto indent Causes lines following an indented line to 
automatically begin at the same point as the previous 
line. You can click the Home key on your keyboard to 
move the cursor back to the left margin.

Smart tab A single press of the tab key will insert the appropriate 
number of tabs and spaces in order to align the cursor 
with the text in the line above.

Smart fill Insert the appropriate number of tabs and spaces in 
order to apply the Auto indent option. When this option 
is not selected, only spaces are used to apply the 
Auto indent.
(Both Auto indent and Use tab character must 
be selected to apply this option).

Use tab character Inserts a tab character when the tab key on the 
keyboard is used. When this option is not enabled, the 
appropriate number of space characters will be 
inserted instead.

Line numbers in gutter Displays a line number next to each line in the script. 
The line number is displayed in the test script 
window’s gutter.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 892

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Statement completion Opens a list box displaying all available matches to 
the function prefix whenever the user presses the Ctrl 
and Space keys simultaneously or the Underscore 
key. Select an item from the list to replace the typed 
string. To close the list box, press the Esc key.
Displays a tooltip with the function parameters once 
the complete function name appears in the editor.

Show all chars Displays all text symbols, such as tabs and paragraph 
symbols.

Block cursor for 
Overwrite

Displays a block cursor instead of the standard cursor 
when you select overwrite mode.

Word select Selects the nearest word when you double-click on 
the test window.

Syntax highlight Highlights script elements such as comments, strings, 
or reserved words. For information on reserved words, 
see Reserved Words on page 896.

Cursor beyond EOL Enables WinRunner to display the cursor after the end 
of the current line.

Visible right margin Displays a line that indicates the test window’s right 
margin. 

Right margin Sets the position, in characters, of the test window’s 
right margin (0=left window edge).

Options Description



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 893

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Highlighting Script Elements
WinRunner scripts contain many different elements, such as comments, strings, 
WinRunner reserved words, operators and numbers. Each element of a 
WinRunner script is displayed in a different color and style. You can create your 
own personalized color scheme and style for each script element. For example, 
all comments in your scripts could be displayed as italicized, blue letters on a 
yellow background.

Visible gutter Displays a blank area (gutter) in the test window’s left 
margin.

Gutter width Sets the width, in pixels, of the gutter.

Block indent step size Sets the number characters that the selected block of 
TSL statements will be moved (indented) when the 
INDENT SELECTED BLOCK softkey is used. For more 
information on editor softkeys, see Personalizing 
Editing Commands on page 899.

Tab stop Sets the distance, in characters, between each tab 
stop.

Options Description



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 894

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To edit script elements:

 1 Choose Settings > Editor Options. The Editor Options dialog box opens to the 
Highlighting tab.

 2 Select a script element from the Elements list.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 895

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Choose from the following options: 

An example of each change you apply will be displayed in the pane at the bottom 
of the dialog box.

 4 Click OK to apply the changes.

Options Description

Foreground Sets the color applied to the text of the script element.

Background Sets the color that appears behind the script element.

Text Attributes Sets the text attributes applied to the script element. 
You can select bold, italic, or underline or a 
combination of these attributes.

Use defaults for Applies the font and colors of the “default” style to the 
selected style.

Font Sets the typeface of the script element.

Size Set the size, in points, of the script element.

Charset Sets the character subset of the selected font.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 896

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reserved Words

WinRunner contains “reserved words,” which include the names of all TSL 
functions and language keywords, such as auto, break, char, close, continue, int, 
function. For a complete list of all reserved words in WinRunner, refer to the TSL 
Online Reference. You can add your own reserved words in the 
[ct_KEYWORD_USER] section of the reserved_words.ini file, which is located in 
the dat folder in the WinRunner installation directory. Use a text editor, such as 
Notepad, to open the file. Note that after editing the list, you must restart 
WinRunner so that it will read from the updated list.

Customizing Print Options
You can set how the hard copy of your script will appear when it is sent to the 
printer. For example, your printed script can include line numbers, the name of the 
file, and the date it was printed.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 897

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To customize your print options:

 1 Choose Settings > Editor Options. The Editor Options dialog box opens.

 2 Click the Options tab.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 898

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Choose from the following Print options:

 4 Click OK to apply the changes.

Option Description

Wrap long lines Automatically wraps a line of text to the next line if it is 
wider than the current printer page settings.

Line numbers Prints a line number next to each line in the script.

File name in header Inserts the file name into the header of the printed 
script.

Date in header Inserts today’s date into the header of the printed 
script.

Page numbers Numbers each page of the script.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 899

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Personalizing Editing Commands

You can personalize the default keyboard commands you use for editing test 
scripts. WinRunner includes keyboard commands that let you move the cursor, 
delete characters, cut, copy, and paste information to and from the clipboard. You 
can replace these commands with your own preferred commands. For example, 
you could change the Paste command from the default CTRL + V to CTRL + P.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 900

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To personalize editing commands:

 1 Choose Settings > Editor Options. The Editor Options dialog box opens.

 2 Click the Key Assignments tab.

 3 Select a command from the Commands list.



Configuring WinRunner • Customizing the Test Script Editor

WinRunner User’s Guide Chapter 35, page 901

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click Add to create an additional key assignment or click Edit to modify the 
existing assignment. The Add/Edit key pair for dialog box opens. Press the keys 
you want to use. For example CTRL + 4. 

 5 Click Next. To add an additional key sequence, press the keys you want to use. 
For example U. 

 6 Click Finish to add the key sequence(s) to the Use keys list.

If you want to delete a key sequence from the list, highlight the keys in the Uses 
Key list and click Delete.

 7 Click OK to apply the changes.



Configuring WinRunner
Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 902

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Setting Global Testing Options

You can control how WinRunner records and runs tests by setting global testing 
options from the General Options dialog box.

This chapter describes:

• Setting Global Testing Options from the General Options Dialog Box

• Global Testing Options

• Choosing Appropriate Timeout and Delay Settings



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 903

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Setting Global Testing Options

WinRunner testing options affect how you record test scripts and run tests. For 
example, you can set the speed at which WinRunner runs a test, or determine 
how WinRunner records keyboard input.

Some testing options can be set globally, for all tests, using the General Options 
dialog box. You can also set and retrieve options from within a test script by using 
the setvar and getvar functions. You can use these functions to set and view the 
testing options for all tests, for a single test, or for part of a single test. For more 
information about setting and retrieving testing options from within a test script, 
see Chapter 37, Setting Testing Options from a Test Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 904

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Global Testing Options from the General Options
Dialog Box

Before you record or run tests, you can use the General Options dialog box to 
modify testing options. The values you set remain in effect for all tests in the 
current testing session.

When you end a testing session, WinRunner prompts you to save the testing 
option changes to the WinRunner configuration. This enables you to continue to 
use the new values in future testing sessions.

To set global testing options:

 1 Choose Settings > General Options.

The General Options dialog box opens. It is divided by subject into seven 
tabbed pages. 

 2 To choose a page, click a tab.

 3 Set an option, as described in Global Testing Options on page 906.

 4 To apply your change and keep the General Options dialog box open, click 
Apply.

 5 When you are done, click OK to apply your change and close the dialog box.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 905

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 906

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Global Testing Options

The General Options dialog box contains the following tabbed pages:

This section lists the global testing options that can be set using the General 
Options dialog box. If an option can also be set within a test script by using the 
setvar function, and retrieved using the getvar function, it is indicated below. For 
more information on the setvar and getvar functions, see Chapter 37, Setting 
Testing Options from a Test Script. 

Tab Heading Subject

Record options for recording tests

Run options for running tests

Miscellaneous options for miscellaneous functions

Text Recognition options for recognizing text

Environment testing environment options

Folders specifying the location of folders for WinRunner files



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 907

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Tab
The Record tab options affect how WinRunner records tests. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 908

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Generate Concise, More Readable Type Statements

This option determines how WinRunner generates type, win_type, and obj_type 
statements in a test script. 

When this option is selected, WinRunner generates more concise type, 
win_type, and obj_type statements that represent only the net result of 
pressing and releasing input keys. This makes your test script easier to read. 
For example:

obj_type (object, "A");

When this option is cleared, WinRunner records the pressing and releasing of 
each key. For example:

obj_type (object, "<kShift_L>-a-a+<kShift_L>+");

Clear this option if the exact order of keystrokes is important for your test.

(Default = selected)

For more information, refer to the type, win_type, and obj_type functions in the 
TSL Online Reference. 

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding key_editing testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 909

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Keypad Keys as Special Keys

This option determines how WinRunner records pressing keys on the numeric 
keyboard.

When this option is selected, WinRunner records pressing the NUM LOCK 
key. It also records pressing number keys and control keys on the numeric 
keypad as unique keys in the obj_type statement it generates. For example:

obj_type ("Edit","<kNumLock>")
obj_type ("Edit","<kKP7>")

When this option is cleared, WinRunner generates identical statements 
whether you press a number or an arrow key on the keyboard or on the 
numeric keypad. WinRunner does not record pressing the NUM LOCK key. It 
does not record pressing number keys or control keys on the numeric keypad 
as unique keys in the obj_type statements it generates. For example:

obj_type ("Edit","7");

(Default = cleared)

Note: This option does not affect how edit_set statements are recorded. When 
recording using edit_set, WinRunner never records keypad keys as special 
keys.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 910

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Shifted Keys as Uppercase when CAPS LOCK On

This option determines whether WinRunner records pressing letter keys and the 
Shift key together as uppercase letters when CAPS LOCK is activated. If 
WinRunner records pressing letter keys and the Shift key together as uppercase 
letters when CAPS LOCK is activated, it ignores the state of the CAPS LOCK key 
when recording and running tests.

When this option is selected, WinRunner records pressing letter keys and the 
Shift key together as uppercase letters when CAPS LOCK is activated. 
WinRunner ignores the state of the CAPS LOCK key when recording and 
running tests.

When this option is cleared, WinRunner records pressing letter keys and the 
Shift key together as lowercase letters when CAPS LOCK is activated.

(Default = cleared)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 911

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Start Menu by Index

This option determines how WinRunner records on the Windows Start menu in 
Windows 95 and Windows NT.

When this option is selected, WinRunner records the sequential order in 
which a menu item appears. For example:

button_press ("Start");
menu_select_item ("item_2;item_0;item_4");

Select this option when recording the string is expected to fail, e.g. if the 
name of the menu option is dynamic. 

When this option is cleared, WinRunner records the name of the menu item. 
For example:

button_press ("Start");
menu_select_item ("Programs;Accessories;Calculator");

(Default = cleared)

Note: In Windows 98 and the Microsoft Internet Explorer 4.0 shell, the Start 
menu does not belong to the menu class, and therefore, this option is not 
relevant. When WinRunner records on the Start menu in Windows 98 or the 
Internet Explorer 4.0 shell, it generates a toolbar_select_item statement that 
contains the command strings.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 912

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Single-Line Edit Fields as edit_set

This option determines how WinRunner records typing a string in a single-line edit 
field.

When this option is selected, WinRunner records an edit_set statement (so 
that only the net result of all keys pressed and released is recorded). For 
example, if in the Name field in the Flights Reservation application you type 
“H”, press Backspace, and then type “Jennifer”, WinRunner generates the 
following statement:

edit_set ("Name","Jennifer");

When this option is cleared, WinRunner generates an obj_type statement 
(so that all keys pressed and released are recorded). Using the previous 
example, WinRunner generates the following statement:

obj_type ("Name","H<kBackSpace>Jennifer");

(Default = selected)

For more information about the edit_set and obj_type functions, refer to the 
TSL Online Reference.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 913

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Consider Child Windows

This option determines whether WinRunner records controls (objects) of a child 
object whose parent is an object but not a window and identifies these controls 
when running a test.

When this option is selected, WinRunner identifies controls (objects) of a 
child object whose parent is an object but not a window.

When this option is cleared, WinRunner does not identify controls (objects) of 
a child object whose parent is an object but not a window.

(Default = cleared)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding enum_descendent_toplevel testing option from within 
a test script, as described in Chapter 37, Setting Testing Options from a Test 
Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 914

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Non-Unique List Items by Name

This option determines how WinRunner records non-unique ListBox and 
ComboBox items. 

When this option is selected, WinRunner records non-unique items by name.

When this option is cleared, WinRunner records non-unique items by index.

(Default = cleared)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding rec_item_name testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -rec_item_name 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

Default Recording Mode 

This option determines the default recording mode: either Context Sensitive or 
Analog. While you are recording your test, you can switch back and forth between 
recording modes. For more information, see Chapter 3, Introducing the GUI 
Map. 

(Default = Context sensitive)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 915

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Record Owner-Drawn Buttons 

Since WinRunner cannot identify the class of owner-drawn buttons, it 
automatically maps them to the general “object” class. This option enables you to 
map all owner-drawn buttons to a standard button class (push_button, 
radio_button, or check_button).

(Default = Object)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding rec_owner_drawn testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script. 

Maximum Length of List Item to Record

This option defines the maximum number of characters that WinRunner can 
record in a list item name. If the maximum number of characters is exceeded in a 
ListView or TreeView item, WinRunner records that item’s index number. If the 
maximum number of characters is exceeded in a ListBox or ComboBox, 
WinRunner truncates the item’s name. The maximum length can be 1 to 263 
characters.

(Default = 263 [characters])



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 916

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Run Tab
The Run tab options affect how WinRunner runs tests. You can set additional 
options for running tests using the Advanced Run Options dialog box, which you 
can open from the Run tab of the General Options dialog box. For information on 
the Advanced Run Options dialog box, see Advanced Run Options Dialog Box 
on page 925.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 917

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Delay for Window Synchronization

This option sets the sampling interval (in milliseconds) used to determine that a 
window is stable before capturing it for a Context Sensitive checkpoint or 
synchronization point. To be declared stable, a window must not change between 
two consecutive samplings. This sampling continues until the window is stable or 
the timeout (as set in the Timeout for Checkpoints and CS Statements box 
below) is reached.

In general, a smaller the delay enables WinRunner to capture the object or 
window more quickly so that the test can continue, but smaller delays increase 
the load on the system.

(Default = 1000 [milliseconds])

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.

Note: This option is accurate to within 20-30 milliseconds.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding delay_msec testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 918

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that you can also set this option using the corresponding -delay_msec 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

Timeout for Checkpoints and CS Statements

This option sets the global timeout (in milliseconds) used by WinRunner when 
executing checkpoints and Context Sensitive statements. This value is added to 
the time parameter embedded in GUI checkpoint or synchronization point 
statements to determine the maximum amount of time that WinRunner searches 
for the specified window or object. The timeout must be greater than the delay for 
window synchronization (as set in the Delay for Window Synchronization box 
above).

For example, when the delay is 2,000 milliseconds and the timeout is 10,000 
milliseconds, WinRunner checks the window or object in the application under 
test every two seconds until the check produces the desired results or until ten 
seconds have elapsed. 

(Default = 10000 [milliseconds])

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 919

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: This option is accurate to within 20-30 milliseconds.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding timeout_msec testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -timeout_msec 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

Threshold for Difference between Bitmaps

This option defines the number of pixels that constitutes the threshold for a bitmap 
mismatch. When this value is set to 0, a single pixel mismatch constitutes a 
bitmap mismatch.

(Default = 0 [pixels])

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding min_diff testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -min_diff command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 920

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Run in Batch Mode

This option determines whether WinRunner suppresses messages during a test 
run so that a test can run unattended. WinRunner also saves all the expected and 
actual results of a test run in batch mode in one folder, and displays them in one 
Test Results window.

For example, if a set_window statement is missing from a test script, WinRunner 
cannot find the specified window. If this option is selected and the test is run in 
batch mode, WinRunner reports an error in the Test Results window and 
proceeds to run the next statement in the test script. If this option is cleared and 
the test is not run in batch mode, WinRunner pauses the test and opens the Run 
wizard to enable the user to locate the window. 

When this option is selected, WinRunner suppresses messages during a test 
run so that a test can run unattended. 

When this option is cleared, WinRunner does not suppress messages during 
a test run. 

(Default = cleared)

For more information on suppressing messages during a test run, see 
Chapter 29, Running Batch Tests. 

Note that you can use the getvar function to retrieve the value of the 
corresponding batch testing option from within a test script, as described in 
Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -batch command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 921

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Beep when Checking a Window

This option determines whether WinRunner beeps when checking any window 
during a test run.

When this option is selected, WinRunner beeps when checking any window 
during a test run.

When this option is cleared, WinRunner does not beep when checking 
windows during a test run.

(Default = selected)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding beep testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -beep command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 922

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Break when Verification Fails

This option determines whether WinRunner pauses the test run and displays a 
message whenever verification fails or whenever any message is generated as a 
result of a Context Sensitive statement during a test that is run in Verify mode. 
This option should be used only when working interactively.

For example, if a set_window statement is missing from a test script, WinRunner 
cannot find the specified window. If this option is selected, WinRunner pauses the 
test and opens the Run wizard to enable the user to locate the window. If this 
option is cleared, WinRunner reports an error in the Test Results window and 
proceeds to run the next statement in the test script.

When this option is selected, WinRunner pauses the test run and displays a 
message whenever verification fails or whenever any message is generated 
as a result of a context sensitive statement during a test run in Verify mode.

When this option is cleared, WinRunner does not pause the test run or 
display a message whenever verification fails or whenever any message is 
generated as a result of a context sensitive statement during a test run in 
Verify mode.

(Default = selected)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding mismatch_break testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -mismatch_break 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 923

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Fail Test when Context Sensitive Errors Occur

This option determines whether WinRunner fails a test when Context Sensitive 
errors occur. A Context Sensitive error is the failure of a Context Sensitive 
statement during a test run. Context Sensitive errors often occur when 
WinRunner cannot identify a GUI object. 

For example, a Context Sensitive error will occur if you run a test containing a 
set_window statement with the name of a non-existent window. Context 
Sensitive errors can also occur when window names are ambiguous. For 
information about Context Sensitive functions, refer to the TSL Online Reference.

When this option is selected, WinRunner fails the test run if a Context 
Sensitive statement fails during a test.

When this option is cleared, WinRunner does not fail the test run if a Context 
Sensitive statement fails during a test.

(Default = cleared)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding cs_fail testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -cs_fail command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 924

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Fail Test when Single Property Check Fails

This option fails a test run when _check_info statements fail. It also writes an 
event to the Test Results window for these statements. (You can create 
_check_info statements using the Create > GUI Checkpoint > For Single 
Property command.)

When this option is selected, WinRunner fails the test run if a _check_info 
statement fails during a test.

When this option is cleared, WinRunner does not fail the test run if a 
_check_info statement fails during a test.

(Default = cleared)

For information about the check_info functions, refer to the TSL Online 
Reference.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding single_prop_check_fail testing option from within a 
test script, as described in Chapter 37, Setting Testing Options from a Test 
Script. 

Note that you can also set this option using the corresponding 
-single_prop_check_fail command line option, described in Chapter 30, Running 
Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 925

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Advanced Run Options Dialog Box
You set options in the Advanced Run Options dialog box the same way that you 
set options in the Run tab of the General Options dialog box. 

To set advanced run options:

 1 Choose Settings > General Options. The General Options dialog box opens.

 2 Click the Run tab.

 3 Click Advanced.

The Advanced Run Options dialog box opens.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 926

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Set an option, as described in Global Testing Options on page 906.

 5 Click OK to apply your change and close the dialog box.

Run Speed for Analog Mode

This option determines the default run speed for tests run in Analog mode. 

Click Normal to run the test at the speed at which it was recorded. 

Click Fast to run the test as fast as the application can receive input.

(Default = Fast)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding speed testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -speed command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 927

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Delay between Execution of CS Statements

This option sets the time (in milliseconds) that WinRunner waits before executing 
each Context Sensitive statement when running a test.

(Default = 0 [milliseconds])

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding cs_run_delay testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can also set this option using the corresponding -cs_run_delay 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 928

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Timeout for Waiting for Synchronization Message

This option sets the timeout (in milliseconds) that WinRunner waits before 
validating that keyboard or mouse input was entered correctly during a test run. 

(Default = 2000 [milliseconds])

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding synchronization_timeout testing option from within a 
test script, as described in Chapter 37, Setting Testing Options from a Test 
Script. 

Note: If synchronization often fails during your test runs, consider increasing the 
value of this option.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 929

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Drop Synchronization Timeout if Failed

This option determines whether WinRunner minimizes the synchronization 
timeout (as defined in the Timeout for Waiting for Synchronization Message 
option above) after the first synchronization failure.

When this option is selected, WinRunner minimizes the synchronization 
timeout after the first synchronization failure.

When this option is cleared, WinRunner does not drop the synchronization 
timeout after the first synchronization failure.

(Default = cleared)

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding drop_sync_timeout testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 930

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Beep when Synchronization Fails

This option determines whether WinRunner beeps when the timeout for waiting 
for synchronization message fails.

When this option is selected, WinRunner beeps when the timeout for waiting 
for synchronization message fails.

When this option is cleared, WinRunner does not beep when the timeout for 
waiting for synchronization message fails.

(Default = cleared)

See Choosing Appropriate Timeout and Delay Settings on page 956 for 
more information on when to adjust this setting.

Note: Select this option primarily to debug a test script.

Note: If synchronization often fails during your test runs, consider increasing the 
value of the Timeout for Waiting for Synchronization Message option or the 
corresponding synchronization_timeout testing option with the setvar function 
from within a test script.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding sync_fail_beep testing option from within a test script, 
as described in Chapter 37, Setting Testing Options from a Test Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 931

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Write Test Results to a Text Report

This option instructs WinRunner to automatically write test results to a text report, 
called report.txt, which is saved in the results folder.

When this option is selected, WinRunner automatically writes test results to a 
text report. 

When this option is cleared, WinRunner does not automatically write test 
results to a text report. 

(Default = cleared)

Note that you can also set this option using the corresponding -create_text_report 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 932

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Miscellaneous Tab
The Miscellaneous tab options determine which strings are used by parameters 
in TSL statements to separate items in a list and identify numbers. Additional 
options enable you to determine how WinRunner searches and identifies text that 
is attached to an object.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 933

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

String Indicating that what Follows is a Number

This option defines the string recorded in the test script to indicate that a list item 
is specified by its index number. In the following example, the “#” string is used to 
specify a list item by its index number:

set_window ("Food Inventory - Explorer", 3);
list_select_item ("SysTreeView32", "Inventory;Drinks;Soft Drinks"); 
# Item Number 3;

list_get_items_count("SysListView32", count);
for (i=0; i<count; i++){
        list_select_item ("SysListView32", "#" & i);
        list_get_item ("SysListView32",  i, item);
        list_get_item("ListBox", 0 ,item1);
        if(item != item1)
                tl_step("List Selection Check", FAIL, "Incorrect item appearing in 
box for item: " & item);
}

(Default = # )

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding item_number_seq testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script.  



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 934

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

String for Separating ListBox or ComboBox Items

This option defines the string recorded in the test script to separate items in a 
ListBox or a ComboBox.

(Default = , )

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding list_item_separator testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script.  

String for Separating ListView or TreeView Items

This option defines the string recorded in the test script to separate items in a 
ListView or a TreeView.

(Default = , )

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding listview_item_separator testing option from within a 
test script, as described in Chapter 37, Setting Testing Options from a Test 
Script. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 935

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

String for Parsing a TreeView Path

This option defines the string recorded in the test script to separate items in a tree 
view path.

(Default = ; )

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding treeview_path_separator testing option from within a 
test script, as described in Chapter 37, Setting Testing Options from a Test 
Script.  

Attached Text 

The Attached Text box determines how WinRunner searches for the text attached 
to a GUI object. Proximity to the GUI object is defined by two options: the radius 
that is searched, and the point on the GUI object from which the search is 
conducted. The closest static text object within the specified search radius from 
the specified point on the GUI object is that object’s attached text.

Sometimes the static text object that appears to be closest to a GUI object is not 
really the closest static text object. You may need to use trial and error to make 
sure that the attached text attribute is the static text object of your choice.

Note: When you run a test, you must use the same values for the attached text 
options that you used when you recorded the test. Otherwise, WinRunner may 
not identify your GUI object.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 936

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Attached Text - Search Radius

This option specifies the radius from the specified point on a GUI object that 
WinRunner searches for the static text object that is its attached text. The radius 
can be 3 to 300 pixels.

(Default= 34 [pixels])

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding attached_text_search_radius testing option from 
within a test script, as described in Chapter 37, Setting Testing Options from a 
Test Script. 

Attached Text - Preferred Search Area

This option specifies the point on a GUI object from which WinRunner searches 
for its attached text. 

Option Point on the GUI Object

Default
top-left corner of regular (English-style) windows; top-
right corner of windows with RTL-style 
(WS_EX_BIDI_CAPTION) windows

Top-Left top-left corner

Top midpoint of two top corners

Top-Right top-right corner



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 937

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again
(Default = Default)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding attached_text_area testing option from within a test 
script, as described in Chapter 37, Setting Testing Options from a Test Script. 

Note: In previous versions of WinRunner, you could not set the preferred search 
area: WinRunner searched for attached text based on what is now the Default 
setting for the preferred search area. If backward compatibility is important, 
choose the Default setting.

Note: A text report of the test results can also be created from the Test Results 
window by choosing the Tools > Text Report command.

