WIinRunner®
Tutorial

Version 6.0

Onlifie Guide

Books
Online

& Find

Find
Again

‘? Help

>

Table of Contents

Books
Online
_ , @4 Find
Welcome to the WinRunner Tutorial........cccooeeeeieiiiiiiiiiiiieeeiiiiiiis 6
Using This Tutorial..........cccuviiiiiiiiiiieeeceeeeeeeee e 6 :g;?n
Typographical CoNVENLIONS..........cccooiiiiiiiiiiiiiceee e e e 9
Lesson 1: Introducing WiNRUNNETooveveeeeeeeeeeeee e, 10 2 Help
The Benefits of Automated Testingooovvvvviiiiiiiiiiiieiieeeeeeeeeeees 11 ‘ ’
Understanding the Testing ProCesscccoovviiiiiciiiiiiiiiiieeeeeeeeeen 13
Exploring the WinRunner Window...............cooociiiiiiiiiiiiccceeeeeeeee 15 =
Top of
Lesson 2: Getting Started with RapidTestccccvvviviiiiiiiinnnnn. 21 Chapter
How Does WinRunner Identify GUI ObjectS?..........ccccuviviiieeieeeinnnnn. 22 = Back
SpYing 0N GUI ODJECEScevviiiiiiiiie e 23
Using the RapidTest Script Wizard.........cccccoeeeeeeeeeiiiiiieee, 27
Running the User Interface TesSt.......cccccovviiiiiiiiiiiiiiee 32
Analyzing TeSt RESUILScooeiiiiiiieeeee e 34

WinRunner Tutorial Page 2

Table of Contents

Lesson 3: Recording TeSES ...ocouviiiiiiiiiiiiiiiii e 38
Choosing a Record MOdE..........ooooiiiiiiiiiiiee e 39
Recording a Context Sensitive TeSt.......ccceveeiiiiieeeiiiieeeeee, 42
Understanding the Test SCript...........uuviiiiiiiiiiiieeeeeeeeeeeeee 46 BE,%'kS
Recording in ANAlog MOdEoovvviiiiiiiiiii e 48 Online
Running the Test and Analyzing the Results..............ccccoovvvviviinnnnnnn. 51 .

: . Find
RECOIAING TIPS +oveeeeeiiitiiiii i e e e e e e e e e e ettt e e e e e e e e e e e e e e eaeeeaennes 53
Lesson 4: Synchronizing TeStSccoviiiieiiiee e 55 /fg;?n
When Should You Synchronize?............oeviiiiiiiiiieeeeeeeeeeeen, 56 5
CrEALING 8 TStvvreeeeeeeeeeeeeeeeeeeeeee e et ee e nen e s s 58 & Help
Changing the Synchronization Settingcceiiiiiiniiiiinins 61 ‘ ’
Identifying a Synchronization Problemc...ccccooiiiiiiiiiininn, 63
Synchronizing the TeSt ..o 64 E]
Running the Synchronized TeSt ... 67 gﬁgp?;r
Lesson 5: Checking GUI OBjJecCtscceiiiiiiiiiiiiiiiiiiiiieeiiiiie 69 EBack
How Do You Check GUI ODJECIS?......ccovveiiiiiiiiiieiiieeeeeeeee e 70
Adding GUI Checkpoints to a Test SCript.........cccceeevviviivieiieiiiinnn, 72
RUNNING the TeSE..euiiiiiiii e 77
Running the Test on a New Version.............ooocoiiiiiiiiiieeiiieeceeeeeeeee 80
GUI ChecKpOoint TIPS .oovveeeeeeeiiiiceie e e e e 84

WinRunner Tutorial Page 3

Table of Contents

Lesson 6: Checking BitmapsSeuueiiiiiiiiiiieieeeieeeeeeeeeeiiiiiiee 87

How Do You Check a Bitmap?cccoueiiiiiaiiiiiiiiiieeeeee e 88

Adding Bitmap Checkpoints to a Test Script...........ccoovvvvvviivviiinnnnn. 89

Viewing Expected ReSUIS.............cooviiiiiiiiiiciie e 93 BE,%'kS

Running the Test on a New Version............oooceiiiiiiiiiiiiiiiieceeeeeeee 95 Online

Bitmap ChecKpoint TiPS.......uuuuiiiiiiiiiiiiiiiiieeee e 98 # Find

Lesson 7: Programming Tests with TSLcoiiiiniinen, 101 Find

How Do You Program Tests with TSL?........ccoooiiiiiiiiiiiiiiiiiiieeee 102 Again

Recording a BasiC TeSt SCHPt.......cuuviiiiiiiiiiiee e 104 5

Using the Function Generator to Insert Functions.......................... 106 & Help

Adding Logic to the Test SCrpt......cccoeveiiiiiiiiii e 109 ‘ ’

Understanding tl_Step.........cooovrriiiiiiiiccce e 111

Debugging the TeSt SCHPL......uuiiiiiiiiiiiiiieee e 112 &)

Running the Test on a New Version........ccccovveeeeeeieieeeeeeeiiiiinnn 114 oop ?f
pter

Lesson 8: Creating Data-Driven TestSccceeeviiiiiiiiiiiiiiinnnns 118 EBack

How Do You Create Data-Driven TeStS?........cccoeeviiiiiiiiiiiviniinnnnn. 119

Converting Your Test to a Data-Driven TeStcccceeeviieeeiieeeeennn. 121

Adding Data to the Data Tableeiviiiiiieiiieeee, 127

Adjusting the Script with Regular EXpressions............ccccccevvvvvvnnnees 129

Customizing the Results Information................ccvviiiiiiiiiiieeneeeeeee, 131

Running the Test and Analyzing Results..............cccoovviciiieeenn. 132

Data-Driven TeStING TIPSuuuuurrriiiiiiiiiiiiiiee e 135

WinRunner Tutorial Page 4

Table of Contents

Lesson 9: Reading TeXt ..o 137

How Do You Read Text from an Application?..............cccccvvvvvennnee. 138

Reading Text from an Applicationcccccceeeeeiiiiiiieieie, 140

Teaching FONts to WINRUNNETcoovviiiiiiiiciee e 147 BE,%'kS
VErifYiNG TeXE. oo 151 Online
Running the Test on a New Version.........ccccceviieeeeieeeeeeieeeeeeeiiiiinns 153 # Find
Text CheCKPOINt TIPS e e e e e eeeeeeeaaanes 155

Lesson 10: Creating Batch TestSccooevviiiiiiiiiiiiiieeiis 156 /fg;?n
What IS @ BatCh TeSE?uuiiiiiiiiiiiiiiiieiee e 157 5
Programming a BatCh TeSt...........cccveviiviiiieiicie e 158 & Help
Running the Batch Teston Version 1Booooiiiiiiiiiiieeee, 160 ‘ ’
Analyzing the Batch Test ReSUltS..............ccccveiiiiiiiieieeeeeeeeeceeeeei, 161

Batch Test TIPS......ccociiiiii 165 E]
Lesson 11: Maintaining Your Test SCriptScccoeevvviiiiiieeinennnns 167 gﬁgpct);r
What Happens When the User Interface Changes? 168 EBack
Editing Object Descriptions in the GUIMapccoevvvvviveiiciinnnnnnnn. 170

Adding GUI Objects to the GUIMapccceeveiieeiiieiiiiiiieeeeeiiiii 177

Updating the GUI Map with the Run Wizard...............cccccvveiiennn. 179

Lesson 12: Where Do You Go from Here?ccccovvvvvivvvnnnnnnnnn 183

Getting Startedcooeeiiieeeeee e 184

Getting Additional INformationccevviiiiiiiiiie e 186

WinRunner Tutorial Page 5

Welcome to the WinRunner Tutorial

Books
Online
Welcome to the WinRunner tutorial, a self-paced guide that teaches you the # Find
basics of testing your application with WinRunner. This tutorial will familiarize you
with the process of creating and executing automated tests and analyzing the test Find
results. Again
‘? Help
Using This Tutorial ‘ ’
The tutorial is divided into 12 short lessons. In each lesson you will create and run Tol?of
tests on the sample Flight Reservation application (Flight 1A and Flight 1B) Chapter
located in your WinRunner program group. Note that this application is Year 2000
compliant. = Back

The sample Flight Reservation application comes in two versions: Flight 1A and
Flight 1B. Flight 1A is a fully working product, while Flight 1B has some “bugs”
builtinto it. These versions are used together in the WinRunner tutorial to simulate
the development process, in which the performance of one version of an
application is compared with that of another.

WinRunner Tutorial Page 6

Welcome to the WinRunner Tutorial

After completing the tutorial, you can apply the skills you learned to your own
application.

Lesson 1, Introducing WinRunner compares automated and manual testing

methods. It introduces the WinRunner testing process and familiarizes you with gﬁﬁﬁz
the WinRunner user interface.

@ Find
Lesson 2, Getting Started with RapidTest shows you how to use the RapidTest
Script wizard to quickly generate tests and to teach WinRunner descriptions of the AFér;?n

GUI (Graphical User Interface) objects in an application. When you execute tests,
WinRunner uses these descriptions to locate the objects in your application. After @ Help
using the wizard, you will run a test and examine the results. ‘ ’

Lesson 3, Recording Tests teaches you how to record a test script and explains

the basics of Test Script Language (TSL)—Mercury Interactive’s C-like To@of
programming language designed for creating scripts. Chgpter

Lesson 4, Synchronizing Tests shows you how to synchronize a test so thatit |[#+Back
can run successfully even when an application responds slowly to input.

Lesson 5, Checking GUI Objects shows you how to create a test that checks
GUI objects. You will use the test to compare the behavior of GUI objects in
different versions of the sample application.

WinRunner Tutorial Page 7

Welcome to the WinRunner Tutorial

Lesson 6, Checking Bitmaps shows you how to create and run a test that
checks bitmaps in your application. You will run the test on different versions of
the sample application and examine any differences, pixel by pixel.

Lesson 7, Programming Tests with TSL shows you how to use visual gﬁﬁﬁz
programming to add functions and logic to your recorded test scripts.
@ Find
Lesson 8, Creating Data-Driven Tests shows you how to run a single test on
several sets of data from a data table. AFg;‘i’n
Lesson 9, Reading Text teaches you how to read and check text found in GUI 2 Help
objects and bitmaps.
Lesson 10, Creating Batch Tests shows you how to create a batch test that ‘ ’
automatically runs the tests you created in earlier lessons. =
Top of
Lesson 11, Maintaining Your Test Scripts teaches you how to update the GUI Chapter
object descriptions learned by WinRunner, so that you can continue to use your &Back
test scripts as the application changes.

Lesson 12, Where Do You Go from Here? tells you how to get started testing
your own application and where you can find more information about WinRunner.

WinRunner Tutorial Page 8

Welcome to the WinRunner Tutorial

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements of Books
the functions that are to be typed in literally. Online
Italics Italic text indicates variable names. #4 Find
Helvetica The Helvetica font is used for examples and statements Find
that are to be typed in literally. Again
[] Square brackets enclose optional parameters. @ Help
{1} Curly brackets indicate that one of the enclosed values ‘ ’
must be assigned to the current parameter.
In a line of syntax, three dots indicate that more items of . [=] .
. opo
the same format may be included. In a program example, Chgpter
three dots are used to indicate lines of a program that
have been intentionally omitted. e Back

A vertical bar indicates that either of the two options
separated by the bar should be selected.

WinRunner Tutorial Page 9

Introducing WinRunner

Books
This lesson: Online

* describes the benefits of automated testing #A Find

¢ introduces the WinRunner testing process AFinc_zl
gain

¢ takes you on a short tour of the WinRunner user interface 5
& Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 1, page 10

Introducing WinRunner

The Benefits of Automated Testing

If you have ever tested software manually, you are aware of its drawbacks.

Manual testing is time-consuming and tedious, requiring a heavy investment in

human resources. Worst of all, time constraints often make it impossible to gﬁﬁﬁz

manually test every feature thoroughly before the software is released. This

leaves you wondering whether serious bugs have gone undetected. #4 Find

Automated testing with WinRunner answers these problems. WinRunner AFg;?n

dramatically speeds up the testing process. You can create test scripts that check

all aspects of your application, and then run these tests on each new build. As ? Help

WinRunner runs tests, it simulates a human user by moving the mouse cursor

over the application, clicking Graphical User Interface (GUI) objects, and entering ‘ ’

keyboard input—but WinRunner does this faster than any human user. @l
Top of
Chapter
= Back

WinRunner Tutorial Lesson 1, page 11

Introducing WinRunner

With WinRunner you can also save time by running batch tests overnight.

Benefits of Automated Testing
WinRunner runs tests significantly faster than human Books
Fast Online
users.
. Tests perform precisely the same operations each time #A Find
Reliable L
they are run, thereby eliminating human error. Find
n
You can test how the software reacts under repeated Again
Repeatable . :
execution of the same operations.
‘? Help
You can program sophisticated tests that bring out hidden
Programmable . . o
information from the application. ‘ ’
. You can build a suite of tests that covers every feature in
Comprehensive L =]
your application.
Top of
. . - Chapter
Reusable You can reuse tests on different versions of an application,
even if the user interface changes. EBack

WinRunner Tutorial Lesson 1, page 12

Introducing WinRunner

Understanding the Testing Process

The WinRunner testing process consists of 6 main phases:

1 Running the RapidTest Script wizard on your application Books
Online
You run the RapidTest Script wizard on your application to teach WinRunner the
physical description of every GUI object the application contains. The wizard #4 Find
automatically generates a series of tests that you can immediately run on your =
application. Again

2 Creating additional tests scripts that test your application’s functionality D Help

WinRunner writes scripts automatically when you record actions on your script,
or you can program directly in Mercury Interactive’s Test Script Language (TSL). ‘ ’

3 Debugging the tests E]
. Top of
You debug the tests to check that they operate smoothly and without Cﬁgp?er
interruption.
= Back

4 Running the tests on a new version of the application

You run the tests on a new version of the application in order to verify the
application’s behavior.

5 Examining the test results

You examine the test results to pinpoint defects in the application.

WinRunner Tutorial Lesson 1, page 13

Introducing WinRunner

6 Reporting defects

If you have the Web Defect Manager or the Remote Defect Reporter, you can
report any defects to a database. The Web Defect Manager and the Remote

Defect Reporter are included in TestDirector, Mercury Interactive’s software test Books
management tool. Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 1, page 14

Introducing WinRunner

Exploring the WinRunner Window

Before you begin creating tests, you should familiarize yourself with the
WinRunner main window.

Books
Online

To open WinRunner:

Choose Programs > WinRunner > WinRunner on the Start menu. #A Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 1, page 15

Introducing WinRunner

The first time you start WinRunner, the Welcome to WinRunner window opens.
From the welcome window you can create a new test, open an existing test, or
run the RapidTest Script wizard.

: Books
Welcome To WinRunner Online
@4 Find
. o Find
WinRunner Again
‘? Help
D New Test O
Create a new test seHpt ‘ ’
- | Open Test
Open an ex‘isting- test sgr'ipt @
— Top of
] Chapter
— ¥ | Rapid Test Script Wizard ~a
—m dotornatically create test scr‘ii:;t.s
= Back
p Show on startup MERCURY INTERACTIVE

The first time you select one of these options, the WinRunner main screen opens
with the “What’s New in WinRunner” section of the help file on top. If you do not
want the welcome window to appear the next time you start WinRunner, clear
the Show on startup check box.

WinRunner Tutorial Lesson 1, page 16

WinRunner Tutorial

Int

ucing WinRunner

Each test you create or run is displayed by WinRunner in a test window. You can
open many tests at one time.

The WinRunner window
displays all open tests.

Each test appears in its own
test window. You use this
window to record, program,
and edit test scripts.

Buttons on the Standard
toolbar help you quickly open,
run, and save tests.

The User toolbar provides
easy access to test creation
tools.

The status bar displays
information about selected
commands and the current
test run.

o o (1
Books
Online
File! Edi | Create Fun Debug Tool: Settings ‘window Help
: =1z o @4 Find
S| Feity =] o] Glelaln] < |%] 8lo)ss| 55 x|
ﬁ C:AQAATest 1 @ Find
zet_window ("Flight Reservatioan", 21): ? Again
obi_type ("MsMaskWndClass", "0Z2795"); ﬁ
list_select_item ("Fly From:", "Frankfurt"™): # Item NMumber 12] @ He|p
list_select_item ("Fly To:", "London"): # Ttem Number 1 @ -
oh]_mouse click (327700, 114, 204, LEFT): ﬂ
obj_mouse_click ["FLIGHTT™, &89, 38, LEFT): H: ‘ ’
set_window ("Flights Table", 1);: ﬁ
list_activate item ("Flight", "13554 FRA 1024 AM LON i1 ﬁ
zet_window ("Flight Reservation", 7): L @
edit_set ("Name:", "John Smith"): 52 Top of
button press ("Insert Order": B, Chapter
obi_check guii™Insert Order", "listl.ckl"™, "guii"™, 19): E
obi_check bitmwap|("Insert Done...", "Imgl"™, 5): E "= Back
| | =
[Line: 4 |Run Name: v
0
|

17

Lesson 1, pa

Introducing WinRunner

The Standard toolbar provides easy access to frequently performed tasks, such
as opening, executing, and saving tests, and viewing test results.

Step Into
Record - Run from Break in

Open Context Sensitive Arrow Pause Function Test Results Books

‘ ‘ ‘ ‘ ‘ Online

| Fl(E] [y =] _s| 1505ba|m] 2 O8] 55 K2 |saFing

‘ ‘ ‘ Find

New Test Save Run Mode Run from Top Stop Step Toggle Add Watch Help Adgain

Breakpoint 9
‘? Help
The User toolbar displays the tools you frequently use to create test scripts. By

default, the User toolbar is hidden. ‘ ’

Top of

Chapter

= Back

WinRunner Tutorial Lesson 1, page 18

Introducing WinRunner

To display the User toolbar choose Window > User Toolbar. When you create
tests, you can minimize the WinRunner window and work exclusively from the

toolbar.
Books
I Record - Context Sensitive Online
. St .
Stop 4 Find
—— GUI Checkpoint for Object/Window
Find
I GUI Checkpoint for Multiple Objects Again
— Bitmap Checkpoint for Object/Window
‘? Help

—— Bitmap Checkpoint for Screen Area

— Database Checkpoint ‘ ’

Synchronization Point for Object/Window Property

— Synchronization Point for Object/Window Bitmap @
o i) Top of
I Synchronization Point for Screen Area Bitmap Chapter

— Get Text from Object/Window
= Back

| Get Text from Screen Area

—— Insert Function for Object/Window

- Insert Function from Function Generator

S |3 22|31 |& |85 S| |

The User toolbar is customizable. You can choose to add or remove buttons.

