WinRunner®
User's Guide
Version 6.0

Onlifie Guide

Books
Online

& Find

Find
Again

‘? Help

>

Contents Summary

Welcome to WINRUNNE ..o 25
Nl
PART |I: STARTING THE TESTING PROCESS ggﬁﬁz
Chapter 1: INtrodUCTIONcevviiiiiee e 33
Chapter 2: WinRunner at a GlancCeooevvviiiiiiiiiiiiieeeeeeeee 43 #4 Find
Find
PART II: UNDERSTANDING THE GUI MAP Again
Chapter 3: Introducing the GUI Mapcoevveiiiiiiiiiinins 55 2 Help
Chapter 4: Creating the GUIMapcoooeeeeiiiiiiiiiiie e 67
Chapter 5: Editing the GUIMap.........ccoooiiiiiiiiiiii e 92 ‘ ’
Chapter 6: Configuring the GUIMapcccoveveieeceiiecrec 123 ToIEIOf
p
Chapter 7: Learning Virtual Objects ..., 157 Chapter
PART IlIl: CREATING TESTS “©Back
Chapter 8: Creating TeSIS ... 167
Chapter 9: Checking GUI ObjJecCtsccoovviiiiiiiiiiiieeieeiiei e 208
Chapter 10: Working with ActiveX and Visual Basic
CONIOIS s 291
Chapter 11: Checking PowerBuilder Applications.................... 316
Chapter 12: Checking Table Contents.........cccevvvvviviiiiiiiicinnnnnenn. 332

WinRunner User’s Guide Page 2

Chapter 13: Checking Databases...........ccccooveviiiiiiiiiiiiicicninne, 353
Chapter 14: Checking Bitmapsccooovvveiiiiiiiiiiiiiiii e 433
Chapter 15: Checking TeXtccccoiiiiiiiiee 443
Chapter 16: Creating Data-Driven TestS.......ccccccceiiiiiiiiiiinnnnne. 465
Chapter 17: Synchronizing the Test RUnocoovvviiiiiiiiiiiinnnnn. 542
Chapter 18: Handling Unexpected Events and Errors.............. 562
Chapter 19: Using Regular EXPressionsuuvvveviiiininnneneeenn. 588
PART IV: PROGRAMMING WITH TSL
Chapter 20: Enhancing Your Test Scripts with Programming . 600
Chapter 21: Generating FUNCLIONS........ccooiiiiiiiiiiiiii e 620
Chapter 22: Calling TeStScccoooiiii e 636
Chapter 23: Creating User-Defined FUNCLIONS........cccceveeiveennnnn. 655
Chapter 24: Creating Compiled Modulesccoooieiiiiiiiniinnnnn. 671
Chapter 25: Calling Functions from External Libraries 683
Chapter 26: Creating Dialog Boxes for Interactive Input.......... 694
PART V: RUNNING TESTS
Chapter 27: RUNNING TESIS ...t 709
Chapter 28: Analyzing Test ReSUlts ..., 739

Contents Summary

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Page 3

Contents Summary

Chapter 29: Running Batch Tests ..., 786
Chapter 30: Running Tests from the Command Line 795
PART VI: DEBUGGING TESTS Q
Chapter 31: Debugging Test SCrptscoovvvviiiiiiiiiiiiiiiieieeeeeen, 822 ggﬁﬁz
Chapter 32: Using Breakpointscooeeeeiiiiiiiiiiiiiiiiiin 829
Chapter 33: Monitoring Variablescccocevveveeieeeeeeenene, 843 #4 Find
PART VII: CONFIGURING WINRUNNER /Eg;?n
Chapter 34: Customizing WinRunner’s User Interface............. 855 2 Help
Chapter 35: Customizing the Test Script Editor................c....... 887
Chapter 36: Setting Global Testing OptionNScccceeiieiiiiennenn. 902 ‘ ’
Chapter 37: Setting Testing Options from a Test Script........... 961 TOIEIOf
Chapter 38: Customizing the Function Generator 1004 Chapter
Chapter 39: Initializing Special Configurations....................... 1026 &= Back
PART VIII: WORKING WITH TESTSUITE
Chapter 40: Managing the Testing Process........cccccceeeeveeeeeennn. 1030
Chapter 41: Testing Client/Server Systemsccccccevvvvvvnnnnnns 1077
Chapter 42: Reporting DefectS.......ccoevieiiiiiiiiiii, 1093
IO X e 1103

WinRunner User’s Guide Page 4

Table of Contents

Books
Online
_ @4 Find
Welcome to WINRUNNEoooiiiiiiiie e 25
UsiNg ThisS GUIAE ...t 26 :g;?n
WinRunner Documentation Set........cccccccvvveeeeiiiiiiiiieicieivieeeeee 28
ONlINE RESOUICES ...civiiiiiiieeee ettt e e e e e e e e e e e e e e e a e e 29 ? Help
Typographical ConVENtIONS..........cccoeeiiiiiiiiieccee e, 31 ‘ ’
PART |I: STARTING THE TESTING PROCESS =
Chapter 1: INtrOTUCTION ...vvieeeeeieeee oottt e e eren s 33 LA
WinRunner Testing MOUEScovviiiiiiiiiieii e 34
The WInRunner Testing ProCeSS...........oovvvvviiiiiiiiiiieiiieeeeeeeeeeeeeeeiennns 36 &Back
Sample APPlICAtION..........ooiiiiiiii e 39
Working With TESISUITE........uuuiiiiiiiiiieeiieieeeee e 41

WinRunner User’s Guide Page 5

Table of Contents

Chapter 2: WinRunner at a GlancCeccccovvviviiiiiiiiiiiiieee e 43

Starting WINRUNNET ..ot 44

The Main WinRunner WindOW............ccuuviiiiiiiiiiiiiieceeeieeeee e 46

The TeSt WINAOW.......coviiiiiiiiieiiieee e 47 BE,%'kS

Using WIinRunner ComMmaNdScoooiiieeiaiininiiniiiiiiieieeeeeee e 48 Online

Loading WIinRunner Add-INSooovimmiiiiiiiiiie e 52 # Find
PART II: UNDERSTANDING THE GUI MAP /fg;‘l’n

Chapter 3: Introducing the GUIMapccccccceeiiiivviiiiiieeeeceeein. 55 D Help

ADOUL the GUI MAP.....cuiiiiiiiiiiiiiiii e 56 i

How a Test Identifies GUI ODJECLScceeeeiiiiiiiiiiiiieeeeee 58 ‘ ’

Physical DEeSCHPLIONSuuiiiiiiiiiiiiiieee e 59

LOGICAI NBIMESt 61 =

The GUI MaP EQIOr.......coiiiiiieieciceeieeeeeie et 62 ot

Setting the WINdow CONEXLcccouiiiiiiiiiiiiiiceeee e 66

= Back

WinRunner User’s Guide Page 6

Table of Contents

Chapter 4: Creatingthe GUIMapcccooeeeiiiiiiiiiiieeiee e, 67

About Creating the GUI Mapcoooeeieiiiiiiiiiiieeeee e 68

Viewing GUI Object Properties............ccvveeeiiiiiiieeeeeeeeeeeeenn 70

Learning the GUI with the RapidTest Script Wizardccceveeeee. 73

Learning the GUI by RECOIAINGccceureveueeeeeeeeeeeeeeeeeeee e 75 Sooks
Learning the GUI Using the GUI Map Editor..............cooovvvvvivviinnnnnnn. 76

Saving the GUI MaPccviiiiieeiie ettt 79 @4 Find
Loading the GUIMap File..........uuiiiiiiiiiiiiie 83 Find
Guidelines for Working with GUI Maps............cuvvvviiiiiiiiiiieeeeeeeeeee, 88 Again
Chapter 5: Editing the GUIMap.........cccceeeiivieeeeicie e, 92 @ Help
About Editing the GUI Map.........ccoovviiiviiicicieee e 93

The RUNWIZArd.........coooomiiie e 95 ‘ ’
The GUI Map EdItOr.......ccoviiiiiiieiieeieeee e 98 =
Modifying Logical Names and Physical Descriptions...................... 102 Top of
How WinRunner Handles Varying Window Labels......................... 106 Chapter
Using Regular Expressions in the Physical Description.................. 110 &Back
Copying and Moving Objects between Filesccccceveeeiiiieenennn. 112

Finding an Objectina GUIMap Fileccooeviiiiiiiiiiee, 115

Finding an Object in Multiple GUI Map Filesccccoiiiiinnee. 116

Manually Adding an Object to a GUI Map Filecccccceeeeeeeennnn. 117

Deleting an Object from a GUI Map File............ccoovvvviiiiiiniiiicen. 118

Clearinga GUIMap File ... 119

Filtering Displayed ODJECtS............ovvvviiiiiiiiiie e 120

Saving Changes to the GUI Map.......ccccceeeeeiiiiiiiiiiecceee e 122

WinRunner User’s Guide Page 7

Table of Contents

Chapter 6: Configuring the GUIMapcooovvvviiiiiiiiiiiiiiiennn 123

About Configuring the GUI Mapccoooveiiiiiiiiieeee 124
Understanding the Default GUI Map Configuration........................ 127

Mapping a Custom Object to a Standard Classc.cccccvvvvnnnnn. 129 BE,%'kS
Configuring a Standard or Custom ClassS.........ccccvvveeeeeiiiiiiinniinnns 134 Online
Creating a Permanent GUI Map Configuration.............ccccoeeeeeeeee. 142 # Find
Deleting a Custom ClassS..........ccevveiiiiiiiiiii e 145

The Class PrOPeItY.......uuueeiiiiiiiiiiiieeeee e 146 Find
All PROPEIIES ...ttt ee et ee e, 148 Again
Default Properties Learned................oovvuiiiiiiiiiee e 154 2 Help
Properties for Visual BasiC ODJECtSccoevviviiiiiiiiiiiiiiiiiiee 155

Properties for PowerBuilder Objectsccceevvieeeeiiiiiiieceeii 156 ‘ }
Chapter 7: Learning Virtual Objectscccovvviiiiiiiiiiiiiiie e, 157 E]
About Learning Virtual OBJectS..........cceeiiiiiiiieeee 158 gﬁgp?;r
Defining a Virtual ODbJEeCt...........coovviiiiiiiiii e 160
Understanding a Virtual Object’s Physical Description................... 165 & Back

WinRunner User’s Guide Page 8

Table of Contents

PART Ill: CREATING TESTS

Chapter 8: Creating TeStS.....viiiiiiiiiiii e 167

ADbOUL Creating TeStS. ...t 168 V)
The WIinRunner Test WIiNdOW..........cc.ccveveeeeeeeee et eee e, 170 ooks
Context Sensitive ReCOrdingcccccuvuiiiiiiiiiiiiieieeeeee e 171

Solving Common Context Sensitive Recording Problems.............. 176 @ Find
ANAIOG RECOIING ...ttt 179 Find
ChECKPOINTS ... 181 Again
Data-DrivVen TeSIS.....ccoi ittt 182 5
SYNChIroNIZAtIoN POINESc.euivieieieeeeeeeeieeeeee e eeen e es s 182 & Help
Planning @ TeST. ...t 183 ‘ ’
Documenting Test Informationcccceeveeiiiiiieieiiiccee, 184

Associating Add-ins with @ Test............cceoiiiiiiiiiii, 188 &)
RECOIING @ TSt ...t 190 gﬁgp?;r
Activating Test Creation Commands Using Softkeys..................... 194

Programming @ TeST........uuuuiiiiiiiiiiiiiiie e 197 & Back
Editing @ TSt ..o 198

Managing TeSt FIleScccooeiiiice e 199

WinRunner User’s Guide Page 9

Table of Contents

Chapter 9: Checking GUI ObjecCtscccooviiiiiiiiiiiiiiiiei e, 208

About Checking GUI ODJECES........cccoeviiiiiiiiiiiieeeeeeee e 209

Checking a Single Property Value............cccovvvviiiiiiiiiiiiiee e 212

Checking a Single ODJECciiiiiiiiie e 215 Books

Checking Two or More Objects in @ WindOW.............cccccoeeviiininnnees 221 Online

Checking All Objects in @ WiNdOW.............ccoovviviiiiiiiiiiiiiiiie e, 225 # Find

Understanding GUI Checkpoint Statements.............cccccccccceeeeeennnn. 230

Using an Existing GUI Checklist in a GUI Checkpoint.................... 233 Find

MOGIfYiNG GUI CRECKIISESveevveeeeeeseeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeee e 236 Again

Understanding the GUI Checkpoint Dialog BOXeS..........ccccceeeeennn... 245 2 Help

Property Checks and Default Checks...........ccccceeviiiiiiiiiiiiiiiiiiee, 262

Specifying Arguments for Property Checks..........ccccceeeviieeeiieennnn.. 273 ‘ }

Editing the Expected Value of a Property...........cccccevvvvieeiiiiiiicennn. 284

Modifying the Expected Results of a GUI Checkpoint.................... 287 To%lof
Chapter
= Back

WinRunner User’s Guide Page 10

Table of Contents

Chapter 10: Working with ActiveX and Visual Basic

(@0 811 (0] 1= 291
About Working with ActiveX and Visual Basic Controls 292
Choosing Appropriate Support for Visual Basic Applications......... 294 BE,%'kS
Activating an ActiveX Control Methodcccoooiiiiiiiiiiiiii 297 Online
Viewing ActiveX and Visual Basic Control Properties..................... 297 # Find
Retrieving and Setting the Values of ActiveX and

Visual Basic Control Properties.........cccccevviiiiiiiiiiiiiiiiiiieeeeeeeee 301 Find
Working with Visual Basic Label COntrolsccooveeeevereeeenn. 304 Again
Checking Sub-Objects of ActiveX and Visual Basic Controls......... 309 2 Help
Using TSL Table Functions with ActiveX Controls............c.ccccceennnn. 314
Chapter 11: Checking PowerBuilder Applications.................. 316 ‘ ’
About Checking PowerBuilder Applicationsccccccvvvviieennen. 317 &)
Checking Properties of DropDown ODjJeCtS........ccoeveeeeeeiiiiiiiiiinnes 318 gﬁgp?;)
Checking Properties of DataWindows............cccoevvvvvviiiiiiiiiiieeeeenn. 323
Checking Properties of Objects within DatawWindows..................... 327 4= Back
Working with Computed Columns in DataWindows....................... 331
Chapter 12: Checking Table Contents.........cccovvviiiiiiiiiiinnennen. 332
About Checking Table Contents...........ccooooiiiiiiiiiiiiiiiiieeeeee e 333
Checking Table Contents with Default Checksccccoeeeeeen.n. 336
Checking Table Contents while Specifying Checks 338
Understanding the Edit Check Dialog BOXoooviiiiiiiiiiininee. 342

WinRunner User’s Guide Page 11

Table of Contents

Chapter 13: Checking Databases..........ccccccceviiiiiiiiiiiiiiiiciinne, 353

About Checking Databases..........ccoooveiiiiiiiiiiiiiieeeeee e 354

Choosing a Database...............uvvveiiiiiiiiie e 358

Creating a Default Check on a Databaseccccccceveiiieieeeeeennn. 363 BE,%'kS

Creating a Custom Check on a Database..............cccccccciiiiiinnnnnns 368 Online

Messages in the Database Checkpoint Dialog Boxes.................... 377 # Find

Working with the Database Checkpoint Wizardcccoueen. 378

Understanding the Edit Check Dialog BOXccoooiiiiiiiiiiiiinnnen. 391 Find

Modifying a Database Checkpoint............c.ooeeeeeeeeeeeeeeeeeeenenen, 400 Again

Modifying the Expected Results of a Database Checkpoint........... 415 2 Help

Parameterizing Database Checkpoints..............ccccceiiiiiiiiiiiiieennen. 419

Using TSL Functions to Work with a Database................cccccceennn. 426 ‘ }

Chapter 14: Checking Bitmapsccoeeeeeeiiiiiiiiieeeeeee e, 433 E]

About Checking BIitMapseueeveiiiiiiiiiieeeeeee e 434 oop ?f
. . . . pter

Checking Window and Object BItmapscccovvvviveviiiiiiieeeeeenn. 438

Checking Area BIitMapsScoooiiiiiiiiiiiiiiiiiiie e 441 4 Back

Chapter 15: Checking TeXtcccoiiiiiiiiiiiiee 443

ADbOUL ChecKiNg TeXEiiei i e 444

REAAING TOXLE ..eiiiiiiie e 446

Searching for TeXt.....coooiiiiiec e 451

ComMPAriNg TEXE....cceeiiiieiieeeeee e 458

Teaching Fonts to WINRUNNET ..o 459

WinRunner User’s Guide Page 12

Table of Contents

Chapter 16: Creating Data-Driven TestS......cccccuvvvvvvniiiiiinnnnnenn. 465

About Creating Data-Driven TeStS........ccoovveiiiiiiiiiiiiiiiieeeeeeee e 466

The Data-Driven Testing ProCesscoovvvvvvieiiiiiiiiiiiiieeeeeeeeeeee 467

Creating a Basic Test for CoONVersion.............uuvvvieiiiiiiiieeeeeeeeeeee, 468 BE,%'kS

Converting a Test to a Data-Driven TeSt..........uuvueeeeiiiiiiiiiiinininnnn. 472 Online

Preparing the Data Table ..., 492 # Find

Importing Data from a Databaseccccoeeeiiiiiiiieiiiiicee, 503

Running and Analyzing Data-Driven TestsS...........ccooeeiiiiiivinninnennn. 516 Find

Assigning the Main Data Table for @ TeStcccovveveeeeveeeerreennn, 518 Again

Using Data-Driven Checkpoints and Bitmap 2 Help
Synchronization POINES ..o 521

Using TSL Functions with Data-Driven TestS.........c.c..ccvvvvvveviiieennnn. 529 ‘ }

Guidelines for Creating a Data-Driven TeSt.........ccccceeeeiiiieeiieeeeeenn. 539 =

Chapter 17: Synchronizing the Test Runccccceeeeieeeenenn, 542 gﬁgp?;r

About Synchronizing the TeSt RUNccceiiiiiiiiieieeiieeeeeeeiiii, 543

Waiting for Objects and WiNdOWS.............cooovviiiiiiiiiiiiiiiiiieeeeee 547 4 Back

Waiting for Property Values of Objects and Windows.................... 549

Waiting for Bitmaps of Objects and Windows...............ccceevvvvvvnnnnns 556

Waiting for Bitmaps of Screen Areas............ccooeeveciiiiiiiiiiiiiiiieeee, 559

WinRunner User’s Guide Page 13

Table of Contents

Chapter 18: Handling Unexpected Events and Errors............. 562

About Handling Unexpected Events and Errors............ccccvvvvveeenee. 563

Handling Pop-Up EXCEPLIONS...........ccvvviiiiiiiiiiiiee e 565

Handling TSL EXCEPLIONScovvvveiiiiiiiiiie e 573 BE,%'kS

Handling Object EXCEPLIONSeuviiiiiiiiiiiiiiaiiiii e 580 Online

Activating and Deactivating Exception Handling 587 # Find

Chapter 19: Using Regular EXpressionsccccceevvveeeeeeeeeennnnn. 588 Find

About Regular EXPreSSIONScuviiiiiiiieeeeaiieee e 589 Again

When to Use Regular EXPressions...........cceeeiiieiiieeeeeeeieeeeeeeeiiiiinnns 590 5

Regular EXPression SYNtaXccecoeeeieeieiiesieeiee e s esveesve e 595 & Help
4

[=]

Top of
Chapter
= Back

WinRunner User’s Guide Page 14

Table of Contents

PART IV: PROGRAMMING WITH TSL
Chapter 20: Enhancing Your Test Scripts with Programming 600

About Enhancing Your Test Scripts with Programming.................. 601

] P2 1= (=Y 01 (S 602 ooks
Comments and White SPace...........cccuvuiiiiiiiiiiiiiieeeeeeeee e 603

Constants and Variables ...t 605 @4 Find
Performing CalCulations ... 606 Find
Creating Stress ConditioNS..........cccooiiiiriiiiiiiiee e 608 Again
DeCISION-MAKING ...uiiieeeeeeeeeeeeeee e e 611 5
Sending Messages to the Test Results Windowcc.c....... 615 & Help
Starting Applications from a TeSt SCrptcovvviieiiiiiiiiiiiiiis 616 ‘ ’
DefiNiNng TSt StEPS ..uuei i 617

Comparing TWO FIleS........coooiiiiii e 618 E]
Chapter 21: Generating FUNCLIONS.........oooiiiiiiiiiiiiii e 620 gﬁgpct);r
About Generating FUNCLONS.............coovviiiiiiiiiii e 621 EBack
Generating a Function for a GUI Object............ccvvvviiiiiiiin. 624

Selecting a Function from a LiSt ..o, 629

Assigning Argument ValUEsooovvviiiiviiiiiii e eeeeeeeeeeeeeaieiaaens 631

Modifying the Default Function in a Category............cccccvvvvvvvieennen. 634

WinRunner User’s Guide Page 15

Table of Contents

Chapter 22: Calling TeStSuuuiiiiiiiiiieeee 636

ADOUL CalliNg TESTS ...ttt 637

Using the Call Statement...............ooovvviiiiiiiiiiiee e 639

Returning to the Calling TeSt.........covvviiiiiiiiiiii e, 641 BE,%'kS
Setting the Search Path..............ooooiiiiiiii 644 Online
Defining Test Parameters............uuuveiiiiiiiiiie e 646 A Find
Chapter 23: Creating User-Defined Functions..............ccccuuu..... 655 Find
About Creating User-Defined FUNCLIONS............ooooeiiiiiiiiiiiiiiieeeee, 656 Again
U] Toa (0] IS 1] = O 658 5
RELUMN SALEMENTS.eeeeeeeeeeeeeee et eeeee e ee e, 661 & Help
Variable, Constant, and Array Declarationscccccccvvvinnnnee. 662 ‘ ’
Example of a User-Defined Function..............cccoeoeeviiiiiieiiiiicceenn, 670

Chapter 24: Creating Compiled Modulesoceeiiieeiinnnnnnn. 671 To%lof
About Creating Compiled Modules...........ccccceeieiiiiiieeeeiieeeeeeeeeiiii, 672 Chapter
Contents of a Compiled Module ..., 673 EBack
Creating a Compiled Module............cccciiiiiiiiiiiee e 675

Loading and Unloading a Compiled Module..............cccccieeieennnn. 678

Example of a Compiled Module............cccooeeviiiiiiiiiiiiieee, 682

WinRunner User’s Guide Page 16

Table of Contents

Chapter 25: Calling Functions from External Libraries 683
About Calling Functions from External Librariesccccvveeeeee. 684
Dynamically Loading External Librariescccovvvvveiiiiiiiciennnn. 686
Declaring External FUNCtions in TSLcooovvviiiiiiiiiiiiiiiiiiieeeceeeeen 688 Books
WiINdOWs APl EXGMPIESovviiiiiiiiiieiieeee e 692 Online
Chapter 26: Creating Dialog Boxes for Interactive Input......... 694 @ Find
About Creating Dialog Boxes for Interactive Input.......................... 695 —
Creating an Input Dialog BOX........cccccuimiiiiiiiiiiiiiiiceeeeeeeeee e 697 Again
Creating a List Dialog BOX........ccuvuiiiiiiiiiiiieeeeeeeeeeeeeeee e 699 5
Creating @ CUStOM DIialog BOXccovueueeeeeeeeeeeeeeeeseseeeseeesseeen 701 & Help
Creating a Browse Dialog BOX........ccccuuuiiiiiiiiiiiiiiiiiceeeeeeeeees 704 ‘ ’
Creating a Password Dialog BOX..........ccoovvvviiiiiiiiiiiicciecee e 706
[=]
Top of
Chapter
= Back

WinRunner User’s Guide Page 17

Table of Contents

PART V: RUNNING TESTS

Chapter 27: RUNNING TESIS ...ovvuiii i 709
ADOUL RUNNING TESES ..uvvtiiiiiie et e e e e e e e e 710
WinRUNNEr Test RUN MOUEScocoueeeeeiieeeeeee e et 712 ooks
WinRunner RUN COMMANGS.........cooviiiiiiiiiiiaieee e eeeeeeeeeeeeeeeeeeinees 716
Choosing Run Commands Using SOftkeysccccceeviiiiiiieeeeeennn. 720 @ Find
Running a Test to Check Your Application...............cccccciiiiiiiiinnnee. 722 —
Running a Test to Debug Your Test Script...........ccooveiiiiiiiiiiieennen. 724 Again
Running a Test to Update Expected Results............cccccevvvvvvinnnnnnn. 726 5
Controlling the Test Run with Testing Optionscccoeveven.... 731 & Help
Reviewing Current TeSt SettiNgSccvveiviiiiiieieiiiieieee 732 ‘ ’
Solving Common Test Run Problemsoooviiiiiiiiiiieeeeeee, 735
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Page 18

Table of Contents

Chapter 28: Analyzing Test ReSUlts ..., 739

About Analyzing TeSt RESUIS...........oooeviiiiiiiieee 740

The Test ReSults WINAOW...........ccooeeiiiiiiiiiiiiiiiieeeeeeeee e 741

Viewing the Results of a TeStRUNovviiiiiiiieiii, 746 BE,%'kS

Viewing the Results of a Property Check............ccccciiiiiiiiiiiiinnnn. 751 Online

Viewing the Results of a GUI Checkpoint...............ccocoviviiiiiiiiiinnnns 753 # Find

Viewing the Results of a GUI Checkpoint on Table Contents......... 757

Viewing the Expected Results of a GUI Checkpoint Find
0N TADIE CONLENES ..., 763 Again

Viewing the Results of a Bitmap Checkpoint.................cccoevvvinnnns 768 2 Help

Viewing the Results of a Database Checkpoint.............cccccccvveeeen. 770

Viewing the Expected Results of a Content Check ‘ }
in a Database Checkpointuvviiiiiiiiiiie e 774

Updating the Expected Results of a Checkpoint.............cccvvvnennnn. 779 Tol?of

Viewing the Results of a File Comparison...........ccccceeeveevvivieiinnnnns 783 Chapter

Reporting Defects Detected during a Test Run..............ccccceeennn. 785 EBack

Chapter 29: Running Batch TestScccoovviiiiiiiiiiiieiii e, 786

About Running Batch TeStScoovvviiiiiiiiiciii e, 787

Creating a BatCh TesSt........ooooiiiiiiii e 789

Running a BatCh TeSt.........uuuiiiiiii e 791

Storing Batch TeSt RESUISvvveeiiiiiic e 792

Viewing Batch Test RESUIS.........oiiiiiiiiii e 794

WinRunner User’s Guide Page 19

Table of Contents

Chapter 30: Running Tests from the Command Line 795
About Running Tests from the Command Linecccccuvvvveeenee. 796
Using the Windows Command LiNeccccoeeveeeeeeiiieiieeeiiiinn, 798
Command Line OPLIONS........uuuuiiiiiiiiiei e e 800 BE,%'kS
Online
PART VI: DEBUGGING TESTS 8 Find
Chapter 31: Debugging Test SCriptsSccoevviiiieeeeiiiiiiie e, 822 Find
About Debugging Test SCrPLS.........ccovviiiiiiiiiiiiiee e, 823 Again
Running a Single Line of a Test SCript ... 825 P el
Running a Section of & TeSt SCrPt......ccvvviiiiiieiiii i 826 - ep
Pausing Test EXECULION...........ooivviiiiieiiiceee e 827 ‘ ’
Chapter 32: Using BreakpointS.......ccccooeeiiiiiiiiiieeceieeiiiei e 829
ADbOUL BreakpOointsSuuuiiiieiiiice e 830 Tol?of
Breakpoint TYPES.....vei e e et et et e e e e e eraee e e eaee e 832 Chapter
Setting Break at Location Breakpointsccccccvevveieeieeninnninnnnnns 834 &Back
Setting Break in Function Breakpointsccccviiiiiiiieiieeeeeeen, 837
Modifying BreakpointScoovviiiiiiiiiiiiiiie e 840
Deleting Breakpointsuuueeeeeiiiiiiiiiieeeeee e 842

WinRunner User’s Guide Page 20

Table of Contents

Chapter 33: Monitoring Variablescccccoviiiiiiiiiiiiie 843
About Monitoring Variables ... 844
Adding Variables to the Watch List............cccccoeeeiiiiiiiiiiiiiiieeeii, 847
Viewing Variables in the Watch Listccccccoeiiiiiiiiiiiiiees 849 BE,%'kS
Modifying Variables in the Watch LiSt...........cccccooeviiiiiiiiiiiiiiiiie 851 Online
Assigning a Value to a Variable in the Watch List.......................... 852 # Find
Deleting Variables from the Watch Listcccooviiiiiiiiiieeen. 853

Again

PART VII: CONFIGURING WINRUNNER

Chapter 34: Customizing WinRunner’s User Interface............ 855 ? Help
About Customizing WinRunner’s User Interface.............ccccccevvvveee. 856 ‘ ’
Customizing the User Toolbar...........cccccvviiiiiiiiiis 857
Using the User TOOIDAr............uuiiiiiiiiiiii e 879 =
Configuring WinRunner Softkeyscccccovviiiii i, 881 ot
Chapter 35: Customizing the Test Script Editor....................... 887 EBack
About Customizing the Test Script EAitor.........cccoeeviivieiiiiiiiieiieiin, 888
Setting Display OPtioNSuuuiiiiiiiiiei e 889
Personalizing Editing Commands...........cccccoeeeviiiiiiiniiiiiiiiiieee 899

WinRunner User’s Guide Page 21

Table of Contents

Chapter 36: Setting Global Testing OptionScccccevvviiieeneenn. 902
About Setting Global Testing Optionsoooevviiiiiiiiiiiiieeeeee, 903
Setting Global Testing Options from the General Options

DIAlog BOX ..o 904 BE,%'kS
Global Testing OPtiONScooviiiiiiiiii e 906 Online
Choosing Appropriate Timeout and Delay Settings........................ 956 # Find
Chapter 37: Setting Testing Options from a Test Script.......... 961 Find
About Setting Testing Options from a Test Scriptccccvvvneee. 962 Again
Setting Testing Options with setvar...........ccccooevviiiiciiiiie e, 963 5
Retrieving Testing Options with getvar............cccocveveiveeieecveenne. 965 & Help
Controlling the Test Run with setvar and getvar.................c.ccceee 968 ‘ ’
Test Script Testing OPLiIONScceeeeeeeeeeeiieeeeee e 969
Chapter 38: Customizing the Function Generator 1004 To%lof
About Customizing the Function Generatorccccovvvvvvvvnnnnns 1005 Chapter
Adding a Category to the Function Generator..................c.ccovueee. 1006 EBack
Adding a Function to the Function Generator...............cccuvvveveeeee. 1008
Associating a Function with a Categorycccccceeveeeeeiieiiiieeeiinnn, 1020
Adding a Subcategory to a Category..........ccccvvvcviiiiieeeeeeeeeeeeeee, 1022
Setting a Default Function for a Categorycccccceeeeeeiiiiiininnnns 1024

WinRunner User’s Guide Page 22

Table of Contents

Chapter 39: Initializing Special Configurations...................... 1026

About Initializing Special Configurationscoooeeciiiiviinnnnn. 1026

Creating Startup TeSIS......uuuieiiiii i e 1027

Sample Startup TeSt.......ooviviiiecrir e 1028 Books

Online

PART VIII: WORKING WITH TESTSUITE 8 Find

Chapter 40: Managing the Testing Process.......cccccceeeeeeeennnnn. 1030 Find

About Managing the Testing Process........ccccccoeveeeeeeiiiiieieeiiiiiinnnns 1031 Again

Using WinRunner with TeStDIreCtor ... 1035 D Help

Connecting to and Disconnecting from a Project 1038 i

Saving TestS t0 @ PrOJECT.........uuviiiiieii e 1045 ‘ ’

Opening TestS iN & ProJECE.........ooeiiiiiiiiiiiiie e 1048

Managing Test Versions in WINRUNNer..............cccccviiiiiiiiieeennen. 1052 =

Saving GUI Map Files to a Projectcccccceeeveiiiiiiciin e, 1057 ot

Opening GUI Map Files in @ Project............eevveveiiiiiiieieiiiiiis 1060

RUNNING TeStS iN @ TESE SEL...cciivieiiie e 1062 & Back

Running Tests on Remote HOSLS..............vciiiiiiiiiiieeeeeeeeeeeeeeiia, 1064

Viewing Test Results from a Project..........ccccccvviviiiiiiiiiiiiiiiiiee 1065

Using TSL Functions with TestDIrectorccccoeccvvvveeennicinnnnnn. 1068

Command Line Options for Working with TestDirector 1073

WinRunner User’s Guide Page 23

Table of Contents

Chapter 41: Testing Client/Server Systemscccccccvvvvvnnnnnn, 1077

About Testing Client/Server SyStems..........ccccovviiiiiiiiiiiiiiiiiee 1078

Emulating Multiple USErsS.........ooooiiiiiieeciieeie e 1079

Virtual User (Vuser) Technologycceeeeiiiiiiiiieeeieiiieeeeeiiiiinns 1080 BE,%'kS
Developing and Running SCENArioSccoovviviiiiiiiiiiiiiiieiiiiee 1082 Online
Creating GUI VUSEI SCIIPLS ...vvuviiiiiiiiii e 1084 # Find
Measuring Server PerformancCe..........ccccceeveiiiieeeeieiiieeeeeeeeiins 1085
Synchronizing Virtual User TranSactions..............ceeeeveveeeeeeennaannn, 1087 Find
Creating a Rendezvous POINt............oooveeeeeeeeeeeeeeeeeee e, 1088 Again
A Sample VUSEr SCrIPL ...ciiiiiiie e 1090 2 Help
Chapter 42: Reporting DefectS........cccoeeveeiiiiiiiiieiiiciee e 1093 ‘ ’
About Reporting Defectscooovviiiiiiiiicce e 1094

Using the Web Defect Managercooeeeiiiiiiiiiiiiiiiiiiieiieeee 1095 &)
Setting Up the Remote Defect Reporter.........occvvvveveviiiiiiiinnnnnnnn, 1097 gﬁgp?;r
The Remote Defect Reporter Window................evvviiiiiiiiieeeeeeeenn, 1099

Reporting New Defects from the Remote Defect Reporter 1101 & Back
10T 0 = SRR 1103

WinRunner User’s Guide Page 24

Welcome to WinRunner

Books
Online

& Find

Welcome to WinRunner, Mercury Interactive’s enterprise functional testing tool
for Microsoft Windows applications. With WinRunner you can quickly create and

run sophisticated automated tests on your application. Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Page 25

Welcome to WinRunner

Using This Guide

This guide describes the main concepts behind automated software testing. It

provides step-by-step instructions to help you create, debug, and run tests, and
. . Books
to report defects detected during the testing process. Online
This guide contains 8 parts: & Find
. . Find
Part I: Starting the Testing Process Again
Provides an overview of WinRunner and the main stages of the testing process. 2 Help
Part Il: Understanding the GUI Map ‘ ’
Describes Context Sensitive testing and the importance of the GUI map for =
creating adaptable and reusable test scripts. Top of
Chapter
Part lll: Creating Tests & Back

Describes how to create test scripts, insert checkpoints, assign parameters, use
regular expressions, and handle unexpected events that occur during a test run.

Part IV: Programming with TSL

Describes how to enhance your test scripts using variables, control-flow
statements, arrays, user-defined and external functions, WinRunner’s visual
programming tools, and interactive input during a test run.

WinRunner User’s Guide Page 26

Welcome to WinRunner

Part V. Running Tests

Describes how to run tests, including batch tests, both from within WinRunner and
from the command line, and analyze test results.

. . Books
Part VI: Debugging Tests online
Describes how to control test runs to identify and isolate bugs in test scripts, by
using breakpoints and monitoring variables during the test run. ¢4 Find

Find
Again

Part VII: Configuring WinRunner

Describes how to customize WinRunner’s user interface, test script editor and the @ Help
Function Generator. You can also change WinRunner’s default settings, both
globally and per test, and initialize special configurations to adapt WinRunner to ‘ ’
your testing environment. =

Top of
Chapter

Part VIII:Working with TestSuite

Describes how to report defects detected in your application and how WinRunner | Back
interacts with TestDirector and LoadRunner.

WinRunner User’s Guide Page 27

Welcome to WinRunner

WinRunner Documentation Set

% In addition to this guide, WinRunner comes with a complete set of documentation:
LA\

WinRunner Installation Guide describes how to install WinRunner on a single Bolqks
computer or a network. Online
: , o . @4 Find
WinRunner Tutorial teaches you basic WinRunner skills and shows you how to
start testing your application. Find
Again
WinRunner Customization Guide explains how to customize WinRunner to 2 Hel
g nelp

meet the special testing requirements of your application.

WebTest User’s Guide teaches you how to use the WebTest add-in to test your ‘ ’

Web site.
T = f
opo
TSL Reference Guide describes Test Script Language (TSL) and the functions it Chgpter
contains.
= Back

WinRunner User’s Guide Page 28

Welcome to WinRunner

Online Resources

WinRunner includes the following online resources:

Read Me First provides last-minute news and information about WinRunner. golqks

niine
What's New in WinRunner describes the newest features in the latest versions

: #h Find

of WinRunner.

Find
Books Online displays the complete documentation set in PDF format. Online Again
books can be read and printed using Adobe Acrobat Reader 4.0, which is 2 Hel
included in the installation package. Check Mercury Interactive’s Customer N P
Support web site for updates to WinRunner online books. ‘ ’
WinRunner Context-Sensitive Help provides immediate answers to questions]
that arise as you work with WinRunner. It describes menu commands and dialog Top of
boxes, and shows you how to perform WinRunner tasks. Check Mercury Chapter
Interactive’s Customer Support Web site for updates to WinRunner help files. &Back

TSL Online Reference describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions. Check Mercury Interactive’s
Customer Support Web site for updates to the TSL Online Reference.

WinRunner Sample Tests includes utilities and sample tests with accompanying
explanations. Check Mercury Interactive’s Customer Support Web site for
updates to WinRunner help files.

WinRunner User’s Guide Page 29

Welcome to WinRunner

Technical Support Online uses your default Web browser to open Mercury
Interactive’s Customer Support Web site. The URL for this Web site is
http://web.merc-int.com.

Support Information presents Mercury Interactive’s Customer Support Web site gﬁﬁﬁz
and home page, the e-mail address for requesting information, the name of the
relevant news group, the location of Mercury Interactive’s public FTP site, and a #4 Find
list of Mercury Interactive’s offices around the world. Find
Again
Mercury Interactive on the Web uses your default Web browser to open
Mercury Interactive’s home page. This site provides the most up-to-date @ Help
information on Mercury Interactive and its products. This includes new software
releases, seminars and trade shows, customer support, educational services, ‘ ’
and more. The URL for this Web site is http://www.merc-int.com.]
Top of
Chapter
= Back

WinRunner User’s Guide Page 30

Welcome to WinRunner

Typographical Conventions

This book uses the following typographical conventions:

1,2,3 Bold numbers indicate steps in a procedure. Boloks
Online
. Bullets indicate options and features.
, #h Find
> The greater than sign separates menu levels (for
example, File > Open). Find
Again
Bold Bold text indicates function names.
. . - . ‘? Help
Italics Italic text indicates variable names.
Helvetica The Helvetica font is used for examples and statements ‘ ’
that are to be typed in literally. =
[1] Square brackets enclose optional parameters. Top of
Chapter
{} Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter. “=Back

In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a program example,
an ellipsis is used to indicate lines of a program that were
intentionally omitted.

A vertical bar indicates that either of the two options
separated by the bar should be selected.

WinRunner User’s Guide Page 31

Books

Starting the Testing Process Online
@4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Page 32

Starting the Testing Process

Introduction

Welcome to WinRunner, Mercury Interactive’s enterprise functional testing tool
for Microsoft Windows applications. This guide provides detailed descriptions of

Books
WinRunner's features and automated testing procedures. Online
Recent advances in client/server software tools enable developers to build #4 Find
applications quickly and with increased functionality. Quality Assurance Find
departments must cope with software that has dramatically improved, but is Again
increasingly complex to test. Each code change, enhancement, defect fix, or D Hel

¢ Help

platform port necessitates retesting the entire application to ensure a quality
release. Manual testing can no longer keep pace in this dynamic development ‘ ’
environment.

_ _ [E]
WinRunner helps you automate the testing process, from test development to Top of
execution. You create adaptable and reusable test scripts that challenge the Chapter
functionality of your application. Prior to a software release, you can run these 4= Back

tests in a single overnight run—enabling you to detect defects and ensure
superior software quality.

WinRunner User’s Guide Chapter 1, page 33

Starting the Testing Process ¢ Introduction

WinRunner Testing Modes

WinRunner facilitates easy test creation by recording how you work on your
application. As you point and click GUI (Graphical User Interface) objects in your
application, WinRunner generates a test script in the C-like Test Script Language
(TSL). You can further enhance your test scripts with manual programming.
WinRunner includes the Function Generator, which helps you quickly and easily
add functions to your recorded tests.

WinRunner includes two modes for recording tests:

Context Sensitive

Context Sensitive mode records your actions on the application being tested in
terms of the GUI objects you select (such as windows, lists, and buttons), while
ignoring the physical location of the object on the screen. Every time you perform
an operation on the application being tested, a TSL statement describing the
object selected and the action performed is generated in the test script.

As you record, WinRunner writes a unique description of each selected object to
a GUI map. The GUI map consists of files maintained separately from your test

scripts. If the user interface of your application changes, you have to update only
the GUI map, instead of hundreds of tests. This allows you to easily reuse your

Context Sensitive test scripts on future versions of your application.

Books
Online

@& Find

Find
Again

‘? Help

<4

>

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 1, page 34

Starting the Testing Process ¢ Introduction

To run a test, you simply play back the test script. WinRunner emulates a user by
moving the mouse pointer over your application, selecting objects, and entering
keyboard input. WinRunner reads the object descriptions in the GUI map and
then searches in the application being tested for objects matching these

Books
descriptions. It can locate objects in a window even if their placement has Online
changed.

J @ Find

Find
Analog Again
Analog mode records mouse clicks, keyboard input, and the exact P

& Help

x- and y-coordinates traveled by the mouse. When the test is run, WinRunner
retraces the mouse tracks. Use Analog mode when exact mouse coordinates are ‘ ’
important to your test, such as when testing a drawing application.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 1, page 35

Starting the Testing Process ¢ Introduction

The WinRunner Testing Process

Testing with WinRunner involves six main stages:

Books

Online

#4 Find

Create Tests Run Tests Report Defects AF ind
gain
(o)

Create Debug Tests View Results 2 Help

GUI Map

4

[=]

Top of
Chapter

= Back

Create the GUI Map

The first stage is to create the GUI map so WinRunner can recognize the GUI
objects in your application being tested. Use the RapidTest Script wizard to review
the user interface of your application and systematically add descriptions of every
GUI object to the GUI map. Alternatively, you can add descriptions of individual
objects to the GUI map by clicking objects while recording a test.

WinRunner User’s Guide Chapter 1, page 36

Starting the Testing Process ¢ Introduction

Create Tests

Next, you create test scripts by recording, programming, or a combination of both.

While recording tests, insert checkpoints where you want to check the response
of the application being tested. You can insert checkpoints that check GUI Books
objects, bitmaps, and databases. During this process, WinRunner captures data Online
and saves it as expected results—the expected response of the application being | #& Fing
tested.
Find
Again
Debug Tests 2 help
You run tests in Debug mode to make sure they run smoothly. You can set
breakpoints, monitor variables, and control how tests are run to identify and ‘ ’
isolate defects. Test results are saved in the debug folder, which you can discard
once you finished debugging the test. Tol?of
Chapter
Run Tests 4 Back

You run tests in Verify mode to test your application. Each time WinRunner
encounters a checkpoint in the test script, it compares the current data of the
application being tested to the expected data captured earlier. If any mismatches
are found, WinRunner captures them as actual results.

WinRunner User’s Guide Chapter 1, page 37

Starting the Testing Process ¢ Introduction

View Results

You determine the success or failure of the tests. Following each test run,

WinRunner displays the results in a report. The report details all the major events

that occurred during the run, such as checkpoints, error messages, system Bolqks

messages, or user messages. Online
: . . , @ Find

If mismatches are detected at checkpoints during the test run, you can view the

expected results and the actual results from the Test Results window. In cases of Find

bitmap mismatches, you can also view a bitmap that displays only the difference Again

between the expected and actual results. 2 Help

Report Defects ‘ ’

If a test run fails due to a defect in the application being tested, you can report =

information about the defect directly from the Test Results window. This gﬁgpft’ér

information is sent via e-mail to the quality assurance manager, who tracks the

defect until it is fixed. ‘= Back

WinRunner User’s Guide Chapter 1, page 38

Starting the Testing Process ¢ Introduction

Sample Application

Many examples in this book use the sample Flight Reservation application
provided with WinRunner. Note that this application is Year 2000 compliant.

Starting the Sample Application

You can start this application by choosing Start > Programs > WinRunner >
Sample Applications and then choosing the version of the flight application you
want to open: Flight 1A or Flight 1B.

Multiple Versions of the Sample Application

The sample Flight Reservation application comes in two versions: Flight 1A and
Flight 1B. Flight 1A is a fully working application, while Flight 1B has some “bugs”
built into it. These versions are used together in the WinRunner Tutorial to
simulate the development process, in which the performance of one version of an
application is compared with that of another. You can use the examples in this
guide with either Flight 1A or Flight 1B.

When WinRunner is installed with Visual Basic support, Visual Basic versions of
Flight 1A and Flight 1B applications are installed in addition to the regular sample
applications.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 1, page 39

Starting the Testing Process ¢ Introduction

Logging In

When you start the sample Flight Reservation application, the Login dialog box
opens. You must log in to start the application. To log in, enter a name of at least
four characters and password. The password is “Mercury” and is not case
sensitive.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 1, page 40

Starting the Testing Process ¢ Introduction

Working with TestSuite

WinRunner works with other TestSuite tools to provide an integrated solution for
all phases of the testing process: test planning, test development, GUI and load

testing, defect tracking, and client load testing for multi-user systems. gﬁﬁﬁz
: @ Find

TestDirector

TestDirector is Mercury Interactive’s software test management tool. It helps AFg;‘i’n

quality assurance personnel plan and organize the testing process. With
TestDirector you can create a database of manual and automated tests, build test @ Help
cycles, run tests, and report and track defects. You can also create reports and
graphs to help review the progress of planning tests, running tests, and tracking ‘ ’

defects before a software release.
T = f
. . . opo
When you work with WinRunner, you can choose to save your tests directly to Chgpter

your TestDirector database. You can also run tests in WinRunner and then use

TestDirector to review the overall results of a testing cycle. ©Back

WinRunner User’s Guide Chapter 1, page 41

Starting the Testing Process ¢ Introduction

LoadRunner

LoadRunner is Mercury Interactive’s testing tool for client/server applications.

Using LoadRunner, you can emulate an environment in which many users are
simultaneously engaged in a single server application. Instead of human users, it Bolqks
substitutes virtual users that run automated tests on the application being tested. Online
You can test an application’s performance “under load” by simultaneously & Find
activating virtual users on multiple host computers.
Find
Again
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 1, page 42

Starting the Testing Process

WinRunner at a Glance

This chapter explains how to start WinRunner and introduces the WinRunner

window. Books
Online
This chapter describes:
@4 Find
® Starting WinRunner
Find
® The Main WinRunner Window Again
® The Test Window 2 Help
® Using WinRunner Commands ‘ ’
® | oading WinRunner Add-Ins
[=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 2, page 43

Starting the Testing Process *» WinRunner at a Glance

Starting WinRunner

To start WinRunner, click Start > Programs > WinRunner > WinRunner. After
ﬁ several seconds, the WinRunner window opens. Note that the WinRunner
= Record/Run Engine icon appears in the status area of the Windows taskbar. This
1038 M engine establishes and maintains the connection between WinRunner and the
application being tested. #4 Find

Books
Online

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 2, page 44

Starting the Testing Process *» WinRunner at a Glance

The first time you start WinRunner, the Welcome to WinRunner window opens.
You can choose to create a new test, open an existing test, or run the RapidTest
Script wizard.

: Books
Welcome To WinRunner Online
@4 Find
. o Find
WinRunner Again
‘? Help
D New Test O
Create a new test seHpt ‘ ’
- || Open Test
Open an ex‘isting- test sgr'ipt @
— Top of
] Chapter
— ¥ | Rapid Test Script Wizard ~a
—m dotornatically create test scr‘ii:;t.s
= Back
p Show on startup MERCURY INTERACTIVE

If you do not want this window to appear the next time you start WinRunner,
clear the Show at Startup check box. To show the Welcome to WinRunner
window upon startup from within WinRunner, choose Settings > General
Options, click the Environment tab, and select the Show Welcome Screen
check box.

WinRunner User’s Guide Chapter 2, page 45

Starting the Testing Process *» WinRunner at a Glance

The Main WinRunner Window

The main WinRunner window contains the following key elements:

® WinRunner title bar

¢ Menu bar, with drop-down menus of WinRunner commands gﬁﬁﬁz

¢ Standard toolbar, with buttons of commands commonly used when running a # Find
test

® User toolbar, with commands commonly used while creating a test AFg;?n

® Status bar, with information on the current command, the line number of the 2 Help

insertion point, and the name of the current results folder

WinRunner title bar ‘ ’
= WinRunner M=

Fie Edit Cieate Bun Debug Tools Seftings ‘Window Help Menu bar @

||_|Q = |Ver”y :I' il ElE] 'zl@ < || @|@|§aj %I E” —— Standard toolbar Top of
B C\QANTest 1 [(O] =] Chapter

set_window ("Flight Reservation™, Z1):

obi_type ("MSMaskWncdClass". "0Z2799"%):

lizt_select_item ("Fly From: ", "Frankfurt"); # Item Number 1,
list_select_item ("Fly To:", "London™); # Item Number 1.
obi_mouse_click (m#3z7r7or, 114, 204, LEFT):

ohi_mouse_click ("FLIGHT', &9, 36, LEFT):

set_window ("Flights Takle", 1):

list_activate_item ("Flight", "13556 FERAa 1d:24 AM Loy 11
get_window ("Flight Reservation". 7]}

edit_set ("Name:", "John Smith"):

button press ("Insert Order"):

ohi_scheck gul("Insert Order", "listl.ckl™. "guii™, 19):
obj_check bitmap("Insert Done...", "Imgl", 51!

]

= Back

User toolbar

(ENE] Sl

| Status bar

|Line: 4 | Run Name:

WinRunner User’s Guide Chapter 2, page 46

i

Starting the Testing Process *» WinRunner at a Glance

The Test Window

You create and run WinRunner tests in the test window. It contains the following
key elements:

Books

® Test window title bar, with the name of the open test Online

® Test script, with statements generated by recording and/or programming in TSL, #4 Find
Mercury Interactive’s Test Script Language

Find
* Execution arrow, which indicates the line of the test script being executed (to Again
move the marker to any line in the script, click the mouse in the left window 2 Help

margin next to the line)

* Insertion point, which indicates where you can insert or edit text ‘ ’
B C:\DA\Test 1% [_[O]x] @
= set_vindow ["Flight Reservation', 21): : ! Top of
Ubj:type t"MSMas;andmass", "AZZTHSN) Test window fitle bar Ch apter

list_select _item ("Fly From:", "Frazkfurt"™: #§ Item Number 1.
list_select_itew ("Fly To:", "London"): # ITtem Number 1.
cbj_mouse_click ("#32770", 114, 204, LEFT): Execution arrow = Back
obhj_mouse click ("FLIGHT", 62, 38, LEFT):

get_window ("Flights Takle™. 1):

list_activate_item ("Flight", "1385¢ FEA i0:24 AM LoN 11

get_window ("Flight Reservation", 7] .'| Insertion pOIm
edit_set ("Name:", "John Smitk"):
buttan_press ("Insert Order"):
ohj_check gui("Tasert Order", "listl.ckl", "guii®™, 191: .
obj_check bitmap("Insert Done...", "Imgl"s 517 Test script

q | I

WinRunner User’s Guide Chapter 2, page 47

Starting the Testing Process *» WinRunner at a Glance

Using WinRunner Commands

You can select WinRunner commands from the menu bar or from a toolbar.
Certain WinRunner commands can also be executed by pressing softkeys.