Right midpoint of two right corners

Bottom-Right bottom-right corner

Bottom midpoint of two bottom corners

Bottom-Left bottom-left corner

Left midpoint of two left corners

Option Point on the GUI Object



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 938

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Text Recognition Tab
The Text Recognition tab options affect how WinRunner recognizes text in your 
application.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 939

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Put Recognized Text in Remark

When you create a text checkpoint, this option determines how WinRunner 
displays the captured text in the test script. 

If this option is selected, WinRunner inserts text captured by a text checkpoint 
during test creation into the test script as a remark. For example, if you 
choose Create > Get Text > From Object/Window, and then click inside the 
Fly From text box when Portland is selected, the following statement is 
recorded in your test script:

obj_get_text("Fly From:", text);# Portland

If this option is cleared, WinRunner does not insert text captured by a text 
checkpoint during test creation into the test script as a remark. Using the 
previous example, WinRunner generates the following statement in your test 
script:

obj_get_text("Fly From:", text);

(Default = selected)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 940

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Timeout for Text Recognition

This option sets the maximum interval (in milliseconds) that WinRunner waits to 
recognize text when performing a text checkpoint using the standard Text 
Recognition method during a test run. 

(Default = 500 [milliseconds])

See Choosing Appropriate Timeout and Delay Settings on page 956 for more 
information on when to adjust this setting.

Note: If you select the Use Image Text Recognition check box (described in 
the next section), then the value of this option becomes zero, as timeout has no 
significance for Image Text Recognition.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 941

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Use Image Text Recognition Mechanism

This option determines the type of text recognition mechanism used by 
WinRunner when it performs a text checkpoint during a test run. WinRunner can 
use either the standard Text Recognition method or Image Text Recognition: 
standard Text Recognition generally yields the most reliable text results, but it 
does not work well with all applications; Image Text Recognition enables 
WinRunner to recognize only the text whose font is defined in a font group. You 
should choose this option only if you find that Text Recognition does not work well 
with the application you are testing.

If this option is selected, WinRunner disables the main Text Recognition 
mechanism and only uses the Image Text Recognition mechanism.

If this option is cleared, WinRunner uses Text Recognition until it is timed out 
in the interval specified in the Timeout for Text Recognition box (described in 
the previous section). If Text Recognition fails, WinRunner uses Image Text 
Recognition.

(Default = cleared)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 942

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Remove Spaces from Recognized Text

This option removes multiple leading and trailing blanks in recognized text.

If this option is selected, WinRunner removes multiple leading and trailing 
blank spaces found in recognized text during test creation from the test script.

If this option is cleared, WinRunner transfers multiple leading and trailing 
blank spaces found in recognized text during test creation to the test script.

You must restart WinRunner for a change in this setting to take effect.

(Default = selected)

Note: This option is only relevant for text recognized using the Image Text 
Recognition mechanism.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 943

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Font Group

To be able to use Image Text Recognition (described in the section above), you 
must choose an active font group. This option sets the active font group for Image 
Text Recognition. For more information on font groups, see Teaching Fonts to 
WinRunner on page 459.

(Default = stand)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding fontgrp testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -fontgrp command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 944

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Environment Tab
The Environment tab options affect WinRunner’s testing environment.

WinRunner Interface Language

If WinRunner is installed on a non-English operating system, you may have an 
option to select the WinRunner interface language from Environment tab of the 
General Options dialog box.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 945

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Startup Test

This option designates the location of your startup test. 

Use a startup test to configure recording, load compiled modules, and load GUI 
map files when starting WinRunner. Note that you can also set the location of your 
startup test from the RapidTest Script Wizard.

(Default = installation folder)

Note: A startup test can be used in addition to (and not instead of) the 
initialization (tslinit) test.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 946

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Load Temporary GUI Map File 

This option determines whether WinRunner automatically loads the temporary 
GUI map file into the GUI map.

If this option is selected, WinRunner automatically loads the temporary GUI 
map file when starting WinRunner.

If this option is cleared, WinRunner does not automatically load the 
temporary GUI map file when starting WinRunner. 

(Default = selected)

Note: You can set the location of the temporary GUI map file in the Folders tab 
of the General Options dialog box. For more information, see Temporary GUI 
Map File on page 952.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 947

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Show Welcome Screen

This option determines whether the Welcome screen is displayed when starting 
WinRunner.

If this option is selected, the Welcome screen is displayed when starting 
WinRunner.

If this option is cleared, the Welcome screen is not displayed when starting 
WinRunner. 

(Default = selected)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 948

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Display the Add-In Manager dialog

This option determines:

• whether to display the Add-In Manager dialog box when starting WinRunner

• if the Add-In Manager dialog box is displayed when starting WinRunner, how 
many seconds it remains open before it closes (timeout)

For information about the Add-In Manager dialog box and loading installed add-
ins when starting WinRunner, see Loading WinRunner Add-Ins on page 52.

If this option is selected, the Add-In Manager dialog box is displayed when 
starting WinRunner. In the timeout box, specify the number of seconds to wait 
before closing the window.

If this option is cleared, the Add-In Manager dialog box is not displayed 
when starting WinRunner. The timeout box is disabled.

(Default = selected and 10 [seconds])



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 949

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Keyboard File

This option designates the path of the keyboard definition file. This file specifies 
the language that appears in the test script when you type on the keyboard during 
recording. 

(Default = installation folder\dat\win_scan.kbd)

Cache Size

This option designates the minimum cache size available for garbage collection. 
If the garbage data is greater than this value, WinRunner frees a block of memory.

(Default = 65536 [bytes])



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 950

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Allow TestDirector to Run Tests Remotely

This option enables TestDirector to run WinRunner tests on your machine from a 
remote machine. This option also adds the WinRunner Remote Agent application 
to your Windows startup. If the WinRunner Remote Agent application is not 
currently running on your machine, selecting this option starts it. When this 
application is running, the WinRunner Remote Agent icon appears in the status 
area of your screen.

If this option is selected, TestDirector is allowed to run WinRunner tests from 
a remote machine. The WinRunner Remote Agent application is added to 
your Windows startup. If the WinRunner Remote Agent application is not 
currently running on your machine, it is started, and its icon appears in the 
status area of your screen.

If this option is cleared, TestDirector is not allowed to run WinRunner tests 
from a remote machine. All WinRunner tests must be run locally. The 
WinRunner Remote Agent application is not part of your Windows startup.

(Default = cleared)

For information on running WinRunner tests remotely from TestDirector, refer to 
your TestDirector User’s Guide.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 951

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Folders Tab
The Folders tab options specify the locations of WinRunner files.



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 952

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Temporary Files 

This box designates the folder containing temporary tests. To enter a new path, 
type it in the text box or click Browse to locate the folder. Note that if you 
designate a new folder, you must restart WinRunner in order for the change to 
take effect.

(Default = installation folder\tmp)

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding tempdir testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script. 

Temporary GUI Map File 

This box designates the folder containing the temporary GUI map file (temp.gui). 
If you select the Load Temporary GUI Map File check box in the Environment 
tab of the General Options dialog box, this file loads automatically when you start 
WinRunner. To enter a new folder, type it in the text box or click Browse to locate 
it. Note that if you designate a new folder, you must restart WinRunner in order 
for the change to take effect.

(Default = installation folder\dat)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 953

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Shared Checklists

This box designates the folder in which WinRunner stores shared checklists for 
GUI and database checkpoints. In the test script, shared checklist files are 
designated by SHARED_CL before the file name in a win_check_gui, 
obj_check_gui, check_db, or check_gui statement. To enter a new path, type 
it in the text box or click Browse to locate the folder. Note that if you designate a 
new folder, you must restart WinRunner in order for the change to take effect. For 
more information on shared GUI checklists, see Saving a GUI Checklist in a 
Shared Folder on page 236. For more information on shared database 
checklists, see Saving a Database Checklist in a Shared Folder on page 400.

(Default = installation folder\chklist)

Note that you can use the getvar function to retrieve the value of the 
corresponding shared_checklist_dir testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Documentation Files

Designates the folder in which documentation files are stored. To enter a new 
path, type it in the text box or click Browse to locate the folder.

(Default = installation folder\doc)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 954

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Search Path for Called Tests

This box determines the paths that WinRunner searches for called tests. If you 
define search paths, you do not need to designate the full path of a test in a call 
statement. The order of the search paths in the list determines the order of 
locations in which WinRunner searches for a called test.

To add a search path, enter the path in the text box, and click Add. The path 
appears in the list box, below the text box.

To delete a search path, select the path and click Delete.

To move a search path up one position in the list, select the path and click Up.

To move a selected path down one position in the list, select the path and click 
Down.

(Default = installation folder\lib)

For more information, see Chapter 22, Calling Tests. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 955

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: When WinRunner is connected to TestDirector, you can specify the paths 
in a TestDirector database that WinRunner searches for called tests. Search 
paths in a TestDirector database can be preceded by [TD]. Note that you cannot 
use the Browse button to specify search paths in a TestDirector database: they 
must be typed directly into the search path box.

Note that you can use the setvar and getvar functions to set and retrieve the 
value of the corresponding searchpath testing option from within a test script, as 
described in Chapter 37, Setting Testing Options from a Test Script.  

Note that you can also set this option using the corresponding -search_path 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 956

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Choosing Appropriate Timeout and Delay Settings

The table below summarizes the timeout and delay settings available in the 
General Options dialog box, and describes the situations in which you may want 
to adjust each setting.

Setting Description Adjustment Recommendations Default

Delay for 
Window 
Synchronization

The amount of 
time 
WinRunner 
waits between 
each attempt 
to locate a 
window or 
object - 
enables 
window to 
stabilize.

A smaller the delay enables 
WinRunner to capture the object 
or window more quickly so that 
the test can continue, but smaller 
delays increase the load on the 
system. In most cases, when you 
modify the Timeout for 
Checkpoints and CS 
Statements, you should modify 
the delay in order to maintain a 
constant ratio . To avoid 
overloading your system, you 
should not exceed a 
timeout:delay ratio of 50:1.

1000 
(ms)



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 957

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Timeout for 
checkpoint and 
CS statements

The amount of 
time, in 
addition to the 
time parameter 
embedded in 
GUI 
checkpoint or 
synchronizatio
n point, that 
WinRunner 
waits for an 
object or 
window to 
appear.

You should increase this setting 
if your application takes longer 
than the current timeout value to 
successfully display objects and 
windows. If only one or few 
objects have this problem, 
however, it may be preferable to 
add a synchronization point to 
the script for the problematic 
objects.

10000
(ms)

Delay between 
execution of CS 
statements

Amount of time 
WinRunner 
waits before 
executing each 
CS statement.

Increase this delay when you 
need to slow down the test run, 
for reasons not related to 
synchronization issues. For 
example, you may want to 
increase the delay so that you 
can follow the test as it runs step 
by step.

0 (ms)

Setting Description Adjustment Recommendations Default



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 958

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Timeout for 
waiting for 
synchronization 
message

The amount of 
time 
WinRunner 
waits before 
validating that 
keyboard or 
mouse input 
was entered 
correctly 
during a test 
run.

Increase this setting if 
WinRunner runs the script faster 
than the application is capable of 
executing the statements.

2000 
(ms)

Setting Description Adjustment Recommendations Default



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 959

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Drop 
synchronization 
timeout if failed

Automatically 
minimizes the 
length of the 
Timeout for 
waiting for 
synchroniza
tion 
message 
setting after 
the first 
synchronizatio
n validation 
failure. This 
increases the 
liklihood that 
the test will fail 
quickly, as 
mouse and 
keyboard 
entries will not 
be complete.

Select this option to prevent the 
test from running for a long time 
with incorrect data due to an 
incomplete mouse or keyboard 
entry.

cleared

Setting Description Adjustment Recommendations Default



Configuring WinRunner • Setting Global Testing Options

WinRunner User’s Guide Chapter 36, page 960

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Beep when 
synchronization 
fails

WinRunner 
beeps each 
time the 
Timeout for 
waiting for 
synchroniza
tion 
message 
setting is 
exceeded.

You may want to select this 
option while debugging your 
script. If you hear many beeps 
during a single test run, increase 
the Timeout for waiting for 
synchronization message.

cleared

Timeout for text 
recognition

The amount of 
time that 
WinRunner 
waits to 
recognize text 
when 
performing a 
text checkpoint 
using the 
standard Text 
Recognition 
method during 
a test run.

If text checkpoints fail using the 
standard Text Recognition 
method, try increasing this 
timeout. (Alternatively you can 
try using Image Text 
Recognition.)

500 
(ms)

Setting Description Adjustment Recommendations Default



Configuring WinRunner
Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 961

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Setting Testing Options from a Test Script

You can control how WinRunner records and runs tests by setting and retrieving 
testing options from within a test script.

This chapter describes:

• Setting Testing Options with setvar

• Retrieving Testing Options with getvar

• Controlling the Test Run with setvar and getvar

• Test Script Testing Options



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 962

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Setting Testing Options from a Test Script

WinRunner testing options affect how you record test scripts and run tests. For 
example, you can set the speed at which WinRunner executes a test or determine 
how WinRunner records keyboard input.

You can set and retrieve the values of testing options from within a test script. To 
set the value of a testing option, use the setvar function. To retrieve the current 
value of a testing option, use the getvar function. By using a combination of 
setvar and getvar statements in a test script, you can control how WinRunner 
executes a test. You can use these functions to set and view the testing options 
for all tests, for a single test, or for part of a single test. You can also use these 
functions in a startup test script to set environment variables.

Most testing options can also be set using the General Options dialog box. For 
more information on setting testing options using the General Options dialog box, 
see Chapter 36, Setting Global Testing Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 963

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Testing Options with setvar

You use the setvar function to set the value of a testing option from within the test 
script. This function has the following syntax:

setvar ( "testing_option", "value" );

In this function, testing_option may specify any one of the following: 

attached_text_area
attached_text_search_radius
beep
cs_run_delay
cs_fail
delay_msec
drop_sync_timeout
enum_descendent_toplevel
fontgrp
item_number_seq
key_editing
list_item_separator

listview_item_separator
min_diff
mismatch_break
rec_item_name
rec_owner_drawn
searchpath
single_prop_check_fail
speed
sync_fail_beep
synchronization_timeout
tempdir
timeout_msec
treeview_path_separator



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 964

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, if you execute the following setvar statement:

setvar ("mismatch_break", "off");

WinRunner disables the mismatch_break testing option. The setting remains in 
effect during the testing session until it is changed again, either with another 
setvar statement or from the corresponding Break when verification fails 
check box in the Run tab of the General Options dialog box.

Using the setvar function changes a testing option globally, and this change is 
reflected in the General Options dialog box. However, you can also use the setvar 
function to set testing options for all tests, for a specific test, or even for part of a 
specific test. 

To use the setvar function to change a variable only for the current test, without 
overwriting its global value, save the original value of the variable separately and 
restore it later in the test. For example, if you want to change the delay_msec 
testing option to 20,000 for a specific test only, insert the following at the 
beginning of your test script:

# Keep the original value of the 'delay_msec' testing option
old_delay = getvar ("delay_msec") ;
setvar ("delay_msec", "20,000") ;

To change back the delay testing option to its original value at the end of the test, 
insert the following at the end of your test script:

#Change back the ‘delay_msec’ testing option to its original value.
setvar (“delay_msec”, old_delay) ;



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 965

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Retrieving Testing Options with getvar

You use the getvar function to retrieve the current value of a testing option. The 
getvar function is a read-only function, and does not enable you to alter the value 
of the retrieved testing option. (To change the value of a testing option in a test 
script, use the setvar function, described above.) The syntax of this statement is:

user_variable = getvar ("testing_option");



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 966

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In this function, testing_option may specify any one of the following:

attached_text_area
attached_text_search_radius
batch
beep
cs_fail
cs_run_delay
curr_dir
delay_msec
drop_sync_timeout
enum_descendent_toplevel
exp
fontgrp
item_number_seq
key_editing
line_no
list_item_separator
listview_item_separator
min_diff
mismatch_break
rec_item_name

rec_owner_drawn
result
runmode
searchpath
shared_checklist_dir
single_prop_check_fail
silent_mode
speed
sync_fail_beep
synchronization_timeout
td_log_dirname
td_connection
td_cycle_name
td_database_name
td_server_name
td_user_name
tempdir
testname
timeout_msec
treeview_path_separator



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 967

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example:

nowspeed = getvar ("speed");

assigns the current value of the run speed to the user-defined variable 
nowspeed.

Note that some testing options are set by WinRunner and cannot be changed 
through either setvar or the General Options dialog box. For example, the value 
of the testname option is always the name of the current test. Use getvar to 
retrieve this read-only value.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 968

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Controlling the Test Run with setvar and getvar

You can use getvar and setvar together to control a test run without changing 
global settings. In the following test script fragment, WinRunner checks the 
bitmap Img1. The getvar function retrieves the values of the timeout_msec and 
delay_msec testing options, and setvar assigns their values for this 
win_check_bitmap statement. After the window is checked, setvar restores the 
values of the testing options. 

t = getvar ("timeout_msec");
d = getvar ("delay_msec");
setvar ("timeout_msec", 30000);
setvar ("delay_msec", 3000);
win_check_bitmap ("calculator", Img1, 2, 261,269,93,42);
setvar ("timeout_msec", t);
setvar ("delay_msec", d);

Note: You can use the setvar and getvar functions in a startup test script to set 
environment variables for a specific WinRunner session.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 969

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Test Script Testing Options

This section describes the WinRunner testing options that can be used with the 
setvar and getvar functions from within a test script. If you can also use the 
General Options dialog box to set or view an option, it is indicated below.

attached_text_area 

This option specifies the point on a GUI object from which WinRunner searches 
for its attached text. 

Value Point on the GUI Object

Default Top-left corner of regular (English-style) windows; 
Top-right corner of windows with RTL-style 
(WS_EX_BIDI_CAPTION) windows

Top-Left Top-left corner

Top Midpoint of two top corners

Top-Right Top-right corner

Right Midpoint of two right corners

Bottom-Right Bottom-right corner

Bottom Midpoint of two bottom corners



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 970

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can use this option with the setvar and getvar functions.

(Default = Default)

Note that you may also set this option using the Attached Text - Preferred 
search area box in the Miscellaneous tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Notes: When you run a test, you must use the same values for the attached text 
options that you used when you recorded the test. Otherwise, WinRunner may 
not identify the GUI object. 

In previous versions of WinRunner, you could not set the preferred search area: 
WinRunner searched for attached text based on what is now the Default setting 
for the preferred search area. If backward compatibility is important, choose the 
Default setting. 

Bottom-Left Bottom-left corner

Left Midpoint of two left corners

Value Point on the GUI Object



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 971

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

attached_text_search_radius 

This option specifies the radius from the specified point on a GUI object that 
WinRunner searches for the static text object that is its attached text. The radius 
can be 3 to 300 pixels.

(Default= 34 [pixels])

You can use this option with the setvar and getvar functions.

Note that you may also set this option using the Attached Text - Search radius 
box in the Miscellaneous tab of the General Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note: When you run a test, you must use the same values for the attached text 
options that you used when you recorded the test. Otherwise, WinRunner may 
not identify the GUI object.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 972

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

batch 

This option displays whether WinRunner is running in batch mode. In batch 
mode, WinRunner suppresses messages during a test run so that a test can run 
unattended. WinRunner also saves all the expected and actual results of a test 
run in batch mode in one folder, and displays them in one Test Results window. 
For more information on the batch testing option, see Chapter 29, Running 
Batch Tests.  

For example, if a set_window statement is missing from a test script, 
WinRunner cannot find the specified window. If this option is on and the test is 
run in batch mode, WinRunner reports an error in the Test Results window and 
proceeds to run the next statement in the test script. If this option is off and the 
test is not run in batch mode, WinRunner pauses the test and opens the Run 
wizard to enable the user to locate the window. 

You can use this option with the getvar function.

(Default = 0)

Note that you may also set this option using the Run in batch mode check box 
in the Run tab of the General Options dialog box, described in Chapter 36, 
Setting Global Testing Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 973

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that you can also set this option using the corresponding -batch command 
line option, described in Chapter 30, Running Tests from the Command Line. 

Note: When you run tests in batch mode, you automatically run them in silent 
mode. For information about the silent_mode testing option, see page 991.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 974

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

beep

This option determines whether WinRunner beeps when checking any window 
during a test run.

You can use this option with the setvar and getvar functions.

(Default = on)

Note that you may also set this option using the corresponding Beep when 
checking a window check box in the Run tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -beep command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 975

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

cs_fail

This option determines whether WinRunner fails a test when Context Sensitive 
errors occur. A Context Sensitive error is the failure of a Context Sensitive 
statement during a test. Context Sensitive errors are often due to WinRunner’s 
failure to identify a GUI object. 

For example, a Context Sensitive error will occur if you run a test containing a 
set_window statement with the name of a non-existent window. Context 
Sensitive errors can also occur when window names are ambiguous. For 
information about Context Sensitive functions, refer to the TSL Online Reference.

You can use this option with the setvar and getvar functions.

(Default = 0)

Note that you may also set this option using the corresponding Fail test when 
Context Sensitive errors occur check box in the Run tab of the General Options 
dialog box, described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -cs_fail command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 976

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

cs_run_delay

This option sets the time (in milliseconds) that WinRunner waits between 
executing Context Sensitive statements when running a test.

You can use this option with the setvar and getvar functions.

(Default = 0 [milliseconds])

Note that you may also set this option using the corresponding Delay between 
execution of CS statements box in the Advanced Run Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -cs_run_delay 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

curr_dir

This option displays the current working folder for the test. 

You can use this option with the getvar function.

This option has no default value.

Note that you may also view the location of the current working folder for the test 
from the corresponding Current folder box in the Current Test tab of the Test 
Properties dialog box, described in Chapter 27, Reviewing Current Test 
Settings.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 977

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

delay_msec

This option sets the sampling interval (in seconds) used to determine that a 
window is stable before capturing it for a Context Sensitive checkpoint or 
synchronization point. To be declared stable, a window must not change between 
two consecutive samplings. This sampling continues until the window is stable or 
the timeout (as set with the timeout_msec testing option) is reached. (Formerly 
delay, which was measured in seconds.)

For example, when the delay is two seconds and the timeout is ten seconds, 
WinRunner checks the window in the application under test every two seconds 
until two consecutive checks produce the same results or until ten seconds have 
elapsed. Setting the value to 0 disables all bitmap checking.

You can use this option with the setvar and getvar functions.

(Default = 1000 [milliseconds])

Note: This option is accurate to within 20-30 milliseconds.

Note that you may also set this option using the corresponding Delay for window 
synchronization box in the Run tab of the General Options dialog box, described 
in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -delay_msec 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 978

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

drop_sync_timeout

determines whether WinRunner minimizes the synchronization timeout (as 
defined in the ���������	�
�option ) after the first synchronization failure.

(Default = cleared)

You can use this option with the getvar and setvar functions.

Note that you may also set this option using the corresponding Drop 
synchronization timeout if failed check box in the Advanced Run Options 
dialog box, described in Chapter 36, Setting Global Testing Options. 

enum_descendent_toplevel

This option determines whether WinRunner records controls (objects) of a child 
object whose parent is an object but not a window and identifies these controls 
when running a test.

(Default = off)

You can use this option with the getvar and setvar functions.

Note that you may also set this option using the corresponding Consider child 
windows check box in the Record tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 979

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

exp

This option displays the full path of the expected results folder associated with the 
current test run. 

You can use this option with the getvar function.

This option has no default value.

Note that you may also view the full path of the expected results folder from the 
corresponding Expected results folder box in the Current Test tab of the Test 
Properties dialog box, described in Chapter 27, Reviewing Current Test 
Settings

Note that you can also set this option using the corresponding -exp command line 
option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 980

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

fontgrp

To be able to use Image Text Recognition (instead of the default Text 
Recognition), (described in Use Image Text Recognition Mechanism on page 
941), you must choose an active font group. This option sets the active font group 
for Image Text Recognition. For more information on font groups, see Teaching 
Fonts to WinRunner on page 459.

You can use this option with the setvar and getvar functions.

(Default = stand)

Note that you may also set this option using the corresponding Font group box 
in the Text Recognition tab of the General Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -fontgrp command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 981

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

item_number_seq

This option defines the string recorded in the test script to indicate that a List, 
ListView, or TreeView item is specified by its index number.

You can use this option with the setvar and getvar functions.

(Default = # )

Note that you may also set this option using the corresponding String indicating 
that what follows is a number box in the Miscellaneous tab of the General 
Options dialog box, described in Chapter 36, Setting Global Testing Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 982

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

key_editing

This option determines whether WinRunner generates more concise type, 
win_type, and obj_type statements in a test script.

When this option is on, WinRunner generates more concise type, win_type, and 
obj_type statements that represent only the net result of pressing and releasing 
input keys. This makes your test script easier to read. For example:

obj_type (object, "A");

When this option is disabled, WinRunner records the pressing and releasing of 
each key. For example:

obj_type (object, "<kShift_L>-a-a+<kShift_L>+");

Disable this option if the exact order of keystrokes is important for your test.

For more information on this subject, see the type function in the TSL Online 
Reference. 

You can use this option with the setvar and getvar functions.