The commands on the Standard toolbar and the User toolbar are described in
detail in subsequent lessons.

WinRunner Tutorial Lesson 1, pa 9

Introducing WinRunner

Note that you can also execute many commands using softkeys. Softkeys are
keyboard shortcuts for carrying out menu commands. You can configure the
softkey combinations for your keyboard using the Softkey Configuration utility in
your WinRunner program group. For more information, see the “WinRunner at a Books
Glance” chapter in your WinRunner User’s Guide. Online

Now that you are familiar with the main WinRunner window, take a few minutes @4 Find
to explore these window components before proceeding to the next lesson.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 1, page 20

Getting Started with RapidTest

Boqks
This lesson: Online
® describes how WinRunner identifies GUI objects in an application # Find
® explains how to use the RapidTest Script wizard to learn descriptions of GUI AFiHC_i
objects and to generate tests gan
® shows you how to run a test ? Help
® helps you analyze the test results ‘ ’
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 2, page 21

Getting Started with RapidTest

How Does WinRunner Identify GUI Objects?

GUI applications are made up of GUI objects such as windows, buttons, lists, and
menus. Before you begin creating and running tests on an application, you should
use the RapidTest Script wizard, which learns the description of all the GUI

objects your application contains. The wizard opens windows, examines their GUI
objects, and saves the object descriptions in a GUI map file. Later, when you run #4 Find

Books
Online

tests, WinRunner uses this file to identify and locate objects. Find
When WinRunner learns the description of a GUI object, it looks at the object’s =
physical properties. Each GUI object has many physical properties such as ? Help
“class,” “label,” “width,” “height”, “handle,” and “enabled” to name a few.
WinRunner, however, only learns the properties that uniquely distinguish an ‘ ’
object from all other objects in the application. For more information regarding @l
properties, refer to the “Configuring the GUI Map” chapter in the WinRunner Top of
User’s Guide. Chapter
& Back

For example, when WinRunner looks at an OK button, it might recognize that the
button is located in an Open window, belongs to the pushbutton object class, and
has the text label “OK.”

WinRunner Tutorial Lesson 2, page 22

Getting Started with RapidTest

Spying on GUI Objects

To help you understand how WinRunner identifies GUI objects, examine the
objects in the sample Flight Reservation application.

Books
Online

L%‘ 1 Open the Flight Reservation application.
2

Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the #4 Find
Start menu. The Login window opens.

Find
Again
‘? Help

Agent Mame: I

Pazsword: I— %l ‘ ’
[B]

Top of

g 2 Start WinRunner. Chapter

Choose Programs > WinRunner > WinRunner on the Start menu. In the = Back
Welcome window, click the New Test button. If the Welcome window does not
open, choose File > New.

WinRunner Tutorial Lesson 2, page 23

Getting Started with RapidTest

3 Open the GUI Spy. This tool lets you “spy” on the properties of GUI
objects.

Choose Tools > GUI Spy. The GUI Spy opens. Position the GUI Spy on the

desktop so that both the Login window and the GUI Spy are clearly visible. Books
Online
E‘: WinRunner - [MNonamel] !E
Eile Edit Create Hun Debug Tool: Settings Window M Find
Hep IR
| T 1>~ o ¢ Fing
— Click the Spy button to spy on properties. i Again
Window Name:
| Spy [ﬁ? Help
Object Mame: Spyan
I % Dhjects ‘ ’
Description: windows
= &
Top of
Agent Mame: l— il Chgpter
Pazsword: I— ﬁl =
Help | Back
| |

— Shaow in description Help |
' Becorded properties

Al properties Cloze I

|Press ALT to choose commands

[Line: 12

WinRunner Tutorial Lesson 2, page 24

Getting Started with RapidTest

4 View the properties that provide a unique description of the OK button.

In the GUI Spy, click the Spy button. Move the pointer over objects in the Login

window. Notice that each object flashes as you move the pointer over it, and the
GUI Spy displays its properties. Place the pointer over the OK button and press Books
Left Ctrl + F3. This freezes the OK button’s description in the GUI Spy. Online
#4 Find
Click the Spy buttan to spy oh properties. Find
Window MName: Again
Spy 5
Object Name: Spy an ¢ Help
IDK & Dbjects
Description: © windows ‘ ’
{ e
clazs: push_buttan,
label: DK To%lof
} Chapter
& Back
H
— Show in description Help |
' Becorded properties
Al properties Close |

WinRunner Tutorial Lesson 2, page 25

Getting Started with RapidTest

5 Examine the properties of the OK button.

At the top of the dialog box, the GUI Spy displays the name of the window in
which the object is located.

In the Description box, the property names and values are listed. For example, gﬁﬁﬁz
“label: OK” indicates that the button has the text label “OK”, and “class:

push_button” indicates that the button belongs to the push button object class. #4 Find
As you can see, WinRunner needs only a few properties to uniquely identify the Find
object. Again

6 Take afew minutes to view the properties of other GUI objects in the Login 2 Help
window.

Click the Spy button and move the pointer over other GUI objects in the Login ‘ ’

window. @l
If you would like to view an expanded list of properties for each object, press Left gﬁgp‘t’ér

Ctrl + F3 to stop the current Spy, and then click All Properties in the Show in
Description box. Next, click the Spy button again and rest the pointer over the & Back
GUI objects in the Login window. Press Left Ctrl + F3 to freeze an object
description in the GUI Spy.

7 Exit the GUI Spy.
Click Close.

WinRunner Tutorial Lesson 2, page 26

Getting Started with RapidTest

Using the RapidTest Script Wizard

The RapidTest Script wizard enables you to quickly start the testing process. You
should run this wizard before starting to create test scripts.

Books
The RapidTest Script wizard performs two important tasks: Online
, , : o @ Find
® |t systematically opens the windows in your application and learns the
description of every GUI object. The wizard stores this information in a GUI Find
map file. Again
® |t automatically generates tests based on the information it learned as it 2 Help

navigated through the application.

To observe WinRunner’s learning and test creation processes, use the

RapidTest Script wizard on the Flight Reservation application. . =] .
op o
Chapter

= Back

Note: The RapidTest Script wizard is not available when either the Terminal
Emulator or the WebTest add-in is loaded. Therefore, if you are using these add-
ins, skip the remaining sections of this lesson.

WinRunner Tutorial Lesson 2, page 27

Getting Started with RapidTest

&‘.-;‘ 1 Log in to the Flight Reservation application.
P

If the Login window is open, type your name in the Agent Name field, and

Flight 1A,

J mercury in the Password field and click OK. The name you type must be at

least four characters long. Books
Online
If the Login window is not already open on your desktop, choose Programs >
WinRunner > Sample Applications > Flight 1A on the Start menu and then 4 Find
log in, as described in the previous paragraph. —
n

g 2 Open WinRunner. Again

If WinRunner is not already open, choose Programs > WinRunner > 2 Help

WinRunner on the Start menu.
3 Open a new test. ‘ ’

If the Welcome window is open, click the New Test button. Otherwise, choose =

; ; ; : Top of
File > New. A new test window opens in WinRunner. Chapter

= Back

WinRunner Tutorial Lesson 2, page 28

Getting Started with RapidTest

4 Start the RapidTest Script wizard.

Choose Create > RapidTest Script Wizard. Click Next in the wizard's Welcome
screen to advance to the next screen.

Books
RapidT est Script Wizard Online
Welcome to the # Find
-3 b I
—cript / izard | —
Again
Script wWizard will create test
zonipts g0 you can stark testing
immediately. ﬁ? He|p

To create your gorpts, Script Wizand will:

= "w'alk through'' your application. ‘ ’

|Learn your application's
Graphical User Interface [GUI).

[B]
Top of
Chapter
Cancel I <<Eack| Hestz» I Help |
= Back

5 Point to the application you want to test.

Click the button and then click anywhere in the Flight Reservation
application. The application’s window name appears in the wizard's Window
Name box. Click Next.

WinRunner Tutorial Lesson 2, page 29

Getting Started with RapidTest

6 Select the User Interface test.

The wizard can automatically generate tests. For the purposes of this exercise,
confirm that the User Interface Test check box is selected and that the GUI

Regression Test check box is cleared. The User Interface test will check that Books
the Flight Reservation application complies with Microsoft user interface Online
standards. Click Next.
@ Find
Finc_i
Note: A regression test is performed when the tester wishes to see the progress Again
of the testing process by performing identical tests before and after a bug has D Help

been fixed. A regression test allows the tester to compare expected test results

with the actual results. ‘ ’

[B]
. . Top of
7 Accept the default navigation controls. Chapter
Navigation controls tell WinRunner which GUI objects are used to open &= Back

windows. The Flight Reservation application uses the default navigation controls
(... and > >) so you do not need to define additional controls. Click Next.

8 Set the learning flow to “Express.”

The learning flow determines how WinRunner walks through your application.
Two modes are available: Express and Comprehensive. Comprehensive mode
lets you customize how the wizard learns GUI object descriptions. First-time
WinRunner users should use Express mode.

WinRunner Tutorial Lesson 2, page 30

Getting Started with RapidTest

Click the Learn button. The wizard begins walking through the application,
= pulling down menus, opening windows, and learning object descriptions. This

process takes a few minutes.

If a pop-up message notifies you that an interface element is disabled, click the

Continue button in the message box. Books
Online

If the wizard cannot close a window, it will ask you to show it how to close the

window. Follow the directions on the screen. 4 Find

9 Accept “No” in the Start Application screen. Find

Again

You can choose to have WinRunner automatically open the Flight Reservation

application each time you start WinRunner. Accept the default “No.” Click Next. 2 Help

10 Save the GUI information and a startup script. ‘ ’

The wizard saves the GUI information in a GUI map file.

The wizard also creates a startup script. This script runs automatically each time Top@of

you start WinRunner. It contains a command which loads the GUI map file so Chapter

that WinRunner will be ready to test your application. &Back

Accept the default paths and file names or define different ones. Make sure that
you have write permission for the selected folders. Click Next.

11 Save the User Interface test.

Accept the default path and file name Ul for the User Interface test and click
Next.

12 Click OK in the Congratulations screen.

The User Interface test is displayed in a WinRunner test window.

WinRunner Tutorial Lesson 2, page 31

Getting Started with RapidTest

Running the User Interface Test

You are now ready to run the User Interface test script on the Flight Reservation

application. The User Interface test determines whether the application complies
with the Microsoft user interface standards. It checks that: gﬁﬁﬁz
® GUI objects do not overlap & Find
® GUI objects are aligned in windows Find
. S . Agai
® text labels on GUI objects begin with capital letters gan
® text labels on GUI objects are clearly visible ? Help
® OK and Cancel buttons appear in every window ‘ ’
® asystem menu is available in every window =
Top of
To run the User Interface test: Chapter
1 Check that WinRunner and the Flight Reservation application are still open |&=pgack
on your desktop.

2 Make sure that the Ul test window is active in WinRunner.

Click the title bar of the Ul test window.

WinRunner Tutorial Lesson 2, page 32

Getting Started with RapidTest

Eﬁ 3 Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test

dialog box opens.
Books
Online
4 Find
Test Bun Mame:
Cancel | -
Flnc_i
™ Use Debug maode [don't display this dialog box) Help | Again
¥ Display test results at end of rn & Help
4 Choose a Test Run name. ‘ ’
Define the name of the directory in which WinRunner will store the results of the N =] .
test. Accept the default name “resl.” Cﬁgp?er
Note the Display Test Results at end of run check box at the bottom of the &Back
dialog box. When this check box is selected, WinRunner automatically displays

the test results when the test run is completed. Make sure that this check box is
selected.

5 Run the Ul test.

Click OK in the Run Test dialog box. WinRunner immediately begins running the
Ul test. Watch how WinRunner opens each window in the Flight Reservation
application.

WinRunner Tutorial Lesson 2, page 33

Getting Started with RapidTest

6 Review the test results.

When the test run is completed, the test results automatically appear in the
WinRunner Test Results window. See the next section to learn how to analyze

the test results. Books

Online

_ @4 Find
Analyzing Test Results —
n

Again

Once a test run is completed, you can immediately review the test results in the
WinRunner Test Results window. WinRunner color-codes results (greenindicates | & g
passed and red indicates failed) so that you can quickly draw conclusions about

the success or failure of the test. ‘ ’
E 1 Make sure that the WinRunner Test Results window is open and displays the Ul =

test results. If the WinRunner Test Results window is not currently open, first gﬁgpft’ér

click the Ul test window to activate it, and then choose Tools > Test Results or

click the Test Results button. “=Back

WinRunner Tutorial Lesson 2, page 34

Getting Started with RapidTest

i’u rre?]lts’g:zs the name of the E‘ WinRunner Test Regults - [D:\Program Files\Mercury Interactive\WinBunner\tmphui] [_[O] BO‘?kS
Tools Window ===l Online
2 Shows the current results \2
directory name. - &h Find
¥ DZ]Test Result:
zassigcz)vﬁa\?llsg.ther atestrun |: +% Total number of bitmap checkpaints: 0 Find
+% Total number of GUI checkpoints: 0 Agai n
4 Includes general information & General Information
operaior name, andota run ime. ? Help
To view these details, double click
the Information icon. ‘ ’
5 The test log section lists the
major events that occurred during Line Ewvent Detailz Result Tirme 1=
the test run. It also lists the test 1 start run ui n 00:00:00 — @
script line at which each event 17 User Message Check User Interface for window |- 00:00:m Top of
occurred. 17 tl_step Step: Mnemonic check, Status: Fq-- 00:00:02 Chapter
17 t_step Step: Mnemonic check, Status Fq--- 00:00:02
17 tl_step Step: Mnemonic check, Status: Fi-- 00 00:02 = Back
17 tl_step Step: Buttons check., Status: Fail, |- 00:00:03
17 tL_step Step: Buttons check., Status: Fail, |- 00:00:03
19 User Message Check User Interface far window |- 00:00:05
19 tl_step Step: label check, Status: Fall, De--- 00:00:05
19 tl_step Step: Buttons check, Status: Fall, |- 00:00:08 -
I 4
0 0

WinRunner Tutorial

Getting Started with RapidTest

2 Review the results and determine whether the Flight Reservation
application complies with the Microsoft user interface standards.

3 Close the Test Results window.
Choose File > Exit in the WinRunner Test Results window. gﬁﬁﬁz
4 Save the GUI Map.
P @ Find
Choose Tools > GUI Map Editor. Then choose File > Save from within the GUI .
Map Editor. The Save GUI file dialog box appears. Open the folder for the Ul AFg;‘i’n
test and save the GUI Map as Ulmap.gui.
‘? Help
Note: You should save your temporary GUI map file whenever you close ‘ ’
WinRunner or close a test script you want to save. A temporary GUI map file
contains the information that WinRunner learns about GUI objects in your . [B] .
application. Cﬁgp?er
You can specify the name and location of your GUI map file. Your GUI map file = Back

must always have the .gui extension. For the lessons in this tutorial, save your
GUI map files in the folder where you save the test. When you create a new test
or open an existing test in this tutorial, you must load the GUI map file. For more
information on saving and loading the GUI map, refer to the “Creating the GUI
Map” chapter in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 2, page 36

Getting Started with RapidTest

5 Close the Ul test.

Choose File > Close.

6 Close the Flight Reservation application.
Books

Choose File > Exit. Online
@4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 2, page 37

Recording Tests

Books
This lesson: Online
® describes Context Sensitive and Analog record modes #4 Find
¢ shows you how to record a test script Find
Again
® helps you read the test script 5
¢ Help
® shows you how to run the recorded test and analyze the results
[=]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 3, page 38

Recording Tests

Choosing a Record Mode

By recording, you can quickly create automated test scripts. You work with your

application as usual, clicking objects with the mouse and entering keyboard input.
. . . Books
WinRunner records your operations and generates statements in TSL, Mercury Online
Interactive’s Test Script Language. These statements appear as a script in a
\ WinRunner test window. #A Find
Context @ Analog Find
Sensitive g Before you begin recording a test, you should plan the main stages of the test and Again
select the appropriate record mode. Two record modes are available: Context
Sensitive and Analog. ? Help
Context Sensitive ‘ ’
Context Sensitive mode records your operations in terms of the GUI objects in =]

. . . . e . R . Top of
your application. WinRunner identifies each object you click (such as a window, Chapter
menu, list, or button), and the type of operation you perform (such as press, -
enable, move, or select). Back

For example, if you record a mouse click on the OK button in the Flight
Reservation Login window, WinRunner records the following TSL statement in
your test script:

button_press ("OK");

WinRunner Tutorial Lesson 3, page 39

Recording Tests

When you run the script, WinRunner reads the command, looks for the OK
button, and presses it.

e
Analog Books
. : onli
In Analog mode, WinRunner records the exact coordinates traveled by the e
mouse, as well as mouse clicks and keyboard input. For example, if you click the & Find
OK button in the Login window, WinRunner records statements that look like this: —
n
. . . Agai
When this statement is recorded...it really means: gan
move_locator_track (1); mouse track 2 Help
mtype ("<T110><kLeft>-"); left mouse button press
mtype ("<kLeft>+"); left mouse button release ‘ ’
When you run the test, WinRunner retraces the recorded movements using [O]
absolute screen coordinates. If your application is located in a different position gﬁgp‘t’ér
on the desktop, or the user interface has changed, WinRunner is not able to
execute the test correctly. “=Back

You should record in Analog mode only when exact mouse movements are an
important part of your test, for example, when recreating a drawing.