Books
Online
Choosing Commands on a Menu ,
@& Find
You can choose all WinRunner commands from the menu bar.
Find
Again
Clicking Commands on a Toolbar
‘? Help

You can execute some WinRunner commands by clicking buttons on the toolbars.
WinRunner has two built-in toolbars: the Standard toolbar and the User toolbar. ‘ ’
You can customize the User toolbar with the commands you use most frequently.

[=]

Creating a Floating Toolbar Top of
Chapter

You can change a toolbar to a floating toolbar. This enables you to minimize
WinRunner while maintaining access to the commands on a floating toolbar, so “=Back
you can work freely with the application being tested.

WinRunner User’s Guide Chapter 2, page 48

Starting the Testing Process *» WinRunner at a Glance

The Standard Toolbar

The Standard toolbar contains buttons for the commands used in running a test.
It also contains buttons for opening and saving test scripts, viewing test reports,

and accessing help. The default location of the Standard toolbar is docked below Books
the WinRunner menu bar. For more information about the Standard toolbar, see Online
Chapter 27, Running Tests. The following buttons appear on the Standard # Find
toolbar:
Record - Run from Break in :inc_i
Open Context Sensitive ~ Arrow Pause StepInto Function Test Results gain
‘ L 5 ‘ ? Help
u . = = 4
SlE(@ [Verty = Lof lelalm| S ol 55| x| <
New Save Run Mode Run from Top Stop Step Toggle Add Watch Help
Breakpoint @
Top of
Chapter
The User Toolbar &Back

The User toolbar contains buttons for commands used when creating tests. By
default, the User toolbar is hidden. To display the User toolbar, select it on the
Window menu. When itis displayed, its default position is docked at the right edge
of the WinRunner window. For information about creating tests, see Part I,
Creating Tests.

WinRunner User’s Guide Chapter 2, page 49

Starting the Testing Process *» WinRunner at a Glance

The User toolbar is a customizable toolbar. You can add or remove buttons to
facilitate access to commands commonly used for an application being tested .
For information on customizing the User toolbar, see Customizing the User

Toolbar on page 857. The following buttons appear by default on the User Books
toolbar: Online
@4 Find

[Record - Context Sensitive

E T Stop :g;clin
m —— GUI Checkpoint for Object/Window

E -~ GUI Checkpoint for Multiple Objects ﬁ? Help
E —— Bitmap Checkpoint for Object/Window

i —— Bitmap Checkpoint for Screen Area ‘ ’

E - Database Checkpoint @

ﬁ —— Synchronization Point for Object/Window Property (;rf?gpct)t];r

ﬁ —— Synchronization Point for Object/Window Bitmap

a —— Synchronization Point for Screen Area Bitmap &=Back

ﬁ —— Get Text from Object/Window

E —— Get Text from Screen Area

E —— Insert Function for Object/Window

@ —— Insert Function from Function Generator

WinRunner User’s Guide Chapter 2, page 50

Starting the Testing Process *» WinRunner at a Glance

Executing Commands Using Softkeys

You can execute some WinRunner commands by pressing softkeys. WinRunner
reads input from softkeys even when the WinRunner window is not the active

window on your screen, or when it is minimized. golqks
niine
Softkey assignments are configurable. If the application being tested uses a]
default softkey that is preconfigured for WinRunner, you can redefine it using 04 Find
WinRunner’s softkey configuration utility. Find
Again
For a list of default WinRunner softkey configurations and information about D Help

redefining WinRunner softkeys, see Configuring WinRunner Softkeys on page

881. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 2, page 51

Starting the Testing Process *» WinRunner at a Glance

Loading WinRunner Add-Ins

If you installed add-ins such as support for Visual Basic, PowerBuilder, or ActiveX

controls while installing WinRunner or afterward, you can specify which add-ins
- . . Books
to load at the beginning of each WinRunner session. Online
When you start WinRunner, the Add-In Manager dialog box opens. It displaysa | #& Find
list of all installed add-ins for WinRunner. You can select which add-ins to load for .
the current session of WinRunner. If you do not make a change within a certain AFg;?n
amount of time, the window closes. The progress bar displays how much time is
left before the window closes. ? Help
4p
Select add-ins ta load:
[Jdctive Controls @
[|PowerBuilder Top of
[%izual Basic Chapter
= Back

1]}
¥ Show on startup

ok I Help

WinRunner User’s Guide Chapter 2, page 52

Starting the Testing Process *» WinRunner at a Glance

The first time WinRunner is started, by default, no add-ins are selected. At the
beginning of each subsequent WinRunner session, your selection from the
previous session is the default setting. Once you make a change to the list, the
timer stops running, and you must click OK to close the dialog box.

Books
You can determine whether to display the Add-In Manager dialog box and, if so, Online
for how long using the Display the Add-In Manager dialog option in the # Find
Environment tab of the General Options dialog box. For information on working
with the General Options dialog box, see Chapter 36, Setting Global Testing AFg;Ci’n
Options. You can also specify these options using the -addins and
-addins_select_timeout command line options. For information on working with 2 Help

command line options, see Chapter 30, Running Tests from the Command

Line. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 2, page 53

Books

Understanding the GUI Map Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Page 54

Understanding the GUI Map

Introducing the GUI Map

This chapter introduces Context Sensitive testing and explains how WinRunner

identifies the Graphical User Interface (GUI) objects in your application. Books
Online
This chapter describes:
@4 Find
®* How a Test Identifies GUI Objects
Find
® Physical Descriptions Again
* Logical Names 2 Help
® The GUI Map Editor ‘ ’
® Setting the Window Context
[E]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 3, page 55

Understanding the GUI Map ¢ Introducing the GUI Map

About the GUI Map

When you work in Context Sensitive mode, you can test your application as the
user sees it—in terms of GUI objects—such as windows, menus, buttons, and
lists. Each object has a defined set of properties that determines its behavior and
appearance. WinRunner learns these properties and uses them to identify and
locate GUI objects during a test run. In Context Sensitive mode, WinRunner does #4 Find
not need to know the physical location of a GUI object to identify it.

Books
Online

Find
Again

In order to test in Context Sensitive mode, WinRunner must learn the properties
of each GUI object in your application. The simplest and most thorough way for ? Help

WinRunner to learn your application is by using the RapidTest Script wizard,

which guides you through the learning process. The wizard systematically opens ‘ ’
each window in your application and learns the properties of the GUI objects it @l
contains. WinRunner provides additional methods for learning the properties of Top of
individual objects. For more information on the learning process, see Chapter 4, |.Snapter
Creating the GUI Map. & Back

WinRunner User’s Guide Chapter 3, page 56

Understanding the GUI Map ¢ Introducing the GUI Map

WinRunner stores the properties of the GUI objects it learns in the GUI map. It
uses the GUI map to locate objects during a test run. It reads an object’s
description in the GUI map and then looks for an object with the same properties

in the application being tested. You can view the GUI map in order to gain a Books

comprehensive picture of the objects in your application. Online

As the user interface of your application changes, you can continue to use tests #4 Find
you developed previously. You simply add, delete, or edit object descriptions in Find

the GUI map so that WinRunner can continue to find the objects in your modified Again

application.

PP ‘? Help
[B]

Top of

Chapter

= Back

WinRunner User’s Guide Chapter 3, page 57

Understanding the GUI Map ¢ Introducing the GUI Map

How a Test Identifies GUI Objects

You create tests by recording or programming test scripts. A test script consists
of statements in Mercury Interactive’s test script language (TSL). Each TSL

statement represents mouse and keyboard input to the application being tested. gﬁﬁﬁz
For more information, see Chapter 8, Creating Tests.

@ Find
WinRunner uses a logical name to identify each object: for example “Print” for a .
Print dialog box, or “OK” for an OK button. The logical name is actually a AFg;?n

nickname for the object’s physical description. The physical description contains
a list of the object’s physical properties: the Print dialog box, for example, is ? Help
identified as a window with the label “Print”. The logical name and the physical

description together ensure that each GUI object has its own unique identification. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 3, page 58

Understanding the GUI Map ¢ Introducing the GUI Map

Physical Descriptions

Test Script GUI Map

I WinRBunner - [Noname5] [_ O] =] 1 GUI Map Editor HEE
gfile Edit Create Bun Debug Toolz Settings ‘window Help _|ﬁl|5| File Edit Miew Options Tooks Help
(@] ey =] ol LPe]alu] o8] 08| o2 w2| | it
= "Document - WordFad" Books
set_ window ("Document - TordPad™ a1 = Wﬁi i .
menu sSelect item "File;Open... Ctrl+0™); a Ioglcal Onllne
logical name —] - " 3y t Lookin” _Len(gF| | name
llstiselectin:em ("Look in:"™, "ReadMe.doc™): # Ttem Numbe Open.1 Modify... i
button_press ("Open_1"): &4 Find
Delete
< | | Flnc_i
|Line: & | Fiun Mame: A Agaln
Show
' ' Find
@ WinRunner reads the WinRunner matches i ﬁ? Help
logical name in the test the logical name with | ShovPhysealDescrplion
script and refers to the GUI the physical gm_ . 2)
map) description Isbel Open, physical
oW gz | description
E
|Dh\em is not found. Cannot Highlight @
Top of
Chapter
= Back
o o .
Application Being Tested

WinRunner uses the

Open [7]x]
physical description to O E -
find an object in the 8lgl
application
“Open” window label

File name: IHaadMedm: Open
Flesofbpe: [wodfoWindaws 60l 7] Cancel

WinRunner User’s ide

pter 3, page 59

Understanding the GUI Map ¢ Introducing the GUI Map

WinRunner identifies each GUI object in the application under test by its physical
description: a list of physical properties and their assigned values. These
property—value pairs appear in the following format in the GUI map:

{propertyl:valuel, property2:value2, property3:value3, ...} golqks
niine

For example, the description of the “Open” window contains two properties: &4 Find

class and label. In this case the class property has the value window, while the

label property has the value Open: AFg;Ci’n

{class:window, label:Open} 2 Help

The class property indicates the object’s type. Each object belongs to a different ‘ ’
class, according to its functionality: window, push button, list, radio button, menu,

etc. &)

. . . . Top of
Each class has a set of default properties, which WinRunner learns. For a detailed Chapter

description of all properties, see Chapter 6, Configuring the GUI Map.

= Back

Note that WinRunner always learns an object’s physical description in the context
of the window in which it appears. This creates a unique physical description for
each object. For more information, see Setting the Window Context on page 66.

WinRunner User’s Guide Chapter 3, page 60

Understanding the GUI Map ¢ Introducing the GUI Map

Logical Names

In the test script, WinRunner does not use the full physical description for an
object. Instead, it assigns a short name to each object: the logical name.

Books
Online

An object’s logical name is determined by its class. In most cases, the logical
name is the label that appears on an object: for a button, the logical name is its & Find
label, such as OK or Cancel; for a window, it is the text in the window'’s title bar;
and for a list, the logical name is the text appearing next to or above the list.

Find
Again

For a static text object, the logical name is a combination of the textand the string | @ e
“(static)”. For example, the logical name of the static text “File Name” is: “File

Name (static)”. ‘ ’

In certain cases, several GUI objects in the same window are assigned the same =
logical name, plus a location selector (for example: LogicalName_1, gﬁgp‘t’ér
LogicalName_2). The purpose of the selector property is to create a unique name

for the object. “=Back

WinRunner User’s Guide Chapter 3, page 61

Understanding the GUI Map ¢ Introducing the GUI Map

The GUI Map Editor

You can view the contents of the GUI map at any time by choosing Tools > GUI

Map Editor. The GUI map is actually the sum of one or more GUI map files. In
most cases, you store all the GUI object information for your application in a single gﬁﬁﬁz
GUI map file.
@ Find
In the GUI Map Editor, you can view either the contents of the entire GUI map or .
the contents of individual GUI map files. GUI objects are grouped according to the AFg;?n
window in which they appear in the application.
‘? Help
4
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 3, page 62

Understanding the GUI Map e« Introducing the GUI Map

This view shows the contents of " =
the entire GUI map. & GUI Map Editor [_ O] =]

File Edt “iew Options Toolz Help
Windows/Ohjects: BOQkS
Online
= "Document - WordPad"
Rl # Find
"Lk i Lee
Objects within L =

i

the window Open_1 rdadify. .. Find
Again
Add...
Delete ﬁ? Help

4

Show @

b

Find Top of
Chapter
Click to expand dialog box————J+ Show Physical Descriptian P
and display the physical
description of the selected { . - = Back
object or window class: window,
label: Open,

}MSW_cIass: "H327E0

=1

IDbiecl iz hot found. Cannot Highlight

The GUI map file contains the logical names and
physical descriptions of GUI objects.

WinRunner User’s Guide Chapter 3, page 63

Understanding the GUI Map ¢ Introducing the GUI Map

The GUI map enables you to easily keep up with changes made to the user
interface of the application being tested. Instead of editing your entire suite of
tests, you only have to update the relevant object descriptions in the GUI map.

testl Books
test2 GUI Map Online
test3

test4 #h Find
test5

test6 Find
test7 Again
test8

test9 fg-,) Help

test10

4

For example, suppose the Open button in the Open dialog box is changed to an

OK button. You do not have to edit every test script that uses this Open button. =]
Instead, you can modify the Open button’s physical description in the GUI map, gﬁgp‘t’ér
as shown in the example below. The value of the label property for the button is

changed from Open to OK: = Back

Open button: {class:push_button, label:OK}

During a test run, when WinRunner encounters the logical name “Open” in the
Open dialog box in the test script, it searches for a push button with the label
HOKH.

WinRunner User’s Guide Chapter 3, page 64

Understanding the GUI Map ¢ Introducing the GUI Map

You can use the GUI Map Editor to modify the logical names and physical

descriptions of GUI objects at any time during the testing process. In addition, you
can use the Run wizard to update the GUI map during a test run. The Run wizard
opens automatically if WinRunner cannot locate an object in the application being Books
tested. See Chapter 5, Editing the GUI Map, for more information. Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 3, page 65

Understanding the GUI Map ¢ Introducing the GUI Map

Setting the Window Context

WinRunner learns and performs operations on objects in the context of the

window in which they appear. When you record a test, WinRunner automatically
inserts a set_window statement into the test script each time the active window gﬁﬁﬁz
changes and an operation is performed on a GUI object. All objects are then
identified in the context of that window. For example: #4 Find
set_window ("Print", 12); AFg;?n
button_press ("OK");

‘? Help
The set_window statement indicates that the Print window is the active window.
The OK button is learned within the context of this window. ‘ ’
When programming a test, you need to enter the set_window statement =
manually when the active window changes. When editing a script, take care not gﬁgp‘t’ér
to delete necessary set_window statements.

= Back

WinRunner User’s Guide Chapter 3, page 66

Understanding the GUI Map

Creating the GUI Map

This chapter explains how to teach WinRunner the Graphical User Interface (GUI)
of the application being tested and save the information for use during testing.

Books
Online
This chapter describes:
@4 Find
® Viewing GUI Object Properties
Find
® | earning the GUI with the RapidTest Script Wizard Again
¢ Learning the GUI by Recording 2 Help

® Learning the GUI Using the GUI Map Editor

® Saving the GUI Map ‘ ’

® Loading the GUI Map File To%lof
. . . . Chapt

® Guidelines for Working with GUI Maps e

& Back

WinRunner User’s Guide Chapter 4, page 67

Understanding the GUI Map ¢ Creating the GUI Map

About Creating the GUI Map

WinRunner can learn the GUI of your application in several ways. Usually, you
use the RapidTest Script wizard before you start to test in order to learn all the
GUI objects in your application at once. This ensures that WinRunner has a
complete, well-structured basis for all your Context Sensitive tests. The
descriptions of GUI objects are saved in GUI map files. Since all test users can #4 Find
share these files, there is no need for each user to individually relearn the GUI. Find
Again

Books
Online

If the GUI of your application changes during the software development process,
you can use the GUI Map Editor to learn individual windows and objects in order ? Help
to update the GUI map. You can also learn objects while recording: you simply

start to record a test and WinRunner learns the properties of each GUI object you ‘ ’

use in your application. This approach is fast and enables a beginning user to @l

create test scripts immediately. This is an unsystematic method, however, and Top of
should not be used as a substitute for the RapidTest Script wizard if you planto |_S13Pter
develop comprehensive test suites. &= Back

WinRunner User’s Guide Chapter 4, page 68

Understanding the GUI Map ¢ Creating the GUI Map

You must load the appropriate GUI map files before you run tests. WinRunner
uses these files to help locate the objects in the application being tested. You
should insert a GUI_load statement into your startup test. When you start
WinRunner, it automatically runs the startup test and loads the specified GUI map Books
files. For more information on startup tests, see Chapter 39, Initializing Special Online
Configurations. Alternatively, you can insert a GUI_load statement into]
individual tests, or use the GUI Map Editor to load GUI map files manually. #4 Find
Find

Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 4, page 69

Understanding the GUI Map ¢ Creating the GUI Map

Viewing GUI Object Properties

When WinRunner learns the description of a GUI object, it looks at the object’s
physical properties. Each GUI object has many properties, such as “class,”

“label,” “width,” “height”, “handle,” and “enabled”. WinRunner, however, only Sﬁﬁ,'jz
learns a selected set of these properties in order to uniquely distinguish the object

from all other objects in the application. #4 Find
Before you create the GUI map for an application, or before adding a GUI object AFg;?n

to the GUI map, you may want to view the properties of the GUI object. Using the
GUI Spy, you can view the properties of any GUI object on your desktop. You use ? Help
the Spy pointer to point to an object, and the GUI Spy displays the properties and
their values in the GUI Spy dialog box. You can choose to view all the properties ‘ ’
of an object, or only the selected set of properties that WinRunner learns. @l

. Top of
WinRunner enables you to modify the set of properties that is learned for a given Chapter

object class using the GUI Map Configuration dialog box. For more information on
GUI Map Configuration, refer to Chapter 6, Configuring the GUI Map.

= Back

WinRunner User’s Guide Chapter 4, page 70

Understanding the GUI Map ¢ Creating the GUI Map

To spy on a GUI object:
1 Choose Tools > GUI Spy to open the GUI Spy dialog box.

i GUI Spy Books
Click the Spy buttan to spy on properties. Online

Window Mame:

| Sew 4 Find

Ohject M arme: Spyon Find

I ’75' Objects Again

Ciescription: © Windows

=] ‘? Help

— Show in description————— Help @
| Top of

&' Recorded properties
Chapter

" All properties LClose

= Back

By default, the GUI Spy displays the properties of objects within windows. (To
view the properties of a window, click Windows in the Spy on box.)

2 To view all the properties defined for an object, Click All properties in the Show
in description box. If the All properties option is not selected, the GUI Spy
displays only the default set of properties for the object.

WinRunner User’s Guide Chapter 4, page 71

Understanding the GUI Map ¢ Creating the GUI Map

3 Click Spy and point to an object on the screen. The object is highlighted and the
active window name, object name, and object description (properties and their
values) appear in the appropriate fields.

Note that as you move the pointer over other objects, each one is highlighted in Books
turn and its description appears in the Description pane. Online
4 To capture an object description in the GUI Spy dialog box, point to the desired #4 Find
object and press the STOP softkey. —
n
5 Click Close to close the dialog box. Again
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 4, page 72

Understanding the GUI Map ¢ Creating the GUI Map

Learning the GUI with the RapidTest Script Wizard

The RapidTest Script wizard enables WinRunner to learn all windows and objects
in your application being tested at once. It systematically opens every window in

the application and learns the GUI objects it contains. WinRunner then instructs gﬁﬁﬁz
you to save the information in a GUI map file. A GUI_load command that loads
thisfile is added to a startup test. For information on startup tests, see Chapter 39, #4 Find

Initializing Special Configurations. Find
Again

P Help
Note: The RapidTest Script wizard is not available for when working with the

Terminal Emulator or WebTest add-ins. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 4, page 73

Understanding the GUI Map ¢ Creating the GUI Map

To start the RapidTest Script wizard, either:

® Click RapidTest Script Wizard in the WinRunner Welcome screen when you
start WinRunner.

* Choose Create > RapidTest Script Wizard at any time. gﬁﬁﬁz

M Fing

Welcome to the Find.
~cript //izard i

‘? Help

Script Wizard will create test

zoripts 20 pou can start testing ‘ ’
immediately.

Ta create your scripts, Script Wizard will: @
& "Wwiall through' vour application. Top of
Chapter
Learn your application's
Graphical Uszer Interface [GLUI).
= Back

LCancel | <<ﬁack| ﬂer:t>>l Help |

For step-by-step information on using the RapidTest Script wizard, refer to the
online WinRunner Context Sensitive Help.

WinRunner User’s Guide Chapter 4, page 74

Understanding the GUI Map ¢ Creating the GUI Map

Learning the GUI by Recording

When you record a test, WinRunner first checks whether the objects you select

are in the GUI map. If they are not in the GUI map, WinRunner learns the objects
. . . Books
and inserts them into the temporary GUI map file. Online
In general, you should use recording as a learning tool for small, temporary tests & Find
only. Use the RapidTest Script wizard to learn the entire GUI of your application.
Find
Again
Tip: You can instruct WinRunner not to load the temporary GUI map file in the ? Help
Environment tab of the General Options dialog box. For more information, see
Chapter 36, Setting Global Testing Options. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 4, page 75

Understanding the GUI Map ¢ Creating the GUI Map

Learning the GUI Using the GUI Map Editor

You can use the GUI Map Editor to learn an individual object or window, or all
objects in a window.

Books

To learn GUI objects using the GUI Map Editor: Online

1 Choose Tools > GUI Map Editor. The GUI Map Editor opens. #4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 4, page 76

Understanding the GUI Map ¢ Creating the GUI Map

2 Click Learn. The mouse pointer becomes a pointing hand. (To cancel the
operation, click the right mouse button.)

1% GUI Map Editor [[C1] x|
Fle Edt Miew Options Todk Help Books
. . Online
findoves /0 bjects:
M "Document - WordPad" 34 Find
=
|: "Look in:" Learn EE» Learns the objects in a window. Find
3 Again
28 Open_1 Moy, | g
Add.. @ Help
Delete | ‘ ’
Show | Top of
Find EI Chapter
¥ Show Bhysical Description & Back
{ s
class window,
label: Open,
bAShw_class: “HI2TF0"
} -]
IEIbiect iz not found. Cannot Highlight

WinRunner User’s Guide Chapter 4, page 77

Understanding the GUI Map ¢ Creating the GUI Map

3 Place the pointing hand on the object to learn and click the left mouse button. To
learn all the objects in a window, place the pointing hand over the window’s title
bar and click with the left mouse button.

W
i Books
Online

Laak i I =3 Temp

@& Find

Find
Again

‘? Help

File nane: IHeadMe.dnc Open I @
Files of type: I\A-"md for ‘Windows £.0 [* doc) j Cancel | Top of

Chapter

GUI information about the learned objects is placed in the active GUI map file. “©Back

See Loading the GUI Map File on page 83 for more information.

WinRunner User’s Guide Chapter 4, page 78

Understanding the GUI Map ¢ Creating the GUI Map

Saving the GUI Map

When you learn GUI objects by recording, the object descriptions are added to

the temporary GUI map file. The temporary file is always open, so that any objects ’
it contains are recognized by WinRunner. When you start WinRunner, the gﬁﬁnz
temporary file is loaded with the contents of the last testing session.

@ Find
To avoid overwriting valuable GUI information during a new recording session, .
save the temporary GUI map file in a permanent GUI map file. AFg;?n
To save the contents of the temporary file in a permanent GUI map file: 2 Help

1 Choose Tools > GUI Map Editor. The GUI Map Editor opens. ‘ ’

2 Choose View > GUI Files.

3 Make sure the <Temporary> file is displayed in the GUI File list. An asterisk (*) Tol?of
preceding the file name indicates the GUI map file was changed. The asterisk Chapter
disappears when the file is saved.

= Back
4 In the GUI Map Editor, choose File > Save to open the Save GUI File dialog box.

WinRunner User’s Guide Chapter 4, page 79

Understanding the GUI Map ¢ Creating the GUI Map

Note: If you add new windows from a loaded GUI map file to the temporary GUI

map file, the New Windows dialog box opens. You are prompted to add the new
windows to the loaded GUI map file or save them in a new GUI map file. For Books
additional information, refer to the online WinRunner Context Sensitive Help. Online
@ Find
Find
Save GUI File HE Again
Save jh: Ia flight application j il Ir = B Hel
¢ Help
@Inginlgui
=]
Top of
Chapter
= Back
Filz narne: IIngin2 Sawe I
Save as hpe: IGUI Files [*.gui] j Cancel |

5 Click a folder. Type in a new file name or click an existing file.

WinRunner User’s Guide Chapter 4, page 80

Understanding the GUI Map ¢ Creating the GUI Map

6 Click Save. The saved GUI map file is loaded and appears in the GUI Map
Editor.

You can also move objects from the temporary file to an existing GUI map file.

For details, see Chapter 5, Editing the GUI Map. gﬁﬁﬁz
To save the contents of a GUI map file to a TestDirector database: 4 Find
1 Choose Tools > GUI Map Editor to open the GUI Map Editor. Find
Again
2 Choose View > GUI Files.
‘? Help

3 Make sure the <Temporary> file is displayed in the GUI File list. An asterisk (*)
next to the file name indicates the GUI map file was changed. The asterisk ‘ ’
disappears when the file is saved.

4 In the GUI Map Editor, choose File > Save. . @f
op o
Chapter

Note: If you add new windows from a loaded GUI map file to the temporary GUI e Back
map file, the New Windows dialog box opens. You are prompted to add the new
windows to the loaded GUI map file or save them in a new GUI map file. For
additional information, refer to the online WinRunner Context Sensitive Help.

WinRunner User’s Guide Chapter 4, page 81

Understanding the GUI Map ¢ Creating the GUI Map

The Save GUI File to TestDirector Project dialog box opens.

gui'll Books
Loginl Online
LoginZ
@ Find
Find
Again
File pame; |FliohtT able 2 Help
Filez of wpe IGUI Files [*.qui) ﬂ ﬂl
File Spstem... | ‘ ’
[B]
)) o Top of
5 In the File Name text box, enter a name for the GUI map file. Use a descriptive Chapter
name that will help you easily identify it later.
= Back
6 Click Save to save the GUI map file to a TestDirector database and to close the

dialog box.

Note: You can only save GUI map files to a TestDirector database if you are
working with TestDirector. For additional information, see Chapter 40, Managing
the Testing Process.

WinRunner User’s Guide Chapter 4, page 82

Understanding the GUI Map ¢ Creating the GUI Map

Loading the GUI Map File

When WinRunner learns the objects in an application, it stores the information in

a GUI map file. In order for WinRunner to use a GUI map file to locate objects in
your application, you must load it into the GUI map. Although the GUI map my gﬁﬁﬁz
contain one or more GUI map files, you can load only one GUI map file at a time.
You must load the appropriate GUI map files before you run tests on your #4 Find
application being tested. Find
Again
You can load GUI map files in one of two ways:
‘? Help
® using the GUI_load function
® from the GUI Map Editor ‘ ’
You can view a loaded GUI map file in the GUI Map Editor. A loaded file is Tol?of
indicated by the letter “L” and a number preceding the file name. You can also Chapter
open the GUI map file for editing without loading it. “Back

Loading GUI Map Files Using the GUI_load Function

The GUI_load statementloads any GUI map file you specify. To load several files,
use a separate statement for each. You can insert the GUI_load statement at the
beginning of any test, but it is preferable to place it in your startup test. In this way,
GUI map files are loaded automatically each time you start WinRunner. For more
information, see Chapter 39, Initializing Special Configurations.

WinRunner User’s Guide Chapter 4, page 83

Understanding the GUI Map ¢ Creating the GUI Map

To load a file using GUI_load:
1 Choose File > Open to open the test from which you want to load the file.

2 In the test script, type the GUI_load statement as follows, or click the GUI_load

function in the Function Generator and type in the file path:
. Book
GUI_load ("file_name_full_path"); online
For example: #h Find
GUI_load ("c:\\ga\\flights.gui") Find
Again
See Chapter 21, Generating Functions, for more information on the Function D Help
Generator. :
3 Run the test to load the file. See Chapter 27, Running Tests, for more ‘ ’
information.
[B]
Top of
Chapter
Note: You can use the GUI_open function to open a GUI map file for editing,
without loading it. You can use the GUI_close function to close an open GUI &=Back

map file. You can use the GUI_unload and GUI_unload_all functions to unload
loaded GUI map files. For information on working with TSL functions, see
Chapter 20, Enhancing Your Test Scripts with Programming. For more
information about specific TSL functions and examples of usage, refer to the
TSL Online Reference.

WinRunner User’s Guide Chapter 4, page 84

Understanding the GUI Map ¢ Creating the GUI Map

Loading GUI Map Files Using the GUI Map Editor
You can load a GUI map file manually, using the GUI Map Editor.

To load a GUI map file using the GUI Map Editor: Books
1 Choose Tools > GUI Map Editor. The GUI Map Editor opens. Online
2 Choose View > GUI Files. #A Find
3 Choose File > Open. Find
Again
4 In the Open GUI File dialog box, select a GUI map file. o
& Hel
Note that by default, the file is loaded into the GUI map. If you only want to edit P
the GUI map file, click Open for Editing Only. See Chapter 5, Editing the GUI ‘ ’
Map, for more information.
5 Click Open. The GUI map file is added to the GUI file list. The letter “L” and a To%lof
number preceding the file name indicates that the file has been loaded. Chapter
= Back

WinRunner User’s Guide Chapter 4, page 85

Understanding the GUI Map ¢ Creating the GUI Map

To load a GUI map file from a TestDirector database using the GUI Map

Editor:

1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

2 Choose File > Open. gﬁﬁﬁz
The Open GUI File from TestDirector Project dialog box opens. All the GUI map 4 Find
files that have been saved to the open database are listed in the dialog box. Fin

Find
Again
g ‘? Help
LoginZ ‘ ’
[B]
Top of
Chapter
File name: ILngin1
= Back
Filez of wpe IGUI Files [*.qui) ﬂ ﬂl
& | nad into the GUI Map " Open For Editing Only File: System... |

WinRunner User’s Guide Chapter 4, page 86

Understanding the GUI Map ¢ Creating the GUI Map

3 Select a GUI map file from the list of GUI map files in the open database. The
name of the GUI map file appears in the File Name text box.

To load the GUI map file to open into the GUI Map Editor, make sure the
Load into the GUI Map default setting is checked. Alternatively, if you only want Books
to edit the GUI map file, click Open for Editing Only. For more information, see Online
Chapter 5, Editing the GUI Map. # Find
4 Click Open to open the GUI map file. The GUI map file is added to the GUI file .
list. The letter “L” indicates that the file is loaded. AFg;?n
‘? Help
Note: For more information on loading GUI map files from a TestDirector
database, see Chapter 40, Managing the Testing Process. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 4, page 87

Understanding the GUI Map ¢ Creating the GUI Map

Guidelines for Working with GUI Maps

Consider the following guidelines when working with GUI map files:

® To improve performance, use smaller GUI map files for testing your application

instead of one larger file. You can use one GUI map per test. Alternatively, you
can divide your application’s user interface into different GUI map files by Books
window or in another logical manner. Online
#h Find
One GUI Map per Application or
One GUI Map per Test Window pp PP Finc_i
Again
Method Record on your Before you record, have B Hel
application and save WinRunner learn your application ¢ Help
the GUI map file. by clicking the Learn button in
the GUI Map Editor and clicking ‘ ’
your application window. You
repeat this process for all [O]
windows in the application. You Top of
save the GUI map for each Chapter
window or set of windows as a
GUI map file. When the & Back
application changes, the GUI
map file administrator updates
the GUI map files.

WinRunner User’s Guide Chapter 4, page 88

Understanding the GUI Map ¢ Creating the GUI Map

One GUI Map per Test

One GUI Map per Application or
Window

Advantages

1. Each test has GUI

1. You can use descriptive

map file names for objects windows in the Books
independence. GUI map and in test scripts. For Online
2. There is no need for more information, see the note

a GUI map file following this table. #4 Find
administrator. 2. If an object or window

3. The GUI map fileis | description changes, you only Find
very easy to create: have to modify one GUI map file Again
record the application for all tests to run properly. B

and save the GUI § Help
map.

Recommendation This is the preferred This is the preferred method if ‘ ’
method if the GUI of the GUI of your application may &)
your application is not change. Top of
expected to change. Chapter

= Back

WinRunner User’s Guide Chapter 4, page 89

Understanding the GUI Map ¢ Creating the GUI Map

Note: Sometimes the logical name of an object is not descriptive. If you use the
GUI Map Editor to learn your application before you record, then you can modify
the name of the object in the GUI map to a descriptive name by highlighting the Books
object and clicking the Modify button. When WinRunner records on your Online
application, the new name will appear in the test script. For more information on & Find
modifying the logical name of an object, see Modifying Logical Names and

Physical Descriptions on page 102. Find
Again

‘? Help

® A single GUI map file cannot contain two windows with the same logical name.

® Do not store information that WinRunner learns about the GUI of an application ‘ ’

in the temporary GUI map file, since this information is not automatically saved @l
when you close WinRunner. Unless you are creating a small, temporary test that Top of
you do not intend to reuse, it is suggested that you save the GUI map from the Chapter

GUI Map Editor (by choosing File > Save) before closing your test. &Back

® You can instruct WinRunner not to load the temporary GUI map file in the
Environment tab of the General Options dialog box. For more information on this
option, see Chapter 36, Setting Global Testing Options.

WinRunner User’s Guide Chapter 4, page 90

Understanding the GUI Map ¢ Creating the GUI Map

® When WinRunner learns the GUI of your application by recording, it learns only
those objects upon which you perform operations: it does not learn all the
objects in your application. Therefore, unless you are creating a small,
temporary test that you do not intend to reuse, it is better for WinRunner to learn

the GUI of an application from the Learn button in the GUI Map Editor before you sl
start recording than for WinRunner to learn your application once you start oﬁﬁnz
recording. For more information, see Learning the GUI by Recording on page
75. @ Find
® In the GUI Map Editor, you can use the Options > Filter command to open the Find
Filters dialog box and filter the objects in the GUI map by logical name, physical Again
description, or class. For more information, see Filtering Displayed Objects on 2 Help
page 120. g
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 4, page 91

Understanding the GUI Map

Editing the GUI Map

This chapter explains how to extend the life of your tests by modifying

descriptions of objects in the GUI map. BoOKS
Online
This chapter describes:
@4 Find
® The Run Wizard
Find
® The GUI Map Editor Again
® Modifying Logical Names and Physical Descriptions 2 Help
® How WinRunner Handles Varying Window Labels ‘ ’
® Using Regular Expressions in the Physical Description
® Copying and Moving Objects between Files Tolglof
L . . . Chapt
® Finding an Object in a GUI Map File e
* Finding an Object in Multiple GUI Map Files = Back

® Manually Adding an Object to a GUI Map File
® Deleting an Object from a GUI Map File

® Clearing a GUI Map File

® Filtering Displayed Objects

® Saving Changes to the GUI Map

WinRunner User’s Guide Chapter 5, page 92

Understanding the GUI Map « Editing the GUI Map

About Editing the GUI Map

WinRunner uses the GUI map to identify and locate GUI objects in your
application. If the GUI of your application changes, you must update object

descriptions in the GUI map so you can continue to use existing tests. gﬁﬁﬁz
You can update the GUI map in two ways: & Find
® during a test run, using the Run wizard Find
Again
® at any time during the testing process, using the GUI Map Editor
@ Help

The Run wizard opens automatically during a test run if WinRunner cannot
locate an object in the application being tested. It guides you through the process ‘ ’
of identifying the object and updating its description in the GUI map. This
ensures that WinRunner will find the object in subsequent test runs. (o]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 93

Understanding the GUI Map « Editing the GUI Map

You can also:

® manually edit the GUI map using the GUI Map Editor

* modify the logical names and physical descriptions of objects, add new

Books

descriptions, and remove obsolete descriptions Online

® move or copy descriptions from one GUI map file to another # Eind
Before you can update the GUI map, the appropriate GUI map files must be AFind
gain

loaded. You can load files by using the GUI_load statement in a test script or by
choosing File > Open in the GUI Map Editor. See Chapter 4, Creating the GUI 2 Help
Map, for more information. i

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 94

Understanding the GUI Map « Editing the GUI Map

The Run Wizard

The Run wizard detects changes in the GUI of your application that interfere with
the test run. During a test run, the Run wizard automatically happens when
WinRunner cannot locate an object. The Run wizard prompts you to point to the
object in your application, determines why the object cannot be found, and then
offers a solution. The Run wizard suggests loading an appropriate GUI map file; #4 Find
in most cases, a new description is automatically added to the GUI map or the Find
existing description is modified. When this process is completed, the test run Again
continues. (In future test runs, WinRunner can successfully locate the object.)

Books
Online

‘? Help
For example, suppose you run a test in which you click the Network button in an
Open window in your application. ‘ ’

set_window ("Open"); Tol?of
button_press ("Network"); Chapter
= Back

WinRunner User’s Guide Chapter 5, page 95

Understanding the GUI Map ¢ Editing the GUI Map

If the Network button is not in the GUI map, the Run wizard opens and describes

the problem.
Run Wizard E
Books
Can't Find.. WwinRunner cannot find the object Online
"Metwork,..",
@4 Find
Find
Again
Press the "Hand" icon and then click ﬁ? Help
an the object "'Metwark..".
= 4
Cancel I Lo Backl [dlEwte | Help | @
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 96

Understanding the GUI Map ¢ Editing the GUI Map

(= Click the Hand button in the wizard and point to the Network button. The Run
wizard offers a solution.
Run Wizard E
Books
Solution - Each object mentioned in a test script Online
Add to GUI must exist in the GUI map.
- @ Find
Find
Prezs "0K" to add the puzh_button Again
"Metwork' to the GUI map.
‘? Help
¥ Continue replaying the test ‘ ’
Cancel << Back Ok I Help @
| | | Top of
Chapter

When you click OK, the Network object description is automatically added to the | &= pack
GUI map and WinRunner resumes the test The next time you run the test,
WinRunner will be able to identify the Network button.

In some cases, the Run wizard edits the test script, not the GUI map. For
example, if WinRunner cannot locate an object because the appropriate window
is inactive, the Run wizard inserts a set_window statement in the test script.

WinRunner User’s Guide Chapter 5, page 97

Understanding the GUI Map « Editing the GUI Map

The GUI Map Editor

You can edit the GUI map at any time using the GUI Map Editor. To open the GUI
Map Editor, choose Tools > GUI Map Editor.

Two views in the GUI Map Editor display the contents of either: Books
Online

@& Find

Find
Again

® the entire GUI map

¢ an individual GUI map file

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 98

Understanding the GUI Map ¢ Editing the GUI Map

% GUI Map Editor [[C1] x|
Fil= Edit “iews Optionz Toolz Help
wfindows /0 bjects: Displays all windows and objects in the GUI map. Books
............... Online
o I acrrii .
-3 Button Leam EEI #h Find
-3 Bution_T Modiy.. | Find
L abd) "D ate of Flight:" Again
L€ FLIGHT fdd..
- = File Delete | 2 Help
= "Fly From:"
L Fly To: Objects within windows are indented. ‘ ’
—@ "lhzert Order”
L 81 "Mame:" Show | @
L H "Open Order.." =] Find EI Top of
Wh lected, displ the physical d ipti f
V¥ Show Physical Description their;IZitig%bjeS%ra\)//vsindgvs ysical description o Chapter
class window, & Back
MSW_class: "Ik ",
label: "Flight Reservation
[tctive GUI file: <Al map>

WinRunner User’s Guide Chapter 5, page 99

Understanding the GUI Map ¢ Editing the GUI Map

When viewing the contents of specific GUI map files, you can expand the GUI
Map Editor to view two GUI map files simultaneously. This enables you to easily
copy or move descriptions between files. To view the contents of individual GUI

map files, choose View > GUI Files.
Books
Online
¥ GUI Map Editor M= B3
Fil= Edit “iew QOptionz Toole Help M Find
G File:
I L1 flight.qui Li Lists the open GUI map files. Find
: : Again
indows/Dbjscts: Shows the windows and objects in the g
=\ "Flight Reservation a [El currently displayed GUI map file.
€ "t - P Help
0 b odify, .
© S
-5 Button_1 LI ‘ ’
L abl] "Dats of Flight:" Delete |
- €3 FLIGHT =]
| = Top of
A File Chapter
= "Fly From:"
I Showa |
HEH Py To: = Back
FEE et Order ;I Find
Phyzical Description: Displays the physical description of
{ the selected window or object.
clagzs object,
MS id: 6,
S _clazs: Button
' LI o — | Expands the dialog box so you can view
£ the contents of two GUI map files.
I.-’-‘«ctive GUI file: C:%Program Fileshhercury Interactive’

WinRunner User’s Guide Chapter 5, page 100

Understanding the GUI Map « Editing the GUI Map

In the GUI Map Editor, objects are displayed in a tree under the icon of the
window in which they appear. When you double-click a window name or icon in
the tree, you can view all the objects it contains. To concurrently view all the
objects in the tree, choose View > Expand Objects Tree. To view windows only,
choose View > Collapse Objects Tree.

Books
Online

When you view the entire GUI map, you can select the Show Physical
Description check box to display the physical description of any object you select | #4 Find
in the Windows/Objects list. When you view the contents of a single GUI map

file, the GUI Map Editor automatically displays the physical description. AFg;?n
Suppose the WordPad window is in your GUI map file. If you select 2 Help

Show Physical Description and click the WordPad window name or icon in the
window list, the following physical description is displayed in the middle pane of ‘ ’
the GUI Map Editor:

=]
{ Top of
. Chapter
class: window,
label: "Document - WordPad", = Back
MSW_class: WordPadClass
}

Note: If the value of a property contains any spaces or special characters, that
value must be enclosed by quotation marks.

WinRunner User’s Guide Chapter 5, page 101

Understanding the GUI Map « Editing the GUI Map

Modifying Logical Names and Physical Descriptions

You can modify the logical name or the physical description of an object in a GUI
map file using the GUI Map Editor.

Books
Online

Changing the logical name of an object is useful when the assigned logical name
is not sufficiently descriptive or is too long. For example, suppose WinRunner & Find
assigns the logical name “Employee Address” (static) to a static text object. You

can change the name to “Address” to make test scripts easier to read. AFg;?n
Changing the physical description is necessary when the property value of an 2 Help

object changes. For example, suppose the label of a button is changed from
“Insert” to “Add”. You can modify the value of the label property in the physical ‘ ’
description of the Insert button as shown below: =

Insert button:{class:push_button, label:Add} gﬁgp‘t’ér

During a test run, when WinRunner encounters the logical name “Insert” in atest |4=Back
script, it searches for the button with the label “Add”.

WinRunner User’s Guide Chapter 5, page 102

Understanding the GUI Map « Editing the GUI Map

To modify an object’s logical name or physical description in a GUI map

file:
1 Choose Tools > GUI Map Editor to open the GUI Map Editor.
. . Books
2 Choose View > GUI Files. Online
3 If the appropriate GUI map file is not loaded, choose File > Open to open the .
file. Find
4 To see the objects in a window, double-click the window name in the AFg;‘i’n
Windows/Objects field. Note that objects within a window are indented.
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 103

Understanding the GUI Map ¢ Editing the GUI Map

5 Select the name of the object or window to modify.

¥ GUI Map Editor M= E3
File Edit “iew Optionz Toolz Help
GUI File: Books
| L1 fight.gui =l Online
findoves /0 bjects: M Find
= "Flight Reservation" =] Learn El
-3 aIzE Modify. —J|— Click Modify. Find
e e Agan
-3 Button_1 ‘ et | Select a window or an object.
- 5t1] "Date of Flight" Delete | ? Help
-5 FLIGHT ||
= File ‘ ’
= "Fly From:"

| "Flp Ter" Show | @
28 “|ngert Order Firud El Top of

Chapter

Phwzical Description:

[
{ . - = Back
clazs object,
kSt id: B,

J-1]

}M S_clags Button
Ewpand > |

IAclive GUI file: C:\Proaram Files\bercury [nteractive’,

WinRunner User’s Guide Chapter 5, page 104

Understanding the GUI Map « Editing the GUI Map

6 Click Modify to open the Modify dialog box.

Modify
Logical Wame: ok I Books
IButtDn Cancel | Online
Physical Deszcription: Help I M Find
{ =
clazs: ohject, -
M5W_id: B, Find
}MSW’_class: Buttan Again
i ‘? Help
7 Edit the logical name or physical description as desired and click OK. The ‘ ’
change appears immediately in the GUI map file. [O]
Top of
Chapter
= Back

WinRunner User’s Guide

Chapter 5, page 105

Understanding the GUI Map « Editing the GUI Map

How WinRunner Handles Varying Window Labels

Windows often have varying labels. For example, the main window in a text
application might display a file name as well as the application hame in the title

bar. gﬁﬁﬁi
If WinRunner cannot recognize a window because its name changed after & Find
WinRunner learned it, the Run wizard opens and prompts you to identify the .
window in question. Once you identify the window, WinRunner realizes the AFg;?n
window has a varying label, and it modifies the window’s physical description

accordingly. @ Help

Suppose you record a test on the main window of Microsoft Word in Windows 95. ‘ ’
WinRunner learns the following physical description:

=]
{ Top of
. Chapter
class: window,
label: "Microsoft Word - Document1”, = Back
MSW_class: OpusApp
}

WinRunner User’s Guide Chapter 5, page 106

Understanding the GUI Map « Editing the GUI Map

Suppose you run your test when Document 2 is open in Microsoft Word. When
WinRunner cannot find the window, the Run wizard opens:

Run Wizard E
Can't Find. Books
WwinRunner cannot find the window Online
"Microzaft ... Document]".

@ Find

Find
Again
Press the "Hand" icon and then click ﬁ? Help

an the window “Microzaft

Document]".
= 4)r
Cancel I £ Backl Tt | Help | @

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 107

Understanding the GUI Map ¢ Editing the GUI Map

You click the Hand button and click the appropriate Microsoft Word window, so
that WinRunner will learn it. You are prompted to instruct WinRunner to update
the window’s description in the GUI map.

@
E Books

Salution - New Online
Dezcription The physical description of the window
"Microzoft ... Documentl" has .
changed. @ Find
o Find
Press "0K" to update the description in Adgain
the GUI map. 9
Tip: to view/edit the new description press
Edit ? Help

— 4

W Continue replaying the test

I:ancell € Backl ok | Help | Topﬁof

Chapter

If you click Edit, you can see that WinRunner has modified the window’s physical |+ Back
description to include regular expressions:

{

class: window,
label: "'Microsoft Word - Document.*",
MSW_class: OpusApp

}

(To continue running the test, you click OK.)

WinRunner User’s Guide

Understanding the GUI Map « Editing the GUI Map

These regular expressions enable WinRunner to recognize the Microsoft Word
window regardless of the name appearing after the dash in the window title. For
additional information on regular expressions, see Chapter 19, Using Regular
Expressions.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 109

Understanding the GUI Map « Editing the GUI Map

Using Regular Expressions in the Physical Description

WinRunner uses two “hidden” properties in order to use a regular expression in
an object’s physical description. These properties are regexp_label and

regexp_MSW_class. gﬁﬁﬁz
The regexp_label property is used for windows only. It operates “behind the & Find
scenes” to insert a regular expression into a window’s label description. Note that .
when using WinRunner for Windows 95, this property is not obligatory, and AFg;?n
therefore it is neither recorded nor learned.

‘? Help

The regexp_MSW_class property inserts a regular expression into an object’s
MSW__class. Itis obligatory for all types of windows and for the object class object. ‘ ’

[=]

Adding a Regular Expression Top of
Chapter

You can add the regexp_label and the regexp_MSW _class properties as
needed to the GUI configuration for a class. You would add a regular expression [+=Back
in this way when either the label or the MSW class of objects in your application
has characters in common that can safely be ignored.

WinRunner User’s Guide Chapter 5, page 110

Understanding the GUI Map « Editing the GUI Map

Suppressing a Regular Expression

You can suppress the use of a regular expression in the physical description of a

window. Suppose the label of all the windows in your application begins with “AAA
Wingnuts — ”. For WinRunner to distinguish between the windows, you could Books
. . . . Online
replace the regexp_label property in the list of obligatory learned properties for
windows in your application with the label property. See Chapter 6, Configuring & Find
the GUI Map, for more information.
Find
For more information about regular expressions, see Chapter 19, Using Regular Again
Expressions. 2 Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 111

Understanding the GUI Map « Editing the GUI Map

Copying and Moving Objects between Files

You can update GUI map files by copying or moving the description of GUI objects

from one GUI map file to another. Note that you can only copy objects from a GUI

. .. Books
file that you have opened for editing only. Online
To copy or move objects between two GUI map files: & Find

1 Choose Tools > GUI Map Editor to open the GUI Map Editor. Find
2 Choose View > GUI Files. Again
‘? Help

[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 112

3 Click Expand in the GUI Map Editor. The dialog box expands to display two GUI

map files simultaneously.

=¥ GUI Map Editor
File Edit “iew Options Tools
GUI File:

L1 fight.gui |
windows /Objects:

= "Flight Reservation' o
oL & g

-3 Button

L €% Button_1

- bl] "Date of Flight:"

-3 FLIGHT

- File

- "Flp From:"

= UFly T

- ZE “nsert Order” =

L

Physical Description:

1
clazs: object,

S _id: B,
hSw_class: Button
I

K

S 3
Help
GUI File:
I“LD <Temparary: j
windows /Objects:
Leamn El = |[Flight Reservation]
Madify... | WD) clote Order

Flight Rezervations
A ™ [Flig]

Delete
< Copy
< Move
Showa
Find

Trace { =]

clazs: push_buttan,
label: "Delete Order"
}

b Er Ly

Collapze << :I

I.l’-‘n.ctive GUI file: < T emporary:

Understanding the GUI Map ¢ Editing the GUI Map

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 113

Understanding the GUI Map « Editing the GUI Map

4 View a different GUI map file on each side of the dialog box by clicking the file
names in the GUI File lists.

5 In one file, select the objects you want to copy or move. Use the Shift key and/or

Control key to select multiple objects. To select all objects in a window, choose Books
Edit > Select All. Online
6 Click Copy or Move. 4 Find

7 To restore the GUI Map Editor to its original size, click Collapse. Find
Again
‘? Help

[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 114

Understanding the GUI Map « Editing the GUI Map

Finding an Object in a GUI Map File

You can easily find the description of a specific object in a GUI map file by pointing
to the object in the application being tested.

Boqks
To find an object in a GUI map file: Online
1 Choose Tools > GUI Map Editor to open the GUI Map Editor. #4 Find
2 Choose View > GUI Files. Find
Again
3 Choose File > Open to load the GUI map file. o
& Hel
4 Click Find. The mouse pointer turns into a pointing hand. P
5 Click the object in the application being tested. The object is highlighted in the ‘ ’
GUI map file.
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 115

Understanding the GUI Map « Editing the GUI Map

Finding an Object in Multiple GUI Map Files

If an object is described in more than one GUI map file, you can quickly locate all
the object descriptions using the Trace button in the GUI Map Editor. This is

. Books
particularly useful if you want WinRunner to learn a new description of an object Online
and want to find and delete older descriptions in other GUI map files.

@ Find
To find an object in multiple GUI map files:
Find
1 Choose Tools > GUI Map Editor to open the GUI Map Editor. Again
2 Choose View > GUI Files. 2 Help
3 Click File > Open to open the GUI map files in which the object description might
appear. ‘ ’
For each file, choose File > Open to open the Open GUI File dialog box. [O]
Choose the GUI map file you want to open and click Open for Editing Only. gﬁgp‘t’ér
Click OK.

= Back

4 Display the contents of the file with the most recent description of the object by
displaying the GUI map file in the GUI File box.