(Default = on)

Note that you may also set this option using the corresponding Generate 
concise, more readable type statements check box in the Record tab of the 
General Options dialog box, described in Chapter 36, Setting Global Testing 
Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 983

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

line_no

This option displays the line number of the current location of the execution arrow 
in the test script. 

You can use this option with the getvar function.

This variable has no default value.

Note that you may also view the current line number in the test script from the 
corresponding Current Line box in the Current Test tab of the Test Properties 
dialog box, described in Chapter 27, Reviewing Current Test Settings.

list_item_separator

This option defines the string recorded in the test script to separate items in a list 
box or a combo box.

You can use this option with the setvar and getvar functions.

(Default = , )

Note that you may also set this option using the corresponding String for 
separating ListBox or ComboBox items box in the Miscellaneous tab of the 
General Options dialog box, described in Chapter 36, Setting Global Testing 
Options.  



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 984

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

listview_item_separator

This option defines the string recorded in the test script to separate items in a 
ListView or a TreeView.

You can use this option with the setvar and getvar functions.

(Default = , )

Note that you may also set this option using the corresponding String for 
separating ListView or TreeView items box in the Miscellaneous tab of the 
General Options dialog box, described in Chapter 36, Setting Global Testing 
Options. 

min_diff

This option defines the number of pixels that constitute the threshold for bitmap 
mismatch. When this value is set to 0, a single pixel mismatch constitutes a 
bitmap mismatch. 

You can use this option with the setvar and getvar functions.

(Default = 0 [pixels])

Note that you may also set this option using the corresponding Threshold for 
difference between bitmaps box in the Run tab of the General Options dialog 
box, described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -min_diff command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 985

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mismatch_break

This option determines whether WinRunner pauses the test run and displays a 
message whenever verification fails or whenever any message is generated as a 
result of a context sensitive statement during a test that is run in Verify mode. This 
option should be used only when working interactively.

For example, if a set_window statement is missing from a test script, WinRunner 
cannot find the specified window. If this option is on, WinRunner pauses the test 
and opens the Run wizard to enable the user to locate the window. If this option 
is off, WinRunner reports an error in the Test Results window and proceeds to run 
the next statement in the test script.

You can use this option with the setvar and getvar functions.

(Default = on)

Note that you may also set this option using the corresponding Break when 
verification fails check box in the Run tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -mismatch_break 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 986

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

rec_item_name

This option determines whether WinRunner records non-unique ListBox and 
ComboBox items by name or by index.

You can use this option with the setvar and getvar functions.

(Default = 0)

Note that you may also set this option using the corresponding Record non-
unique list items by name check box in the Record tab of the General Options 
dialog box, described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -rec_item_name 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 987

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

rec_owner_drawn

Since WinRunner cannot identify the class of owner-drawn buttons, it 
automatically maps them to the general “object” class. This option enables you to 
map all owner-drawn buttons to a standard button class (push_button, 
radio_button, or check_button).

You can use this option with the setvar and getvar functions.

(Default = Object)

Note that you may also set this option using the corresponding Record owner-
drawn buttons box in the Record tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

result

This option displays the full path of the verification results folder associated with 
the current test run. 

You can use this option with the getvar function.

This option has no default value.

Note that you may also view the full path of the verification results folder from the 
corresponding Verification results folder box in the Current Test tab of the Test 
Properties dialog box, described in Chapter 27, Reviewing Current Test 
Settings.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 988

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

runmode

This option displays the current run mode: Verify, Debug, or Update. 

You can use this option with the getvar function. 

This option has no default value.

Note that you may also view the current run mode from the corresponding Run 
mode box in the Current Test tab of the Test Properties dialog box, described in 
Chapter 27, Reviewing Current Test Settings.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 989

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

searchpath

This option sets the path that WinRunner searches for called tests. If you define 
search paths, you do not need to designate the full path of a test in a call 
statement. You can set multiple search paths in a single statement by leaving a 
space between each path. To set multiple search paths for long file names, 
surround each path with angle brackets < >. WinRunner searches for a called test 
in the order in which multiple paths appear in the getvar or setvar statement.

You can use this option with the setvar and getvar functions.

(Default = installation folder\lib)

Note that you may also set this option using the corresponding Search path for 
called tests box in the Folders tab of the General Options dialog box, described 
in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -search_path 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

Note: When WinRunner is connected to TestDirector, you can specify the paths 
in a TestDirector database that WinRunner searches for called tests. Search 
paths in a TestDirector database can be preceded by [TD].



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 990

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

shared_checklist_dir

This option designates the folder in which WinRunner stores shared checklists for 
GUI and database checkpoints. In the test script, shared checklist files are 
designated by SHARED_CL before the file name in a win_check_gui, 
obj_check_gui, check_gui, or check_db statement. For more information on 
shared GUI checklists, see Saving a GUI Checklist in a Shared Folder on page 
236. For more information on shared database checklists, see Saving a 
Database Checklist in a Shared Folder on page 400. Note that if you designate 
a new folder, you must restart WinRunner in order for the change to take effect.

You can use this option with the getvar function.

(Default = installation folder\chklist)

Note that you may also view the location of the folder in which WinRunner stores 
shared checklists from the corresponding Shared checklists box in the Folders 
tab of the General Options dialog box, described in Chapter 36, Setting Global 
Testing Options. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 991

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

silent_mode

This option displays whether WinRunner is running in silent mode. In silent mode, 
WinRunner suppresses messages during a test run so that a test can run 
unattended. When you run a test remotely from TestDirector, you must run it in 
silent mode, because no one is monitoring the computer where the test is running 
to view the messages. For information on running tests remotely from 
TestDirector, see Chapter 40, Managing the Testing Process.  

You can use this option with the getvar function.

(Default = off)

Note: When you run tests in batch mode, you automatically run them in silent 
mode. For information running tests in batch mode, see Chapter 29, Running 
Batch Tests.  



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 992

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

single_prop_check_fail

This option fails a test run when _check_info statements fail. It also writes an 
event to the Test Results window for these statements. (You can create 
_check_info statements using the Create > GUI Checkpoint > For Single 
Property command.)

You can use this option with the setvar and getvar functions.

(Default = 1)

For information about the check_info functions, refer to the TSL Online 
Reference.

Note that you may also set this option using the corresponding Fail test when 
single property check fails option in the Run tab of the General Options dialog 
box, described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding 
-single_prop_check_fail command line option, described in Chapter 30, Running 
Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 993

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

speed 

This option sets the default run speed for tests run in Analog mode. Two speeds 
are available: normal and fast.

Setting the option to normal runs the test at the speed at which it was recorded.

Setting the option to fast runs the test as fast as the application can receive input.

You can use this option with the setvar and getvar functions.

(Default = fast)

Note that you may also set this option using the corresponding Run Speed for 
Analog Mode option in the Advanced Run Options dialog box, described in 
Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -speed command 
line option, described in Chapter 30, Running Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 994

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

sync_fail_beep

This option determines whether WinRunner beeps when synchronization fails.

You can use this option with the setvar and getvar functions.

(Default = off)

Note that you may also set this option using the corresponding Beep when 
synchronization fails check box in the Advanced Run Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

Note: You use this option primarily to debug a test script.

Note: If synchronization often fails during your test runs, consider increasing the 
value of the synchronization_timeout testing option (described below) or the 
corresponding Timeout for waiting for synchronization message option in the 
Advanced Run Options dialog box.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 995

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

synchronization_timeout

This option sets the timeout (in milliseconds) that WinRunner waits before 
validating that keyboard or mouse input was entered correctly during a test run. 

You can use this option with the setvar and getvar functions.

(Default = 2000 [milliseconds])

Note that you may also set this option using the corresponding Timeout for 
waiting for synchronization message box in the Advanced Run Options dialog 
box, described in Chapter 36, Setting Global Testing Options. 

Note: If synchronization often fails during your test runs, consider increasing the 
value of this option.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 996

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

td_connection

This option indicates whether WinRunner is currently connected to TestDirector. 
(Formerly test_director.)

You can use this option with the getvar function.

(Default = off)

Note that you can connect to TestDirector from the Connection to TestDirector 
dialog box, which you open by choosing Tools > TestDirector Connection. For 
more information about connecting to TestDirector, see Chapter 40, Managing 
the Testing Process. 

Note that you can also set this option using the corresponding -td_connection 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 997

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

td_cycle_name

This option displays the name of the TestDirector test set (formerly known as 
“cycle”) for the test. (Formerly cycle.)

You can use this option with the getvar function.

This option has no default value.

Note that you may set this option using the Run Tests dialog box when you run a 
test set from WinRunner. For more information, see Running Tests in a Test Set 
on page 1062. You may also set this option from within TestDirector. For more 
information, refer to the TestDirector User’s Guide.

Note that you can also set this option using the corresponding -td_cycle_name 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 998

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

td_database_name

This option displays the name of the TestDirector project database to which 
WinRunner is currently connected.

You can use this option with the getvar function.

This option has no default value.

Note that you may set this option using the Project Connection box in the 
Connection to TestDirector dialog box, which you can open by choosing 
Tools > TestDirector Connection. For more information, see Chapter 40, 
Managing the Testing Process. 

Note that you can also set this option using the corresponding 
-td_database_name command line option, described in Chapter 30, Running 
Tests from the Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 999

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

td_server_name

This option displays the name of the TestDirector server (TDAPI) to which 
WinRunner is currently connected.

You can use this option with the getvar function.

This option has no default value.

Note that you may set this option using the Server Connection box in the 
Connection to TestDirector dialog box, which you can open by choosing 
Tools > TestDirector Connection. For more information, see Chapter 40, 
Managing the Testing Process. 

Note that you can also set this option using the corresponding -td_server_name 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 1000

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

td_user_name

This option displays the user name for opening the selected TestDirector 
database. (Formerly user.)

You can use this option with the getvar function.

This option has no default value.

Note that you can also set this option using the corresponding -td_user_name 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

Note that you may set this option using the User Name box in the Connection to 
TestDirector dialog box, which you can open by choosing 
Tools > TestDirector Connection. For more information, see Chapter 40, 
Managing the Testing Process. 



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 1001

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

tempdir

This option designates the folder containing temporary files. Note that if you 
designate a new folder, you must restart WinRunner in order for the change to 
take effect.

You can use this option with the setvar and getvar functions.

(Default = installation folder\tmp)

Note that you may also set this option using the corresponding 
Temporary files box in the Folders tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 

testname

This option displays the full path of the current test.

You can use this option with the getvar function.

This option has no default value.

Note that you may also view the full path of the current test from the 
corresponding Test Name box in the Current Test tab of the Test Properties dialog 
box, described in Chapter 27, Reviewing Current Test Settings.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 1002

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

timeout_msec

This option sets the global timeout (in milliseconds) used by WinRunner when 
executing checkpoints and Context Sensitive statements. This value is added to 
the time parameter embedded in GUI checkpoint or synchronization point 
statements to determine the maximum amount of time that WinRunner searches 
for the specified window. The timeout must be greater than the delay for window 
synchronization (as set with the delay_msec testing option). (Formerly timeout, 
which was measured in seconds.)

For example, in the statement:

win_check_bitmap ("calculator", Img1, 2, 261,269,93,42);

when the timeout_msec variable is 10,000 milliseconds, this operation takes a 
maximum of 12,000 (2,000 +10,000) milliseconds. 

You can use this option with the setvar and getvar functions.

(Default = 10000 [milliseconds])

Note: This option is accurate to within 20-30 milliseconds.



Configuring WinRunner • Setting Testing Options from a Test Script

WinRunner User’s Guide Chapter 37, page 1003

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that you may also set this option using the corresponding Timeout for 
checkpoints and CS statements box in the Run tab of the General Options 
dialog box, described in Chapter 36, Setting Global Testing Options. 

Note that you can also set this option using the corresponding -timeout_msec 
command line option, described in Chapter 30, Running Tests from the 
Command Line. 

treeview_path_separator

This option defines the string recorded in the test script to separate items in a tree 
view path.

You can use this option with the getvar and setvar functions.

(Default = ; )

Note that you may also set this option using the corresponding String for parsing 
a TreeView path box in the Miscellaneous tab of the General Options dialog box, 
described in Chapter 36, Setting Global Testing Options. 



Configuring WinRunner
Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1004

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�	
Customizing the Function Generator 

You can customize the Function Generator to include the user-defined functions 
that you most frequently use in your tests scripts. This makes programming tests 
easier and reduces the potential for errors.

This chapter describes:

• Adding a Category to the Function Generator

• Adding a Function to the Function Generator

• Associating a Function with a Category

• Adding a Subcategory to a Category

• Setting a Default Function for a Category



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1005

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Customizing the Function Generator

You can modify the Function Generator to include the user-defined functions that 
you use most frequently. This enables you to quickly generate your favorite 
functions and insert them directly into your test scripts. You can also create 
custom categories in the Function Generator in which you can organize your 
user-defined functions. For example, you can create a category named 
“my_button”, which contains all the functions specific to the “my_button” custom 
class. You can also set the default function for the new category, or modify the 
default function for any standard category.

To add a new category with its associated functions to the Function Generator, 
you perform the following steps:

 1 Add a new category to the Function Generator.

 2 Add new functions to the Function Generator.

 3 Associate the new functions with the new category.

 4 Set the default function for the new category.

 5 Add a subcategory for the new category (optional).

You can find all the functions required to customize the Function Generator in 
the “function table” category of the Function Generator. By inserting these 
functions in a startup test, you ensure that WinRunner is invoked with the correct 
configuration.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1006

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a Category to the Function Generator

You use the generator_add_category TSL function to add a new category to the 
Function Generator. This function has the following syntax:

generator_add_category ( category_name ); 

where category_name is the name of the category that you want to add to the 
Function Generator. 

In the following example, the generator_add_category function adds a category 
called “my_button” to the Function Generator: 

generator_add_category ("my_button");

Note: If you want to display the default function for category when you select an 
object using the Create > Insert Function > For Object/Window command, then 
the category name must be the same as the name of the GUI object class.

To add a category to the Function Generator:

 1 Open the Function Generator. (Choose Create > Insert Function > From 
Function Generator, click the Insert Function from Function Generator 
button on the User toolbar, or press the INSERT FUNCTION FROM FUNCTION 
GENERATOR softkey.)



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1007

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_category.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, type the name of the new category between the 
quotes. Click Paste to paste the TSL statement into your test script.

 6 Click Close to close the Function Generator.

A generator_add_category statement is inserted into your test script. 

Note: You must run the test script in order to insert a new category into the 
Function Generator.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1008

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a Function to the Function Generator

When you add a function to the Function Generator, you specify the following:

• how the user supplies values for the arguments in the function

• the function description that appears in the Function Generator

Note that after you add a function to the Function Generator, you should 
associate the function with a category. See Associating a Function with a 
Category on page 1020.

You use the generator_add_function TSL function to add a user-defined 
function to the Function Generator. 

To add a function to the Function Generator:

 1 Open the Function Generator. (Choose Create > Insert Function > From 
Function Generator, click the Insert Function from Function Generator 
button on the User toolbar, or press the INSERT FUNCTION FROM FUNCTION 
GENERATOR softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_function.

 4 Click Args. The Function Generator expands.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1009

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 In the Function Generator, define the function_name, description, and 
arg_number arguments:

• In the function_name box, type the name of the new function between the 
quotes. Note that you can include spaces and upper-case letters in the 
function name.

• In the description box, enter the description of the function between the 
quotes. Note that it does not have to be a valid string expression and it must 
not exceed 180 characters.

• In the arg_number box, you must choose 1. To define additional arguments 
(up to eight arguments for each new function), you must manually modify the 
generated generator_add_function statement once it is added to your test 
script.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1010

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 For the function’s first argument, define the following arguments: arg_name, 
arg_type, and default_value (if relevant):

• In the arg_name box, type the name of the argument within the quotation 
marks. Note that you can include spaces and upper-case letters in the 
argument name.

• In the arg_type box, select browse, point_window, point_object, 
select_list, or type_edit, to choose how the user will fill in the argument’s 
value in the Function Generator, as described in Defining Function 
Arguments on page 1011.

• In the default_value box, if relevant, choose the default value for the 
argument.

• Note that any additional arguments for the new function cannot be added 
from the Function Generator: The arg_name, arg_type, and default_value 
arguments must be added manually to the generator_add_function 
statement in your test script.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

Note: You must run the test script in order to insert a new function into the 
Function Generator.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1011

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Function Arguments 
The generator_add_function function has the following syntax:

generator_add_function ( function_name, description, 
arg_number,

arg_name_1, arg_type_1, default_value_1,
...

arg_name_n, arg_type_n, default_value_n ); 

• function_name is the name of the function you are adding. 

• description is a brief explanation of the function. The description appears in the 
Description box of the Function Generator when the function is selected. It does 
not have to be a valid string expression and must not exceed 180 characters.

• arg_number is the number of arguments in the function. This can be any number 
from zero to eight.

For each argument in the function you define, you supply the name of the 
argument, how it is filled in, and its default value (where possible). When you 
define a new function, you repeat the following parameters for each argument in 
the function: arg_name, arg_type, and default_value.

• arg_name defines the name of the argument that appears in the Function 
Generator.

• arg_type defines how the user fills in the argument’s value in the Function 
Generator. There are five types of arguments.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1012

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

browse: The value of the argument is evaluated by pointing to a 
file in a browse file dialog box. Use browse when the 
argument is a file. To select a file with specific file 
extensions only, specify a list of default extension(s). 
Items in the list should be separated by a space or tab. 
Once a new function is defined, the browse argument is 
defined in the Function Generator by using a Browse 
button.

point_window: The value of the argument is evaluated by pointing to a 
window. Use point_window when the argument is the 
logical name of a window. Once a new function is defined, 
the point_window argument is defined in the Function 
Generator by using a pointing hand.

point_object: The value of the argument is evaluated by pointing to a 
GUI object (other than a window). Use point_object when 
the argument is the logical name of an object. Once a new 
function is defined, the point_object argument is defined 
in the Function Generator by using a pointing hand.

select_list: The value of the argument is selected from a list. Use 
select_list when there is a limited number of argument 
values, and you can supply all the values. Once a new 
function is defined, the select_list argument is defined in 
the Function Generator by using a combo box.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1013

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

type_edit: The value of the argument is typed in. Use type_edit when 
you cannot supply the full range of argument values. 
Once a new function is defined, the type_edit argument is 
defined in the Function Generator by typing into an edit 
field.

• default_value provides the argument’s default value. You may assign default 
values to select_list and type_edit arguments. The default value you specify for 
a select_list argument must be one of the values included in the list. You cannot 
assign default values to point_window and point_object arguments. 

The following are examples of argument definitions that you can include in 
generator_add_function statements. The examples include the syntax of the 
argument definitions, their representations in the Function Generator, and a brief 
description of each definition.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1014

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 1

generator_add_function ("window_name","This function...",1,
"Window Name","point_window","");

The function_name is window_name. The description is “This function...”. The 
arg_number is 1. The arg_name is Window Name. The arg_type is 
point_window. There is no default_value: since the argument is selected by 
pointing to a window, this argument is an empty string.

When you select the “window_name” function in the Function Generator and click 
the Args button, the Function Generator appears as follows:



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1015

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 2

generator_add_function("state","This 
function...",1,"State","select_list (0 1)",0);

The function_name is state. The description is “This function...”. The 
arg_number is 1. The arg_name is State. The arg_type is select_list. The 
default_value is 0.

When you select the “state” function in the Function Generator and click the Args 
button, the Function Generator appears as follows:



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1016

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 3

generator_add_function("value","This 
function...",1,"Value","type_edit","");

The function_name is value. The description is “This function...”. The 
arg_number is 1. The arg_name is Value. The arg_type is type_edit. There is no 
default_value.

When you select the “value” function in the Function Generator and click the Args 
button, the Function Generator appears as follows: 



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1017

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining Property Arguments
You can define a function with an argument that uses a Context Sensitive 
property, such as the label on a pushbutton or the width of a checkbox. In such a 
case, you cannot define a single default value for the argument. However, you can 
use the attr_val function to determine the value of a property for the selected 
window or GUI object. You include the attr_val function in a call to the 
generator_add_function function.

The attr_val function has the following syntax:

attr_val ( object_name, "property" );

• object_name defines the window or GUI object whose property is returned. It 
must be identical to the arg_name defined in a previous argument of the 
generator_add_function function. 

• property can be any property used in Context Sensitive testing, such as height, 
width, label, or value. You can also specify platform-specific properties such as 
MSW_class and MSW_id. 

You can either define a specific property, or specify a parameter that was defined 
in a previous argument of the same call to the function, 
generator_add_function. For an illustration, see example 2, below.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1018

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 1

In this example, a function called “check_my_button_label” is added to the 
Function Generator. This function checks the label of a button. 

generator_add_function("check_my_button_label", "This function checks the 
label of a button.", 2,

"button_name", "point_object"," ",
"label", "type_edit", "attr_val(button_name, \"label\")");

The “check_my_button_label” function has two arguments. The first is the name 
of the button. Its selection method is point_object and it therefore has no default 
value. The second argument is the label property of the button specified, and is a 
type_edit argument. The attr_val function returns the label property of the 
selected GUI object as the default value for the property. 

Example 2

The following example adds a function called “check_my_property” to the 
Function Generator. This function checks the class, label, or active property of an 
object. The property whose value is returned as the default depends on which 
property is selected from the list. 

generator_add_function ("check_my_property","This function checks an 
object’s property.",3,

"object_name", "point_object", " ",
"property", "select_list(\"class\"\"label\"\"active\")", "\"class\"",
"value:", "type_edit", "attr_val(object_name, property)");



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1019

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The first three arguments in generator_add_function define the following:

• the name of the new function (check_my_property).

• the description appearing in the Description field of the Function Generator. This 
function checks an object’s property.

• the number of arguments (3).

The first argument of “check_my_property” determines the object whose 
property is to be checked. The first parameter of this argument is the object 
name. Its type is point_object. Consequently, as the null value for the third 
parameter of the argument indicates, it has no default value. 

The second argument is the property to be checked. Its type is select_list. The 
items in the list appear in parentheses, separated by field separators and in 
quotation marks. The default value is the class property.

The third argument, value, is a type_edit argument. It calls the attr_val function. 
This function returns, for the object defined as the function’s first argument, the 
property that is defined as the second argument (class, label or active). 



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1020

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Associating a Function with a Category

Any function that you add to the Function Generator should be associated with an 
existing category. You make this association using the 
generator_add_function_to_category TSL function. Both the function and the 
category must already exist.

This function has the following syntax:

generator_add_function_to_category ( category_name
 function_name );

• category_name is the name of a category in the Function Generator. It can be 
either a standard category, or a custom category that you defined using the 
generator_add_category function. 

• function_name is the name of a custom function. You must have already added 
the function to the Function Generator using the function, 
generator_add_function.

To associate a function with a category:

 1 Open the Function Generator. (Choose Create > Insert Function > From 
Function Generator, click the Insert Function from Function Generator 
button on the User toolbar, or press the INSERT FUNCTION FROM FUNCTION 
GENERATOR softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_function_to_category.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1021

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in the 
Function Generator.

 6 In the Function Name box, enter the function name as it already appears in the 
Function Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_add_function_to_category statement is inserted into your test 
script. In the following example, the “check_my_button_label” function is 
associated with the “my_button” category. This example assumes that you have 
already added the “my_button” category and the “check_my_button_label” 
function to the Function Generator. 

generator_add_function_to_category ("my_button", 
"check_my_button_label");

Note: You must run the test script in order to associate a function with a 
category.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1022

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a Subcategory to a Category

You use the generator_add_subcategory TSL function to make one category a 
subcategory of another category. Both categories must already exist. The 
generator_add_subcategory function adds all the functions in the subcategory 
to the list of functions for the parent category. 

If you create a separate category for your new functions, you can use the 
generator_add_subcategory function to add the new category as a subcategory 
of the relevant Context Sensitive category. 

The syntax of generator_add_subcategory is as follows:

generator_add_subcategory ( category_name
 subcategory_name ); 

• category_name is the name of an existing category in the Function Generator.

• subcategory_name is the name of an existing category in the Function 
Generator.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1023

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a subcategory to a category:

 1 Open the Function Generator. (Choose Create > Insert Function > From 
Function Generator, click the Insert Function from Function Generator 
button on the User toolbar, or press the INSERT FUNCTION FROM FUNCTION 
GENERATOR softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_subcategory.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in the 
Function Generator.

 6 In the Subcategory Name box, enter the subcategory name as it already 
appears in the Function Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_add_subcategory statement is inserted into your test script. In the 
following example, the “my_button” category is defined as a subcategory of the 
“push_button” category. All “my_button” functions are added to the list of 
functions defined for the push_button category. 

generator_add_subcategory ("push_button", "my_button");

Note: You must run the test script in order to add a subcategory to a category.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1024

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting a Default Function for a Category

You set the default function for a category using the 
generator_set_default_function TSL function. This function has the following 
syntax:

generator_set_default_function ( category_name, function_name ); 

• category_name is an existing category.

• function_name is an existing function.

You can set a default function for a standard category or for a user-defined 
category that you defined using the generator_add_category function. If you do 
not define a default function for a user-defined category, WinRunner uses the 
first function in the list as the default function. 