WinRunner Tutorial Lesson 3, page 40

Recording Tests

When choosing a record mode, consider the following points:

Choose Context Sensitive if... Choose Analog if...
L . . Books
The application contains GUI objects. The application contams bitmap Online
areas (such as a drawing area).
. Exact mouse movements are # Find
Exact mouse movements are not required. :
required. Find
You plan to reuse the test in different Again
versions of the application.
‘? Help

If you are testing an application that contains both GUI objects and bitmap areas, ‘ ’
you can switch between modes as you record. This will be discussed later in the

lesson. [O]
Top of
Chapter

= Back

WinRunner Tutorial Lesson 3, page 41

Recording Tests

Recording a Context Sensitive Test

In this exercise you will create a script that tests the process of opening an order

in the Flight Reservation application. You will create the script by recording in Books
Context Sensitive mode. Online
g 1 Open WinRunner. #h Find
If WinRunner is not already open, choose Programs > WinRunner > Find
WinRunner on the Start menu. Again
2 Open anew test. 2 Help
If the Welcome window is open, click the New Test button. Otherwise, choose ‘ ’
File > New. A new test window opens in WinRunner.
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 3, page 42

Recording Tests

&‘.-;‘ 3 Start the Flight Reservation application and log in.
i

P

Choose Programs > WinRunner > Sample Applications > Flight 1A on the

Flight 14 o
Start menu. In the Login window, type your name and the password mercury,
and click OK. The name you type must be at least four characters long. Position Books
the Flight Reservation application and WinRunner so that they are both clearly Online
visible on your desktop. .
y P @4 Find
s, Flight Reservation =] Find
File Edit Analyziz Help Again
D= | 2 Help
— Flight Schedule: — Order Information; :
D ate of Flight; Marme: Order Ho: ‘ ’
N [|
Fly From: Departure Tine: Flight Ma: @
Top of
I j I | Chapter
Fly Ta Arrival Time: Airline:
| =] | = Back
Claszs: Tickets: I—
£ Firat "_: =
L%‘ £ Buginess Frice: I
g
< ‘e Tatal:
Flights . Ezaramy I
|rzert Order I pdate Drderl [elete Mrder, |

WinRunner Tutorial Lesson 3, page 43

Recording Tests

ﬂ 4 Start recording in Context Sensitive mode.

In WinRunner, choose Create > Record—Context Sensitive or click the
Record button on the toolbar. From this point on, WinRunner records all mouse

clicks and keyboard input. Books
Online
5 Open order #3.
In the Flight Reservation application, choose File > Open Order. In the Open #4 Find
Order dialog box, select the Order No. check box. Type 3 in the adjacent box, Find
and click OK. Again
Watch how WinRunner generates a test script in the test window as you work. 2 Help

j 6 Stop recording. ‘ ’

In WinRunner, choose Create > Stop Recording or click the Stop button on the

toolbar. =]
Top of
E 7 Save the test. Chapter
Choose File > Save or click the Save button on the toolbar. Save the test as & Back

lesson3 in a convenient location on your hard drive. Click Save to close the Save
Test dialog box.

Note that WinRunner saves the lesson3 test in the file system as a folder, and
not as an individual file. This folder contains the test script and the results that
are generated when you run the test.

WinRunner Tutorial Lesson 3, page 44

Recording Tests

Note: If you are not performing all lessons in this tutorial during a single session,
save the temporary GUI map. (Choose Tools > GUI Map Editor, then View >

GUI Files, and then choose File > Save). Books
Online
Whenever you close WinRunner or close a test script you want to save, you must .
save your temporary GUI map file. A temporary GUI map file contains the #4 Find
information that WinRunner learns about GUI objects in your application. Find
Again
You can specify the name and location of your GUI map file. Your GUI map file 2 Help

must always have the .gui extension. When you create a new test or open an
existing test in this tutorial, you must load the GUI map file. For more information

on saving and loading the GUI map, refer to the “Creating the GUI Map” chapter ‘ ’
in your WinRunner User’s Guide.]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 3, page 45

Recording Tests

Understanding the Test Script

In the previous exercise, you recorded the process of opening a flight order in the
Flight Reservation application. As you worked, WinRunner generated a test script
similiar to the following:

Books
Online

set_window ("Flight Reservation", 10);
menu_select_item ("File;Open Order..."); #4 Find
set_window ("Open Order", 10);

button_set ("Order No.", ON); ,fgl?n
edit_set ("Edit", "3");
button_press ("OK"); 2 Help

As you can see, the recorded TSL statements describe the objects you selected ‘ ’
and the actions you performed. For example, when you selected a menu item,
WinRunner generated a menu_select_item statement. =]

Top of
Chapter

The following points will help you understand your test script:

= Back

®* When you click an object, WinRunner assigns the object a logical name, which is
usually the object’s text label. The logical name makes it easy for you to read the
test script.

For example, when you selected the Order No. check box, WinRunner recorded
the following statement:

button_set ("Order No.", ON);

“Order No.” is the object’s logical name.

WinRunner Tutorial Lesson 3, page 46

Recording Tests

® WinRunner generates a set_window statement each time you begin working in
a new window. The statements following a set_window statement perform
operations on objects within that window. For example, when you opened the
Open Order dialog box, WinRunner generated the following statement:

Books
Online

@& Find

set_window ("Open Order", 10);

® When you enter keyboard input, WinRunner generates a type, an obj_type, or
an edit_set statement in the test script. For example, when you typed 3 in the Find

) : Agai
Order Number box, WinRunner generated the following statement: gan
2
edit_set ("Edit", "3"); ¢ Help
For more information about the different ways in which WinRunner records ‘ ’
keyboard input, choose Help > TSL Online Reference. =
Top of
Chapter
= Back

WinRunner Tutorial Lesson 3, page 47

Recording Tests

Recording in Analog Mode

In this exercise you will test the process of sending a fax. You will start recording
in Context Sensitive mode, switch to Analog mode in order to add a signature to

the fax, and then switch back to Context Sensitive mode. gﬁﬁﬁz
1 In the lesson3 test, place the cursor below the last line of the script. & Find
You will add the new test segment to the lesson3 test. If the test is not already Find
open, choose File > Open and select the test. In the lesson3 test window, place Again
the cursor below the last line of the test.
‘? Help

ﬂ 2 Start Recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the ‘ ’
toolbar.
[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 3, page 48

Recording Tests

3 Open the Fax Order form and fill in a fax number.

In the Flight Reservation application, choose File > Fax Order. In the Fax
Number box, type “4155551234".

Fax Order No. 14 [_ (O] x] Books
Online
—Fax
MHame: Order: Flight: Date: M)
Jack Londan [f4 [eozme [rovozess Find
Fram: Departure: To Barrival: Fi nq
[Denver [11928M [Londan [06:22 P Again
Clags: B Tickets: Ticket Price: Total: cg'—:' Help
[First Ji J336.60 J336.60
Fax Mumber: Agent Signature: ‘ ’
|i415)555-1234) =
Top of
. 7 E Chapter
¥ Send Signature with order
= Back
Prewview Fax I Send I Cancel I LClear Signature I

4 Select the Send Signature with Order check box.
5 Sign the fax in Context Sensitive mode.
Use the mouse to sign your name in the Agent Signature box.

Watch how WinRunner records your signature.

WinRunner Tutorial Lesson 3, page 49

Recording Tests

6 Clear the signature.

Click the Clear Signature button.

7 Move the Fax Order window to a different position on your desktop. ’
Books
Before switching to Analog mode, reposition the window in which you are Online
working.
g @ Find
8 Sign the fax again in Analog mode.
Find
Press F2 on your keyboard or click the Record button again to switch to Analog Again
mode. Sign your name in the Agent Signature box.
‘? Help
Watch how WinRunner records your signature.

9 Switch back to Context Sensitive mode and send the fax. ‘ ’
Press F2 or click the Record button to switch back to Context Sensitive mode. [O]
Click Send. The application will simulate the process of sending the fax. gﬁgp‘t’ér

10 Stop Recording.
Q p g ¢=Back

Choose Create > Stop Recording or click the Stop button.

E 11 Save the test.

Choose File > Save or click the Save button.

WinRunner Tutorial Lesson 3, page 50

Recording Tests

Running the Test and Analyzing the Results

You are now ready to run your recorded test script and to analyze the test results.

WinRunner provides three modes for running tests. You select a mode from the ’
toolbar. gﬁﬁnz
® Use Verify mode when running a test to check the behavior of your application, & Find
and when you want to save the test results.
Find
® Use Debug mode when you want to check that the test script runs smoothly Again
without errors in syntax. See Lesson 7 for more information. P
¢ Help
¢ Use Update mode when you want to create new expected results for a GUI
checkpoint or bitmap checkpoint. See Lessons 5 and 6 for more information. ‘ ’
To run the test: [O]
Top of
1 Check that WinRunner and the main window of the Flight Reservation Chapter
application are open on your desktop.
= Back
2 Make sure that the lesson3 test window is active in WinRunner.

Click the title bar of the lesson3 test window. If the test is not already open,
choose File > Open and select the test.

3 Make sure the main window of the Flight Reservation application is active.

If any dialog boxes are open, close them.

WinRunner Tutorial Lesson 3, page 51

Recording Tests

|—_|V9rify -1 4 Make sure that Verify mode is selected in the toolbar.

=| 5 Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test

dialog box opens. Accept the default test run name “res1.” Make sure that the gﬁﬁﬁz
Display test results at end of run check box is selected.

6 Run the test. & Find
Click OK in the Run Test dialog box. WinRunner starts running the test. AFg;‘i’n
Watch how WinRunner opens windows and selects objects. Also watch what D Help

happens when WinRunner draws the signature in Context Sensitive mode and in

Analog mode. ‘ ’

7 Review the test results.
=]

When the test run is completed, the test results appear in the WinRunner Test Top of
Results window. Note that the test result is “OK”, indicating that the test was run Chapter
successfully.

= Back

8 Close the test results.
Choose File > Exit.
9 Close the lesson3 test.
Choose File > Close.
10 Close the Flight Reservation application.

Close the Fax Order dialog box and then choose File > Exit.

WinRunner Tutorial Lesson 3, page 52

Recording Tests

Recording Tips

® Before starting to record, you should close applications that are not required for

the test.

Books
® Create the test so that it ends where it started. For example, if the test opens an Online
application, make sure that it also closes the application at the end of the test P
run. This ensures that WinRunner is prepared to run repeated executions of the Find
same test. Find

Again

® When recording in Analog mode, avoid holding down the mouse button if this
results in a repeated action. For example, do not hold down the mouse button to 2 Help
scroll a window. Instead, scroll by clicking the scrollbar arrow repeatedly. This

enables WinRunner to accurately execute the test. ‘ ’
® Before switching from Context Sensitive mode to Analog mode during a]
recording session, always move the current window to a new position on the Top of

desktop. This ensures that when you run the test, the mouse pointer will reach Chapter
the correct areas of the window during the Analog portion of the test.

= Back

WinRunner Tutorial Lesson 3, page 53

Recording Tests

® When recording, if you click a non-standard GUI object, WinRunner generates a
generic obj_mouse_click statement in the test script. For example, if you click a
graph object, it records:

obj_mouse_click (GS_Drawing, 8, 53, LEFT); BE%Iks
Online

If your application contains a non-standard GUI object that behaves like a i Fi

. . . . Find
standard GUI object, you can map this object to a standard object class so that
WinRunner will record more intuitive statements in the test script. For more Find
information refer to the “Configuring the GUI Map” chapter in your WinRunner Again
User’s Guide. 2 Help

® When recording, if you click an object whose description was not learned by the
RapidTest Script wizard, WinRunner learns a description of the object and adds ‘ ’
it to a temporary GUI map file. For more information, refer to the “Creating the
GUI Map” chapter in your WinRunner User’s Guide. =]

Top of
Chapter

® To easily switch between Context Sensitive and Analog modes, press F2.

= Back

WinRunner Tutorial Lesson 3, page 54

Synchronizing Tests

Books
This lesson: Online

¢ describes when you should synchronize a test #h Find

® shows you how to synchronize a test AFinc_i
gain

® shows you how to run the test and analyze the results >
¢ Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 55

Synchronizing Tests

When Should You Synchronize?

When you run tests, your application may not always respond to input with the
same speed. For example, it might take a few seconds:

to retrieve information from a database

for a window to pop up

for a progress bar to reach 100%

for a status message to appear

WinRunner waits a set time interval for an application to respond to input. The
default wait interval is up to 10 seconds. If the application responds slowly during

a test run, WinRunner’s default wait time may not be sufficient, and the test run
may unexpectedly fail.

If you discover a synchronization problem between the test and your application,
you can either:

Increase the default time that WinRunner waits. To do so, you change the value
of the Timeout for Checkpoints and CS Statements option in the Run tab of
the General Options dialog box (Settings > General Options). This method
affects all your tests and slows down many other Context Sensitive operations.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 56

Synchronizing Tests

® Insert a synchronization point into the test script at the exact point that the
problem occurs. A synchronization point tells WinRunner to pause the test run in
order to wait for a specified response in the application. This is the
recommended method for synchronizing a test with your application.

Boqks
In the following exercises you will; Online
O create a test that opens a new order in the Flight Reservation application and 4 Find
inserts the order into the database Find
Again
O change the synchronization settings
. . . ‘? Help
O identify a synchronization problem
O synchronize the test ‘ ’
O run the synchronized test (o]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 4, page 57

Synchronizing Tests

Creating a Test

=

Flight 14

@

1

2

3

In this first exercise you will create a test that opens a new order in the Flight
Reservation application and inserts the order into a database.
Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner >
WinRunner on the Start menu. If the Welcome window is open, click the New
Test button. Otherwise, choose File > New. A new test window opens.

Start the Flight Reservation application and log in.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury,
and click OK. Reposition the Flight Reservation application and WinRunner so
that they are both clearly visible on your desktop.

Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar. WinRunner will start recording the test.

Create a new order.

Choose File > New Order in the Flight Reservation application.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 58

Synchronizing Tests

5 Fill in flight and passenger information.

s, Flight Reservation =]
Fil= Edit pnalpziz Help
e] = B |
nter
tomorrow's — Flight Schedule: ———— — Order Information:
datei .
MaMe/IIDTD/YY D ate of Flight; Marme: Order Ho:
format. |_ e I I
Fly From: Departure Tine: Flight Ma:
[] Select Los { =
Angeles. | J I I
Fly Ta Arrival Time: Airline:
[J Select San [-
Francisco. | J I I
Clazs:
Tickets: I
= First _
. . H”H " Business Al I
[J Clickthe Flights g s Total
button, then Econonmy otal: I
double-click a w
flight. [rzert Drder I U pdate Drderl [Delete Drder |

6 Insert the order into the database.

WinRunner Tutorial

Click the Insert Order button. When the insertion is complete, the “Insert Done”
message appears in the status bar.

[] Enter your name.

[Select First Class.

Lesson 4,

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

page 59

Synchronizing Tests

7 Delete the order.

Click the Delete Order button and click Yes in the message window to confirm

the deletion.
. Book

j 8 Stop recording. online
Choose Create > Stop Recording or click the Stop button. 4 Find

n
9 Save the test.

E Find
Choose File > Save. Save the test as lesson4 in a convenient location on your Again
hard drive. Click Save to close the Save Test dialog box. 2 Hel

¢ Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 4, page 60

Synchronizing Tests

Changing the Synchronization Setting

The default interval that WinRunner waits for an application to respond to input is
10 seconds. In the next exercise you will identify a synchronization problem and
add a synchronization point to solve it. To run the test you have just recorded with
a synchronization problem, you need to change the default synchronization
setting.

1 Open the General Options dialog box.

Choose Settings > General Options.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 61

Synchronizing Tests

2 Click the Run tab.

General Options
Text Recognition | Erwironment | Folders I Current Test I
Fecord Run | Miszellaneous
Drelay for window synchronization; Im millizeconds
Timeout for checkpaints and CS statements: m milliseconds

Threzhald for ditference between bitmaps: IEI 3: pixels

™ Bunin batch mode
¥ Beep when checking a windaow
¥ Ereak when verification fails

™ Fail test when Context Sensitive emmors ocour

IV Fail test when single property check fails Advanced... |
Ok I Cancel | Apply | Help |

3 Change the value to 1000 milliseconds (1 second).

Change the value to 1000.

In the Timeout for Checkpoints and CS statements box, change the value to

“1000".
4 Click OK to close the dialog box.

WinRunner Tutorial

Lesson 4,

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

page 62

Synchronizing Tests

Identifying a Synchronization Problem

You are now ready to run the lesson4 test. As the test runs, look for a
synchronization problem.

Books
1 Make sure that the lesson4 test window is active in WinRunner. Online
Click the title bar of the lesson4 test window. @ Find
= 2 Choose Run from Top. Find
liﬁ P Again

Choose Run > Run from Top or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “resl1.” ? Help

3 Run the test. ‘ ’

Click OK in the Run Test dialog box. WinRunner starts running the test. Watch

what happens when WinRunner attempts to click the Delete button. To%lof

Chapter

4 Click Pause in the WinRunner message window.

WinRunner fails to click the Delete Order button because the button is still & Back
disabled. This error occurred because WinRunner did not wait until the Insert
Order operation was completed.

WinRunner Tutorial Lesson 4, page 63

Synchronizing Tests

Synchronizing the Test

In this exercise you will insert a synchronization point into the lesson4 test script.
The synchronization point will capture a bitmap image of the “Insert Done”

message in the status bar. Later on when you run the test, WinRunner will wait gﬁﬁﬁz
for the “Insert Done” message to appear before it attempts to click the Delete
Order button. #A Find
1 Make sure that the lesson4 test window is active in WinRunner. AFg;?n
Click the title bar of the lesson4 test window. 5
& Help

2 Place the cursor at the point where you want to synchronize the test.

Add a blank line below the button_press ("Insert Order"); statement. Place the ‘ ’
cursor at the beginning of the blank line. @l

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 64

Synchronizing Tests

% 3 Synchronize the test so that it waits for the “Insert Done” message to
appear in the status bar.

Choose Create > Synchronization Point > For Object/Window Bitmap or

click the Synchronization Point for Object/Window Bitmap button on the User Books
toolbar. Online
Use the pointer to click the status bar in the Flight Reservation window. @& Find
WinRunner automatically inserts an obj_wait_bitmap synchronization point into .
the test script. This statement instructs WinRunner to wait 1 second for the AFg;?n
“Insert Done” message to appear in the status bar.

‘? Help

4 Manually change the 1 second wait in the script to a 10 second wait.

The one-second wait which was inserted in the previous step isn’'t long enough, ‘ ’
so find the statement:

obj_wait_bitmap("Insert Done...", "Img1", 1); Top@m‘
Chapter
and change the 1 at the end of the statement to a 10, to indicate a 10 second &= Back

wait.

WinRunner Tutorial Lesson 4, page 65

Synchronizing Tests

h .
E 5 Save the test

Choose File > Save or click the Save button.

A synchronization point appears as obj_wait_bitmap or win_wait_bitmap
statements in the test script. For example:

obj_wait_bitmap("Insert Done...", "Img1", 10);

Insert Done... is the object’s logical name.
Img1l is the file containing a captured image of the object.