5 Select the object in the Windows/Objects field.
6 Click Expand to expand the GUI Map Editor dialog box.

7 Click Trace. The GUI map file in which the object is found is displayed on the
other side of the dialog box, and the object is highlighted.

WinRunner User’s Guide Chapter 5, page 116

Understanding the GUI Map « Editing the GUI Map

Manually Adding an Object to a GUI Map File

You can manually add an object to a GUI map file by copying the description of
another object, and then editing it as needed.

To manually add an object to a GUI map file: Books
Online
1 Choose Tools > GUI Map Editor to open the GUI Map Editor.
2 Choose View > GUI Files. #4 Find
3 Choose File > Open to open the appropriate GUI map file. AFg;?n
4 Select the object to use as the basis for editing. &
& Help
5 Click Add to open the Add dialog box.
Add <] ‘ ’
Window Mame: | =]
!n D[4 ame . QK Top of
IFIlght Resemation Chapter
L onieal LCancel |
ogical Marne:
IDeIele Order M e Back

Phyzical Description:

{ =
clazs: push_buttan,
}Iabel: "Delete Order"

|

6 Edit the appropriate fields and click OK. The object is added to the GUI map file.

WinRunner User’s Guide Chapter 5, page 117

Understanding the GUI Map « Editing the GUI Map

Deleting an Object from a GUI Map File

If an object description is no longer needed, you can delete it from the GUI map

file.
Boqks
To delete an object from a GUI map file: Online
1 Choose Tools > GUI Map Editor to open the GUI Map Editor. #4 Find
2 Choose View > GUI Files. Find
Again
3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map file. o
& Hel
4 Select the object to be deleted. If you want to delete more than one object, use P
the Shift key and/or Control key to make your selection. ‘ ’
5 Click Delete. =
6 Choose File > Save to save the changes to the GUI map file. Top of
Chapter
To delete all objects in a window: &Back
1 Choose Tools > GUI Map Editor to open the GUI Map Editor.
2 Choose View > GUI Files.
3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map file.
4 Choose Edit > Clear All.

WinRunner User’s Guide Chapter 5, page 118

Understanding the GUI Map « Editing the GUI Map

Clearing a GUI Map File

You can quickly clear the entire contents of the temporary GUI map file, or any

other GUI map file.
Books
. . Online
To delete the entire contents of a GUI map file:
1 Choose Tools > GUI Map Editor to open the GUI Map Editor. #4 Find
2 Choose View > GUI Files. Find
Again
3 Open the appropriate GUI map file. o
& Hel
4 Display the GUI map file at the top of the GUI File list. P
5 Choose Edit > Clear All. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 119

Understanding the GUI Map « Editing the GUI Map

Filtering Displayed Objects

You can filter the list of objects displayed in the GUI Map Editor by using any of
the following filters:

Books
® Logical name displays only objects with the specified logical name (e.g. “Open”) Online
or substring (e.g. “Op”). &4 Find
® Physical description displays only objects matching the specified physical Find
description. Use any substring belonging to the physical description. (For Again
example, specifying “w” filters out all objects containing a “w” in their physical
description.) @ Help

® Class displays only objects of the specified class, such as all the push buttons. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 5, page 120

Understanding the GUI Map « Editing the GUI Map

To apply a filter:
1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

2 Choose Options > Filters to open the Filters dialog box. ’
Books
Online
Filters E2
™ Filter by Logical Mame Apply I @& Find
IDpen Cloze | Find
™ Filter by Physical Description Again
Help |
Ju
‘? Help
™ Filter by Class
- 4
- : -]
3 Select the ty_pe of fllt_er you want by selecting a check box and entering the Top of
appropriate information. Chapter
4 Click Apply. The GUI Map Editor displays objects according to the filter applied. |«=Back

WinRunner User’s Guide Chapter 5, page 121

Understanding the GUI Map « Editing the GUI Map

Saving Changes to the GUI Map

If you edit the logical names and physical descriptions of objects in the GUI map,

you must save the changes in the GUI Map Editor before ending the testing

session and exiting WinRunner. gﬁﬁﬁz
To save changes to the GUI map, do one of the following: & Find

® Choose File > Save in the GUI Map Editor to save changes in the appropriate Find
GUI map file. Again
® Choose File > Save As to save the changes in a new GUI map file. 2 Help

[=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 5, page 122

Understanding the GUI Map

Configuring the GUI Map

This chapter explains how to change the way WinRunner identifies GUI objects

during Context Sensitive testing. Books
Online
This chapter describes:
@4 Find
® Understanding the Default GUI Map Configuration
Find
® Mapping a Custom Object to a Standard Class Again
® Configuring a Standard or Custom Class ‘oé?' Help
® Creating a Permanent GUI Map Configuration ‘ ’
® Deleting a Custom Class
® The Class Property Tolglof
. Chapter
® All Properties
® Default Properties Learned = Back

WinRunner User’s Guide Chapter 6, page 123

WinRunner User’s Guide

Understanding the GUI Map « Configuring the GUI Map

About Configuring the GUI Map

Each GUI object in the application being tested is defined by multiple properties,
such as class, label, MSW_class, MSW _id, x (coordinate), y (coordinate), width,
and height. WinRunner uses these properties to identify GUI objects in your
application during Context Sensitive testing.

When WinRunner learns the description of a GUI object, it does not learn all its
properties. Instead, it learns the minimum number of properties to provide a
unique identification of the object. For each object class (such as push_button,
list, window, or menu), WinRunner learns a default set of properties: its GUI map
configuration.

For example, a standard push button is defined by 26 properties, such as
MSW__class, label, text, nchildren, X, y, height, class, focused, enabled. In most
cases, however, WinRunner needs only the class and label properties to create a
unique identification for the push button.

Many applications also contain custom GUI objects. A custom object is any object
not belonging to one of the standard classes used by WinRunner. These objects
are therefore assigned to the generic “object” class. When WinRunner records an
operation on a custom object, it generates obj_mouse_ statements in the test
script.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Chapter 6, page 124

Understanding the GUI Map « Configuring the GUI Map

If a custom object is similar to a standard object, you can map it to one of the
standard classes. You can also configure the properties WinRunner uses to
identify a custom object during Context Sensitive testing. The mapping and the
configuration you set are valid only for the current WinRunner session. To make Books
the mapping and the configuration permanent, you must add configuration Online
statements to your startup test script. Each time you start WinRunner, the startup

. . . . @4 Find
test activates this configuration. '
Find
Again
Note: If your application contains owner-drawn custom buttons, you can map @ Help

them all to one of the standard button classes instead of mapping each button
separately. You do this: by either choosing a standard button class in the Record ‘ ’
Owner-Drawn Buttons box in the Record tab in the General Options dialog box;

or, setting the rec_owner_drawn testing option with the setvar function from =] .
within a test script. For more information, see Chapter 37, Setting Testing gﬁgp?er

Options from a Test Script.
= Back

WinRunner User’s Guide Chapter 6, page 125

Understanding the GUI Map « Configuring the GUI Map

Object properties vary in their degree of portability. Some are non-portable

(unique to a specific platform), such as MSW_class or MSW_id. Some are semi-
portable (supported by multiple platforms, but with a value likely to change), such
as handle, or Toolkit_class. Others are fully portable (such as label, Books
attached_text, enabled, focused or parent). Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 126

WinRunner User’s Guide

Understanding the GUI Map « Configuring the GUI Map

Understanding the Default GUI Map Configuration

For each class, WinRunner learns a set of default properties. Each default
property is classified “obligatory” or “optional”. (For a list of the default properties,
see All Properties on page 148.)

An obligatory property is always learned (if it exists).

An optional property is used only if the obligatory properties do not provide
unigque identification of an object. These optional properties are stored in a list.
WinRunner selects the minimum number of properties from this list that are
necessary to identify the object. It begins with the first property in the list, and
continues, if necessary, to add properties to the description until it obtains unique
identification for the object.

If you use the GUI Spy to view the default properties of an OK button, you can
see that WinRunner learns the class and label properties. The physical
description of this button is therefore:

{class:push_button, label:"OK"}

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Chapter 6, page 127

Understanding the GUI Map « Configuring the GUI Map

In cases where the obligatory and optional properties do not uniquely identify an
object, WinRunner uses a selector. For example, if there are two OK buttons with
the same MSW _id in a single window, WinRunner would use a selector to
differentiate between them. Two types of selectors are available:

A location selector uses the spatial position of objects.

An index selector uses a unique number to identify the object in a window.

The location selector uses the spatial order of objects within the window, from
the top left to the bottom right corners, to differentiate among objects with the
same description.

The index selector uses numbers assigned at the time of creation of objects to
identify the object in a window. Use this selector if the location of objects with the
same description may change within a window. See Configuring a Standard or
Custom Class on page 134 for more information.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 128

Understanding the GUI Map « Configuring the GUI Map

Mapping a Custom Object to a Standard Class

A custom object is any GUI object not belonging to one of the standard classes
used by WinRunner. WinRunner learns such objects under the generic “object”
class. WinRunner records operations on custom objects using obj_mouse_
statements.

Using the GUI Map Configuration dialog box, you can teach WinRunner a custom
object and map it to a standard class. For example, if your application has a
custom button that WinRunner cannot identify, clicking this button is recorded as
obj_mouse_click. You can teach WinRunner the “Borbtn” custom class and map
it to the standard push_button class. Then, when you click the button, the
operation is recorded as button_press.

Note that a custom object should be mapped only to a standard class with
comparable behavior. For example, you cannot map a custom push button to the
edit class.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 129

Understanding the GUI Map « Configuring the GUI Map

To map a custom object to a standard class:

1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration

dialog box.
Books
GUI Map Configuration E Online
@ Find
Add...

combobios Find

edit :
frame_mdiclient &l Again

listho
mdiclient i |

mic:_if_win Configure... ﬁ? Help
micaddontable
mzctls_statusbard2 |

Isnrls har:khar.]? _ILI Ok ‘ ’
4 3

Help |

[B]
Top of
. . . e Chapter
The Class List displays all standard and custom classes identified by
WinRunner. = Back

2 Click Add to open the Add Class dialog box.

Add Class E2

Clazs Mame: I @ Cancel

Help

dils

WinRunner User’s Guide Chapter 6, page 130

Understanding the GUI Map « Configuring the GUI Map

3 Click the pointing hand and then click the object whose class you want to add.
The name of the custom object appears in the Class Name box. Note that this
name is the value of the object's MSW__class property.

4 Click OK to close the dialog box. The new class appears highlighted at the
bottom of the Class List in the GUI Map Configuration dialog box, preceded by
the letter “U” (user-defined).

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 131

Understanding the GUI Map « Configuring the GUI Map

5 Click Configure to open the Configure Class dialog box.

Configure Class

Clazs Mame:

RIS bpbuttan—

Default | ok

Mapped to Class: IM]' Cancel |

Help |

Available Propertiss: [~ Leamed Properties

displaped Ohligatary: Optional: Selector:
width clazs attached_test

rum_columng regesp_MSw cla; |MSW_id Ind
] label S class fdex
¥

ahsz w & | ocation
abz y LI

Irgert | |mzert |mzert

Fecord Method

’7'? Becord " Passz Up Az Object ' lgnare

Pazte |

Generated TSL Script
zet_claszs_map["IR15.bmpbutton', "object"];

zet_recard_ath("IRIS brpbutton”’, clazs regexp MSW_clazs |
zet_record_method("'IR1S. brpbutton'', RM_RECORD];

1 | i

The Mapped to Class box displays the object class. The object class is the class

that WinRunner uses by default for all custom objects.

WinRunner User’s Guide Chapter 6, page 132

The custom class
you are mapping

The list of standard
classes

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Understanding the GUI Map « Configuring the GUI Map

From the Mapped to Class list, click the standard class to which you want to
map the custom class. Remember that you should map the custom class only to
a standard class of comparable behavior.

Once you choose a standard class, the dialog box displays the GUI map
configuration for that class.

You can also modify the GUI map configuration of the custom class (the
properties learned, the selector, or the record method). For details, see
Configuring a Standard or Custom Class on page 134.

Click OK to complete the configuration.

Note that the configuration is valid only for the current testing session. To make
the configuration permanent, you should paste the TSL statements into a startup
test script. See Creating a Permanent GUI Map Configuration on page 142 for
more information.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 133

Understanding the GUI Map « Configuring the GUI Map

Configuring a Standard or Custom Class

For any of the standard or custom classes, you can modify the following:

the properties learned

the selector

the recording method

To configure a standard or custom class:

1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration

dialog box.
GUI Map Configuration E
Class List:
 chack Buton Add..
edit
frame_mdiclient &l

listho
rdiclient Configure... |
mic_if_win —
micaddontable
mzctls_statusbard2 |
Isnrls har:khar.]? _ILI Ok
4 3
Help |

The Class List contains all standard classes, as well as any custom classes you
add.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 134

Understanding the GUI Map « Configuring the GUI Map

2 Click the class you want to configure and click Configure. The Configure Class

dialog box opens.

Configure Class

Clazz Hame: check_buttnn—‘ Diefault | oK. |
Mapped ta Class: Icheck_buttnn j Cancel |
Help |

Available Propertiss: [~ Leamed Properties

 displaved Obligatary: Optional: Selectar:

width Hﬁﬁ—’i#‘lsw_id

rum_columng label

h Indeg

Pb & Locati
abs_x * Locahion
M5 _class 7]

Irgert | |mzert |mzert

Fecord Method
’7'? Becord " Passz Up Az Object ' lgnare

Pazte |

Generated TSL Script

|

zet_record_att "check_button®', "clags label”, "MSWwW_id"', "loc
zet_recard_method['check_button®, Ak_RECORD];

—

The Class Name field at the top of the dialog box displays the name of the class

to configure.

WinRunner User’s Guide Chapter 6, page 135

Class you want to
configure

Selector for the class

Obligatory and
Optional properties
learned for the class

All available properties

I Record method for the

class

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Understanding the GUI Map « Configuring the GUI Map

3 Modify the learned properties, the selector, or the recording method as desired.
See Configuring Learned Properties on page 137, Configuring the Selector
on page 140, and Configuring the Recording Method on page 141 for details.

4 Click OK.

Note that the configuration is valid only for the current testing session. To make
the configuration permanent, you should paste the TSL statements into a startup
test script. See Creating a Permanent GUI Map Configuration on page 142 for
more information.

5 Click OK in the GUI Map Configuration dialog box.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 136

Understanding the GUI Map « Configuring the GUI Map

Configuring Learned Properties

The Learned Properties area of the Configure Class dialog box allows you to
configure which properties are recorded and learned for a class. You do this by
moving properties from one list to another within the dialog box in order to specify
whether they are obligatory, optional, or available. Each property can appear in
only one of the lists.

The Obligatory list contains properties always learned (provided that they are
valid for the specific object).

The Optional list contains properties used only if the obligatory properties do not
provide a unique identification for an object. WinRunner selects the minimum
number of properties needed to identify the object, beginning with the first
property in the list.

The Available Properties list contains all remaining properties not in either of the
other two lists.

When the dialog box is displayed, the Obligatory and Optional lists display the
properties learned for the class appearing in the Class Name field.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 137

Understanding the GUI Map « Configuring the GUI Map

To modify the property configuration:

Click a property to move from any of the lists. Then click Insert under the target
list. For example:

To move the MSW__class property from the Obligatory list to the Optional list,
click it in the Obligatory list, then click Insert under the Optional list.

To remove a property so that it is not learned, click it in the Obligatory or Optional
list, then click Insert under the Available Properties list.

To modify the order of properties within a list (particularly important in the
Optional list), click one or more properties and click Insert under the same list.
The properties are moved to the bottom of the list.

Click OK to save the changes.

Note that not all properties apply to all classes. The following table lists each
property and the classes to which it can be applied.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Property Classes

abs_x All classes

abs_y All classes

active All classes

attached_text combobox, edit, listbox, scrollbar
class All classes

WinRunner User’s Guide Chapter 6, page 138

Understanding the GUI Map « Configuring the GUI Map

Property Classes
displayed All classes
enabled All classes
Books
focused All classes Online
handle All classes # Eind
height All classes =
label check_button, push_button, radio_button, static_text, window Again
maximizable calendar, window ‘? Help
minimizable calendar, window ‘ ’
MSW_class All classes
MSW_id All classes, except window Top of
Chapter
nchildren All classes
: ; = Back
obj_col_name edit
owner mdiclient, window
check_button, combobox, edit, list, push_button, radio_button,
pb_name ; .
scroll, window (object)
regexp_label All classes with labels
regexp_
MSWelass All classes

WinRunner User’s Guide Chapter 6, page 139

Understanding the GUI Map « Configuring the GUI Map

Property Classes
text All classes
value calendar, check_button, combobox, edit, listbox, radio_button, Books
scrollbar, static_text Online
vb_name All classes @4 Find
virtual list, push_button, radio_button, table, object (virtual objects only) Find
Again
width All classes
&
X All classes ¥ Help
y Al classes ‘ ’
. . [O]
Configuring the Selector Top of
. Chapter
In cases where both obligatory and optional properties cannot uniquely identify an P
object, WinRunner applies one of two selectors: location or index. “=Back

A location selector performs the selection process based on the position of
objects within the window: from top to bottom and from left to right. An index
selector performs a selection according to a unigue number assigned to an object
by the application developer. For an example of how selectors are used, see
Understanding the Default GUI Map Configuration on page 127.

WinRunner User’s Guide Chapter 6, page 140

WinRunner User’s Guide

Understanding the GUI Map « Configuring the GUI Map

By default, WinRunner uses a location selector for all classes. To change the
selector, click the appropriate radio button.

Configuring the Recording Method

By setting the recording method you can determine how WinRunner records
operations on objects belonging to the same class. Three recording methods are
available:

Record instructs WinRunner to record all operations performed on a GUI object.
This is the default record method for all classes. (The only exception is the static
class (static text), for which the default is Pass Up.)

Pass Up instructs WinRunner to record an operation performed on this class as
an operation performed on the element containing the object. Usually this
element is a window, and the operation is recorded as win_mouse_click.

As Object instructs WinRunner to record all operations performed on a GUI
object as though its class were “object” class.

Ignore instructs WinRunner to disregard all operations performed on the class.

To modify the recording method, click the appropriate radio button.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Chapter 6, page 141

Understanding the GUI Map « Configuring the GUI Map

Creating a Permanent GUI Map Configuration

By generating TSL statements describing the configuration you set and inserting

them into a startup test, you can ensure that WinRunner always uses the correct
. . . Books
GUI map configuration for your standard and custom object classes. Online
To create a permanent GUI map configuration for a class: & Find
1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration Find
dialog box. Again
2 Click a class and click Configure. The Configure Class dialog box opens. 2 Help
[=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 6, page 142

Understanding the GUI Map « Configuring the GUI Map

3 Set the desired configuration for the class. Note that in the bottom pane of the
dialog box, WinRunner automatically generates the appropriate TSL statements
for the configuration.

Configure Class E2

Class Manne:

Mapped to Class:

check_hutton

Defaut | ok |

I check_hutton j

LCancel

i

Help

Available Properties; [~ Leamed Praperties

e Ta Obligatony: Optional; Selector;
width clagz M _id

num_columns label

. © Index
Pb e

abz_u * Location
hSw class LI

Imzert | |meert |mzert

Record Method

’7 * Record " PazzUp A Object € |ghare

Faszte |

Gernerated TSL Script

|

zet_recard_ath(check_buttan”', "clazz label”, "MSWw_id“oc—
zet_record_method("'check_button”, RM_RECORD);

| >

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

TSL statements
describing the GUI map
configuration

WinRunner User’s Guide

Understanding the GUI Map « Configuring the GUI Map

4 Paste the TSL statements into a startup test using the Paste button.

For example, assume that in the WinRunner configuration file wrun.ini (located in
your Windows folder), your startup test is defined as follows:

Books
[WrEnv] o Online
XR_TSL_INIT = GS:\tests\my_init
@ Find
You would open the my_init test in the WinRunner window and paste in the —
. Fin
generated TSL lines. Again
= wWinRunner - [G:ATestsmy_imit~] f‘g‘;‘ He|p
File Edit Create Hun Debug Tools Settings Window Help - 8] x|
D2 | feiy = Lof EBlelalnl] S8 nmes] 52 4)
get_class_mwap ("custom class"™, "check button™);
get_record_attr("custom class", "oclass_lshbel”, "M3W_id", "location™); @
set record method("custom class"™, "REM RECORD™) ; Top of
- - - - Chapter
= Back
4| |]
[|Lire: 3 | Fiun Mame: 7

WinRunner User’s Guide Chapter 6, page 144

Understanding the GUI Map « Configuring the GUI Map

For more information on startup tests, see Chapter 39, Initializing Special
Configurations. For more information on the TSL functions defining a custom
GUI map configuration (set_class_map, set_record_attr, and
set_record_method), refer to the TSL Online Reference.

Deleting a Custom Class

You can delete only custom object classes. The standard classes used by
WinRunner cannot be deleted.
To delete a custom class:

1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration
dialog box.

2 Click the class you want to delete from the Class list.

3 Click Delete.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 145

Understanding the GUI Map « Configuring the GUI Map

The Class Property

The class property is the primary property that WinRunner uses to identify the

class of a GUI object. WinRunner categorizes GUI objects according to the ’
. B
following classes: oﬁﬁnz
Class Description ¢4 Find
calendar A standard calendar object that belongs to the CDateTimeCirl AFg;?n
or CMonthCalCtrl MSW__class.
check_button A check box ? Help
edit An edit field ‘ ’
frame_mdiclient Enables WinRunner to treat a window as an mdiclient object. =
list A list box. This can be a regular list or a combo box. Top of
Chapter
menu_item A menu item
= Back
mdiclient An mdiclient object
mic_if_win Enables WinRunner to defer all record and run operations on
any object within this window to the mic_if library. Refer to the
WinRunner Customization Guide for more information.
object Any object not included in one of the classes described in this
table.
push_button A push (command) button

WinRunner User’s Guide Chapter 6, page 146

Understanding the GUI Map « Configuring the GUI Map

Class Description
radio_button A radio (option) button
scroll A scroll bar or slider Books
Online
spin A spin object
: :) #h Find
static_text Display-only text not part of any GUI object
Find
status bar A status bar on a window Again
tab A tab item f? Help
toolbar A toolbar object ‘ ’
window Al_wy application window, dialog box, or form, including MDI
windows.
=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 6, page 147

Understanding the GUI Map « Configuring the GUI Map

All Properties

The following tables list all properties used by WinRunner in Context Sensitive
testing. Properties are listed by their portability levels: portable, semi-portable,
and non-portable.

Books
Online

Note for XRunner users: You cannot use GUI maps created in XRunner in
WinRunner test scripts. You must create new GUI maps in WinRunner. For
information on running XRunner test scripts recorded in Analog mode, see
Chapter 8, Creating Tests. Forinformation on using GUI checkpoints created in
XRunner in WinRunner test scripts, see Chapter 9, Checking GUI Objects. For
information on using bitmap checkpoints created in XRunner in WinRunner test
scripts, see Chapter 14, Checking Bitmaps.

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 148

Understanding the GUI Map « Configuring the GUI Map

Portable Properties

Property Description
. . . Books
abs_x The x-coordinate of the top left corner of an object, relative to the Online
origin (upper left corner) of the screen display.
abs_y The y-coordinate of the top left corner of an object, relative to the & Find
origin (upper left corner) of the screen display. Find
attached_text The static text located near the object. Again
class See The Class Property on page 146. ? Help
class_index An index number that identifies an object, relative to the position ‘ ’
of other objects from the same class in the window (Java add-in
only).
) T EI f
; ; ; op o
count The number of menu items contained in a menu. Chapter
displayed A Boolean value indicating whether the object is displayed: 1 if
visible on screen, 0 if not. &=Back
enabled A Boolean value indicating whether the object can be selected or
activated: 1 if enabled, 0 if not.
focused A Boolean value indicating whether keyboard input will be
directed to this object: 1 if object has keyboard focus, 0 if not.
height Height of object in pixels.
html_url A URL (WebTest only).

WinRunner User’s Guide

Chapter 6, page 149

Understanding the GUI Map « Configuring the GUI Map

Books
Online

Property Description

label The text that appears on the object, such as a button label.

maximizable A Boolean value indicating whether a window can be maximized:
1 if the window can be maximized, O if not.

minimizable A Boolean value indicating whether a window can be minimized:

1 if the window can be minimized, 0 if not.

@& Find

module_name

The name of an executable file which created the specified
window.

Find
Again

‘? Help

4

nchildren The number of children the object has: the total number of
descendants of the object.

NSTBTitle The title of a toolbar in a browser (WebTest only).

NSTitle The title of a browser (WebTest only).

num_columns

A table object in Terminal Emulator applications only.

[=]

Top of
Chapter

= Back

num_rows A table object in Terminal Emulator applications only.

parent The logical name of the parent of the object.

part_value The name of a radio button or a check box in a group (WebTest
only).

position The position (top to bottom) of a menu item within the menu (the

first item is at position 0).

WinRunner User’s Guide Chapter 6, page 150

Understanding the GUI Map « Configuring the GUI Map

Property

Description

submenu

A Boolean value indicating whether a menu item has a submenu:
1 if menu has submenu, 0 if not.

value

Different for each class:

Radio and check buttons: 1 if the button is checked, O if not.
Menu items: 1 if the menu is checked, O if not.

List objects: indicates the text string of the selected item.
Edit/Static objects: indicates the text field contents.

Scroll objects: indicates the scroll position.

All other classes: the value property is a null string.

Books
Online

@& Find

Find
Again

width

Width of object in pixels.

‘? Help

The x-coordinate of the top left corner of an object, relative to the
window origin.

4

The y-coordinate of the top left corner of an object, relative to the
window origin.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide

Chapter 6, page 151

Understanding the GUI Map « Configuring the GUI Map

Semi-Portable Properties

Property Description
. . . Books
handle A run-time pointer to the object: the HWND handle. Online
TOOLKIT _class The value of the specified toolkit class. The value of this # Find
property is the same as the value of the MSW_class in In
Windows, or the X_class in Motif. Find
Again
Non-Portable Microsoft Windows Properties 2 Help
Property Description ‘ ’
active A Boolean value indicating whether this is the top-level window =]
associated with the input focus. Top of
Chapter
MSW_class The Microsoft Windows class.
= Back
MSW_id The Microsoft Windows ID.
obj_col_name A concatenation of the DataWindow and column names. For edit
field objects in WinRunner with PowerBuilder add-in support,
indicates the name of the column.
owner (For windows), the application (executable) name to which the
window belongs.

WinRunner User’s Guide Chapter 6, page 152

Understanding the GUI Map « Configuring the GUI Map

Property

Description

pb_name

A text string assigned to PowerBuilder objects by the developer.
(The property applies only to WinRunner with PowerBuilder add-
in support.)

regexp_label

The text string and regular expression that enables WinRunner to
identify an object with a varying label.

Books
Online

@& Find

regexp_MSWcl
ass

The Microsoft Windows class combined with a regular
expression. Enables WinRunner to identify objects with a varying
MSW_class.

Find
Again

sysmenu

A Boolean value indicating whether a menu item is part of a
system menu.

‘? Help

text

The visible text in an object or window.

4

vb_name

A text string assigned to Visual Basic objects by the developer
(the name property). (The property applies only to WinRunner
with Visual Basic add-in support.)

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 6, page 153

Understanding the GUI Map « Configuring the GUI Map

Default Properties Learned

The following table lists the default properties learned for each class. (The default
properties apply to all methods of learning: the RapidTest Script Wizard, the GUI

Map Editor, and recording.)

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Class Obllgatqry Optional Properties Selector
Properties
All buttons class, label MSW_id location
list, edit, scroll, class, attached_text MSW_id location
combobox
frame_mdiclient class, label, MSW_class location
regexp_MSWoclass,
regexp_label
menu_item class, label, sysmenu position location
object class, attached_text, location
regexp_MSWoclass, MSW_id, MSW_class
label
mdiclient class, label regexp_MSWeclass,
MSW_class

WinRunner User’s Guide

Chapter 6, page 154

Understanding the GUI Map « Configuring the GUI Map

Class Ob||gat9ry Optional Properties Selector
Properties
static_text class, MSW_id label location
Boqks
window class, attached_text, location Online
regexp_MSWclass, MSW_id, MSW_class]
label @ Find
Find
Again
Properties for Visual Basic Objects D Help
The label and vb_name properties are obligatory properties: they are learned for ‘ ’
all classes of Visual Basic objects.
[B]
Top of
Chapter
Note: To test Visual Basic applications, you must install Visual Basic support.
For more information, refer to your WinRunner Installation Guide. “=Back

WinRunner User’s Guide Chapter 6, page 155

Understanding the GUI Map « Configuring the GUI Map

Properties for PowerBuilder Objects

The following table lists the standard object classes and the properties learned for

each PowerBuilder object.
Books
Online
Obligatory . .
Class Properties Optional Properties Selector & Find
all buttons class, pb_name label, MSW_id location AFinC_i
gain
list, scroll, class, pb_name attached_text, location
combobox MSW_id ‘? Help
edit class, pb_name, attached_text, location ‘ ’
obj_col_name MSW_id
object class, pb_name label, attached_text, location [O]
MSW_id, Top of
MSW_class Chapter
window class, pb_name label, MSW_id location = Back

Note: In order to test PowerBuilder applications, you must install PowerBuilder
support. For more information, refer to your WinRunner Installation Guide.

WinRunner User’s Guide Chapter 6, page 156

Understanding the GUI Map

Learning Virtual Objects

You can teach WinRunner to recognize any bitmap in a window as a GUI object
by defining the bitmap as a virtual object.

Books
Online

& Find

Find
® Understanding a Virtual Object’s Physical Description Again

This chapter describes:

® Defining a Virtual Object

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 7, page 157

Understanding the GUI Map ¢ Learning Virtual Objects

About Learning Virtual Objects

Your application may contain bitmaps that look and behave like GUI objects.
WinRunner records operations on these bitmaps using win_mouse_click
statements. By defining a bitmap as a virtual object, you can instruct WinRunner
to treat it like a GUI object such as a push button, when you record and run tests.
This makes your test scripts easier to read and understand.

For example, suppose you record a test on the Windows 95/Windows NT
Calculator application in which you click buttons to perform a calculation. Since
WinRunner cannot recognize the calculator buttons as GUI objects, by default it
creates a test script similar to the following:

set_window("Calculator");
win_mouse_click ("Calculator”, 87, 175);
win_mouse_click ("Calculator”, 204, 200);
win_mouse_click ("Calculator”, 121, 163);
win_mouse_click ("Calculator”, 242, 201);

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 7, page 158

Understanding the GUI Map ¢ Learning Virtual Objects

This test script is difficult to understand. If, instead, you define the calculator
buttons as virtual objects and associate them with the push button class,
WinRunner records a script similar to the following:

set_window ("Calculator");
button_press("seven");
button_press("plus™);
button_press(“four™);
button_press("equal®);

You can create virtual push buttons, radio buttons, check buttons, lists, or tables,
according to the bitmap’s behavior in your application. If none of these is
suitable, you can map a virtual object to the general object class.

You define a bitmap as a virtual object using the Virtual Object wizard. The wizard
prompts you to select the standard class with which you want to associate the
new object. Then you use a crosshairs pointer to define the area of the object.
Finally, you choose a logical name for the object. WinRunner adds the virtual
object’s logical name and physical description to the GUI map.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 7, page 159

Understanding the GUI Map ¢ Learning Virtual Objects

Defining a Virtual Object

Using the Virtual Object wizard, you can assign a bitmap to a standard object

class, define the coordinates of that object, and assign it a logical name.

Books
To define a virtual object using the Virtual Object wizard: Online
1 Choose Tools > Virtual Object Wizard. The Virtual Object wizard opens. Click #4 Find
Next. Find
2 In the Class list, select a class for the new virtual object. Again
‘? Help
Learn Virtual Object ‘ ’
. . =]
Select a standard class object for the witual Top of
object. Chapter
Class: uzh_button
= Back

< Back I Hewt » I Cancel Help

WinRunner User’s Guide Chapter 7, pa

Understanding the GUI Map ¢ Learning Virtual Objects

If you select the list class, select the number of visible rows that are displayed in
the window. For a table class, select the number of visible rows and columns.

Click Next.
3 Click Mark Object. Use the crosshairs pointer to select the area of the virtual gﬁﬁﬁz
object. You can use the arrow keys to make precise adjustments to the area you
define with the crosshairs. 4 Find
Find
Again

Note: The virtual object should not overlap GUI objects in your application

(except for those belonging to the generic “object” class, or to a class configured Z Help

to be recorded as "object”). If a virtual object overlaps a GUI object, WinRunner
may not record or execute tests properly on the GUI object. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 7, page 161

Understanding the GUI Map ¢ Learning Virtual Objects

Press Enter or click the right mouse button to display the virtual object’s
coordinates in the wizard.

Mark ¥irtual Object

Books
- . Online
Mark Virtual Object
Click. the “Mark Object” button. Use the crosshairs M Find
pointer to mark the coordinates of the wvirual object.
Do not include scroll bars or labels. Fi ”C_‘
Again
‘? Help

Window: IF'n:uglam Manager

H |45|:| ::II it |24 =1 ‘ ’

I |
it |33? j ﬂeight:|13 j High_lightl @l
Top of
Chapter
< Back | Heut » | Cancel | Help |
= Back

If the object marked is visible on the screen, you can click the Highlight button to
view it. Click Next.

WinRunner User’s Guide Chapter 7, page 162

Understanding the GUI Map ¢ Learning Virtual Objects

4 Assign a logical name to the virtual object. This is the name that appears in the
test script when you record on the virtual object. If the object contains text that
WinRunner can read, the wizard suggests using this text for the logical name.

Otherwise, WinRunner suggests virtual_object, virtual_push_button, virtual_list,
etc.

¥irtual Object Wizard

Assign Logical Name
Diefine a logical name for the virtual object.

Thiz narme will appear in the test zcript when you
record actions on the wirtual object.

Logical Name:

Phwsical Deszcription:

{ ry
clasz:push_buttan, (i
witual TRUE, L
w50,

w337, _I

< Back I Hewt » I Cancel | Help |

You can accept the wizard'’s suggestion or type in a different name. WinRunner
checks that there are no other objects in the GUI map with the same name
before confirming your choice. Click Next.

WinRunner User’s Guide

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Chapter 7, page 163

Understanding the GUI Map ¢ Learning Virtual Objects

5 Finish learning the virtual object:

® If you want to learn another virtual object, click Yes. Click Next.

® To close the wizard, click Finish.

wirtual object.

Congratulations!

WwinBunner now recoghizes your bitmap az a

Do pou veant to learn another witual object’?

Yirtual Object Wizard

< Back I Finish I

Cahicel |

Help

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

When you exit the wizard, WinRunner adds the object’s logical name and
physical description to the GUI map. The next time that you record operations on
the virtual object, WinRunner generates TSL statements instead of

win_mouse_click statements.

WinRunner User’s Guide

Chapter 7, page 164

Understanding the GUI Map ¢ Learning Virtual Objects

Understanding a Virtual Object’s Physical Description

When you create a virtual object, WinRunner adds its physical description to the

GUI map. The physical description of a virtual object does not contain the label
property found in the physical description of “real” GUI objects. Instead it contains gﬁﬁﬁz
a special property, virtual. Its function is to identify virtual objects, and its value is
always TRUE. # Find
Since WinRunner identifies a virtual object according to its size and its position AFg;?n
within a window, the X, y, width, and height properties are always found in a virtual
object’s physical description. ? Help
For example, the physical description of a virtual_push_button includes the ‘ ’
following properties:

g prop =
{ Crapter

p

class: push_button,
virtual: TRUE, = Back
X: 82,
y: 121,
width: 48,
height: 28,
}

If these properties are changed or deleted, WinRunner cannot recognize the
virtual object. If you move or resize an object, you must use the wizard to create
a new virtual object.

WinRunner User’s Guide Chapter 7, page 165

Books

Creating Tests ——
#h Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Page 166

Creating Tests

Creating Tests

Using recording, programming, or a combination of both, you can create
automated tests quickly.

This chapter describes: gﬁ,ﬁ’,'j;
® The WinRunner Test Window & Find
® Context Sensitive Recording Find
® Solving Common Context Sensitive Recording Problems Again
® Analog Recording ? Help

® Checkpoints ‘ ’

® Data-Driven Tests

[=]
® Synchronization Points CTﬁp of
apter
® Planning a Test
& Back

® Documenting Test Information

® Associating Add-ins with a Test

® Recording a Test

® Activating Test Creation Commands Using Softkeys
® Programming a Test

® Editing a Test

® Managing Test Files

WinRunner User’s Guide Chapter 8, page 167

Creating Tests ¢ Creating Tests

About Creating Tests

You can create tests using both recording and programming. Usually, you start by

recording a basic test script. As you record, each operation you perform ’

. ., . Books
generates a statement in Mercury Interactive’s Test Script Language (TSL). Online
These statements appear as a test script in a test window. You can then enhance
your recorded test script, either by typing in additional TSL functions and #4 Find
programming elements or by using WinRunner’s visual programming tool, the Find
Function Generator. Again
Two modes are available for recording tests: ? Help

® Context Sensitive records the operations you perform on your application by ‘ ’
identifying Graphical User Interface (GUI) objects.
® Analog records keyboard input, mouse clicks, and the precise To@of
x- and y-coordinates traveled by the mouse pointer across the screen. Chapter
. . = Back
You can add GUI, bitmap, text, and database checkpoints, as well as

synchronization points to your test script. Checkpoints enable you to check your
application by comparing its current behavior to its behavior in a previous
version. Synchronization points solve timing and window location problems that
may occur during a test run.

You can create a data-driven tests, which are tests driven by data stored in an
internal table.

WinRunner User’s Guide Chapter 8, page 168

Creating Tests ¢ Creating Tests

To create a test script, you perform the following main steps:

1 Decide on the functionality you want to test. Determine the checkpoints and

synchronization points you need in the test script.

2 Document general information about the test in the Test Properties dialog box. gﬁﬁﬁz
3 Choose a Record mode (Context Sensitive or Analog) and record the test on 4 Find
your application. n
4 Assign a test name and save the test in the file system or in your TestDirector AFg;‘i’n

project.
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 169

Creating Tests ¢ Creating Tests

The WinRunner Test Window

You develop and run WinRunner tests in the test window, which contains the
following elements:

Books

* Test window title bar, which displays the name of the open test Online

® Test script, which consists of statements generated by recording and/or #4 Find
programming in TSL, Mercury Interactive’s Test Script Language Find
Again

® Execution arrow, which indicates the line of the test script being executed (to
move the marker to any line in the script, click the mouse in the left window 2 Help
margin next to the line) -

* Insertion point, which indicates where you can insert or edit text ‘ ’
B G:\DAATest_1= @
o set_window ["Flight Reservation™, S)b Test window title bar = gf?gp?ér

‘ obj_wouse_elick ("Button", 17, 7, LEFT):
obj_type [("HSNaskWndClass", 12125997 ;
list_select_item ("Fly From:", "Frankfurt"]; # Item Number 1, EBack
list_select_item ("Fly To:", "Los Lngeles"): ¥ Tiem Number 2.
obj wouse elick ("FLIGHT", 35, 37, LEFTI;
set_window ("Flights Table", 2];| Insertion point
list_select_item ("Flight™, "20331 FRA 05:12 AM LAX 04:23 PM LA §112.20"): #
button press ("OK");

Execution arrow

set_window ("Flight Reservation™, 4):

edit_set ("Mame:", "John Zmith"): Test script

button set ("First"™, ON); [

button press ("Insert Order”): -
1] | P

WinRunner User’s Guide Chapter 8, page 170

Creating Tests ¢ Creating Tests

Context Sensitive Recording

Context Sensitive mode records the operations you perform on your application

in terms of its GUI objects. As you record, WinRunner identifies each GUI object
. . . . Books
you click (such as a window, button, or list), and the type of operation performed Online
(such as drag, click, or select).
@ Find
For example, if you click the Open button in an Open dialog box, WinRunner .
records the following: AFg;‘i’n
button_press ("Open"); 2 Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 171

Creating Tests ¢ Creating Tests

When it runs the test, WinRunner looks for the Open dialog box and the Open
button represented in the test script. If, in subsequent runs of the test, the button
is in a different location in the Open dialog box, WinRunner is still able to find it.

s CE Books
= ck .
= Online
In version 1, the Open button is
above the Cancel button. &h Find
Find
In version 2, the Open button is Again
Fiename: [Feadhie doc Oeen] below the Cancel button.
File of ype: ['word for windows 6.0~ doc) [&
& Help
Lookjn |l winge
Extra bt Madasdre tat ‘ ’
B Msn.tt
Gereral bt Ndislog bt
5] Hardware tat Network. tat Winnews bt @
Intemet tet Printsrs tt
1Z] Mouse.tat Frograms.tt Top of
i Chapter
File pame: [Readme.tit Cangel
Files of ype: [Test Documents =l Geen | = Back

Use Context Sensitive mode to test your application by operating on its user
interface. For example, WinRunner can perform GUI operations (such as button
clicks and menu or list selections), and then check the outcome by observing the
state of different GUI objects (the state of a check box, the contents of a text box,
the selected item in a list, etc.).

WinRunner User’s Guide Chapter 8, page 172

Creating Tests ¢ Creating Tests

Remember that Context Sensitive tests work in conjunction with the GUI map and
GUI map files. We strongly recommend that you read the “Understanding the GUI
Map” section of this guide before you start recording.

The following example illustrates the connection between the test script and the

GUI map. It also demonstrates the connection between the logical name and the gﬁﬁﬁz
physical description. Assume that you record a test in which you print a readme
file by choosing the Print command on the File menu to open the Print dialog box, #A Find

and then clicking the OK button. The test script might look like this: Find
Again

Activate the Readme.doc - WordPad window.

win_activate ("Readme.doc - WordPad"); ? Help

Direct the Readme.doc - WordPad window to receive input. ‘ ’

set_window ("Readme.doc - WordPad", 10);

Choose File > Print. To@of

menu_select_item ("File;Print... Ctrl1+P"); Ch;’pter

Direct the Print window to receive input. &Back

set_window ("Print", 10);

Click the OK button.
button_press ("OK");

WinRunner learns the actual description—the list of properties and their
values—for each object involved and writes this description in the GUI map.

WinRunner User’s Guide Chapter 8, page 173

Creating Tests * Creating Tests

When you open the GUI map and highlight an object, you can view the physical
description. In the following example, the Readme.doc window is highlighted in

the GUI map.
¥ GUI Map Editor HEE golqks
Fle Edt View Dptions Tools Help nine
windows/Objects: i
N : @& Find
Window icon 1= Print
Push button icon 7<L@] 4,7 Logical name of window Find
=B Feadme doc - wWaordPad! Learn El Again
Menu item icon = File Madify.. |
A "Print... Ctil+F"
Add.. | ‘? Help
LDelete | ‘ ’
Shaow | Top of
__Find (5] Chapter
¥ Shaw Physical Description &= Back
{ -
class: window,
label: "Readme.doc - WardPad",
}MSW_-:Iass: wiordPadClazs Physical description of window
IActive GUI file: <All maps

WinRunner User’s Guide Chapter 8, page 174

Creating Tests ¢ Creating Tests

WinRunner writes the following descriptions for the other window and objects in
the GUI map:

File menu: {class:menu_item, label:File, parent:None}
Print command: {class: menu_item, label: "Print... Ctrl+P", parent: File} Books
Print window: {class:window, label:Print} Online
OK button: {class:push_button, label:OK}

@& Find

(To see these descriptions, you would highlight the windows or objects in the Find
GUI map, and the physical description appears below.) WinRunner also assigns Again
a logical name to each object. As WinRunner runs the test, it reads the logical
name of each object in the test script and refers to its physical description in the ? Help
GUI map. WinRunner then uses this description to find the object in the

application being tested. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 8, page 175

Creating Tests ¢ Creating Tests

Solving Common Context Sensitive Recording Problems

This section discusses common problems that can occur while creating Context
Sensitive tests.

Books
Online
WinRunner Does Not Record the Appropriate TSL Statements ,
. #4 Find
for Your Object
You record on an object, but WinRunner does not record the appropriate TSL AFg;‘i’n

statements for the object class. Instead, WinRunner records obj_mouse
statements. This occurs when WinRunner does not recognize the class to which | %" Help
your object belongs, and therefore it assigns it to the generic “object” class.

There are several possible causes and solutions: ‘ ’
1‘E]f
Possible . . opo
Causes Possible Solutions Chapter
Add-in support You must install and load add-in support for the required object. ®Back
for the object is For example, for HTML objects, you must load the WebTest add-
not loaded. in. For information on loading add-in support, see Loading
WinRunner Add-Ins on page 52.

WinRunner User’s Guide Chapter 8, page 176

Creating Tests ¢ Creating Tests

el Possible Solutions
Causes
The object is a If a custom object is similar to a standard object, you can map "
custom class the custom class to a standard class, as described in Mapping gﬁﬁnz
object. a Custom Object to a Standard Class on page 129.
You can add a custom GUI object class. For more information on #A Find
creating custom GUI object classes and checking custom Find
objects, refer to the WinRunner Customization Guide. You can Ag;in
also create GUI checks for custom objects. For information on
checking GUI objects, see Chapter 4, Creating the GUI Map. D Help
You can create custom record and execution functions. If your
object changes, you can modify your functions instead of ‘ ’
updating all your test scripts. For more information on creating
custom record and execution functions, refer to the WinRunner =
Customization Guide. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 177

Creating Tests ¢ Creating Tests

WinRunner Cannot Read Text from HTML Pages in Your

Application
There are several possible causes and solutions:
Books
. . . Online
Possible Causes Possible Solutions
: : : . @4 Find
The WebTest add-in You must install and load add-in support for Web objects. For
is not loaded. information on loading add-in support, see Loading Find
WinRunner Add-Ins on page 52. Again
WinRunner does Use the Create > Get Text > From Selection (Web D Help
not identify the text only) command to retrieve text from an HTML page. For a °
as originating in an frame, WinRunner inserts a web_frame_get_text
HTML frame or statement. For any other GUI object class, WinRunner inserts ‘ ’
table. aweb_obj_get_text statement. =
Use the Create > Get Text > Web Text Checkpoint Top of
command to check whether a specified text string exists in an Chapter
HTML page. For a frame, WinRunner inserts a
web_frame_text_exists statement. For any other GUI & Back
object class, WinRunner inserts a web_obj_text_exists
statement.

For more information, refer to the WebTest User’s Guide or the TSL Online
Reference.

For more information on solving Context Sensitive testing problems, refer to
WinRunner context-sensitive help.

WinRunner User’s Guide Chapter 8, page 178

Creating Tests ¢ Creating Tests

Analog Recording

Analog mode records keyboard input, mouse clicks, and the exact path traveled

by your mouse. For example, if you choose the Open command from the File

. L . Books
menu in your application, WinRunner records the movements of the mouse Online
pointer on the screen. When WinRunner executes the test, the mouse pointer
retraces the coordinates. #A Find
In your test script, the menu selection described above might look like this: AFg;?n
mouse track 2 Help
move_locator_track (1);
left mouse button press ‘ ’
mtype ("<T110><kLeft>-"); =
mouse track Top of

Chapter

move_locator_track (2);
left mouse button release “©Back

mtype ("<kLeft>+");
Use Analog mode when exact mouse movements are an integral part of the test,

such as in a drawing application. Note that you can switch to and from Analog
mode during a Context Sensitive recording session.

WinRunner User’s Guide Chapter 8, page 179

Creating Tests ¢ Creating Tests

Note for XRunner users: You cannot run test scripts in WinRunner that were
recorded in XRunner in Analog mode. The portions of XRunner test scripts

recorded in Analog mode must be rerecorded in WinRunner before running them Books
in WinRunner. For information on configuring GUI maps created in XRunner for Online
WinRunner, see Chapter 6, Configuring the GUI Map. For information on using # Eind
GUI checkpoints created in XRunner in WinRunner test scripts, see Chapter 9,
Checking GUI Objects. Forinformation on using bitmap checkpoints created in Find
XRunner in WinRunner test scripts, see Chapter 14, Checking Bitmaps. Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 8, page 180

Creating Tests ¢ Creating Tests

Checkpoints

Checkpoints allow you to compare the current behavior of the application being

tested to its behavior in an earlier version.
Boqks
You can add four types of checkpoints to your test scripts: Online
. - . . #h Find
® GUI checkpoints verify information about GUI objects. For example, you can 'n
check that a button is enabled or see which item is selected in a list. See Find
Chapter 9, Checking GUI Objects, for more information. Again
® Bitmap checkpoints take a “snapshot” of a window or area of your application 2 Help
and compare this to an image captured in an earlier version. See Chapter 14,
Checking Bitmaps, for more information. ‘ ’
¢ Text checkpoints read text in GUI objects and in bitmaps and enable you to verify =
their contents. See Chapter 15, Checking Text, for more information. Top of
Chapter
¢ Database checkpoints check the contents and the number of rows and columns
of a result set, which is based on a query you create on your database. See “=Back

Chapter 13, Checking Databases, for more information.

WinRunner User’s Guide Chapter 8, page 181

Creating Tests ¢ Creating Tests

Data-Driven Tests

When you test your application, you may want to check how it performs the same

operations with multiple sets of data. You can create a data-driven test with a loop

that runs ten times: each time the loop runs, it is driven by a different set of data. gﬁﬁﬁz

In order for WinRunner to use data to drive the test, you must link the data to the

test script which it drives. This is called parameterizing your test. The data is #4 Find

stored in a data table. You can perform these operations manually, or you can use Find

the DataDriver Wizard to parameterize your test and store the data in a data table. Again

For additional information, see Chapter 16, Creating Data-Driven Tests. 2 Help

4

Synchronization Points =

Synchronization points enable you to solve anticipated timing problems between gﬁgpft’ér

the test and your application. For example, if you create a test that opens a

database application, you can add a synchronization point that causes the testto |4+ Back

wait until the database records are loaded on the screen.

For Analog testing, you can also use a synchronization point to ensure that
WinRunner repositions a window at a specific location. When you run a test, the
mouse cursor travels along exact coordinates. Repositioning the window enables
the mouse pointer to make contact with the correct elements in the window. See
Chapter 17, Synchronizing the Test Run, for more information.

WinRunner User’s Guide Chapter 8, page 182

Creating Tests ¢ Creating Tests

Planning a Test

Plan a test carefully before you begin recording or programming. Following are
some points to consider:

Books
Online

® Determine the functionality you are about to test. It is better to design short,
specialized tests that check specific functions of the application, than long tests &4 Find
that perform multiple tasks.

Find
® Decide on the types of checkpoints and synchronization points you want to use Again
in the test.
‘? Help

® If you plan to use recording, decide which parts of your test should use the
Analog recording mode and which parts should use the Context Sensitive mode. ‘ ’

® Determine the types of programming elements (such as loops, arrays, and user-
defined functions) that you want to add to the recorded test script.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 8, page 183

Creating Tests ¢ Creating Tests

Documenting Test Information

Before creating a test, you can document information about the testin the General

and Description tabs of the Test Properties dialog box. You can enter the name of
the test author, the type of functionality tested, a detailed description of the test, gﬁﬁﬁz
and a reference to the relevant functional specifications document.
@ Find
You can also use the Test Properties dialog box to define which add-ins to load .
for the test, assign the main data table for a test, define parameters for a test, AFg;?n
designate a test as a compiled module, and to review current information about
the test. These functions are described in this chapter and chapters 16, 22, 24, ? Help
and 27 respectively. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 184

Creating Tests * Creating Tests

To document test information:

1 Choose File > Test Properties to open the Test Properties dialog box.

2 Click the General tab.
Books
Online
Test Properties
General] Description] Parameters] Add-insl Current Test] #4 Find
P | . Find
== Eszz0n Again
Location; D:MProgram FileshMercumy Interactive’,. \tmp ﬁ? Help
Authar: |J0hn Howard
Created: 07401/39 1.2:04: 28 PM ‘ ’
Readfwrite status: writable @
Top of
Test tupe: Compiled Module Chapter
b ain data table: default xlz il
= = Back
0k | Cancel Apply Help

WinRunner User’s Guide

Creating Tests ¢ Creating Tests

This tab displays the following information:

Option Description
. Books
Displays the name of the test. Online
; ; —— ; & Find
Location Displays the test’s location within the TestDirector tree
if the test is stored in TestDirector. Otherwise, this field Find
displays the test’s location within the file system. Again
Author Displays the test author’s name. 2 Help
Created Displays the date and time that the test was created. ‘ ’
Read/write Indicates whether the test is read-only (either the test
status directory or the script is marked as read only in the file =]
system) or writable. If the test is read-only, all editable Top of
property fields in the Test Properties dialog box are Chapter
disabled.
= Back
Test type Indicates whether the test is a Main Test or a
Compiled Module. For more information about
compiled modules, see Creating a Compiled
Module on page 675.
Main data Displays the main data table for the test. For more
table information, see Assigning the Main Data Table
for a Test on page 518.