Note that the generator_set_default_function function performs the same 
operation as the Set As Default button in the Function Generator dialog box. 
However, a default function set through the Set As Default checkbox remains in 
effect during the current WinRunner session only. By adding 
generator_set_default_function statements to your startup test, you can set 
default functions permanently.



Configuring WinRunner • Customizing the Function Generator

WinRunner User’s Guide Chapter 38, page 1025

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a subcategory to a category:

 1 Open the Function Generator. (Choose Create > Insert Function > From 
Function Generator, click the Insert Function from Function Generator 
button on the User toolbar, or press the INSERT FUNCTION FROM FUNCTION 
GENERATOR softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_set_default_function.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in the 
Function Generator.

 6 In the Default box, enter the function name as it already appears in the Function 
Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_set_default_function statement is inserted into your test script. In 
the following example, the default function of the push button category is 
changed from button_check_enabled to the user-defined 
“check_my_button_label” function.

generator_set_default_function ("push_button", "check_my_button_label");

Note: You must run the test script in order to set a default function for a category.



Configuring WinRunner
Initializing Special Configurations

WinRunner User’s Guide Chapter 39, page 1026

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�

Initializing Special Configurations

By creating startup tests, you can automatically initialize special testing 
configurations each time you start WinRunner.

This chapter describes:

• Creating Startup Tests

• Sample Startup Test

About Initializing Special Configurations

A startup test is a test script that is automatically run each time you start 
WinRunner. You can create startup tests that load GUI map files and compiled 
modules, configure recording, and start the application under test.

You designate a test as a startup test by entering its location in the Startup Test 
box in the Environment tab in the General Options dialog box. For more 
information on using the General Options dialog box, see Chapter 36, Setting 
Global Testing Options. 



Configuring • Initializing Special Configurations

WinRunner User’s Guide Chapter 39, page 1027

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating Startup Tests

You should add the following types of statements to your startup test:

• load statements, which load compiled modules containing user-defined 
functions that you frequently call from your test scripts.

• GUI_load statements, which load one or more GUI map files. This ensures that 
WinRunner recognizes the GUI objects in your application when you run tests.

• statements that configure how WinRunner records GUI objects in your 
application, such as set_record_attr or set_class_map.

• an invoke_application statement, which starts the application being tested.

• statements that enable WinRunner to generate custom record TSL functions 
when you perform operations on custom objects, such as 
add_cust_record_class.

By including the above elements in a startup test, WinRunner automatically 
compiles all designated functions, loads all necessary GUI map files, configures 
the recording of GUI objects, and loads the application being tested.

Note that you can use the RapidTest Script wizard to create a basic startup test 
called mytest that loads a GUI map file and the application being tested.



Configuring • Initializing Special Configurations

WinRunner User’s Guide Chapter 39, page 1028

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Sample Startup Test

The following is an example of the types of statements that might appear in a 
startup test:

# Start the Flight application if it is not already displayed on the screen
if ((rc=win_exists("Flight")) == E_NOT_FOUND)

invoke_application("w:\\flight_app\\flight.exe", "", "w:\\flight_app", 
SW_SHOW);

# Load the compiled module "qa_funcs"
load("qa_funcs", 1, 1);

# Load the GUI map file "flight.gui"
GUI_load ("w:\\qa\\gui\\flight.gui");

# Map the custom “borbtn” class to the standard “push_button” class
set_class_map (“borbtn”, “push_button”);



WinRunner User’s Guide Page 1029

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part VIII

Working with TestSuite



Working with TestSuite
Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1030

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Managing the Testing Process

Software testing typically involves creating and running thousands of tests. 
TestSuite’s test management tool, TestDirector, can help you organize and control 
the testing process. 

This chapter describes:

• Using WinRunner with TestDirector

• Connecting to and Disconnecting from a Project

• Saving Tests to a Project

• Opening Tests in a Project

• Opening Tests in a Project

• Managing Test Versions in WinRunner

• Saving GUI Map Files to a Project

• Opening GUI Map Files in a Project

• Running Tests in a Test Set

• Running Tests on Remote Hosts

• Viewing Test Results from a Project

• Using TSL Functions with TestDirector

• Command Line Options for Working with TestDirector



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1031

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Managing the Testing Process

TestDirector is a powerful test management tool that enables you to manage and 
control all phases of software testing. It provides a comprehensive view of the 
testing process so you can make strategic decisions about the human and 
material resources needed to test an application and repair defects. 

TestDirector divides testing into three modes of operation: Plan Tests, Run Tests, 
and Track Defects. In Plan Tests mode, you begin the testing process by dividing 
your application into test subjects and building a test plan tree. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1032

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This is a graphical representation of your test plan, displaying your tests 
according to the hierarchical relationship of their functions.

Test plan tree



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1033

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

After you build the test plan tree, you plan tests for each subject. You define 
steps that describe the operations to perform on the application under test and 
the expected results of each step. After you define the steps, you decide whether 
to run the test manually or to automate it. If you decide to automate the test 
using WinRunner, TestDirector can create a test template for you and launch 
WinRunner. You then use WinRunner to record and program TSL statements 
into the template to complete the implementation.

In Run Tests mode, you define test sets. A test set is a group of tests designed to 
meet a specific testing goal. For example, to verify that the application being 
tested is functional and stable, you create a sanity test set that checks the 
application's basic features. You could then create other test sets to test the 
advanced features.

To build a test set, you select tests from the TestDirector test repository. Once you 
build a test set, you can schedule test runs. If your test set contains automated 
tests, TestDirector automatically opens WinRunner and runs the tests. You can 
run tests on your own computer (locally), or on multiple remote hosts. A host is 
any computer connected to your network. After TestDirector runs a test in 
WinRunner, it displays the results and marks the test as passed, failed, or not 
completed.

TestDirector’s Version Manager lets you update and revise your automated test 
scripts while maintaining old versions of each test. This helps you keep track of 
the changes made to each test script, see what was modified from one version of 
a script to another, or return to a previous version of the test script.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1034

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In Track Defects mode, you report defects that were detected in the application 
under test. Information about defects is stored in a defect database. The defects 
are assigned to developers to be fixed, and then they are tracked until they are 
corrected.

In all stages of test management, you can create detailed reports and graphs to 
help you analyze testing data and review the progress of testing on your 
application.

For more information on working with TestDirector, refer to the TestDirector User’s 
Guide.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1035

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using WinRunner with TestDirector

TestDirector and WinRunner work together to integrate all aspects of the testing 
process. In WinRunner, you can create tests and save them in your TestDirector 
project. After a test has been run, the results are viewed and analyzed in 
TestDirector.

TestDirector stores test and defect information in a project. TestDirector projects 
can be either file-based (Microsoft Access) or client/server (Oracle, Sybase, and 
Microsoft SQL). A file-based database resides on your local file system or in a 
shared network directory. Client/server databases always reside on a central 
database server. You create individual projects within TestDirector. These 
projects store information related to the current testing project, such as tests, test 
run results, and reported defects. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1036

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In order for WinRunner to access the project, you must connect it to the 
TestDirector server. This is a program that handles the communication between 
WinRunner and the TestDirector project. Note that the TestDirector server usually 
runs on your TestDirector machine but you can also install it on any computer 
connected to the network.

When WinRunner is connected to TestDirector, you can save a test by 
associating it with a subject in the test plan tree, instead of assigning the test to a 
folder in the file system. This makes it easy to organize tests by subject for your 
application. When you open a test, you search for it according to its position in 
the test plan tree. You can check test versions in and out of the Version 
Manager’s version control database directly from WinRunner. When you run 
tests, results are sent directly to your TestDirector project.

WinRunner
TestDirector ProjectTestDirector 

Server

������ ��

�	
����
��

	��
���

version 
control 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1037

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: The integration of WinRunner 6.0 with TestDirector is valid only for 
TestDirector 5.0 and higher. TestDirector with version control support is available 
only from TestDirector 6.0.

Note: In order for TestDirector to run WinRunner tests from a remote machine, 
you must enable the Allow TestDirector to Run Tests Remotely option from 
WinRunner. By default, this option is disabled. You can enable it from the 
Environment tab of the General Options dialog box (Settings > General Options). 
For more information on setting this option, see Chapter 36, Setting Global 
Testing Options.  

In Windows 95, when this option is enabled, the WinRunner Remote Server 
application is added to your Windows startup. If the WinRunner Remote Server 
application is not currently running on your machine, then WinRunner starts it, 
and the Remote Server icon appears in the status area of your screen. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1038

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Connecting to and Disconnecting from a Project

If you are working with both WinRunner and TestDirector, WinRunner can 
communicate with your TestDirector project. You can connect or disconnect 
WinRunner from a TestDirector project at any time during the testing process. 
However, do not disconnect WinRunner from TestDirector while running tests in 
WinRunner from TestDirector.

The connection process has two stages. First, you connect WinRunner to the 
TestDirector server. This server handles the connections between WinRunner 
and the TestDirector project. Next, you choose the project you want WinRunner 
to access. The project stores tests and test run information for the application you 
are testing. Note that TestDirector projects are password protected, so you must 
provide a user name and a password. 

Connecting WinRunner to a TestDirector Server and a Project
You must connect WinRunner to the TestDirector API server before you connect 
WinRunner to a project. For more information, see Using WinRunner with 
TestDirector on page 1035.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1039

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To connect WinRunner to a TestDirector server and a project:

 1 Choose Tools > TestDirector Connection. 

The Connection to TestDirector dialog box opens.

 2 In the Server Connection section, in the Server box, enter the name of the host 
where the TestDirector server runs.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1040

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click Connect.

Once the connection to the server is established, the server’s name is displayed 
in read-only format in the Server box.

 4 In the Project Connection section, select a TestDirector project from the 
Project box.

 5 Type a user name in the User Name box.

 6 Type a password in the Password box.

 7 Click Connect to connect WinRunner to the selected project. 

Once the connection to the selected project is established, the project’s name is 
displayed in read-only format in the Project box.

To automatically reconnect to the TestDirector server and the selected project on 
startup, select the Reconnect on startup check box.

If the Reconnect on startup check box is selected, then the Save password 
for reconnection on startup check box is enabled. To save your password for 
reconnection on startup, select the Save password for reconnection on 
startup check box. If you do not save your password, you will be prompted to 
enter it when WinRunner connects to TestDirector on startup.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1041

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If Reconnect on startup is selected, but you want to open WinRunner 
without connecting to TestDirector, you can use the -td_dont_connect command 
line option as described in Chapter 30, “Running Tests from the Command Line.”

 8 Click Close to close the Connection to TestDirector dialog box. 

Note: You can also connect WinRunner to a TestDirector server and project 
using the corresponding -td_connection, -td_database_name, -td_password, 
-td_server_name, -td_user_name command line options, described in Chapter 
30, “Running Tests from the Command Line.”



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1042

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Disconnecting from a TestDirector Project
You can disconnect from a TestDirector project. This enables you to select a 
different project while using the same TestDirector server.

To disconnect WinRunner from a project:

 1 Choose Tools > TestDirector Connection.

The Connection to TestDirector dialog box opens.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1043

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 In the Project Connection section, click Disconnect to disconnect WinRunner 
from the selected project.

 3 Click Close to close the Connection to TestDirector dialog box.

Note: You can also disconnect WinRunner from a TestDirector project using the 
corresponding -td_connection and -td_database_name command line options, 
described in Chapter 30, “Running Tests from the Command Line.”



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1044

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Disconnecting from a TestDirector Server 
You can disconnect from a TestDirector server. This enables you to select a 
different TestDirector server and a different project.

To disconnect WinRunner from a server:

 1 Choose Tools > TestDirector Connection.

The Connection to TestDirector dialog box opens.

 2 In the Server Connection section, click Disconnect to disconnect WinRunner 
from the TestDirector server.

 3 Click Close to close the Connection to TestDirector dialog box. 

Note that you can also disconnect WinRunner from a TestDirector server using 
the corresponding -td_connection and -td_database_name command line 
options, described in Chapter 30, “Running Tests from the Command Line.”

Note: If you disconnect WinRunner from a TestDirector server without first 
disconnecting from a project, WinRunner’s connection to that project is 
automatically disconnected.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1045

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Saving Tests to a Project

When WinRunner is connected to a TestDirector project, you can create new tests 
in WinRunner and save them directly to your project. To save a test, you give it a 
descriptive name and associate it with the relevant subject in the test plan tree. 
This helps you to keep track of the tests created for each subject and to quickly 
view the progress of test planning and creation.

To save a test to a TestDirector project:

 1 Choose File > Save or click the Save button. For a test already saved in the file 
system, choose File > Save As. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1046

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Save Test to TestDirector Project dialog box opens and displays the test 
plan tree.

Note that the Save Test to TestDirector Project dialog box opens only when 
WinRunner is connected to a TestDirector project. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1047

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To save a test directly in the file system, click the File System button, which 
opens the Save Test dialog box. (From the Save Test dialog box, you may 
return to the Save Test to TestDirector Project dialog box by clicking the 
TestDirector button.) 

Note: If you save a test directly in the file system, your test will not be saved in 
the TestDirector project.

 2 Select the relevant subject in the test plan tree. To expand the tree and view a 
sublevel, double-click a closed folder. To collapse a sublevel, double-click an 
open folder.

 3 In the Test Name text box, enter a name for the test. Use a descriptive name 
that will help you easily identify the test. 

 4 Click OK to save the test and to close the dialog box.

Note: To save a batch test, choose WinRunner Batch Tests in the Test Type 
box.

The next time you start TestDirector, the new test will appear in the TestDirector’s 
test plan tree. Refer to the TestDirector User’s Guide for more information.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1048

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Opening Tests in a Project

If WinRunner is connected to a TestDirector project, you can open automated 
tests that are a part of your database. You locate tests according to their position 
in the test plan tree, rather than by their actual location in the file system.

To open a test saved to a TestDirector project:

 1 Choose File > Open or click the Open button. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1049

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Open Test from TestDirector Project dialog box opens and displays the test 
plan tree.

Note that the Open Test from TestDirector Project dialog box opens only when 
WinRunner is connected to a TestDirector project. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1050

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If the test you are opening is currently checked into the version control 
database, then the latest version opens and a WinRunner message informs 
you that you cannot make any changes to this script until you check it out. For 
more information on version control, see Managing Test Versions in 
WinRunner on page 1052.

To open a test directly from the file system, click the File System button, which 
opens the Open Test dialog box. (From the Open Test dialog box, you may 
return to the Open Test from TestDirector Project dialog box by clicking the 
TestDirector button.)

Note: If you open a test from the file system, then when you run that test, the 
events of the test run will not be written to the TestDirector project.

 2 Click the relevant subject in the test plan tree. To expand the tree and view 
sublevels, double-click closed folders. To collapse the tree, double-click open 
folders.

Note that when you select a subject, the tests that belong to the subject appear 
in the Test Name list.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1051

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Select a test from the Test Name list in the right pane. The test appears in the 
read-only Test Name box.

 4 If desired, enter an expected results folder for the test in the Expected box. 
(Otherwise, the default folder is used.)

 5 Click OK to open the test. The test opens in a window in WinRunner. Note that 
the test window’s title bar shows the full subject path.

Note: To open a batch test, choose WinRunner Batch Tests in the Test Type 
box. For more information on batch tests, see Chapter 29, Running Batch 
Tests. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1052

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Managing Test Versions in WinRunner

When WinRunner is connected to a TestDirector Project with version control 
support, you can update and revise your automated test scripts while maintaining 
old versions of each test. This helps you keep track of the changes made to each 
test script, see what was modified from one version of a script to another, or return 
to a previous version of the test script. 

Note: A TestDirector Project with version control support requires the installation 
of version control software as well as TestDirector’s version control software 
components. For more information, refer to the TestDirector Installation Guide.

You manage test versions by checking tests in and out of the version control 
database. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1053

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Tests to the Version Control Database 
When you add a test to the version control database for the first time, it becomes 
the Working Test and is also assigned a permanent version number.

The Working Test is the test that is located in the test repository and is used by 
TestDirector for all test runs. 

Note: Usually the latest version is the Working Test, but any version can be 
designated as the Working Test using the Version Manager application. For 
more information about the Version Manager, refer to the TestDirector User’s 
Guide.

To add a new test to the version control database:

 1 Choose File > Check In. 

Note: The Check In and Check Out options in the File menu are only visible 
when you are connected to a TestDirector project database with version control 
support, and you have a test open. The Check In option will be enabled only if 
the active script has been saved to the project database.

 2 Choose OK to confirm adding the test to the version control database.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1054

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click OK to reopen the checked-in test. The test will close and then reopen as a 
read-only file.

If you have made unsaved changes in the active test, you will be prompted to 
save the test.

You can review the checked-in test. You can also run the test and view the 
results. While the test is checked in and is in read-only format, however, you 
cannot make any changes to the script. 

If you attempt to make changes, a WinRunner message reminds you that the 
script has not been checked out and that you cannot change it.

Checking Tests Out of the Version Control Database
When you open a test which is currently checked in to the version control 
database, you cannot make any modifications to the script. If you wish to make 
modifications to this script, you must check out the script.

When you check out a test, the Version Manager copies the latest version of the 
test to your unique checkout directory (automatically created the first time you 
check out a test), and locks the test in the project database. This prevents other 
users of the TestDirector project from overwriting any changes you make to the 
test.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1055

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To check out a test:

 1 Choose File > Check Out.

 2 Click OK. The read-only test will close and automatically reopen as a writable 
script.

Note: The Check Out option is enabled only if the active script is currently 
checked in to the project’s version control database.

You should check a script out of the version control database only when you 
want to make modifications to the script or to test the script for workability. 

When you run a test while the test is checked out, the results are displayed at 
the end of the test (if you select the Display test results at end of run check 
box), but they are not saved to the TestDirector project database.

When you are ready to run tests on your application, you should always check 
the script into the version control database so that the test results will be stored 
in the TestDirector project database.

Note: The results which are displayed for a checked-out test only include the 
tests which have been run since the test was last checked out. When you check 
in the test, the results of any tests you ran while the test was checked out, will be 
deleted.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1056

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Checking Tests In to the Version Control Database
When you have finished making changes to a test you check it in to the version 
control database in order to make it the new latest version and to assign it as 
the Working Test.

When you check a test back into the version control database, the Version 
Manager deletes the test copy from your checkout directory and unlocks the test 
in the database so that the test version will be available to other users of the 
TestDirector project.

To check in a test:

 1 Choose File > Check In.

 2 Click OK. The file will close and automatically reopen as a read-only script.

If you run tests after you have checked in the script, the results will be saved to 
the TestDirector Project database.

Tip: You should close a test in WinRunner before using the Version Manager to 
change the checked in/checked out status of the test. If you make changes to 
the test’s status via Version Manager while the test is open in WinRunner, 
WinRunner will not reflect those changes. For more information about Version 
Manager, refer to the TestDirector User’s Guide.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1057

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Saving GUI Map Files to a Project

When WinRunner is connected to a TestDirector project, choose File > Save in 
the GUI Map Editor to save your GUI map file to the open database. All the GUI 
map files used in all the tests saved to the TestDirector project are stored together. 
This facilitates keeping track of the GUI map files associated with tests in your 
project.

To save a GUI map file to a TestDirector project:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 From a temporary GUI map file, choose File > Save. From an existing GUI map 
file, choose File > Save As.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1058

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Save GUI File to TestDirector Project dialog box opens. If any GUI map 
files have already been saved to the open database, they are listed in the dialog 
box.

Note that the Save GUI File to TestDirector Project dialog box opens only 
when WinRunner is connected to a TestDirector project.

To save a GUI map file directly to the file system, click the File System button, 
which opens the Save GUI File dialog box. (From the Save GUI File dialog box, 
you may return to the Save GUI File to TestDirector Project dialog box by 
clicking the TestDirector button.)



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1059

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you save a GUI map file directly to the file system, your GUI map file will 
not be saved in the TestDirector project.

 3 In the File Name text box, enter a name for the GUI map file. Use a descriptive 
name that will help you easily identify the GUI map file.

 4 Click Save to save the GUI map file and to close the dialog box.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1060

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Opening GUI Map Files in a Project

When WinRunner is connected to a TestDirector project, choose File > Open in 
the GUI Map Editor to display a list of all GUI map files saved to the open 
database.

To open a GUI map file saved to a TestDirector project:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 In the GUI Map Editor, choose File > Open.

The Open GUI File from TestDirector Project dialog box opens. All the GUI map 
files that have been saved to the open database are listed in the dialog box.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1061

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note that the Open GUI File from TestDirector Project dialog box opens only 
when WinRunner is connected to a TestDirector project.

To open a GUI map file directly from the file system, click the File System 
button, which opens the Open GUI File dialog box. (From the Open GUI File 
dialog box, you may return to the Open GUI File from TestDirector Project dialog 
box by clicking the TestDirector button.)

 3 Select a GUI map file from the list of GUI map files in the open database. The 
name of the GUI map file appears in the File Name box.

 4 To load the GUI map file to open into the GUI Map Editor, click Load into the 
GUI Map. Note that this is the default setting. Alternatively, if you only want to 
edit the GUI map file, click Open for Editing Only. For more information, see 
Chapter 5, Editing the GUI Map. 

 5 Click Open to open the GUI map file. The GUI map file is added to the GUI file 
list. The letter “L” indicates that the file is loaded.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1062

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running Tests in a Test Set

A test set is a group of tests selected to achieve specific testing goals. For 
example, you can create a test set that tests the user interface of the application 
or the application’s performance under stress. You define test sets when working 
in TestDirector’s test run mode.

If WinRunner is connected to a project and you want to run tests in the project 
from WinRunner, specify the name of the current test set before you begin. When 
the test run is completed, the tests are stored in TestDirector according to the test 
set you specified.

To specify a test set and user name:

 1 Choose a Run command on the Create menu.

The Run Test dialog box opens.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1063

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 2 In the Test Set box, select a test set from the list. The list contains test sets 
created in TestDirector.

 3 In the Test Run Name box, select a name for this test run, or enter a new name.

To run tests in Debug mode, select the Use Debug mode check box. If this 
option is selected, the results of this test run are not written to the TestDirector 
project.

To display the test results in WinRunner at the end of a test run, select the 
Display test results at end of run check box.

 4 Click OK to save the parameters and to run the test. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1064

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running Tests on Remote Hosts

If you are using the client/server edition of TestDirector, you can run WinRunner 
tests on multiple remote hosts. To enable TestDirector to use a computer as a 
remote host, you must activate the Allow TestDirector to Run Tests Remotely 
option. Note that when you run a test on a remote host, you should run the test in 
silent mode, which suppresses WinRunner messages during a test run. For more 
information on silent mode, see Chapter 37, Setting Testing Options from a 
Test Script. 

To enable TestDirector on a remote machine to run WinRunner tests:

 1 Choose Settings > General Options to open the General Options dialog box. 

 2 Click the Environment tab. 

 3 Select the Allow TestDirector to run tests remotely check box.

Note: If the Allow TestDirector to run tests remotely check box is cleared, 
WinRunner tests can only be run locally. 

For more information on setting testing options using the General Options dialog 
box, see Chapter 36, Setting Global Testing Options. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1065

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Viewing Test Results from a Project

If you run tests in a test set, you can view the test results from a TestDirector 
project. If you run a test set in Verify mode, the Test Results window opens 
automatically at the end of the test run. At other times, choose Tools > Test 
Results to open the Test Results window. By default, the Test Results window 
displays the test results of the last test run of the active test. To view the test 
results for another test or for an earlier test run of the active test, choose File > 
Open in the Test Results window.

To view test results from a TestDirector project:

 1 Choose Tools > Test Results.

The Test Results window opens, displaying the test results of the last test run of 
the active test.

 2 In the Test Results window, choose File > Open.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1066

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Open Test Results from TestDirector Project dialog box opens and displays 
the test plan tree.

Note that the Open Test Results from TestDirector Project dialog box opens 
only when WinRunner is connected to a TestDirector project.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1067

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To open test results directly from the file system, click the File System button, 
which opens the Open Test Results dialog box. (From the Open Test Results 
dialog box, you may return to the Open Test Results from TestDirector Project 
dialog box by clicking the TestDirector button.)

 3 In the Test Type box, select the type of test to view in the dialog box: all tests 
(the default setting), WinRunner tests, or WinRunner batch tests.

 4 Select the relevant subject in the test plan tree. To expand the tree and view a 
sublevel, double-click a closed folder. To collapse a sublevel, double-click an 
open folder.

 5 Select a test run to view. In the right pane:

• The Run Name column displays whether your test run passed or failed and 
contains the names of the test runs. 

• The Test Set column contains the names of the test sets. 

• Entries in the Status column indicate whether the test passed or failed.

• The Run Date column displays the date and time when the test set was run.

 6 Click OK to view the results of the selected test.

For information about the options in the Test Results window, see Chapter 28, 
Analyzing Test Results. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1068

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using TSL Functions with TestDirector

Several TSL functions facilitate your work with a TestDirector project by returning 
the values of fields in a TestDirector project. In addition, working with TestDirector 
facilitates working with many TSL functions: when WinRunner is connected to 
TestDirector, you can specify a path in a TestDirector project in a TSL statement 
instead of using the full file system path. 