10 is the time (in seconds) that WinRunner waits for the image to appear in the
application. This time is added to the default time defined by the timeout-msec
testing option. (In the above exercise, WinRunner waits a total of 11 seconds).

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 66

Synchronizing Tests

Running the Synchronized Test

|Verify 'I

In this exercise you will run the synchronized test script and examine the test
results.

Confirm that the lesson4 test window is active in WinRunner.
Click the title bar of the lesson4 test window.

Confirm that Verify mode is selected in the Standard toolbar.
Verify mode will stay in effect until you choose a different mode.
Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test
dialog box opens. Accept the default name “res2.” Make sure that the Display
test results at end of run check box is selected.

Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test from the
first line in the script.

Watch how WinRunner waits for the “Insert Done” message to appear in the
status bar.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 67

Synchronizing Tests

5 Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window. Note that a “wait for bitmap” event appears in green in the test
log section. This indicates that synchronization was performed successfully. You
can double-click this event to see a bitmap image of the status bar.

\ Img1.bmp [expected) M=l E3

| Insert Daone. .

Close the Test Results window.

Choose File > Exit.

Close the lesson4 test.

Choose File > Close in WinRunner.

Close the Flight Reservation application.

Choose File > Exit.

Change the timeout value back to 10000 milliseconds (10 seconds).

Choose Settings > General Options to open the General Options dialog box.
Click the Run tab. In the Timeout for Checkpoints and CS statements box,
change the current value to “10000”. Click OK to close the dialog box.

To learn about additional synchronization methods, read the “Synchronizing the
Test Run” chapter in your WinRunner User’s Guide.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 4, page 68

Checking GUI Objects

Boqks
This lesson: Online
* explains how to check the behavior of GUI objects #A Find
® shows you how to create a test that checks GUI objects AFiHC_i
gain
® shows you how to run the test on different versions of an application and
examine the results ? Help
[=]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 5, page 69

Checking GUI Objects

How Do You Check GUI Objects?

When working with an application, you can determine whether it is functioning

properly according to the behavior of its GUI objects. If a GUI object does not Books
respond to input as expected, a defect probably exists somewhere in the Online
application’s code.
@ Find
You check GUI objects by creating GUI checkpoints. A GUI checkpoint examines Find
the behavior of an object’s properties. For example, you can check: Again
Fred Finstone. the content of a field 2 Help
' Business® Whether a radio button is on or off ‘ ’
whether a pushbutton is enabled or disabled =
1 Top of
To create a GUI checkpoint for a single object, you first point to it in your Chapter
application. If you single-click the object, a checklist with the default checks for &Back
the object you selected is inserted into your test script. A checklist contains

information about the GUI object and the selected properties to check. If you
double-click the object, the Check GUI dialog box opens and displays the object
you selected. Select the properties you want to check, and click OK to insert a
checklist for the object into your test script.

WinRunner Tutorial Lesson 5, page 70

This dial%g Do &ji|Check GUI - D:\Program Files\Mercury Interactive\WinRunner\tmp\noname7\chklist\list1.ckl [E3
opens when T O O ==
you double- | T T
click the Insert Addall | Selectal | Clearall |11 funchion
Order push S
button. [Objects [Properties =
E||:|j Flightz T able MHame | Arguments | Enpected Walue | g
b oK & Enabled ON —
Select the '% Focuszed OFF S
properties you [5@ Height 23 5]
want to check. O Label ak. =
The default 19 width 34 o,
check for a push ==
button is O [% = 125 I—.
“Enabled”. O 170 =

¥ Highlight Selected Object ok | Cancel | Help |

Checking GUI Objects

Books
Online

@& Find

Find
Again

‘? Help

4

Whether you choose to check an object’s default properties or you specify the
properties of an object you want to check, WinRunner captures the current
values of those properties and saves this information as expected results. It then
inserts an obj_check_gui statement into the test script if you are checking an
object, or a win_check_gui statement if you are checking a window.

When you run this test on a new version of the application, WinRunner compares
the object’s expected behavior with its actual behavior in the application.

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 5, page 71

Checking GUI Objects

Adding GUI Checkpoints to a Test Script

In this exercise you will check that objects in the Flight Reservation Open Order

dialog box function properly when you open an existing order. ’
Books
. Online
g 1 Start WinRunner and open a new test.
If WinRunner is not already open, choose Programs > WinRunner > #4 Find
WinRunner on the Start menu. If the Welcome window is open, click the New Find
Test button. Otherwise, choose File > New. A new test window opens. Again
H!‘i?‘ 2 Start the Flight Reservation application and log in. B Help
& ’
Flight 14 Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury, ‘ ’
and click OK. Reposition the Flight Reservation application and WinRunner so
that they are both clearly visible on your desktop. Tol?of
o . h
ﬂ 3 Start recording in Context Sensitive mode. Chapter
Choose Create > Record—Context Sensitive or click the Record button onthe | Back

User toolbar.

WinRunner Tutorial Lesson 5, page 72

Checking GUI Objects

4 Open the Open Order dialog box.

Choose File > Open Order in the Flight Reservation application.

Open Order M=l E3 B%ks
— Search: Online
@ Find
[FElight Date I :inc_i
i gain
[Order Mo. I—
‘? Help
Ik | LCancel | ‘ ’
m 5 Create a GUI checkpoint for the Order No. check box. Tol?of
Choose Create > GUI Checkpoint > For Object/Window, or click the GUI Chapter
Checkpoint for Object/Window button on the User toolbar. &Back

Use the {7 pointer to double-click the Order No. check box. The Check GUI
dialog box opens and displays the available checks. Accept the default check,
“State.” This check captures the current state (off) of the check box and stores it
as expected results.

Click OK in the Check GUI dialog box to insert the checkpoint into the test script.
The checkpoint appears as an obj_check_gui statement.

WinRunner Tutorial Lesson 5, page 73

Checking GUI Objects

6 Enter “4” as the Order No.
Mark the Order No. check box. Click in the Order No. text box and type 4.

m 7 Create another GUI checkpoint for the Order No. check box.

Books
Choose Create > GUI Checkpoint > For Object/Window or click the Online
GUI Checkpoint for Object/Window button on the User toolbar. 4 Find
n
Use the {m pointer to single-click the Order No. check box. WinRunner .
immediately inserts a checkpoint into the test script (an obj_check_gui AFg;‘i’n

statement) that uses the default check “State.” (Use this shortcut when you want
to use only the default check for an object.) This check captures the current state 2 Help
(on) of the check box and stores it as expected results. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 5, page 74

Checking GUI Objects

m 8 Create a GUI checkpoint for the Customer Name check box.
Choose Create > GUI Checkpoint > For Object/Window or click the

GUI Checkpoint for Object/Window button on the User toolbar.
Use the {m pointer to double-click the Customer Name check box. The Check gﬁﬁﬁz
GUI dialog box opens and displays the available checks. Accept the default
check “State” and select “Enabled” as an additional check. The State check #4 Find
captures the current state (off) of the check box; the Enabled check captures the .
current condition (disabled) of the check box. AFg;?n
Click OK in the Check GUI dialog box to insert the checkpoint into the test script. 5
. . . ¢ Help
The checkpoint appears as an obj_check_gui statement.
9 Click OK in the Open Order dialog box to open the order. ‘ ’
Q 10 Stop recording. @l
Choose Create > Stop Recording or click the Stop button. gﬁgp‘t’ér
= Back

WinRunner Tutorial Lesson 5, page 75

Checking GUI Objects

11 h .
E Save the test

Choose File > Save or click the Save button. Save the test as lesson5 in a
convenient location on your hard drive. Click Save to close the Save Test dialog

box. Books
Online
GUI checkpoints appear as obj_check_gui orwin_check_gui statements in the # Find
test script. For example: Find
Again
obj_check_gui("Order No.", "listl.ckl", "guil", 1)
‘? Help
Order No. is the object’s logical name. ‘ ’
listl.ckl is the checklist containing the checks you selected.
[B]
guil is the file containing the captured GUI data. Top of
Chapter
1 is the time (in seconds) needed to perform the check. This & Back

time is added to the value of the timeout_msec test option. See Lesson 4 for more
information.

WinRunner Tutorial Lesson 5, page 76

Checking GUI Objects

Running the Test

You will now run the lesson5 test in order to verify that the test runs smoothly.

1 Make sure that the Flight Reservation application is open on your desktop. golqks
niline
m 2 In WinRunner, check that Verify mode is selected in the Standard toolbar.
@ Find
|5.| 3 Choose Run from Top.
. Fi

Choose Run > Run from Top, or click the Run from Top button. The Run Test Ag;?n

dialog box opens. Accept the default test run name “resl.” Make sure that the
Display test results at end of run check box is selected. @ Help

4 Run the test. ‘ ’

Click OK in the Run Test dialog box. =

5 Review the results. Top of
Chapter

When the test run is completed, the test results appear in the WinRunner Test
Results window. In the test log section all “end GUI checkpoint” events should “=Back
appear in green (indicating success).

WinRunner Tutorial Lesson 5, page 77

Checking GUI Objects

Double-click an end GUI checkpoint event to view detailed results of that GUI
checkpoint. The GUI Checkpoint Results dialog box opens. Select Customer
Name to display the dialog box as follows:

s . Books
49| GUI Checkpoint Results E3 X
Names the — Online
window [Objects [Properties L
containing the = i
objects 9 - 23 Open Order Mame | Arguments | Expected Valuel Actual Yalue | t‘ﬁ] #h Find
Customer Mame 2 Enabled OFF OFF — .
V@ state OFF OFF G Find
T Again
Indicates whether Q
an object passed —
or failed = ﬁ? Help
=1 4P
Lists the objects %
in the checkpoint @
= Top of
Chapter
Indicates
whether a - .
property check ™ Highlight Selected Dbject 0k, I Cancel Help | = Back
passed or failed
Lists the property checks performed
Lists the specified arguments

Lists expected results

Lists actual results

WinRunner Tutorial Lesson 5, pa 8

Checking GUI Objects

Note: You can specify the arguments for a check on selected properties. For
more information refer to the “Checking GUI Objects” chapter in the WinRunner

User’s Guide. Books
Online
#h Find
6 Close the test results. Find
. . . . Agai
Click OK to close the GUI Checkpoint Results dialog box. Then choose File > gan
Exit to close the Test Results window. 2 Help
7 Close the Flight Reservation application. ‘ ’
Choose File > Exit.
=]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 5, page 79

Checking GUI Objects

Running the Test on a New Version

In this exercise you will run the lesson5 test on a new version of the Flight
Reservation application in order to check the behavior of its GUI objects.

Books
Online

L%‘ 1 Open version 1B of the Flight Reservation application.
s

Flight1g ~ Choose Programs > WinRunner > Sample Applications > Flight 1B on the ¢4 Find
Start menu. In the Login window, type your name and the password mercury, Find
and click OK. Position the Flight Reservation application and WinRunner so that Again
they are both clearly visible on your desktop.

) ‘? Help
2 Make sure that lesson5 is the active test.
Click in the lesson5 test window in WinRunner. ‘ ’
- 3 Check that Verify mode is selected in the toolbar.
|Venw 'I y TJELf
=| 4 Choose Run from Top. Chapter

Choose Run > Run from Top, or click the Run from Top button. The Run Test &Back
dialog box opens. Accept the default test run name “res2.” Make sure that the
Display Test Results at End of Run check box is selected.

WinRunner Tutorial Lesson 5, page 80

Checking GUI Objects

5 Run the test.
Click OK. The test run begins.

If a mismatch is detected at a GUI checkpoint, click Continue in the message
window Books
. Online
6 Review the results.]
#4 Find
When the test run is completed, the test results appear in the WinRunner Test .
Results window. In the test log section, one “end GUI checkpoint” statement AFg;‘i’n
appears in red and its Result field lists “Failed.” This indicates that one or more
of the checks performed on the object failed. 2 Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 5, page 81

Checking GUI Objects

Double-click the red “end GUI checkpoint” event to view detailed results of the
failed check. The GUI Checkpoint Results dialog box opens. Select Customer
Name to display the dialog box as follows:

. - Books
=1/ GUI Checkpoint Results E Online
The check on the [Objects |Properties = B Find
Customer Name EF- 32 Open Order Marme | Arguments | ExpectedValue | Actualvaue | o In
check box failed. [B Customer Mame || [':a Enabled OFF OM — -
¥ @ State OFf dFF Q Find
a Again
The check on the —
Enabled property of = ﬁ? Help
the Customer Name ,%
check box failed. | ‘ ’
=
2
- =
The expected result IE Top of
is “off”. Chapter
™ Highiight Sefected Object ok]| cancel Help | 4= Back
The actual result is

“on”.

7 Close the Test Results window.

Click OK in the GUI Checkpoint Results dialog box and then choose File > Exit
to close the Test Results window.

WinRunner Tutorial Lesson 5, page 82

Checking GUI Objects

8 Close the lessonb test.

Choose File > Close.

9 Close version 1B of the Flight Reservation application. ’
Books

Choose File > Exit. Online
@4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 5, page 83

Checking GUI Objects

GUI Checkpoint Tips

ﬂ ® You can create a single GUI checkpoint that checks several or all objects in a

window. Choose Create > GUI Checkpoint > For Multiple Objects. The Create
GUI Checkpoint dialog box opens, which enables you to add objects to the GUI gﬁﬁﬁz
checkpoint and to specify the checks you want to perform on those objects.
When you finish creating the checkpoint, WinRunner inserts a win_check_gui &4 Find
statement into the test script, which includes a checklist for the selected objects.
Find
Again
‘? Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 5, page 84

Checking GUI Objects

® For overnight test runs, you can instruct WinRunner not to display a message
when a GUI mismatch is detected. Choose Settings > General Options. In the
General Options dialog box, click the Run tab, and clear the Break when
Verification Fails check box. This enables the test to run without interruption.

Books
Online
General Options E
Text Recognition | E rwironrment | Folders I Current Test M Find
Record Run | Mizcellaheaus -
Find
Delay far window synchronization: |1DDD 3: milliseconds Again
Timeout for checkpoints and C5 statements: |1EIEIEIEI 3: millizeconds ‘g‘) Help

Threzhold for difference between bitmaps: IU 3: pirels ‘ ’

™ Bunin batch mode

¥ Beep when checking a window @
Top of

¥ Break when verification fails Chapter

™ Eail test when Context Sensitive ermors occur = Back

¥ Fail test when single property check Fails Advanced.. |
ok I Cancel | Aol | Help |

For more information on setting test run options, refer to the “Setting Global
Testing Options” and "Setting Testing Options from a Test Script” chapters in the
WinRunner User’s Guide.

WinRunner Tutorial Lesson 5, page 85

Checking GUI Objects

® If you want to create new expected results for a GUI checkpoint, run the test in
Update mode. WinRunner overwrites the existing expected GUI data with new
data captured during the Update run.

For more information on GUI checkpoints, refer to the “Checking GUI Objects” gﬁﬁﬁz

chapter in the WinRunner User’s Guide.

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 5, page 86

Checking Bitmaps

Boqks
This lesson: Online
® explains how to check bitmap images in your application #4 Find
® shows you how to create a test that checks bitmaps AFinc_zl
gain
® shows you how to run the test in order to compare bitmaps in different versions
of an application 2 Help
® helps you analyze the results ‘ ’
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 6, page 87

Checking Bitmaps

How Do You Check a Bitmap?

If your application contains bitmap areas, such as drawings or graphs, you can
check these areas using a bitmap checkpoint. A bitmap checkpoint compares
captured bitmap images pixel by pixel.

Books
. . L . . Online
To create a bitmap checkpoint, you indicate an area, window, or object that you
want to check. #h Find
Find
About Flight Reservation System Again
[] Mercur Tours o]
e Flight Reservation Systemn \ | fg:) Help
Wergion 1.0 \

Cnpyright 1338 L !il L:J'tu Al n\r ‘ ’

Proarammers: Shawn Abemathy, Che Fang
White Eagle Spstem Technology @
Top of

Chapter

= Back

WinRunner captures a bitmap image and saves it as expected results. It then
inserts an obj_check_bitmap statement into the test script if it captures an
object, or a win_check_bitmap statement if it captures an area or window.

When you run the test on a new version of the application, WinRunner compares
the expected bitmap with the actual bitmap in the application. If any differences
are detected, you can view a picture of the differences from the Test Results
window.

WinRunner Tutorial Lesson 6, page 88

Checking Bitmaps

Adding Bitmap Checkpoints to a Test Script

In this exercise you will test the Agent Signature box in the Fax Order dialog box.

You will use a bitmap checkpoint to check that you can sign your name in the box. ’
Then you will use another bitmap checkpoint to check that the box clears when gﬁﬁnz
you click the Clear Signature button.
@ Find
g 1 Start WinRunner and open a new test.
Find
If WinRunner is not already open, choose Programs > WinRunner > Again
WinRunner on the Start menu. If the Welcome window is open, click the New o
Test button. Otherwise, choose File > New. A new test window opens. ¢ Help
H!‘i?‘ 2 Start the Flight Reservation application and log in. ‘ ’
s
Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the]
Start menu. In the Login window, type your name and the password mercury, Top of
and click OK. Reposition the Flight Reservation application and WinRunner so Chapter
that they are both clearly visible on your desktop. “Back

ﬂ 3 Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar.

4 Open order #6.

In the Flight Reservation application, choose File > Open Order. In the Open
Order dialog box, select the Order No. check box and type “6” in the adjacent
box. Click OK to open the order.

WinRunner Tutorial Lesson 6, page 89

Checking Bitmaps

5 Open the Fax Order dialog box.

Choose File > Fax Order.

6 Enter a 10-digit fax number in the Fax Number box. s
You do not need to type in parentheses or dashes. Online
7 Move the Fax Order dialog box. & Find
Position the dialog box so that it least obscures the Flight Reservation window. Find
8 Switch to Analog mode. Again
Press F2 on your keyboard or click the Record button to switch to Analog mode. ? Help
9 Sign your name in the Agent Signature box. ‘ ’
10 Switch back to Context Sensitive mode. =
Pres; FZ on your keyboard or click the Record button to switch back to Context gﬁgpft’ér
Sensitive mode.
ﬂ 11 Insert a bitmap checkpoint that checks your signature. &Back

Choose Create > Bitmap Checkpoint > For Object/Window or click the
Bitmap Checkpoint for Object/Window button on the User toolbar.

Use the iy pointer to click the Agent Signature box. WinRunner captures the
bitmap and inserts an obj_check_bitmap statement into the test script.