WinRunner User’s Guide Chapter 8, page 186

Creating Tests ¢ Creating Tests

3 Enter your name in the Author field.

4 Click the Description tab.

Test Properties E3
General Description | Parameters I Adding I Current Test I Books
Online
Dezcription zummary: Icheck price tokal calculation in fax arder
AT function: IFIight 14 - Faw order M Find
Functional zpecification; |2.3.5 Faw order pricing info Find
Again
Details:
Check that the fax arder on the Flight application properly ;I ﬁ? Help

computes the total price baged on the number of ticketz and the

unit price per ticket] ‘ ’

[=]

Top of
Chapter

= Back

| |
0k I Cancel | Apply | Help |

5 Add information about the test including a short summary, description of the
application function(s) you are testing, reference to the functional specifications
for the application and a detailed description of the test.

6 Click OK to save the test information and close the dialog box.

WinRunner User’s Guide Chapter 8, page 187

Creating Tests * Creating Tests

Associating Add-ins with a Test

You can indicate the WinRunner add-ins that are required for a test by selecting
them in the Add-ins tab of the Test Properties dialog box.

Books
Online
Test Properties E
Generall Description I Parameters Add-ing |Eurrent Testl 4 Find
Required add-inz: Fi nC_i
Again
[Active Contrals
[Forte B
[|PowerBuilder ¢ Help

[w]*fizual Basic

[=]

Top of
Chapter

= Back

0k I Cancel Apply Help

WinRunner User’s Guide Chapter 8, page 188

Creating Tests ¢ Creating Tests

The Add-ins tab contains one check box for each add-in you currently have
installed. This information reminds you or others which add-ins to load in order to
successfully run this test.

To associate add-ins with a test:

Books

1 Choose File > Test Properties to open the Test Properties dialog box. Online

2 Click the Add-ins tab. @ Find
3 Select the add-in(s) that are required for this test. Find
Again

Running Tests with Add-ins from TestDirector 2 Help

In addition to providing information for people running your test from WinRunner,
the Add-ins tab instructs TestDirector to load the selected Add-ins when it runs ‘ ’

WinRunner tests. =]
Top of
When you run a test from TestDirector, TestDirector will load the add-ins selected Chapter

in the Add-ins tab for the test. If WinRunner is already open, but does not have
the required add-ins loaded, TestDirector closes and re-opens WinRunner with
the proper add-ins. If one or more of the required add-ins are not installed,
TestDirector displays a “Cannot open test.” error message.

= Back

For more information about running WinRunner tests from TestDirector, refer to
the TestDirector User’s Guide.

WinRunner User’s Guide Chapter 8, page 189

Creating Tests ¢ Creating Tests

Recording a Test

Consider the following guidelines when recording a test:

® Before you start to record, close all applications not required for the test.

Books
® Use aninvoke_application statement to open the application you are testing. Online
For information on working with TSL functions, see Chapter 20, Enhancing .
Your Test Scripts with Programming. For more information about the & Find
invoke_application function and an example of usage, refer to the TSL Online Find
Reference. Again

® Before you record on objects within a window, click the title bar of the window to 2 Help
record a win_activate statement. This activates the window. For information on
working with TSL functions, see Chapter 20, Enhancing Your Test Scripts with ‘ ’
Programming. For more information about the win_activate function and an

example of usage, refer to the TSL Online Reference.]
Top of
® Create your test so that it “cleans up” after itself. When the test is completed, the Chapter

environment should resemble the pre-test conditions. (For example, if the test
started with the application window closed, then the test should also close the
window and not minimize it to an icon.)

= Back

® When you record a test, you can minimize WinRunner and turn the User toolbar
into a floating toolbar. This enables you to record on a full screen of your
application, while maintaining access to important menu commands. To
minimize WinRunner and work from the floating User toolbar: undock the User
toolbar from the WinRunner window, start recording, and minimize WinRunner.
The User toolbar stays on top of all other applications. Note that you can

WinRunner User’s Guide Chapter 8, page 190

Creating Tests ¢ Creating Tests

customize the User toolbar with the menu commands you use most frequently
when creating a test. For additional information, see Chapter 34, Customizing
WinRunner’s User Interface.

® When recording, use mouse clicks rather than the Tab key to move within a Books
window in the application being tested. Online
® When recording in Analog mode, use softkeys rather than the WinRunner menus | Find
or toolbars to insert checkpoints. —
n
® When recording in Analog mode, avoid typing ahead. For example, when you Again
want to open a window, wait until it is completely redrawn before continuing. In D Hel
addition, avoid holding down a mouse button when this results in a repeated = heip
action (for example, using the scroll bar to move the screen display). Doing so ‘ ’
can initiate a time-sensitive operation that cannot be precisely recreated.
Instead, use discrete, multiple clicks to achieve the same results. =
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 191

Creating Tests ¢ Creating Tests

® WinRunner supports recording and running tests on applications with RTL-style
window properties. RTL-style window properties include right-to-left menu order
and typing, a left scroll bar, and attached text at the top right corner of GUI
objects. WinRunner supports pressing the CTRL and SHIFT keys together or the

ALT and SHIFT keys together to change language and direction when typing. gﬁﬁﬁz

The default setting for attached text supports recording and running tests on

applications with RTL-style windows. For more information on attached text 4 Find

options, see Chapter 36, Setting Global Testing Options, and Chapter 37, Find

Setting Testing Options from a Test Script. Again
® WinRunner supports recording and running tests on applications with drop-down 2 Help

and menu-like toolbars, which are used in Microsoft Internet Explorer 4.0 and
Windows 98. Although menu-like toolbars may look exactly like menus, they are ‘ ’
of a different class, and WinRunner records them differently. When an item is

selected from a drop-down or a menu-like toolbar, WinRunner records a E]

toolbar_select_item statement. (This function resembles the Top of
menu_select_item function, which records selecting menu commands on Chapter
menus.) For more information, refer to the TSL Online Reference. &Back

® If the test folder or the test script file is marked as read-only in the file system,
you cannot perform any WinRunner operations which change the test script or
the expected results folder.

WinRunner User’s Guide Chapter 8, page 192

Creating Tests ¢ Creating Tests

To record a test:

1' 1 Choose either Create > Record—Context Sensitive or

Create > Record—Analog or click the Record—Context Sensitive button.

2 Perform the test as planned using the keyboard and mouse. gﬁﬁﬁz
Insert checkpoints and synchronization points as needed by choosing the 4 Find
appropriate commands from the User toolbar or from the Create menu: GUI Fin
Checkpoint, Bitmap Checkpoint, Database Checkpoint, or Synchronization Find
Point. Again

ll 3 To stop recording, click Create > Stop Recording or click Stop. 2 Help
[B]

Top of

Chapter

= Back

WinRunner User’s Guide Chapter 8, page 193

Creating Tests ¢ Creating Tests

Activating Test Creation Commands Using Softkeys

You can activate several of WinRunner’s commands using softkeys. WinRunner

reads input from softkeys even when the WinRunner window is not the active
. . N . Books
window on your screen, or when it is minimized. Note that you can configure the Online
softkeys. For more information, see Chapter 34, Customizing WinRunner’s
User Interface. #h Find
The following table lists the default softkey configurations for test creation: AFg;?n
Default Softkey . ? Help
Command o Function
Combination ‘ ’
RECORD F2 Starts test recording. While
recording, this softkey toggles =]
between the Context Sensitive and Top of
Analog modes. Chapter
CHECK GUI FOR SINGLE Alt Right + F12 Checks a single property of a GUI &= Back
PROPERTY object.
CHECK GUI FOR Ctrl Right + F12 | Creates a GUI checkpoint for an
OBJECT/WINDOW object or a window.
CHECK GUI FOR F12 Opens the Create GUI Checkpoint
MULTIPLE OBJECTS dialog box.
CHECK BITMAP OF Ctrl Left + F12 Captures an object or a window
OBJECT/WINDOW bitmap.

WinRunner User’s Guide Chapter 8, page 194

Command

Default Softkey
Combination

Function

Creating Tests ¢ Creating Tests

CHECK BITMAP OF

Alt Left + F12

Captures an area bitmap.

Books
SCREEN AREA Online
CHECK DATABASE Ctrl Right + F9 Creates a check on the entire # Find
(DEFAULT) contents of a database. '
CHECK DATABASE Alt Right + F9 Checks the number of columns, rows AF”;?n
(cusTom) and specified information of a g
database. & Help
SYNCHRONIZE Ctrl Right + F10 Instructs WinRunner to wait for a
OBJECT/WINDOW property of an object or a window to ‘ ’
PROPERTY have an expected value.
SYNCHRONIZE BITMAP Ctrl Left + F11 Instructs WinRunner to wait for a Top of
OF OBJECT/WINDOW specific object or window bitmap to Chapter
appear.
= Back

SYNCHRONIZE BITMAP Alt Left + F11 Instructs WinRunner to wait for a
OF SCREEN AREA specific area bitmap to appear.
GET TEXT FROM F11 Captures text in an object or a

OBJECT/WINDOW

window.

GET TEXT FROM
WINDOW AREA

Alt Right + F11

Captures text in a specified area and
adds an obj_get_text statement to
the test script.

WinRunner User’s Guide Chapter 8, page 195

Creating Tests ¢ Creating Tests

Command Defau[t Sqftkey Function
Combination
GET TEXT FROM Ctrl Right + F11 Captures text in a specified area and "
SCREEN AREA adds a get_text statement to the gﬁﬁnz
test script.
INSERT FUNCTION FOR F8 Inserts a TSL function for a GUI #A Find
OBJECT/WINDOW object. .
Find
. . Again
INSERT FUNCTION F7 Opens the Function Generator dialog
FROM FUNCTION box. 2 Help
GENERATOR
STOP Ctrl Left + F3 Stops test recording. ‘ ’
MOVE LOCATOR Alt Left + F6 Records a move_locator_abs =]
statement with the current position Top of
(in pixels) of the screen pointer. Chapter
= Back

WinRunner User’s Guide Chapter 8, page 196

Creating Tests ¢ Creating Tests

Programming a Test

You can use programming to create an entire test script, or to enhance your
recorded tests. WinRunner contains a visual programming tool, the Function
Generator, which provides a quick and error-free way to add TSL functions to your
test scripts. To generate a function call, simply point to an object in your
application or select a function from a list. For more information, see Chapter 21, #4 Find

Generating Functions. Find
Again

Books
Online

You can also add general purpose programming features such as variables,
control-flow statements, arrays, and user-defined functions to your test scripts. ? Help
You may type these elements directly into your test scripts. For more information

on creating test scripts with programming, see the “Programming with TSL” ‘ ’
section of this guide.]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 8, page 197

Creating Tests ¢ Creating Tests

Editing a Test

To make changes to a test script, use the commands in the Edit menu or the

corresponding toolbar buttons. The following commands are available: ’
Books
Online
Edit Command Description
#h Find
Undo Cancels the last editing operation.
Find
Cut Deletes the selected text from the test script and places it onto Again
the Clipboard.
- ‘? Help
Copy Makes a copy of the selected text and places it onto the
Clipboard. ‘ ’
Paste Pastes the text on the Clipboard at the insertion point.
[B]
Delete Deletes the selected text. Top of
Chapter
Select All Selects all the text in the active test window.
. - ")) - = Back
Find Finds the specified characters in the active test window.
Find Next Finds the next occurrence of the specified characters.
Find Previous Finds the previous occurrence of the specified characters.
Replace Finds and replaces the specified characters with new
characters.
Go To Moves the insertion point to the specified line in the test script.

WinRunner User’s Guide Chapter 8, page 198

Creating Tests ¢ Creating Tests

Managing Test Files

You use the commands in the File menu to create, open, save, print, and close

test files.
Books
Online
Creating a New Test
g @ Find
Ql Choose File > New or click New. A new window opens, titled Noname, and
followed by a numeral (for example, Noname7). You are ready to start recording AFg;‘i’n
or programming a test script.
‘? Help
Opening an Existing Test ‘ ’
To open an existing test, choose File > Open or click Open.
[B]
Top of
Chapter
Note: No more than 100 tests may be open at the same time. ©Back
ac

WinRunner User’s Guide Chapter 8, page 199

Creating Tests ¢ Creating Tests

To open atest from the file system:

Eﬂl 1 Choose File > Open or click Open to open the Open Test dialog box.

Open Test 2 | x| m

Look i Ia tmp Boqks
Online
E noname]
=] noname2 @ Find
E noname3
Find
Again
‘? Help

Filz narne: I Open I ‘ ’

Filez of type: I\A-"inF! unner Tests j Cancel | @
~Test Top of
Expected: I j & Firector.. Chgpter
= Back

2 Inthe Look in box, click the location of the test you want to open.

3 Inthe File name box, click the name of the test to open.

4 If the test has more than one set of expected results, click the folder you want to
use on the Expected list. The default folder is called exp.

5 Click Open to open the test.

WinRunner User’s Guide Chapter 8, page 200

Creating Tests ¢ Creating Tests

To open a test from a TestDirector project:

= 1 Choose File > Open or click Open. If you are connected to a TestDirector

project, the Open Test from TestDirector Project dialog box opens and displays
the test plan tree. Books
Online
773 Dpen Test from TestDirector project [_ O] =])
@4 Find
Categary ISubjed j QD ﬁ File System...

B3 Subject +| | Test Mame | status | crestes | = Find
b P Unattached ¥ button functions Reary 11/30/95 Again
El@ Context Sensitive W Drag & Drop Ready Si28097

; CE Repla ¥ edi fncts Feady 1001285 @
play ¢ Help
s 73 ¢S Record ¥ edit funcs basic Ready BI27 135
#-{77 Lowy Leval W edit functions Reacy BI27 135
_____ 77 Header W edits Ready 1202806 ‘ ’
#-77 GUI Toolks $Igbels . Ready 1252085
007 Images d L!st Sgbrtem Ready &r1987 @
e List Yiew (ontrees) Ready L2797
% ';'S;réme”ac; W List View Functions Ready Sra6ET Tﬁp of
& Recogniion %<t multi functions Ready IMTIEE Chapter
""" 3 Instalstion W list-single function Repair 10425195
""" (I Fiters WA ListFunc Ready 512895 &= Back
w07 T5L W menu functions Ready 10023095
----- 77 Batch LI_ TE hani calact fam Paadu BT LI
Test Mame : IIist—muIti functions Expectect xR Ok I
Test Type IAII tests j Cancel |

Note that the Open Test from TestDirector Project dialog box opens only when

WinRunner is connected to a TestDirector project.

WinRunner User’s Guide Chapter 8, page 201

Creating Tests ¢ Creating Tests

2 Click the relevant subject in the test plan tree. To expand the tree and view
sublevels, double-click closed folders. To collapse the tree, double-click open

folders.
Note that when you select a subject, the tests that belong to the subject appear Books
in the Test Name list. Online

3 Select atest in the Test Name list. The test appears in the read-only Test Name | #4 Find

box.
Find
4 If desired, enter an expected results folder for the test in the Expected box. Again
(Otherwise, the default folder is used.) 5
& Help
5 Click OK to open the test. The test opens in a window in WinRunner. Note that
the test window’s title bar shows the full subject path. ‘ ’
[B]
Top of

Note: You can click the File System button to open the Open Test dialog box and Chapter
open a test from the file system.

= Back

For more information on opening tests in a TestDirector project, see Chapter 40,
Managing the Testing Process.

WinRunner User’s Guide Chapter 8, page 202

Creating Tests ¢ Creating Tests

Saving a Test

The following options are available for saving tests:

® Save changes to a previously saved test by choosing File > Save or by clicking Books
Save. Online

¢ Save two or more open tests simultaneously by choosing File > Save All. &4 Find

® Save a new test script by choosing File > Save As or by clicking Save. Find

Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 8, page 203

Creating Tests ¢ Creating Tests

To save atest to the file system:

El 1 On the File menu, choose a Save command or click Save, as described above.

The Save Test dialog box opens.

Books
Save Test Online
Save jn: Iatmp j il Ir d#h Find

Find
Again
‘? Help

File hane: InnnameS Sawe I @
Save as lype: IWinHunnEl Tests j Cancel | (;rf?gpct)t];r
ﬁgﬁ'ﬁgcmx.. | = Back

2 Inthe Save in box, click the location where you want to save the test.
3 Enter the name of the test in the File name box.

4 Click Save to save the test.

WinRunner User’s Guide Chapter 8, page 204

Creating Tests ¢ Creating Tests

To save atest to a TestDirector project:

1 On the File menu, choose a Save command or click Save, as described above.

If you are connected to a TestDirector project, the Save Test to TestDirector
Project dialog box opens. Books
Online
'i::- Save Test to TestDirector project [_ (O] x|
- @ Find
Cateqory : ISubjed j QD (= File System...

53 Subject | | Test Mame | status | crested | = Find
i P Unattached W button functions Ready 1130095 Again
El@ Context Sensitive e Drag & Drop Ready 552887

: 77 €5 Replay ¥ edi fncts Feady 1001285 ‘g‘) Help
o773 CS Record ¥ edit funcs basic Ready BI27 135
#-{77 Lowy Leval W edit functions Reacy BI27 135
_____ (73 Headsr W edits Ready 1272996 | ‘ ’
#-77 GUI Toolks Vi |akels Reacy 12720035
007 Images T L?st Sgbﬂem Ready SM887 @
_____ [User Interface L L!st V!ew {an trnlaes) Ready L2797 Top of
_____ () Text Recognition ki3 |st V|e Func1|ons Ready 52687 Chgpter
K L i=t-multi functions Feady INTEE
""" (23 Inataliation W list-single function Repair 10/25/5
""" (13 Fiters W ListFunc Ready 52698 ‘= Back
w07 T5L % menu functions Ready 1002385
----- 77 Batch LI_ TE hani calact fam Paadu BT LI
Test Mame : IIist—muIti functions
Test Type |Altests = e |

Note that the Save Test to TestDirector Project dialog box opens only when

WinRunner is connected to a TestDirector project.

WinRunner User’s Guide Chapter 8, page 205

Creating Tests ¢ Creating Tests

2 Select the relevant subject in the test plan tree. To expand the tree and view a
sublevel, double-click a closed folder. To collapse a sublevel, double-click an

open folder.
3 In the Test Name text box, enter a name for the test. Use a descriptive name Books
that will help you easily identify the test. Online
4 Click OK to save the test and close the dialog box. #4 Find
Find
Again
Note: You can click the File System button to open the Save Test dialog box and
save a test in the file system. @ Help
The next time you start TestDirector, the new test will appear in the TestDirector’s =
test plan tree. Refer to the TestDirector User’s Guide for more information. gﬁgpft’ér
For more information on saving tests to a TestDirector project, see Chapter 40, &= Back
Managing the Testing Process.

WinRunner User’s Guide Chapter 8, page 206

Creating Tests ¢ Creating Tests

Printing a Test

To print a test script, choose File > Print to open the Print dialog box.

® Choose the print options you want. Books
® Click OK to print. Online
#h Find
Closing a Test Find
® To close the current test, choose File > Close. Again
® To simultaneously close two or more open tests, choose Window > Close All. 2 Help
=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 8, page 207

Creating Tests

Checking GUI Objects

By adding GUI checkpoints to your test scripts, you can compare the behavior of

GUI objects in different versions of your application. BoOKS
Online
This chapter describes:
@4 Find
® Checking a Single Property Value
Find
® Checking a Single Object Again
® Checking Two or More Objects in a Window 2 Help
® Checking All Objects in a Window ‘ ’
® Understanding GUI Checkpoint Statements
® Using an Existing GUI Checklist in a GUI Checkpoint Tolglof
e . Chapt
®* Modifying GUI Checklists e
* Understanding the GUI Checkpoint Dialog Boxes & Back

® Property Checks and Default Checks

® Specifying Arguments for Property Checks

® Editing the Expected Value of a Property

®* Modifying the Expected Results of a GUI Checkpoint

WinRunner’s User Guide Chapter 9, page 208

Creating Tests * Checking GUI Objects

About Checking GUI Objects

You can use GUI checkpoints in your test scripts to help you examine GUI objects
in your application and detect defects. For example, you can check that when a
specific dialog box opens, the OK, Cancel, and Help buttons are enabled.

You point to GUI objects and choose the properties you want WinRunner to
check. You can check the default properties recommended by WinRunner, or you
can specify which properties to check. Information about the GUI objects and the
selected properties is saved in a checklist. WinRunner then captures the current
property values for the GUI objects and saves this information as expected
results. A GUI checkpoint is automatically inserted into the test script. This
checkpoint appears in your test script as an obj_check_gui orawin_check_gui

statement.
GUI Checkpoint
I
I |
Checklist Expected Results
objects and properties to check captured property values

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 209

Creating Tests * Checking GUI Objects

When you run the test, the GUI checkpoint compares the current state of the
GUI objects in the application being tested to the expected results. If the
expected results and the current results do not match, the GUI checkpoint fails.
The results of the checkpoint can be viewed in the Test Results window. For
more information, see Chapter 28, Analyzing Test Results.

Books
Online

Note that any GUI object you check that is not already in the GUI map is added &4 Find
automatically to the temporary GUI map file. See Chapter 3, Introducing the GUI
Map, for additional information.

Find
Again

You can use a regular expression to create a GUI checkpoint on an edit object or 2 Help
a static text object with a variable name. For additional information, see

Chapter 19, Using Regular Expressions. ‘ ’
WinRunner provides special built-in support for ActiveX control, Visual Basic, and =
PowerBuilder application development environments. When you load the gﬁgpft’ér

appropriate add-in support, WinRunner recognizes these controls, and treats
them as it treats standard GUI objects. You can create GUI checkpoints for these |+ Back
objects as you would create them for standard GUI objects. WinRunner provides
additional special built-in support for checking ActiveX and Visual Basic sub-
objects. For additional information, see Chapter 10, Working with ActiveX and
Visual Basic Controls. Forinformation on WinRunner support for PowerBuilder,
see Chapter 11, Checking PowerBuilder Applications.

You can also create GUI checkpoints that check the contents and properties of
tables. For information, see Chapter 12, Checking Table Contents.

WinRunner User’s Guide Chapter 9, page 210

Creating Tests * Checking GUI Objects

Note for XRunner users: You cannot use GUI checkpoints created in XRunner

when you run test scripts in WinRunner. You must recreate the GUI checkpoints
in WinRunner. Books
Online
For information on using GUI maps created in XRunner, see Chapter 6, P
Configuring the GUI Map. For information on using test scripts recorded in Find
XRunner in Analog mode, see Chapter 8, Creating Tests. For information on Find
using bitmap checkpoints created in XRunner, see Chapter 14, Checking Again
Bitmaps.
P ‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 9, page 211

Creating Tests * Checking GUI Objects

Checking a Single Property Value

You can check a single property of a GUI object. For example, you can check
whether a button is enabled or disabled or whether an item in a list is selected. To
create a GUI checkpoint for a property value, use the Check Property dialog box
to add one of the following functions to the test script:

button_check_info scroll_check_info
edit_check_info static_check_info
list_check_info win_check_info

obj_check_info

For information about working with these functions, refer to the TSL Online
Reference.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 212

Creating Tests * Checking GUI Objects

To create a GUI checkpoint for a property value:

1 Choose Create > GUI Checkpoint > For Single Property. If you are recording
in Analog mode, press the CHECK GUI FOR SINGLE PROPERTY softkey in order to

avoid extraneous mouse movements. Books
Online
The WinRunner window is minimized, the mouse pointer becomes a pointing
hand, and a help window opens on the screen. @& Find
2 Click an object. Find
. . Again

The Check Property dialog box opens and shows the default function for the

selected object. WinRunner automatically assigns argument values to the 2 Help

function.

4
Ibuttnn_check_info[“EIK","enabled",1 I: Cloze | To%lof
button I"EIK" - Paste I Chapter
attribute I"enabled" hd Draee >>| = Back

expected |1

WinRunner User’s Guide Chapter 9, page 213

Creating Tests * Checking GUI Objects

3 You can modify the arguments for the property check.

® To modify assigned argument values, choose a value from the Attribute list.
The expected value is updated in the Expected text box.

® To choose a different object, click the pointing hand and then click an object
in your application. WinRunner automatically assigns new argument values
to the function.

Note that if you click an object that is not compatible with the selected
function, a message states that the current function cannot be applied to the
selected object. Click OK to clear the message, and then click Close to close
the Check Property dialog box. Repeat steps 1 and 2.

4 Click Paste to paste the statement into your test script.

The function is pasted into the script at the insertion point. The Check Property
dialog box closes.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

Note: To change to another function for the object, click Change. The Function
Generator dialog box opens and displays a list of functions. For more information
on using the Function Generator, see Chapter 21, Generating Functions.

= Back

WinRunner User’s Guide Chapter 9, page 214

Creating Tests * Checking GUI Objects

Checking a Single Object

You can create a GUI checkpoint to check a single object in the application being
tested. You can either check the object with its default properties or you can
specify which properties to check.

Each standard object class has a set of default checks. For a complete list of
standard objects, the properties you can check, and default checks, see Property
Checks and Default Checks on page 262.

Books
Online

@& Find

Find
Again

Note: You can set the default checks for an object using the
gui_ver_set_default_checks function. For more information, refer to the TSL
Online Reference and the WinRunner Customization Guide.

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 215

Creating Tests * Checking GUI Objects

Creating a GUI Checkpoint using the Default Checks

You can create a GUI checkpoint that performs a default check on the property
recommended by WinRunner. For example, if you create a GUI checkpoint that

checks a push button, the default check verifies that the push button is enabled. golqks
niline
To create a GUI checkpoint using default checks:]
4 Find
QI 1 Choose Create > GUI Checkpoint > For Object/Window, or click the .
GUI Checkpoint for Object/Window button on the User toolbar. If you are /fg;‘i’n

recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in
order to avoid extraneous mouse movements. Note that you can press the 2 Help
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer becomes a pointing ‘ ’
hand, and a help window opens on the screen. @l
2 Click an object. gﬁgp?ér

3 WinRunner captures the current value of the property of the GUI object being
checked and stores it in the test’s expected results folder. The WinRunner
window is restored and a GUI checkpoint is inserted in the test script as an
obj_check_gui statement. For more information, see Understanding GUI
Checkpoint Statements on page 230.

= Back

WinRunner User’s Guide Chapter 9, page 216

Creating Tests * Checking GUI Objects

Creating a GUI Checkpoint by Specifying which Properties to

Check
You can specify which properties to check for an object. For example, if you create
a checkpoint that checks a push button, you can choose to verify thatitis in focus, Books
instead of enabled. Online
. . . . _ #4 Find
To create a GUI checkpoint by specifying which properties to check:
QI 1 Choose Create > GUI Checkpoint > For Object/Window, or click the AFg;?n
GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in 2 Help
order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well. ‘ ’
The WinRunner window is minimized, the mouse pointer becomes a pointing =
hand, and a help window opens on the screen. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 9, page 217

Creating Tests * Checking GUI Objects

2 Double-click the object or window. The Check GUI dialog box opens.

4| Check GUI - G:\Login\chklist\list]_ckl

£ 0 Books
Add all Select &1l | Clear &l Online
[Objects |Properties E
E||:|: Login Mame | Arguments | Expected Yalue | g #4 Find
e i I G Enabled OM =
% Facused aFF = Find
1 Height 23 g Again
O Label oK =
1@ width B0 l ? Help
0@« 183 &
Oy 0 = ‘ ’
. . Top of
v Highlight Selected Dbject Ok I Cancel | Help | Chapter
‘= Back

3 Click an object name in the Objects pane. The Properties pane lists all the
properties for the selected object.

WinRunner User’s Guide Chapter 9, page 218

Creating Tests * Checking GUI Objects

4 Select the properties you want to check.

® To edit the expected value of a property, first select it. Next, either click the

Edit Expected Value button, or double-click the value in the Expected Value
column to edit it. For more information, see Editing the Expected Value of a
Property on page 284.

To add a check in which you specify arguments, first select the property for
which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column. Note that if an
ellipsis (three dots) appears in the Arguments column, then you must specify
arguments for a check on this property. (You do not need to specify
arguments if a default argument is specified.) When checking standard
objects, you only specify arguments for certain properties of edit and static
text objects. You also specify arguments for checks on certain properties of
nonstandard objects. For more information, see Specifying Arguments for
Property Checks on page 273.

To change the viewing options for the properties of an object, use the Show
Properties buttons. For more information, see The Check GUI Dialog Box
on page 248.

5 Click OK to close the Check GUI dialog box.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 219

Creating Tests * Checking GUI Objects

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and a GUI checkpoint is
inserted in the test script as an obj_check_gui or a win_check_gui statement.
For more information, see Understanding GUI Checkpoint Statements on
page 230.

For more information on the Check GUI dialog box, see Understanding the GUI
Checkpoint Dialog Boxes on page 245.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 220

Creating Tests * Checking GUI Objects

Checking Two or More Objects in a Window

You can use a GUI checkpoint to check two or more objects in a window. For a
complete list of standard objects and the properties you can check, see Property
Checks and Default Checks on page 262.

To create a GUI checkpoint for two or more objects:

Choose Create > GUI Checkpoint > For Multiple Objects or click the

GUI Checkpoint for Multiple Objects button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR MULTIPLE OBJECTS softkey in
order to avoid extraneous mouse movements. The Create GUI Checkpoint
dialog box opens.

Click the Add button. The mouse pointer becomes a pointing hand and a help
window opens.

To add an object, click it once. If you click a window title bar or menu bar, a help
window prompts you to check all the objects in the window. For more information
on checking all objects in a window, see Checking All Objects in a Window on
page 225.

The pointing hand remains active. You can continue to choose objects by
repeating step 3 above for each object you want to check.

Books
Online

@& Find

Find
Again

‘? Help

<4

>

[=]

Top of
Chapter

= Back

Note: You cannot insert objects from different windows into a single checkpoint.

WinRunner User’s Guide Chapter 9, page 221

Creating Tests * Checking GUI Objects

5 Click the right mouse button to stop the selection process and to restore the

mouse pointer to its original shape. The Create GUI Checkpoint dialog box

reopens.

Ly Create GUI Checkpoint - D:\Program Files\Mercury Interactive\winBunnerstmp\Login\chklis. .. E3

= = & %| x wl H|
Open Save bz Add Add Al Delete Select Al Clear all
[Objects [Properties
= 2] Login Name | Arguments | Expected value =
b (a Compare Bz Text Agent MName:
- [t Agent Mame: [DateFamat < NiA >
= Cancel 1§ Enabled an
1@ Facused OFF
@ Height 13
1@ Range < NS>
O (a RegularExpression - CMAL
1 TimeFamat < NS>
q@wm £3
1 | »
¥ Highlight Selected Object 0k | Cancel | Hep |

e [sis ||

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

6 The Objects pane contains the name of the window and objects included in the

GUI checkpoint. To specify which objects to check, click an object name in the

Objects pane.

WinRunner User’s Guide Chapter 9, page 222

Creating Tests * Checking GUI Objects

The Properties pane lists all the properties of the object. The default properties
are selected.

gy ® To edit the expected value of a property, first select it. Next, either click the
Edit Expected Value button, or double-click the value in the Expected Value
column to edit it. For more information, see Editing the Expected Value of a
Property on page 284.

iy ® To add a check in which you specify arguments, first select the property for
which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column. Note that if an
ellipsis appears in the Arguments column, then you must specify arguments
for a check on this property. (You do not need to specify arguments if a
default argument is specified.) When checking standard objects, you only
specify arguments for certain properties of edit and static text objects. You
also specify arguments for checks on certain properties of nonstandard
objects. For more information, see Specifying Arguments for Property
Checks on page 273.

® To change the viewing options for the properties of an object, use the Show
Properties buttons. For more information, see The Create GUI Checkpoint
Dialog Box on page 252.

7 To save the checklist and close the Create GUI Checkpoint dialog box, click OK.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 223

Creating Tests * Checking GUI Objects

WinRunner captures the current property values of the selected GUI objects and
stores it in the expected results folder. A win_check_gui statement is inserted in
the test script. For more information, see Understanding GUI Checkpoint
Statements on page 230.

For more information on the Create GUI Checkpoint dialog box, see
Understanding the GUI Checkpoint Dialog Boxes on page 245.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 224

Creating Tests * Checking GUI Objects

Checking All Objects in a Window

You can create a GUI checkpoint to perform default checks on all GUI objects in
a window. Alternatively, you can specify which checks to perform on all GUI
objects in a window.

Each standard object class has a set of default checks. For a complete list of
standard objects, the properties you can check, and default checks, see Property
Checks and Default Checks on page 262.

Books
Online

@& Find

Find
Again

Note: You can set the default checks for an object using the
gui_ver_set_default_checks function. For more information, refer to the TSL
Online Reference and the WinRunner Customization Guide.

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 225

Creating Tests * Checking GUI Objects

Checking All Objects in a Window using Default Checks

You can create a GUI checkpoint that checks the default property of every GUI
object in a window.

To create a GUI checkpoint that performs a default check on every GUI
object in a window:

Choose Create > GUI Checkpoint > For Object/Window, or click the

GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in
order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a pointing
hand, and a help window opens.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 226

Creating Tests * Checking GUI Objects

2 Click the title bar or the menu bar of the window you want to check.

The Add All dialog box opens.

Add All - Login E

You are curently pointing at a window.

'hat do pou wish bo check inside the window'? gﬁﬁ:ﬁz
v Objects
[Menus @ Find
e Cancel Hel
_Cancel |_Help | —
Again
3 Select Objects, Menus, or both to indicate the types of objects to include in the 2 Help

checklist. When you select only Objects (the default setting), all objects in the
window except for menus are included in the checklist. To include menus in the ‘ ’
checklist, select Menus.

4 Click OK to close the dialog box. =]
Top of
WinRunner captures the expected property values of the GUI objects and/or Chapter
menu items and stores this information in the test's expected results folder. The &Back

WinRunner window is restored and a win_check_gui statement is inserted in
the test script.

WinRunner User’s Guide Chapter 9, page 227

Creating Tests * Checking GUI Objects

Specifying which Checks to Perform on All Objects in a
Window

You can use a GUI checkpoint to specify which checks to perform on all GUI
objects in a window.

To create a GUI checkpoint in which you specify which checks to perform
on all GUI objects in a window:

Choose Create > GUI Checkpoint > For Object/Window, or click the

GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey in
order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a pointing
hand, and a help window opens.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 228

Creating Tests * Checking GUI Objects

2 Double-click the title bar or the menu bar of the window you want to check.

WinRunner generates a new checklist containing all the objects in the window.

This may take a few seconds.

The Check GUI dialog box opens. Specify which checks to perform, and click
OK to close the dialog box. For more information, see The Check GUI Dialog
Box on page 248.

WinRunner captures the GUI information and stores it in the test’'s expected
results folder. The WinRunner window is restored and a win_check_gui
statement is inserted in the test script.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 229

Creating Tests * Checking GUI Objects

Understanding GUI Checkpoint Statements

A GUI checkpoint for a single object appears in your script as an obj_check_gui
statement. A GUI checkpoint that checks more than one object in a window
appears in your script as a win_check_gui statement. Both the obj_check_gui
and win_check_gui statements are always associated with a checklist and store
expected results in a expected results file.

A checkKlist lists the objects and properties that need to be checked. For an
obj_check_gui statement, the checklist lists only one object. For a
win_check_gui statement, a checklist contains a list of all objects to be checked
in a window. When you create a GUI checkpoint, you can create a new checklist
or use an existing checklist. For information on using an existing checklist, see
Using an Existing GUI Checklist in a GUI Checkpoint on page 233.

An expected results file contains the expected property values for each object in
the checklist. These property values are captured when you create a checkpoint,
and can later be updated manually or by running the test in Update mode. For
more information, see Running a Test to Update Expected Results on page
726. Each time you run the test, the expected property values are compared to
the current property values of the objects.

The obj_check_gui function has the following syntax:

obj_check_gui (object, checklist, expected results file, time);

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 230

Creating Tests * Checking GUI Objects

The object is the logical name of the GUI object. The checklist is the name of the
checklist defining the objects and properties to check. The expected results file
is the name of the file that stores the expected property values. The time is the
interval marking the maximum delay between the previous input event and the
capture of the current property values, in seconds. This interval is added to the
timeout_msec testing option during the test run. For more information on the
timeout_msec testing option, see Chapter 37, Setting Testing Options from a
Test Script.

For example, if you click the OK button in the Login window in the Flight
application, the resulting statement might be:

obj_check_gui ("OK", "list1.ckl", "guil”, 1);

The win_check_gui function has the following syntax:

win_check_gui (window, checklist, expected results file, time);

The window is the logical name of the GUI window. The checklist is the name of
the checklist defining the objects and properties to check. The expected results
file is the name of the file that stores the expected property values. The time is
the interval marking the maximum delay between the previous input event and
the capture of the current property values, in seconds. This interval is added to
the timeout_msec testing option during the test run. For more information on the
timeout_msec testing option, see Chapter 37, Setting Testing Options from a
Test Script.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 231

Creating Tests * Checking GUI Objects

For example, if you click the title bar of the Login window in the sample Flight
application, the resulting statement might be:

win_check_gui ("Login", "listl.ckl", "guil”, 1);

Note that WinRunner names the first checklist in the test list1.ckl and the first
expected results file guil. For more information on the obj _check_gui and
win_check_gui functions, refer to the TSL Online Reference.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 232

Creating Tests * Checking GUI Objects

Using an Existing GUI Checklist in a GUI Checkpoint

You can create a GUI checkpoint using an existing GUI checklist. This is useful
when you want to use a GUI checklist to create new GUI checkpoints, either in
your current test or in a different test. For example, you may want to check the
same properties of certain objects at several different points during your test.
These object properties may have different expected values, depending on when
you check them.

Although you can create a new GUI checklist whenever you create a new GUI
checkpoint, it is expedient to “reuse” a GUI checklist in as many checkpoints as
possible. Using a single GUI checklist in many GUI checkpoints facilitates the
testing process by reducing the time and effort involved in maintaining the GUI
checkpoints in your test.

In order for WinRunner to locate the objects to check in your application, you must
load the appropriate GUI map file before you run the test. For information about
loading GUI map files, see Loading the GUI Map File on page 83.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Note: If you want a checklist to be available to more than one test, you must
save it in a shared folder. For information on saving a GUI checklist in a shared
folder, see Saving a GUI Checklist in a Shared Folder on page 236.

WinRunner User’s Guide Chapter 9, page 233

Creating Tests * Checking GUI Objects

To use an existing GUI checklist in a GUI checkpoint:

EI 1 Choose Create > GUI Checkpoint > For Multiple Objects or click the
GUI Checkpoint for Multiple Objects button on the User toolbar.

The Create GUI Checkpoint dialog box opens.
2 Click Open. The Open Checklist dialog box opens.

3 To see checklists in the Shared folder, click Shared.

Open Checklist
Enter Checklist Hame: 0K I
- Cahicel |
list] . ckl
lizt2, ckl Help |
lizt3 ekl

Enter Checklist Dezcription;

Scope
& Test
€ Shared

Checklizt for window "'Login”'

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

4 Select a checklist and click OK.

WinRunner User’s Guide Chapter 9, page 234

Creating Tests * Checking GUI Objects

The Open Checklist dialog box closes and the selected list appears in the Create
GUI Checkpoint dialog box.

5 Open the window in the application being tested that contains the objects shown
in the checklist (if it is not already open).

6 Click OK. WinRunner captures the current property values and a
win_check_gui statement is inserted into your test script.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 235

Creating Tests * Checking GUI Objects

Modifying GUI Checklists

You can make changes to a checklist you created for a GUI checkpoint. Note that
a checklist includes only the objects and properties that need to be checked. It
does not include the expected results for the values of those properties.

You can:

make a checklist available to other users by saving it in a shared folder

edit a checklist

Books
Online

@& Find

Find
Again

‘? Help

Note: In addition to modifying GUI checklists, you can also modify the expected
results of GUI checkpoints. For more information, see Modifying the Expected
Results of a GUI Checkpoint on page 287.

4

Saving a GUI Checklist in a Shared Folder

By default, checklists for GUI checkpoints are stored in the folder of the current
test. You can specify that a checklist be placed in a shared folder to enable wider
access, so that you can use a checklist in multiple tests.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 236

Creating Tests * Checking GUI Objects

The default folder in which WinRunner stores your shared checklists is
WinRunner installation folder/chklist. To choose a different folder, you can use the
Shared Checklists box in the Folders tab of the General Options dialog box. For
more information, see Chapter 36, Setting Global Testing Options.

To save a GUI checklist in a shared folder:

Choose Create > Edit GUI Checklist.

The Open Checklist dialog box opens. Note that GUI checklists have the .ckl
extension, while database checklists have the .cdl extension. For information on
database checklists, see Modifying a Database Checkpoint on page 400.

Select a GUI checklist and click OK.

The Open Checklist dialog box closes. The Edit GUI Checklist dialog box
displays the selected checklist.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 237

Creating Tests * Checking GUI Objects

3 Save the checklist by clicking Save As.

The Save Checklist dialog box opens.

Save Checklist

Enter Checklizt Mame:

||:5: :l::,|

| Jigt].ckl

ligt3.ckl

Enter Checklist Description:

OF. I
Cancel |
Help |

Checklizt for window "Login''

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

4 Under Scope, click Shared. Type in a name for the shared checklist. Click OK to
save the checklist and close the dialog box.

5 Click OK to close the Edit GUI Checklist dialog box.

= Back

WinRunner User’s Guide Chapter 9, page 238

Creating Tests * Checking GUI Objects

Editing GUI Checklists

You can edit an existing GUI checklist. Note that a GUI checklist includes only the
objects and the properties to be checked. It does not include the expected results
for the values of those properties.

You may want to edit a GUI checklist if you add a checkpoint for a window that
already has a checklist.

When you edit a GUI checkilist, you can:

change which objects in a window to check

change which properties of an object to check

change the arguments for an existing property check

specify the arguments for a new property check

Note that before you start working, the objects in the checklist must be loaded

into the GUI map. For information about loading the GUI map, see Loading the
GUI Map File on page 83.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 239

Creating Tests * Checking GUI Objects

To edit an existing GUI checklist:

1 Choose Create > Edit GUI Checklist. The Open Checklist dialog box opens.

2 Alist of checklists for the current test is displayed. If you want to see checklists in
a shared folder, click Shared. gﬁﬁﬁz

For more information on sharing GUI checklists, see Saving a GUI Checklist in .
a Shared Folder on page 236. Find

Find
Open Checklist Again
Enter Checklist Hame: 0K I
? Help

4

list2.ckl Help_|

list3. ckl Lists the available checklists.
Displays checklists created for the current test. Top of
Chapter
L Displays checklists created in a shared & Back
Enter Checklist Description: folder.
Checklizt for window "'Login”' ;I

| Describes the selected checklist.

WinRunner User’s Guide Chapter 9, page 240

Creating Tests * Checking GUI Objects

3 Select a GUI checklist.

4 Click OK.
The Open Checkilist dialog box closes. The Edit GUI Checklist dialog box opens
and displays the selected checklist. gﬁﬁﬁz
iy Edit GUI Checklist - G:\Login\chklist\list2.ckl &h Find
= = & & bl T ,
Open | Saveds Add Addall | Delete Select &l [Clear &l Find
R Again
[Objects |Properties
EI---: Login Marne | Auguments |~ cg._) Help
- Agent Mame:[stati & Compare Az Test
- patl] Agent Mame: [@ DateFormat
Cancel O (ﬁ Enabled ‘ ’
[8 Focused
1@ Height [O]
O '% Range Top of
O '% RegularE sprezsion] Chapter
@ TimeFormat -
162 width Back
| | 2l [
¥ Highlight Selected Dbject 0k | Cancel | Hep |

WinRunner User’s Guide Chapter 9, page 241

Creating Tests * Checking GUI Objects

5 To see a list of the properties to check for a specific object, click the object name
in the Objects pane. The Properties pane lists all the properties for the selected
object. To change the viewing options for the properties for an object, use the
Show Properties buttons. For more information, see The Edit GUI Checklist
Dialog Box on page 257.

® To check additional properties of an object, select the object in the Objects
pane. In the Properties pane, select the properties to be checked.

Y ® To delete an object from the checklist, select the object in the Objects pane.
_ Delete | Click the Delete button and then select the Object option.

i ® To add an object to the checklist, make sure the relevant window is open in

Add the application being tested. Click the Add button. The mouse pointer

becomes a pointing hand and a help window opens.

Click each object that you want to include in your checklist. Click the right
mouse button to stop the selection process. The Edit GUI Checklist dialog
box reopens.

In the Properties pane, select the properties you want to check or accept the
default checks.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Note: You cannot insert objects from different windows into a single checklist.

WinRunner User’s Guide Chapter 9, page 242

Creating Tests * Checking GUI Objects

] ® To add all objects or menus in a window to the checklist, make sure the
Add Al window of the application you are testing is active. Click the Add All button
and select Objects or Menus.

Note: If the edited checklist is part of an obj_check_gui statement, do not add
additional objects to it, as by definition this statement is for a single object only.

Books
Online

@& Find

i ® To add a check in which you specify arguments, first select the property for
which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column. Note that if an
ellipsis appears in the Arguments column, then you must specify arguments
for a check on this property. (You do not need to specify arguments if a
default argument is specified.) When checking standard objects, you only
specify arguments for certain properties of edit and static text objects. You
also specify arguments for checks on certain properties of nonstandard
objects. For more information, see Specifying Arguments for Property
Checks on page 273.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 243

Creating Tests * Checking GUI Objects

6 Save the checklist in one of the following ways:

® To save the checklist under its existing name, click OK to close the Edit GUI
Checklist dialog box. A WinRunner message prompts you to overwrite the
existing checkilist. Click OK.

] | ® To save the checklist under a different name, click the Save As button. The
SaveAs Save Checklist dialog box opens. Type a hew name or use the default name.
Click OK. Note that if you do not click the Save As button, WinRunner
automatically saves the checklist under its default name when you click OK to
close the Edit GUI Checklist dialog box.

A new GUI checkpoint statement is not inserted in your test script.

For more information on the Edit GUI Checklist dialog box, see Understanding
the GUI Checkpoint Dialog Boxes on page 245.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

Note: Before you run your test in Verify run mode, you must update the expected
results to match the changes you made in the checklist. To update the expected
results, run your test in Update run mode. For more information on running a test
in Update run mode, see WinRunner Test Run Modes on page 712.

= Back

WinRunner User’s Guide Chapter 9, page 244

Creating Tests * Checking GUI Objects

Understanding the GUI Checkpoint Dialog Boxes

When creating a GUI checkpoint to check your GUI objects, you can specify the

objects and properties to check, create new checklists, and modify existing
checklists. Three dialog boxes are used to create and maintain your GUI gﬁﬁﬁz
checkpoints: the Check GUI dialog box, the Create GUI Checkpoint dialog box,
and the Edit GUI Checklist dialog box. #4 Find
Note that by default, the toolbar at the top of each GUI Checkpoint dialog box AFg;?n
displays large buttons with text. You can choose to see dialog boxes with smaller
buttons without titles. Examples of both kinds of buttons are illustrated below. ? Help
£ &
Add Al ‘ ’
Large Add All button Small Add All button @
Top of
Chapter
To display the GUI Checkpoint dialog boxes with small buttons:
= Back
1 Click the top-left corner of the dialog box.

2 Clear the Large Buttons option.

WinRunner User’s Guide Chapter 9, page 245

Creating Tests * Checking GUI Objects

Messages in the GUI Checkpoint Dialog Boxes

The following messages may appear in the GUI Checkpoint dialog boxes:

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Message Meaning Dialog Box Location
Complex The expected or actual value Check GUI , Properties
Value of the selected property Create GUI pane,
check is too complex to Checkpoint, GUI Expected
display in the column. This Checkpoint Value column
message often appears for Results* (see or Actual
content checks on tables. note below) Value column
N/A The expected value of the Check GUI , Properties
selected property check was Create GUI pane,
not captured: either Checkpoint, GUI Expected
arguments need to be Checkpoint Value column
specified before this check Results* (see
can have an expected value, note below)
or the expected value of this
check is captured only once
this check is added to the
checkpoint.
Cannot The expected or actual value Check GUI , Properties
Capture of the selected property Create GUI pane,
could not be captured. Checkpoint, GUI Expected
Checkpoint Value column
Results* (see or Actual
note below) Value

WinRunner User’s Guide Chapter 9, page 246

Creating Tests * Checking GUI Objects

Books
Online

Message Meaning Dialog Box Location
No The specified object did not Check GUI , Properties
properties have any properties. Create GUI pane
areavailable Checkpoint,

for this Edit GUI

object Checklist

No When this checkpoint was GUI Checkpoint Properties
properties created, no property checks Results* (see pane
were were selected for this object. note below)

captured for

this object

@& Find

Find
Again

‘? Help

Note: For information on the GUI Checkpoint Results dialog box, see Modifying
the Expected Results of a GUI Checkpoint on page 287 or Chapter 28,
Analyzing Test Results.

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 247

Creating Tests * Checking GUI Objects

The Check GUI Dialog Box
QI You can use the Check GUI dialog box to create a GUI checkpoint with the checks

you specify for a single object or a window. This dialog box opens when you @
choose Create > GUI Checkpoint > For Object/Window or click the GUI Boloks
. . . . onli
Checkpoint for Object/Window button on the User toolbar, and double-click an nine
object or a window. & Find
i Check GUI - G:\Loginkchklistilistl .ckl Find
—_ Again
e | LT
Add Al | SelectAll | Clear Al D Help
[Objects |Properties 5
-2 Login Mame | Arguments | Expected value | g ‘ ’
- & Enabled ON -
[8 Focused OFF =
R Height 23 o) T [=] ;
(1 Label oK. | L] Cﬁgp?er
[width £0 B
O« 183 o
0@y 0 - = Back
¥ Highlight Selected Dbject ok | Cancel Help |

WinRunner User’s Guide Chapter 9, page 248

Creating Tests * Checking GUI Objects

The Objects pane contains the name of the window and objects that will be
included in the GUI checkpoint. The Properties pane lists all the properties of a
selected object. A checkmark indicates that the item is selected and is included

in the checkpoint.
Boqks
When you select an object in the Objects pane, the Highlight Selected Object Online
option highlights the actual GUI object if the object is visible on the screen. & Find
Find
Again
Note: When arguments have not been specified for a property check that
requires arguments, <N/A> appears in the Expected Value column for that ? Help
check. The arguments specified for a check determine its expected value, and
therefore the expected value is not available until the arguments are specified. ‘ ’
[B]
Top of
Th Chapter
e Check GUI dialog box includes the following options:
= Back
Button Description
5 Add All adds all objects or menus in a window to your checklist.
Add &l
Select All selects all objects, properties, or objects of a given
Select Al class in the Check GUI dialog box. If you want to select all objects
of a given class, the Classes of Objects dialog box opens. Specify
the class of objects to select.

WinRunner User’s Guide Chapter 9, page 249

Creating Tests * Checking GUI Objects

Button

Description

LT
Clear all

Clear All clears all objects, properties, or objects of a given class
in the Check GUI dialog box. If you want to clear all objects of a
given class, the Classes of Objects dialog box opens. Specify the
class of objects to clear.