TestDirector Project Functions
Several TSL functions enable you to retrieve information from a TestDirector 
project.

tddb_get_step_value Returns the value of a field in the "dessteps" 
table in a TestDirector project.

tddb_get_test_value Returns the value of a field in the "test" table in a 
TestDirector project.

tddb_get_testset_value Returns the value of a field in the "testcycl" table 
in a TestDirector project.

You can use the Function Generator to insert these functions into your test 
scripts, or you can manually program statements that use them.

For more information about these functions, refer to the TSL Online Reference.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1069

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Call Statements and Compiled Module Functions
When WinRunner is connected to TestDirector, you can specify the paths of tests 
and compiled module functions saved in a TestDirector project when you use the 
call, call_close, load, reload, and unload functions.

For example, if you have a test with the following path in your TestDirector project, 
Subject\Sub1\My_test, you can call it from your test script with the statement:

call ("[TD]\\Subject\\Sub1\\My_test");

Alternatively, if you specify the “[TD]\Subject\Sub1” search path in the General 
Options dialog box or by using a setvar statement in your test script, you can call 
the test from your test script with the following statement:

call ("My_test");

Note that the [TD] prefix is optional when specifying a test or a compiled module 
in a TestDirector project.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1070

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: When you run a WinRunner test from a TestDirector project, you can 
specify its parameters from within TestDirector, instead of using call statements 
to pass parameters from a test to a called test. For information about specifying 
parameters for WinRunner tests from TestDirector, refer to the TestDirector 
User’s Guide.

For more information on working with the specified Call Statement and Compiled 
Module functions, refer to the TSL Online Reference.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1071

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

GUI Map Editor Functions
When WinRunner is connected to TestDirector, you can specify the names of GUI 
map files saved in a TestDirector project when you use GUI Map Editor functions 
in a test script.

When WinRunner is connected to a TestDirector project, WinRunner stores GUI 
map files in the GUI repository in the database. Note that the [TD] prefix is 
optional when specifying a GUI map file in a TestDirector project.

For example, if the My_gui.gui GUI map file is stored in a TestDirector project, in 
My_project_database\GUI, you can load it with the statement:

GUI_load ("My_gui.gui");

For information about working with GUI Map Editor functions, refer to the TSL 
Online Reference.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1072

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Specifying Search Paths for Tests Called from TestDirector
You can configure WinRunner to use search paths based on the path in a 
TestDirector project.

In the following example, a setvar statement specifies a search path in a 
TestDirector project:

setvar ( searchpath, [TD]\My_project_database\Subject\Sub1 );

For information on how to specify the search path using the General Options 
dialog box, see Chapter 36, Setting Global Testing Options.  For information 
on how to specify the search path by using a setvar statement, see Chapter 37, 
Setting Testing Options from a Test Script. 



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1073

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Command Line Options for Working with TestDirector

You can use the Windows Run command to set parameters for working with 
TestDirector. You can also save your startup parameters by creating a custom 
WinRunner shortcut. Then, to start WinRunner with the startup parameters, you 
simply double-click the icon. 

You can use the following command line options to set parameters for working 
with TestDirector:

-dont_connect

If the Reconnect on startup option is selected in the Connection to 
TestDirector dialog box, this command line enables you to open WinRunner 
without connecting to TestDirector.

-td_connection {on | off}

Activates or deactivates WinRunner’s connection to TestDirector.

Note that you can use the corresponding td_connection testing option to activate 
or deactivate WinRunner’s connection to TestDirector, as described in 
Chapter 37, Setting Testing Options from a Test Script. 

Note that you can connect to TestDirector from the Connection to TestDirector 
dialog box, which you open by choosing Tools > TestDirector Connection. For 
more information about connecting to TestDirector, see Connecting to and 
Disconnecting from a Project on page 1038.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1074

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_cycle_name cycle_name

Specifies the name of the current test cycle. This option is applicable only when 
WinRunner is connected to TestDirector.

Note that you can use the corresponding td_cycle_name testing option to specify 
the name of the current test cycle, as described in Chapter 37, Setting Testing 
Options from a Test Script. 

-td_database_name database_pathname

Specifies the active TestDirector project. WinRunner can open, execute, and save 
tests in this project. This option is applicable only when WinRunner is connected 
to TestDirector.

Note that you can use the corresponding td_database_name testing option to 
specify the active TestDirector database, as described in Chapter 37, Setting 
Testing Options from a Test Script. 

Note that when WinRunner is connected to TestDirector, you can specify the 
active TestDirector project from the TestDirector Connection dialog box, which 
you open by choosing Tools > TestDirector Connection. For more information 
about connecting to TestDirector, see Connecting to and Disconnecting from 
a Project on page 1038.

-td_logname_dir event log file path

Defines the full pathname for an event log file. Note that this file is not a 
TestDirector file.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1075

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_password

Specifies the password for connecting to a project in a TestDirector server.

Note that you can specify the password for connecting to TestDirector from the 
Connection to TestDirector dialog box, which you open by choosing Tools > 
TestDirector Connection. For more information about connecting to 
TestDirector, see Connecting to and Disconnecting from a Project on page 
1038.

-td_server_name

Specifies the name of the TestDirector server to which WinRunner connects.

Note that you can use the corresponding td_server_name testing option to 
specify the name of the TestDirector server to which WinRunner connects, as 
described in Chapter 37, Setting Testing Options from a Test Script. 

Note that you can specify the name of the TestDirector server to which WinRunner 
connects from the Connection to TestDirector dialog box, which you open by 
choosing Tools > TestDirector Connection. For more information about 
connecting to TestDirector, see Connecting to and Disconnecting from a 
Project on page 1038.



Working with TestSuite • Managing the Testing Process

WinRunner User’s Guide Chapter 40, page 1076

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

-td_user_name user_name

Specifies the name of the user who is currently executing a test cycle. (Formerly 
user.)

Note that you can use the corresponding td_user_name testing option to specify 
the user, as described in Chapter 37, Setting Testing Options from a Test 
Script. 

Note that you can specify the user name when you connect to TestDirector from 
the Connection to TestDirector dialog box, which you open by choosing Tools > 
TestDirector Connection. For more information about connecting to 
TestDirector, seeConnecting to and Disconnecting from a Project on page 
1038.

For more information on using command line options, see Chapter 30, Running 
Tests from the Command Line. 



Working with TestSuite
Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1077

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Testing Client/Server Systems 

Today’s applications are run by multiple users over complex client/server 
systems. With LoadRunner, TestSuite’s client/server testing tool, you can emulate 
the load of real users interacting with your server and measure system 
performance.

This chapter describes:

• Emulating Multiple Users

• Virtual User (Vuser) Technology

• Developing and Running Scenarios

• Creating GUI Vuser Scripts

• Measuring Server Performance

• Synchronizing Virtual User Transactions

• Creating a Rendezvous Point

• A Sample Vuser Script



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1078

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Testing Client/Server Systems

Software testing is no longer confined to testing applications that run on a single, 
standalone PC. Applications are run in network environments where multiple 
client PCs or UNIX workstations interact with a central server.

Modern client/server architectures are complex. While they provide an 
unprecedented degree of power and flexibility, these systems are difficult to test. 
LoadRunner emulates server load and then accurately measures and analyzes 
server performance and functionality. This chapter provides an overview of how 
to use WinRunner together with LoadRunner to test your client/server system. For 
detailed information about how to test a client/server system, refer to your 
LoadRunner documentation.



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1079

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Emulating Multiple Users

With LoadRunner, you emulate the interaction of multiple users (clients) with the 
server by creating scenarios. A scenario defines the events that occur during 
each client/server testing session, such as the number of users, the actions they 
perform, and the machines they use. For more information about scenarios, refer 
to the LoadRunner Controller User’s Guide.

In the scenario, LoadRunner replaces the human user with a virtual user or Vuser. 
A Vuser emulates the actions of a human user and submits input to the server. A 
scenario can contain tens, hundreds, or thousands of Vusers. 

Server

 Vuser 1

Load testing your server with LoadRunner

 Vuser 2

 Vuser 3

 Vuser 4

 Vuser 5

 Vuser 6



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1080

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Virtual User (Vuser) Technology

LoadRunner provides a variety of Vuser technologies that enable you to generate 
server load when using different types of client/server architectures. Each Vuser 
technology is suited to a particular architecture, and results in a specific type of 
Vuser. For example, you use GUI Vusers to operate graphical user interface 
applications in environments such as Microsoft Windows; RTE Vusers to operate 
terminal emulators; TUXEDO Vusers to emulate TUXEDO clients communicating 
with a TUXEDO application server; Web Vusers to emulate users operating Web 
browsers. 

The various Vuser technologies can be used alone or together, to create effective 
load testing scenarios. 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1081

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

GUI Vusers
GUI Vusers operate graphical user interface applications in environments such as 
Microsoft Windows. Each GUI Vuser emulates a real user submitting input to and 
receiving output from a client application.

A GUI Vuser consists of a copy of WinRunner and a client application. The client 
application can be any application used to access the server, such as a database 
client. WinRunner replaces the human user and operates the client application. 
Each GUI Vuser executes a Vuser script. This is a WinRunner test that describes 
the actions that the Vuser will perform during the scenario. It includes statements 
that measure and record the performance of the server. For more information, 
refer to the LoadRunner Creating Vuser Scripts guide.



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1082

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing and Running Scenarios

You use the LoadRunner Controller to develop and run scenarios. The Controller 
is an application that runs on any network PC. 

The following procedure outlines how to use the LoadRunner Controller to 
create, run, and analyze a scenario. For more information, refer to the 
LoadRunner Controller User’s Guide.



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1083

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 1 Invoke the Controller. 

 2 Create the scenario. 

A scenario describes the events that occur during each client/server testing 
session, such as the participating Vusers, the scripts they run, and the machines 
they use to run them (hosts).

 3 Run the scenario.

When you run the scenario, LoadRunner distributes the Vusers to their 
designated hosts. When the hosts are ready, they begin executing the scripts. 
During the scenario run, LoadRunner measures and records server performance 
data, and provides online network and server monitoring.

 4 Analyze server performance.

After the scenario run, you can use LoadRunner’s graphs and reports to analyze 
server performance data captured during the scenario run.

The rest of this chapter describes how to create GUI Vuser scripts. These scripts 
describe the actions of a human user accessing a server from an application 
running on a client PC.



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1084

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating GUI Vuser Scripts

A GUI Vuser script describes the actions a GUI Vuser performs during a 
LoadRunner scenario. You use WinRunner to create GUI Vuser scripts. The 
following procedure outlines the process of creating a basic script. For a detailed 
explanation, refer to the LoadRunner Creating Vuser Scripts guide.

 1 Start WinRunner.

 2 Start the client application.

 3 Record operations on the client application.

 4 Edit the Vuser script using WinRunner, and program additional TSL statements. 
Add control-flow structures as needed. 

 5 Define actions within the script as transactions to measure server performance.

 6 Add synchronization points to the script.

 7 Add rendezvous points to the script to coordinate the actions of multiple Vusers. 

 8 Save the script and exit WinRunner.



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1085

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Measuring Server Performance

Transactions measure how your server performs under the load of many users. A 
transaction may be a simple task, such as entering text into a text field, or it may 
be an entire test that includes multiple tasks. LoadRunner measures the 
performance of a transaction under different loads. You can measure the time it 
takes a single user or a hundred users to perform the same transaction. 

The first stage of creating a transaction is to declare its name at the start of the 
Vuser script. When you assign the Vuser script to a Vuser, the Controller scans 
the Vuser script for transaction declaration statements. If the script contains a 
transaction declaration, LoadRunner reads the name of the transaction and 
displays it in the Transactions window. 

To declare a transaction, you use the declare_transaction function. The syntax 
of this functions is: 

declare_transaction ( "transaction_name" );

The transaction_name must be a string constant, not a variable or an 
expression. This string can contain up to 128 characters. No spaces are 
permitted.

Next, mark the point where LoadRunner will start to measure the transaction. 
Insert a start_transaction statement into the Vuser script immediately before the 
action you want to measure. The syntax of this function is: 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1086

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

start_transaction ( "transaction_name" );

The transaction_name is the name you defined in the declare_transaction 
statement. 

Insert an end_transaction statement into the Vuser script to indicate the end of 
the transaction. If the entire test is a single transaction, then insert this statement 
in the last line of the script. The syntax of this function is: 

end_transaction ( "transaction_name" �,�status � );

The transaction_name is the name you defined in the declare_transaction 
statement. The status tells LoadRunner to end the transaction only if the 
transaction passed (PASS) or failed (FAIL). 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1087

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Synchronizing Virtual User Transactions

For transactions to accurately measure server performance, they must reflect the 
time the server takes to respond to user requests. A human user knows that the 
server has completed processing a task when a visual cue, such as a message, 
appears. For instance, suppose you want to measure the time it takes for a 
database server to respond to user queries. You know that the server completed 
processing a database query when the answer to the query is displayed on the 
screen. In Vuser scripts, you instruct the Vusers to wait for a cue by inserting 
synchronization points. 

Synchronization points tell the Vuser to wait for a specific event to occur, such as 
the appearance of a message in an object, and then resume script execution. If 
the object does not appear, the Vuser continues to wait until the object appears 
or a time limit expires. You can synchronize transactions by using any of 
WinRunner’s synchronization or object functions. For more information about 
WinRunner’s synchonization functions, see Chapter 17, Synchronizing the Test 
Run. 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1088

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Rendezvous Point

During the scenario run, you instruct multiple Vusers to perform tasks 
simultaneously by creating a rendezvous point. This ensures that:

• intense user load is emulated

• transactions are measured under the load of multiple Vusers

A rendezvous point is a meeting place for Vusers. To designate the meeting 
place, you insert rendezvous statements into your Vuser scripts. When the 
rendezvous statement is interpreted, the Vuser is held by the Controller until all 
the members of the rendezvous arrive. When all the Vusers have arrived (or a 
time limit is reached), they are released together and perform the next task in 
their Vuser scripts. 

The first stage of creating a rendezvous point is to declare its name at the start of 
the Vuser script. When you assign the Vuser script to a Vuser, LoadRunner scans 
the script for rendezvous declaration statements. If the script contains a 
rendezvous declaration, LoadRunner reads the rendezvous name and creates a 
rendezvous. If you create another Vuser that runs the same script, the Controller 
will add the Vuser to the rendezvous. 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1089

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To declare a rendezvous, you use the declare_rendezvous function. The syntax 
of this functions is: 

declare_rendezvous ( "rendezvous_name" );

where rendezvous_name is the name of the rendezvous. The rendezvous_name 
must be a string constant, not a variable or an expression. This string can 
contain up to 128 characters. No spaces are permitted.

Next, you indicate the point in the Vuser script where the rendezvous will occur 
by inserting a rendezvous statement. This tells LoadRunner to hold the Vuser at 
the rendezvous until all the other Vusers arrive. The function has the following 
syntax:

rendezvous ( "rendezvous_name" );

The rendezvous_name is the name of the rendezvous. 



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1090

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

A Sample Vuser Script

In the following sample Vuser script, the “Ready” transaction measures how long 
it takes for the server to respond to a request from a user. The user enters the 
request and then clicks OK. The user knows that the request has been processed 
when the word “Ready” appears in the client application’s Status text box.

In the first part of the Vuser script, the declare_transaction and 
declare_rendezvous functions declare the names of the transaction and 
rendezvous points in the Vuser script. In this script, the transaction “Ready” and 
the rendezvous “wait” are declared. The declaration statements enable the 
LoadRunner Controller to display transaction and rendezvous information. 

# Declare the transaction name
declare_transaction ("Ready");

# Define the rendezvous name
declare_rendezvous ("wait");

Next, a rendezvous statement ensures that all Vusers click OK at the same 
time, in order to create heavy load on the server.

# Define rendezvous points
rendezvous ("wait");



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1091

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following section, a start_transaction statement is inserted just before the 
Vuser clicks OK. This instructs LoadRunner to start recording the “Ready” 
transaction. The “Ready” transaction measures the time it takes for the server to 
process the request sent by the Vuser.

# Deposit transaction
start_transaction ( "Ready" );
button_press ( "OK" );

Before LoadRunner can measure the transaction time, it must wait for a cue that 
the server has finished processing the request. A human user knows that the 
request has been processed when the “Ready” message appears under Status; 
in the Vuser script, an obj_wait_info statement waits for the message. Setting 
the timeout to thirty seconds ensures that the Vuser waits up to thirty seconds for 
the message to appear before continuing test execution. 

# Wait for the message to appear
rc = obj_wait_info("Status","value","Ready.",30);



Working with TestSuite • Testing Client/Server Systems

WinRunner User’s Guide Chapter 41, page 1092

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The final section of the test measures the duration of the transaction. An if 
statement is defined to process the results of the obj_wait_info statement. If the 
message appears in the field within the timeout, the first end_transaction 
statement records the duration of the transaction and that it passed. If the 
timeout expires before the message appears, the transaction fails.

# End transaction.
if (rc == 0)

end_transaction ( "OK", PASS );
else

end_transaction ( "OK" , FAIL );



Working with TestSuite
Reporting Defects

WinRunner User’s Guide Chapter 42, page 1093

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

��
Reporting Defects

You can report defects detected in your application using the Remote Defect 
Reporter.

This chapter describes:

• Using the Web Defect Manager

• Setting Up the Remote Defect Reporter

• The Remote Defect Reporter Window

• Reporting New Defects from the Remote Defect Reporter



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1094

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Reporting Defects

You can use the Web Defect Manager or the Remote Defect Reporter to report 
new defects detected in your application. If the TestDirector Web Defect Manager 
is installed on your machine, and you are already using it, then it opens directly 
from the WinRunner Test Results Window. Otherwise, the Remote Defect 
Reporter setup message is displayed. If you set up the Remote Defect Reporter 
on your machine, then it opens directly from the WinRunner Test Results window. 
You provide detailed information about the defect and then send the report to an 
e-mail address or to a file. Later, you can import the defect information into a 
TestDirector database, so that the defect can be tracked until it is fixed.

The Remote Defect Reporter window enables you to define general information 
about the defect and the test in which it was detected. You can also write a 
detailed description of the defect. 

You can use TestDirector to determine which fields appear in the Remote Defect 
Reporter by customizing the database. For more information about customizing 
the database, refer to the TestDirector Administrator’s Guide.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1095

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the Web Defect Manager

The Web Defect Manager is Mercury Interactive’s system for reporting and 
tracking software defects and errors over the World Wide Web. The Web Defect 
Manager is a scalable, defect tracking system that helps you monitor defects 
closely from initial detection until resolution.

The Web Defect Manager is tightly integrated with TestDirector, Mercury 
Interactive's test management tool. Multiple users can share defect-tracking 
information stored in a central repository (TestDirector project). Several projects 
can be stored on a database server. This ensures that all software development, 
Quality Assurance, and Information Systems personnel can share defect-tracking 
information. For more information about TestDirector projects, refer to the 
TestDirector User’s Guide.

When you detect a defect in your application, you report it to a TestDirector 
project. A TestDirector project stores defect information in a central defect 
repository that can be accessed by members of the development, quality 
assurance, and support teams. 



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1096

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, suppose you are testing a travel agency application. You discover 
that errors occur when you try to order an airline ticket. You open and report the 
defect. This includes a summary and detailed description of the defect, where it 
was discovered, and if you are able to reproduce it. The report can also include 
screen captures, text documents, and other files relevant to understanding and 
repairing the problem. For information on using the TestDirector Web Defect 
Manager, refer to the Web Defect Manager User’s Guide.

Before you can launch the Web Defect Manager, you must ensure that a Web 
browser is installed on your computer. You must also ensure that a Web Defect 
Manager Server is installed on your Web server. For more information about the 
Web Defect Manager Server, refer to the TestDirector Installation Guide.

Note: If you want to use the Web Defect Manager with Netscape Navigator, you 
must run the Netscape Plug-in installation. For more information, refer to the 
TestDirector Installation Guide.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1097

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting Up the Remote Defect Reporter

You can choose to send a new defect to an e-mail address or to a file. If you are 
working on a wide area network, you must report new defects to a mailbox. If you 
are connected to a local area network, you can achieve best performance by 
sending new defect reports to a file. In either case, the defect information can later 
be imported into a TestDirector database.

Note that in order to set up and use the Remote Defect Reporter, you must first 
install the Remote Defect Reporter from the TestDirector program group.

To set up the Remote Defect Reporter from WinRunner:

 1 Make sure that the Test Results window is open. If necessary, choose 
Tools > Test Results or click the Test Results button to open it.

 2 Choose Tools > Report Bug or click the Report Bug button. 

The first time you open the Remote Defect Reporter window, you are prompted 
with the following message: “UseMailSystem parameter not defined. Run setup 
to fix it?” 

 3 Click Yes.

 4 The Remote Defect Reporter setup program opens.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1098

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Choose the configuration folder, where the files for determining which fields 
appear in the Remote Defect Reporter are stored. The default location for this 
folder is the TDPriv folder. To change the location of the configuration folder, click 
the Browse button, select the desired location, and click OK. 

Click Next to proceed.

 6 Choose whether to report defects by e-mail or to a public file: to report defects by 
e-mail, click Use E-Mail; to store defects in a public file, click Use Public File.

Click Next to proceed.

 7 If you chose to report defects by e-mail, enter the e-mail address for sending 
defects in the E-Mail Address box. If you chose to report defects to a public file, 
enter its location in the Report Defects to File box. The name of the file is 
bugs.fdb.

Click Next to proceed.

 8 Click Finish to exit the Remote Defect Reporter setup program.

Note: To change setup options at any time, such as the specified e-mail address 
or the file location, run the setup program again. To run the setup program, 
choose Defect > Run Setup in the Remote Defect Reporter window.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1099

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Remote Defect Reporter Window

Once the Remote Defect Reporter has been set up, you can use it to report bugs.

To open the Remote Defect Reporter window:

 1 Choose Tools > Test Results or click the Test Results button to open the 
WinRunner Test Results window. 

 2 Choose Tools > Report Bug or click the Report Bug button. 



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1100

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Remote Defect Reporter window opens.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1101

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Reporting New Defects from the Remote Defect Reporter

You can report defects detected in your application directly from the WinRunner 
Test Results window. 

To report new defects:

 1 Make sure that the Test Results window is open. If necessary, choose 
Tools > Test Results or click the Test Results button to open it.

 2 Choose Tools > Report Bug or click the Report Bug button. 

 3 The Remote Defect Reporter window opens.

 4 Under Detected By, click the name of the person who detected the defect. Note 
that the current date appears automatically. 

 5 Type in a brief summary of the defect.

 6 In the Description section, type in a detailed description of the defect. You may 
also type in other information, such as suggestions for working around the 
defect.

 7 Enter test reference information about the defect in the Attachments section.

 8 Choose either Defect > Save to File or Defect > Deliver via E-mail, depending 
on the option you chose during setup. Alternatively, click the Save to File button 
or the Deliver via E-mail button. The defect is sent to either an e-mail address 
or a file. A message appears indicating that the defect was sent.



Working with TestSuite • Reporting Defects

WinRunner User’s Guide Chapter 42, page 1102

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you send new defects to an e-mail address and your machine is not 
properly configured to send e-mail, an error message may appear. When a 
defect report is successfully sent via e-mail or to a file, a confirmation message 
appears on the screen. 