12 Click the Clear Signature button.

The signature is cleared from the Agent Sighature box.

WinRunner Tutorial Lesson 6, page 90

Checking Bitmaps

ﬂ 13 Insert another bitmap checkpoint that checks the Agent Signature box.
Choose Create > Bitmap Checkpoint > For Object/Window or click the

Bitmap Checkpoint for Object/Window button on the User toolbar.
Use the { pointer to click the Agent Signature box. WinRunner captures a gﬁﬁﬁz
bitmap and inserts an obj_check_bitmap statement into the test script.
14 Click the Cancel button on the Fax Order dialog box. #4 Find
. Find
Q 15 Stop recording. Again
Choose Create > Stop Recording or click the Stop button. 2 Hel
¢ Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 6, page 91

Checking Bitmaps

1 h .
E 6 Save the test

Choose File > Save or click the Save button. Save the test as lesson6 in a
convenient location on your hard drive. Click Save to close the Save Test dialog

box. Books
Online
Bitmap checkpoints appear as obj _check_bitmap or win_check_bitmap # Find
statements in the test script. For example: Find
Again
obj_check_bitmap(“(static)", "Img1", 1);

‘? Help
static is the object or area’s logical name. ‘ ’
Img1 is the file containing the captured bitmap.

[B]
1 is the time (in seconds) needed to perform the check. This time is added to the gﬁp ct>f
value of the timeout_msec test option. See Lesson 4 for more information. et
= Back

WinRunner Tutorial Lesson 6, page 92

Checking Bitmaps

Viewing Expected Results

You can now view the expected results of the lesson6 test.

E 1 Open the WinRunner Test Results window. Books
Online
Choose Tools > Test Results or click the Test Results button. The Test Results
window opens. #h Find
% 2 View the captured bitmaps. Find
Again
In the test log section, double-click the first “capture bitmap” event, or select it
and click the Display button. 2 Help
4)
\ 3
Top of
(' — Chapter
= Back

Next, double-click the second “capture bitmap” event, or select it and click the
Display button.

! ImgZ.bmp .. [H[=] E3

—

WinRunner Tutorial

Lesson 6, page 93

Checking Bitmaps

3 Close the Test Results window.

Close the bitmaps and choose File > Exit to close the Test Results window.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 6, page 94

Checking Bitmaps

Running the Test on a New Version

You can now run the test on a new version of the Flight Reservation application.

1 Close Flight Reservation 1A. Books
Online
Choose File > Exit.
: : @ Find
”ﬁ?‘ 2 Open Flight Reservation 1B.
P :
< i — . Find
Flight1g ~ Choose Programs > WinRunner > Sample Applications > Flight 1B on the Ag;in
Start menu. In the Login window, type your name and the password mercury,
and click OK. Reposition the Flight Reservation application and WinRunner so @ Help
that they are both clearly visible on your desktop.
3 Make sure that lesson6 is the active test. ‘ ’
Click in the lesson6 test window. =]
Top of
|Verify vl 4 Check that Verify mode is selected in the Standard toolbar. Chapter
|Z.| 5 Choose Run from Top. & Back

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “resl.” Make sure that the
Display test results at end of run check box is selected.

6 Run the test.
Click OK. The test run begins.

If a mismatch is detected at a bitmap checkpoint, click Continue in the message
window.

WinRunner Tutorial Lesson 6, page 95

Checking Bitmaps

7 Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window.

Books
oniine
File Options Tools wWindow i = |

- @ Find

= resl o e i | |E: &
The test failed J@ | J
because the Agerﬂ M [Test Resul: fail Find

Signature field did

L +3¢ T atal number of bitmap checkpoints: 2 Again
not clear when [
WinRunner clicked +% Tatal number of GUI checkpaints: 0 %
the Clear Signature & General Infamation ¢ Help

button.

4

[=]

Top of

. Lire Ewent Detailz Result Time: = Chapter
Double-click the
failed bitmap 1 shart Tk nionames T 00:00:00
checkpoint to view el bitmap checkpoint {Imgl (] 000027 +&=Back
the expected, actual, - - . —
and difference 23 bitmap checkpoint {Img2 rizmatch (00:00:232
bitmaps. 26 shaprun nonamed fail 00:00:32 =

| | 7

8 Close the Test Results window.

Choose File > Exit to close the Test Results window.

WinRunner Tutorial Lesson 6, page 96

Checking Bitmaps

9 Close the lesson6 test.

Choose File > Close.

10 Close version 1B of the Flight Reservation application. ’
Books

Choose File > Exit. Online
@4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 6, page 97

Checking Bitmaps

Bitmap Checkpoint Tips

E ® To capture an area, choose Create > Bitmap Checkpoint > For Screen Area or

click the Bitmap Checkpoint for Screen Area button on the User toolbar. Use
the crosshairs pointer to mark the area that you want WinRunner to capture. gﬁﬁﬁz
WinRunner inserts a win_check_bitmap statement into your test script. This
statement includes additional parameters that define the position (x- and y- &4 Find
coordinates) and size (width and height) of the area.
Find
Again
‘? Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 6, page 98

Checking Bitmaps

® For overnight test runs, you can instruct WinRunner not to display a message
when a bitmap mismatch is detected. Choose Settings > General Options. In
the General Options dialog box, click the Run tab and clear the Break when
verification fails check box. This enables the test to run unattended.

Books
Online
General Options E
Text Recognition | E rwironrment | Folders I Current Test M Find
Record Run | Mizcellaheaus -
Find
Delay far window synchronization: |1DDD 3: milliseconds Again
Timeout for checkpoints and C5 statements: |1EIEIEIEI 3 milliseconds ‘g‘) Help

Threzhold for difference between bitmaps: IU 3: pirels ‘ ’

™ Bunin batch mode

¥ Beep when checking a window @
Top of

Chapter

¥ Break when verification fails

™ Eail test when Context Sensitive ermors occur = Back

¥ Fail test when single property check Fails Advanced.. |
ok I Cancel Aol | Help |

® When running a test that includes bitmap checkpoints, make sure that the
screen display settings are the same as when the test script was created. If the
screen settings are different, WinRunner will report a bitmap mismatch.

WinRunner Tutorial Lesson 6, page 99

Checking Bitmaps

® If you want to create new expected results for a bitmap checkpoint, run the test
in Update mode. WinRunner overwrites the existing expected bitmaps with new
expected bitmaps captured during the Update run.

Books
Online

@& Find

Find
Again

For more information on bitmap checkpoints, refer to the “Checking Bitmaps”
chapter in the WinRunner User’s Guide.

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 6, page 100

Programming Tests with TSL

Boqks
This lesson: Online
® shows you how to use visual programming to add functions to your recorded test #A Find
scripts Find
® shows you how to add decision-making logic to a test script Again
® helps you debug a test script ? Help
® lets you run a test on a new version of an application and analyze the results ‘ ’
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 7, page 101

Programming Tests with TSL

How Do You Program Tests with TSL?

When you record a test, WinRunner generates TSL statements in a test script
each time you click a GUI object or type on the keyboard. In addition to the
recorded TSL functions, TSL includes many other built-in functions which can
increase the power and flexibility of your tests. You can quickly add these
functions to a test script using WinRunner’s visual programming tool, the Function #4 Find

Books
Online

Generator. All functions located in the Function Generator are explained in the Find
TSL Online Reference and the TSL Reference Guide. Again
The Function Generator enables you to add TSL functions in two ways: ? Help
® You can point to a GUI object and let WinRunner “suggest” an appropriate ‘ ’
function. You can then insert this function into the test script.
® You can select a function from a list. Functions appear by category and To@of
alphabetically. Chapter
= Back

You can further enhance your test scripts by adding logic. Simply type
programming elements such as conditional statements, loops, and arithmetic
operators directly into the test window.

WinRunner Tutorial Lesson 7, page 102

Programming Tests with TSL

In the following exercises you will create a test that:

0 opens an order

O opens the Fax Order dialog box Books
Online

O checks that the total is equal to the number of tickets ordered multiplied by the
price per ticket 4 Find

Find

O reports whether the total is correct or incorrect Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 7, page 103

Programming Tests with TSL

Recording a Basic Test Script

Start by recording the process of opening an order in the Flight Reservation

application and opening the Fax Order dialog box. ’
Books
. Online
g 1 Start WinRunner and open a new test.
If WinRunner is not already open, choose Programs > WinRunner > #4 Find
WinRunner on the Start menu. If the Welcome window is open, click the New Find
Test button. Otherwise, choose File > New. A new test window opens. Again
”ﬁ?‘ 2 Open the Flight Reservation application and log in. D Hel
s ¢ Help
Flight 14 Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury, ‘ ’
and click OK. Reposition the Flight Reservation application and WinRunner so
that they are both clearly visible on your desktop. Tol?of
ﬂ 3 Start recording in Context Sensitive mode. Chapter
Choose Create > Record—Context Sensitive or click the Record button onthe | Back

toolbar.
4 Open order #4.

In the Flight Reservation application, choose File > Open Order. In the
Open Order dialog box, select the Order No. check box and type “4” in the
adjacent box. Click OK to open the order.

WinRunner Tutorial Lesson 7, page 104

Programming Tests with TSL

5 Open the Fax Order dialog box.

Choose File > Fax Order.

6 Click Cancel to close the dialog box.

Books
Q 7 Stop recording. Online
Choose Create > Stop Recording or click the Stop button. & Find

E 8 Save the test. Find
Again

Choose File > Save or click the Save button. Save the test as lesson7 in a
convenient location on your hard drive. Click Save to close the Save Test dialog 2 Help

box. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 7, page 105

Programming Tests with TSL

Using the Function Generator to Insert Functions

You are now ready to add functions to the test script which query the # Tickets,

Ticket Price, and Total fields in the Fax Order dialog box. ’
Books
1 Insert a blank line above the button_press ("Cancel"); statement and place Online
the cursor at the beginning of this line. &4 Find
2 Open the Fax Order dialog box. Find
Choose File > Fax Order in the Flight Reservation application. Again
@ 3 Query the # Tickets field. ? Help
Choose Create > Insert Function > For Object/Window or click the ‘ ’
Insert Function for Object/Window button on the User toolbar. Use the dhy
pointer to click the # Tickets field. =
Top of
The Function Generator opens and suggests the edit_get_text function. Cf?gpct)er
Function Generator E2 = Back

Iedit_get_ter:t["# Tickets:" text]; Cloze |
Change »» | Enecute | Paste I

WinRunner Tutorial Lesson 7, page 106

Programming Tests with TSL

This function reads the text in the # Tickets field and assigns it to a variable. The
default variable name is text. Change the variable name, text, to tickets by typing

in the field.
edit_get_text("# Tickets:" tickets); Books
Online
Click Paste to add the function to the test script. :
#4 Find
@ 4 Query the Ticket Price field. —
n
Choose Create > Insert Function > For Object/Window or click the Again
Insert Function for Object/Window button on the User toolbar. Use the g D Hel
pointer to click the Ticket Price field. = heip
The Function Generator opens and suggests the edit_get_text function. ‘ ’
Change the name of the text variable to price.
edit_get_text("Ticket Price:",price); Top@m‘
Chapter
Click Paste to add the function to the test script. &= Back

@ 5 Query the Total field.

Choose Create > Insert Function > For Object/Window or click the
Insert Function For Object/Window button on the User toolbar. Use the ¢t
pointer to click the Total field.

WinRunner Tutorial Lesson 7, page 107

Programming Tests with TSL

The Function Generator opens and suggests the edit_get_text function.
Change the name of the text variable to total.

edit_get_text("Total:",total);
Boqks
Click Paste to add the function to the test script. Online
6 Close the Fax Order dialog box. #4 Find
Click Cancel to close the dialog box in the Flight Reservation application. Find
Again
E 7 Save the test.
. . &
Choose File > Save or click the Save button. ¢ Help
=]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 7, page 108

Programming Tests with TSL

Adding Logic to the Test Script

In this exercise you will program decision-making logic into the test script using

an if/else statement. This enables the test to:
Boqks
¢ check that the total is equal to the number of tickets ordered multiplied by the Online
price per ticket &4 Find
® report whether the total is correct or incorrect Find
Again
1 Place the cursor below the last edit_get_text statement in the lesson7
script. ? Help
2 Add the following statements to the test script exactly as they appear ‘ ’
below. Note that the tabs or spaces at the beginning of the second and
fourth lines are optional. =
. . . Top of
if (tickets*price == total) Chapter
tl_step (“total”, O, "Total is correct.");
else “=Back

tl_step ("total”, 1, "Total is incorrect.");

WinRunner Tutorial Lesson 7, page 109

Programming Tests with TSL

In plain English these statements mean: “If tickets multiplied by price equals
total, report that the total is correct, otherwise (else) report that the total is
incorrect.” See Understanding tl_step on page 111 for more information on the
tl_step function.

Books
Online

@ You can use the Function Generator to quickly insert tl_step statements into the # Find
test script. Choose Create > Insert Function > From Function Generator or

choose Insert Function from Function Generator on the User toolbar. Find
Again

‘? Help

E 3 Save the test.
4/

Choose File > Save or click the Save button.

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 7, page 110

Programming Tests with TSL

Understanding tl_step

In most cases when you run a test, WinRunner reports an overall test result of

pass or fail. By adding tl_step statements to your test script, you can determine Books
whether a particular operation within the test passed or failed, and send a Online
message to the report.

@ Find
For example: Find

Again

tl_step ("total”, 1, "Total is incorrect.");

‘? Help

total is the name you assign to this operation.

4

1 causes WinRunner to report that the operation failed. If you use 0, WinRunner

reports that the operation passed. =]
Top of
- . . Chapter
Total is incorrect is the message sent to the report. You can write any message
that will make the test results meaningful. &= Back

For more information regarding the tl_step function, refer to the TSL Online
Reference in WinRunner.

WinRunner Tutorial Lesson 7, page 111

Programming Tests with TSL

Debugging the Test Script

After enhancing a test with programming elements, you should check that the test

runs smoothly, without errors in syntax and logic. WinRunner provides debugging
. . . Books
tools which make this process quick and easy. Online
You can: 4 Find
® run the test line by line using the Step commands Find
Again
® define breakpoints that enable you to stop running the test at a specified line or
function in the test script @ Help
® monitor the values of variables and expressions using the Watch List ‘ ’
When you debug a test script, you should run your test in Debug mode. (To run a E]
test in Debug mode, select Debug from the Run Mode list on the Standard Top of
toolbar.) The test results are saved in a debug directory. Each time you run the Chapter
test in Debug mode, WinRunner overwrites the previous debug results. &Back

In this exercise you will control the test run using the Step command. If any error
messages appear, examine the test script and try to fix the problem.

Im 1 Select Debug mode from the Run Mode list on the Standard toolbar.
Debug mode will remain in effect until you select a different mode.
2 Place the execution marker —> next to the first line in the test script.

Click in the left margin, next to the first line in the test script.

WinRunner Tutorial Lesson 7, page 112

Programming Tests with TSL

2 3 Choose Run > Step or click the Step button to run the first line in the test
8 script.
WinRunner runs the first line of the test.

&£ | 4 Use the Step button to run the entire test, line by line. gﬁﬁﬁz

Click the Step button to run each line of the test script.]
#4 Find
5 Click Stop.

Q P Find
Click the Stop button to tell WinRunner that you have completed the Debug test Again
run.

‘? Help

1
»

Review the test results in the WinRunner Test Results window.

Choose Tools > Test Results or click the Test Results button. The WinRunner ‘ ’
Test Results window displays the results of the Debug test run.

=]
7 Close the Test Results window. gﬁp of
apter
Choose File > Exit.
EBack

8 Exit the Flight Reservation application.

Choose File > Exit.

For more information on debugging test scripts, refer to Part VI, “Debugging
Tests” in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 7, page 113

Programming Tests with TSL

Running the Test on a New Version

Once the test script is debugged, you can run it on a new version of the Flight
Reservation application.

Books
Online

L%‘ 1 Open version 1B of the Flight Reservation application.
s

Flight1g ~ Choose Programs > WinRunner > Sample Applications > Flight 1B on the ¢4 Find
Start menu. In the Login window, type your name and the password mercury, Find
and click OK. Reposition the Flight Reservation application and WinRunner so Again
that they are both clearly visible on your desktop.

‘? Help
2 Select Verify mode from the Run Mode list on the Standard toolbar.
Debug =
Verify mode will remain in effect until you select a different mode. ‘ ’
15 3 Choose Run from Top. =
Top of

Choose Run > Run from Top, or click the Run from Top button. The Run Test Chapter
dialog box opens. Accept the default test run name “resl.” Make sure that the
Display Test Results at End of Run check box is selected. ®Back

4 Run the test.
Click OK in the Run Test dialog box. The test run begins.

WinRunner Tutorial Lesson 7, page 114

Programming Tests with TSL

5 Review the test results.

When the test run is completed, the test results appear in the WinRunner Test
Results window.

Books
8 winRunner Test Results - [C:\Program Files\Mercury Interactive\WinRunner\tmpilesson7] [H[=] B3 Online
File Option: Tools window -5 x|
- @4 Find
ﬁ‘l%l |res1 j bedlic] 15 & Elgl \?l
m LA Test Resul: 1[4 Find
|: +% Total number of bitmap checkpoints: 0 Again
+% Tatal number of GUI checkpaints: 1] B
é General Information g Help
Date: ‘Wednesday, April 22, 1998 02:40:5
[Efoperator name: ‘ ’
The number of [Er2E vpected Results Directony: exp
tickets multiplied by Total Fun Time: 00:00:01
the price equals the @ @
total. Therefore the Line Event Detailz Result Timne = Top of
tl_step statement Chapter
reports “pass”. 1 shart Tk lezzon? T 00:00:00
14 H_step Step: total, Status: Pazs, Descriptio - 0000 &= Back
12 zhap run lezzon? pas 00:00:m
v
| 4

WinRunner Tutorial Lesson 7, page 115

Programming Tests with TSL

You can double-click the tl_step statement in the test log to view the full details:

WinRunner Message .
& Step: total, Status: Pass, Description: Total is commect, Books
Online
4 Find
Find
Notice that the message, “Total is correct”, is the same message you wrote in the Again
test script. Click OK to close the message.
‘? Help
6 Close the test results.
Choose File > Exit to close the Test Results window. ‘ ’
7 Save the GUI Map. [O]
Top of
You are going to use the test you created in this lesson for lesson 8. By saving Chapter
the GUI Map containing the GUI objects that WinRunner learned in this lesson,
. . . . = Back
you can create new tests on those objects at a later time without having to

relearn the objects.