Books
Online

-
Property List

Property List calls the ui_function parameter that is defined only
for classes customized using the gui_ver_add_class function.
Note that this button appears only if at least one object in the
Objects pane belongs to a class for which the ui_function
parameter has been defined using the gui_ver_add_class
function. For additional information, refer to the WinRunner
Customization Guide.

@& Find

Find
Again

‘? Help

I =
5

Edit Expected Value enables you to edit the expected value of
the selected property. For more information, see Editing the
Expected Value of a Property on page 284.

4

e

Specify Arguments enables you to specify the arguments for a
check on the selected property. For more information, see
Specifying Arguments for Property Checks on page 273.

[=]

Top of
Chapter

= Back

[EEY
1

Show Selected Properties Only displays only properties
whose check boxes are selected. (Toggles between viewing all
properties and viewing selected properties only.) By default, all
properties are shown.

o

Show Standard Properties Only displays only standard
properties.

WinRunner User’s Guide Chapter 9, page 250

Creating Tests * Checking GUI Objects

Button Description
;l Show Nonstandard Properties Only displays only
] nonstandard properties, such as Visual Basic, PowerBuilder, and "
ActiveX control properties. gﬁﬁnz
El Show User Properties Only displays only user-defined .
property checks. To create user-defined property checks, refer to #A Find
the WinRunner Customization Guide. Find
a= Show All Properties displays all properties, including standard, Again
== nonstandard, and user-defined properties. @
& Help
When you click OK to close the dialog box, WinRunner captures the current ‘ ’
property values and stores them in the test’'s expected results folder. The
WinRunner window is restored and a GUI checkpoint is inserted in the test script =
as an obj_check_gui or a win_check_gui statement. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 9, page 251

Creating Tests * Checking GUI Objects

The Create GUI Checkpoint Dialog Box

You can use the Create GUI Checkpoint dialog box to create a GUI checklist with
default checks for multiple objects or by specifying which properties to check. To
open the Create GUI Checkpoint dialog box, choose Create > GUI Checkpoint
> For Multiple Objects or click the GUI Checkpoint for Multiple Objects button

on the User toolbar.

Ly Create GUI Checkpoint - D:\Program Files\Mercury Interactive\winBunnerstmp\Login\chklis. .. E3

] (Y i

= = & = | x | u |
Open Save bz Add Add Al Delete Select Al Clear all
[Objects [Properties
= 2] Login Name | Arguments | Expected value =
A Saent N ame: | (a Compare Az Tent Agent Name:
v abl] Agent Name: [DateFamat < NiA >
Cancel 1§ Enabled an
1@ Facused OFF
@ Height 13
1@ Range < NS> —
O (a RegularExpression - CMAL
1 TimeFamat < NS>
EI @ widh 53 _ILI
1 | »
¥ Highlight Selected Object 0k | Cancel | Hep |

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 252

Creating Tests * Checking GUI Objects

The Objects pane contains the name of the window and objects that will be
included in the GUI checkpoint. The Properties pane lists all the properties of a
selected object. A checkmark indicates that the item is selected and is included
in the checkpoint.

When you select an object from the Objects pane, the Highlight Selected Object
option highlights the actual GUI object if the object is visible on the screen.

Books
Online

@& Find

Note: When arguments have not been specified for a property check that
requires arguments, <N/A> appears in the Expected Value column for that
check. The arguments specified for a check determine its expected value, and
therefore the expected value is not available until the arguments are specified.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 253

Creating Tests * Checking GUI Objects

The Create GUI Checkpoint dialog box includes the following options:

Button

Description

=
Ope

]

Open opens an existing GUI checklist.

Books
Online

Save b

Save As saves the open GUI checklist to a different name. Note
that if you do not click the Save As button, WinRunner
automatically saves the checklist under its default name when you
click OK to close the Create GUI Checkpoint dialog box. The Save
As option is particularly useful for saving a checklist to the “shared
checklist” folder.

@& Find

Find
Again

‘? Help

&

Add

Add adds an object to your GUI checklist.

4

£

Add Al

Add All adds all objects or menus in a window to your GUI
checklist.

[=]

Top of
Chapter

= Back

-

w

Delete

Delete deletes an object, or all of the objects that appear in the
GUI checklist.

Select Al

Select All selects all objects, properties, or objects of a given
class in the Create GUI Checkpoint dialog box. If you want to select
all objects of a given class, the Classes of Objects dialog box
opens. Specify the class of objects to select.

WinRunner User’s Guide Chapter 9, page 254

Creating Tests * Checking GUI Objects

Button

Description

LT
Clear all

Clear All clears all objects, properties, or objects of a given class
in the Create GUI Checkpoint dialog box. If you want to clear all
objects of a given class, the Classes of Objects dialog box opens.
Specify the class of objects to clear.

Books
Online

-
Property List

Property List calls the ui_function parameter that is defined only
for classes customized using the gui_ver_add_class function.
Note that this button appears only if at least one object in the
Objects pane belongs to a class for which the ui_function
parameter has been defined using the gui_ver_add_class
function. For additional information, refer to the WinRunner
Customization Guide.

@& Find

Find
Again

‘? Help

I =
5

Edit Expected Value enables you to edit the expected value of
the selected property. For more information, see Editing the
Expected Value of a Property on page 284.

4

e

Specify Arguments enables you to specify the arguments for a
check on the selected property. For more information, see
Specifying Arguments for Property Checks on page 273.

[=]

Top of
Chapter

= Back

[EEY
1

Show Selected Properties Only displays only properties
whose check boxes are selected. (Toggles between viewing all
properties and viewing selected properties only.) By default, all
properties are shown.

o

Show Standard Properties Only displays only standard
properties.

WinRunner User’s Guide Chapter 9, page 255

Creating Tests * Checking GUI Objects

Button Description
;l Show Nonstandard Properties Only displays only
] nonstandard properties, such as Visual Basic, PowerBuilder, and
ActiveX control properties. goqks
nline
El Show User Properties Only displays only user-defined .
property checks. To create user-defined property checks, refer to #A Find
the WinRunner Customization Guide. Find
a= Show All Properties displays all properties, including standard, Again
== nonstandard, and user-defined properties.
‘? Help
When you click OK to close the dialog box, WinRunner saves your changes, ‘ ’
captures the current property values, and stores them in the test's expected
results folder. The WinRunner window is restored and a GUI checkpoint is =
inserted in the test script as a win_check_gui statement. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 9, page 256

Creating Tests * Checking GUI Objects

The Edit GUI Checklist Dialog Box
You can use the Edit GUI Checklist dialog box to modify your checklist. A checklist

contains a list of objects and properties. It does not capture the current values for
those properties. Consequently you cannot edit the expected values of an Books
. L L Online
object’s properties in this dialog box.
. L . . #4 Find
To open the Edit GUI Checklist dialog box, choose Create > Edit GUI Checklist.
Find
Lj| Edit GUI Checklist - G:\Login\chklist\list2.ckl E Again
s | @ | &@m | &8 | X 7 D Help
Open Save Az Add Add All Delete Select All | Clear All @
[Objects [Properties ‘ ’
= .: LDQIH Marme | Argumerts
] & Compare Az Test
; O '% DateFormat @
.- Cancel [)%@ Enabled Top of
Chapter
O '% Focused
[@ Height
1@ Range EBack
O '% ReqularE spreszion |
O '% TimeFormnat
[8 width
1] | _'I & w LI
¥ Highlight Selected Object ok | Cancel | He |

WinRunner User’s Guide Chapter 9, page 257

Creating Tests * Checking GUI Objects

The Objects pane contains the name of the window and objects that are
included in the checklist. The Properties pane lists all the properties for a
selected object. A checkmark indicates that the item is selected and will be

checked in checkpoints that use this checklist. el
0O0KS
. li
When you select an object from the Objects pane, the Highlight Selected Object Online
option highlights the actual GUI object if the object is visible on the screen. & Find
The Edit GUI Checklist dialog box includes the following options: Find
Again
Button Description 2 Help
= Open opens an existing GUI checklist. ‘ ’
Open
: , . [B]
=] Save As saves your GUI checklist to another location. Note that if Top of
Save fs you do not click the Save As button, WinRunner will automatically Chapter
save the checklist under its default name when you click OK to
close the Edit GUI Checklist dialog box. This option is particularly & Back
useful for saving a checklist to the “shared checklist” folder.
= Add adds an object to your GUI checklist.
Add
£ Add All adds all objects or all menus in a window to your GUI
Add Al checklist.

WinRunner User’s Guide Chapter 9, page 258

Creating Tests * Checking GUI Objects

Button

Description

-

x

Delete

Delete deletes the specified object, or all objects that appear in
the GUI checklist.

Select Al

Select All selects all objects, properties, or objects of a given
class in the Edit GUI Checklist dialog box. If you want to select all
objects of a given class, the Classes of Objects dialog box opens.
Specify the class of objects to select.

Books
Online

@& Find

|

Clear Al

Clear All clears all objects, properties, or objects of a given class
in the Edit GUI Checklist dialog box. If you want to clear all objects
of a given class, the Classes of Objects dialog box opens. Specify
the class of objects to clear.

Find
Again

‘? Help

Property List calls the ui_function parameter that is defined only
for classes customized using the gui_ver_add_class function.
Note that this button appears only if at least one object in the
Objects pane belongs to a class for which the ui_function
parameter has been defined using the gui_ver_add_class
function. For additional information, refer to the WinRunner
Customization Guide.

4

[=]

Top of
Chapter

= Back

Specify Arguments enables you to specify the arguments for a
check on the selected property. For more information, see
Specifying Arguments for Property Checks on page 273.

WinRunner User’s Guide Chapter 9, page 259

Creating Tests * Checking GUI Objects

Button Description
¥z Show Selected Properties Only displays only properties
= whose check boxes are selected. (Toggles between viewing all "
properties and viewing selected properties only.) By default, gﬁﬁnz
selected properties are shown.
il Show Standard Properties Only displays only standard #A Find
properties. :
Flnc_i
;,_l Show Nonstandard Properties Only displays only Again
= nonstandard properties, such as Visual Basic, PowerBuilder, and @
ActiveX control properties. £ Help
El Show User Properties Only displays only user-defined ‘ ’
property checks. To create user-defined property checks, refer to
the WinRunner Customization Guide. =
= Show All Properties displays all properties, including standard, gﬁgp?ér
== nonstandard, and user-defined properties.
= Back

When you click OK to close the dialog box, WinRunner prompts you to overwrite
your checklist. Note that when you overwrite a checklist, any expected results
captured earlier in checkpoints using the edited checklist remain unchanged.

A new GUI checkpoint statement is not inserted in your test script.

WinRunner User’s Guide Chapter 9, page 260

Creating Tests * Checking GUI Objects

Note: Before you run your test in Verify run mode, you must update the expected
results to match the changes you made in the checklist. To update the expected
results, run your test in Update run mode. For more information on running a test
in Update run mode, see WinRunner Test Run Modes on page 712.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 261

Creating Tests * Checking GUI Objects

Property Checks and Default Checks

When you create a GUI checkpoint, you can determine the types of checks to
perform on GUI objects in your application. For each object class, WinRunner
recommends a default check. For example, if you select a push button, the default
check determines whether the push button is enabled. Alternatively, you can
specify in a dialog box which properties of an object to check. For example, you
can choose to check a push button’s width, height, label, and position in a window
(x- and y-coordinates).

To use the default check, you choose a Create > GUI Checkpoint command.
Click a window or an object in your application. WinRunner automatically
captures information about the window or object and inserts a GUI checkpoint into
the test script.

To specify which properties to check for an object, you choose a Create > GUI
Checkpoint command. Double-click a window or an object. In the Check GUI
dialog box, choose the properties you want WinRunner to check. Click OK to save
the checks and close the dialog box. WinRunner captures information about the
GUI object and inserts a GUI checkpoint into the test script.

The following sections show the types of checks available for different object
classes.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 262

Creating Tests * Checking GUI Objects

Calendar Class

You can check the following properties for a calendar class object:
Enabled: Checks whether the calendar can be selected.

Focused: Checks whether keyboard input will be directed to the calendar.
Height: Checks the calendar’s height in pixels.

Selection: The selected date in the calendar (default check).

Width: Checks the calendar’s width in pixels.

X: Checks the x-coordinate of the top left corner of the calendar, relative to the
window.

Y: Checks the y-coordinate of the top left corner of the calendar, relative to the
window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 263

Creating Tests * Checking GUI Objects

Check_button Class and Radio_button Class

You can check the following properties for a check box (an object of check_button
class) or a radio button:

Enabled: Checks whether the button can be selected.

Focused: Checks whether keyboard input will be directed to this button.
Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

State: Checks the button’s state (on or off) (default check).

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to the
window.

Y: Checks the y-coordinate of the top left corner of the button, relative to the
window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 264

Creating Tests * Checking GUI Objects

Edit Class and Static Text Class

You can check the properties below for edit class and static_text class objects.

Checks on any of these five properties (Compare, DateFormat, Range, Books
RegularExpression, and TimeFormat) require you to specify arguments. For Online
information on specifying arguments for property checks, see Specifying 4 Find
Arguments for Property Checks on page 273. n
Find

Compare: Checks the contents of the object (default check). This check has Again
arguments. You can specify the following arguments:

‘? Help
® a case-sensitive check on the contents as text (default setting)
® a case-insensitive check on the contents as text ‘ ’
® numeric check on the contents [E

Top of
DateFormat: Checks that the contents of the object are in the specified date Chapter
format. You must specify arguments (a date format) for this check. WinRunner & Back

supports a wide range of date formats. For a complete list of available date
formats, see Date Formats on page 277.

Enabled: Checks whether the object can be selected.
Focused: Checks whether keyboard input will be directed to this object.

Height: Checks the object’s height in pixels.

WinRunner User’s Guide Chapter 9, page 265

Creating Tests * Checking GUI Objects

Range: Checks that the contents of the object are within the specified range. You
must specify arguments (the upper and lower limits for the range) for this check.

RegularExpression: Checks that the string in the object meets the requirements
of the regular expression. You must specify arguments (the string) for this check.
Note that you do not need to precede the regular expression with an exclamation
point. For more information, see Chapter 19, Using Regular Expressions.

TimeFormat: Checks that the contents of the object are in the specified time
format. You must specify arguments (a time format) for this check. WinRunner
supports the time formats shown below, with an example for each format.

hh.mm.ss 10.20.56
hh:mm:ss 10:20:56
hh:mm:ss 27 10:20:56 AM

Width: Checks the text object’s width in pixels.

X: Checks the x-coordinate of the top left corner of the object, relative to the
window.

Y: Checks the y-coordinate of the top left corner of the object, relative to the
window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 266

Creating Tests * Checking GUI Objects

List Class

You can check the following properties for a list object:

Content: Checks the contents of the entire list.

Enabled: Checks whether an entry in the list can be selected.
Focused: Checks whether keyboard input will be directed to this list.
Height: Checks the list's height in pixels.

ItemsCount: Checks the number of items in the list.

Selection: Checks the current list selection (default check).

Width: Checks the list’'s width in pixels.

X: Check the x-coordinate of the top left corner of the list, relative to the window.

Y: Check the y-coordinate of the top left corner of the list, relative to the window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 267

Creating Tests * Checking GUI Objects

Menu_item Class

Menus cannot be accessed directly, by clicking them. To include a menu in a GUI
checkpoint, click the window title bar or the menu bar. The Add All dialog box
opens. Select the Menus option. All menus in the window are added to the
checklist. Each menu item is listed separately.

You can check the following properties for menu items:
HasSubMenu: Checks whether a menu item has a submenu.
ltemEnabled: Checks whether the menu is enabled (default check).
ItemPosition: Checks the position of each item in the menu.

SubMenusCount: Counts the number of items in the submenu.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 268

Creating Tests * Checking GUI Objects

Object Class

You can check the following properties for an object that is not mapped to a
standard object class:

Enabled: Checks whether the object can be selected. gﬁﬁﬁi
Focused: Checks whether keyboard input will be directed to this object. #4 Find
Height: Checks the object’s height in pixels (default check). AFg;‘i’n
Width: Checks the object’s width in pixels (default check). 2 Help

X: Checks the x-coordinate of the top left corner of the GUI object, relative to the ‘ ’
window (default check).

Y: Checks the y-coordinate of the top left corner of the GUI object, relative to the Tol?of
window (default check). Chapter
= Back

WinRunner User’s Guide Chapter 9, page 269

Creating Tests * Checking GUI Objects

Push_button Class

You can check the following properties for a push button:

Enabled: Checks whether the button can be selected (default check).
Focused: Checks whether keyboard input will be directed to this button.
Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to the
window.

Y: Checks the y-coordinate of the top left corner of the button, relative to the
window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 270

Creating Tests * Checking GUI Objects

Scroll Class

You can check the following properties for a scrollbar:

Enabled: Checks whether the scrollbar can be selected.

Focused: Checks whether keyboard input will be directed to this scrollbar.
Height: Checks the scrollbar’s height in pixels.

Position: Checks the current position of the scroll thumb within the scrollbar
(default check).

Width: Checks the scrollbar’s width in pixels.

X: Checks the x-coordinate of the top left corner of the scrollbar, relative to the
window.

Y: Checks the y-coordinate of the top left corner of the scrollbar, relative to the
window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 271

Creating Tests * Checking GUI Objects

Window Class

You can check the following properties for a window:

CountObjects: Counts the number of GUI objects in the window (default check).

Enabled: Checks whether the window can be selected. gﬁﬁrﬁ
Focused: Checks whether keyboard input will be directed to this window. #4 Find
Height: Checks the window’s height in pixels. AFg;‘i’n
Label: Checks the window’s label. 2 Help
Maximizable: Checks whether the window can be maximized. ‘ ’
Maximized: Checks whether the window is maximized. =
Minimizable: Checks whether the window can be minimized. gﬁgp?ér
Minimized: Checks whether the window is minimized. ‘= Back

Resizable: Checks whether the window can be resized.
SystemMenu: Checks whether the window has a system menu.
Width: Checks the window’s width in pixels.

X: Checks the x-coordinate of the top left corner of the window.

Y: Checks the y-coordinate of the top left corner of the window.

WinRunner User’s Guide Chapter 9, page 272

Creating Tests * Checking GUI Objects

Specifying Arguments for Property Checks

You can perform many different property checks on objects. If you want to perform
the property checks listed below on edit class and static_text class objects, you
must specify arguments for those checks:

Compare

DateFormat

Range

RegularExpression

TimeFormat

To specify arguments for a property check on an edit class or static_text
class object:

Make sure that one of the GUI Checkpoint dialog boxes containing the object for
whose property you want to specify arguments is open. If necessary, choose
Create > GUI Checkpoint > For Multiple Objects or Create > Edit GUI
Checklist to open the relevant dialog box.

In the Objects pane of the dialog box, select the object to check.

In the Properties pane of the dialog box, select the desired property check.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 273

Creating Tests * Checking GUI Objects

4 Do one of the following:
iy ® Click the Specify Arguments button.

® Double-click the default argument (for the Compare check) or the ellipsis in
the corresponding Arguments column (for the other checks).

¢ Right-click with the mouse and choose Specify Arguments from the pop-up
menu.

A dialog box for the selected property check opens.

Books
Online

@& Find

Find
Again

Note: When you select the check box beside a property check for which you
need to specify arguments, the dialog box for the selected property check opens
automatically.

‘? Help

4

5 Specify the arguments in the dialog box that opens. For example, for a Date
Format check, specify the date format. For information on specifying arguments
for a particular property check, see the relevant section below.

6 Click OK to close the dialog box for specifying arguments.

7 When you are done, click OK to close the GUI Checkpoint dialog box that is
open.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 274

Creating Tests * Checking GUI Objects

Compare Property Check
Checks the contents of the edit class or static_text class object (default check).

Opens the Specify ‘Compare’ Arguments dialog box.
Boqks
Specify "Compare’ Arguments E Online
Compare content as
#h Find
& Teut ' Numeric
™ lanore Caze FinC_i
Again
Cancel Help | ﬁ? Help
® Click Text to check the contents as text (default setting).
. . =]
® To ignore the case when checking text, select the Ignore Case check box. Top of
Chapter
® Click Numeric to check the contents as a number.
= Back

Note that the default argument setting for the Compare property check is a case-
sensitive comparison of the object as text.

WinRunner User’s Guide Chapter 9, page 275

Creating Tests * Checking GUI Objects

DateFormat Property Check

Checks that the contents of the edit or static_text class object are in the specified
date format. To specify a date format, select it from the drop-down listin the Check

Arguments dialog box. Books
Online
Check Arguments # Find
Fleasze chooze date format:
Find
Drate Format: T Aot Again

Ok I Cancel Help ﬁ? Help

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 276

Creating Tests * Checking GUI Objects

Date Formats
WinRunner supports the following date formats, shown with an example for each:

Books
Online

@& Find

Find
Again

mm/dd/lyy 09/24/99
dd/mml/yy 24/09/99
dd/mm/yyyy 24/09/1999
yy/dd/mm 99/24/09
dd.mm.yy 24.09.99
dd.mm.yyyy 24.09.1999
dd-mm-yy 24-09-99
dd-mm-yyyy 24-09-1999
yyyy-mm-dd 1999-09-24

Day, Month dd, yyyy Friday (or Fri), September (or Sept) 24, 1999

dd Month yyyy 24 September 1999

Day dd Month yyyy Friday (or Fri) 24 September (or Sept) 1999

Note: When the day or month begins with a zero (such as 09 for September),
the 0 is not required for a successful format check.

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 277

Creating Tests * Checking GUI Objects

Range Property Check

Checks that the contents of the edit class or static_text class object are within the
specified range. In the Check Arguments dialog box, specify the lower limit in the

top edit field, and the upper limit in the bottom edit field. (E)!olqks
niline
@ Find

Note: Any currency sign preceding the number is removed prior to making the Find
comparison for this check. Again
‘? Help

Check Arguments ‘ ’

Fleaze enter range:
Frarm: || Topﬁof
Chapter
To I
= Back

WinRunner User’s Guide Chapter 9, page 278

Creating Tests * Checking GUI Objects

RegularExpression Property Check

Checks that the string in the edit class or static_text class object meets the
requirements of the regular expression. In the Check Arguments dialog box, enter

a string into the Regular Expression box. You do not need to precede the regular Books
. Online
expression with an exclamation point. For more information, see Chapter 19,
Using Regular Expressions. & Find
Check Arguments E Fin(_i
Again

Fleaze enter regular expression;
Regular || ﬁ? Help
E xpression:

Ok I Cancel | Help | ‘ ’

Top of
Chapter

Note: Two “\” characters (“\\") are interpreted as a single “\" character. &= Back

WinRunner User’s Guide Chapter 9, page 279

Creating Tests * Checking GUI Objects

TimeFormat Property Check

Checks that the contents of the edit class or static_text class object are in the
specified time format. To specify the time format, select it from the drop-down list
in the Check Arguments dialog box.

Check Arguments

Tirne Format:

|'F'Iease chooze time format:

Ok I Cancel | Help |

WinRunner supports the following time formats, shown with an example for
each:

Time Formats

hh.mm.ss 10.20.56
hh:mm:ss 10:20:56
hh:mm:ss 27 10:20:56 AM

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 280

Creating Tests * Checking GUI Objects

Closing the GUI Checkpoint Dialog Boxes

If you select property checks that requires arguments without specifying the
actual arguments for them, and then click OK to close the dialog box, you are
prompted to specify the arguments.

Specifying Arguments for One Property Check

If you click OK to close a GUI checkpoint dialog box when you have selected a

check on a property that requires arguments, without first specifying arguments
for that property check, the Check Arguments dialog box for that property check
opens.

Specifying Arguments for Multiple Property Checks

If you select check boxes for multiple property checks that need arguments, and
you did not specify arguments, then when you try to close to open dialog box, the
Argument Specification dialog box opens. This dialog box enables you to specify
arguments for the relevant property checks.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 281

Creating Tests * Checking GUI Objects

In the example below, the user clicked OK to close the Create GUI Checkpoint
dialog before specifying arguments for the Date Format, Time Format, Range and
RegularExpression property checks on the “Departure Time:” edit object in the

sample Flights application: Books
Online
@4 Find

Please specify arguments for the following checks:

heck | Qbject | Arguments | Find

64 D ateFormat Agent Narme: Again
'% TimeFormnat Agent Narme:
'% Range Agent Mame: cg._) Help

'% RegularEsprezsion Agent Name:

4

Specify Arguments... |
Cl | (=]
Cloze Help | Top of
Chapter
The property check appears in the Check column. The logical name of the & Back

object appears in the Object column. An ellipsis appears in the Arguments
column to indicate that the arguments for the property check have not been
specified.

WinRunner User’s Guide Chapter 9, page 282

N

o 0o b~ W

Creating Tests * Checking GUI Objects

To specify arguments from the Argument Specification dialog box:
In the Check column, select a property check.

Click the Specify Arguments button. Alternatively, double-click the property
check.

The dialog box for specifying arguments for that property check opens.
Specify the arguments for the property check, as described above.
Click OK to close the dialog box for specifying arguments.

Repeat the above steps until arguments appear in the Arguments column for all
property checks.

Once arguments are specified for all property checks in the dialog box, click
Close to close it and return to the GUI Checkpoint dialog box that is open.

Click OK to close the GUI Checkpoint dialog box that is open.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 283

Creating Tests * Checking GUI Objects

Editing the Expected Value of a Property

When you create a GUI checkpoint, WinRunner captures the current property
values for the objects you check. These current values are saved as expected
values in the expected results folder.

When you run your test, WinRunner captures these property values again. It
compares the new values captured during the test with the expected values that
were stored in the test’s expected results folder.

Suppose that you want to change the value of a property after it has been
captured in a GUI checkpoint but before you run your test script. You can simply
edit the expected value of this property in the Check GUI dialog box or the Create
GUI Checkpoint dialog box.

Note that you cannot edit expected property values in the Edit GUI Checklist
dialog box: When you open the Edit GUI Checklist dialog box, WinRunner does
not capture current values. Therefore, this dialog box does not display expected
values that can be edited.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 284

Creating Tests * Checking GUI Objects

Note: If you want to edit the expected value for a property check that is already
part of a GUI checkpoint, you must change the expected results of the GUI
checkpoint. For more information, see Modifying the Expected Results of a
GUI Checkpoint on page 287.

Books
Online

To edit the expected value of an object:

If the Check GUI dialog box or the Create GUI Checkpoint dialog box is not
already open, choose Create > GUI Checkpoint > For Multiple Objects to
open the Create GUI Checkpoint dialog box and click Open to open the
checklist in which to edit the expected value. Note that the Check GUI dialog box
opens only when you create a new GUI checkpoint.

In the Objects pane, select an object.

In the Properties pane, select the property whose expected value you want to
edit.

Do one of the following:
® Click the Edit Expected Value button.
® Double-click the existing expected value (the current value).

® Right-click with the mouse and choose Edit Expected Value from the pop-up
menu.

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 285

Creating Tests * Checking GUI Objects

Depending on the property, an edit field, an edit box, a list box, a spin box, or a
new dialog box opens.

For example, when you edit the expected value of the Enabled property for a
push_button class object, a list box opens: Books
Online
Ly Create GUI Checkpoint - G:\Login\chklist\list2.ckl M Find
= in
=3 = & £ P T
Open Save Az Add Add all Delete Select &l | Clear Al Find
[Objects |Properties = Again
-2 Login Mame | Arguments | Expected value | g B
A Agent Mame:[stati & Enabled m— ¢ Help
- [P abl] Agent Mame: IE_E
b Cancel Q ‘ ’
= =
ol
] Top of
B Chapter
. | 2] = Back
¥ Highlight Selected Dbject ok | Cancel Help |

5 Edit the expected value of the property, as desired.

6 Click OK to close the dialog box.

WinRunner User’s Guide Chapter 9, page 286

Creating Tests * Checking GUI Objects

Modifying the Expected Results of a GUI Checkpoint

You can modify the expected results of an existing GUI checkpoint by changing
the expected value of a property check within the checkpoint. You can make this
change before or after you run your test script.

To modify the expected results for an existing GUI checkpoint:

g& 1 Choose Tools > Test Results or click Test Results.

The WinRunner Test Results window opens.

F_E WinAunner Test Aesults - [Noname15] | [O] x|

File Optians Took ‘window 181 x|

@'l@l |exp j | | e | 5% EI

_Alnoname15 t[ﬂTest Result: ak.
|: +% Tatal number of bitmap checkpaints: 0
+% Total number of GUI checkpaints: 0

ﬁ General Information

Line Event Details | Fesult Time =
1 start GUI capture [guil 2BE044:36:18
1 end GUI capture [guil (] 2RE044:36:18
w

B

2 In the Results box, choose your expected results folder (by default, “exp”).

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 287

Creating Tests * Checking GUI Objects

3 In the test log, locate the GUI checkpoint by looking for entries that list “end GUI
capture” in the Event column. Note that the line number in the test script
appears in the Line column of the test log.

El Note: You can use the Show TSL button to open the test script to the
highlighted line number.

Books
Online

@& Find

el 4 Double-click the desired “end GUI capture” entry, or click this entry and click
Display.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 288

Creating Tests * Checking GUI Objects

The GUI Checkpoint Results dialog box opens.

4| GUI Checkpoint Results E
[Objects [Properties i Books
EI---: Login MName | Arguments | Expected Valuel Actual Yalue | ?ﬁ] Online
e oK RE nabled oM —
% 4 Find
E Find
i Again
E @ Help
= 4)
. . Top of
v Highlight Selected Dbject Ok I Cancel | Help | Chapter
= Back

Eiy 5 Select the property check whose expected results you want to modify. Click the

Edit expected value button. In the Expected Value column, modify the value,

as desired. Click OK to close the dialog box.

WinRunner User’s Guide Chapter 9, page 289

Creating Tests * Checking GUI Objects

Note: You can also modify the expected value of a property check while creating
a GUI checkpoint. For more information, see Editing the Expected Value of a
Property on page 284.

Books
Online

@& Find

Note: You can also modify the expected value of a GUI checkpoint to the actual
value after a test run. For more information, see Updating the Expected
Results of a Checkpoint on page 779.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 9, page 290

Creating Tests

Working with ActiveX and Visual Basic Controls

WinRunner supports Context Sensitive testing on ActiveX controls (also called
OLE or OCX controls) and Visual Basic controls in Visual Basic applications. gﬁﬁﬁz
This chapter describes: @ Find
® Choosing Appropriate Support for Visual Basic Applications Find
Again
® Activating an ActiveX Control Method
- . . . : @
® Viewing ActiveX and Visual Basic Control Properties & Help
® Retrieving and Setting the Values of ActiveX and Visual Basic Control ‘ ’
Properties
® Working with Visual Basic Label Controls Topﬁof
)))]) Chapter
® Checking Sub-Objects of ActiveX and Visual Basic Controls
® Using TSL Table Functions with ActiveX Controls ®Back

WinRunner’s User Guide Chapter 10, page 291

Creating Tests « Working with ActiveX and Visual Basic Controls

About Working with ActiveX and Visual Basic Controls

Many applications include ActiveX and Visual Basic controls developed by third-
party organizations. WinRunner can record and run Context Sensitive operations
on these controls, as well as check their properties.

WinRunner provides two types of support for ActiveX and Visual Basic controls
within a Visual Basic application. You can either:

compile a WinRunner agent into your application, and install and load add-in
support for Visual Basic controls

install and load add-in support for ActiveX and Visual Basic controls

When you work with the appropriate support, WinRunner recognizes ActiveX
and Visual Basic controls, and treats them as it treats standard GUI objects. You
can check the properties of ActiveX and Visual Basic controls as you check the
properties of any standard GUI object. For more information, see Chapter 9,
Checking GUI Objects.

At any time, you can view the current values of the properties of an ActiveX or a
Visual Basic control using the ActiveX Properties Viewer. In addition, you can
retrieve and set the values of properties for ActiveX controls and Visual Basic
label controls using TSL functions. You can also use a TSL function to activate an
ActiveX control method.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 292

Creating Tests « Working with ActiveX and Visual Basic Controls

Note: You must start WinRunner before launching the application containing
ActiveX controls.

WinRunner provides special built-in support for checking Visual Basic label
controls and the contents or properties of ActiveX controls that are tables. For
information on which TSL table functions are supported for specific ActiveX

controls, see Using TSL Table Functions with ActiveX Controls on page 314.

For information on checking the contents of an ActiveX table control, see
Chapter 12, Checking Table Contents.

This chapter provides step-by-step instructions for checking ActiveX Control
properties.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 293

Creating Tests « Working with ActiveX and Visual Basic Controls

Choosing Appropriate Support for Visual Basic Applications

WinRunner provides two types of support for ActiveX and Visual Basic controls
within a Visual Basic application. You can either:

compile a WinRunner agent into your application, and install and load add-in
support for Visual Basic controls

install and load add-in support for ActiveX and Visual Basic controls

Before you test a Visual Basic application, it is best to add the WinRunner agent
to your application, compile them together, and install the Visual Basic add-in
from the WinRunner setup program, and load it from the Add-In Manager. If this
is not possible, install and load both the ActiveX and Visual Basic add-ins from
the WinRunner setup program, and load them both from the Add-In Manager.
The different levels of support are described below.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 294

Creating Tests « Working with ActiveX and Visual Basic Controls

Working with the WinRunner Agent and Visual Basic Add-In
Support

You can add a WinRunner agent, called WinRunnerAddin.Connect, to your
application and compile them together. The agent is in the vbdev folder on the
WinRunner CD-ROM. For information on how to install and compile the agent,
refer to the readme.wri file in the same folder. You can install add-in support for
Visual Basic applications when you install WinRunner. For additional information,
refer to your WinRunner Installation Guide. You can choose which installed add-
ins to load for each session of WinRunner. For additional information, see
Loading WinRunner Add-Ins on page 52.

When you add the WinRunner agent to your application and compile them
together, you can:

record and run tests with operations on ActiveX and standard Visual Basic
controls

uniquely identify names of internal ActiveX and Visual Basic controls

create GUI checkpoints which check the properties of standard Visual Basic
controls

use the ActiveX _get_info and ActiveX_set_info TSL functions with ActiveX
and Visual Basic controls

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 295

Creating Tests « Working with ActiveX and Visual Basic Controls

Working with ActiveX and Visual Basic Add-In Support
without the WinRunner Agent

You can install add-in support for ActiveX and Visual Basic applications when you
install WinRunner. For additional information, refer to your WinRunner Installation
Guide. You can choose which installed add-ins to load for each session of
WinRunner. For additional information, see Loading WinRunner Add-Ins on
page 52.

When you install and load the ActiveX and Visual Basic add-ins without using the
WinRunner agent, you can:

record and run tests with operations on ActiveX and standard Visual Basic
controls

use the ActiveX_get_info and ActiveX_set_info TSL functions with ActiveX
controls only

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 296

Creating Tests « Working with ActiveX and Visual Basic Controls

Activating an ActiveX Control Method

You use the ActiveX_activate_method function to invoke an ActiveX method of
an ActiveX control. You can insert this function into the test script using the
Function Generator. The syntax of this function is:

ActiveX_activate_method (object, ActiveX_method, return_value [,
parameterl,..., parameter8]);

For more information on this function, refer to the TSL Online Reference.

Viewing ActiveX and Visual Basic Control Properties

You use the ActiveX Properties Viewer to see the properties and property values
for an ActiveX or Visual Basic control. You open the ActiveX Properties Viewer
from the Tools menu. Note that you must load the ActiveX add-in in order to open
the ActiveX Properties Viewer. You may also view ActiveX and Visual Basic
control properties using the GUI checkpoint dialog boxes. For information on
using the GUI checkpoint dialog boxes, see Chapter 9, Checking GUI Objects.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 297

Creating Tests « Working with ActiveX and Visual Basic Controls

To view the properties of an ActiveX or a Visual Basic control:

1 Choose Tools > ActiveX Properties Viewer to open the ActiveX Properties
Viewer.

Books
i i ActiveX Properties Viewer Online

Contral Hame I @ M Find

Find
Property | Walue o Again

‘? Help

4

[=]

Top of
Chapter

= Back

Done

2 Click the pointing hand and click an ActiveX or Visual Basic control.

WinRunner User’s Guide Chapter 10, page 298

Creating Tests « Working with ActiveX and Visual Basic Controls

3 The names and current values of the properties appear in the viewer.

i i ActiveX Properties Yiewer [_ (O] x|

Cantral Mame ItxtCaIendal J
Property | Walue -

CalStatic Falze

Caption _I

Container Ohbject Reference -

DatalChanged Falze

[rataField

DataSource Object Reference - 0

Date 341099

Dratedr Array of BSTR

DrateFarmat 4

DateSeldn 0

Day 10

Drawdsrr Array of INTEGER

D auHeiaht Arraw of LOMG x

Dare

In this example, the control is a Visual
Basic object in a Visual Basic
application.

For ActiveX controls, the class name
appears in this box.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 299

Creating Tests « Working with ActiveX and Visual Basic Controls

Note: When “Object Reference” appears in the Value column, it refers to the
object’s sub-objects and their properties. When “Array...” appears in the Value

column, this indicates either an array of type or a two-dimensional array. You can Books
use the ActiveX_get_info function to retrieve these values. For information on Online
the ActiveX_get_info function, see Retrieving the Value of an ActiveX or # Eind
Visual Basic Control Property on page 301 or refer to the TSL Online
Reference. Find
Again
‘? Help
4 Click Done to close the dialog box. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 10, page 300

Creating Tests « Working with ActiveX and Visual Basic Controls

Retrieving and Setting the Values of ActiveX and
Visual Basic Control Properties

The ActiveX_get_info and ActiveX_set_info TSL functions enable you to
retrieve and set the values of properties for ActiveX and Visual Basic controls in
your application. You can insert these functions into your test script using the
Function Generator. For information on using the Function Generator, see
Chapter 21, Generating Functions.

Retrieving the Value of an ActiveX or Visual Basic Control
Property

Use the ActiveX_get_info function to retrieve the value of any ActiveX or Visual
Basic control property. The syntax of this function is:

ActiveX_get_info (object, property, out_value [, is_window]);

object The name of the label control.

property The control property.

out_value The output variable that stores the property value.
is_window The parameter indicating whether the operation is

performed on a window. If so, set this parameter to TRUE.

This function returns the value of a control property.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 301

Creating Tests « Working with ActiveX and Visual Basic Controls

Note: The is_window parameter should be used only when this function is
applied to a Visual Basic form to retrieve its property or a property of its sub-

object. In order to retrieve a property of a label control you should set this Books

parameter to TRUE. For information on retrieving label control properties, see Online

Working with Visual Basic Label Controls on page 304. # Eind
Find
Again

Setting the Value of an ActiveX or Visual Basic Control D Help

Property

Use the ActiveX_set_info function to set the value for any ActiveX or Visual ‘ ’

Basic control property. The syntax of this function is: =

. . . L Top of

ActiveX_set_info (object, property, value [, type [, is_ window]]); Cﬁgp?er

object The name of the ActiveX/Visual Basic control. &Back

property Any ActiveX/Visual Basic control property.

value The value to be applied to the property.

type The value type to be applied to the property. For a list of

value types, refer to the TSL Online Reference or the TSL

Reference Guide.

is_window An indication of whether the operation is performed on a

window. If it is, set this parameter to TRUE.

WinRunner User’s Guide Chapter 10, page 302

Creating Tests « Working with ActiveX and Visual Basic Controls

Note: The is_window parameter should be used only when this function is
applied to a Visual Basic form to set its property or a property of its sub-object. In
order to set a property of a label control you should set this parameter to TRUE.
For information on setting label control properties, see Working with Visual
Basic Label Controls on page 304.

Books
Online

For more information on these functions, refer to the TSL Online Reference.

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 303

Creating Tests « Working with ActiveX and Visual Basic Controls

Working with Visual Basic Label Controls

WinRunner includes the following support for labels (static text controls) within
Visual Basic applications:

Boqks
* Creating GUI Checkpoints Online
® Retrieving Label Control Names #4 Find
® Retrieving Label Properties Find
Again
® Setting Label Properties
‘? Help
Note: The application should be compiled with the WinRunner agent, as ‘ ’
described in Choosing Appropriate Support for Visual Basic Applications =
on page 294. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 10, page 304

Creating Tests « Working with ActiveX and Visual Basic Controls

Creating GUI Checkpoints

You can create GUI checkpoints on Visual Basic label controls.

To check Visual Basic Label controls:

Choose Create > GUI Checkpoint > For Multiple Objects. The Create GUI
Checkpoint dialog box opens.

Click the Add button and click on the Visual Basic form containing Label
controls.

The Add All dialog box opens. If you are not checking anything else in this
checkpoint, you can clear the Objects check box. Click OK. Right-click to finish
adding the objects. In the Create GUI Checkpoint dialog box, all labels are listed
in the Objects pane as sub-objects of the VB form window. The names of these
sub-objects are vb_names prefixed by the "[Label]" string.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 305

4 When you select a label control in the Object pane, its properties and their
values are displayed in the Properties pane. The default check for the label

control is the Caption property check. You can also select other property checks

to perform.

Lj|Create GUI Checkpoint - d-\wrun‘tmpinoname1ichklistilist1_ckl

Creating Tests « Working with ActiveX and Visual Basic Controls

b A e e

& = ;]| & | = | u ‘
Opet Save Az Add Add Al Diglete Select All Clear All
|Dbjects Properbes
= W= LoanSheet =] | Name | Arguments | Esxpected Value -
@ Font [, Alignment o
@ loon O ‘:4_, Appearance 1
@ Image ‘_—L,.-’-‘«utDSize Falze
g ’F""Dluze'cm Oz, BackColor 2147483633
alette i
@ ptee D5 B : i
L ; :‘:-. Caphion Purchase Amount
¢ [Label] lblLen(1] L=
¢ [Label] lbllnt(1] -z ga:alfh?d@d False
(3 [Label] Iblint(0) —Zu e
@ [Label] bDwnPay — | — = DataMember
€8 [cbel] IbPurchT ot L=, DragMode o
- [v] B8 Standart change grid - ;".. Enabled True
E W 28 Swap 1=, FontBold True
- V] 28 Show Amartization [, Fontltahic Falze
- [B8 Show Papments [0z, Fontame S Sans Sent
- ¥ && ‘Vears in Loan f [, FontSize 5.250000 ﬁ
1] | > 4] | >
¥ Highlight Selected Dbject 0Kk || Cancal | Hep

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 306

Creating Tests « Working with ActiveX and Visual Basic Controls

Retrieving Label Control Names

You use the vb_get_label _names function to retrieve the list of label controls

within the Visual Basic form. This function has the following syntax:

Books
vb_get_label_names (window, name_array, count); Online
window The logical name of the Visual Basic form. & Find
name_array The out parameter containing the name of the storage Find

array. Again
count The out parameter containing the number of elements in 2 Help
the array.
This function retrieves the names of all label controls in the given form window. ‘ ’
The names are stored as subscripts of an array.]
Top of
Chapter
Note: The first element in the array index is numbered 1. &= Back

For more information on this function and an example of usage, refer to the TSL
Online Reference.

WinRunner User’s Guide Chapter 10, page 307

Creating Tests « Working with ActiveX and Visual Basic Controls

Retrieving Label Properties

You use the ActiveX_get_info function to retrieve the property value of a label
control within a Visual Basic form. This function is described in Retrieving and
Setting the Values of ActiveX and Visual Basic Control Properties on page
301.

Setting Label Properties

You use the ActiveX_set_info function to set the property value of the label
control. This function is described in Retrieving and Setting the Values of
ActiveX and Visual Basic Control Properties on page 301.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 308

Creating Tests « Working with ActiveX and Visual Basic Controls

Checking Sub-Objects of ActiveX and Visual Basic Controls

ActiveX and Visual Basic controls may contain sub-objects, which contain their
own properties. An example of a sub-object is Font. Note that Font is a sub-object
because it cannot be highlighted in the application you are testing. When you load
the appropriate add-in support, you can create a GUI checkpoint that checks the
properties of a sub-object using the Check GUI dialog box. For information on GUI
checkpoints, see Chapter 9, Checking GUI Objects.

In the example below, WinRunner checks the properties of the Font sub-object of
an ActiveX table control. The example in the procedure below uses WinRunner
with add-in support for Visual Basic and the Flights table in the sample Visual
Basic Flights application.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 309

Creating Tests « Working with ActiveX and Visual Basic Controls

To check the sub-objects of an ActiveX or a Visual Basic control:

QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

2 Double-click the control in the application you are testing.
WinRunner may take a few seconds to capture information about the control.

The Check GUI dialog box opens.

| Check GUI - D:\Program Files\Mercury Interactive\WinFunner\tmp\noname14\chklist\list1_ckl [E3

o | | T
Add all Select &l Clear &l
[Objects [Properties =

E-[123 Flights Table Marme | Arguments | Evpected value | E
=W &b gdfighTable |12, Bold True i
LI Picture Dj_'-,':, Charzet 1] 25
Hg N False @
i L@ Mouselcon 3_‘-,':, Mame MS Sans Serif —
~[1@ Dragieon 38 ge 82500 |
Dj_'-,':, Strikethrough Falze [—.:
[, Underline False ==
s, Weight 700 =

¥ Highlight Selected Object ok | Cancel Help |

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 310

Creating Tests « Working with ActiveX and Visual Basic Controls

3 In the Objects pane, click the Expand sign (+) beside the object to display its
sub-objects, and select a sub-object to display its ActiveX control properties.

i Check GUI - D:\Program Files\Mercury Interactive\WinRunner\tmp\noname1 4A\chklist\list1_ckl B3
e Books
] LT Online
Add Al Select Al Clear Al
[Objects |Properties 5 a4 Find
EID: Flights Table MHame | Arqurments | Expected Value | g -
- g ordFlightTable || 1%, Bold True = Find
1@ Picture (2, Charset 0 ;_EI Again
: g 3, talic False Q
o L@ Mouselcon W5 Mame WS Sars Serif — ﬁ? Help
""" L@ Draglean |5 e 52500 EN
15, Shrikethrough False E ‘ ’
7, Underline False e
L5, wieight 700 2= @
Top of
Chapter
¥ Highlight Selected Object 0k | Cancel | Hep |
= Back

The Objects pane displays the object and its sub-objects. In this example, the
sub-objects are displayed under the “grdFlightTable” object. The Properties
pane displays the properties of the sub-object that is highlighted in the Objects
pane. Note that each sub-object has one or more default property checks. In this
example, the properties of the Font sub-object are displayed, and the Name
property of the Font sub-object is selected as a default check.

WinRunner User’s Guide Chapter 10, page 311

Creating Tests « Working with ActiveX and Visual Basic Controls

Specify which sub-objects of the table to check: first, select a sub-object in the
Objects pane; next, select the properties to check in the Properties pane.

Note that since this ActiveX control is a table, by default, checks are selected on
the Height, Width, and Table Content properties. If you do not want to perform
these checks, clear the appropriate check boxes. For information on checking
table contents, see Chapter 12, Checking Table Contents.

| Check GUI - D:\Program Files\Mercury Interactive\WinRunner\tmp\noname14\chklist\list3.ckl [E3

5 | | T
Add All Select Al Clear All
[Objects [Properties L
- 123 Flights Table Mame | Arguments | Expected Yalue |:| E
= 4 lodFlightTable [, Tabindes 0 —
o1 Picture (1%, TabStap True =
i LI Font 33:, TableContent <complex valuesr ,%
----- @ Mouselcon Dj_'-,':, Text £
+[]@ Dragleon [, ToolTipText =2
O, Top 285000000 B
[, TapFiaw 1 S
O, WhatsThisHel... 0 J =
j_'-,':. wfidth 5820.000000
[Teut LI
[V Highlight Selected Object ok | Cancel | He |

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 312

Creating Tests « Working with ActiveX and Visual Basic Controls

4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, see Chapter 9, Checking GUI
Objects,or refer to the TSL Online Reference.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 313

Creating Tests « Working with ActiveX and Visual Basic Controls

Using TSL Table Functions with ActiveX Controls

You can use the TSL tbl_ functions to work with a number of ActiveX controls.
WinRunner contains built-in support for the ActiveX controls and the functions in
the table below. For detailed information about each function, examples of usage,
and supported versions of ActiveX controls, refer to the TSL Online Reference.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 10, page 314

Creating Tests « Working with ActiveX and Visual Basic Controls

°
g B
S = o
— — Q — = =
ze| 8| .° S| 32 |2
HEHAEEIR I RS
0O |5 '§ T | 80| =0 |0g nine
%2 | 55| ST |82 | 82|55 A Find
S0 | fH|SS | S0 |Ho | ES Fin
tbl_activate_cell o |0 O O| O Find
- - Again
tbl_activate_header O O O O O
‘? Help
tbl_get cell_data O O O O O
tbl_get _cols_count O O O O O ‘ ’
tbl_get_column_name O O O O O =]
Top of
tbl_get_rows_count g (0 [g o Chapter
tbl_get_selected_cell O |D o O O &=Back
tbl_get_selected_row O O O O
tbl_select_col_header O O O O O
tbl_set_cell_data O O O O O
tbl_set_selected_cell O O O O O
tbl_set_selected row O O O O

WinRunner User’s Guide Chapter 10, page 315

Creating Tests

Checking PowerBuilder Applications

When you work with WinRunner with added support for PowerBuilder

applications, you can create GUI checkpoints to check PowerBuilder objects in Books
your application. Online
This chapter describes: #h Find
® Checking Properties of DropDown Objects AFg;?n
® Checking Properties of DataWindows %
& Help
® Checking Properties of Objects within DataWindows
®* Working with Computed Columns in DataWindows ‘ ’
[E]
Top of
Chapter
= Back

Chapter 11, page 316

Creating Tests « Checking PowerBuilder Applications

About Checking PowerBuilder Applications

You can use GUI checkpoints to check the properties of PowerBuilder objects in
your application. When you check these properties, you can check the contents

of PowerBuilder objects as well as their standard GUI properties. This chapter gﬁﬁﬁz
provides step-by-step instructions for checking the properties of the following
PowerBuilder objects: #4 Find
® DropDown objects /fg;?n
® Datawindows 2y
¢ Help

® DataWindow columns

® DataWindow text ‘ ’

® DataWindow reports =]
Top of

® DataWindow graphs Chapter

® computed columns in a DataWindow 4=Back

WinRunner User’s Guide Chapter 11, page 317

Creating Tests « Checking PowerBuilder Applications

Checking Properties of DropDown Objects

You can create a GUI checkpoint that checks the properties, including contents,
of a DropDown list or a DropDown DataWindow. You can check the same
properties, including contents, for a DropDown DataWindow that you can check
for a regular DataWindow. Note that before creating a GUI checkpoint on a
DropDown object, you should first record a tbl_set_selected_cell statement in #4 Find
your test script. Use the CHECK GUI FOR OBJECT/WINDOW softkey to create the GUI Find
checkpoint while recording. You create a GUI checkpoint that checks the contents Again
of a DropDown object as you would create one for a table. For information on
checking tables, see Chapter 12, Checking Table Contents.

Books
Online

‘? Help

Checking Properties of a DropDown Object with Default ‘ ’
Checks =]

Top of
Chapter

You can create a GUI checkpoint that performs a default check on a DropDown
object. A default check on a DropDown object includes a case-sensitive checkon | & pgack
the contents of the entire object. WinRunner uses column names and the index
number of rows to check the cells in the object.

You can also perform a check on a DropDown object in which you specify which
checks to perform. For additional information, see Checking Properties of a
DropDown Object while Specifying which Checks to Perform on page 320.