Index 

WinRunner User’s Guide page 1103

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Symbols

$ symbol in Range property check   278
\ character in regular expressions   279, 597

A

abs_x property   138, 149
abs_y property   138, 149
accessing TSL statements on the menu bar   

880
Acrobat Reader   29
activating an ActiveX control   297
active property   138, 152
ActiveX controls

activating   297
checking sub-object properties   309–313
overview   292–293
retrieving properties   301–303
setting properties   301–303
support for   291–315
viewing properties   297–300
working with TSL table functions   314

ActiveX Properties Viewer   297–300
ActiveX Properties Viewer button   863
ActiveX_activate_method function   297
ActiveX_get_info function   301
ActiveX_set_info function   302

Add All button
in the Check GUI dialog box   249
in the Create GUI Checkpoint dialog box   

254
in the Edit GUI Checklist dialog box   258

Add button
in the Create GUI Checkpoint dialog box   

254
in the Edit GUI Checklist dialog box   258

Add Class dialog box   130
Add dialog box (GUI Map Editor)   117
Add Watch button   49, 847, 863
Add Watch command   847
Add Watch dialog box   847
add_cust_record_class function   1027
Add-In Manager dialog box   52, 948
adding buttons to the User toolbar

that execute menu commands   859–866
that execute TSL statements   871–874
that parameterize TSL statements   

875–878
that paste TSL statements   867–870

adding objects to a GUI map file   117
adding reserved words   896
adding tests to version control   1053
Add-ins   188
addins command line option   800

Index



Index

WinRunner User’s Guide page 1104

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Add-ins tab, Test Properties dialog box   188
add-ins, loading while starting WinRunner   

52–53, 948
addins_select_timeout command line option   

800
addons command line option See addins 

command line option
addons_select_timeout command line option 

See addins_select_timeout command 
line option

Advanced Run Options dialog box   807, 925
Allow TestDirector to Run Tests Remotely 

check box   950
Analog mode   35, 179

run speed   926, 993
animate command line option   800
API, Windows. See calling functions from 

external libraries
Argument Specification dialog box   281
argument values, assigning   631–633
arguments, specifying   273–283

DateFormat property check   276
for Compare property check   275
from the Argument Specification dialog box   

281
Range property check   278
RegularExpression property check   279
TimeFormat property check   280

Arrange Icons button   864
Assign Variable dialog box   852
associating add-ins with a test   188
attached text   935

search area   936, 969
search radius   936, 971

Attached Text box   935
Preferred Search Area box   936
Search Radius box   936

attached_text property   138, 149
attached_text_area testing option   969
attached_text_search_radius testing option   

971
attr_val function   1017
attributes. See properties
AUT

illustration   59
learning   67–91

auto_load command line option   801
auto_load_dir command line option   801
AutoFill List command, data table   500

B

batch command line option   801
batch mode, running tests in   920, 972
batch testing option   972



Index

WinRunner User’s Guide page 1105

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

batch tests   786–794
creating   789–791
expected results   792–793
overview   787–788, 792–793
running   791
storing results   792
verification results   792–793
viewing results   794

beep command line option   802
beep testing option   974
Beep when Checking a Window check box   

921
Beep when Synchronization Fails check box   

930
Bitmap Checkpoint > For Object/Window   438
Bitmap Checkpoint > For Screen Area   441
Bitmap checkpoint commands   438–442
Bitmap Checkpoint for Object/Window button   

50, 438, 857
Bitmap Checkpoint for Screen Area button   50, 

441, 857, 861

bitmap checkpoints   433–442
Context Sensitive   438–440
created in XRunner   437
in data-driven tests   437, 521–528
of an area of the screen   441–442
of windows and objects   438–440
overview   434–437
test results   745
updating expected results   779
viewing results   768–769

bitmap synchronization points
in data-driven tests   546
of objects and windows   556–558
of screen areas   559–561

bitmap verification. See bitmap checkpoints
bitmaps, mismatch   919, 984
Break at Location breakpoint   832, 834
Break in Function breakpoint   833, 837
Break in Function button   49, 834, 837, 863
Break in Function command   834, 839
Break when Verification Fails check box   922
breakpoints   829–842

Break at Location   832, 834
Break in Function   833, 837
deleting   842
modifying   840
overview   830–831
pass count   832, 839



Index

WinRunner User’s Guide page 1106

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Breakpoints button   863
Breakpoints command   834, 837
Breakpoints dialog box   834, 837
bugs. See defects
button_check_info function   212, 470
button_check_state function   471
button_wait_info function   550
buttons on the User toolbar

that execute menu commands, adding   
859–866

that execute TSL statements, adding   
871–874

that parameterize TSL statements, adding   
875–878

that paste TSL statements, adding   
867–870

buttons, recording   915, 987

C

Cache Size box   949
cache size, minimum   949
calculations, in TSL   606
calendar class   146, 263
call statements   639–640, 1069
call statements, functions for working with 

TestDirector   1069
call_close statement   639–640, 1069

called tests, specifying search paths   954, 989
calling functions from external libraries   

683–693
declaring external functions in TSL   

688–691
examples   692–693
loading and unloading DLLs   686–687
overview   684–685

calling tests   636–654
call statement   639–640
defining parameters   646
overview   637–638
returning to calling tests   641–643
setting the search path   644
texit statement   641–643
treturn statement   641–642

Calls command   640
Cannot Capture message

in Database Checkpoint dialog boxes   377
in GUI Checkpoint dialog boxes   246

captured text   939
Cascade button   864
Case Insensitive Ignore Spaces verification

databases   398
tables   350

Case Insensitive verification
databases   397
tables   349



Index

WinRunner User’s Guide page 1107

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Case Sensitive Ignore Spaces verification
databases   398
tables   350

Case Sensitive verification
databases   397
tables   349

changes in GUI discovered during test run. See  
Run wizard

Check Arguments dialog box
for DateFormat Property check   276
for Range property check   278, 593
for Regular Expression property check   

279
for TimeFormat property check   280

CHECK BITMAP OF OBJECT/WINDOW softkey   194, 
436, 438

CHECK BITMAP OF SCREEN AREA softkey   195, 
436, 441, 882

CHECK BITMAP OF WINDOW softkey   882
CHECK DATABASE (CUSTOM) softkey   195, 369, 

373, 882
CHECK DATABASE (DEFAULT) softkey   195, 364, 

366, 882
Check Database dialog box   371, 374

Cannot Capture message   377
Complex Value message   377

Check GUI dialog box   248–251
Cannot Capture message   246
closing without specifying arguments   281
Complex Value message   246
for checking tables   339
N/A message   246
No properties are available for this object 

message   247
CHECK GUI FOR MULTIPLE OBJECTS softkey   194, 

221, 882
CHECK GUI FOR OBJECT WINDOW softkey   194
CHECK GUI FOR OBJECT/WINDOW softkey   216, 

217, 226, 228, 318, 319, 320, 881
CHECK GUI FOR SINGLE PROPERTY softkey   194, 

213, 881
Check In command   1053, 1056
Check Out command   1054
Check Property dialog box   213
check_button class   146, 264
check_info functions, failing test when 

statement fails   813, 924, 992
check_window function   436



Index

WinRunner User’s Guide page 1108

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

checking
a single GUI object   215–220
a single GUI object using default checks   

216
a single GUI object while specifying checks   

217–220
all GUI objects in a window   225–229
all GUI objects in a window using default 

checks   226–227
all GUI objects in a window while specifying 

checks   228–229
multiple GUI objects in a window   221–224

checking databases   353–432
overview   354–357
See also databases and database 

checkpoints
checking tables   332–352

overview   333
See also tables

checking tests into version control   1056
checking tests out of version control   1054
checking windows   921, 974
checklists

See also GUI checklists or database 
checklists

shared   990

checkpoints
bitmap   181, 433–442
database   353–432
GUI   181, 208–290
overview   181
text   181, 444–464
updating expected results   779–780

child windows, recording   913, 978
class property   138, 146, 149
class_index property   149
classes

configuring   134–141
object   124

Classes of Objects dialog box   249, 250, 254, 
255, 259

Clear All button
in the Check GUI dialog box   250
in the Create GUI Checkpoint dialog box   

255
in the Edit GUI Checklist dialog box   259

Clear All command, data table   498
Clear Contents command, data table   498
Clear Formats command, data table   498
clearing a GUI map file   119
click_on_text functions   451, 457
client/server systems, testing. See 

LoadRunner
Close All button   864



Index

WinRunner User’s Guide page 1109

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Close All command   207
Close command   207

for data table   497
closing the GUI Checkpoint dialog boxes   281
Collapse Tree command (GUI Map Editor)   

101
column names for data tables   502
columns, computed   331
ComboBox

maximum length recorded   915
recording non-unique items by name   811, 

914, 986
string for separating   934, 983

command line
creating custom WinRunner shortcut   799
options   800–820
options for working with TestDirector   

1073–1076
running tests   795–820

comments, in TSL   603
Compare Expected and Actual Values button

in the Database Checkpoint Results dialog 
box   773

in the GUI Checkpoint Results dialog box   
755

Compare property check,specifying arguments   
275

compare_text function   458

comparing files
test results   745
viewing results   783–784

comparing two files   618
compiled module functions for working with 

TestDirector   1069
compiled modules   671–682

changing functions in   678
closed   678
creating   675
example   682
loading   678–681
overview   672
reloading   678–681
structure   673
system   678
Test Properties dialog box, General tab   

675
unloading   678–681

Complex Value message
in Database Checkpoint dialog boxes   377
in GUI Checkpoint dialog boxes   246

computed columns   331
configurations, initializing   1026–1028
Configure Class dialog box   132, 135, 142
Configure GUI Map button   863



Index

WinRunner User’s Guide page 1110

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

configuring
classes   134–141
GUI map. See GUI map configuration
recording method   141
WinRunner softkeys   881–886

connecting WinRunner to a TestDirector 
project   996, 1038–1044

Connection to TestDirector dialog box   1039
Consider Child Windows check box   913
constants, in TSL   605
Content property check on databases   

368–376
Context Sensitive

errors   923, 975, 976
mode   34, 171–175
recording, common problems   176–178
running tests, common problems   

735–738
statements   923, 975
statements, delay between executing   

927, 976
statements, timeout   918, 1002
testing, introduction to   55–66

Context Sensitive mode   56
Controller, LoadRunner   1082
controlling test execution with setvar and getvar   

968
conventions. See typographical conventions

conversion file for a database checkpoint, 
working with Data Junction   361–362

Copy button   860
Copy command   198

for data table   498
Copy Down command, data table   499
Copy Right command, data table   499
copying descriptions of GUI objects from one 

GUI map file to another   112
count property   149
Create GUI Checkpoint dialog box   252–256

Cannot Capture message   246
closing without specifying arguments   281
Complex Value message   246
N/A message   246
No properties are available for this object 

message   247
create_browse_file_dialog function   704
create_custom_dialog function   701
create_input_dialog function   697
create_list_dialog function   699
create_password_dialog function   706
create_text_report command line option   802
creating

dialog boxes for interactive input   694–707
tests   167–207
the User toolbar   857–878



Index

WinRunner User’s Guide page 1111

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

creating the GUI map   67–91
by recording   75
overview   68–69
using the GUI Map Editor   76
with the RapidTest Script Wizard   73

CRV icon   44
cs_fail command line option   803
cs_fail testing option   975
cs_run_delay command line option   804
cs_run_delay testing option   976
ct_KEYWORD_USER section of 

reserved_words.ini file   896
curr_dir testing option   976
currency symbols, in Range property check   

278
Currency(0) command, data table   501
Currency(2) command, data table   501
Current Folder box   733
Current Line box   733
current test settings   732–734
Current Test tab, Test Properties dialog box   

732
custom checks on databases   368–376
custom classes   177
custom database check

with Data Junction   373–376
with ODBC/Microsoft Query   369–373

custom execution functions   177

Custom Number command, data table   501
custom objects   177

adding custom class   130
mapping to a standard class   129–133

custom record functions   177
custom shortcut for starting WinRunner   799
Customize User Toolbar button   864
Customize User Toolbar dialog box   865, 867, 

871, 875
customizing

the Function Generator   1004–1025
WinRunner’s user interface   855–886

customizing test scripts   887–901
highlighting script elements   893
overview   888
print options   889
scrit window customization   898

Cut button   860
Cut command   198

for data table   498
cycle command line option See td_cycle_name 

command line option
cycle testing option. See td_cycle_name 

testing option



Index

WinRunner User’s Guide page 1112

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

D

Data Bound Grid Control   315
Data Comparison Viewer   759
Data Junction

choosing a database for a database 
checkpoint   361–362

custom database check   373–376
default database check   366–367
importing data from a database   511–515
TransliterationIn property   361, 512
TransliterationOut property   361, 512

Data menu commands, data table   500
data table

column definition   493
Data menu commands   500
declaration in manually created data-driven 

tests   485
default   518
Edit menu commands   498
editing   494–501
File menu commands   496
Format menu commands   501
largest number   502
main   518
maximum column width   502
maximum formula length   502
maximum number of columns   502
maximum number of rows   502

maximum row height   502
number precision   502
preventing data from being reformatted   

495
row definition   493
saving to a new location   488
saving with a new name   488
smallest number   502
table format   502
technical specifications   502
valid column names   502
working with Microsoft Excel   497, 530
working with more than one data table in a 

test script   488
Data Table button   863
Data Table command   495
database checklists

editing   403–406
modifying an existing query   407–414
shared   953
sharing   400–402

Database Checkpoint > Custom Check 
command

for working with Data Junction   373
for working with ODBC or Microsoft Query   

369



Index

WinRunner User’s Guide page 1113

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Database Checkpoint > Default Check 
command

for working with Data Junction   366
for working with ODBC or Microsoft Query   

364
Database Checkpoint button   50, 861
Database Checkpoint Results dialog box   771

Cannot Capture message   377
Complex Value message   377
options   773
Update Expected Value button   781

Database Checkpoint wizard   378–390
Data Junction screens   386–390
ODBC/Microsoft Query screens   379–385
selecting a Data Junction conversion file   

389
selecting a source query file   382
setting Data Junction options   387
setting ODBC (Microsoft Query) options   

380
specifying an SQL statement   384

database checkpoints
Database Checkpoint wizard   378–390
editing database checklists   403–406
modifying   400–414
modifying expected results   415–418
parameterizing   419–425
parameterizing queries   420
parameterizing SQL statements   420
parameterizing, guidelines   425
saving a database checklist to a shared 

folder   400–402
test results   770–773
updating expected results   781
viewing expected results of a contents 

check   774–778
database command line option See 

td_database_name command line 
option



Index

WinRunner User’s Guide page 1114

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

databases
Case Insensitive Ignore Spaces verification   

398
Case Insensitive verification   397
Case Sensitive Ignore Spaces verification   

398
Case Sensitive verification   397
checking   353–432
choosing   358–362
connecting   427
creating a query in Data Junction   

361–362
creating a query in ODBC/Microsoft Query   

358–360
custom check with Data Junction   

373–376
custom check with ODBC/Microsoft Query   

369–373
custom checks   368–376
Database Checkpoint wizard   378–390
default check with Data Junction   366–367
default check with ODBC/Microsoft Query   

364–365
default checks   363–367
disconnecting   431
editing the expected data   398
importing data for data-driven tests   

494–515

modifying an existing query   407–414
modifying checkpoints   400–414
Numeric Content verification   397
Numeric Range verification   397
overview   354–357
result set   354
retrieving information   428
returning the content and number of 

column headers   429
returning the last error message of the last 

operation for Data Junction   432
returning the last error message of the last 

operation for ODBC   430
returning the row content   429
returning the value of a single field   428
running a Data Junction export file   431
specifying which cells to check   392
TSL functions for working with   426–432
verification method for contents of a 

multiple-column database   395
verification method for contents of a single-

column database   397
verification type   397
writing the record set into a text file   430



Index

WinRunner User’s Guide page 1115

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

data-driven tests   465–541
analyzing test results   517
bitmap checkpoints   521–528
bitmap synchronization points   521–528
converting a test script manually   488–491
converting tests to   472–491
converting tests using the DataDriver 

Wizard   473–481
creating a data table manually   488–491
creating, manually   485–491
DataDriver Wizard   473–484
ddt_func.ini file   478
editing the data table   494–501
GUI checkpoints   521–528
guidelines   539–541
importing data from a database   494–515
overview   466
process   467–517
running   516
technical specifications for the data table   

502
using TSL functions with   529–538
with user-defined functions   478

DataDriver Wizard   473–484

DataWindows
checking properties   323–326
checking properties of objects within   

327–330
checking properties while specifying 

checks   324
checking properties with default checks   

323
computed columns   331

date formats supported by DateFormat 
property check   277

Date MM/dd/yyyy) command, data table   501
DateFormat property check

available date formats   277
specifying arguments   276

db_check function   355, 421
db_connect function   427
db_disconnect function   431
db_dj_convert function   431
db_execute_query function   428
db_get_field_value function   428
db_get_headers function   429
db_get_last_error function   430, 432
db_get_row function   429
db_write_records function   430
ddt   477
ddt_close function   476, 531
ddt_export function   531



Index

WinRunner User’s Guide page 1116

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

ddt_func.ini file   478
ddt_get_current_row function   535
ddt_get_parameters function   536
ddt_get_row_count function   476, 487, 532
ddt_is_parameter function   536
ddt_next_row function   532
ddt_open function   476, 487, 496, 497, 530
ddt_report_row function   517, 537
ddt_save function   477, 488, 494, 530, 541
ddt_set_row function   487, 533
ddt_set_val function   533, 541
ddt_set_val_by_row function   534, 541
ddt_show function   532
ddt_update_from_db function   477, 488, 538
ddt_val function   477, 491, 537
ddt_val_by_row function   537
Debug mode   710, 713, 724
Debug results   713, 724
debugging test scripts   822–828

overview   823–824
Pause command   827
pause function   828
Step command   825
Step Into command   825
Step Out command   826
Step to Cursor command   826

decision-making in TSL   611
if/else statements   611
switch statements   613

declare_rendezvous function   1089
declare_transaction function   1085
default checks

on a single GUI object   216
on all objects in a window   226–227
on standard objects   262–272

default checks on databases   363–367
default database check

with Data Junction   366–367
with ODBC/Microsoft Query   364–365

Default Database Checkpoint button   364, 
366, 857

Default Recording Mode box   914
default settings for WinRunner softkeys   881
defects, reporting   1093–1102

from Test Results window   785
define_object_exception function   583
define_popup_exception function   569
define_TSL_exception function   576
defining functions. See user-defined functions
delay

between execution of Context Sensitive 
statements   927, 976

for window synchronization   917, 977



Index

WinRunner User’s Guide page 1117

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Delay between Execution of CS Statements 
box   927

delay command line option. See delay_msec 
command line option

Delay for Window Synchronization box   917
delay testing option. See delay_msec testing 

option
delay_msec command line option   805
delay_msec testing option   977
Delete button   860

in the Create GUI Checkpoint dialog box   
254

in the Edit GUI Checklist dialog box   259
Delete command   198

for data table   499
deleting objects from a GUI map file   118
Description Tab, Test Properties dialog box   

184
descriptions. See physical descriptions
dialog boxes for interactive input, creating   

694–707
overview   695–696

dialog boxes, creating
browse dialog boxes   704
custom dialog boxes   701
input dialog boxes   697
list dialog boxes   699
option dialog boxes   699
overview   695–696
password dialog boxes   706

disconnecting from a TestDirector
project   1042
server   1044

Display button in WinRunner Test Results 
window   288, 416

Display button, in Test Results window   780
Display the Add-In Manager dialog option   948
displayed property   139, 149
DLLs

loading   686
unloading   687

Documentation Files box   953
dont_connect command line option   806, 1073
dont_quit command line option   806
dont_show_welcome command line option   

806
Drop Synchronization Timeout if Failed check 

box   929
drop_sync_timeout testing option   978



Index

WinRunner User’s Guide page 1118

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

DropDown DataWindows.  See DropDown 
objects

DropDown lists.  See DropDown objects
DropDown objects

checking properties with default checks   
318

checking properties, including content, 
while specifying checks   320

checking properties, including contents   
318–322

drop-down toolbar, recording on a   192
DropDownListBoxContent property check   320
DWComputedContent property check   331
DWTableContent property check   323

E

Edit Check dialog box
editing the expected data   351, 398
for a multiple-column database   391
for a multiple-column table   342
for a single-column database   396
for a single-column table   348
for checking databases   391–399
for checking tables   342–352
specifying which cells to check   343, 392
verification method   346, 394
verification type   349, 397

edit class   146, 265
Edit Database Checklist button   861
Edit Database Checklist command   401, 403
Edit Database Checklist dialog box   404, 409, 

412
Modify button   410, 413

Edit Expected Value button   284–286
Edit GUI Checklist button   861
Edit GUI Checklist command   237, 240, 257
Edit GUI Checklist dialog box   257–261

closing without specifying arguments   281
No properties are available for this object 

message   247
Edit GUI Map button   863
Edit menu commands, data table   498
edit_check_info function   212, 470, 471
edit_check_selection function   471
edit_set function   912
edit_wait_info function   550
editing

database checklists   403–406
expected property values   284–286
GUI checklists   239–244
list of reserved words   896

editing tests   198
editing the GUI map   92–122
Editor Options button   864
enabled property   139, 149



Index

WinRunner User’s Guide page 1119

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

end_transaction function   1086
enum_descendent_toplevel testing option   

978
error handling. See exception handling
Excel. See  Microsoft Excel
exception handling   562–587

activating and deactivating   587
overview   563–564
See also exceptions

Exception Handling button   863
exception_off function   584, 587
exception_off_all function   587
exception_on function   584, 587
Exceptions dialog box   566
exceptions, object   580–586

defining   581–583
defining handler functions   584–586

exceptions, pop-up   565–572
defining   566–568
defining handler functions   570–572

exceptions, TSL   573–579
defining   574–575
defining handler functions   576–579

Execute TSL Button Data dialog box   872

executing
menu commands from the User toolbar   

859–866
TSL statements from the User toolbar   

871–874
execution arrow   47, 170
exp command line option   807
exp testing option   979
Expand Tree command (GUI Map Editor)   101
Expected Data Viewer   766, 777
expected results   715, 726, 727

creating multiple sets   727
editing contents check on a table   768
specifying   729
updating   715
updating for bitmap, GUI, and database 

checkpoints   779–780
Expected Results Folder box   733
expected results folder, location   733, 979
expected results of a GUI checkpoint   230

editing   284–286
modifying   287–290

Export command, data table   497
extern declaration   688–691
external functions, declaring in TSL   688–691
external libraries, dynamically linking   686–687



Index

WinRunner User’s Guide page 1120

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

F

f command line option   808
Fail Test when Context Sensitive Errors Occur 

check box   923
Fail Test when Single Property Check Fails 

check box   924
FarPoint Spreadsheet Control   315
fast_replay command line option   807
file comparison   618
file management   199
File menu commands, data table   496
file_compare function   618, 783
filename command line option. See f command 

line option
Filters dialog box (GUI Map Editor)   121
filters, in GUI Map Editor   120
Find button   860
Find command   198

for data table   499
Find Next command   198
Find Previous command   198
find_text function   451–453
finding

a single object in a GUI map file   115
multiple objects in a GUI map file   116

Fixed command, data table   501
Flight 1A   39
Flight 1B   39

Flight Reservation application   39
floating toolbar   48
focused property   139, 149
folder locations, specifying   951–955
font group

creating   462–463
definition   459
designating the active   464

Font Group box   943
font groups   943, 980
Font Groups dialog box   462
font library   459
fontgrp command line option   808
fontgrp testing option   980
fonts

learning   460–461
teaching to WinRunner   459–464

Fonts Expert   460
Fonts Expert button   863
Format menu commands, data table   501
Fraction command, data table   501
frame_mdiclient class   146



Index

WinRunner User’s Guide page 1121

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Function Generator   620–635
assigning argument values   631–633
changing the default functions   634–635
choosing a function from a list   629–630
choosing a non-default function for a GUI 

object   626
get functions   622
overview   621–623
using the default function for a GUI object   

624
Function Generator dialog box. See Function 

Generator
Function Generator, customizing   1004–1025

adding a function   1008–1019
adding categories   1006–1007
adding sub-categories to a category   

1022–1023
associating a function with a category   

1020–1021
changing default functions   1024–1025
overview   1005

functions
calling from external libraries. See calling 

functions from external libraries
user-defined. See user-defined functions

G

garbage data   949
General command, data table   501
General Options button   864
General Options dialog box   734, 902
General Tab, Test Properties dialog box   518
General tab, Test Properties dialog box   184, 

675
Generate Concise, More Readable Type 

Statements check box   908
generating functions   620–635

See also Function Generator
generator_add_category function   1006–1007
generator_add_function function   1008–1019
generator_add_function_to_category function   

1020–1021
generator_add_subcategory function   

1022–1023
generator_set_default_function function   635, 

1024–1025
generic object class   269
get functions   622
Get Text > From Object/Window command   

447
Get Text from Object/Window button   50, 447, 

857, 861
GET TEXT FROM OBJECT/WINDOW softkey   195, 

447, 883



Index

WinRunner User’s Guide page 1122

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Get Text from Screen Area button   50, 449, 
857, 861

Get Text from Screen Area command   449
GET TEXT FROM SCREEN AREA softkey   196, 449, 

883
GET TEXT FROM WINDOW AREA softkey   195, 883
get_text function   446–450
getvar function   965–967

controlling test execution with   968
global testing options. See setting global 

testing options
global timeout   918, 1002
Go To button   860
Go To command, for data table   499
GUI changes discovered during test run. See  

Run wizard
GUI checklists   230

editing   239–244
modifying   236–244
shared   953
sharing   236–238
using an existing   233–235

GUI Checkpoint > For Single Property 
command

with data-driven tests   468
GUI Checkpoint commands   216, 217, 221, 

226, 228
GUI Checkpoint dialog boxes   245–261

GUI Checkpoint for Multiple Objects button   
50, 221, 234, 252, 857, 861

See also GUI Checkpoint for Multiple 
Objects command

GUI Checkpoint for Multiple Objects command   
221, 234, 252

GUI Checkpoint for Object/Window button   50, 
216, 217, 226, 228, 248, 857, 861

See also  GUI Checkpoint for 
Object/Window command

GUI Checkpoint for Object/Window command   
216, 217, 226, 228, 248

GUI Checkpoint for Single Property button   
861

GUI Checkpoint for Single Property command   
213

failing test when statement fails   813, 924, 
992

with data-driven tests   522
GUI Checkpoint Results dialog box   754

Cannot Capture message   246
Complex Value message   246
N/A message   246
No properties are available for this object 

message   247
options   755
Update Expected Value button   780



Index

WinRunner User’s Guide page 1123

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

GUI checkpoints   208–290
checking a single object   215–220
checking a single object using default 

checks   216
checking a single object while specifying 

checks   217–220
checking all objects in a window   225–229
checking all objects in a window using 

default checks   226–227
checking all objects in a window while 

specifying checks   228–229
checking multiple objects in a window   

221–224
created in XRunner   211
default checks   262–272
editing expected property values   284–286
editing GUI checklists   239–244
GUI Checkpoint dialog boxes   245–261
in data-driven tests   521–528
modifying expected results   287–290
modifying GUI checklists   236–244
overview   209–211
property checks   262–272
saving a GUI checklist to a shared folder   