Choose Tools > GUI Map Editor. Then choose File > Save from within the GUI
Map Editor. The Save GUI file dialog box appears. Open the folder for the
lesson? test and save the GUI Map as lesson7map.gui.

WinRunner Tutorial Lesson 7, page 116

Programming Tests with TSL

8 Close the lesson7 test.

Choose File > Close.

9 Close version 1B of the Flight Reservation application. ’
Books

Choose File > Exit. Online
@4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 7, page 117

Creating Data-Driven Tests

Boqks

This lesson: Online

¢ shows you how to use the DataDriver Wizard to create a data-driven test #4 Find
® explains how to use regular expressions for GUI object names that vary with AFiHC_i

each iteration of a test gan

® lets you run a test with several iterations and analyze the results ? Help
=]

Top of

Chapter

= Back

WinRunner Tutorial Lesson 8, page 118

Creating Data-Driven Tests

How Do You Create Data-Driven Tests?

Once you have successfully debugged and run your test, you may want to see

how the same test performs with multiple sets of data. To do this, you convert ’
your test to a data-driven test and create a corresponding data table with the sets gﬁﬁnz
of data you want to test.
@ Find
Converting your test to a data-driven test involves the following steps:
Find
* Adding statements to your script that open and close the data table. Again
® Adding statements and functions to your test so that it will read from the data ? Help
table and run in a loop while it applies each set of data. ‘ ’
® Replacing fixed values in recorded statements and checkpoint statements with
parameters, known as parameterizing the test. =
Top of
You can convert your test to a data-driven test using the DataDriver Wizard or you Chgpter
can modify your script manually.
= Back

When you run your data-driven test, WinRunner runs the parameterized part(s)
of the test one time (called an iteration) for each set of data in the data table, and
then displays the results for all of the iterations in a single Test Results window.

WinRunner Tutorial Lesson 8, page 119

Creating Data-Driven Tests

In Lesson 7 you created a test that opened a specific flight order and read the
number of tickets, price per ticket, and total price from a fax order dialog box in
order to check that the total price was correct.

Books

In this lesson you will create a test that performs the same check on several flight Online

orders in order to check that your application computes the correct price for
various quantities and prices of tickets. #h Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 8, page 120

Creating Data-Driven Tests

Converting Your Test to a Data-Driven Test

Start by opening the test you created in Lesson 7 and using the DataDriver
Wizard to parameterize the test.

Boqks
g 1 Create a new test from the lesson7 test. Online
If WinRunner is not already open, choose Programs > WinRunner > #4 Find
WinRunner on the Start menu. If the Welcome window is open, click the Open Find
Test button. Otherwise, choose File > Open and select the test you created in Again
Lesson 7. The lesson7 test opens.
‘? Help

Choose File > Save As and save the test as lesson8 in a convenient location on

your hard drive. ‘ ’

2 Open the corresponding GUI Map.

[B]
The lesson8 test is run on objects that WinRunner learned in the lesson7 test. If gﬁp CtJf
you closed or cleared the objects in the GUI map after finishing Lesson 7, then apter
you need to open the lesson7 GUI map. & Back

Choose Tools > GUI Map Editor. Then choose File > Open from within the GUI
Map Editor. The Open GUI file dialog box appears. Open the folder for the
lesson? test, select lesson7map.gui and click Open.

3 Run the DataDriver Wizard.

Choose Tools > DataDriver Wizard. The DataDriver Wizard welcome window
opens. Click Next to begin the parameterization process.

WinRunner Tutorial Lesson 8, page 121

Creating Data-Driven Tests

4 Create a data table for the test.

In the Use a new or existing Excel table box, type “lesson8”. The DataDriver

Wizard creates an Excel table with this name and saves it the test folder.
Books
DataDriver Wizard Online
Usge a new or exigting Excel table: M Find
| 8
|esson J Find
The test scrpt will use a variable to refer to Again
thiz data file.
Azzign a namme to the wvariable: table c’? Help
v Add statements to create a data-driven test
™ Import data from a databasze ‘ ’
llana | eeseas
Alin | 1mzee v Barameterize the test: @
Stewe | sexpaa Top of
Evan [1zizars ™ Automatically Chapter
= Back
< Back | Mewut » | Cancel Help

5 Assign atable variable name.

Keep the default table variable name, “table”.

WinRunner Tutorial Lesson 8, page 122

Creating Data-Driven Tests

At the beginning of a data-driven test, the Excel data table you wish to use is
assigned as the value of the table variable. Throughout the script, only the table
variable name is used. This makes it easy for you to assign a different data table

to the script at a later time without making changes throughout the script. el
0O0KS
6 Select global parameterization options. Online
Select Add statements to create a data-driven test. This adds TSL statements | @# Find
to the test that define the table variable name, open and close the data table,

. Find
and run the appropriate script selection in a loop for each row in the data table. Again
Select Parameterize the test and choose the Line by line option. When you D Hel
select Parameterize the test, you instruct WinRunner to find fixed values in = heip
recorded statements and selected checkpoints and to replace them with ‘ ’
parameters. The Line by line option instructs the wizard to open a screen for
each line of the selected test that can be parameterized so that you can choose =
whether or not to parameterize that line. Top of

Chapter
Click Next.
. = Back
7 Select the data to parameterize.

The first line-by-line screen opens. It refers to the Order Number radio button.

Test zohipt line to parameterize:

button_set [EUIWETEE TR, CR];

WinRunner Tutorial Lesson 8, page 123

Creating Data-Driven Tests

In this test you are going to open a different fax order in each iteration and the
Order Number radio button must be selected each time. Thus, for this script line,
keep the selection, Do not replace this data, and click Next.

The next line by line screen refers to the Order Number edit field. This is the field Books
you want to change for each iteration. Note that the value, “4” is highlighted and Online
listed in the Argument to be replaced box to indicate that this is the value # Find
selected for parameterization.
Find
Test zohipt line to parameterize: Again
Iedlt_set[Edit" JER: c? Help
Argument to be replaced: |"4" 4| >| ‘ ’
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 8, page 124

Creating Data-Driven Tests

Select A new column under “Replace the selected value with data from:” and
type “Order_Num” in the adjacent edit field. The New Column option creates a
column titled "Order_Num" in the lesson8.xIs table, and enters the value “4” in
the first row of the column.

Books
Online
DataDriver Wizard
#h Find
Test zonpt line to parameterize:
|eu:|it_set ["Edit", "4"); Find
Again
Argument ta be replaced: |"'4" ik
‘? Help

Replace the selected walue with data from:

(" Do not replace this data ‘ ’

E | [

llana | o5

Alin | 1mzees i A new columi: |Drder_NurrI @
Stewe | sexpaa Top of
Chapter
Evan |1zezars
& Back

| Mewut » | Skip »>» Cancel Help

WinRunner Tutorial Lesson 8, page 125

Creating Data-Driven Tests

Click Next and then click Finish. Your test is parameterized.

The following elements are added or modified in your parameterized test: ke
The table = line defines the table variable. Online
The ddt_open statement opens the table, and the subsequent lines confirm 4 Find
that the data-driven test opens successfully. Find
The ddt_get_row_count statement checks how many rows are in the Again
table, and therefore, how many iterations of the parameterized section of 2 Help
the test to perform. ®
The for statement sets up the iteration loop. ‘ ’
The ddt_set_row statement tells the test which row of the table to use on =]
each iteration. Top of
Chapter
In the edit_set statement, the value, “4” is replaced with a ddt_val
statement. & Back

The ddt_close statement closes the table.

WinRunner Tutorial Lesson 8, page 126

Creating Data-Driven Tests

Adding Data to the Data Table

Now that you have parameterized your test, you are ready to add the data that
the parameterized test will use.

Books
Online

1 Open the data table.

Choose Tools > Data Table. The lesson8.xlIs table opens. Note that there is one #4 Find
column named “Order_Num”, and that the first row in the column contains the

Find
value “4", Again
2 Add datato the table. 2 Help

Inrows 2, 3, 4, and 5 of the Order_Num column, enter the values, “1”, “6”, “8”,

and “10” respectively. ‘ ’

I2Z Data Table - d:\program files\mercury___ [E[=] E3 TOEOf
File Edit Data Format Help Chgpter
Al |
= Back
Order um| B | C | [+
1 4 |
2 1
3 b
4 g
5 10
B |
<|?| JJ_J
Feady o

WinRunner Tutorial Lesson 8, page 127

Creating Data-Driven Tests

3 Save and close the table.

Click an empty cell and choose File > Save from the data table menu. Then
choose File > Close to close the table.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 8, page 128

Creating Data-Driven Tests

Adjusting the Script with Regular Expressions

Your test is almost finished. Before running the test you should look through it to
see if there are any elements that may cause a conflict in a data-driven test. The

DataDriver wizard finds all fixed values in selected checkpoints and recorded gﬁﬁﬁz
statements, but it does not check for things such as object labels that also may

vary based on external input. @ Find
In the flight application, the name of the Fax Order window changes to reflect the AFg;?n

fax order number. If you run the test as it is, the test will fail on the second iteration,
because the Flight Application will open a window labeled, “Fax Order No. 1", but ? Help
the script tells it to make active the window labeled, “Fax Order No. 4”. WinRunner

will be unable to find this window. ‘ ’
To solve this problem, you can use a regular expression. A regular expression is To%lof

a string that specifies a complex search phrase in order to enable WinRunner to Chapter
identify objects with varying names or titles.

= Back

In this exercise you will use a regular expression in the physical description of the
Fax Order window so that WinRunner can ignore variations in the window’s label.

1 Locate the Fax Order window in the GUI Map Editor.

Choose Tools > GUI Map Editor and select the Fax Order No. 4 window icon.

WinRunner Tutorial Lesson 8, page 129

Creating Data-Driven Tests

2 Modify the window label with a regular expression.

Select Modify. The Modify window opens. In the Physical Description label line,
add an “!” immediately following the opening quotes to indicate that this is a
regular expression. Delete the period, space and the number “4” at the end of
the line and replace this text with .* to indicate that the text following this phrase

Books
can vary. Online
Modify]| #4 Find
Logical Marme: oK | :g;?n

IFa:-: Order Mo, 4
C I |
anhce f? Help
Phwgizal Dezcription: Help |

{class: window, il ‘ ’

label: "IFax Order No. ",
MW _clazs: "H32770" =
!

Top of
Chapter
[|

= Back

3 Close the Modify dialog box and the GUI Map Editor.

Click OK to close the Modify window and choose File > Close to close the GUI
Map Editor.

WinRunner Tutorial Lesson 8, page 130

Creating Data-Driven Tests

Customizing the Results Information

You could run the test now, but it may be difficult for you to interpret the results for

each iteration. You can add iteration-specific information to the reporting
. Books
statements in your script so that you can see which data is the basis for each Online
result.
@ Find
1 Modify the tl_step statements.
Find
Locate the first tl_step statement in your script. Delete the words “total is Again
correct.” and replace them with, “Correct. "tickets" tickets at $"price" cost o
$"t0ta|"." =] Help
tl_step("total",0, "Correct. "tickets" tickets at $"price" cost $"total"."); ‘ ’
Use the same logic to modify the next tl_step statement to report an incorrect]
result. For example: Top of
. . . Chapter
tl_step(“total”, 1, "Error! "tickets" tickets at $"price" does not equal $"total".
"); = Back
Now you will be able to see which data is used in each iteration when you view
the results.

E 2 Save the test.

Choose File > Save or click the Save button.

WinRunner Tutorial Lesson 8, page 131

Creating Data-Driven Tests

Running the Test and Analyzing Results

You run the data-driven test just like any other test in WinRunner. When the test
run is complete, the results for all iterations are included in a single Test Results ’
window. gﬁﬁnz

1 Make sure that the Flight Reservation application is open on your desktop. |g& Find

m 2 In WinRunner, check that Verify mode is selected in the Standard toolbar. Find
Again

|5.| 3 Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test ? Help
dialog box opens. Accept the default test run name, “res1”. Make sure that the
Display Test Results at End of Run check box is selected. ‘ ’

4 Run the test. =
. Top of
Click OK in the Run Test dialog box. The test will run through the parameterized Chapter

section of the script five times, once for each row in the data table.

= Back

WinRunner Tutorial Lesson 8, page 132

Creating Data-Driven Tests

5 Review the results.

When the test run is complete, the test results appear in the WinRunner Test
Results window.

Books
ﬁ WinRunner Test Results - [D:\Program Files\Mercury Interactive\WinRBunner\tmp\lesson8ilesson8] Online
E3 File Options Toolks Window 18] =
|G| [=s5 =] | | s8] a2 4 Find
=4 @Test Result: aK -
|: +%' Total number of bitmap checkpoints: 0 Fi nc_j
+% Total number of GUI checkpoaints: 0 Agam
@ General Information
‘? Help
Line | Ewvent Details Result| Time | =
1 |start run |leszond T 000000 @
22 |t step |Step: total, Status: Pass, Description: Comect. 4 tickets at $323.40 cost $1293.60. |- 00:00.02 CTr?g ct)(];l’
22 |t step |Step: total, Status: Pass, Description: Comect. 1 tickets at $312.00 cost $312.00, |- 00:00:05 P
22 |t step |Step: total, Status: Pass, Description: Comect. 1 tickets at $337.40 cost $337 400 |- 00:00:07
22 |t step |Step: total, Status: Pass, Description: Comect. 2 tickets at $354.94 cost $709.88. |- 00:00:09 = Back
22 |t step |Step: total, Status: Pass, Description: Comect. 2 tickets at $160.80 cost $321.60. |- 000012
29 |stop run [lessond pazz (000012
|Fieady i

WinRunner Tutorial Lesson 8, page 133

Creating Data-Driven Tests

Note that the tl_step event is listed five times and that the details for each
iteration includes the actual number of tickets, price and total cost that was

checked.
Books
6 Close the test results. Online
Choose File > Exit to close the Test Results window. .
@& Find
7 Close the Flight Reservation application. —
Fin
Choose File > Exit. Again
‘? Help
=]
Top of
Chapter
EBack

WinRunner Tutorial Lesson 8, page 134

Creating Data-Driven Tests

Data-Driven Testing Tips

® You can parameterize only part of your test script or a loop within it, and a single
data-driven test can contain more than one parameterized loop.

Books
® You can open and save data tables other than the default.xls data table. This Online
enables you to use several different data tables in one test script. B Eind
Fin
® You can parameterize statements containing GUI checkpoints, bitmap
checkpoints, and bitmap synchronization points, and constants. AFg;‘i’n
® You can use the data table in the same way as an Excel spreadsheet, including P
& Help

inserting formulas into cells.

® Before you run a data-driven test, you should look through it to see if there are ‘ ’
any elements that may cause a conflict in a data-driven test. There are two ways

to solve most of these conflicts: [O]
)])] Top of
® Use aregular expression to enable WinRunner to recognize objects based Chapter

on a portion of its physical description. For more information on regular
expressions, refer to the “Using Regular Expressions” chapter in the
WinRunner User’s Guide.

= Back

® Use the GUI Map Configuration dialog box to change the physical properties
that WinRunner uses to recognize the problematic object. For more
information on GUI Map configuration, refer to the “Configuring the GUI Map”
chapter in the WinRunner User’s Guide.

WinRunner Tutorial Lesson 8, page 135

Creating Data-Driven Tests

® You can change the active row, or read from a non-active row during the test run
by using TSL statements. For more information, refer to the “Using TSL
Functions with Data-Driven Tests” chapter in the WinRunner User’s Guide.

® |tis not necessary for the data table viewer to be open when you run a test. Books
Online

To learn more about data-driven tests, refer to the “Creating Data-Driven Tests”
chapter in your WinRunner User’s Guide. 4 Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 8, page 136

Reading Text

Boqks
This lesson: Online
® describes how you can read text from bitmaps and non-standard GUI objects #A Find
® shows you how to teach WinRunner the fonts used by an application AFiHC_i
gain
® lets you create a test which reads and verifies text o
& Help
® lets you run the test and analyze the results
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 9, page 137

Reading Text

How Do You Read Text from an Application?

You can read text from any bitmap image or GUI object by adding text checkpoints
to a test script. A text checkpoint reads the text from the application. You then add

. . : . . Book
programming elements to the test script, which verify that the text is correct. oﬁﬁnz
For example, you can use a text checkpoint to: & Find

® verify a range of values Find

Again
® calculate values
‘? Help

® perform certain operations only if specified text is read from the screen

To create a text checkpoint, you indicate the area, object, or window that contains ‘ ’
the text you want to read.

=]
WinRunner inserts a win_get_text or obj_get_text statement into the test script gﬁgp‘t’ér
and assigns the text to a variable. To verify the text you add programming
elements to the script. = Back

Note that when you want to read text from a standard GUI object (such as an edit
field, a list, or a menu), you should use a GUI checkpoint, which does not require
programming. Use a text checkpoint only when you want to read text from a
bitmap image or a non-standard GUI object.

WinRunner Tutorial Lesson 9, page 138

Reading Text

In the following exercises you create a test that:

O opens a graph and reads the total number of tickets sold

O creates a new order for the purchase of one ticket Books
Online

O opens the graph again and checks that the total number of tickets sold was
updated # Find

Find

O reports whether the number is correct or incorrect Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 9, page 139

Reading Text

Reading Text from an Application

In this exercise you will record the process of opening the graph in the Flight
Reservation application to read the total number of tickets sold, creating a new

. . . . Books
order, and opening the graph again. In the next exercise you will add Online
programming elements to the test script that verify the text in the graph.

@ Find
Note that in order for WinRunner to read text on computers with certain display .
drivers, including ATI, you must learn the fonts in the Flight Reservation AFg;?n

application before you can perform this exercise. If WinRunner fails to read text
in the exercise below, stop the exercise, follow the instructions in “Teaching Fonts ? Help
to WinRunner” in the next section, and repeat this exercise from the beginning. ‘ ’

g 1 Start WinRunner and open a new test.

[B]
If WinRunner is not already open, choose Programs > WinRunner > Top of
WinRunner on the Start menu. If the Welcome window is open, click the New Chapter
Test button. Otherwise, choose File > New. A new test window opens. &Back

H‘i?‘ 2 Open the Flight Reservation application and log in.
P

Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury,
and click OK. Reposition the Flight Reservation application and WinRunner so
that they are both clearly visible on your desktop.

ﬂ 3 Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button.