WinRunner User’s Guide Chapter 11, page 318

Creating Tests « Checking PowerBuilder Applications

To check the properties of a DropDown object with default checks:

1' 1 Choose Create > Record—Context Sensitive or click the Record—Context

Sensitive button.
2 Click in the DropDown object to record a tbl_set_selected_cell statement in gﬁﬁﬁz
your test script
QI 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey. ¢4 Find
L ; Find
4 Click in the DropDown object once. Again
WinRunner captures the GUI information and stores it in the test’s expected 2 Help
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the ‘ ’
obj_check_gui function, refer to the TSL Online Reference.
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 11, page 319

Creating Tests « Checking PowerBuilder Applications

Checking Properties of a DropDown Object while Specifying
which Checks to Perform

You can create a GUI checkpoint in which you specify which checks to perform
on a DropDown object. When you double-click in a DropDown object while Books
creating a GUI checkpoint, the Check GUI dialog box opens. For example, if you Online
are checking a DropDownListBox, you double-click the & Find
DropDownListBoxContent property check in the Check GUI dialog box to open
. Find

the Edit Check dialog box. In the Edit Check dialog box, you can specify the scope Again
of the content check on the object, select the verification types and method, and
edit the expected value of the DataWindow contents. ? Help
To check the properties of a DropDown object while specifying which ‘ ’
checks to perform:

1' 1 Choose Create > Record—Context Sensitive or click the Record—Context To@of
Sensitive button. Chapter

2 Click in the DropDown object to record a tbl_set_selected_cell statement in & Back

your test script.
QI 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey.

4 Double-click in the DropDown object.

WinRunner User’s Guide Chapter 11, page 320

Creating Tests « Checking PowerBuilder Applications

The Check GUI dialog box opens.

4| Check GUI - c:\mercuryhwib0\tmpinoname3hchklist\list2 ckl
= [T
ﬁ?ﬁll | Select Al | Clear Books
R Online
[Objects [Properties =
El- 12 Attribute Expressions || HMame | Arguments | Expected Value g &h Find
fo dw_1.region R Enabled DN —
O @ Focused oM = Find
2 Height 13 g Again
& \Width 55 .l
@ 31 == @ Help
& 204 B
13:, DropD ovenListB orCaontent <complex value: e ‘ ’
q | B]
. . Top of
v Highlight Selected Dbject ok I Cancel | Help | Chapter
. .) = Back
The example above displays the Check GUI dialog box for a DropDown list. The

Check GUI dialog box for a DropDown DataWindow is identical to the dialog box
for a DataWindow.

gy 5 Inthe Properties pane, select the DropDownListBoxContent check and click
the Edit Expected Value button, or double-click the “<complex value>" entry in
the Expected Value column.

The Edit Check dialog box opens.

WinRunner User’s Guide Chapter 11, page 321

Creating Tests « Checking PowerBuilder Applications

6 You can select which checks to perform and edit the expected data. For
additional information on using this dialog box, see Understanding the Edit
Check Dialog Box on page 342.

7 When you are done, click OK to save your changes, close the Edit Check dialog Books
box, and restore the Check GUI dialog box. Online
8 Click OK to close the Check GUI dialog box. #4 Find
WinRunner captures the GUI information and stores it in the test’s expected AFg;?n

results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the 2 Help
obj_check_gui function, refer to the TSL Online Reference. ‘ ’

[=]

Note: If you wish to check additional objects while performing a check on the Top of
contents, use the Create > GUI Checkpoint > For Multiple Objects command Chapter
(instead of the Create > GUI Checkpoint > For Object/Window command),
which inserts a win_check_gui statement into your test script. For information
on checking the standard GUI properties of DropDown objects, see Chapter 9,
Checking GUI Objects.

= Back

WinRunner User’s Guide Chapter 11, page 322

Creating Tests « Checking PowerBuilder Applications

Checking Properties of DataWindows

You can create a GUI checkpoint that checks the properties of a DataWindow.
One of the properties you can check is DWTableContent, which is a check on the

contents of the DataWindow. You create a content check on a DataWindow as gﬁﬁﬁz

you would create one on a table. For additional information on checking table

contents, see Chapter 12, Checking Table Contents. #4 Find
Find
Again

Checking Properties of a DataWindow with Default Checks

You can create a GUI checkpoint that checks the properties of a DataWindow with @ Help
default checks. There are different default checks for different types of

DataWindows. ‘ ’

To check the properties of a DataWindow with default checks: Tol?of
QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI Chapter

Checkpoint for Object/Window button on the User toolbar. &Back

2 Click in the DataWindow once.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the
obj_check_gui function, refer to the TSL Online Reference.

WinRunner User’s Guide Chapter 11, page 323

Creating Tests « Checking PowerBuilder Applications

Checking Properties of a DataWindow while Specifying which
Checks to Perform

You can create a GUI checkpoint that checks the properties of a DataWindow
while specifying which checks to perform. Boloks
Online
To check the properties of a DataWindow while specifying which checks to .
perform: Find
QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI /fg;‘i’n
Checkpoint for Object/Window button on the User toolbar.
2 Double-click in the Datawindow. P Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 11, page 324

Creating Tests « Checking PowerBuilder Applications

3 The Check GUI dialog box opens.

£l Check GUI - d:\program files\mercury interactive\winrunnerstmp\noname13\chklist\list1.ckl

= T
Add Al Select Al Clear &Il Books
|Objects |Properties g Online
Dﬂ Department/E mployees Hight Sa | Mame | Arguments | Expected Yalue | ;I E .
=M EN B Height 384 = = #h Find
I8 [Column] department_de 2 width Bag =
'E' [Colurin] department_de| (a W 4 Find
|:| [Computed] MoM ame_1 (a v 73 i Again
E' (Report] dep_report 3_2,':. [T ableCantent <complex value: i
ol [Tewt] employes_salay [, Y2k Veriication <complex values E & Hel
E 1090519039 = s P
[, column.count 7 ==
Djjil crozstab. columng !
o Y . -] 40
¥ Highlight Selected Object Ok I Cancel | Help | @
Top of
.) L . . . Chapter
Note that the properties of objects within a DataWindow are displayed in the
dialog box. WinRunner can perform checks on these objects. For additional = Back
information, see Checking Properties of Objects within DataWindows on
page 327.

gy 4 Select the DWTableContent check and click the Edit Expected Value button, or
double-click the “<complex value>" entry in the Expected Value column.

The Edit Check dialog box opens.

WinRunner User’s Guide Chapter 11, page 325

Creating Tests « Checking PowerBuilder Applications

5 You can select which checks to perform and edit the expected data. For
additional information on using this dialog box, see Understanding the Edit
Check Dialog Box on page 342.

6 When you are done, click OK to save your changes, close the Edit Check dialog Books
box, and restore the Check GUI dialog box. Online
7 Click OK to close the Check GUI dialog box. #4 Find
WinRunner captures the GUI information and stores it in the test’s expected AFg;?n

results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the 2 Help
obj_check_gui function, refer to the TSL Online Reference. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 11, page 326

Creating Tests « Checking PowerBuilder Applications

Checking Properties of Objects within DataWindows

You can create a GUI checkpoint that checks the properties of the following

DataWindow objects:

Books
® DataWindows Online
¢ Datawindow columns & Find
¢ DataWindow text Find
® DataWindow reports Agan
* DataWindow graphs ? Help
® DataWindow computed columns ‘ ’

DataWindow objects cannot be highlighted in the application you are testing. [O]
You can create a GUI checkpoint that checks the properties of objects within gﬁgpft’ér
DataWindows using the Check GUI dialog box. For information on GUI

checkpoints, see Chapter 9, Checking GUI Objects. &= Back

To check the properties of objects in a Datawindow:

QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

2 Double-click the DataWindow in the application you are testing.

WinRunner may take a few seconds to capture information about the
DataWindow.

WinRunner User’s Guide Chapter 11, page 327

Creating Tests « Checking PowerBuilder Applications

The Check GUI dialog box opens.

&j| Check GUI - d:\program files\mercury interactive\winrunneritmpsnoname13\chklist\list1.ckl
£ T
Add All SelectAll | Clear Al Books
|Objects |Properties 5 Online
=12 Department/Emplopees Hight | Name | Arquments | Expectedvalus [=] g
dw_1 &2 Height 354 — — 4 Find
2 width 589 =
OFY 4 8 Find
Ry a3 = Again
I, DWT ableContent camples valus: i
Djji. 2K erification cocomplex value: ﬂ
2, color 1090519039 — Z Help
[, eolumn. count 7 ==
O ;_'-,':, crosstab. columns !
1] | LI [T rmeskah e | LI
¥ Highlight Selected Object oK. | Cancel | Help |
| [B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 11, page 328

WinRunner User’s Guide

Creating Tests « Checking PowerBuilder Applications

3 Inthe Objects pane, click the Expand sign (+) beside the DataWindow to display
its objects, and select an object to display its properties.

L Check GUI - d:\program files\mercury interactive\winrunner\tmp\noname13\chklist\list1.ckl
E [T Books
Add Al Select 4l | Clear Al Online
|Dbjects |Propertiss 5 .
Dﬂ Department/Emplopees Hight & | | Name | Arguments I Expected Value I :I E M Find
E-MIE] dw1 %, fart underline ? — -
b [Column] department ||| C1%2, font weight 400 = Find
W B [Column] department_ L1, fantwidth 2 Q Again
<1 [Column] manager_sal Dj_;:, format [general] L=
-1 [Column] department___| D;__E. height 61 J'.a] Help
<[[Column] manager_sts T) . J = B
[, height autosize na s
D'E- [Column] employes_er Y 5 —
-1 [Column] employes_er D;‘P‘ !d . E
i 1B [Computed] NoMame_| 4 ! ?_nm‘l" ne
f—rm o P - 53, iritial null
LI —I D e . LI @
¥ Highlight Selected Object oK | Cancel | Help | Top of
Chapter
The Objects pane displays the DataWindow and the objects within it. The = Back

Properties pane displays the properties of the object in the DataWindow that is

highlighted in the Objects pane. These objects can be columns, computed
columns, text, graphs, and reports. Note that each object has one or more

default property checks.

Specify which objects of the DataWindow to check: first, select an object in the
Objects pane; next, select the properties to check in the Properties pane.

pter 11, page 329

Creating Tests « Checking PowerBuilder Applications

4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, see Chapter 9, Checking GUI

Objects, or refer to the TSL Online Reference. Books
Online

#h Find
Note: If an object in a DataWindow is displayed in the Objects pane of the GUI "

checkpoint dialog boxes as “NoName,” then the object has no internal name. Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 11, page 330

Creating Tests « Checking PowerBuilder Applications

Working with Computed Columns in DatawWindows

If computed columns are placed in detail band of the DataWindow, WinRunner
can record and run tests on them. WinRunner uses the thl_get_selected_cell,

tbl_activate_cell, and tbl_get_cell_data TSL functions to record and run tests
on computed columns. For information on using these TSL functions, refer to the Sﬁﬁ,'fz
TSL Online Reference.
@ Find
WinRunner can also retrieve data about computed columns which are not placed .
in detail band of the DataWindow, using the tbl_get_cell_data TSL function. For AFg;?n
information about this TSL function, refer to the TSL Online Reference. 2t
He
To check the contents of computed columns in detail band of the DataWindow, - P
use the DWComputedContent property check. ‘ ’
You cannot refer to a computed column by its index, since the computed column [O]
is not part of the database. Therefore, you must refer to a computed column by gﬁgp‘t’ér
its name.
= Back
® Record a selection on the computed column. The name of the column appears in

the tbl_selected_cell statement inserted in your test script.

® Perform a GUI checkpoint on the DataWindow in which the computed column
appears. The name of the computed column appears in the Objects pane below
the name of the parent DataWindow.

WinRunner User’s Guide Chapter 11, page 331

Creating Tests

Checking Table Contents

When you work with WinRunner with added support for application development

environments such as Visual Basic, PowerBuilder, Delphi, and Oracle, you can Books
create GUI checkpoints that check the contents of tables in your application. Online
This chapter describes: ¢4 Find
® Checking Table Contents with Default Checks AFg;?n
® Checking Table Contents while Specifying Checks 5
& Help
® Understanding the Edit Check Dialog Box ‘ ’
[E]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 332

Creating Tests « Checking Table Contents

About Checking Table Contents

Tables are generally part of a specific development environment application, such
as Visual Basic, PowerBuilder, Delphi, and Oracle. These toolkits can display
database information in a grid. In order to perform the checks on a table described
in this chapter, you must install and load add-in support for the relevant
development environment. You can choose to install support for Visual Basic or #4 Find
PowerBuilder applications when you install WinRunner. In addition, you can Find
install support for other development environments, such as Delphi and Oracle, Again
separately. You can use the Add-In Manager dialog box to choose which add-in
support to load for each session of WinRunner. For information on the Add-In
Manager dialog box, see Chapter 2, WinRunner at a Glance. Forinformation on ‘ ’
displaying the Add-In Manager dialog box, see Chapter 36, Setting Global

Books
Online

‘? Help

Testing Options. [O]
Top of

Once you install WinRunner support for any of these tools, you can add a GUI Chapter

checkpoint to your test script that checks the contents of a table. & Back

WinRunner User’s Guide Chapter 12, page 333

Creating Tests « Checking Table Contents

You can create a GUI checkpoint for table contents by clicking in the table and
choosing the properties that you want WinRunner to check. You can check the
default properties recommended by WinRunner, or you can specify which

properties to check. Information about the table and the properties to be checked Books
is saved in a checklist. WinRunner then captures the current values of the table Online
properties and saves this information as expected results. A GUI checkpoint is

automatically inserted into the test script. This checkpoint appears in your test 04 Find
script as an obj_check_gui or a win_check_gui statement. For more Find

information about GUI checkpoints and checklists, see Chapter 9, Checking GUI Again
Objects. 2 Help

When you run the test, WinRunner compares the current state of the properties ‘ ’
in the table to the expected results. If the expected results and the current results

do not match, the GUI checkpoint fails. You can view the results of the checkpoint =
in the WinRunner Test Results Window. For more information, see Chapter 28, gﬁgp‘t’ér

Analyzing Test Results.

= Back

Note that any GUI object you check that is not already in the GUI map is added
automatically to the temporary GUI map file. See Chapter 3, Introducing the GUI
Map, for more information.

This chapter provides step-by-step instructions for checking the contents of
tables.

WinRunner User’s Guide Chapter 12, page 334

Creating Tests « Checking Table Contents

You can also create a GUI checkpoint that checks the contents of a PowerBuilder
DropDown list or a DataWindow: you check a DropDown list as you would check
a single-column table; you check a DataWindow as you would check a multiple-
column table. For additional information, see Chapter 11, Checking Books
PowerBuilder Applications. Online

In addition to checking a table’s contents, you can also check its other properties. | # Find
If a table contains ActiveX properties, you can check them in a GUI checkpoint. Find
WinRunner also has built-in support for ActiveX controls that are tables. For Again
additional information, see Chapter 10, Working with ActiveX and Visual Basic
Controls. You can also check a table’s standard GUI properties in a GUI
checkpoint. For additional information, see Chapter 9, Checking GUI Objects. ‘ ’

‘? Help

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 12, page 335

Creating Tests « Checking Table Contents

Checking Table Contents with Default Checks

You can create a GUI checkpoint that performs a default check on the contents of
a table.

Books
Online

A default check performs a case-sensitive check on the contents of the entire
table. WinRunner uses column names and the index number of rows to locate the | #4 Find
cells in the table.

Find
You can also perform a check on table contents in which you specify which checks Again
to perform. For additional information, see Checking Table Contents while 2 Help

Specifying Checks on page 338.

To check table contents with a default check: ‘ ’

QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI To%lof
Checkpoint for Object/Window button on the User toolbar. Chapter

2 Click in the table in the application you are testing. &Back

WinRunner may take a few seconds to capture information about the table.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, refer to the TSL Online Reference.

WinRunner User’s Guide Chapter 12, page 336

Creating Tests « Checking Table Contents

Note: If you wish to check other table object properties while performing a check

on the table contents, use the Create > GUI Checkpoint > For Multiple
Objects command (instead of the Create > GUI Checkpoint > For Books
Object/Window command), which inserts awin_check_gui statement into your Online
test script. For information on checking the standard GUI properties of tables, # Eind
see Chapter 9, Checking GUI Objects. For information on checking the
ActiveX control properties of a tables, see Chapter 10, Working with ActiveX Find
. . Again
and Visual Basic Controls.
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 337

Creating Tests « Checking Table Contents

Checking Table Contents while Specifying Checks

You can use a GUI checkpoint to specify which checks to perform on the contents

of a table. To create a GUI checkpoint on table contents in which you specify
checks, you choose a GUI checkpoint command and double-click in the table. gﬁﬁﬁz
The example in the procedure below uses WinRunner with add-in support for & Find
Visual Basic and the Flights table in the sample Visual Basic Flights application.
Find
To check table contents while specifying which checks to perform: Again
QI 1 Choose Create > GUI Checkpoint > For Object/Window or click the GUI ? Help
Checkpoint for Object/Window button on the User toolbar.
2 Double-click in the table in the application you are testing. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 338

Creating Tests « Checking Table Contents

WinRunner may take a few seconds to capture information about the table, and
then the Check GUI dialog box opens.

i Check GUI - D:\Program Files\Mercury Interactive\WinRunner\tmp\noname1 4A\chklist\list1_ckl B3
= Books
] LT Online
Add all Select Al Clear Al
[Objects |Properties gy a4 Find
B 123 Flights Table Marne | Arguments | Expected value - g :
oo PR | R Focused OFF — Find
@ % 18 = Again
&y 42 o)
[, BackColar 16777215) ? Help
7, Bindings =
[, BorderStyle 1 E ‘ ’
7, CellSelected Tiue IE
DJL Clip BE4SIDEMO7 45 A ==
!_F:. ol 7 hd =]
4 | » Top of
Chapter
¥ Highlight Selected Dbject 0k | Cancel | Hep |
= Back

The dialog box displays the table’s unique table properties as nonstandard
objects.

WinRunner User’s Guide Chapter 12, page 339

Creating Tests « Checking Table Contents

3 Scroll down in the dialog box or resize it so that the TableContent property
check is displayed in the Properties pane. Note that the table contents property
check may have a different name than TableContent, depending on which

toolkit is used.
Books
Online
i Check GUI - D:\Program Files\Mercury Interactive\WinRunner\tmp\noname1 A chklist\list] ckl B3
=) 0 @ Find
Add all Select Al Clear Al
Find
[Objects |Properties % Again
EID: Flights Table MHame | Arquments | Expected Walue ﬂ t‘ﬁ]
- v & ardFlightT able (%, TabStop True — D Help
ﬁgﬂ T ableCantent <complex value> ¥z
5, Tent Q
L5, ToolTipT ext — ‘ ’
Oz, Tap 285.000000 B
L5, TopRow 1 E [O]
7, whatsThisHelpl D 0 J e Top of
W5 width 5820.000000 2= Chapter
;‘L T ewt _Ij
ﬂ | B = Back
¥ Highlight Selected Dbject 0k | Cancel | Hep |

gy 4 Select the TableContent (or corresponding) property check and click the Edit
Expected Value button. Note that <complex value> appears in the Expected
Value column for this property check, since the expected value of this check is
too complex to be displayed in this column.

The Edit Check dialog box opens.

WinRunner User’s Guide Chapter 12, page 340

Creating Tests « Checking Table Contents

5 You can select which cells to check and edit the expected data. For additional
information on using this dialog box, see Understanding the Edit Check Dialog
Box on page 342.

6 When you are done, click OK to save your changes, close the Edit Check dialog Books

box, and restore the Check GUI dialog box. Online

7 Click OK to close the Check GUI dialog box. #4 Find

An obj_check_gui statement is inserted into your test script. For more ,fg;?n
information on the obj_check_gui function, refer to the TSL Online Reference.

‘? Help

Note: If you wish to check other table object properties while performing a check ‘ ’
on the table contents, use the Create > GUI Checkpoint > For Multiple]
Objects command (instead of the Create > GUI Checkpoint > For Top of
Object/Window command), which inserts a win_check_gui statement into your Chapter
test script. For information on checking the standard GUI properties of tables,
see Chapter 9, Checking GUI Objects. For information on checking the
ActiveX control properties of a tables, see Chapter 10, Working with ActiveX
and Visual Basic Controls.

= Back

WinRunner User’s Guide Chapter 12, page 341

Creating Tests * Checking Table Contents

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells in a table to
check, and which verification method and verification type to use. You can also
edit the expected data for the table cells included in the check.

Books
Online
Select Checks] Edit Expected Data]
1. Select the rows, colurnns or cells to check: Auto Size | M Find
Flight From | Departure | To Arrival I Avriline | Price | col 7 2 Fi nq
1 [F03 LA 0543 FM FOR 0724 FM S $130.40 Again
2 |967a L 08:07 A POR 09:48 Abd S $150.00
T3 [7202 L 1255 PM POR 0236 PM S $154.80 c? Help
T E202 L 04:31 P POR 06:12 Pt S $141.20
T E04E0 L= 03:19 &k FOR 11:00 &k S $149.20 ‘ ’
T 4397 Le 019PM |POR DEO0PM S $135.40 Llj

[=]

2. Set verification type: IEase Senzitive j To P of
3 Add ICeII [colurmn 'Flight'. row 1] - Caze Sensitive check Chapter
List of Entire Table - Case Sensitive check
checks: = Back

Delete |

Verfication methods: Calumn——— Row
& Name Key ﬁslect Flight -
5 =l From
= Index % Index calumts: | Departure _I

To

I™ | ety colurn ieaders

ok I Cancel I

Ready 4

WinRunner User’s Guide Chapter 12, page 342

Creating Tests « Checking Table Contents

In the Select Checks tab, you can specify the information that is saved in the

GUI checklist:
® which table cells to check
o Books
¢ the verification method Online
¢ the verification type # Find
Note that if you are creating a check on a single-column table, the contents of :ind
gain

the Select Checks tab of the Edit Check dialog box differ from what is shown
above. For additional information, see Specifying the Verification Method for 2 Help
a Single-Column Table on page 348. i

[=]

The List of Checks pane displays all the checks that will be performed, including Top of
the verification type. When the Edit Check dialog box is opened for the first time ~ |_S13Pter
for a checkpoint, the default check is displayed: & Back

Specifying which Cells to Check

® The default check for a multiple-column table is a case sensitive check on the
entire table by column name and row index.

® The default check for a single-column table is a case sensitive check on the
entire table by row position.

WinRunner User’s Guide Chapter 12, page 343

Creating Tests « Checking Table Contents

Note: If your table contains multiple columns with the same name, WinRunner

disregards the duplicate columns and does not perform checks on them.
Therefore, you should select the column index option. golqks
niine

@ Find

If you do not wish to accept the default settings, you must delete the default check —

before you specify the checks to perform. Select the “Entire Table - Case Ag;in

Sensitive check” entry in the List of Checks box and click the Delete button.

Alternatively, double-click this entry in the List of Checks box. A WinRunner ? Help

message prompts you to delete the highlighted check. Click Yes. ‘ ’

Next, specify the checks to perform. You can choose different verification type for

different selections of cells. Therefore, specify the verification type before Tol?of

selecting cells. For more information, see Specifying the Verification Type on Chapter

49.
page 349 = Back

WinRunner User’s Guide Chapter 12, page 344

Creating Tests « Checking Table Contents

Highlight the cells on which you want to perform the content check. Next, click the
Add button toolbar to add a check for these cells. Alternatively, you can:

¢ double-click a cell to check it

Books
¢ double-click a row header to check all the cells in a row Online
® double-click a column header to check all the cells in a column & Find

| ® double-click the top-left corner to check the entire table Find
Again

A description of the cells to be checked appears in the List of Checks box. P

& Help

[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 345

Creating Tests « Checking Table Contents

Specifying the Verification Method

You can select the verification method to control how WinRunner identifies
columns or rows within a table. The verification method applies to the entire

table. Specifying the verification method is different for multiple-column and Books
single-column tables. Online
Specifying the Verification Method for a Multiple-Column Table #4 Find
Find
Column Again

® Name: WinRunner looks for the selection according to the column names. A
shift in the position of the columns within the table does not result in a

mismatch. ‘ ’

® Index: WinRunner looks for the selection according to the index, or position,
of the columns. A shift in the position of the columns within the table results in =]
a mismatch. Select this option if your table contains multiple columns with the gﬁgp‘t’ér
same name. For additional information, see the note on page 344. Choosing
this option enables the Verify column headers check box, which enables & Back
you to check column headers as well as cells.

‘? Help

WinRunner User’s Guide Chapter 12, page 346

Creating Tests « Checking Table Contents

Row

® Key: WinRunner looks for the rows in the selection according to the data in
the key column(s) specified in the Select key columns list box. For example,
you could tell WinRunner to identify the second row in the table on page x Books
based on the arrival time for that row. A shift in the position of the rows does Online
not result in a mismatch. If the key selection does not uniquely identify a row, # Find
WinRunner checks the first matching row. You can use more than one key

column to uniquely identify the row. Find
Again

2 Hel
Note: If the value of a cell in one or more of the key columns changes, : P

WinRunner will not be able to identify the corresponding row, and a check of that ‘ ’
row will fail with a “Not Found” error. If this occurs, select a different key column

or use the Index verification method. =
Top of
Chapter

® |Index (default setting): WinRunner looks for the selection according to the “=Back

index, or position, of the rows. A shift in the position of any of the rows results
in a mismatch.

WinRunner User’s Guide Chapter 12, page 347

Creating Tests * Checking Table Contents

Specifying the Verification Method for a Single-Column Table

The Verification Method box in the Select Checks tab for a single-column table is
different from that for a multiple-column table. The default check for a single-
column table is a case sensitive check on the entire table by row position.

: Books
Edit Check Online
Select Checks] Edit Expected Data]
1. Select the rows, columns or cells to check: Auto Size | M Find
Departure = Find
4 |5an Francisco Again
§ |Seatle
g |Denver ﬁ? Hel o]
7 |Seatle
g |Denver ‘ ’
a Loz Anosles bl
| | »
2. Set verification type: IEase Sensitive j TODEOf
3 Add IEBII [column 'Departure’, row 1] - Caze Sensitive check Ch apter
List of Ertire Table - Case Sensitive check
checks: = Back
Dielete |
Yerification methods: * By position
= By content
ok Cancel
Ready 4

WinRunner User’s Guide ter 12, page 348

Creating Tests « Checking Table Contents

® By position: WinRunner checks the selection according to the location of the
items within the column.

® By content: WinRunner checks the selection according to the content of the

items, ignoring their location in the column. Books

Online

Specifying the Verification Type #4 Find
WinRunner can verify the contents of a table in several different ways. You can Find
choose different verification types for different selections of cells. Again

‘? Help

® Case Sensitive (the default): WinRunner compares the text content of the
selection. Any difference in case or text content between the expected and
actual data results in a mismatch. ‘ ’

® Case Insensitive: WinRunner compares the text content of the selection. Only =
differences in text content between the expected and actual data result in a gﬁgp‘t’ér
mismatch.
= Back

®* Numeric Content: WinRunner evaluates the selected data according to numeric
values. WinRunner recognizes, for example, that “2” and “2.00” are the same
number.

®* Numeric Range: WinRunner compares the selected data against a numeric
range. Both the minimum and maximum values are any real number that you
specify. This comparison differs from text and numeric content verification in that
the actual table data is compared against the range that you defined and not
against the expected results.

WinRunner User’s Guide Chapter 12, page 349

Creating Tests « Checking Table Contents

® Case Sensitive Ignore Spaces: WinRunner checks the data in the cell
according to case and content, ignoring differences in spaces. WinRunner
reports any differences in case or content as a mismatch.

® Case Insensitive Ignore Spaces: WinRunner checks the content in the cell Bools
according to content, ignoring differences in case and spaces. WinRunner Online
reports only differences in content as a mismatch.

#h Find

Click OK to save your changes to both tabs of the Edit Check dialog box. The Find
dialog box closes and the Check GUI dialog box is restored. Again
‘? Help

[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 350

Creating Tests « Checking Table Contents

Editing the Expected Data
To edit the expected data in the table, click the Edit Expected Data tab. If you

previously saved changes in the Select Checks tab, you can click Reload Table
to reload the table selections from the checklist. A WinRunner message prompts Books
you to reload the saved data. Click Yes. Online
Note that if you previously saved changes to the Select Checks tab, and then #4 Find
reopened the Edit Check dialog box, the table appears color coded in the Edit .
Expected Data tab. The cells included in the check appear in blue on a white AFg;?n
background. The cells excluded from the check appear in green on a yellow
background. 2 Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 12, page 351

Creating Tests « Checking Table Contents

Select Checks] {Edit Expected ata 1
=
_I Flight From | Departure | To Arrival | Ariline | Price col 7 2] Bo 0 ks
1 [8981 LAX 10:31 AM | POR 1212PM UA $121.60 Online
2 [8564 LAxX 02:07 PM | POR 03:48PM UA $121.20 3 Fi
3 |7845 LAX 08:07 AM |POR 09:4BAM UA $147.60 Find
4 |7828 LAY 09:19AM | POR 11:00 A |UA $124.80 Find
5 7173 LAX 04:31 PM | POR 06:12PM LA $135.20 Again
g 7148 LAY 03:19PM POR 05:00PH |UA $130.40 %
7 |7072 LAX 1255 PM |POR 02:36PH UA $158.00 § Help
g [6791 LAX 06:55 PM POR 08:35PH |UA $122.80
g [4302 LAX 03:12PM | POR 05:12PH | TWA $162.40 ‘ ’
04298 LAX 12:48PM POR 02:48PM |TWA $168.50
E 4294 LAY 10:24 AM | POR 12224 PH | TWA $162.30 ToIpEIo §
124290 LAX 08:00 AM | POR 10:00 AW |TWA $160.40 Chapter
13 |2730 LAY 05:43PM | POR 07:24PH |UA $130.80 F
(141365 LAX 11:43AM |POR 01:24 P |UA $124.40 = ®Back
<| o'
ITI Cancel I Help I
|F|eady A

To edit the expected value of data in a cell, double-click inside the cell. A cursor
appears in the cell. Change the contents of the cell, as desired. Click OK to save
your changes to both tabs of the Edit Check dialog box. The dialog box closes
and the Check GUI dialog box is restored.

WinRunner User’s Guide Chapter 12, page 352

Creating Tests

Checking Databases

By adding database checkpoints to your test scripts, you can check the contents

of databases in different versions of your application. ngolks
Online
This chapter describes:
@4 Find
® Choosing a Database
Find
® Creating a Default Check on a Database Again
¢ Creating a Custom Check on a Database 2 Help
® Messages in the Database Checkpoint Dialog Boxes ‘ ’
® Working with the Database Checkpoint Wizard
® Understanding the Edit Check Dialog Box Tolglof
. Chapt
®* Modifying a Database Checkpoint e
* Modifying the Expected Results of a Database Checkpoint = Back

® Parameterizing Database Checkpoints

® Using TSL Functions to Work with a Database

Chapter 13, page 353

Creating Tests » Checking Databases

About Checking Databases

You can use database checkpoints in your test script to check databases in your

application and detect defects. You define a query on your database, and then ’
you create a database checkpoint that checks the properties of the results of the gﬁﬁnz
query. When you check these properties, you can check the contents of the
results or how many rows or columns the results contains. #4 Find
There are three ways to create a database checkpoint: AFg;?n
® You can use Microsoft Query to create a query on a database. The results of a 2 Help
query on a database are known as a result set.You can install Microsoft Query
from the custom installation of Microsoft Office. ‘ ’
® You can define an ODBC query manually, by creating its SQL statement. =
® You can use Data Junction to create a conversion file that converts a database gﬁgpft’ér
to a target text file. Note that Data Junction is not automatically included in your
WinRunner package. To purchase Data Junction, contact your Mercury & Back

Interactive representative. For detailed information on working with Data
Junction, refer to the documentation in the Data Junction package.

When you run your test, the database checkpoint compares the current values of
the properties of the result set or target file to the expected results. If the
expected results and the current results do not match, the database checkpoint
fails.

WinRunner User’s Guide Chapter 13, page 354

Creating Tests » Checking Databases

For purposes of simplicity, this chapter will refer to the result of the ODBC query
or the target of the Data Junction conversion as a result set.

In WinRunner, you create a database checkpoint based on the results of the

query you defined on a database. A database checkpoint can be either a default gﬁﬁﬁz
check or a custom check, in which you specify which properties to check.

@ Find
You can use a default check to check the entire contents of a result set, or you
can use a custom check to check the partial contents, the number of rows, and AFg;‘i’n

the number of columns of a result set. Information about which result set
properties to check is saved in a checklist. WinRunner captures the current @ Help
information about the database and saves this information as expected results. A
database checkpoint is automatically inserted into the test script. This checkpoint ‘ ’
appears in your test script as a db_check statement.]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 13, page 355

Creating Tests » Checking Databases

For example, when you check the database of an application for the first time in
a test script, the following statement is generated:

db_check("list1.cdl", "dbvfl");
Books
Online

where listl.cdl is the name of the checklist containing information about the
database and the properties to check, and dbvfl is the name of the expected & Find
results file. The checklist is stored in the test’s chklist folder. If you are working
with Microsoft Query or ODBC, it references a *.sql query file, which contains

information about the database and the SQL statement. If you are working with
Data Junction, it references a *.djs conversion file, which contains information 2 Help
about the database and the conversion. When you define a query, WinRunner
creates a checklist and stores it in the test’s chklist folder. The expected results ‘ ’
file is stored in the test’'s exp folder. For more information on the db_check

function, refer to the TSL Online Reference. . = .
op o
Chapter

Find
Again

When you run the test, the database checkpoint compares the current state of the
database in the application being tested to the expected results. If the expected = Back
results and the current results do not match, the database checkpoint fails. The
results of the checkpoint can be viewed in the Test Results window. For more
information, see Chapter 28, Analyzing Test Results.

WinRunner User’s Guide Chapter 13, page 356

Creating Tests » Checking Databases

You can modify the expected results of an existing database checkpoint before or
after you run your test. You can also make changes to the query in an existing
database checkpoint. This is useful if you move the database to a new location

on the network. Books
Online
When you create a database checkpoint using ODBC/Microsoft Query, you can

add parameters to an SQL statement to parameterize your checkpoint. This is #4 Find

useful if you want to create a database checkpoint on a query in which the SQL Find
statement defining your query changes. Again
‘? Help

[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 357

Creating Tests » Checking Databases

Choosing a Database

Before you can choose which database to check, you must start creating a

database checkpoint. You can create either a default or a custom database
checkpoint. For additional information, see Creating a Default Check on a gﬁﬁﬁz
Database on page 363 and Creating a Custom Check on a Database on page
368. While you are creating a checkpoint, you must specify which database to #4 Find
check. You can use the following tools to specify which database to check: Find
Again
® ODBC/Microsoft Query
@ Hel
® Data Junction s nep
Creating a Query in ODBC/Microsoft Query
You can use Microsoft Query to choose a data source and define a query within Tol?of
the data source, or you can define a connection string and an SQL statement Chapter
manually. WinRunner supports the following versions of Microsoft Query: &Back

® version 2.00 (in Microsoft Office 95)
¢ version 8.00 (in Microsoft Office 97)
¢ version 2000 (in Microsoft Office 2000)
To create a query in ODBC without using Microsoft Query, specify the connection

string and the SQL statement in the Database Checkpoint wizard. For additional
information, see Specifying an SQL Statement on page 384.

WinRunner User’s Guide Chapter 13, page 358

Creating Tests » Checking Databases

To choose a data source and define a query in Microsoft Query:

1 Choose a new or an existing data source.

2 Define a query.
Books
Online
Note: If you want to parameterize the SQL statement in the db_check 4 Find
statement which will be generated, then in the last wizard screen in Microsoft Find
. n
Query 8.00, click View data or edit query in Microsoft Query. Follow the Again
instructions in Guidelines for Parameterizing SQL Statements on page 425.
‘? Help
3 When you are done: ‘ ’
® In version 2.00, choose File > Exit and return to WinRunner to close =
. . Top of
Microsoft Query and return to WinRunner. Chapter
® In version 8.00, in the Finish screen of the Query Wizard, click Exit and & Back
return to WinRunner and click Finish to exit Microsoft Query. Alternatively,

click View data or edit query in Microsoft Query and click Finish. After
viewing or editing the data, choose File > Exit and return to WinRunner to
close Microsoft Query and return to WinRunner.

WinRunner User’s Guide Chapter 13, page 359

Creating Tests » Checking Databases

4 Continue creating a database checkpoint in WinRunner:

® To create a default check on a database, follow the instructions starting at

step 5 on page 365.
® To create a custom check on a database, follow the instructions starting at gﬁﬁﬁz
step 5 on page 370.
@ Find
For additional information on working with Microsoft Query, refer to the Microsoft —
Query documentation. AFg;in
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 360

Creating Tests » Checking Databases

Creating a Conversion File in Data Junction

You can use Data Junction to create a conversion file which converts a database

to a target text file. WinRunner supports versions 6.5 and 7.0 of Data Junction.
Books
To create a conversion file in Data Junction: Online
1 Specify and connect to the source database. & Find
2 Select an ASCII (delimited) target spoke type and specify and connect to the Find
target file. Choose the “Replace File/Table” output mode. Again
‘? Help
Note: If you are working with Data Junction version 7.0 and your source
database includes values with delimiters (CR, LF, tab), then in the Target ‘ ’
Properties dialog box, you must specify “\\n\t” as the value for the @l
TransliterationIn property. The value for the TransliterationOut property must Top of
be blank. Chapter
= Back

3 Map the source file to the target file.

4 When you are done, click File > Export Conversion to export the conversion to
a *.djs conversion file.

5 The Database Checkpoint wizard opens to the Select conversion file screen.
Follow the instructions in Selecting a Data Junction Conversion File on page
389.

WinRunner User’s Guide Chapter 13, page 361

Creating Tests » Checking Databases

6 Continue creating a database checkpoint in WinRunner:

® To create a default check on a database, follow the instructions starting at

step 5 on page 365.
® To create a custom check on a database, follow the instructions starting at gﬁﬁﬁz
step 5 on page 370.
@4 Find
For additional information on working with Data Junction, refer to the Data —
Junction documentation. AFg;in
‘? Help
[=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 362

Creating Tests » Checking Databases

Creating a Default Check on a Database

When you create a default check on a database, you create a database

checkpoint that checks the entire result set.
Boqks
® The default check for a multiple-column query on a database is a case sensitive Online
check on the entire result set by column name and row index. &4 Find
® The default check for a single-column query on a database is a case sensitive Find
check on the entire result set by row position. Again
If you want to check only part of the contents of a result set, edit the expected ? Help
value of the contents, or count the number of rows or columns, you should
create a custom check instead of a default check. For information on creating a ‘ ’
custom check on a database, see Creating a Custom Check on a Database on =
page 368. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 363

Creating Tests » Checking Databases

Creating a Default Check on a Database Using ODBC or
Microsoft Query

You can create a default check on a database using ODBC or Microsoft Query.

Books
To create a default check on a database using ODBC or Microsoft Query: Online

il 1 Choose Create > Database Checkpoint > Default Check or click the Default & Find
Database Checkpoint button on the User toolbar. If you are recording in Analog

mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid extraneous /fg;‘i’n
mouse movements. Note that you can press the CHECK DATABASE (DEFAULT)
softkey in Context Sensitive mode as well. 2 Help

4

Note: The first time you create a default database checkpoint, either Microsoft

Query or the Database Checkpoint wizard opens. Each subsequent time you =]
create a default database checkpoint, the last tool used is opened. If the ot
Database Checkpoint wizard opens, follow the instructions in Working with the

Database Checkpoint Wizard on page 378. “=Back

WinRunner User’s Guide Chapter 13, page 364

Creating Tests » Checking Databases

2 If Microsoft Query is installed and you are creating a new query, an instruction
screen opens for creating a query.

If you do not want to see this message next time you create a default database
checkpoint, clear the Show this message next time check box.

Click OK to close the instruction screen. gﬁﬁﬁz
3 If Microsoft Query is not installed, the Database Checkpoint wizard opens to a
screen where you can define the ODBC query manually. For additional 4 Find
information, see Specifying an SQL Statement on page 384. Find
Again

4 Define a query, copy a query, or specify an SQL statement. For additional
information, see Choosing a Database on page 358. 2 Help

4

Note: If you want to be able to parameterize the SQL statement in the db_check

statement which will be generated, then in the last wizard screen in Microsoft =]
Query, click View data or edit query in Microsoft Query. Follow the g,?g’pft’;

instructions in Guidelines for Parameterizing SQL Statements on page 425.
= Back

5 WinRunner takes several seconds to capture the database query and restore the
WinRunner window.

WinRunner captures the data specified by the query and stores it in the test’s
exp folder. WinRunner creates the msqr*.sqgl query file and stores it and the
database checklist in the test’s chklist folder. A database checkpoint is inserted
in the test script as a db_check statement. For more information on the
db_check function, refer to the TSL Online Reference.

WinRunner User’s Guide Chapter 13, page 365

Creating Tests » Checking Databases

Creating a Default Check on a Database Using Data Junction

You can create a default check on a database using Data Junction.

To create a default check on a database: Books

Online

il 1 Choose Create > Database Checkpoint > Default Check or click the Default
Database Checkpoint button on the User toolbar. If you are recording in Analog &4 Find
mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid extraneous
mouse movements. Note that you can press the CHECK DATABASE (DEFAULT) Find
softkey in Context Sensitive mode as well. Again

‘? Help

Note: The first time you create a default database checkpoint, either Microsoft ‘ ’
Query or the Database Checkpoint wizard opens. Each subsequent time you
create a default database checkpoint, the last client used is opened: if you used =]

Microsoft Query, then Microsoft Query opens; if you use Data Junction, then the gﬁgp‘t’ér
Database Checkpoint wizard opens. Note that the Database Checkpoint wizard
must open whenever you use Data Junction to create a database checkpoint. ‘= Back

For information on working with the Database Checkpoint wizard, see Working
with the Database Checkpoint Wizard on page 378.

WinRunner User’s Guide Chapter 13, page 366

Creating Tests » Checking Databases

2 An instruction screen opens for creating a query.

If you do not want to see this message next time you create a default database

checkpoint, clear the Show this message next time check box.
Click OK to close the instruction screen. gﬁﬁﬁz
3 Create a new conversion file or use an existing one. For additional information, 4 Find
see Choosing a Database on page 358. Fin
4 WinRunner takes several seconds to capture the database query and restore the AFg;‘i’n
WinRunner window.
‘? Help
WinRunner captures the data specified by the query and stores it in the test’s
exp folder. WinRunner creates the *.djs conversion file and stores it in the ‘ ’
checklist in the test’s chklist folder. A database checkpoint is inserted in the test
script as a db_check statement. For more information on the db_check =] .
function, refer to the TSL Online Reference. et
= Back

WinRunner User’s Guide Chapter 13, page 367

Creating Tests » Checking Databases

Creating a Custom Check on a Database

When you create a custom check on a database, you create a database

checkpoint in which you can specify which properties to check on a result set. ’
Books
You can create a custom check on a database in order to: Online
. #4 Find
® check the contents of part or the entire result set I
® edit the expected results of the contents of the result set AFg;?n
® count the rows in the result set
‘? Help
® count the columns in the result set ‘ ’
=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 368

Creating Tests » Checking Databases

Creating a Custom Check on a Database Using ODBC or
Microsoft Query

You can create a custom check on a database using ODBC or Microsoft Query.

Books
Online

To create a custom check on a database using ODBC or Microsoft Query:

1 Choose Create > Database Checkpoint > Custom Check. If you are recording #4 Find
in Analog mode, press the CHECK DATABASE (CUSTOM) softkey in order to avoid =
extraneous mouse movements. Note that you can press the CHECK DATABASE Again
(cusTowm) softkey in Context Sensitive mode as well.

. . ‘? Help
The Database Checkpoint wizard opens.
2 Follow the instructions on working with the Database Checkpoint wizard, as ‘ ’
described in Working with the Database Checkpoint Wizard on page 378. B
3 If you are creating a new query, an instruction screen opens for creating a query. (':I'r?p of
apter
If you do not want to see this message next time you create a default database
checkpoint, clear the Show this message next time check box. e Back

4 Define a query, copy a query, or specify an SQL statement. For additional
information, see Choosing a Database on page 358.

WinRunner User’s Guide Chapter 13, page 369

Creating Tests » Checking Databases

Note: If you want to be able to parameterize the SQL statement in the db_check

statement which will be generated, then in the last wizard screen in Microsoft
Query, click View data or edit query in Microsoft Query. Follow the Books
instructions in Parameterizing Database Checkpoints on page 419. Online
@ Find
5 WinRunner takes several seconds to capture the database query and restore the AFg;?n
WinRunner window.
‘? Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 370

Creating Tests » Checking Databases

The Check Database dialog box opens.

| Check Database - D:\Program Files\Mercury Interactive\WinRunnerstmp\nonamelichkhistvli... [E3
]
Select Al | Clear A1 gﬁﬁﬁz
[Objects |Properties =
Naame | Arguments | Expected Yalue | g &4 Find
5, ColumnsCount " =
W] 7, Content <complex waluex = Find
153, BowsCount 4514 e} Again
== ‘? Help
5
QK I Cancel | Help | (;rf?gpct);r
)) ‘= Back
The Objects pane contains “Database check” and the name of the *.sql query

file that will be included in the database checkpoint. The Properties pane lists
the different types of checks that can be performed on the result set. A check
mark indicates that the item is selected and is included in the checkpoint.

WinRunner User’s Guide Chapter 13, page 371

Creating Tests » Checking Databases

6 Select the types of checks to perform on the database. You can perform the
following checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in Creating a gﬁﬁﬁz

Default Check on a Database on page 363.

RowsCount: Counts the number of rows in the result set. #4 Find
Eiy 7 If you want to edit the expected value of a property, first select it. Next, either AFg;‘i’n

click the Edit Expected Value button, or double-click the value in the Expected

Value column. 2 Help

® For ColumnsCount or RowCount checks on a result set, the expected value
is displayed in the Expected Value field corresponding to the property check. ‘ ’

When you edit the expected value for these property checks, a spin box @l
opens. Modify the number that appears in the spin box. Top of
Chapter

® For a Content check on a result set, <complex value> appears in the
Expected Value field corresponding to the check, since the content of the & Back
result set is too complex to be displayed in this column. When you edit the
expected value, the Edit Check dialog box opens. In the Select Checks tab,
you can select which checks to perform on the result set, based on the data
captured in the query. In the Edit Expected Data tab, you can modify the
expected results of the data in the result set.

For more information, see Understanding the Edit Check Dialog Box on
page 391.

WinRunner User’s Guide Chapter 13, page 372

Creating Tests » Checking Databases

8 Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the test’s
exp folder. WinRunner stores the database query in the test’s chklist folder. A
database checkpoint is inserted in the test script as a db_check statement. For

Books
more information on the db_check function, refer to the TSL Online Reference. Online
: _ _ @4 Find
Creating a Custom Check on a Database Using Data Junction
. . Find
You can create a custom check on a database using Data Junction. Ag;in
To create a custom check on a database using Data Junction: ? Help

1 Choose Create > Database Checkpoint > Custom Check. If you are recording ‘ ’
in Analog mode, press the CHECK DATABASE (CUSTOM) softkey in order to avoid

extraneous mouse movements. Note that you can press the CHECK DATABASE =
(cusTowm) softkey in Context Sensitive mode as well. gﬁp CtJf
apter

The Database Checkpoint wizard opens.
= Back

2 Follow the instructions on working with the Database Checkpoint wizard, as
described in Working with the Database Checkpoint Wizard on page 378.

WinRunner User’s Guide Chapter 13, page 373

Creating Tests » Checking Databases

3 If you are creating a new query, an instruction screen opens.

If you do not want to see this message next time you create a default database
checkpoint, clear the Show this message next time check box.

4 Create a new conversion file or use an existing one. For additional information, gﬁﬁﬁz
see Choosing a Database on page 358.
5 WinRunner takes several seconds to capture the database query and restore the #4 Find
WinRunner window. Find
. Again
The Check Database dialog box opens.
‘? Help

L4 Check Database - D:\Program Files\Mercury Interactive\WinRunneritmpinoname1\chklist\li. . E3

T 4/
Select &l Clear &1l
[Objects [Properties = =]
M arme | Arguments | Expected Walue | g Top of
— s Chapter
5, ColumnsCount 2 —
W5, Content <complex value:r = &Back
%, RowsCount 4514 @
N
=5
s

QK. I Cancel Help |

WinRunner User’s Guide Chapter 13, page 374

Creating Tests » Checking Databases

The Objects pane contains “Database check” and the name of the *.djs
conversion file that will be included in the database checkpoint. The Properties
pane lists the different types of checks that can be performed on the result set. A

check mark indicates that the item is selected and is included in the checkpoint. el
0O0KS
6 Select the types of checks to perform on the database. You can perform the Online
following checks:
ollowing checks # Find
ColumnsCount: Counts the number of columns in the result set. —
n
Content: Checks the content of the result set, as described in Creating a Again
Default Check on a Database on page 363. 5
& Help
RowsCount: Counts the number of rows in the result set. ‘ ’
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 375

Creating Tests » Checking Databases

cijg 7 If you want to edit the expected value of a property, first select it. Next, either
= click the Edit Expected Value button, or double-click the value in the Expected
Value column.

® For ColumnsCount or RowCount checks on a result set, the expected value Books
is displayed in the Expected Value field corresponding to the property check. Online
When you edit the expected value for these property checks, a spin box # Find
opens. Modify the number that appears in the spin box.

® For a Content check on a result set, <complex value> appears in the AFg;?n

Expected Value field corresponding to the check, since the content of the
result set is too complex to be displayed in this column. When you edit the 2 Help
expected value, the Edit Check dialog box opens. In the Select Checks tab,
you can select which checks to perform on the result set, based on the data ‘ ’
captured in the query. In the Edit Expected Data tab, you can modify the
expected results of the data in the result set. =]

Top of
Chapter

For more information, see Understanding the Edit Check Dialog Box on
page 391.

= Back

8 Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the test’s
exp folder. WinRunner stores the database query in the test’s chklist folder. A
database checkpoint is inserted in the test script as a db_check statement. For
more information on the db_check function, refer to the TSL Online Reference.

WinRunner User’s Guide Chapter 13, page 376

Creating Tests » Checking Databases

Messages in the Database Checkpoint Dialog Boxes

The following messages may appear in the Properties pane in the Expected Value
or the Actual Value fields in the Check Database or the Database Checkpoint

. Book
Results dialog boxes: oﬁﬁnz
Message Meaning ¢4 Find
Complex Value The expected or actual value of the selected property check is AFg;?n
too complex to display in the column. This message will appear
for the content checks. & Help
Cannot Capture | The expected or actual value of the selected property could not
be captured. ‘ ’

[B]
Top of
. . . . Chapter
Note: For information on the Database Checkpoint Results dialog box, see
Chapter 28, Analyzing Test Results. = Back

WinRunner User’s Guide Chapter 13, page 377

Creating Tests » Checking Databases

Working with the Database Checkpoint Wizard

The wizard opens whenever you create a custom database checkpoint and

whenever you work with Data Junction. You can also use an SQL statement to ’
create a database checkpoint. When working with SQL statements, create a gﬁﬁnz
custom database check and choose the ODBC (Microsoft Query) option.
@ Find
You can work in either ODBC/Microsoft Query mode or Data Junction mode. .
Depending on the last tool used, a screen opens for either ODBC (Microsoft AFg;?n
Query) or Data Junction. You can change from one mode to another in the first
wizard screen. ? Help
The Database Checkpoint wizard enables you to: ‘ ’
® switch between ODBC (Microsoft Query) mode and Data Junction mode =
. . . . Top of
® specify an SQL statement without using Microsoft Query Chapter
® use existing queries and conversions in your database checkpoint & Back

WinRunner User’s Guide Chapter 13, page 378

Creating Tests » Checking Databases

ODBC (Microsoft Query) Screens

There are three screens in the Database Checkpoint wizard for working with

ODBC (Microsoft Query). These screens enable you to:
Books
® set general options: Online
¢ switch to Data Junction mode & Find
® choose to create a new query, use an existing one, or specify an SQL Find
statement Again
® limit the number of rows in the query 2 Help
¢ display an instruction screen ‘ ’
® select an existing source query file =
* specify an SQL statement ot
= Back

WinRunner User’s Guide Chapter 13, page 379

Creating Tests * Checking Databases

Setting ODBC (Microsoft Query) Options
The following screen opens if you are creating a custom database checkpoint or
working in ODBC mode.