236–238
specifying arguments   273–283
test results   745, 753–756
updating expected results   779

using an existing GUI checklist   233–235
GUI checks

on standard objects   262–272
specifying arguments for   273–283

GUI Files command (GUI Map Editor)   100
GUI map

configuring   123–156
configuring, overview   124–126
introduction   55–66
viewing   62–65

GUI Map command (GUI Map Editor)   100
GUI map configuration   123–156

configuring a class   134–141
creating a permanent   142–145
default   127
defining   141
deleting a custom class   145
mapping a custom object to a standard 

class   129–133
overview   124–126

GUI Map Configuration dialog box   130, 134



Index

WinRunner User’s Guide page 1124

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

GUI Map Editor   62–65, 98–101
copying/moving objects between files   112
deleting objects   118
description of   101
expanded view   113
filtering displayed objects   120
functions for working with TestDirector   

1071
Learn button   76
loading GUI files   85–87

GUI map files
adding objects   117
clearing   119
copying/moving objects between files   112
created in XRunner   148
deleting objects   118
editing   92–122
finding a single object   115
finding multiple objects   116
loading temporary   946
loading using the GUI Map Editor   85–87
loading using the GUI_load function   83
saving   79
saving changes   122
temporary   952
tracing objects between files   116

GUI map, creating   67–91
by recording   75
overview   68–69
using the GUI Map Editor   76
with the RapidTest Script Wizard   73

GUI objects
checking   208–290
checking property values   212–214
identifying   58–60
text attached to   935

GUI Spy   70
GUI Test Builder. See GUI Map Editor
GUI Vuser Scripts   1084
GUI Vusers   1081
GUI, of application under test

learning with RapidTest Script wizard   73
learning with recording   75
learning with the GUI Map Editor   76

GUI_close function   84
GUI_load function   83, 736, 1027
GUI_open function   84
GUI_unload function   84
GUI_unload_all function   84
gui_ver_add_class function   250, 255, 259
gui_ver_set_default_checks function   215, 225



Index

WinRunner User’s Guide page 1125

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

H

handle property   139, 152
Handler Function Definition dialog box   570, 

576, 584
handler function template

for popup exceptions   570
for TSL exceptions   577
object exceptions   586

handler functions
for object exceptions   584–586
for pop-up exceptions   570–572
for TSL exceptions   576–579

height property   139, 149
Help button   49
html_url property   149

I

identifying GUI objects   58–60
Image Text Recognition mechanism   942
Import command, data table   497

importing data from a database, for a data-
driven test   494–515

Data Junction conversion file   514
Data Junction options   511
Microsoft Query file, existing   508
Microsoft Query file, new   507
Microsoft Query options   505
specifying SQL statement   509
using Data Junction   511–515
using Microsoft Query   505–510

index number specifying a list item   933, 981
index selector   128, 140
ini command line option   809
initialization tests. See startup tests
insert   1006
Insert command, data table   498
Insert Function > For Object/Window command   

624–628
Insert Function > From Function Generator 

command   629–630
Insert Function for Object/Window button   50, 

624–628, 857, 861
INSERT FUNCTION FOR OBJECT/WINDOW softkey   

196, 883
Insert Function from Function Generator button   

50, 629–630, 857, 861
INSERT FUNCTION FROM FUNCTION GENERATOR 

softkey   196, 883, 1006, 1008, 1020



Index

WinRunner User’s Guide page 1126

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

interactive testing, passing input to tests   
694–707

interface language   944
invoke_application function   190, 616, 1027
item_number_seq testing option   981

K

key assignments
creating   899
default   194, 720

key_editing testing option   982
keyboard definition file   949
Keyboard File box   949
keyboard input, synchronization   928, 995
keyboard shortcuts   194, 720

deleting   899
editing   899

L

label property   139, 150
labels, varying   106
language

in test script   949
language of WinRunner interface   944
Learn button, GUI Map Editor   76
Learn Font dialog box   460

Learn Virtual Objects button   863
learned properties, configuring   137
lFPSpread.Spread.1 MSW_class. See 

FarPoint Spreadsheet Control
line_no testing option   983
list class   146, 267
list item

maximum length   915
specified by its index number   933, 981

list_check_info function   212, 470
list_check_item function   471
list_check_selected function   471
list_item_separator testing option   983
list_wait_info function   550
ListBox

maximum length recorded   915
recording non-unique items by name   811, 

914, 986
string for separating   934, 983

ListView
maximum length recorded   915
string for separating   934, 984

listview_item_separator testing option   984
load function   679, 719, 1027, 1069
Load Temporary GUI Map File check box   946
load_16_dll function   686
load_dll function   686



Index

WinRunner User’s Guide page 1127

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

loading add-ins   188
while starting WinRunner   52–53, 948

loading the GUI map file   83–87
using the GUI Map Editor   85–87
using the GUI_load function   83

loading WinRunner add-ins   52–53
LoadRunner   1077–1092

controller   1082
creating GUI Vuser Scripts   1084
description   42
GUI Vusers   1080
measuring server performance   1085
rendezvous   1088
RTE Vusers   1080
scenarios   1079, 1082
simulating multiple users   1079
synchronizing transactions   1087
transactions   1085
TUXEDO Vusers   1080
Vusers   1079
Web Vusers   1080

location
current test   1001
current working folder   733, 976
documentation files   953
expected results folder   733, 979
shared checklists   953, 990
temporary files   952, 1001
temporary GUI map file   952
verification results folder   734, 987

location selector   128, 140
logging in to the sample Flight application   39
logical names

defined   61
modifying   90, 102–105

loops, in TSL   608
do/while loops   610
for loops   608
while loops   609

M

main data table   518
managing the testing process   1030–1076
mapping

a custom class to a standard class   
129–133

custom objects to a standard class   
129–133



Index

WinRunner User’s Guide page 1128

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

maximizable property   139, 150
Maximum Length of List Item to Record box   

915
mdiclient class   146
menu bar, WinRunner   46
menu commands, executing from the User 

toolbar   859–866
menu_item class   146, 268
menu_select_item function   192
menu_wait_info function   550
menu-like toolbar, recording on a   192
messages

in the Database Checkpoint dialog boxes   
377

in the GUI Checkpoint dialog boxes   246
suppressing   920, 972

MHGLBX.Mh3dListCtrl.1 MSW_class See 
MicroHelp MH3dList Control

mic_if_win class   146
MicroHelp MH3dList Control   315
Microsoft Excel, with data tables   497, 530
Microsoft Grid Control   315
Microsoft Query

choosing a database for a database 
checkpoint   358–360

custom database check   369–373
default database check   364–365
importing data from a database   505–510

min_diff command line option   809
min_diff testing option   984
minimizable property   139, 150
minimizing WinRunner, when recording a test   

190
mismatch, bitmap   919, 984
mismatch_break command line option   810
mismatch_break testing option   985
mode   991
Modify button, in Edit Database Checklist 

dialog box   410, 413
Modify dialog box (GUI Map Editor)   105
Modify ODBC Query dialog box   410
Modify Watch dialog box   851
modifying

expected results of a database checkpoint   
415–418

expected results of a GUI checkpoint   
287–290

GUI checklists   236–244
logical names of objects   90, 102–105
physical descriptions of objects   102–105

module_name property   150
modules

closed   678
system   678

modules, compiled. See compiled modules
monitoring variables. See Watch List



Index

WinRunner User’s Guide page 1129

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

mouse input, synchronization   928, 995
MOVE LOCATOR softkey   196, 884
move_locator_text function   454–455
moving descriptions of GUI objects from one 

GUI map file to another   112
MSDBGrid.DBGrid MSW_class. See Data 

Bound Grid Control
MSGrid.Grid MSW_class. See Microsoft Grid 

Control
MSW_class property   139, 152
MSW_id property   139, 152
mytest startup test   1027

N

N/A message
in GUI Checkpoint dialog boxes   246

names. See logical names
nchildren property   139, 150
New Breakpoint dialog box   835, 837, 839
New button   49, 199, 860
New command   199

for data table   496
No properties are available for this object 

message, in GUI Checkpoint dialog 
boxes   247

No properties were captured for this object 
message, in GUI Checkpoint dialog 
boxes   247

non-English operating system. See WinRunner 
interface language

nonstandard properties   256, 260
NSTBTitle property   150
NSTitle property   150
num_columns property   150
num_rows property   150
Numeric Content verification

databases   397
tables   349

Numeric Range verification
databases   397
tables   349

O

obj_check_bitmap function   438
in data-driven tests   521

obj_check_gui function   230–232
in data-driven tests   521

obj_check_info function   212, 470
obj_click_on_text   456–457
obj_col_name property   139, 152
obj_exists function   548
obj_find_text function   452–453



Index

WinRunner User’s Guide page 1130

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

obj_get_text function   446–450
obj_mouse function   176
obj_mouse functions   124, 129
obj_mouse_click function   129
obj_move_locator_text   454–455
obj_type function   908, 912, 982
obj_wait_bitmap function   558

in data-driven tests   521
obj_wait_info function   550
object class   124, 146, 269

buttons, recording   915, 987
Object Exception dialog box   581
object synchronization points   547–548
objects

custom   129–133
mapping to a standard class   129–133
standard   138
virtual. See also virtual objects   157–165

obligatory properties   127
OCX controls. See ActiveX controls
OCX Properties Viewer. See ActiveX 

Properties Viewer
ODBC

choosing a database for a database 
checkpoint   358–360

custom database check   369–373
default database check   364–365

OLE controls. See ActiveX controls

online help   29
online resources   29
Open button   49, 199, 860

in the Create GUI Checkpoint dialog box   
254

in the Edit GUI Checklist dialog box   258
Open Checklist dialog box

for database checklists   401, 404, 408, 
412

for GUI checklists   234, 240
Open command   199

for data table   496
Open GUI File from TestDirector Project dialog 

box   86, 1060
Open or Create a Data Table dialog box   484, 

493, 495
Open Test dialog box   200
Open Test from TestDirector Project dialog box   

201, 1049
Open Test Results from TestDirector Project 

dialog box   1066
opening GUI map files in a TestDirector project   

1060–1061
opening tests   199

from file system   200
from TestDirector project database   201
in a TestDirector project   1048–1051



Index

WinRunner User’s Guide page 1131

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

operating systems in languages other than 
English. See WinRunner

interface language
operators, in TSL   606
optional properties   127
options, global testing. See setting global 

testing options
options, testing

See setting testing options
owner property   139, 152

P

Parameterize Data button   863
Parameterize Data command   489, 650
Parameterize Data dialog box   489, 650
Parameterize TSL Button Data dialog box   876
parameterizing database checkpoints   

419–425
guidelines   425
SQL statements   420

parameterizing TSL statements from the User 
toolbar   875–878

parameters
defining for a test   646–654
formal   652

Parameters tab, Test Properties dialog box   
646

parent property   150
part_value property   150
pass count   832, 839
Paste button   860
Paste command   198

for data table   498
Paste TSL Button Data dialog box   868
Paste Values command, data table   498
pasting TSL statements from the User toolbar   

867–870
Pause button   49, 719, 827, 862
Pause command   719, 827
pause function   828
PAUSE softkey   721, 827, 884
pausing test execution using breakpoints   

829–842
pb_name property   139, 153
Percent command, data table   501
physical description

changing regular expressions in the   110
defined   59–60
modifying   102–105
non-unique MSW_id in a single window   

128
Pop-Up Exception dialog box   567
position property   150



Index

WinRunner User’s Guide page 1132

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

PowerBuilder
DataWindows   323–326, 327–330, 331
DropDown objects   318–322
object properties   156
pb_name property   139, 153
See also checking tables

PowerBuilder applications   316–331
overview   317

Print button   860
Print command   207

for data table   497
print options   889

list   898
Print Preview command, data table   497
Print Setup command, data table   497
problems

recording Context Sensitive tests   
176–178

running Context Sensitive tests   735–738

programming in TSL   600–617
calculations   606
comments   603
constants   605
decision-making   611
defining steps   617
loops   608
overview   601–602
starting applications   616
variables   605
white space   604

programming, visual. See Function Generator
project (TestDirector)   1035

connecting WinRunner to a   1038–1044
disconnecting from a   1042
opening GUI map files in a   1060–1061
opening tests in a   1048–1051
running tests remotely   1064
saving GUI map files to a   1057–1059
saving tests to a   1045–1047
specifying search paths for tests called 

from a   1072
viewing test results from a   1065–1067



Index

WinRunner User’s Guide page 1133

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

properties
class   146
default   154
non-portable   152
obligatory   127
optional   127
portable   149
PowerBuilder objects   156
semi-portable   152
viewing   70
Visual Basic objects   155

properties of ActiveX controls
retrieving   301–303
setting   301–303
viewing   297–300

properties of Visual Basic controls
retrieving   301–303
setting   301–303
viewing   297–300

Properties Viewer (for ActiveX controls)   
297–300

property checks
checking property values   212–214
on standard objects   262–272
specifying arguments   273–283
test results   751–752

Property List button   250, 255, 259

property value synchronization points   
549–555

property values, editing   284–286
push_button class   146
push_button class, push button objects   270
Put Recognized Text in Remark check box   

939

Q

query file for a database checkpoint, working 
with ODBC/Microsoft Query   358–360

quotation marks, in GUI map files   101

R

radio_button class   147, 264
radius for attached text   936, 971
Range property check

currency symbols   278
specifying arguments   278

RapidTest Script wizard
learning the GUI of an application   73
startup tests   1027

RapidTest Script Wizard button   861
RDR. See Remote Defect Reporter



Index

WinRunner User’s Guide page 1134

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

reading text   446–450
from an area of an object or a window   449
in a window or an object   447

Readme file   29
rec_item_name command line option   811
rec_item_name testing option   986
rec_owner_drawn testing option   987
Recalc command, data table   500
recognized text in remarks   939
reconnect on startup, TestDirector   806, 1073
Record - Analog command   193
Record - Context Sensitive button   49, 50, 857, 

861
Record - Context Sensitive command   193
Record button   193
Record commands   193
Record Keypad Keys as Special Keys check 

box   909
Record Non-Unique List Items by Name check 

box   914
Record Owner-Drawn Buttons box   915
Record Shifted Keys as Uppercase when 

CAPS LOCK On check box   910
Record Single-Line Edit Fields as edit_set 

check box   912
RECORD softkey   194, 881
Record Start Menu by Index check box   911
Record/Run Engine icon   44

recording
buttons   915, 987
child windows   913, 978
ComboBox items   811, 914, 986
edit fields   912
edit_set statements   912
keys on the numeric keypad   909
ListBox items   811, 914, 986
obj_type statements   912
object-class buttons   915, 987
options, setting global   907–915
problems while   176–178
setting default mode   914
Start menu by index   911
with CAPS LOCK key activated   910

recording method   141
recording mode, setting default   914
recording tests

Analog mode   179
Context Sensitive mode   171–175
guidelines   190
with WinRunner minimized   190

redefining WinRunner softkeys   885
regexp_label property   139, 153
regexp_MSWclass property   139, 153



Index

WinRunner User’s Guide page 1135

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

regular expressions   588–598
character   279, 597
changing, in the physical description   110
in GUI checkpoints   591
in physical descriptions   590
in text checkpoints   594
overview   589
syntax   595–598

RegularExpression property check,specifying 
arguments   279

reload function   680, 1069
remarks, putting text in   939
Remote Defect Reporter   1093–1102

overview   1094
reporting new defects   1101–1102
setup   1097–1098
window   1099

remote hosts, running tests on   1064
Remove Spaces from Recognized Text check 

box   942
rendezvous (LoadRunner)   1088
rendezvous function   1089
Replace button   860
Replace command   198

for data table   499
Report Bug button, in Test Results window   

785, 1099

Report Bug command, in Test Results window   
785, 1099

report_msg function   615
reporting defects   1093–1102

from Test Results window   785
reporting test results to a text report   931
reserved words   896
reserved_words.ini file   896
result set   354
result testing option   987
results folders

debug   724
expected   715, 727
verify   712, 722

results of tests. See test results
return statement   661
RTL-style windows

finding attached text in   936, 969
WinRunner support for applications with   

192
run command line option   811
Run commands   716
Run from Arrow button   49, 716, 862
Run from Arrow command   716
RUN FROM ARROW softkey   721, 883
Run from Top button   49, 716, 862
Run from Top command   716
RUN FROM TOP softkey   721, 883



Index

WinRunner User’s Guide page 1136

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Run in Batch Mode check box   787, 920
Run Minimized (Arrow) button   862
Run Minimized (Top) button   862
Run Minimized > From Arrow command   717
Run Minimized > From Top command   717
Run Minimized commands   717
Run Mode box   734
Run Mode button   49
run modes

Debug   710, 713, 724
displaying for current test   734, 988
Update   710, 715
Verify   710, 712

Run Speed for Analog Mode box   926
Run Test dialog box   712, 722, 730

for tests in a TestDirector project   1062
Run wizard   95–97
run_minimized command line option   811
run_speed command line option See speed 

command line option
runmode testing option   988

running tests   709–731
batch run   786–794
checking your application   722
controlling with configuration parameters   

731
controlling with test options   731
debugging a test script   724
for debugging   822–828
from a TestDirector project   1064
from command line   795–820
in a test set   1062–1063
on remote hosts   1064
overview   710–711
pausing execution   827
problems while   735–738
remotely from TestDirector   1037
run modes   710
setting global testing options   916–931
updating expected results   726
with setvar and getvar functions   968

S

sample application   39
Save All button   860
Save All command   203



Index

WinRunner User’s Guide page 1137

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Save As button   860
in the Create GUI Checkpoint dialog box   

254
in the Edit GUI Checklist dialog box   258

Save As command   203
for data table   496

Save button   49, 203, 860
Save Checklist dialog box

for database checklists   402
for GUI checklists   238

Save command   203
for data table   496

Save GUI File dialog box   79
Save GUI File to TestDirector Project dialog 

box   82, 1058
Save Test dialog box   204
Save Test to TestDirector Project dialog box   

205, 1046
saving changes to the GUI map file   122
saving GUI map files to a TestDirector project   

1057–1059
saving tests

in file system   203
in TestDirector project database   205
to a TestDirector project   1045–1047

scenarios, LoadRunner   1079, 1082
Scientific command, data table   501
Script wizard. See RapidTest Script wizard

scroll class   147, 271
scroll_check_info function   212, 470
scroll_check_pos function   471
scroll_wait_info function   550
search area for attached text   936, 969
Search Path for Called Tests box   644, 954
search paths

for called tests   954, 989
for tests called from a TestDirector project   

1072
setting   644

search radius for attached text   936, 971
search_path command line option   812
searchpath testing option   644, 989
Select All button   860

in the Check GUI dialog box   249
in the Create GUI Checkpoint dialog box   

254
in the Edit GUI Checklist dialog box   259

Select All command   198
selectors

configuring   140
index   128, 140
location   128, 140

server (TestDirector), disconnecting from a   
1044

server performance, measuring (with 
LoadRunner)   1085



Index

WinRunner User’s Guide page 1138

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Set Function Parameters dialog box   879
set, of tests (TestDirector)   1062–1063
set_class_map function   145, 1027
set_record_attr function   145, 1027
set_record_method function   145
set_window function   66
setting global testing options   902–960

current test settings   734
environment   944–950
folder locations   951–955
miscellaneous   932–937
recording a test   907–915
running a test   916–931
text recognition   938–943

setting testing options
globally   902–960
using the getvar function   965–967
using the setvar function   963–964
within a test script   961–1003

setvar function   644, 731, 963–964
controlling test execution with   968

Shared Checklists box   953
shared checklists, location of   953, 990
shared folder

for database checklists   400–402
for GUI checklists   236–238

shared_checklist_dir testing option   990
Sheridan Data Grid Control   315

shortcut for starting WinRunner   799
Show All Properties button

in the Check GUI dialog box   251
in the Create GUI Checkpoint dialog box   

256
in the Database Checkpoint Results dialog 

box   773
in the Edit GUI Checklist dialog box   260
in the GUI Checkpoint Results dialog box   

756
Show Failures Only button

in the Database Checkpoint Results dialog 
box   773

in the GUI Checkpoint Results dialog box   
755

Show Nonstandard Properties Only button
in the Check GUI dialog box   251
in the Create GUI Checkpoint dialog box   

256
in the Database Checkpoint Results dialog 

box   773
in the Edit GUI Checklist dialog box   260
in the GUI Checkpoint Results dialog box   

756



Index

WinRunner User’s Guide page 1139

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Show Selected Properties Only button
in the Check GUI dialog box   250
in the Create GUI Checkpoint dialog box   

255
in the Edit GUI Checklist dialog box   260

Show Standard Properties Only button
in the Check GUI dialog box   250
in the Create GUI Checkpoint dialog box   

255
in the Database Checkpoint Results dialog 

box   773
in the Edit GUI Checklist dialog box   260
in the GUI Checkpoint Results dialog box   

755
Show TSL button, in the WinRunner Test 

Results window   288, 416
Show User Properties Only button

in the Check GUI dialog box   251
in the Create GUI Checkpoint dialog box   

256
in the Edit GUI Checklist dialog box   260
in the GUI Checkpoint Results dialog box   

756
Show Welcome Screen check box   947
silent mode, running tests in   991
silent_mode testing option   991
single_prop_check_fail command line option   

813

single_prop_check_fail testing option   992
Softkey Configuration dialog box   885
softkeys

configuring WinRunner   881–886
default settings   194, 720, 881

Sort command, data table   500
spaces, removing from recognized text   942
Specify ‘Compare’ Arguments dialog box   275
Specify Arguments button   273–283
specifying arguments   273–283

for DateFormat property check   276
for Range property check   278
for RegularExpression property check   

279
for TimeFormat property check   280
from the Argument Specification dialog box   

281
specifying which checks to perform on all 

objects in a window   228–229
specifying which properties to check for a 

single object   217–220
speed command line option   814
speed testing option   993
spin class   147
spin_wait_info function   550
Spy button   863
spying on GUI objects   70



Index

WinRunner User’s Guide page 1140

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

SQL statements
creating result sets based on   428
executing queries from   428
parameterizing in database checkpoints   

420
specifying in the Database Checkpoint 

wizard   384
SSDataWidgets.SSDBGridCtrl.1. See 

Sheridan Data Grid Control
standard classes. See  classes
standard objects

default checks   262–272
property checks   262–272

standard properties   255, 260
Standard toolbar   46, 49
Start menu, recording on the   911
start_transaction function   1086
starting the sample Flight application   39
starting WinRunner, with add-ins   52–53, 948
Startup Test box   945
startup tests   1026–1028

options   945
sample   1028

static text attached to GUI objects   935
static_check_info function   212, 470
static_check_text function   471
static_text class   147, 265
static_wait_info function   550

status bar class   147
status bar, WinRunner   46
statusbar_wait_info function   550
Step button   49, 718, 825, 862
Step command   718, 825
Step Into button   49, 718, 825, 862
Step Into command   718, 825
STEP INTO softkey   721, 884
Step Out button   862
Step Out command   718, 826
STEP softkey   721, 883
Step to Cursor button   862
Step to Cursor command   718, 826
STEP TO CURSOR softkey   721, 826, 884
steps, defining in a test script   617
Stop button   49, 50, 193, 719, 857, 862
Stop command   719
Stop Recording button   861
Stop Recording command   193
STOP softkey   196, 721, 884
stress conditions, creating in tests   608
String for Parsing a TreeView Path box   935
String for Separating ListBox or ComboBox 

Items box   934
String for Separating ListView or TreeView 

Items box   934
String Indicating that what Follows is a Number 

box   933



Index

WinRunner User’s Guide page 1141

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

submenu property   151
support information   30
suppressing messages   920, 972
sync_fail_beep testing option   994
synchronization   930, 994

delaying window   917, 977
following keyboard or mouse input   928, 

995
timeout   929, 978
waiting for bitmaps of objects and windows   

556–558
waiting for bitmaps of screen areas   

559–561
waiting for objects   547–548
waiting for property values   549–555
waiting for windows   547–548

Synchronization Point for Object/Window 
Bitmap button   50, 557, 857, 861

Synchronization Point for Object/Window 
Bitmap command   557

Synchronization Point for Object/Window 
Property button   50, 552, 857, 861

Synchronization Point for Object/Window 
Property command   552

Synchronization Point for Screen Area Bitmap 
button   50, 560, 857, 861

Synchronization Point for Screen Area Bitmap 
command   560

synchronization points   182
in data-driven tests   521–528

synchronization_timeout testing option   995
SYNCHRONIZE BITMAP OF OBJECT/WINDOW 

softkey   195, 546, 557, 882
SYNCHRONIZE BITMAP OF SCREEN AREA softkey   

195, 546, 560, 882
SYNCHRONIZE OBJECT PROPERTY (CUSTOM) 

softkey   195, 882
synchronizing tests   542–561
sysmenu property   153
system module   678
system variables. See setting testing options

T

t command line option   814
tab class   147
tab_wait_info function   550
TableContent property check   338–341