WinRunner Tutorial Lesson 9, page 140

Reading Text

4 Open the graph.

In the Flight Reservation application, choose Analysis > Graphs.

e 5 Read the total from the graph.
ﬂ grap Books
In WinRunner, choose Create > Get Text > From Screen Area, or click the Get Online
Text From Screen Area button on the User toolbar.]
#4 Find
Use the crosshairs pointer and the left mouse button to drag a rectangle around _
the total. Click the right mouse button to finish the operation. /fg;‘i’n
? Help
Style
Agent Mame: jerinifer ‘ ’
[B]
Top of
Chapter
= Back
Total Tickets Suld[34]+

WinRunner inserts an obj_get_text statement into the test script. The text
appears in the script as a comment, for example #34.

WinRunner Tutorial Lesson 9, page 141

Reading Text

Note: If the #No text found comment is inserted into your test script above the
obj_get_text statement, it means that the display driver of your computer is

preventing WinRunner from recognizing the font in the Flight Reservation Books
application. If this happens, follow the instructions in Teaching Fonts to Online
WinRunner on page 147, and then start this exercise from the beginning. # Find
Find
Again
6 Close the graph.
2
7 Create a new order. ¢ Help
Choose File > New Order in the Flight Reservation application. ‘ ’
[=]
Top of
Chapter
& Back

WinRunner Tutorial Lesson 9, page 142

Reading Text

8 Enter flight and passenger information.

=% Flight Reservation [_ O]
Fil= Edit pnalpziz Help m
; = Books
IS1 = B | Online
— Flight Schedule: ———— — Order Information:
U Egtt:r tomorrow's D ate of Flight: I ame: Order Mo #4 Find
—_/_ I i [] Enter your name. Finc_i
Fly Frarm: Departure Tirme: Flight Mo Again
[] Select Denver. | -
I = | ‘? Help
Fly Ta Arrival Time: Airline:
[] Select San [-
Francisco. I J I I ‘ ’
Class: Ticket [] Order 1 ticket
ickets: I -
= First _ @
[Click the Flight: P{;\ﬁ_ﬁ) I B e (;I'r?p of
ick the Flights . apter
button and Fliaht = Ecanony Total: I P
double-click a &
flight. [rsert Drdes I Update Drderl [elete Order | = Back

9 Insert the order into the database.

Click the Insert Order button. When the insertion is complete, the message
“Insert Done” appears in the status bar.

WinRunner Tutorial Lesson 9, page 143

Reading Text

% 10 Synchronize the test so that it waits for the “Insert Done” message to
appear in the status bar.

In WinRunner, choose the Create > Synchronization Point > For

Object/Window Bitmap command or click the Synchronization Point For Books
Object/Window Bitmap button on the User toolbar. Online
Use the iy pointer to click the “Insert Done” message. #h Find
11 Open the graph again. Find
. Again
Choose Analysis > Graphs.

B3| 12 Read the total from the graph. ? Help
Choose Create > Get Text > From Screen Area, or click the Get Text From ‘ ’
Screen Area button on the User toolbar.

[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 9, page 144

Reading Text

Use the crosshairs pointer and the left mouse button to drag a rectangle around

the total.
Books
Sl Online
Agent Mame; jenniter
4 Find

Find
Again
‘? Help

Hlalie W11 HINLHE H0H1dE HUTEE T

BT ST ST AL E ok @
Total Tickets S0ld[35] iy Top of
Chapter
Click the right mouse button to finish the operation. WinRunner inserts an “=Back

obj_get_text statement into the test script.

13 Close the graph.
Q 14 Stop recording.

Choose Create > Stop Recording or click the Stop button.

WinRunner Tutorial Lesson 9, page 145

Reading Text

1 h .
E 5 Save the test

Choose File > Save or click the Save button. Name the test lesson9 and click

Save.
Books
Online
When WinRunner reads text from the screen, it inserts a win_get_text or
obj get_text statement into the test script. For example: @4 Find
. . Find
obj_get_text("GS_Drawing", text, 346, 252, 373, 272); Ag;in
GS_Drawing is the logical name of the non-standard GUI object containing the Z Help
text. ‘ ’
text is the variable which stores the text you selected.
=]
346, 252, 373, 272 are the coordinates of the rectangle you marked around the gﬁp ct>f
text. e
= Back

WinRunner Tutorial Lesson 9, page 146

Reading Text

Teaching Fonts to WinRunner

In the following exercise you will teach WinRunner the font used by the Flights

Reservation application.
Boqks
Note that you only need to perform this exercise now if WinRunner did not Online
recognize text in the previous exercise. In general, you only need to teach fonts | #& Fing
to WinRunner if it does not automatically recognize the fonts in the application you
. Find
are testing. Again
To teach a font to WinRunner you: 2 Help
® learn the set of characters (font) used by your application ‘ ’
® create a font group, a collection of fonts grouped together for specific testing
purposes =]
Top of
* activate the font group by adding the setvar TSL function to a test script Chapter
= Back

WinRunner Tutorial Lesson 9, page 147

Reading Text

Learning Fonts

You use the WinRunner Fonts Expert to learn the fonts used by your application.

g 1 Start WinRunner and open a new test. Books
If WinRunner is not already open, choose Programs > WinRunner > Online
WinRunner on the Start menu. If the Welcome window is open, click the New &4 Find
Test button. Otherwise, choose File > New. A new test window opens.
2 Open the Fonts Expert. /fg;?n
In WinRunner, choose Tools > Fonts Expert. The Font Expert window opens. 2 Help
3 Open the Learn Font window.
In the Fonts Expert, choose Font > Learn. The Learn Fonts window opens. ‘ ’
4 Name the font in the Flight Reservation flights. To%lof
In the Font Name box, type flights. Chapter
5 Describe the properties of the flights font. e Back

Click the Select Font button to open the Font dialog box. The Flight Reservation
font is MS Sans Serif, Bold, 8 points. Select these properties in the window and
click OK.

6 Learn the flights font.

In the Learn Font window, click the Learn Font button. When the learn process
is completed, the Existing Characters box displays the characters learned and
the Properties box displays the font's properties.

WinRunner Tutorial Lesson 9, page 148

Reading Text

7 Close the Learn Fonts window.

Click Close.

. Books
Creating a Font Group omine
After WinRunner learns a font, you must assign it to a font group. A font group can .
contain one or more fonts. In this exercise you will create a font group which &4 Find
contains only the flights font. Find

Again

1 Open the Font Groups window.

‘? Help
In the Fonts Expert, choose Font > Groups.

2 Create a Font Group called flt_res and assign the flights font to it. ‘ ’
Type the name flt_res into the Group Name field. Select “flights” in the Fonts in =
Library box. Click the New button. Top of

Chapter

3 Close the Font Groups window and the Fonts Expert.

= Back
Click Close.

4 Close the Fonts Expert.

Choose Font > EXxit.

WinRunner Tutorial Lesson 9, page 149

Reading Text

Activating a Font Group

The final step before you can read text is to activate the font group. You do this in
the General Options dialog box.

Books
1 Open ablank test window in WinRunner. Online
If a blank test window is not currently open, choose File > New. & Find

2 Activate the flt_res font group and the Image Text Recognition mechanism. Find
Again

Choose Settings > General Options. In the General Options dialog box, click
the Text Recognition tab. Select the Use Image Text Recognition Mechanism 2 Help
check box. In the Font Group box, type flt_res, and click OK.

Note: You can also activate a font group using the fontgrp testing option by =]

adding a setvar statement to a test script. To do so, in the test window type: gﬁgp?ér
setvar (“fontgrp”, "flt_res"); & Back

Keep in mind that only one font group can be active at a time. If you use a setvar
statement to activate a font group, then the font group remains active only during
the current WinRunner testing session. If you close WinRunner and restart it,
you must run the setvar statement again in order to reactivate the font group.
For more information on using the setvar function, refer to the “Setting Testing
Options from a Test Script” chapter in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 9, page 150

Reading Text

Verifying Text

In this exercise you add an if/else statement to the test script in order to determine

whether the total was updated in the graph after you placed an order. ’
Books
1 Inthe first obj_get_text statement in the lesson9 test script, change the Online
text variable to first_total. &4 Find
2 In the second obj_get_text statement in the test script, change the text Find
variable to new_total. Again
3 Place the cursor below the last line of the script. 2 Help
4 Add the following statements to the test script exactly as they appear
below. ‘ ’
if (new_total == first_total + 1) =
tl_step ("graph total”, O, "Total is correct.”); Top of
Chapter
else
tl_step ("graph total", 1, "Total is incorrect."); & Back

In plain English, these statements mean “If new_total equals first_total plus 1,
report that the total is correct, otherwise (else) report that the total is incorrect.”

For a description of the tl_step function, review Lesson 7, “Programming Tests
with TSL.”

E 5 Save the test.

Choose File > Save or click the Save button.

WinRunner Tutorial Lesson 9, page 151

Reading Text

Debugging the Test Script

You should now run the test in Debug mode in order to check for errors in syntax
and logic. If any error messages appear, look over the test script and try to fix the

problem. Books
Online
1 Select Debug mode from the Run Mode list on the Standard toolbar. 4 Find
n
Debug mode will stay in effect until you select a different mode.
Find
15| % 2 Run the test. Again
Choose Create > Run from Top or click the Run from Top button. If you prefer 2 Help
to run the test line by line, use the Step button.
e 3 Review the test results in the WinRunner Test Results window. ‘ ’
Choose Tools > Test Results or click the Test Results button. The WinRunner [O]
Test Results window displays the results of the Debug test run. gﬁgp‘t’ér
If the tl_step event failed, a problem exists in the test script. Examine the script ©Back
ac

and try to fix the problem.

4 Exit the Flight Reservation application.

Choose File > Exit.

WinRunner Tutorial Lesson 9, page 152

Reading Text

Running the Test on a New Version

Once the test script is debugged, you can run it on a new version of the Flight
Reservation application.

Books
Online

L%‘ 1 Open version 1B of the Flight Reservation application.
s

Flight1g ~ Choose Programs > WinRunner > Sample Applications > Flight 1B on the ¢4 Find
Start menu. In the Login window, type your name and the password mercury, Find
and click OK. Reposition the Flight Reservation application and WinRunner so Again
that they are both clearly visible on your desktop.

P Help
Y 2 In WinRunner, select Verify mode from the Run Mode list on the Standard
toolbar. ‘ ’
Verify mode will stay in effect until you select a different mode. =
@ 3 Choose Run from Top. Top of
Chapter

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “resl.” Make sure that the = Back
Display Test Results at End of Run check box is selected.

4 Run the test.
Click OK in the Run Test dialog box. The test run begins.

WinRunner Tutorial Lesson 9, page 153

Reading Text

5 Review the test results.

The test fails because the graph was not updated after WinRunner placed an
order for one ticket. WinRunner read the total number of orders from the graph

and concluded that the text is incorrect.
Book
6 Close the report. oﬁﬁnz
h File > Exit.
Choose File Xit # Find
7 Close the lesson9 test.
Finc_i
Choose File > Close. Again
8 Close version 1B of the Flight Reservation application. 2 Help
Choose File > Exit. ‘ ’
=]
Top of
Chapter
EBack

WinRunner Tutorial Lesson 9, page 154

Reading Text

Text Checkpoint Tips

® Before you create a script that reads text, determine where the text is located. If

the text is part of a standard GUI object, use a GUI checkpoint or TSL functions
such as edit_get_text or button_get_info. If the text is part of a non-standard gﬁﬁﬁz
GUI object, use the Create > Get Text > From Object/Window command. If the
text is part of a bitmap, use the Create > Get Text > From Screen Area & Find
command.
Find
* When WinRunner reads text from the application, the text appears in the script Again
as a comment (a comment is preceded by #). If the comment #no text was o
found appears in the script, WinRunner does not recognize your application font. ¢ Help
Use the Font Expert to teach WinRunner this font. ‘ ’
® TSL includes additional functions that enable you to work with text such as
win_find_text, obj_find_text, and compare_text. For more information, refer =]
to the “Checking Text” chapter in your WinRunner User’s Guide. gﬁgp‘t’ér
= Back

WinRunner Tutorial Lesson 9, page 155

Creating Batch Tests

Books
This lesson: Online

® describes how you can use a batch test to run a suite of tests unattended #A Find

* helps you create a batch test Find
gain

® helps you run the batch test and analyze the results
‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 10, page 156

Creating Batch Tests

What is a Batch Test?

Imagine that you have revised your application and you want to run old test scripts
on the revised product. Instead of running each test individually, by using a batch

test you can run any number of tests, leave for lunch, and when you get back, see
the results of all your tests on your screen. gﬁﬁﬁz
A batch test looks and behaves like a regular test script, except for two main &4 Find
differences:
Finc_i
* |t contains call statements, which open other tests. For example: Again
call "c:\\ga\\flights\\lesson9"(); ? Help
During a test run, WinRunner interprets a call statement, and then opens and ‘ ’
runs the “called” test. When the called test is done, WinRunner returns to the
batch test and continues the run. [E
Top of
. . Chapter
® You choose the Run in Batch Mode option on the Run tab of the General
Options dialog box (Settings > General Options) before running the test. This “=Back

option instructs WinRunner to suppress messages that would otherwise interrupt
the test. For example, if WinRunner detects a bitmap mismatch, it does not
prompt you to pause the test run.

When you review the results of a batch test run, you can see the overall results
of the batch test (pass or fail), as well as the results of each test called by the
batch test.

WinRunner Tutorial Lesson 10, page 157

Creating Batch Tests

Programming a Batch Test

In this exercise you will create a batch test that:

O calls tests that you created in earlier lessons (lesson5, lesson6, and lesson7) Boloks
Online
O runs each called test 3 times in order to check how the Flight Reservation appli- P
cation handles the stress of repeated execution. Find
. Find
g 1 Start WinRunner and open a new test. Ag;in
If WinRunner is not already open, choose Programs > WinRunner > B Hel
WinRunner on the Start menu. If the Welcome window is open, click the New ; P
Test button. Otherwise, choose File > New. A new test window opens. ‘ ’
2 Program call statements in the test script that call lesson5, lesson6, and
lesson?. =]
Top of
Type the call statements into the new test window. The statements should look Chapter
like this: &Back

call "c:\\ga\\flights\\lesson5"();
call "¢:\\ga\\flights\\lesson6"();
call "¢:\\ga\\flights\\lesson7"();

In your test script, replace c:\\ga\\flights with the directory path which

contains your tests. When you type in the path, use double backslashes
between the directory names.

WinRunner Tutorial Lesson 10, page 158

Creating Batch Tests

3 Define aloop that calls each test 3 times.

Add a loop around the call statements so that the test script looks like this:

for (i=0; i<3; i++)

Books
{ Online
call "c:\\ga\\flights\\lesson5"();
call "¢:\\ga\\flights\\lesson6"(); #4 Find
call "¢:\\ga\\flights\\lesson7"(); —
n
} Again

In plain English, this means “Run lesson5, lesson6, and lesson7, and then loop 2 Help
back and run each test again. Repeat this process until each test is run 3 times.

Note that the brackets { } define which statements are included in the loop. ‘ ’
4 Choose the Batch Run option in the General Options dialog box. =

Choose Settings > General Options. In the General Options dialog box, click ot

the Run tab. Then select the Run in Batch Mode check box. Click OK to close

the General Options dialog box. “=Back

5 Save the batch test.

Choose File > Save or click the Save button. Name the test batch.

WinRunner Tutorial Lesson 10, page 159

Creating Batch Tests

Running the Batch Test on Version 1B

You are now ready to run the batch test in order to check the Flight Reservation

application. When you run the test, WinRunner will compare the expected results ’
of each test to the actual results in the application. It uses the expected results gﬁﬁnz
stored when you created the tests in earlier lessons.
@ Find
”ﬁ?‘ 1 Open version 1B of the Flight Reservation application and log in.
s Find
Flight 18 Choose Programs > V\(inRgnner > Sample Applications > Flight 1B on the Again
Start menu. In the Login window, type your name and the password mercury, %
and click OK. Reposition the Flight Reservation application and WinRunner so ¢ Help
that they are both clearly visible on your desktop. ‘ ’
Y 2 In WinRunner, select Verify mode from the Run Mode list on the Standard
toolbar. =
Top of
5 3 Choose Run from Top. Chapter
Choose Run > Run from Top, or click the Run from Top button. The Run Test “=Back

dialog box opens. Accept the default test run name “resl.” Make sure that the
Display test results at end of run check box is selected.

4 Run the test.

Click OK in the Run Test dialog box. The test run begins. The test run consists of
nine different test executions and may take some time.

Watch how WinRunner opens and runs each called test, and loops back to run
the tests again (for a total of 3 times).

WinRunner Tutorial Lesson 10, page 160

Creating Batch Tests

Analyzing the Batch Test Results

Once the batch test run is completed, you can analyze the results in the

WinRunner Test Results window. The Test Results window displays the overall ’
result (pass or fail) of the batch test, as well as a result for each called test. The gﬁﬁnz
batch test fails if any of the called tests failed.
@ Find
@ 1 Open the WinRunner Test Results window and display the res1 results of
Find
the batch test. Again
If the WinRunner Test Results window is not currently open, click in the batch o
test window and choose Tools > Test Results, or click the Test Results button. ¥ Help
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 10, page 161

Creating Batch Tests

2 View the results of the batch test.

B3 File Option: Tooks ‘window Displays the
current results Books
= ;
Dl@l |res1 directory name. Online
The test tree shows . P _
all the tests called % t]'_:)gTest Result . . fail Batch Tesh—L # Find
during the batch test F lezgont I: +% Total number of bitmap checkpoints: 0 SthWS v;:hether n
run. Since each test N — +% Total number of GUI checkpaints: 0 the ba(;c t;a;;[d -
was called 3 times, E & . passed or failed. Find
the test names F leszon? General Information Again
appear 3 times in the = &l lessong
r e330n Line Event Dietailz Rezult Time 1= 2 Hel
g p
r &l lesson? 04 Istart un batch wn 00:00:00 |
- B lessons 3 |calltest |lessonb 0K |00:0000 Al test’ event ‘ ’
L - indicates that a
% :ESS':'F'? 14 |ietum leszonG mizmate| 000001 called test was
- =l feseon 4 |calltest [lesson oK [0000:01 opened and run. B]
25 (retum legzonk mizrmabe| 0000 23 Top of
T Chapter
Lists all the events 5 call test legzon? ok 0000:23
that occurred during 19 |[retun lesgon? oK 00:00:24 &Back
ac
the batch test run. 3 calltest |lessond oK |ooonzd
14 |retun leszonG mizmate]00:00:25 A “return” event
indicates that
4 |calltest leszonk oK 00:00:25 control was
25 retum lezzonk mizmate) 000047 returned to the
batch test.
L4 5 calltest lezzon? ok 00.00:47 -
| | 4

The batch test failed because one or more of the called tests failed. As you have
seen in earlier lessons, version 1B contains some bugs.