Books
Database Checkpoint Wizard Online
Lonnect to databaze uzing IDDEC [Microzoft Quer}lj M Find
Find
Again
™ Copy existing query cg._) Help

" Specify SOL statement

Mew query file: ImsqlB.sqI J ‘ ’

LY
Mz a9 @
Sibad [T Maximum number of raws: ID Top of
12dz9ma9
W Show me how to uze Microsoft Quen Chapter
= Back

< Bach I Firizh I Cancel | Help

WinRunner User’s Guide Chapter 13, page 380

Creating Tests » Checking Databases

You can choose from the following options:

® Create new query: Opens Microsoft Query, enabling you to create a new ODBC
*.sql query file with the name specified below. Once you finish defining your

query: Books
Online
® If you are creating a default database checkpoint, a db_check statement is
inserted into your test script. #4 Find
® |f you are creating a custom database checkpoint, the Check Database Find
dialog box opens. For information on the Check Database dialog box, see Again
Creating a Custom Check on a Database on page 368. 2 Help

® Copy existing query: Opens the Select source query file screen in the wizard, ‘ ’
which enables you to copy an existing ODBC query from another query file. For

additional information, see Selecting a Source Query File on page 382. =
Top of
® Specify SQL statement: Opens the Specify SQL statement screen in the Chapter

wizard, which enables you to specify the connection string and an SQL
statement. For additional information, see Specifying an SQL Statement on
page 384.

= Back

®* New query file: Displays the default name of the new *.sgl query file for this
database checkpoint. You can use the browse button to browse for a different
*.sql query file.

WinRunner User’s Guide Chapter 13, page 381

Creating Tests * Checking Databases

® Maximum number of rows: Select this check box and enter the maximum
number of database rows to check. If this check box is cleared, there is no
maximum. Note that this option adds an additional parameter to your db_check
statement. For more information, refer to the TSL Online Reference.

Books
Online

Selecting a Source Query File #4 Find
The following screen opens if you chose to use an existing query file in this Find

® Show me how to use Microsoft Query: Displays an instruction screen.

database checkpoint. Again
&
Database Checkpoint Wizard ¢ Help
Select source query File: ‘ ’
mzar.sql Brawze... | ToIpEIof
Chapter
Yiew |
= Back

<Back i Finish Cancel Help

WinRunner User’s Guide Chapter 13, page 382

Creating Tests » Checking Databases

Enter the pathname of the query file or use the Browse button to locate it. Once
a query file is selected, you can use the View button to open the file for viewing.

® If you are creating a default database checkpoint, a db_check statement is
inserted into your test script. Books
Online
® If you are creating a custom database checkpoint, the Check Database dialog
box opens. For information on the Check Database dialog box, see Creating a #4 Find
Custom Check on a Database on page 368. Find
Again
‘? Help
=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 383

Creating Tests * Checking Databases

Specifying an SQL Statement
The following screen opens if you chose to specify an SQL statement to use in
this database checkpoint.

Books
Database Checkpoint Wizard Online
Specify SOL statement @ Find
Connection String: | -
g LCreate Find
DEQ=D:"Frogram Files\Mercury Interactiveiafinl Again
‘? Help

S0L:

SELECT Flights. Departure, Flights Day,_0F_Weel ‘ ’
FROM Flights Flights

Top of
Chapter

= Back

Cancel Help

WinRunner User’s Guide Chapter 13, page 384

Creating Tests » Checking Databases

In this screen you must specify the connection string and the SQL statement:

® Connection String: Enter the connection string, or click Create to open the

ODBC Select Data Source dialog box, in which you can select a *.dsn file, which
inserts the connection string in the box. Books
Online
® SQL: Enter the SQL statement.
@ Find
Find
Note: If you create an SQL statement containing parameters, an instruction Again
screen opens. For information on parameterizing SQL statements, see
Parameterizing Database Checkpoints on page 419. ? Help
® |f you are creating a default database checkpoint, a db_check statement is =
inserted into your test script. Top of
Chapter
® |f you are creating a custom database checkpoint, the Check Database dialog
box opens. For information on the Check Database dialog box, see Creating a = Back

Custom Check on a Database on page 368.

WinRunner User’s Guide Chapter 13, page 385

Creating Tests » Checking Databases

Data Junction Screens in the Database Checkpoint Wizard

There are two screens in the Database Checkpoint wizard for working with Data
Junction. These screens enable you to:

Books
® set general options: Online
¢ switch to ODBC (Microsoft Query) mode & Find
® choose to create a new conversion or use an existing one Find
. . . Again
¢ display an instruction screen g
‘? Help
® gpecify the conversion file
=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 386

Creating Tests * Checking Databases

Setting Data Junction Options

The following screen opens if you last worked with Data Junction or if you are
creating a default database checkpoint for the first time when only Data Junction

is installed: Books
Online
Database Checkpoint Wizard
@ Find
LConnect to database using IData Junction j Find
Again
i ‘? Help
™ |se existing conversion ‘ ’
llana | esean @
Aliz | AHzees Top of
Stewve| sextiaa Ch apter
Evan [1zezams p h hawa Diatal i
o me how bo use Data Junction &Back
< Hack I Heut » I Cancel Help

WinRunner User’s Guide Chapter 13, page 387

Creating Tests » Checking Databases

You can choose from the following options:

® Create new conversion: Opens Data Junction and enables you to create a new

conversion file. For additional information, see Creating a Conversion File in
Data Junction on page 361. Once you have created a conversion file, the golqks
Database Checkpoint wizard screen reopens to enable you to specify this file. nine
For additional information, see Selecting a Data Junction Conversion File on &4 Find
page 389.
o Find
® Use existing conversion: Opens the Select conversion file screen in the Again
wizard, which enables you to specify an existing conversion file. For additional
information, see Selecting a Data Junction Conversion File on page 389. ? Help
® Show me how to use Data Junction (available only when Create new ‘ ’
conversion is selected): Displays instructions for working with Data Junction.
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 388

Creating Tests * Checking Databases

Selecting a Data Junction Conversion File
The following wizard screen opens when you are working with Data Junction.

Database Checkpoint Wizard Books
Online
Select converzion file: M Find
flights. dis Browse... | -
Find
View | Again
‘? Help
[Copy conversion to test directory ‘ ’
™ Maximum number of rows: ID @
Top of
Chapter
< Back I Firizh I Cancel | Help & Back

Enter the pathname of the conversion file or use the Browse button to locate it.
Once a conversion file is selected, you can use the View button to open the file
for viewing.

WinRunner User’s Guide Chapter 13, page 389

Creating Tests » Checking Databases

You can also choose from the following options:

® Copy conversion to test folder: Copies the specified conversion file to the test

folder.

.)) Books
®* Maximum number of rows: Select this check box and enter the maximum Online
number of database rows to check. If this check box is cleared, there is no .

maximum. 4 Find
Find
When you are done: Again
® |f you are creating a default database checkpoint, a db_check statement is 2 Help
inserted into your test script.
® If you are creating a custom database checkpoint, the Check Database dialog ‘ ’
box opens. For information on the Check Database dialog box, see Creating a =
Custom Check on a Database on page 368. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 390

Creating Tests * Checking Databases

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells to check, and
which verification method and verification type to use. You can also edit the

expected data for the database cells included in the check.
Books
Edit Check Online
Select Checks] Edit Expected Data]
4 Find
1. Select the rows, columns or cells to check: Auto Size |
Find
Flight From | Departure | To Arrival I Avriline | Price | col 7 2 Again
1 |3039 L 05:43 P POR 07:24 PM S $130.40
2 |[BE73 L, 08:07 Abd POR 09:48 &M S $150.00 @ Hel p
3 [7302 LA, 12:55 PM POR 02:36 PM S $154.80 -
4 |GBE02 LA, 04:31 PH POR 0B:12 PM S $141.20
5 |6090 L 05:13 Ak FOR 11:00 &b S $149.20 ‘ ’
||: 4397 L& 0319 P POR 05:00 P S $138.40 f @
4 3
L : — Top of
2. Set verification type: Caze Sengitive =~
| | Chapter
3 Add ICeII [colurmn 'Flight'. row 1] - Caze Sensitive check
List of Entire Table - Case Sensitive check = Back
checks:
Delete |
Verfication methods: Calumn——— Row
& Name Key ﬁslect Flight -
5 =l From
= Index % Index calumts: | Departure _I
To hd
I™ | ety colurn ieaders
ok I Cancel I
Ready 4

WinRunner User’s Guide Chapter 13, page 391

Creating Tests » Checking Databases

In the Selected Checks tab, you can specify the information that is saved in the
database checklist:

¢ which database cells to check
* the verification method 809"5
nline
¢ the verification type
yP @ Find
Note that if you are creating a check on a single-column result set, the contents Find
of the Select Checks tab of the Edit Check dialog box differ from what is shown Again
above. For additional information, see Specifying the Verification Method for &
a Single-Column Result Set on page 396. ¥ Help
Specifying which Cells to Check ‘ ’
The List of Checks pane displays all the checks that will be performed, including Tol?of
the verification type. When the Edit Check dialog box is opened for the first time Chapter
for a checkpoint, the default check is displayed: & Back

® The default check for a multiple-column result set is a case sensitive check on
the entire result set by column name and row index.

® The default check for a single-column result set is a case sensitive check on the
entire result set by row position.

WinRunner User’s Guide Chapter 13, page 392

Creating Tests » Checking Databases

Note: If your result set contains multiple columns with the same name,
WinRunner disregards the duplicate columns and does not perform checks on
them. Therefore, you should create a custom check on the database and select Books

the column index option. Online
@ Find

. . Find

If you do not wish to accept the default settings, you must delete the default check Again

before you specify the checks to perform. Select the “Entire Table - Case
Sensitive check” entry in the List of Checks pane and click the Delete button. ? Help
Alternatively, double-click this entry in the List of Checks pane. A WinRunner

message prompts you to delete the highlighted check. Click Yes. ‘ ’

Next, specify the checks to perform. You can choose different verification types To%lof
for different selections of cells. Therefore, specify the verification type before Chapter
selecting cells. For more information, see Specifying the Verification Type on

page 397. EBack

WinRunner User’s Guide Chapter 13, page 393

Creating Tests » Checking Databases

Highlight the cells on which you want to perform the content check. Next, click the
Add button to add a check for these cells. Alternatively, you can:

¢ double-click a cell to check it
Books
¢ double-click a row header to check all the cells in a row Online
® double-click a column header to check all the cells in a column & Find
| ® double-click the top-left corner to check the entire result set Find
Again
A description of the cells to be checked appears in the List of Checks pane. P
& Help
Specifying the Verification Method ‘ ’
You can select the verification method to control how WinRunner identifies
columns or rows within a result set. The verification method applies to the entire To%lof
result set. Specifying the verification method is different for multiple-column and Chapter
single-column result sets.
= Back

WinRunner User’s Guide Chapter 13, page 394

Creating Tests » Checking Databases

Specifying the Verification Method for a Multiple-Column Result Set

Column
® Name: (default setting): WinRunner looks for the selection according to the Books
column names. A shift in the position of the columns within the result set does Online
not result in a mismatch.
_ _ _ _ L @ Find
® Index: WinRunner looks for the selection according to the index, or position,
of the columns. A shift in the position of the columns within the result set Find
results in a mismatch. Select this option if your result set contains multiple Again
columns with the same name. For additional information, see the note on 2 Help
page 393. Choosing this option enables the Verify column headers check
box, which enables you to check column headers as well as cells. ‘ ’
Row =
* Key: WinRunner looks for the rows in the selection according to the key(s) gﬁgp‘t’ér
specified in the Select key columns list box, which lists the names of all
columns in the result set. A shift in the position of any of the rows does not & Back

result in a mismatch. If the key selection does not identify a unique row, only
the first matching row will be checked.

® Index: (default setting): WinRunner looks for the selection according to the
index, or position, of the rows. A shift in the position of any of the rows results
in a mismatch.

WinRunner User’s Guide Chapter 13, page 395

Creating Tests * Checking Databases

Specifying the Verification Method for a Single-Column Result Set

The Verification Method box in the Select Checks tab for a single-column result
set is different from that for a multiple-column result set. The default check for a

single-column result set is a case sensitive check on the entire result set by row

osition.
p Books
Online
Edit Check
Select Checks] Edit Expected Data] M Find
1. Select the rows, colurnns or cells to check: Auta Size | Find
Departure = Again
4 |5an Francisco
5 |Seattls ﬁ? Help
g |Derver
7 |Seatle ‘ ’
g |Denver
a Loz Anosles 7
« | " [=]
Top of
2. Set verification type: IEase Sengitive j Ch apter
3 Add | IEBII [column 'Departure’, row 1] - Caze Sensitive check
List of Entire Table - Case Senzitive check “=Back
checks:

Dielete |

Yerification methods: * By position

= By content

ok Cancel

Ready

WinRunner User’s Guide

ter 13, page 396

Creating Tests » Checking Databases

® By position: WinRunner checks the selection according to the location of the
items within the column.

¢ By content: WinRunner checks the selection according to the content of the
items, ignoring their location in the column.

Books

Specifying the Verification Type Online

WinRunner can verify the contents of a result set in several different ways. You #4 Find
can choose different verification types for different selections of cells.

Find
Again

® Case Sensitive (the default): WinRunner compares the text content of the
selection. Any difference in case or text content between the expected and 2 Help
actual data results in a mismatch.

® Case Insensitive: WinRunner compares the text content of the selection. Only ‘ ’

differences in text content between the expected and actual data result in a @l
mismatch. Top of
Chapter
® Numeric Content: WinRunner evaluates the selected data according to numeric
values. WinRunner recognizes, for example, that “2” and “2.00” are the same = Back
number.

®* Numeric Range: WinRunner compares the selected data against a numeric
range. Both the minimum and maximum values are any real number that you
specify. This comparison differs from text and numeric content verification in that
the actual database data is compared against the range that you defined and not
against the expected results.

WinRunner User’s Guide Chapter 13, page 397

Creating Tests » Checking Databases

® Case Sensitive Ignore Spaces: WinRunner checks the data in the field
according to case and content, ignoring differences in spaces. WinRunner
reports any differences in case or content as a mismatch.

® Case Insensitive Ignore Spaces: WinRunner checks the content in the cell Books

according to content, ignoring differences in case and spaces. WinRunner Online

reports only differences in content as a mismatch. & Find
Click OK to save your changes to both tabs of the Edit Check dialog box. The Find
dialog box closes and the Check Database dialog box is restored. Again

‘? Help

Editing the Expected Data
To edit the expected data in the result set, click the Edit Expected Data tab. If ‘ ’

you previously saved changes in the Select Checks tab, you can click Reload]
Table to reload the selections from the checklist. A WinRunner message Top of
prompts you to reload the saved data. Click Yes. Chapter
Note that if you previously saved changes to the Select Checks tab, and then “=Back

reopened the Edit Check dialog box, the table appears color coded in the Edit
Expected Data tab. The cells included in the check appear in blue on a white
background. The cells excluded from the check appear in green on a yellow
background.

WinRunner User’s Guide Chapter 13, page 398

Creating Tests » Checking Databases

Select Checks] {Edit Expecied Data 1
=
_I Flight From | Departure | To Arrival | Ariline | Price col 7 2] Books
1 [8961 LAX 10:31 AM POR 12:12 PM ua $121.60 Online
7 |8564 LA 02:07 PM POR 03:48 PM ua $121.20 .
T 7845 LAx 08:07 AM POR 09:48 AM ua $147.60 M Find
T 7826 LAX 09:19 AM POR 11:00 AM [IEY $124.80 Find
5 [7173 LAX 04:31 PM POR 06:12 PM ua $135.20 Again
T 7148 LAX 03:19 PM POR 05:00 PM ua $130.40
T 072 LAK 12:55 PM POR 02:36 PM [IEY $158.00 ﬁ? Hel p
T 6791 LAX 06:55 PM POR 08:36 PM ua $122.80
T 4302 LA 03:12 PH POR 05:12 PM TwahA $162.40 ‘ ’
W 4298 LA 12:48 PM POR 02:48 PM TwaA $168.50
E 4294 LAX 10:24 AM POR 12:24 PM Twa $162.30 TODEOf
12 (4290 LAX 08:00 AM POR 10:00 AM TwA $160.40 Ch apter
132730 LAX 05:43 PM POR 07:24 PM [IEY $130.80 F
? 1365 LAK 11:43 AM POR 01:24 PM [IEY $124.40 = = Back
<| o'
ITI Cancel I Help I
| Ready A

To edit the expected value of data in a cell, double-click inside the cell. A cursor
appears in the cell. Change the contents of the cell, as desired. Click OK to save
your changes to both tabs of the Edit Check dialog box. The dialog box closes
and the Check Database dialog box is restored.

WinRunner User’s Guide Chapter 13, page 399

Creating Tests » Checking Databases

Modifying a Database Checkpoint

You can make the following changes to an existing database checkpoint:

® make a checklist available to other users by saving it in a shared folder Books
Online
® change which database properties to check in an existing checklist
: . - . @ Find
® modify a query in an existing checklist
Find
Again
Note: In addition to modifying database checklists, you can also modify the 2 Help
expected results of database checkpoints. For more information, see Modifying i
the Expected Results of a Database Checkpoint on page 415. ‘ ’
[=]
Top of
. . . Chapter
Saving a Database Checklist in a Shared Folder
By default, checklists for database checkpoints are stored in the folder of the &=Back

current test. You can specify that a checklist be placed in a shared folder to enable
wider access, so that you can use a checklist in multiple tests.

The default folder in which WinRunner stores your shared checklists is
WinRunner installation folder/chklist. To choose a different folder, you can use the
Shared Checklists box in the Folders tab of the General Options dialog box. For
more information, see Chapter 36, Setting Global Testing Options.

WinRunner User’s Guide Chapter 13, page 400

Creating Tests » Checking Databases

To save a database checklist in a shared folder:

1 Choose Create > Edit Database Checklist.

The Open Checklist dialog box opens.

Books
Online
Open Checklist E
oK, I M Find
- Cancel | Find
list2. ol Help_| Again
Scope ﬁ? Help
* Test
 Shared ‘ ’
Enter Checklist Description: @
Checkligt for window "{clazs: "mercintdbvﬂ Top of
Chapter
fid = Back

2 Select a database checklist and click OK. Note that database checklists have
the .cdl extension, while GUI checklists have the .ckl extension. For information
on GUI checklists, see Modifying GUI Checklists on page 236.

The Open Checklist dialog box closes. The Edit Database Checklist dialog box
displays the selected database checklist.

WinRunner User’s Guide Chapter 13, page 401

Creating Tests » Checking Databases

3 Save the checklist by clicking Save As.

The Save Checklist dialog box opens.

Save Checklist E Books

Online

OF. I
Cancel | &h Find
list2 el Help | Find

Again

‘? Help

" Shared

Enter Checklist Description: ‘ ’

Checkligt for window "{clazs: "mercintdbvﬂ @

Top of
Jid Chapter

= Back

4 Under Scope, click Shared. Type in a name for the shared checklist. Click OK to
save the checklist and close the dialog box.

5 Click OK to close the Edit Database Checklist dialog box.

WinRunner User’s Guide Chapter 13, page 402

Creating Tests » Checking Databases

Editing Database Checklists

You can edit an existing database checklist. Note that a database checklist
includes only a reference to the msqr*.sql query file or the *.djs conversion file of
the database and the properties to be checked. It does not include the expected Books

results for the values of those properties. Online
, , , o @4 Find
You may want to edit a database checklist to change which properties in a
database to check. Find
Again
To edit an existing database checklist:
‘? Help

1 Choose Create > Edit Database Checklist. The Open Checklist dialog box

opens. ‘ ’

2 Alist of checklists for the current test is displayed. If you want to see checklists in]
a shared folder, click Shared. Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 403

Creating Tests » Checking Databases

For more information on sharing database checklists, see Saving a Database
Checklist in a Shared Folder on page 400.

Open Checklist E
Books
Enter Checklist Mame: oK I Online

cd

- Cancel | & Find
| n
list2 el Help |

Lists the available checklists.

Find
Again

Displays checklists created for the current test.

‘? Help

Enter Checklist Description: folder.
Checkligt for window "{clazs: "mercintdbvﬂ

L Displays checklists created in a shared ‘ ’

| Describes the selected checklist. @

j Top of
Chapter

= Back

3 Select a database checklist.

4 Click OK.

The Open Checklist dialog box closes. The Edit Database Checklist dialog box
opens and displays the selected checklist.

WinRunner User’s Guide Chapter 13, page 404

Creating Tests » Checking Databases

The Objects pane contains “Database check” and the name of the *.sqgl query
file or *.djs conversion file that will be included in the database checkpoint. The
Properties pane lists the different types of checks that can be performed on

databases. A check mark indicates that the item is selected and is included in
_ Books
the checkpoint. Online
ini| Edit Database Checklist - D:\Program Files\Mercury InteractiveA\WinRunner\tmp\nonamelic... [E3 M Find
= =] &’ LT Find
Open Save Az hd iy Select Al Clear All Again
[Objects |Properties 5
;\illzrg;e*oglf:qlquerv l M ame | Arguments | v cg._) Help
conversion file Di:rin ColumnsCourt =
W] 7, Content 2 ‘ ’
153, BowsCount B
5 =]
i Top of
S Chapter
= Back
QK I Cancel | Help |

& | You can use the Modify button to modify the database checkpoint, as described
Modify in Modifying a Query in an Existing Database Checklist on page 407.

In the Properties pane, you can edit your database checklist to include or
exclude the following types of checks:

WinRunner User’s Guide Chapter 13, page 405

Creating Tests » Checking Databases

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in Creating a
Default Check on a Database on page 363.

RowsCount: Counts the number of rows in the result set. gﬁﬁﬁz

5 Save the checklist in one of the following ways: #4 Find
® To save the checklist under its existing name, click OK to close the Edit Find
Database Checklist dialog box. A WinRunner message prompts you to Again

overwrite the existing checklist. Click OK. 5
& Help

] | ® To save the checklist under a different name, click the Save As button. The
Save As Save Checklist dialog box opens. Type a new name or use the default name. ‘ ’
Click OK. Note that if you do not click the Save As button, WinRunner

automatically saves the checklist under its current name when you click OK =]

to close the Edit Database Checklist dialog box. ot
A new database checkpoint statement is not inserted in your test script. “=Back

Note: Before you run your test in Verify run mode, you must update the expected
results to match the changes you made in the checklist. To update the expected
results, run your test in Update run mode. For more information on running a test
in Update run mode, see WinRunner Test Run Modes on page 712.

WinRunner User’s Guide Chapter 13, page 406

Creating Tests » Checking Databases

Modifying a Query in an Existing Database Checklist

You can modify a query in an existing database checklist from the Edit Database
Checklist dialog box. You may want to do this if, for example, you move the
database to a new location on the network. You must use the same tool to modify Books

. Online
the query that you used to create it.

@& Find

Modifying a Query Created with ODBC/Microsoft Query
You can modify a query created with ODBC/Microsoft Query from the Edit AF”;?”
Database Checklist dialog box. ¢

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 13, page 407

Creating Tests » Checking Databases

To modify a database checkpoint created with ODBC/Microsoft Query:
1 Choose Create > Edit Database Checklist. The Open Checklist dialog box

opens.
2 Alist of checklists for the current test is displayed. If you want to see checklists in gﬁﬁﬁz
a shared folder, click Shared.
For more information on sharing database checklists, see Saving a Database &4 Find
Checklist in a Shared Folder on page 400. Find
Again
Open Checklist
‘? Help
Lists the available checklists. @
Top of
Displays checklists created for the current test. Chapter
L = Back
Displays checklists created in a shared

Enter Checklist Dezcription; folder.
Checklist for window "{class: "mercintdbv;l

I Describes the selected checklist.

[

3 Select a database checklist.

4 Click OK.

WinRunner User’s Guide Chapter 13, page 408

Creating Tests » Checking Databases

The Open Checklist dialog box closes. The Edit Database Checklist dialog box
opens and displays the selected checklist.

The Objects pane contains “Database check” and the name of the *.sql query

file that will be included in the database checkpoint. The Properties pane lists Books
the different types of checks that can be performed on databases. A check mark Online
indicates that the item is selected and is included in the checkpoint. To modify # Find
the properties to check, see Editing Database Checklists on page 403.
Find
ini| Edit Database Checklist - D:\Program Files\Mercury InteractiveA\WinRunner\tmp\nonamelic... [E3 Again
= (=] & LT 2 Help
Open Save Az hd iy Select Al Clear All @
[Objects |Properties 5 ‘ ’
Mame | Argumentz | v=
17, CalumnsCaunt =
I, Cantent 2 T @ ‘
z — op o
153, BowsCount B Chapter
l—.ﬂ
o = Back
QK I Cancel Help

WinRunner User’s Guide Chapter 13, page 409

Creating Tests * Checking Databases

& 5 In the Objects column, highlight the name of the query file or the conversion file,
Modify | and click Modify.

The Modify ODBC Query dialog box opens.
Books
Modify ODBC Query E Online
Connection String: Databaze.. | M Find
DEQ=D:"Frogram Files\Mercury [nteractive'infin Microscft Duery q
M | Fin
Again
SOL:
P Help
SELELCT Flights. Flight_Mumber FROM Flights Fli °
Top of
Chapter
ak. I Cancel | Help |
= Back

6 Modify the ODBC query by changing the connection string and/or the SQL
statement. You can click Database to open the ODBC Select Data Source dialog
box, in which you can select a *.dsn file, which inserts the connection string in
the box. You can click Microsoft Query to open Microsoft Query.

7 Click OK to return to the Edit Checklist dialog box.
8 Click OK to close the Edit Checklist dialog box.

WinRunner User’s Guide Chapter 13, page 410

Creating Tests » Checking Databases

Note: You must run all tests that use this checklist in Update mode before you

run them in Verify mode.
Books
Online
Modifying a Query Created with Data Junction 4 Find
You can modify a Data Junction conversion file used in a database checkpoint Find
directly in Data Junction. To see the pathname of the conversion file, follow the Again
instructions below.
‘? Help
To see the pathname of a Data Junction conversion file in a database ‘ ’
checkpoint:
1 Choose Create > Edit Database Checklist. The Open Checklist dialog box . =] .
opo
opens. Chgpter
2 Alist of checklists for the current test is displayed. If you want to see checklists in &= Back
a shared folder, click Shared.

WinRunner User’s Guide Chapter 13, page 411

Creating Tests » Checking Databases

For more information on sharing database checklists, see Saving a Database
Checklist in a Shared Folder on page 400.

Open Checklist E
Books
Enter Checklist Mame: oK I Online

cd

- Cancel | & Find
| n
list2 el Help |

Lists the available checklists.

Find
Again

Displays checklists created for the current test.

‘? Help

Enter Checklist Description: folder.
Checkligt for window "{clazs: "mercintdbvﬂ

L Displays checklists created in a shared ‘ ’

| Describes the selected checklist. @

j Top of
Chapter

= Back

3 Select a database checklist.

4 Click OK.

The Open Checklist dialog box closes. The Edit Database Checklist dialog box
opens and displays the selected checklist.

WinRunner User’s Guide Chapter 13, page 412

Creating Tests » Checking Databases

The Objects pane contains “Database check” and the name of the *.djs
conversion file that will be included in the database checkpoint. The Properties
pane lists the different types of checks that can be performed on databases. A

check mark indicates that the item is selected and is included in the checkpoint. el
. . - . 00KS
To modify the properties to check, see Editing Database Checklists on page Online
403.
#4 Find
ini| Edit Database Checklist - D:\Program Files\Mercury InteractiveA\WinRunner\tmp\nonamelic... [E3 J
_— Fin
= =] LT Again
Open Save Az hd iy Select Al Clear All
[Objects [Properties &5 ﬁ? Help
i Mame | Argumentz | v—
5, ColumnsCount = ‘ ’
;_'-,':, Content
17, RowsCaunt @l
Top of
Chapter
‘= Back
QK I Cancel | Help |

& | 5 In the Objects column, highlight the name of the conversion file, and click
bl Modify.

WinRunner User’s Guide Chapter 13, page 413

Creating Tests » Checking Databases

The program displays a message to use Data Junction to modify the conversion
file and the pathname of the conversion file.

6 Click OK to close the message and return to the Edit Checklist dialog box.
7 Click OK to close the Edit Checklist dialog box. ooks
8 Modify the conversion file directly in Data Junction.]
#4 Find
Finc_i
Note: You must run all tests that use this checklist in Update mode before you Again
run them in Verify mode. 2 Help
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 13, page 414

Creating Tests » Checking Databases

Modifying the Expected Results of a Database Checkpoint

You can modify the expected results of an existing database checkpoint by
changing the expected value of a property check within the checkpoint. You can

make this change before or after you run your test script. gﬁﬁﬁz

To modify the expected results for an existing database checkpoint: & Find
i Choose Tools > Test Results or click Test Results. Find
: . Agai

The WinRunner Test Results window opens. gan

‘? Help

B3 winRunner Test Results - [Noname12] [_ (O] x|

File Options Tools wWindow

4

ﬁ‘l@l |exp

i) nonamel2 t]'_ﬂTest Reszult ak. Topﬁof
I: +% Total number of bitmap checkpoints: i] Chapter
+% Total number of GUI checkpoints: a
‘ﬂ General Information = Back
Line Ewvent Detailz| Result Tirne: =
22 |start databaze capture|dbvfl |- 2804945628
22 |end databaze capture |dbwfl (0K 28R494:56:29 |+

I I v

2 In the Results box, choose your expected results directory (by default, “exp”).

WinRunner User’s Guide Chapter 13, page 415

Creating Tests » Checking Databases

3 In the test log, locate the database checkpoint by looking for entries that list “end
database capture” in the Event column. Note that the line number in the test
script appears in the Line column of the test log.

Books
Online

El Note: You can use the Show TSL button to open the test script to the
highlighted line number. #h Find

Find
Again

%l 4 Double-click the desired “end database capture” entry, or click this entry and

&
click Display. & Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 13, page 416

Creating Tests » Checking Databases

The Database Checkpoint Results dialog box opens.

Lj|Database Checkpoint Results E
[Objects [Properties B Books
Name of *.sql query M ame | frguments | Evpected v [Actualvalue | g Online
file or *.djs T L=k
conversion file [7:, Content <comples v...
% 4 Find
E Find
i Again
33:. ‘? Help
- 4)
QK I Cancel | Help | (;rf?gpct);r
= Back

Eiy 5 Select the property check whose expected results you want to modify. Click the
Edit expected value button. In the Expected Value column, modify the value,
as desired. Click OK to close the dialog box.

WinRunner User’s Guide Chapter 13, page 417

Creating Tests » Checking Databases

Note: You can also modify the expected value of a property check while creating
a database checkpoint. For more information, see Creating a Custom Check

on a Database on page 368. Books
Online

@& Find

Find
Again

Note: You can also update the expected value of a database checkpoint to the
actual value after a test run. For more information, see Updating the Expected
Results of a Checkpoint on page 779.

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 13, page 418

Creating Tests » Checking Databases

Parameterizing Database Checkpoints

When you create a database checkpoint using ODBC (Microsoft Query), you can
add parameters to an SQL statement to parameterize your checkpoint. This is

useful if you want to create a database checkpoint with a query in which the SQL
statement defining your query changes. For example, suppose you are working
with the sample Flight application, and you want to select all the records of flights #4 Find
departing from Denver on Monday when you create the query. You might also Find

want to use an identical query to check all the flights departing from San Again
Francisco on Tuesday. Instead of creating a new query or rewriting the SQL
statement in the existing query to reflect the changes in day of the week or

departure points, you can parameterize the SQL statement so that you can use a ‘ ’
parameter for the departure value. You can replace the parameter with either

Books
Online

‘? Help

value: “Denver,” or “San Francisco.” Similarly, you can use a parameter for the [O]
day of the week value, and replace the parameter with either “Monday” or gﬁgp‘t’ér
Tuesday.”

= Back

WinRunner User’s Guide Chapter 13, page 419

Creating Tests » Checking Databases

Understanding Parameterized Queries

A parameterized query is a query in which at least one of the fields of the WHERE
clause is parameterized, i.e., the value of the field is specified by a question mark
symbol (?). For example, the following SQL statement is based on a query on the

database in the sample Flight Reservation application: 553
0O0KS
SELECT Flights.Departure, Flights.Flight Number, Flights.Day_Of Week Online
FROM Flights Flights & Find
WHERE (Flights.Departure=?) AND (Flights.Day_Of Week="?)
Find
. . . Again
® SELECT defines the columns to include in the query.
. ‘? Help
®* FROM specifies the path of the database.
* WHERE (optional) specifies the conditions, or filters to use in the query. ‘ ’
® Departure is the parameter that represents the departure point of a flight. =
* Day_ Of Week is the parameter that represents the day of the week of a flight. gﬁgp?ér
In order to execute a parameterized query, you must specify the values for the = Back

parameters.

Note for Microsoft Query users: When you use Microsoft Query to create a
query, the parameters are specified by brackets. When Microsoft Query generates
an SQL statement, the bracket symbols are replaced by a question mark symbol
(?). You can click the SQL button in Microsoft Query to view the SQL statement
which will be generated, based on the criteria you add to your query.

WinRunner User’s Guide Chapter 13, page 420

Creating Tests » Checking Databases

Creating a Parameterized Database Checkpoint

You use a parameterized query to create a parameterized checkpoint. When you
create a database checkpoint, you insert a db_check statement into your test

script. When you parameterize the SQL statement in your checkpoint, the Bolqks
db_check function has a fourth, optional, argument: the parameter_array Online
argument. A statement similar to the following is inserted into your test script: & Find
db_check("listl.cdl”, "dbvfl", NO_LIMIT, dbvfl_params); Find
Again
The parameter_array argument will contain the values to substitute for the D Help
parameters in the parameterized checkpoint. :
WinRunner cannot capture the expected result set when you record your test. ‘ ’
Unlike regular database checkpoints, recording a parameterized checkpoint @l

requires additional steps to capture the expected results set. Therefore, you must Top of
use array statements to add the values to substitute for the parameters. The array ~ L.S13Pte"
statements could be similar to the following: & Back

dbvfl_params[1] = "Denver";
dbvfl_params[2] = "Monday";

You insert the array statements before the db_check statement in your test

script. You must run the test in Update mode once to capture the expected
results set before you run your test in Verify mode.

WinRunner User’s Guide Chapter 13, page 421

Creating Tests » Checking Databases

To insert a parameterized SQL statement into a db_check statement:

1 Create the parameterized SQL statement using one of the following methods:

® |n Microsoft Query, once you have defined your query, add criteria whose
values are a set of square brackets ([]). When you are done, click gﬁﬁﬁz
File > Exit and return to WinRunner. It may take several seconds to return
to WinRunner. #4 Find
® If you are working with ODBC, enter a parameterized SQL statement, with a Find
guestion mark symbol (?) in place of each parameter, in the Database Again
Checkpoint wizard. For additional information, see Specifying an SQL
‘? Help
Statement on page 384.
2 Finish creating the database checkpoint. ‘ ’
® If you are creating a default database checkpoint, WinRunner captures the @l
database query. Top of
. . Chapter
® If you are creating a custom database checkpoint, the Check Database
dialog box opens. You can select which checks to perform on the database. & Back

For additional information, see Creating a Custom Check on a Database
Using ODBC or Microsoft Query on page 369. Once you close the Check
Database dialog box, WinRunner captures the database query.

WinRunner User’s Guide Chapter 13, page 422

Creating Tests » Checking Databases

Note: If you are creating a custom database checkpoint, then when you try to
close the Check Database dialog box, you are prompted with the following
message: “The expected value of one or more selected checks is not valid.
Continuing might cause these checks to fail. Do you wish to modify your Books
selection?” Click No. (This message appears because <Cannot Capture> Online
appears under the Expected Value column in the dialog box. In fact, WinRunner | 5§ ring
only finishes capturing the database query once you specify a value and run

your test in Update mode.) For additional information on messages in the Check AFinC_i
Database dialog box, see 7Messages in the Database Checkpoint Dialog gan
Boxes on page 377. 2 Help

3 A message box prompts you with instructions, which are also described below.

Click OK to close the message box. [=]
Top of

Chapter

The WinRunner window is restored and a db_check statement similar to the
following is inserted into your test script.

db_check("list1.cdl", "dbvfl", NO_LIMIT, dbvfl_params);

= Back

WinRunner User’s Guide Chapter 13, page 423

Creating Tests » Checking Databases

4 Create an array to provide values for the variables in the SQL statement, and
insert these statements above the db_check statement. For example, you could
insert the following lines in your test script:

dbvfl_params[1] = "Denver"; Books
dbvfl_params[2] = "Monday"; Online
@ Find

The array replaces the question marks (?) in the SQL statement on page 420
with the new values. Follow the guidelines below for adding an array in TSL to Find
parameterize your SQL statements. Again

5 Run your test in Update mode to update the SQL statement with these values. 2 Help

After you have completed this procedure, you can run your test in Verify mode ‘ ’
with the SQL statement. To change the parameters in the SQL statement, you

modify the arrays in TSL. =]
Top of

Chapter

= Back

WinRunner User’s Guide Chapter 13, page 424

Creating Tests » Checking Databases

Guidelines for Parameterizing SQL Statements

Follow the guidelines below when parameterizing SQL statements in db_check

statements:
Books
¢ |f the column is numeric, the parameter value can be either a text string or a Online
number.
@ Find
® |f the column is textual and the parameter value is textual, it can be a simple text
string. AFg;‘i’n
® If the column is textual and the parameter value is a number, it should be P
enclosed in simple quotes (' '), e.g. “100". Otherwise the user will receive a ¢ Help

syntax error. ‘ ’

® Special syntax is required for dates, times, and time stamps, as shown below:

[B]
Date {d '1999-07-11'} gggpg;r
Time {t'19:59:27'}
= Back
Time Stamp {ts '1999-07-11 19:59:27'}

Note: The date and time format may change from one ODBC driver to another.

WinRunner User’s Guide Chapter 13, page 425

Creating Tests » Checking Databases

Using TSL Functions to Work with a Database

WinRunner provides several TSL functions (db_) that enable you to work with

databases.
You can use the Function Generator to insert the database functions in your test Books
script, or you can manually program statements that use these functions. For Online
information about working with the Function Generator, see Chapter 21, &k Find
Generating Functions. For more information about these functions, refer to the
. Find
TSL Online Reference. Again
. . 2
Checking Data in a Database ¢ Help
You use the db_check function to create a database checkpoint with ODBC ‘ ’
(Microsoft Query) and Data Junction. For information on this function, see
Creating a Default Check on a Database on page 363 and Creating a Custom N =] .
. . .. opo
Check on a Database on page 368. For information on parameterizing Ché’pter
db_check statements, see Parameterizing Database Checkpoints on page
419 = Back

WinRunner User’s Guide Chapter 13, page 426

Creating Tests » Checking Databases

TSL Functions for Working with ODBC (Microsoft Query)
When you work with ODBC (Microsoft Query), you must perform the following

steps in the following order:
Books
1 Connect to the database. Online
2 Execute a query and create a result set based an SQL statement. (This step is & Find
optional. You must perform this step only if you do not create and execute a
. . Find
guery using Microsoft Query.) Again
3 Retrieve information from the database.
‘? Help
4 Disconnect from the database.
The TSL functions for performing these steps are described below: ‘ ’
[B]
1 Connecting to a Database Top of
Chapter
The db_connect function creates a new database session and establishes a
connection to an ODBC database. This function has the following syntax: “=Back

db_connect (session_name, connection_string);

The session_name is the logical name of the database session. The
connection_string is the connection parameters to the ODBC database.

WinRunner User’s Guide Chapter 13, page 427

Creating Tests » Checking Databases

2 Executing a Query and Creating a Result Set Based on an SQL Statement

The db_execute_query function executes the query based on the SQL
statement and creates a record set. This function has the following syntax:

Books

db_execute_query (session_name, SQL, record_number); Online

The session_name is the logical name of the database session. The SQL is the #4 Find
SQL statement. The record_number is an out parameter returning the number of

records in the result set. AFg;?n
3 Retrieving Information from the Database 5
& Help
Returning the Value of a Single Field in the Database
The db_get_field_value function returns the value of a single field in the ‘ ’
database. This function has the following syntax: @l
db_get_field_value (session_name, row_index, column); gﬁgp‘t’ér

The session_name is the logical name of the database session. The row_index & Back
is the numeric index of the row. (The first row is always numbered “0”.) The
column is the name of the field in the column or the numeric index of the column
within the database. (The first row is always numbered “0”.)

WinRunner User’s Guide Chapter 13, page 428

Creating Tests » Checking Databases

Returning the Content and Number of Column Headers

The db_get_headers function returns the number of column headers in a query
and the content of the column headers, concatenated and delimited by tabs.
This function has the following syntax:

Books
Online

@& Find

db_get_headers (session_name, header_count, header_content);

The session_name is the logical name of the database session. The
header_count is the number of column headers in the query. The AF”;Ci’n
header_content is the column headers, concatenated and delimited by tabs. 9

&
Returning the Row Content & Help

The db_get_row function returns the content of the row, concatenated and ‘ ’
delimited by tabs. This function has the following syntax:

db_get_row (session_name, row_index, row_content); TOIEIO ¢

Chapter

The session_name is the logical name of the database session. The row_index
is the numeric index of the row. (The first row is always numbered “0”.) The
row_content is the row content as a concatenation of the fields values, delimited
by tabs.

= Back

WinRunner User’s Guide Chapter 13, page 429

Creating Tests » Checking Databases

Writing the Record Set into a Text File

The db_write_records function writes the record set into a text file delimited by
tabs. This function has the following syntax:

db_write_records (session_name, output_file [, headers Books
. Online

[, record_limit]]);
4 Find

The session_name is the logical name of the database session. The output_file
is the name of the text file in which the record set is written. The headers are an Find

optional Boolean parameter that will include or exclude the column headers from Again
the record set written into the text file. The record_limit is the maximum number | & 1
of records in the record set to be written into the text file. A value of NO_LIMIT
(the default value) indicates there is no maximum limit to the number of records ‘ ’
in the record set.

=]
Returning the Last Error Message of the Last Operation Top of
. Chapt
The db_get_last_error function returns the last error message of the last ODBC e
or Data Junction operation. This function has the following syntax: &= Back

db_get_last_error (session_name, error);

The session_name is the logical name of the database session. The error is the
error message.

WinRunner User’s Guide Chapter 13, page 430

Creating Tests » Checking Databases

4 Disconnecting from a Database

The db_disconnect function disconnects WinRunner from the database and

ends the database session. This function has the following syntax:

Books
db_disconnect (session_name); Online
The session_name is the logical name of the database session. &4 Find

Find
. . . . Agai
TSL Functions for Working with Data Junction gam
You can use the following two functions when working with Data Junction. ? Help
Running a Data Junction Export File ‘ ’
The db_dj_convert function runs a Data Junction export file (.djs file). This =
function has the following syntax: Top of
Chapter
db_dj_convert (djs_file [, output_file [, headers
[, record_limit]17]11); e Back

The djs_file is the Data Junction export file. The output_file is an optional
parameter to override the name of the target file. The headers are an optional
Boolean parameter that will include or exclude the column headers from the
Data Junction export file. The record_limit is the maximum number of records
that will be converted.

WinRunner User’s Guide Chapter 13, page 431

Creating Tests » Checking Databases

Returning the Last Error Message of the Last Operation

The db_get_last_error function returns the last error message of the last ODBC
or Data Junction operation. This function has the following syntax:

db_get_last_error (session_name, error); golqks
niline

The session_name is ignored when working with Data Junction. The erroris the | 84 rind
error message.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 13, page 432

Creating Tests

Checking Bitmaps

WinRunner enables you to compare two versions of an application being tested

by matching captured bitmaps. This is particularly useful for checking non-GUI Books

areas of your application, such as drawings or graphs. Online

This chapter describes: 4 Find

® Checking Window and Object Bitmaps AFg;?n
® Checking Area Bitmaps

o b ‘? Help

[E]

Top of

Chapter

= Back

WinRunner User’s Guide Chapter 14, page 433

Creating Tests ¢ Checking Bitmaps

About Checking Bitmaps

You can check an object, a window, or an area of a screen in your application as
a bitmap. While creating a test, you indicate what you want to check. WinRunner
captures the specified bitmap, stores it in the expected results folder (exp) of the
test, and inserts a checkpoint in the test script. When you run the test, WinRunner
compares the bitmap currently displayed in the application being tested with the #4 Find
expected bitmap stored earlier. In the event of a mismatch, WinRunner captures Find
the current actual bitmap and generates a difference bitmap. By comparing the Again
three bitmaps (expected, actual, and difference), you can identify the nature of the
discrepancy.

Books
Online

‘? Help

Suppose, for example, your application includes a graph that displays database ‘ ’

statistics. You could capture a bitmap of the graph in order to compare it with a @l
bitmap of the graph from a different version of your application. If there is a Top of
difference between the graph captured for expected results and the one captured ~ |_S13Pte!
during the test run, WinRunner generates a bitmap that shows the difference, & Back
pixel by pixel.

WinRunner User’s Guide Chapter 14, page 434

Creating Tests ¢ Checking Bitmaps

I Img1.bmp (expected) [EE]

Agent: Linus

Tickets

L Inthe expected graph, captured when the test

was created, 25 tickets were sold. Books

BIALS WEOES HIES 12725156 Online
BOES RBLOS S

Total Tickets Sold: 25

@& Find

4 Imgl.bmp (actual) CIOX :lnd
gain
Agent: Linus
‘? Help

Tickets
ic] 4

| Inthe actual graph, captured during the test ‘ ’

run, 27 tickets were sold. The last column is

T e o taller because of the larger quantity of tickets. @
BIIRIO5 BB LG5 D355
Total Tickets Sold: 27 Top of
Chapter
& Back

A Img1_d.bmp (difference) 1O

The difference bitmap shows where the two
graphs diverged: in the height of the last
s column, and in the number of tickets sold.

WinRunner User’s ide apter 14, page 435

Creating Tests ¢ Checking Bitmaps

When working in Context Sensitive mode, you can capture a bitmap of a window,
object, or of a specified area of a screen. WinRunner inserts a checkpoint in the
test script in the form of either a win_check_bitmap or obj_check_bitmap
statement.

Books
Online

To check a bitmap, you start by choosing Create > Bitmap Checkpoint. To capture
a window or another GUI object, you click it with the mouse. To capture an area | #& Find
bitmap, you mark the area to be checked using a crosshairs mouse pointer.

Find
Again

Note that when you record a test in Analog mode, you should press the CHECK
BITMAP OF WINDOW softkey or the CHECK BITMAP OF SCREEN AREA softkey to create | @ e
a bitmap checkpoint. This prevents WinRunner from recording extraneous mouse
movements. If you are programming a test, you can also use the Analog function ‘ ’
check_window to check a bitmap. For more information refer to the TSL Online
Reference. [E

Top of
Chapter

If the name of a window or object varies each time you run a test, you can define
aregular expression in the GUI Map Editor. This instructs WinRunner to ignore all |4 Back
or part of the name. For more information on using regular expressions in the GUI
Map Editor, see Chapter 5, Editing the GUI Map.

WinRunner User’s Guide Chapter 14, page 436

Creating Tests ¢ Checking Bitmaps

Note for XRunner users: You cannot use bitmap checkpoints created in

XRunner when you run a test script in WinRunner. You must recreate these

checkpoints in WinRunner. For information on using GUI maps created in Books

XRunner in WinRunner test scripts, see Chapter 6, Configuring the GUI Map. Online

For information on using XRunner test scripts recorded in Analog mode, see # Eind

Chapter 8, Creating Tests. Forinformation on using GUI checkpoints created in

XRunner, see Chapter 9, Checking GUI Objects. /fg;ciin
‘? Help

Note about data-driven testing: In order to use bitmap checkpoints in data- ‘ ’

driven tests, you must parameterize the statements in your test script that =

contain them. For information on using bitmap checkpoints in data-driven tests, (;rf?gpct);r

see Using Data-Driven Checkpoints and Bitmap Synchronization Points on

page 521. ¢ Back

WinRunner User’s Guide Chapter 14, page 437

Creating Tests ¢ Checking Bitmaps

Checking Window and Object Bitmaps

You can capture a bitmap of any window or object in your application by pointing

to it. The method for capturing objects and for capturing windows is identical. You ’
start by choosing Create > Bitmap Checkpoint > For Object/Window. As you gﬁﬁnz
pass the mouse pointer over the windows of your application, objects and
windows flash. To capture a window bitmap, you click the window’s title bar. To #4 Find
capture an object within a window as a bitmap, you click the object itself. Find
Again
Note that during recording, when you capture an object in a window that is not the
active window, WinRunner automatically generates a set_window statement. ? Help
To capture a window or object as a bitmap: ‘ ’
ﬂl 1 Choose Create > Bitmap Checkpoint > For Object/Window or click the @l
Bitmap Checkpoint for Object/Window button on the User toolbar. Top of
Alternatively, if you are recording in Analog mode, press the CHECK BITMAP OF Chapter
OBJECT/WINDOW softkey. &Back

The WinRunner window is minimized, the mouse pointer becomes a pointing
hand, and a help window opens.

2 Point to the object or window and click it. WinRunner captures the bitmap and
generates a win_check_bitmap or obj_check_bitmap statement in the script.

The TSL statement generated for a window bitmap has the following syntax:

win_check_bitmap (object, bitmap, time);

WinRunner User’s Guide Chapter 14, page 438

Creating Tests ¢ Checking Bitmaps

For an object bitmap, the syntax is:

obj_check_bitmap (object, bitmap, time);

For example, when you click the title bar of the main window of the Flight Books
. Lo . . . Online
Reservation application, the resulting statement might be:
win_check_bitmap ("Flight Reservation"”, "Img2", 1); ¢4 Find
Find
However, if you click the Date of Flight box in the same window, the statement Again
might be:

g ‘? Help
obj_check_bitmap ("Date of Flight:", "Img1", 1); ‘ ’
For more information on the win_check_bitmap and obj_check_bitmap
functions, refer to the TSL Online Reference. To%lof

Chapter
= Back

WinRunner User’s Guide Chapter 14, page 439

Creating Tests ¢ Checking Bitmaps

Note: The execution of the win_check_bitmap and obj_check_bitmap

functions is affected by the current values specified for the delay_msec,

timeout_msec and min_diff testing options. For more information on these Books

testing options and how to modify them, see Chapter 37, Setting Testing Online

Options from a Test Script. You can also set the corresponding Delay for # Eind

Window Synchronization, Timeout for Checkpoints and CS Statements,

and Threshold for Difference between Bitmaps testing options globally using Find

the General Options dialog box. For more information, see Chapter 36, Setting Again

Global Testing Options. 2 Help

[B]

Top of
Chapter
= Back

WinRunner User’s Guide Chapter 14, page 440

Creating Tests ¢ Checking Bitmaps

Checking Area Bitmaps

You can define any rectangular area of the screen and capture it as a bitmap for
comparison. The area can be any size: it can be part of a single window, or it can
intersect several windows. The rectangle is identified by the coordinates of its

upper left and lower right corners, relative to the upper left corner of the window
in which the area is located. If the area intersects several windows or is part of a #4 Find

Books
Online

window with no title (for example, a popup window), its coordinates are relative to Find
the entire screen (the root window). Again
To capture an area of the screen as a bitmap: ? Help

!I 1 Choose Create > Bitmap Checkpoint > For Screen Area or click the Bitmap ‘ ’
Checkpoint for Screen Area button. Alternatively, if you are recording in Analog

mode, press the CHECK BITMAP OF SCREEN AREA softkey. E]

. . . L. . . Top of
The WinRunner window is minimized, the mouse pointer becomes a crosshairs Chapter

pointer, and a help window opens.

= Back

2 Mark the area to be captured: press the left mouse button and drag the mouse
pointer until a rectangle encloses the area; then release the mouse button.

3 Press the right mouse button to complete the operation. WinRunner captures the
area and generates a win_check_bitmap statement in your script.