Index

WinRunner User’s Guide page 1142

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

tables
Case Insensitive Ignore Spaces verification   

350
Case Insensitive verification   349
Case Sensitive Ignore Spaces verification   

350
Case Sensitive verification   349
checking   332–352
checking contents while specifying checks   

338–341
checking contents with default checks   336
editing results of a contents check   768
editing the expected data   351
Numeric Content verification   349
Numeric Range verification   349
overview   333
specifying which cells to check   343
verification method for contents of a single-

column database   349
verification method for multiple-column 

tables   346
verification type   349
viewing expected results of a contents 

check   763–767
viewing results of a contents check   

757–762
tbl_activate_cell function   315
tbl_activate_header function   315

tbl_get_cell_data function   315
tbl_get_cols_count function   315
tbl_get_column_name function   315
tbl_get_rows_count function   315
tbl_get_selected_cell function   315
tbl_get_selected_row function   315
tbl_select_col_header function   315
tbl_set_cell_data function   315
tbl_set_selected_cell function   315, 318, 319, 

320
tbl_set_selected_row function   315
td_connection command line option   815, 1073
td_connection testing option   996
td_cycle_name command line option   815, 

1074
td_cycle_name testing option   997
td_database_name command line option   816, 

1074
td_database_name testing option   998
td_logname_dir command line option   816, 

1074
td_logname_dir command line option See 

td_log_dirname command line option
td_password command line option   817, 1075
td_server command line option See 

td_server_name command line option
td_server_name command line option   817, 

1075



Index

WinRunner User’s Guide page 1143

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

td_server_name testing option   999
td_user_name command line option   818, 

1076
td_user_name testing option   1000
TdApiWnd icon   44
tddb_get_step_value function   1068
tddb_get_test_value function   1068
tddb_get_testset_value function   1068
technical support online   30
tempdir testing option   1001
Temporary Files box   952
temporary files, location   952, 1001
temporary GUI map file

loading   946
location   952
saving   79

Temporary GUI Map File box   952
test execution

controlling with setvar and getvar   968
pausing   827
See also running tests

test log   745
test plan tree (TestDirector)   1033
Test Properties button   860
Test Properties command   184, 646, 675

Test Properties dialog box   647
Add-ins   188
Description Tab   184
General tab   184, 518
Parameters tab   646

test results   739–785
bitmap checkpoints   745, 768–769
database checkpoints   770–773, 774–778
file comparison   745
for batch tests   794
GUI checkpoints   745, 753–756
property checks   751–752
reporting defects   785
tables   757–767
tables, editing contents checks on   768
updating expected   779–780
viewing from a TestDirector project 

database   748–750
viewing, overview   746–750
writing to a text report   931

Test Results button   49, 863



Index

WinRunner User’s Guide page 1144

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Test Results window   741–745, 747
Display button   780
for expected results of a content check in a 

database checkpoint   774
for expected results of a GUI checkpoint on 

table contents   763
test log   745
test summary   743
test tree   742
Update button   780

test run speed   807
test run, viewing results   746–750
Test Script Language (TSL)   600–617

overview   601–602
test scripts   47, 170

customizing   887–901
highlighting script elements   893
language   949
print options   889
script window customization   898

test set (TestDirector)   1062–1063
test settings, current   734
test settings, current, Test Properties dialog 

box
Current Test tab   732

test summary   743
test tree   742
test versions in WinRunner   1052–1056

test window
customizing appearance of   888
highlighting script elements   893
WinRunner   47, 170

test wizard. See RapidTest Script wizard
test_director command line option See 

td_connection command line option
test_director testing option. See td_connection 

testing option
TestDirector   189, 1095

command line options for working with   
1073–1076

defect tracking   1031
description   41
Remote Defect Reporter. See Remote 

Defect Reporter
remote execution setting   950
running WinRunner tests remotely   1037
TdApiWnd icon   44
test execution   1031
test plan tree   1033
test planning   1031
TSL functions for working with   1068–1072
using WinRunner with   1035–1037
version control   1052–1056
working with   1030–1076
See also TestDirector project

TestDirector Connection button   863



Index

WinRunner User’s Guide page 1145

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

TestDirector project   1035, 1095
connecting WinRunner to a   996, 

1038–1044
disconnecting from a   1042, 1044
displaying its name   998
displaying the name of the TestDirector 

test set   997
displaying the TestDirector (TDAPI) server 

name to which WinRunner is 
connected   999

displaying the user name   1000
functions for working with a   1068
opening GUI map files in a   1060–1061
opening tests in a   1048–1051
running tests from a   1064
saving GUI map files to a   1057–1059
saving tests to a   1045–1047
server   1036
specifying search paths for tests called 

from a   1072
viewing test results from a   1065–1067
See also TestDirector

TestDirector server   1036
TestDirector Web Defect Manager   1094
testing environment options   944–950

testing options   731
global. See setting global testing options
within a test script   961–1003
See also setting testing options

testing process
analyzing results   739–785
introduction   36
managing the   1030–1076
running tests   709–731

testname command line option. See t 
command line option

testname testing option   1001
tests

calling. See calling tests
startup options   945

tests, creating   167–207
checkpoints   181
documenting test information   184
editing   198
new   199
opening existing   199
planning   183
programming   192
recording   171–180
synchronization points   182

TestSuite   41
texit statement   641–643, 791



Index

WinRunner User’s Guide page 1146

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

text
checking   444–464
comparing   458
getting the location   452–453
reading   446–450
searching for   451–457

text attached to GUI objects   935
text checkpoints   444–464

comparing text   458
creating a font group   462–463
overview   444–445
reading text   446–450
searching for text   451–457
teaching fonts to WinRunner   459–464

text property   140, 153
text recognition

options   938–943
putting captured text in remarks   939
removing spaces   942
timeout   940

text report   931
text string

clicking a specified   456–457
moving the pointer to a   454–455

Threshold for Difference between Bitmaps box   
919

Tile Horizontally button   864
Tile Vertically button   864

time formats supported by TimeFormat 
property check   280

Time h mm AM/PM command, data table   501
time parameter   918, 1002
TimeFormat property check

available time formats   280
specifying arguments   280

timeout
for checkpoints   918, 1002
for Context Sensitive statements   918, 

1002
for synchronization   929, 978
for text recognition   940
global   918, 1002

timeout command line option. See 
timeout_msec command line option

Timeout for Checkpoints and CS Statements 
box   918

Timeout for Text Recognition box   940
Timeout for Waiting for Synchronization 

Message box   928
timeout testing option. See timeout_msec 

testing option
timeout_msec command line option   819
timeout_msec testing option   1002
title bar, WinRunner   46
tl_step function   617
Toggle Breakpoint button   49, 863



Index

WinRunner User’s Guide page 1147

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Toggle Breakpoint command   834
toolbar

creating a floating   48
Standard   46, 49
User   46, 49–50

toolbar class   147
toolbar_select_item function   192, 911
toolkit_class property   152
transactions, synchronizing (for LoadRunner)   

1087
TreeView

maximum length recorded   915
string for parsing a path   935, 1003
string for separating   934, 984

treeview_path_separator testing option   1003
treturn statement   641–642
True DBGrid Control   315
TrueDBGrid50.TDBGrid MSW_class. See True 

DBGrid Control
TrueDBGrid60.TDBGrid MSW_class. See True 

DBGrid Control
TrueOleDBGrid60.TDBGrid MSW_class. See 

True DBGrid Control
TSL Exception dialog box   574
TSL exceptions. See exceptions, TSL

TSL functions
call statement functions with TestDirector   

1069
compiled module functions with 

TestDirector   1069
for working with a database   426–432
for working with TestDirector   1068–1072
for working with TestDirector projects   

1068
GUI Map Editor functions with TestDirector   

1071
reserved words   896
See also TSL Online Reference or TSL 

Reference Guide
with data-driven tests   529–538

TSL Online Reference   29
TSL Reference Guide   28
TSL statements

accessing from the menu bar   880
executing from the User toolbar   871–874
parameterizing from the User toolbar   

875–878
pasting from the User toolbar   867–870

tslinit_exp command line option   820
type function   908, 982
typographical conventions in this guide   31



Index

WinRunner User’s Guide page 1148

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

U

Undo button   860
Undo command   198
unload function   680, 1069
unload_16_dll function   687
unload_dll function   687
unmapped classes.  See object class
Update button, in Test Results window   780
Update Expected Value button

in the Database Checkpoint Results dialog 
box   773, 781

in the GUI Checkpoint Results dialog box   
755, 780

Update mode   710, 715
update_ini command line option   820
updating expected results of a checkpoint   

779–780
Use Image Text Recognition mechanism check 

box   941
user command line option See td_user_name 

command line option
user command line option. See td_user_name 

command line option
user interface, WinRunner, customizing   

855–886
user module   678
User properties   251, 256, 260, 756

user testing option. See td_user_name testing 
option

User toolbar   46, 49–50, 857–880
adding buttons that execute menu 

commands   859–866
adding buttons that execute TSL 

statements   871–874
adding buttons that parameterize TSL 

statements   875–878
adding buttons that paste TSL statements   

867–870
creating the   857–878
using the   879–880

user_name command line option See 
td_user_name command line option



Index

WinRunner User’s Guide page 1149

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

user-defined functions   655–670
adding to the Function Generator. See 

customizing the Function 
Generator

array declarations   667
class   658
constant declarations   666
declaration of variables, constants, and 

arrays   662–669
example   670
overview   656–657
parameterizing for data-driven tests   478
parameters   659
return statement   661
syntax   658–660
variable declarations   662

user-defined properties   251, 256, 260, 756
using the User toolbar   879–880
using WinRunner with TestDirector   

1035–1037

V

valid column names for data tables   502
Validation Rule command, data table   501
value property   140, 151

variables
in TSL   605
monitoring. See Watch List

varying window labels   106
vb_name property   140, 153
verification failure   922, 985
verification method

for databases   394
for tables   346

verification results   712, 722
Verification Results Folder box   734
verification results folder, location   734, 987
verification type

for databases   397
for tables   349

verification, bitmap. See bitmap checkpoints
verify command line option   820
Verify mode   710, 712, 722
version control   1052–1056

adding tests to   1053
checking tests in to   1053, 1056
checking tests out of   1054

version manager   1052–1056
viewing test results from a TestDirector project   

1065–1067
viewing test results. See test results
Virtual Object wizard   159–164



Index

WinRunner User’s Guide page 1150

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

virtual objects   157–165
defining   160–164
overview   158–159
physical description   165

virtual property   140, 165
virtual users   1080
Visual Basic

object properties   155
sample flight application   39
vb_name property   140, 153
See also checking tables

Visual Basic controls
checking sub-object properties   309–313
overview   292–293
retrieving properties   301–303
setting properties   301–303
support for   291–315
viewing properties   297–300

visual programming. See Function Generator

W

wait_window function   546
Watch List   843–853

Add Watch dialog box   847
adding variables   847–848
assigning values to variables   852
deleting variables   853
modifying expressions   851
overview   844–846
viewing variables   849–850
Watch List dialog box   849

Watch List button   863
Watch List command   849
Watch List dialog box   849
WDiff utility   783–784
Web Defect Manager   1094
WebTest add-in   178
WebTest User’s Guide   28
Welcome to WinRunner window   45

displaying   947
What’s New in WinRunner help   29
white space, in TSL   604
width property   140, 151
wildcard characters. See regular expressions
win_activate function   190
win_check_bitmap function   438, 442

in data-driven tests   521



Index

WinRunner User’s Guide page 1151

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

win_check_gui function   230–232
in data-driven tests   521

win_check_info function   212, 470
win_click_on_text   456–457
win_exists function   548
win_find_text function   452–453
win_get_text function   446–450
win_move_locator_text   454–455
win_type function   908, 982
win_wait_bitmap function   558

in data-driven tests   521
win_wait_info function   550
Win32API library. See calling functions from 

external libraries
window class   147, 272
window labels, varying   106
window synchronization points   547–548
window synchronization, delaying   917, 977
Windows API. See calling functions from 

external libraries
windows, checking   921, 974

WinRunner
creating custom shortcut for   799
interface language   944
introduction   33–42
main window   46
menu bar   46
online resources   29
overview   43–53
starting   44–45
status bar   46
test window   47
title bar   46

WinRunner context-sensitive help   29
WinRunner Customization Guide   28
WinRunner Installation Guide   28
WinRunner Record/Run Engine icon   44
WinRunner Remote Agent application   950
WinRunner sample tests   29
WinRunner support for applications with RTL-

style windows   192
WinRunner Test Results window   741–745, 

747
for expected results of a GUI checkpoint   

287
WinRunner Tutorial   28
working test   1053



Index

WinRunner User’s Guide page 1152

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Write Test Results to a Text Report check box   
931

WS_EX_BIDI_CAPTION windows, finding 
attached text in   936

X

x property   140, 151
XR_EXCP_OBJ   583
XR_EXCP_POPUP   569
XR_EXCP_TSL   575
XR_GLOB_FONT_LIB   459
XR_TSL_INIT   144, 1026
XRunner

bitmap checkpoints   437
GUI checkpoints   211
GUI maps   148

Y

y property   140, 151



In

Find

Books
Online

 Again

Find

Help

Back

WinRunner User’s Guide, Version 6.02

© Copyright 1994 - 1999 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury 
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express 
permission in writing of Mercury Interactive. Information in this document is subject to change without notice 
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this 
document. The furnishing of this document does not give you any license to these patents except as 
expressly provided in any written license agreement from Mercury Interactive. 

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of 
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra 
SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, 
Fast Scan, and Visual Web Display are trademarks of Mercury Interactive Corporation in the United States 
and/or other countries.This document also contains registered trademarks, trademarks and service marks 
that are owned by their respective companies or organizations. Mercury Interactive Corporation disclaims 
any responsibility for specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to 
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue 
Sunnyvale, CA 94089 
Tel. (408) 822-5200  (800) TEST-911
Fax. (408) 822-5300

WRUG6.02/01


	WinRunner® User's Guide
	Contents Summary
	Table of Contents
	Welcome to WinRunner
	Using This Guide
	WinRunner Documentation Set
	Online Resources
	Typographical Conventions

	Starting the Testing Process
	Introduction
	WinRunner Testing Modes
	The WinRunner Testing Process
	Sample Application
	Working with TestSuite

	WinRunner at a Glance
	Starting WinRunner
	The Main WinRunner Window
	The Test Window
	Using WinRunner Commands
	Loading WinRunner Add-Ins


	Understanding the GUI Map
	Introducing the GUI Map
	About the GUI Map
	How a Test Identifies GUI Objects
	Physical Descriptions
	Logical Names
	The GUI Map Editor
	Setting the Window Context

	Creating the GUI Map
	About Creating the GUI Map
	Viewing GUI Object Properties
	Learning the GUI with the RapidTest Script Wizard
	Learning the GUI by Recording
	Learning the GUI Using the GUI Map Editor
	Saving the GUI Map
	Loading the GUI Map File
	Guidelines for Working with GUI Maps

	Editing the GUI Map
	About Editing the GUI Map
	The Run Wizard
	The GUI Map Editor
	Modifying Logical Names and Physical Descriptions
	How WinRunner Handles Varying Window Labels
	Using Regular Expressions in the Physical Description
	Copying and Moving Objects between Files
	Finding an Object in a GUI Map File
	Finding an Object in Multiple GUI Map Files
	Manually Adding an Object to a GUI Map File
	Deleting an Object from a GUI Map File
	Clearing a GUI Map File
	Filtering Displayed Objects
	Saving Changes to the GUI Map

	Configuring the GUI Map
	About Configuring the GUI Map
	Understanding the Default GUI Map Configuration
	Mapping a Custom Object to a Standard Class
	Configuring a Standard or Custom Class
	Creating a Permanent GUI Map Configuration
	Deleting a Custom Class
	The Class Property
	All Properties
	Default Properties Learned
	Properties for Visual Basic Objects
	Properties for PowerBuilder Objects

	Learning Virtual Objects
	About Learning Virtual Objects
	Defining a Virtual Object
	Understanding a Virtual Object’s Physical Description


	Creating Tests
	Creating Tests
	About Creating Tests
	The WinRunner Test Window
	Context Sensitive Recording
	Solving Common Context Sensitive Recording Problems
	Analog Recording
	Checkpoints
	Data-Driven Tests
	Synchronization Points
	Planning a Test
	Documenting Test Information
	Associating Add-ins with a Test
	Recording a Test
	Activating Test Creation Commands Using Softkeys
	Programming a Test
	Editing a Test
	Managing Test Files

	Checking GUI Objects
	About Checking GUI Objects
	Checking a Single Property Value
	Checking a Single Object
	Checking Two or More Objects in a Window
	Checking All Objects in a Window
	Understanding GUI Checkpoint Statements
	Using an Existing GUI Checklist in a GUI Checkpoint
	Modifying GUI Checklists
	Understanding the GUI Checkpoint Dialog Boxes
	Property Checks and Default Checks
	Specifying Arguments for Property Checks
	Editing the Expected Value of a Property
	Modifying the Expected Results of a GUI Checkpoint

	Working with ActiveX and Visual Basic Controls
	About Working with ActiveX and Visual Basic Controls
	Choosing Appropriate Support for Visual Basic Applications
	Activating an ActiveX Control Method
	Viewing ActiveX and Visual Basic Control Properties
	Retrieving and Setting the Values of ActiveX and Visual Basic Control Properties
	Working with Visual Basic Label Controls
	Checking Sub-Objects of ActiveX and Visual Basic Controls
	Using TSL Table Functions with ActiveX Controls

	Checking PowerBuilder Applications
	About Checking PowerBuilder Applications
	Checking Properties of DropDown Objects
	Checking Properties of DataWindows
	Checking Properties of Objects within DataWindows
	Working with Computed Columns in DataWindows

	Checking Table Contents
	About Checking Table Contents
	Checking Table Contents with Default Checks
	Checking Table Contents while Specifying Checks
	Understanding the Edit Check Dialog Box

	Checking Databases
	About Checking Databases
	Choosing a Database
	Creating a Default Check on a Database
	Creating a Custom Check on a Database
	Messages in the Database Checkpoint Dialog Boxes
	Working with the Database Checkpoint Wizard
	Understanding the Edit Check Dialog Box
	Modifying a Database Checkpoint
	Modifying the Expected Results of a Database Checkpoint
	Parameterizing Database Checkpoints
	Using TSL Functions to Work with a Database

	Checking Bitmaps
	About Checking Bitmaps
	Checking Window and Object Bitmaps
	Checking Area Bitmaps

	Checking Text
	About Checking Text
	Reading Text
	Searching for Text
	Comparing Text
	Teaching Fonts to WinRunner

	Creating Data-Driven Tests
	About Creating Data-Driven Tests
	The Data-Driven Testing Process
	Creating a Basic Test for Conversion
	Converting a Test to a Data-Driven Test
	Preparing the Data Table
	Importing Data from a Database
	Running and Analyzing Data-Driven Tests
	Assigning the Main Data Table for a Test
	Using Data-Driven Checkpoints and Bitmap Synchronization Points
	Using TSL Functions with Data-Driven Tests
	Guidelines for Creating a Data-Driven Test

	Synchronizing the Test Run
	About Synchronizing the Test Run
	Waiting for Objects and Windows
	Waiting for Property Values of Objects and Windows
	Waiting for Bitmaps of Objects and Windows
	Waiting for Bitmaps of Screen Areas

	Handling Unexpected Events and Errors
	About Handling Unexpected Events and Errors
	Handling Pop-Up Exceptions
	Handling TSL Exceptions
	Handling Object Exceptions
	Activating and Deactivating Exception Handling

	Using Regular Expressions
	About Regular Expressions
	When to Use Regular Expressions
	Regular Expression Syntax


	Programming with TSL
	Enhancing Your Test Scripts with Programming
	About Enhancing Your Test Scripts with Programming
	Statements
	Comments and White Space
	Constants and Variables
	Performing Calculations
	Creating Stress Conditions
	Decision-Making
	Sending Messages to the Test Results Window
	Starting Applications from a Test Script
	Defining Test Steps
	Comparing Two Files

	Generating Functions
	About Generating Functions
	Generating a Function for a GUI Object
	Selecting a Function from a List
	Assigning Argument Values
	Modifying the Default Function in a Category

	Calling Tests
	About Calling Tests
	Using the Call Statement
	Returning to the Calling Test
	Setting the Search Path
	Defining Test Parameters

	Creating User-Defined Functions
	About Creating User-Defined Functions
	Function Syntax
	Return Statements
	Variable, Constant, and Array Declarations
	Example of a User-Defined Function

	Creating Compiled Modules
	About Creating Compiled Modules
	Contents of a Compiled Module
	Creating a Compiled Module
	Loading and Unloading a Compiled Module
	Example of a Compiled Module

	Calling Functions from External Libraries
	About Calling Functions from External Libraries
	Dynamically Loading External Libraries
	Declaring External Functions in TSL
	Windows API Examples

	Creating Dialog Boxes for Interactive Input
	About Creating Dialog Boxes for Interactive Input
	Creating an Input Dialog Box
	Creating a List Dialog Box
	Creating a Custom Dialog Box
	Creating a Browse Dialog Box
	Creating a Password Dialog Box


	Running Tests
	Running Tests
	About Running Tests
	WinRunner Test Run Modes
	WinRunner Run Commands
	Choosing Run Commands Using Softkeys
	Running a Test to Check Your Application
	Running a Test to Debug Your Test Script
	Running a Test to Update Expected Results
	Controlling the Test Run with Testing Options
	Reviewing Current Test Settings
	Solving Common Test Run Problems

	Analyzing Test Results
	About Analyzing Test Results
	The Test Results Window
	Viewing the Results of a Test Run
	Viewing the Results of a Property Check
	Viewing the Results of a GUI Checkpoint
	Viewing the Results of a GUI Checkpoint on Table Contents
	Viewing the Expected Results of a GUI Checkpoint on Table Contents
	Viewing the Results of a Bitmap Checkpoint
	Viewing the Results of a Database Checkpoint
	Viewing the Expected Results of a Content Check in a Database Checkpoint
	Updating the Expected Results of a Checkpoint
	Viewing the Results of a File Comparison
	Reporting Defects Detected during a Test Run

	Running Batch Tests
	About Running Batch Tests
	Creating a Batch Test
	Running a Batch Test
	Storing Batch Test Results
	Viewing Batch Test Results

	Running Tests from the Command Line
	About Running Tests from the Command Line
	Using the Windows Command Line
	Command Line Options


	Debugging Tests
	Debugging Test Scripts
	About Debugging Test Scripts
	Running a Single Line of a Test Script
	Running a Section of a Test Script
	Pausing Test Execution

	Using Breakpoints
	About Breakpoints
	Breakpoint Types
	Setting Break at Location Breakpoints
	Setting Break in Function Breakpoints
	Modifying Breakpoints
	Deleting Breakpoints

	Monitoring Variables
	About Monitoring Variables
	Adding Variables to the Watch List
	Viewing Variables in the Watch List
	Modifying Variables in the Watch List
	Assigning a Value to a Variable in the Watch List
	Deleting Variables from the Watch List


	Configuring WinRunner
	Customizing WinRunner’s User Interface
	About Customizing WinRunner’s User Interface
	Customizing the User Toolbar
	Using the User Toolbar
	Configuring WinRunner Softkeys

	Customizing the Test Script Editor
	About Customizing the Test Script Editor
	Setting Display Options
	Personalizing Editing Commands

	Setting Global Testing Options
	About Setting Global Testing Options
	Setting Global Testing Options from the General Options Dialog Box
	Global Testing Options
	Choosing Appropriate Timeout and Delay Settings

	Setting Testing Options from a Test Script
	About Setting Testing Options from a Test Script
	Setting Testing Options with setvar
	Retrieving Testing Options with getvar
	Controlling the Test Run with setvar and getvar
	Test Script Testing Options

	Customizing the Function Generator
	About Customizing the Function Generator
	Adding a Category to the Function Generator
	Adding a Function to the Function Generator
	Associating a Function with a Category
	Adding a Subcategory to a Category
	Setting a Default Function for a Category

	Initializing Special Configurations
	About Initializing Special Configurations
	Creating Startup Tests
	Sample Startup Test


	Working with TestSuite
	Managing the Testing Process
	About Managing the Testing Process
	Using WinRunner with TestDirector
	Connecting to and Disconnecting from a Project
	Saving Tests to a Project
	Opening Tests in a Project
	Managing Test Versions in WinRunner
	Saving GUI Map Files to a Project
	Opening GUI Map Files in a Project
	Running Tests in a Test Set
	Running Tests on Remote Hosts
	Viewing Test Results from a Project
	Using TSL Functions with TestDirector
	Command Line Options for Working with TestDirector

	Testing Client/Server Systems
	About Testing Client/Server Systems
	Emulating Multiple Users
	Virtual User (Vuser) Technology
	Developing and Running Scenarios
	Creating GUI Vuser Scripts
	Measuring Server Performance
	Synchronizing Virtual User Transactions
	Creating a Rendezvous Point
	A Sample Vuser Script

	Reporting Defects
	About Reporting Defects
	Using the Web Defect Manager
	Setting Up the Remote Defect Reporter
	The Remote Defect Reporter Window
	Reporting New Defects from the Remote Defect Reporter


	Index