WinRunner User’s Guide Chapter 14, page 441

Creating Tests ¢ Checking Bitmaps

Note: Execution of the win_check_bitmap function is affected by the current

settings specified for the delay_msec, timeout_msec and min_diff test options.
For more information on these testing options and how to modify them, see Books
Chapter 37, Setting Testing Options from a Test Script. You can also set the Online
corresponding Delay for Window Synchronization, Timeout for Checkpoints # Eind
and CS Statements, and Threshold for Difference between Bitmaps testing
options globally using the General Options dialog box. For more information, see Find
Chapter 36, Setting Global Testing Options. Again

‘? Help
The win_check_bitmap statement for an area of the screen has the following ‘ ’
syntax:

[B]

win_check_bitmap (window, bitmap, time, x, y, width, height); gﬁgp?ér
For example, when you define an area to check in the Flight Reservation & Back

application, the resulting statement might be:

win_check_bitmap ("Flight Reservation”, "Img3", 1, 9, 159, 104, 88);

For more information on win_check_bitmap, refer to the TSL Online Reference.

WinRunner User’s Guide Chapter 14, page 442

Creating Tests

Checking Text

WinRunner enables you to read and check text in a GUI object or in any area of

your application. Books
Online
This chapter describes:
@4 Find
® Reading Text
Find
® Searching for Text Again
® Comparing Text 2 Help
® Teaching Fonts to WinRunner ‘ ’
[=]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 15, page 443

Creating Tests « Checking Text

About Checking Text

You can use text checkpoints in your test scripts to read and check text in GUI

objects and in areas of the screen. While creating a test you point to an object or ’
a window containing text. WinRunner reads the text and writes a TSL statement gﬁﬁnz
to the test script. You may then add simple programming elements to your test
scripts to verify the contents of the text. #4 Find
. . Find
You can use a text checkpoint to: Again
® read text from a GUI object or window in your application, using obj_get_text 2 Help
and win_get_text
® search for text in an object or window, using win_find_text and obj_find_text ‘ ’
® move the mouse pointer to text in an object or window, using =
obj_move_locator_text and win_move_locator_text Top of
Chapter
® click on text in an object or window, using obj_click_on_text and
win_click_on_text @ Back

® compare two strings, using compare_text

WinRunner User’s Guide Chapter 15, page 444

Creating Tests « Checking Text

Note that you should use a text checkpoint on a GUI object only when a GUI
checkpoint cannot be used to check the text. For example, suppose you want to
check the text on a custom graph object. Since this custom object cannot be

mapped to a standard object class (such as pushbutton, list, or menu),

WinRunner associates it with the general object class. A GUI checkpoint for gﬁﬁﬁz

such an object can check only the object’s width, height, x- and y- coordinates,

and whether the object is enabled or focused. It cannot check the text in the 4 Find

object. To do so, you must create a text checkpoint. —

The following script segment uses the win_get_text function to read text in a Agan

graph in a Flight Reservation application. 2 Help

set_window ("Graph", 10); ‘ ’

win_get_text ("Graph", text);

if (text=="Total Tickets Sold: 26") =
report_msg ("The total is correct.”); Top of

Chapter
WinRunner can read the visible text from the screen in nearly any situation. & Back
Usually this process is automatic. In certain situations, however, WinRunner

must first learn the fonts used by your application. Use the Learn Fonts utility to
teach WinRunner the fonts. An explanation of when and how to perform this
procedure appears in Teaching Fonts to WinRunner on page 459.

WinRunner User’s Guide Chapter 15, page 445

Creating Tests « Checking Text

Reading Text

You can read the entire text contents of any GUI object or window in your
application, or the text in a specified area of the screen. You read text using the

win_get_text, obj_get_text, and get_text functions. These functions can be gﬁﬁﬁz
generated automatically, using a Create > Get Text command, or manually, by

programming. In both cases, the read text is assigned to an output variable. #A Find
To read all the text in a GUI object, you choose Create > Get Text > From AFg;?n

Object/Window and click an object with the mouse pointer. To read the text in an
area of an object or window, you choose Create > Get Text > From Screen Area ? Help

and then use a crosshairs pointer to enclose the text in a rectangle. ‘ ’
In most cases, WinRunner can identify the text on GUI objects automatically.
However, if you try to read text and the comment “#no text was found” is inserted To%lo ‘

into the test script, this means WinRunner was unable to identify your application Chapter
font. To enable WinRunner to identify text, you must teach WinRunner your
application fonts. For more information, see Teaching Fonts to WinRunner on
page 459.

= Back

WinRunner User’s Guide Chapter 15, page 446

Creating Tests « Checking Text

Reading All the Text in a Window or an Object

You can read all the visible text in a window or other object using win_get_text

or obj_get_text.
Books
To read all the visible text in a window or an object: Online
@I 1 Choose Create > Get Text > From Object/Window or click the & Find
Get Text from Object/Window button on the User toolbar. Alternatively, if you :
are recording in Analog mode, press the GET TEXT FROM OBJECT/WINDOW softkey. AFg;‘i’n
WinRunner is minimized, the mouse pointer becomes a pointing hand, and a P
Help window opens. g Help
2 Click the window or object. WinRunner captures the text in the object and ‘ ’
generates a win_get_text or obj_get_text statement.
[B]
In the case of a window, this statement has the following syntax: gﬁgp‘t’ér
win_get_text (window, text); &Back

The window is the name of the window. The text is an output variable that holds
all of the text displayed in the window. To make your script easier to read, this
text is inserted into the script as a comment when the function is recorded.

For example, if you choose Create > Get Text > From Object/Window and click
on the Windows Clock application, a statement similar to the following is recorded
in your test script:

WinRunner User’s Guide Chapter 15, page 447

Creating Tests « Checking Text

Clock settings 10:40:46 AM 8/8/95
win_get_text("Clock", text);

In the case of an object other than a window, the syntax is as follows:

Boqks
obj_get_text (object, text); Online
@ Find
The parameters of obj_get_text are identical to those of win_get_text.
Find
Again
Note: When the WebTest add-in is loaded and a Web object is selected, @ Help

WinRunner generates a web_frame_get_text or web_obj_get_text statement
in your test script. For more information, refer to the WebTest User’s Guide and ‘ ’
the TSL Online Reference. =

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 15, page 448

Creating Tests « Checking Text

Reading the Text from an Area of an Object or a Window

The win_get_text and obj_get_text functions can be used to read text from a

specified area of a window or other GUI object.
Books
To read the text from an area of a window or an object: Online
ﬁl 1 Choose Create > Get Text > From Screen Area or click the Get Text from & Find
Screen Area button on the User toolbar. Alternatively, if you are recording in
Analog mode, press the GET TEXT FROM SCREEN AREA softkey. AFg;‘i’n
WinRunner is minimized and the recording of mouse and keyboard input stops.
The mouse pointer becomes a crosshairs pointer. ? Help
2 Use the crosshairs pointer to enclose the text to be read within a rectangle. ‘ ’
Move the mouse pointer to one corner of the text you want to capture. Press and
hold down the left mouse button. Drag the mouse until the rectangle [O]
encompasses the entire text, then release the mouse button. Press the right gﬁgp‘t’ér
mouse button to capture the string.
= Back

You can preview the string before you capture it. Press the right mouse button
before you release the left mouse button. (If your mouse has three buttons,
release the left mouse button after drawing the rectangle and then press the
middle mouse button.) The string appears under the rectangle or in the upper left
corner of the screen.

WinRunner generates a win_get_text statement with the following syntax in the
test script:

WinRunner User’s Guide Chapter 15, page 449

Creating Tests « Checking Text

win_get_text (window, text, x1,y1,x2,y2);

For example, if you choose Get Text > Area and use the crosshairs to enclose
only the date in the Windows Clock application, a statement similar to the

following is recorded in your test script: Sﬁﬁ,'jz
win_get_text ("Clock", text, 38, 137, 166, 185); # 8/13/95 &4 Find
The window is the name of the window. The text is an output variable that holds AFg;Ci’n

all of the captured text. x1,y1,x2,y2 define the location from which to read text,
relative to the specified window. When the function is recorded, the captured text | @ e
is also inserted into the script as a comment.

The comment occupies the same number of lines in the test script as the text ‘ ’

being read occupies on the screen. For example, if three lines of text are read, E]

the comment will also be three lines long. Top of
Chapter

You can also read text from the screen by programming the Analog TSL function
get_text into your test script. For more information, refer to the TSL Online
Reference.

= Back

Note: When you read text with a learned font, WinRunner reads a single line of
text only. If the captured text exceeds one line, only the leftmost line is read. If
two or more lines have the same left margin, then the bottom line is read. See
Teaching Fonts to WinRunner on page 459 for more information.

WinRunner User’s Guide Chapter 15, page 450

Creating Tests « Checking Text

Searching for Text

You can search for text on the screen using the following TSL functions:

® The win_find_text, obj_find_text, and find_text functions determine the Books
location of a specified text string. Online

® The obj_move_locator_text, win_move_locator_text, and @ Find
move_locator_text functions move the mouse pointer to a specified text string. Find

® The win_click_on_text, obj_click_on_text, and click_on_text functions move Again
the pointer to a string and click it. 2 Help

Note that you must program these functions in your test scripts. You can use the ‘ ’
Function Generator to do this, or you can type the statements into your test

script. For information about programming functions into your test scripts, see =

Chapter 21, Generating Functions. For information about specific functions, gﬁp CtJf

refer to the TSL Online Reference. et
= Back

WinRunner User’s Guide Chapter 15, page 451

Creating Tests « Checking Text

Getting the Location of a Text String

The win_find_text and obj_find_text functions perform the opposite of
win_get_text and obj_get_text. Whereas the get_text functions retrieve any
text found in the defined object or window, the find_text functions look for a Books

specified string and return its location, relative to the window or object. Online
N - , - @ Find
The win_find_text and obj_find_text functions are Context Sensitive and have
similar syntax, as shown below: Find
Again
win_find_text (window, string, result_array [,x1,y1,x2,y2] P el
¢ Help

[,string_def]);

obj_find_text (object, string, result_array [,x1,y1,x2,y2] ‘ ’
[.string_def]);
=]

Top of
Chapter

The window or object is the name of the window or object within which
WinRunner searches for the specified text. The string is the text to locate. The
result_array is the name you assign to the four-element array that stores the & Back
location of the string. The optional x,,y,,X,,Y,specify the x- and y-coordinates of
the upper left and bottom right corners of the region of the screen that is
searched. If these parameters are not defined, WinRunner treats the entire
window or object as the search area. The optional string_def defines how
WinRunner searches for the text.

The win_find_text and obj_find_text functions return 1 if the search fails and O
if it succeeds.

WinRunner User’s Guide Chapter 15, page 452

Creating Tests « Checking Text

In the following example, win_find_text is used to determine where the total appears
on a graph object in a Flight Reservation application.

set_window ("Graph", 10);
win_find_text ("Graph", "Total Tickets Sold:", result_array, 640,480,366,284,

Books

FALSE); Online
You can also find text on the screen using the Analog TSL function find_text. #4 Find
For more information on the find_text functions, refer to the TSL Online Reference. AFg;‘i’n
‘? Help

Note: When win_find_text, obj_find_text, or find_text is used with a learned font,

then WinRunner searches for a single, complete word only. This means that any ‘ ’
regular expression used in the string must not contain blank spaces, and only the
default value of string_def, FALSE, is in effect.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 15, page 453

Creating Tests « Checking Text

Moving the Pointer to a Text String

The win_move_locator_text and obj_move_locator_text functions search for

the specified text string in the indicated window or other object. Once the text is
located, the mouse pointer moves to the center of the text. Boloks
Online
The win_move_locator_text and obj_move_locator_text functions are]
- . #4 Find
Context Sensitive and have similar syntax, as shown:

Find
win_move_locator_text (window, string, [,x1,y1,x2,y2] [,string_def]); Again
obj_move_locator_text (object, string, [,x1,y1,x2,y2] [,string_def]); ? Help
The window or object is the name of the window or object that WinRunner ‘ ’
searches. The string is the text to which the mouse pointer moves. The optional]
x1,y1,x2,y2 parameters specify the x- and y-coordinates of the upper left and Top of
bottom right corners of the region of the window or object that is searched. The Chapter
optional string_def defines how WinRunner searches for the text. = Back

WinRunner User’s Guide Chapter 15, page 454

Creating Tests « Checking Text

In the following example, obj_move_locator_text moves the mouse pointer to a topic
string in a Windows on-line help index.

function verify_cursor(win,str)
Books

{ Online
auto text,textl,rc;
@4 Find

Search for topic string and move locator to text. Scroll to end of document,
retry if not found. Find

set_window (win, 1); Again
obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT); 2
type ("<kCtrl_L-kHome_E>"); ¢ Help
while(rc=obj_move_locator_text("MS_WINTOPIC",str, TRUE)){
type ("<kPgDn_E>"); ‘ ’
obj_get_text("MS_WINTOPIC", text); =
if(text==text1) Top of
return E_NOT_FOUND; Chapter
textl=text; B ack

}
}

You can also move the mouse pointer to a text string using the TSL Analog function
move_locator_text. For more information on move_locator_text, refer to the TSL

Online Reference.

WinRunner User’s Guide Chapter 15, page 455

Creating Tests « Checking Text

Clicking a Specified Text String

The win_click_on_text and obj_click_on_text functions search for a specified
text string in the indicated window or other GUI object, move the screen pointer

to the center of the string, and click the string. Boloks

Online

The win_click_on_text and obj_click_on_text functions are Context Sensitive 4 Find
and have similar syntax, as shown: "
Find

win_click_on_text (window, string, [,x1,y1,x2,y2] [,string_def] Again

[,mouse_button]);
‘? Help

The window or object is the window or object to search. The string is the text the
mouse pointer clicks. The optional x1,y1,x2,y2 parameters specify the region of ‘ ’

the window or object that is searched. The optional string_def defines how]

WinRunner searches for the text. The optional mouse_button specifies which Top of

mouse button to use. Chapter
= Back

WinRunner User’s Guide Chapter 15, page 456

Creating Tests « Checking Text

In the following example, obj_click_on_text clicks a topic in an online help index
in order to jump to a help topic.

function show_topic(win,str)
Books
Online
{
auto text,textl,rc,arrf]; # Eind
Search for the topic string within the object. If not found, scroll down to =
end Again
of document.
set_window (win, 1); % Help
obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT);
type ("<kCtrl_L-kHome_E>"); ‘ ’
while(rc=obj_click_on_text("MS_WINTOPIC", str,TRUE,LEFT)){
type ("<kPgDn_E>"); Tol?of
obj_get_text("MS_WINTOPIC", text); Chapter
if(text==text1)
return E_ GENERAL_ERROR; &Back
textl=text;
}

}

For information about the click_on_text functions, refer to the TSL Online
Reference.

WinRunner User’s Guide Chapter 15, page 457

Creating Tests « Checking Text

Comparing Text

The compare_text function compares two strings, ignoring any differences that

you specify. You can use it alone or in conjunction with the win_get_text and ’
obj_get_text functions. gﬁﬁnz
The compare_text function has the following syntax: & Find
variable = compare_text (stri, str2 [,charsl, chars2]); Find
Again
The strl and str2 parameters represent the literal strings or string variables to be D Help
compared. N
The optional chars1 and chars2 parameters represent the literal characters or ‘ ’
string variables to be ignored during comparison. Note that chars1 and chars2 @l
may specify multiple characters. Top of
Chapter
The compare_text function returns 1 when the compared strings are considered ©Back
the same, and 0 when the strings are considered different. For example, a portion ac

of your test script compares the text string “File” returned by get_text. Because
the lowercase “I” character has the same shape as the uppercase “I", you can
specify that these two characters be ignored as follows:

t = get_text (10, 10, 90, 30);
if (compare_text (t, "File", "I", "I"))
move_locator_abs (10, 10);

WinRunner User’s Guide Chapter 15, page 458

Creating Tests « Checking Text

Teaching Fonts to WinRunner

You use the Fonts Expert utility only when WinRunner cannot automatically read

the text used by your application. In this case, you must teach your application’s
_ Books

fonts to WinRunner. Online

To teach fonts to WinRunner, you perform the following main steps: & Find
1 Use the Fonts Expert tool to have WinRunner learn the set of characters (fonts) Find

used by your application. Again
2 Create a font group that contains one or more fonts. 2 Help

A font group is a collection of fonts that are bound together for specific testing

purposes. Note that at any time, only one font group may be active in ‘ ’

WinRunner. In order for a learned font to be recognized, it must belong to the =

active font group. However, a learned font can be assigned to multiple font Top of

groups. Chapter
3 Use the TSL setvar function to activate the appropriate font group before using = Back

any of the text functions.

Note that all learned fonts and defined font groups are stored in a font library.
This library is designated by the XR_GLOB_FONT_LIB parameter in the wrun.ini
file; by default, it is located in the WinRunner installation folder/ fonts subfolder.

WinRunner User’s Guide Chapter 15, page 459

Creating Tests « Checking Text

Learning a Font

If WinRunner cannot read the text in your application, use the Font Expert to learn

the font.
Books
To learn a font: Online
1 Choose Tools > Fonts Expert or choose Start > Programs > WinRunner > & Find
Fonts Expert. The Fonts Expert opens.
Find
2 Choose Font > Learn. The Learn Font dialog box opens. Again
Learn Font ﬁ? Help
Faont name: Ewigting Characters: ‘ ’
— Properties @
Fant: L] Top of
Sine: —&dd/Delete Characters: Chapter
Style: EBack
Blank, Size:
— Delete | | Add |
Select Font...l Leart Fort | Clase |

WinRunner User’s Guide Chapter 15, page 460

Creating Tests « Checking Text

3 Type in a name for the new font in the Font Name box (maximum of eight
characters, no extension).

4 Click Select Font. The Font dialog box opens.
5 Choose the font name, style, and size on the appropriate lists. gﬁﬁﬁz
6 Click OK.
@ Find
7 Click Learn Font.
Find
When the learning process is complete, the Existing Characters box displays all Again
characters learned and the Properties box displays the properties of the fonts o
learned. WinRunner creates a file called font_name.mfn containing the learned ¢ Help
font data and stores it in the font library. ‘ ’
8 Click Close.
[B]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 15, page 461

Creating Tests « Checking Text

Creating a Font Group

Once afontis learned, you must assign it to a font group. Note that the same font
can be assigned to more than one font group.

Books
Online
Note: Put only a couple of fonts in each group, because text recognition #4 Find
capabilities tend to deteriorate as the number of fonts in a group increases. —
n
Again
To create a new font group: ? Help

1 Inthe Fonts Expert, choose Font > Groups. The Font Groups dialog box opens. ‘ ’

Font Groups E @
Group Mame: Top of
Chapter
|| vl =] I LCloze |
Fonts in Group: Fonts in Librany: = Back

Sddes |
»>lElete |

WinRunner User’s Guide Chapter 15, page 462

Creating Tests « Checking Text

2 Type in a unique name in the Group Name box (up to eight characters, no
extension).

3 Inthe Fonts in Library list, select the name of the font to include in the font

group.
4 Click New. WinRunner creates the new font group. When the process is gﬁﬁﬁz
complete, the font appear in the Fonts in Group list.
WinRunner creates a file called group_name.grp containing the font group data & Find
and stores it in the font library. Find
To add fonts to an existing font group: Agan
1 In the Fonts Expert, choose Font > Groups. The Font Groups dialog box opens. ? Help
2 Select the desired font group from the Group Name list. ‘ ’
3 Inthe Fonts in Library list, click the name of the font to add. =
4 Click Add. gﬁgpft’ér
To delete a font from a font group: &= Back
1 In the Fonts Expert, choose Font > Groups. The Font Groups dialog box opens.
2 Select the desired font group from the Group Name list.
3 Inthe Fonts in Group list, click the name of the font to delete.
4 Click Delete.

WinRunner User’s Guide Chapter 15, page 463

Creating Tests « Checking Text

Designating the Active Font Group

The final step before you can use any of the text functions is to activate the font
group that includes the fonts your application uses.

To designate the active font:
Boqks

1 Choose Settings > General Options. Online
The General Options dialog box opens. a4 Find

2 Click the Text Recognition tab. Find

Again

3 Inthe Font Group box, enter a font group.

4 Click OK to save your selection and close the dialog box. ? Help
Only one group can be active at any time. By default, this is the group ‘ ’
designated by the XR_FONT_GROUP system parameter in the wrun.ini file. @l
However, within a test script you can activate a different font group or the setvar Top of
function together with the fontgrp test option. Chapter
For example, to activate the font group named editor from within a test script, add &=Back

the following statement to your script:

setvar (“fontgrp”, "editor");

For more information about choosing a font group from the General Options
dialog box, see Chapter 36, Setting Global Testing Options. For more
information about using the setvar function to choose a font group from within a
test script, see Chapter 37, Setting Testing Options from a Test Script.

WinRunner User’s Guide Chapter 15, page 464

Creating Tests

Creating Data-Driven Tests

WinRunner enables you to create and run tests which are driven by data stored

in an external table. BoOKS
Online
This chapter describes:
@4 Find
® The Data-Driven Testing Process
Find
® Creating a Basic Test for Conversion Again
® Converting a Test to a Data-Driven Test 2 Help
® Preparing the Data Table ‘ ’
® Importing Data from a Database
® Running and Analyzing Data-Driven Tests Tolglof
. . Chapter
® Assigning the Main Data Table for a Test
® Using Data-Driven Checkpoints and Bitmap Synchronization Points &Back

® Using TSL Functions with Data-Driven Tests

® Guidelines for Creating a Data-Driven Test

WinRunner User’s Guide Chapter 16, page 465

Creating Tests * Creating Data-Driven Tests

About Creating Data-Driven Tests

When you test your application, you may want to check how it performs the same
operations with multiple sets of data. For example, suppose you want to check
how your application responds to ten separate sets of data. You could record ten
separate tests, each with its own set of data. Alternatively, you could create a
data-driven test with a loop that runs ten times. In each of the ten iterations, the
testis driven by a different set of data. In order for WinRunner to use data to drive
the test, you must substitute fixed values in the test with variables. The variables
in the test are linked with data stored in a data table. You can create data-driven
tests using the DataDriver Wizard or by manually adding data-driven statements
to your test scripts.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 466

Creating Tests * Creating Data-Driven Tests

The Data-Driven Testing Process

For non-data-driven tests, the testing process is performed in three steps:

creating a test; running the test; analyzing test results. When you create a data-

. . Books
driven test, you perform an extra two-part step between creating the test and Online
running it: converting the test to a data-driven test and creating a corresponding
data table. 4 Find
The following diagram outlines the stages of the data-driven testing process in AFg;?n
WinRunner:

‘? Help

Step | Creating a Test ‘ ’

J L

T = f
Converting to a Data-Driven Test op O

Step I and Preparing a Data Table Chapter

R = Back
Step Il Running the Test

4 L
Step IV Analyzing Test Results

WinRunner User’s Guide Chapter 16, page 467

Creating Tests * Creating Data-Driven Tests

Creating a Basic Test for Conversion

In order to create a data-driven test, you must first create a basic test and then
convert it.

You create a basic test by recording a test, as usual, with one set of data. In the
following example, the user wants to check that opening an order and updating
the number of tickets in the order is performed correctly for a variety of orders.
The test is recorded using one passenger’s flight data.

To record this test, you open an order and use the Create > GUI Checkpoint >
For Single Property command to check that the correct order is open. You
change the number of tickets in the order and then update the order. A test script
similar to the following is created:

& winRunner - [Noname1%] Hi=]E3
File Edit Create Bun Debug Tools Settings Window Help _|5’|5|
=0 = | TR A ST R U

zet_window ("Flight Reservation', 9): 1=
menu_select item ("File;Open Order...™):;
get_window ("Open Crder”, Zj;

button set ("Order Ho.", ON):

edit_set ("Edit"™, "a"):

button press ("OK"):

get_window ("Flight Reservation', 14):
edit_check info("Order No:","wvalues",&);
edit_set ("Tickets:™, "2");

button press ("Update Order'™):

4

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

GeaEBIc e |

|Press ALT to choose commands |Line: 11 | Frun Mame:

WinRunner User’s Guide Chapter 16, page 468

Creating Tests * Creating Data-Driven Tests

The purpose of this test is to check that the correct order has been opened.
Normally you would use the Create > GUI Checkpoint > For Object/Window
command to insert an obj_check_gui statement in your test script. All
_check_gui statements contain references to checklists, however, and because
checklists do not contain fixed values, they cannot be parameterized from within
a test script while creating a data-driven test. You have two options:

As in the example above, you use the Create > GUI Checkpoint > For Single
Property command to create a property check without a checklist. In this case,
an edit_check_info statement checks the content of the edit field in which the
order number is displayed. For information on checking a single property of an
object, see Chapter 9, Checking GUI Objects. WinRunner can write an event
to the Test Results window whenever these statements fail during a test run. To
set this option, select the Fail when single property check fails check box in
the Run tab of the General Options dialog box or use the setvar function to set
the single_prop_check_fail testing option. For additional information, see
Chapter 36, Setting Global Testing Options, or Chapter 37, Setting Testing
Options from a Test Script.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 469

Creating Tests * Creating Data-Driven Tests

You can use the Create > GUI Checkpoint > For Single Property command to
create property checks using the following _check_ functions:

button_check_info scroll_check_info Books

Online

@& Find

Find
Again

edit_check_info static_check_info

list_check_info win_check_info

obj_check_info

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 470

Creating Tests * Creating Data-Driven Tests

You can also use the following _check functions to check single properties of
objects without creating a checklist. You can create statements with these
functions manually or using the Function Generator. For additional information,
see Chapter 21, Generating Functions.

button_check_state list_check_selected
edit_check_selection scroll_check_pos
edit_check_text static_check_text

list_check_item

For information about specific functions, refer to the TSL Online Reference.

Alternatively, you can create data-driven GUI and bitmap checkpoints and
bitmap synchronization points. For information on creating data-driven GUI and
bitmap checkpoints and bitmap synchronization points, see Using Data-Driven
Checkpoints and Bitmap Synchronization Points on page 521.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 471

Creating Tests * Creating Data-Driven Tests

Converting a Test to a Data-Driven Test

The procedure for converting a test to a data-driven test is composed of the

following main steps:
Boqks
1 Replacing fixed values in checkpoint statements and in recorded statements Online
with parameters, and creating a data table containing values for the parameters. &4 Find
This is known as parameterizing the test.
Find
2 Adding statements and functions to your test so that it will read from the data Again
table and run in a loop while it reads each iteration of data. 5
& Help
3 Adding statements to your script that open and close the data table.
4 Assigning a variable name to the data table (mandatory when using the ‘ ’
DataDriver Wizard and otherwise optional). =
. . . Top of
You can use the DataDriver Wizard to perform these steps, or you can modify Chapter
our test script manually.
Y P Y = Back

WinRunner User’s Guide Chapter 16, page 472

Creating Tests * Creating Data-Driven Tests

Creating a Data-Driven Test with the DataDriver Wizard

You can use the DataDriver Wizard to convert your entire script or a part of your
script into a data-driven test. For example, your test script may include recorded

operations, checkpoints, and other statements which do not need to be repeated Books
. . . Online
for multiple sets of data. You need to parameterize only the portion of your test
script that you want to run in a loop with multiple sets of data. & Find
To create a data-driven test: Find
Again
1 If you want to turn only part of your test script into a data-driven test, first select
those lines in the test script. @ Help
2 Choose Tools > DataDriver Wizard. ‘ ’
® If you selected part of the test script before opening the wizard, proceed to
step 3. =]
Top of
Chapter
= Back

WinRunner User’s Guide Chapter 16, page 473

Creating Tests » Creating Data-Driven Tests

® If you did not select any lines of script, the following screen opens:

DataDriver Wizard

Lana

EAGARG

Alix

Mziaa

Steve

et

Evan [1zezams

Welcome to the D ataDriver YWizard!

Befare running this wizard vou need to select the
part of the test zoript to become a data driven test.

If you click the Mext button now, the entire test script
will become data-driven.

To zelect only part of the script, please follow these
steps:

1] Click the Cancel buttan.

2] Usge the mouze or Shift and arrow keys bo zelect
which lines of test sonipt ta include.

3] Run this wizard again.

Books
Online

@& Find

Find
Again

‘? Help

4

¢ Bacl

Firizhy Cancel Help

[=]

Top of
Chapter

If you want to turn only part of the test into a data-driven test, click Cancel.
Select those lines in the test script and reopen the DataDriver Wizard.

If you want to turn the entire test into a data-driven test, click Next.

= Back

WinRunner User’s Guide Chapter 16, page 474

Creating Tests » Creating Data-Driven Tests

3 The following wizard screen opens:

Lana

EAGARG

Alix

Mziaa

Steve

et

Evan

1z zamag

DataDriver Wizard E3

Uze a new or existing Excel table:

~

The test zorpt will uze a variable to refer to
thiz data file.

Azzign a pame to the wariable: Ilable

¥ Add statements to create a data-driven test
[~ Import data from a database
[Parameterize the test:

' Line by line

" Automnatically

< Back I Ment » I Flrikr] | Cancel | Help

The Use a new or existing Excel table box displays the name of the Excel file
that WinRunner creates, which stores the data for the data-driven test. Accept
the default data table for this test, enter a different name for the data table, or
use the browse button to locate the path of an existing data table. By default, the
data table is stored in the test folder.

In the Assign a name to the variable box, enter a variable name with which to
refer to the data table, or accept the default name, “table.”

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 475

Creating Tests * Creating Data-Driven Tests

At the beginning of a data-driven test, the Excel data table you selected is
assigned as the value of the table variable. Throughout the script, only the table
variable name is used. This makes it easy for you to assign a different data table
to the script at a later time without making changes throughout the script.

Boqks

Choose from among the following options: Online

® Add statements to create a data-driven test: Automatically adds @4 Find
statements to run your test in a loop: sets a variable name by which to refer to .

the data table; adds braces ({ and }), a for statement, and a ,fg;?n

ddt_get_row_count statement to your test script selection to run it in a loop
while it reads from the data table; adds ddt_open and ddt_close statements 2 Help
to your test script to open and close the data table, which are necessary in

order to iterate rows in the table. ‘ ’
Note that you can also add these statements to your test script manually. For =
more information and sample statements, see Adding Statements to Your Top of
Test Script to Open and Close the Data Table and Run Your Test in a Chapter
Loop on page 487. &Back

If you do not choose this option, you will receive a warning that your data-
driven test must contain a loop and statements to open and close your data
table.

Note: You should not select this option if you have chosen it previously while
running the DataDriver Wizard on the same portion of your test script.

WinRunner User’s Guide Chapter 16, page 476

Creating Tests * Creating Data-Driven Tests

® Import data from a database: Imports data from a database. This option
adds ddt_update_from_db, and ddt_save statements to your test script
after the ddt_open statement. For more information, see Importing Data

from a Database on page 494.
Books
Note that in order to import data from a database, either Microsoft Query or Online
Data Junction must be installed on your machine. You can install Microsoft # Find
Query from the custom installation of Microsoft Office. Note that Data
Junction is not automatically included in your WinRunner package. To Find
purchase Data Junction, contact your Mercury Interactive representative. For Again
detailed information on working with Data Junction, refer to the 2 Help
documentation in the Data Junction package. ;
Note: If the Add statements to create a data-driven test option is not selected =
along with the Import data from a database option, the wizard also sets a (;rf?gpct);r
variable name by which to refer to the data table. In addition, it adds ddt_open
and ddt_close statements to your test script. Since there is no iteration in the & Back

test, the ddt_close statement is at the end of the block of ddt_ statements,
rather than at the end of the block of selected text.

® Parameterize the test: Replaces fixed values in selected checkpoints and in
recorded statements with parameters, using the ddt_val function, and in the
data table, adds columns with variable values for the parameters.

WinRunner User’s Guide Chapter 16, page 477

Creating Tests * Creating Data-Driven Tests

Line by line: Opens a wizard screen for each line of the selected test script,
which enables you to decide whether to parameterize a particular line, and if
so, whether to add a new column to the data table or use an existing column
when parameterizing data.

Books
Automatically: Replaces all data with ddt_val statements and adds new Online
columns to the data table. The first argument of the function is the name of # Find
the column in the data table. The replaced data is inserted into the table.

Find

Again

Note: You can also parameterize your test manually. For more information, see D Help
Parameterizing Values in a Test Script on page 488. :

[=]

Top of
Chapter

Note: The ddt_func.ini file in the dat folder lists the TSL functions that the
DataDriver Wizard can parameterize while creating a data-driven test. This file &Back
also contains the index of the argument that by default can be parameterized for
each function. You can modify this list to change the default argument that can
be parameterized for a function. You can also modify this list to include user-
defined functions or any other TSL functions, so that you can parameterize
statements with these functions while creating a test. For information on creating
user-defined functions, see Chapter 23, Creating User-Defined Functions.

WinRunner User’s Guide Chapter 16, page 478

Creating Tests » Creating Data-Driven Tests

Click Next.

Note that if you did not select any check boxes, only the Cancel button is
enabled.

4 If you selected the Import data from a database check box in the previous
screen, continue at Importing Data from a Database on page 494. Otherwise,
the following wizard screen opens:

DataDriver Wizard

Test zcript ling to parameterize:
Inbi_t_l,lpe M5 askwindClaz:" MEEIEEY

Argument to be replaced: I"‘I 23195" '| '|

Replace the selected walue with data from;

* Do not replace this data
€ A eisting colimt: I j

lana | ciseas

Alin | 1mzee CA L=ty column: IMSMaskWndl:Iass

Steve | sz

Evan [1zezams

¢ Bacl I Ment » I Skip Cancel | Help

The Test script line to parameterize box displays the line of the test script to
parameterize. The highlighted value can be replaced by a parameter.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 479

Creating Tests * Creating Data-Driven Tests

The Argument to be replaced box displays the argument (value) that you can
replace with a parameter. You can use the arrows to select a different argument

to replace.
Choose whether and how to replace the selected data: Books
® Do not replace this data: Does not parameterize this data. oniine
® An existing column: If parameters already exist in the data table for this #4 Find
test, select an existing parameter from the list. Find
Again

®* A new column: Creates a new column for this parameter in the data table for
this test. Adds the selected data to this column of the data table. The default | %" Help
name for the new parameter is the logical name of the object in the selected

TSL statement above. Accept this name or assign a new name. ‘ ’
In the sample Flight application test script shown earlier on page 468, there are =]
. Top of
several statements that contain fixed values entered by the user. Chapter
In this example, a new data table is used, so no parameters exist yet. In this &= Back

example, for the first parameterized line in the test script, the user clicks the
Data from a new parameter radio button. By default, the new parameter is the
logical name of the object. You can modify this name. In the example, the name
of the new parameter was modified to “Date of Flight.”

WinRunner User’s Guide Chapter 16, page 480

Creating Tests * Creating Data-Driven Tests

The following line in the test script:

edit_set ("Edit", "6");

is replaced by:

edit_set("Edit",ddt_val(table,"Edit"));

The following line in the test script:

edit_check_info("Order No:","value",6);

is replaced by:

edit_check_info("Order No:","value”,ddt_val(table,"Order_No"));

® To parameterize additional lines in your test script, click Next. The wizard
displays the next line you can parameterize in the test script selection.
Repeat the above step for each line in the test script selection that can be
parameterized. If there are no more lines in the selection of your test script
that can be parameterized, the final screen of the wizard opens.

® To proceed to the final screen of the wizard without parameterizing any
additional lines in your test script selection, click Skip.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 481

Creating Tests * Creating Data-Driven Tests

5 The final screen of the wizard opens.

® To perform the tasks specified in previous screens and close the wizard, click
Finish.

® To close the wizard without making any changes to the test script, click
Cancel.

Books
Online

Note: If you clicked Cancel after parameterizing your test script but before the
final wizard screen, the data table will include the data you added to it. If you
want to save the data in the data table, then open the data table and then save it.

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 482

Creating Tests * Creating Data-Driven Tests

Once you have finished running the DataDriver Wizard, the sample test script for
the example on page 468 is modified, as shown below:

& WinRunner - [Noname1%] Hi=] 3

Eile Edit Create Bun Debug Toolz Settings Window Help

R URVR VRl 4

Books
Online

|G very | @ 5% G |

fdefault.xls";

Statements to |
open data

table and run
test in a loop

rc = ddt_open(table, DDT MODE RELD) ;

@& Find

[ro!= E_OK && ro
pause ("Cannhot open takble. ™)

t= E_FILE_OPEN]

Find
Again

ddt_get_row_count (table,table RowCount):

for(tskle Row = 1; takle Row <= table RowCount: table Row ++)

‘? Help

Parameterized
statement

Parameterized |

property check

End of loop L

Statement to
close data table

ddt_set_row(table,table Row):

get_window ("Flight Reserwvation™, 9);
menu_select item ("File;Open Order...

4

set_window ("Open Order”, Z):

[forder No.'™,
[(FEdit™, ddt_wval(table, "Edit™)) ;
button press

[=]

Top of
Chapter

get_window ("Flight Reserwvation™,
edit_check info("Order No:","wvalue",ddt wvalitable, "Order Na™));
["Tickets: ",

= Back

button press ("Update Order™):

BCETEE2-ETY T T

ddt_close (table) ;|

N

WinRunner User’s Guide Chapter 16, page 483

Creating Tests * Creating Data-Driven Tests

If you open the data table (Tools > Data Table), the Open or Create a Data
Table dialog box opens. Select the data table you specified in the DataDriver
Wizard. When the data table opens, you can see the entries made in the data

table and edit the data in the table. For the previous example, the following entry
is made in the data table.

=2 Data Table - D:\Program Files\Mercury Interactive\winR... =] E3
File Edit Data Format Help
Al 5
Edit |Order o/ € | D | E | =

1 5 5 |

2

3

4 -
4| | 3
Ready i

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 484

Creating Tests * Creating Data-Driven Tests

Creating a Data-Driven Test Manually

You can create a data-driven test manually, without using the DataDriver Wizard.

Note that in order to create a data-driven test manually, you must complete all the
steps described below: Books
Online
¢ defining the data table
g @ Find
® add statements to your test script to open and close the data table and run your
. Find
testin a loop Again
® import data from a database (optional)
‘? Help
® create a data table and parameterize values in your test script
Defining the Data Table ‘ ’
Add the following statement to your test script immediately preceding the [O]
parameterized portion of the script. This identifies the name and the path of your Chapter
data table. Note that you can work with multiple data tables in a single test, and
you can use a single data table in multiple tests. For additional information, see e Back

Guidelines for Creating a Data-Driven Test on page 539.

table="Default.xIs";
Note that if your data table has a different name, substitute the correct name. By

default, the data table is stored in the folder for the test. If you store your data
table in a different location, you must include the path in the above statement.

WinRunner User’s Guide Chapter 16, page 485

Creating Tests * Creating Data-Driven Tests

For example:
tablel = “default.xls”;

is a data table with the default name in the test folder.

table2 = “table.xls”;

is a data table with a new name in the test folder.

table3 = “C:\\Data-Driven Tests\\Another Test\\default.xIs”;

is a data table with the default name and a new path. This data table is stored in
the folder of another test.

Books
Online

@& Find

Find
Again

‘? Help

4

Note: Scripts created in WinRunner versions 5.0 and 5.01 may contain the
following statement instead.

table=getvar("testname") & "\\Default.xIs";

This statement is still valid. However, scripts created in WinRunner 6.0 use
relative paths and therefore the full path is not required in the statement.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 486

Creating Tests * Creating Data-Driven Tests

Adding Statements to Your Test Script to Open and Close the Data Table
and Run Your Test in a Loop

Add the following statements to your test script immediately following the table
declaration.

rc=ddt_open (table);
if (rc!l= E_OK && rc !'= E_FILE_OPEN)
pause("Cannot open table.");
ddt_get_row_count(table,table_RowCount);
for(table_Row = 1; table_Row <= table_RowCount ;table_Row ++)

{
ddt_set_row(table,table_Row);

These statements open the data table for the test and run the statements
between the curly brackets that follow for each row of data in the data table.

Add the following statements to your test script immediately following the
parameterized portion of the script:

}
ddt_close (table);

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 487

Creating Tests * Creating Data-Driven Tests

These statements run the statements that appear within the curly brackets
above for every row of the data table. They use the data from the next row of the
data table to drive each successive iteration of the test. When the next row of the
data table is empty, these statements stop running the statements within the

curly brackets and close the data table. Sﬁﬁ,'jz

Importing Data from a Database &4 Find

You must add ddt_update_from_db and ddt_save statements to your test script e
n

after the ddt_open statement. You must use Microsoft Query to define a query in Again
order to specify the data to import. For more information, see Importing Data
from a Database on page 494. For more information on the ddt_ functions, see ? Help
Using TSL Functions with Data-Driven Tests on page 529 or refer to the TSL

Online Reference. ‘ ’

Parameterizing Values in a Test Script Tol?of
In the sample test script in Creating a Basic Test for Conversion on page 468, Chapter

there are several statements that contain fixed values entered by the user: &Back

edit_set("Edit", "6");

edit_check_info("Order No:","value",6);

You can use the Parameterize Data dialog box to parameterize the statements
and replace the data with parameters.

WinRunner User’s Guide Chapter 16, page 488

Creating Tests * Creating Data-Driven Tests

To parameterize statements using a data table:

1 In your test script, select the first instance in which you have data that you want
to parameterize. For example, in the first edit_set statement in the test script

above, select: "6".

2 Choose Tools > Parameterize Data. The Parameterize Data dialog box opens.

3 In the Parameterize using box, select Data table.

Parameterize Data

PBarameternize uzing IData table 'I

r

Encel table file name: Idefault.r:ls
Table variable: Itable
Walue to be replaced: IE

Replace value with data from

A existing colum: I j
% A new column: IEdit
5
0K I Cancel Help

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 489

Creating Tests * Creating Data-Driven Tests

4 Inthe Excel table file name box, you can accept the default name and location
of the data table, enter the different name for the data table, or use the browse
button to locate the path of a data table. Note that by default the name of the
data table is default.xls, and it is stored in the test folder. If you previously worked B e
with a different data table in this test, then it appears here instead. Online

Click A new column. WinRunner suggests a hame for the parameter in the box. & Find
You can accept this name or choose a different name. WinRunner creates a

column with the same name as the parameter in the data table. Find
Again

The data with quotation marks that was selected in your test script appears in
the Add the data to the table box. 2 Help

® |f you want to include the data currently selected in the test script in the data ‘ ’
table, select the Add the data to the table check box. You can modify the
data in this box. @l

® |f you do not want to include the data currently selected in the test script in the gﬁgp?;

data table, clear the Add the data to the table check box.

= Back

® You can also assign the data to an existing parameter, which assigns the data
to a column already in the data table. If you want to use an existing
parameter, click An existing column, and select an existing column from the
list.

WinRunner User’s Guide Chapter 16, page 490

Creating Tests * Creating Data-Driven Tests

5 Click OK.

In the test script, the data selected in the test script is replaced with a ddt_val
statement which contains the name of the table and the name of the parameter
you created, with a corresponding column in the data table.

In the example, the value "6" is replaced with a ddt_val statement which
contains the name of the table and the parameter “Edit”, so that the original
statement appears as follows:

edit_set ("Edit",ddt_val(table,"Edit"));

In the data table, a new column is created with the name of the parameter you
assigned. In the example, a new column is created with the header Edit.

6 Repeat steps 1 to 5 for each argument you want to parameterize.

For more information on the ddt_val function, see Using TSL Functions with
Data-Driven Tests on page 529 or refer to the TSL Online Reference.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 491

Creating Tests * Creating Data-Driven Tests

Preparing the Data Table

For each data-driven test, you need to prepare at least one data table. The data
table contains the values that WinRunner uses to replace the variables in your
data-driven test.

You usually create the data table as part of the test conversion process, either
using the Data-Driver Wizard or the Parameterize Data dialog box. You can also
create tables separately in Excel and then link them to the test.

After you create the test, you can add data to the table manually or import it from
an existing database.

The following data table displays three sets of data that were entered for the test
example described in this chapter. The first set of data was entered using the
Tools > Parameterize Value command in WinRunner. The next two sets of data
were entered into the data table manually.

IZZ Data Table - D:\Program Files\Mercury Interactive\winR.__ [I[=] [E3

File Edit Data Format Help

Al 5
FEdit |Order o] € | D | E | =+

1 b 5 |

] 4 g

3 3 3

4 -
4| | »
Ready i

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 492

Creating Tests * Creating Data-Driven Tests

® Each row in the data table generally represents the values that WinRunner
submits for all the parameterized fields during a single iteration of the test. For
example, a loop in a test that is associated with a table with ten rows will run ten

times.
Boqks
® Each column in the table represents the list of values for a single parameter, one Online
of which is used for each iteration of a test. &4 Find
Find
. . Again
Note: The first character in a column header must be an underscore (_) ora
letter. Subsequent characters may be underscores, letters, or numbers. 2 Help
Adding Data to a Data Table Manually =]
Top of
You can add data to your data table manually by opening the data table and Chapter
entering values in the appropriate columns. = Back

To add data to a data table manually:

1 Choose Tools > Data Table. The Open or Create a Data Table dialog box
opens. Select the data table you specified in the test script to open it, or enter a
new name to create a new data table. The data table opens in the data table
viewer.

2 Enter data into the table manually.

WinRunner User’s Guide Chapter 16, page 493

Creating Tests * Creating Data-Driven Tests

3 Move the cursor to an empty cell and choose File > Save from within the data
table.

Note: Closing the data table does not automatically save changes to the data ke
table. You must use the File > Save command from within the data table or a Online
ddt_save statement to save the data table. For information on menu commands
within the data table, see Editing the Data Table on page 494. For information #4 Find
on the ddt_save function, see Using TSL Functions with Data-Driven Tests =

on page 529. Note that the data table viewer does not need to be open in order Again
to run a data-driven test.

‘? Help

4

[=]

In addition to, or instead of, adding data to a data table manually, you can import Top of
data from an existing database into your table. You can use either Microsoft Chapter
Query or Data Junction to import the data. For more information on importing data | 4=Back
from a database, see Importing Data from a Database on page 503.

Importing Data from a Database

Editing the Data Table

The data table contains the values that WinRunner uses for parameterized input
fields and checks when you run a test. You can edit information in the data table
by typing directly into the table. You can use the data table in the same way as an
Excel spreadsheet. You can also insert Excel formulas and functions into cells.

WinRunner User’s Guide Chapter 16, page 494

Creating Tests * Creating Data-Driven Tests

Note: If you do not want the data table editor to reformat your data (e.g. change
the format of dates), then strings you enter in the data table should start with a
quotation mark ('). This instructs the editor not to reformat the string in the cell.

To edit the data table:
1 Open your test.

2 Choose Tools > Data Table. The Open or Create a Data Table dialog box
opens.

3 Select a data table for your test. The data table for the test opens.

IZZ Data Table - D:\Program Files\Mercury Interactive\winR.__ [I[=] [E3

File Edit Data Format Help

Al 5
FEdit |Order o] € | D | E | =+

1 b 5 |

] 4 g

3 3 3

4 -
4| | »
Ready i

4 Use the menu commands described below to edit the data table.
5 Move the cursor to an empty cell and select File > Save to save your changes.

6 Select File > Close to close the data table.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 495

Creating Tests * Creating Data-Driven Tests

File Menu

Use the File menu to import and export, close, save, and print the data table.
WinRunner automatically saves the data table for a test in the test folder and
names it default.xIs. You can open and save data tables other than the default.xls
data table. This enables you to use several different data tables in one test script,

if desired.

The following commands are available in the File menu:

Books
Online

@& Find

File Command

Description

Find
Again

New

Creates a new data table.

‘? Help

Open

Opens an existing data table. If you open a data table that was
already opened by the ddt_open function, you are prompted to
save and close it before opening it in the data table editor.

4

Save

Saves the active data table with its existing name and location.
You can save the data table as a Microsoft Excel file or as a
tabbed text file.

[=]

Top of
Chapter

= Back

Save As

Opens the Save As dialog box, which enables you to specify the
name and location under which to save the data table. You can
save the data table as a Microsoft Excel file or as a tabbed text
file.

WinRunner User’s Guide Chapter 16, page 496

Creating Tests * Creating Data-Driven Tests

File Command Description
Import Imports an existing table file into the data table. This can be a
Microsoft Excel file or a tabbed text file. If you open a file that "
was already opened by the ddt_open function, you are gﬁﬁnz
prompted to save and close it before opening it in the data table
editor. # Eind
Note that the cells in the first row of an Excel file become the
column headers in the data table viewer. Note that the new table Find
file replaces any data currently in the data table. Again
Export Saves the data table as a Microsoft Excel file or as a tabbed text @y elp
file. °
Note that the column headers in the data table viewer become
the cells in the first row of an Excel file. ‘ ’
Close Closes the data table. Note that changes are not automatically =
saved when you close the data table. Use the Save command to Top of
save your changes. Chapter
Print Prints the data table. = Back
Print Preview Previews how the data table will print.
Print Setup Enables you to select the printer, the page orientation, and
paper size.

WinRunner User’s Guide Chapter 16, page 497

Creating Tests * Creating Data-Driven Tests

Edit Menu

Use the Edit menu to move, copy, and find selected cells in the data table. The

following commands are available in the Edit menu:

Edit Command

Description

Books
Online

Cut

Cuts the data table selection and writes it to the Clipboard.

@& Find

Copy

Copies the data table selection to the Clipboard.

Paste

Pastes the contents of the Clipboard to the current data table
selection.

Find
Again

Paste Values

Pastes values from the Clipboard to the current data table
selection. Any formatting applied to the values is ignored. In
addition, only formula results are pasted; formulas are ignored.

‘? Help

4

Clear All

Clears both the format of the selected cells, if the format was
specified using the Format menu commands, and the values
(including formulas) of the selected cells.

[=]

Top of
Chapter

Clear Formats

Clears the format of the selected cells, if the format was
specified using the Format menu commands. Does not clear
values (including formulas) of the selected cells.

= Back

Clear Contents

Clears only values (including formulas) of the selected cells.
Does not clear the format of the selected cells.

Insert

Inserts empty cells at the location of the current selection. Cells
adjacent to the insertion are shifted to make room for the new
cells.

WinRunner User’s Guide Chapter 16, page 498

Creating Tests * Creating Data-Driven Tests

Edit Command

Description

Delete

Deletes the current selection. Cells adjacent to the deleted cells
are shifted to fill the space left by the vacated cells.

Copy Right

Copies data in the leftmost cell of the selected range to the right
to fill the range.

Books
Online

Copy Down

Copies data in the top cell of the selected range down to fill the
range.

@& Find

Find

Finds a cell containing a specified value. You can search by row
or column in the table and specify to match case or find entire
cells only.

Find
Again

‘? Help

Replace

Finds a cell containing a specified value and replaces it with a
different value. You can search by row or column in the table
and specify to match case or find entire cells only. You can also
replace all.

4

Go To

Goes to a specified cell. This cell becomes the active cell.

[=]

Top of
Chapter

= Back

WinRunner User’s Guide Chapter 16, page 499

Creating Tests * Creating Data-Driven Tests

Data Menu

Use the Data menu to recalculate formulas, sort cells and edit autofill lists. The

following commands are available in the Data menu:

Books
Data Command Description Online
Recalc Recalculates any formula cells in the data table. @4 Find
Sort Sorts a selection of cells by row or column and keys. AFinC_i
gain
AutoFill List Creates, edits or deletes an autofill list.
An autofill list contains frequently-used series of text such as ‘? Help
months and days of the week. When adding a new list,
separate each item with a semi-colon. ‘ ’
To use an autofill list, enter the first item into a cell in the data
table. Drag the cursor across or down and WinRunner =
autor_nat_ically fills in the cells in the range according to the Top of
autofill list. Chapter
= Back

WinRunner User’s Guide Chapter 16, page 500

Creating Tests * Creating Data-Driven Tests

Format Menu

Use the Format menu to set the format of data in a selected cell or cells. The
following commands are available in the Format menu:

Format Command Description
. . Books
General Sets format to General. General displays numbers with as Online
many decimal places as necessary and no commas.
Currency(0) Sets format to currency with commas and no