WinRunner Tutorial Lesson 10, page 162

3 View the results of the called tests.

The highlighted te
indicates which test
results are currently
displayed. In this
case, lesson6
results appear in the
Test Results
window.

ists all the events
hat occurred when
he test was called.

WinRunner Tutorial

Click a test name in the test tree to view the results of a called test.

E2 winRunner Test Results - [C:\Program Files\Mercury Interactive’... = E3

File Options Tools “window 18] =]
ﬁ'l %l |res1 aﬁ k2
t[:gbatch t]:z]Test Fesult: fail Batch-Test
o &l lezzont I: +2¢ Total nurnbier of bitmap checkpoints: 2
w +% Total number of GUI checkpoints: i]

o &l lezzon? ﬁ General Infarmation
= E legzon
r &I lessonk Line Exvent Details Result Time =
r E lesson? - 1 start run lezzonb Tun 00 00:00
- B tessons 15 |bitmap chechlmg3 oK [oo:oo
B 22 |hitmap chechlimgd rizrnatc|00:00: 22
- &I lesson? L 28 |ztoprun lezzonb 0Ok 00:00:22
I 4

Displays the
current results
directory name.

Displays the
current results
directory name.

Recall that lesson6 uses a bitmap checkpoint to check that the Agent Signature
field in the Fax Order dialog box clears after WinRunner clicks the Clear

Signature button. Since the field did not clear, the bitmap checkpoint detected a
mismatch. You can double-click the failed event to display the expected, actual,
and difference results.

Creating Batch Tests

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

Creating Batch Tests

4 Close the Test Results window.

Choose File > Exit.

5 Close the batch test.

Books

Choose File > Close for each open test. Online

6 Clear the Batch Run option in the General Options dialog box. 4 Find
Once you are finished running the batch test, clear the Batch Run option. Find
Choose Settings > General Options. In the General Options dialog box, click Again
the Run tab. Then clear the Run in Batch Mode check box and click OK. 2 Hel

¢ Help

7 Close version 1B of the Flight Reservation application.

Choose File > Exit. ‘ ’

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 10, page 164

Creating Batch Tests

Batch Test Tips

® By defining search paths, you can instruct WinRunner to search for called tests

in certain directories. Choose Settings > General Options. In the General
Options dialog box, click the Folders tab. In the Search Path for Called Tests gﬁﬁﬁz
box, simply define the paths in which the tests are located. This enables you to
include only the test name in a call statement. For example: & Find
call "lesson6"(); Find
Again
For more information on defining search paths for called tests, refer to the o
“Setting Global Testing Options” chapter in your WinRunner User’s Guide. ¢ Help
® You can pass parameter values from the batch test to a called test. Parameter ‘ ’
values are defined within the parentheses of a call statement. @l
Top of
call test_name ([parameterl, parameter2, ...]); Chgpter
®* Remember that you must select the Run in Batch Mode option in the General = Back

Options dialog box in order for the batch test to run unattended.

For more information on creating batch tests, refer to the “Calling Tests” and
“Running Batch Tests” chapters in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 10, page 165

Creating Batch Tests

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 10, page 166

Maintaining Your Test Scripts

Boqks
This lesson: Online
® explains how the GUI map enables you to continue using your existing test #A Find
scripts after the user interface changes in your application Find
® shows you how to edit existing object descriptions or add new descriptions to the Again
GUI map 2 Help
® shows you how to use the Run wizard to automatically update the GUI map ‘ ’
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 11, page 167

Maintaining Your Test Scripts

What Happens When the User Interface Changes?

Consider this scenario: you have just spent several weeks creating a suite of
automated tests that covers the entire functionality of your application. The

L : Book

application developers then build a new version with an improved user interface. oﬁﬁnz

They change some objects, add new objects, and remove others. How can you

test this new version using your existing tests? #A Find
. . . . Find

WinRunner provides an easy solution. Instead of manually editing every test Again

script, you can update the GUI map. The GUI map contains descriptions of the
objects in your application. It is created when you use the RapidTest Script wizard ? Help
to learn the objects in your application. This information is saved in a GUI map file. ‘ ’

An object description in the GUI map is composed of:

[=]

® alogical name, a short intuitive name describing the object. This is the name you gﬁgp‘t’ér
see in the test script. For example:

button_press ("Insert Order"); “©Back

Insert Order is the object’s logical name.

WinRunner Tutorial Lesson 11, page 168

Maintaining Your Test Scripts

® a physical description, a list of properties that uniquely identify the object. For

example:

{

class: push_button Books
label: "Insert Order" Online
} #h Find
The button belongs to the push_button object class and has the label “Insert Find
Order.” Again

When you run a test, WinRunner reads an object’s logical name in the test script | 2 Help
and refers to its physical description in the GUI map. WinRunner then uses this

description to find the object in the application under test. ‘ ’
If an object changes in an application, you must update its physical description in N =] .
the GUI map so that WinRunner can find it during the test run. Cﬁgp?er

In the following exercises you will: &=Back

0 edit an object description in the GUI map
0 add objects to the GUI map

O use the Run wizard to automatically detect user interface changes and update
the GUI map

WinRunner Tutorial Lesson 11, page 169

Maintaining Your Test Scripts

Editing Object Descriptions in the GUI Map

Suppose that in a new version of the Flight Reservation application, the Insert

Order button is changed to an Insert button. In order to continue running tests that ’
use the Insert Order button, you must edit the label in the button’s physical gﬁﬁnz
description in the GUI map. You can change the physical description using regular
expressions. For additional information, refer to Adjusting the Script with #4 Find
Regular Expressions on page 129 of this tutorial and to the "Using Regular Find
Expressions" chapter in the WinRunner User’s Guide. Again
g 1 Start WinRunner and open a new test. ? Help
If WinRunner is not already open, choose Programs > WinRunner > ‘ ’
WinRunner on the Start menu. If the Welcome window is open, click the New
Test button. Otherwise, choose File > New. A new test window opens. =
Top of
Chapter
= Back

WinRunner Tutorial Lesson 11, page 170

Maintaining Your Test Scripts

Within the tree,
the object is
identified by its
class using an
icon, and by its
logical name.

2 Open the GUI Map Editor.

Choose Tools > GUI Map Editor. The GUI Map Editor opens and displays the

current contents of the GUI Map.

= GUI Map Editor
File Edt “iew Options Toolz Help
Windows/Objects:

F A& etatic]”

FEE Cancel J
28 "Clear Signature"

—a_bll "Fax Mumber:"

= "Flight Reservation"

- a3z

L hbout,.

[{C7]

Learn
b adify...
Add

Lelete

3 Abdwindd0

- abl] “aidine:"

- & Airline: (static]”
[

¥ Show Physical Description

Show
Find

Sl

label: “Fax Order Mo, B,
}MSW_cIass: "HI2770"

;IJ
{ e
class: window,

IDbiect iz hot found. Cannot Highlight

Objects are listed in a tree, according
to the window in which they are
located.

When this checkbox is selected, the
physical description of the selected
object or window is displayed below.

Books
Online

@& Find

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 11, page 171

Maintaining Your Test Scripts

The GUI Map Editor displays the object names in a tree. Preceding each name
is an icon representing the object’s type. The objects are grouped according to
the window in which they are located. You can double-click a window icon to
collapse or expand the view of its objects.

Boqks
3 Find the Insert Order button in the tree. Online

In the GUI Map Editor, choose View > Collapse Objects Tree to view only the #4 Find
window titles.

Find
Again

‘? Help

4

[=]

Top of
Chapter

= Back

WinRunner Tutorial Lesson 11, page 172

Maintaining Your Test Scripts

¥ GUI Map Editor M= E3
File Edt “iew Options Toolz Help
Windows/0bjects: Books
= "Fax Order Mo. 4" ;I Online
"Fax Order Mo, £"
= "Flight Reseration” Leam EI 4 Find
™ "Graphice Server Modify... | Find
= "Open Order" When you collapse the tree, Again
Add... only window titles are listed.
Delet
il @ Help

4

Show
Find @

[
Top of
¥ Show Physical Description Chapter

;IJ
¢ : j = Back
class: window,
J-1]

b

label: “Fax Order Mo, B,
}MSW_cIass: "HI2770"

IDbiect iz hot found. Cannot Highlight

Double-click the Flight Reservation window to view its objects. Scroll down the
alphabetical object list until you locate the Insert Order button.

WinRunner Tutorial Lesson 11, page 173

Maintaining Your Test Scripts

4 View the Insert Order button’s physical description.

Click the Insert Order button in the tree.

2% GUI Map Editor | _ [] x| ngs
File Edit ‘iew DOptions Toolz Help Online
findoves /0 bjects:

L Help d @& Find

- "Inzert Order" -
" " Find

- bl "Mame: Leamn El Again

- & "Mame[ztatic) Madify... |

FE "Mew Order” — fg:) Help

F&H "Open Order..." ——I

L €% "Order Information:" ‘ ’

—LI' "Order Mo
& "Order Mo:(static]”

FEH Paste Top of
L 6] "Price:" = Show | Chapter
1 I I 4 Find El
¥ Show Bhysical Description & Back
{ -]
clazs: puzh_button, Physical description

label: "Ingert Order'*

-]

IEIbiect iz not found. Cannot Highlight

WinRunner Tutorial Lesson 11, page 174

Maintaining Your Test Scripts

The physical description of the object is displayed in the bottom pane of the GUI
Map Editor.

5 Modify the Insert Order button’s physical description.

Click the Modify button or double-click the Insert Order button. The Modify gﬁﬁﬁz
dialog box opens and displays the button’s logical name and physical

description. #4 Find
Again
Logical Wame: ok I

? Hel
IInsertElrder g Help
LCancel |
Physical Deszcription: Help I ‘ ’
{ =

clazs: push_buttan,
label: "Ingert Qrder'’ @
}

Top of
Chapter

|

= Back

WinRunner Tutorial Lesson 11, page 175

Maintaining Your Test Scripts

In the Physical Description box, change the label property from Insert Order to

Insert.
Books
Logical Marne: ak. I Online
| t Ord |
I k== raer Qancel M Flnd
Phyzical Description: Help I
;' Find
clazs: puzgh_button, Again
label: "Inzert"
‘? Help
= r
Click OK to apply the change and close the dialog box.]
Top of
6 Close the GUI Map Editor. Chapter
In the GUI Map Editor, choose File > Exit. = Back

The next time you run a test that contains the logical name “Insert Order”,
WinRunner will locate the Insert button in the Flight Reservation window.

WinRunner Tutorial Lesson 11, page 176

Maintaining Your Test Scripts

Adding GUI Objects to the GUI Map

If your application contains new objects, you can add them to the GUI map without
running the RapidTest Script wizard again. You simply use the Learn button in the

GUI Map Editor to learn descriptions of the objects. You can learn the description gﬁﬁﬁz
of a single object or all the objects in a window.

@4 Find
In this exercise you will add the objects in the Flight Reservation Login window to
Find
the GUI map. Again
L%‘ 1 Open the Flight Reservation Login window. 2 Help
£ :
Flight 14 Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury, ‘ ’
and click OK.
T = f
op o
2 Open the GUI map. Chapter

In WinRunner, choose Tools > GUI Map Editor. The GUI Map Editor opens. e Back
Bac

3 Learn all the objects in the Login window.

Click the Learn button. Use the {f pointer to click the title bar of the Login
window.

WinRunner Tutorial Lesson 11, page 177

Maintaining Your Test Scripts

A message prompts you to learn all the objects in the window. Click Yes.

WinRunner Message
- : [V
@ Do v want 10 Lol oects Books
withir the windaw ? Online
Moo | #4 Find
Find
: - o L Again
Watch as WinRunner learns a description of each object in the Login window
and adds it to the GUI Map. 2 Help
4 Find the Login window objects in the GUI Map Editor tree. ‘ ’
5 Close the GUI Map Editor.
. . . [O]
In the GUI Map Editor, choose File > Exit. Top of
. . Chapter
6 Close the Login window.
Click Cancel. = Back

WinRunner Tutorial Lesson 11, page 178

Maintaining Your Test Scripts

Updating the GUI Map with the Run Wizard

During a test run, if WinRunner cannot locate an object mentioned in the test

script, the Run wizard opens. The Run wizard helps you update the GUI map so ’
that your tests can run smoothly. It prompts you to point to the object in your gﬁﬁnz
application, determines why it could not find the object, and then offers a solution.
In most cases the Run wizard will automatically modify the object description in #4 Find
the GUI map or add a new object description. Find
Again
For example, suppose you run a test that clicks the Insert Order button in the
Flight Reservation window. ? Help
button_press ("Insert Order"); ‘ ’
[B]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 11, page 179

Maintaining Your Test Scripts

If the Insert Order button is changed to an Insert button, the Run wizard opens
during a test run and describes the problem.

Run Wizard E
Books
Can't Find.. swinFunner cannat find the Online
puzh_button "Insert Order",
#h Find
Presz the "Hand" icon and then click -
on the push_buttor “Insert Order”. Find
Again
&
‘? Help
Mote: If the object not found iz 2 "irtual
Ohject”, then pou need ta re-learn it [‘ ’
uzing the "irtual Object Learn Wizard™).
Cancel I L Backl Tt | Help | T @ ‘
opo
Chapter
= Back

WinRunner Tutorial Lesson 11, page 180

Maintaining Your Test Scripts

You click the hand button in the wizard and click the Insert button in the Flight
Reservation program. The Run wizard then offers a solution:

Run Wizard E
Books
Solution - The physical description of the Online
New pusgh_button “lngert Order' has
= 5 © changed. &h Find
Press "0K" to update the description in Fi ”C_‘
the GUI map. Again
Tip: to view/edit the new description press
Edit. ‘? Help
Edit... |
¥ Continue replaying the test ‘ ’
Cancel | << Backl 0K | Help | @
Top of
Chapter
When you click OK, WinRunner automatically modifies the object’s physical &= Back

description in the GUI map and then resumes the test run.

If you would like to see for yourself how the Run wizard works:

1 Open the GUI map (Tools > GUI Map Editor).
2 Delete the “Fly From” object from the GUI Map Editor tree.

The Fly From object is listed under the Flight Reservation window. Select this
object and click the Delete button in the GUI Map Editor.

WinRunner Tutorial Lesson 11, page 181

Maintaining Your Test Scripts

3 Open Flight Reservation 1A.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the
Start menu. In the Login window, type your name and the password mercury,

and click OK. Reposition the Flight Reservation application and WinRunner so
that they are both clearly visible on your desktop. Books
Online
4 In WinRunner, open the lesson4 test and run it.
Watch what happens when WinRunner reaches the statement &4 Find
- . " aon . Find
list_select_item ("Fly From:", "Los Angeles"); Again
5 Follow the Run wizard instructions. 2 Help
The Run wizard asks you to point to the Fly From object and then adds the ‘ ’
object description to the GUI map. WinRunner then continues the test run.
6 Find the object description in the GUI map. @f
Top o
When WinRunner completes the test run, return to the GUI Map Editor and look Chapter
for the Fly From object description. You can see that the Run wizard has added & Back
the object to the tree.

7 Close the GUI Map.
In the GUI Map Editor, choose File > Exit.
8 Close the Flight Reservation application.

Choose File > Exit.

WinRunner Tutorial Lesson 11, page 182

Where Do You Go from Here?

Books
Now that you have completed the exercises in Lessons 1 through 11, you are Online
ready to apply the WinRunner concepts and skills you learned to your own # Find
application.
Find
This lesson: Again
¢ shows you how to start testing your application ? Help
® describes where you find additional information about WinRunner ‘ ’
[E]
Top of
Chapter
= Back

WinRunner Tutorial Lesson 12, page 183

Where Do You Go from Here?

Getting Started

In order to start testing your application you should use the RapidTest Script

wizard to learn a description of every object it contains. However, before doing
. T . L Books

this, remove the sample application’s object descriptions from the GUI map. Online

To get started: & Find
1 Close all applications on your desktop except for WinRunner and the Find

application you want to test. Again
2 Clear the GUI map. 2 Help

The GUI map currently contains descriptions of objects in the sample

application. Since you no longer need these descriptions, you should clear the ‘ ’

GUI map. =

To clear the GUI map, open the GUI Map Editor (Tools > GUI Map Editor) and gﬁgpft’ér

choose File > Close All. When prompted, click OK to discard any descriptions

found in the temporary GUI map file. When prompted, click Yes to clear the = Back

temporary buffer. WinRunner closes all open GUI map files and also deletes any
descriptions found in the temporary GUI map file.

Choose File > Exit to close the GUI Map Editor.

WinRunner Tutorial Lesson 12, page 184

Where Do You Go from Here?

3 Run the RapidTest Script Wizard on your application. Learn object
descriptions in Comprehensive mode.

You should now use the RapidTest Script Wizard to learn a description of each

objectin your application. Choose Create > RapidTest Script Wizard and follow Books
the instructions on the screen. Online
When the wizard asks you to choose a learning flow, choose Comprehensive. #4 Find
This mode lets you control how WinRunner learns object descriptions. It enables .
you to customize logical names and map custom objects to a standard object AFg;?n
class.

‘? Help

After the learning process is completed, the wizard creates a GUI map file and a
startup script. If you are working in a testing group, store this information on a ‘ ’
shared network drive.

If you need help while using the wizard, click the Help button in the appropriate . @f
opo
screen. Chapter

1
4 Create tests! EBack

Once you finish using the wizard, you can start creating tests in WinRunner. Use
recording, programming, or a combination of both to build your automated test
scripts.

WinRunner Tutorial Lesson 12, page 185

Where Do You Go from Here?

Getting Additional Information

For more information on WinRunner and TSL, refer to the user’s guides and

online resources provided with WinRunner.
Books
Online
Documentation Set .
#4 Find
In addition to this tutorial, WinRunner comes with a complete set of
documentation: AFg;‘i’n
WinRunner User’s Guide provides step-by-step instructions on how to use 2 Help
WinRunner to test your application. It describes many useful testing tasks and
options not covered in this tutorial. ‘ ’
WinRunner Installation Guide explains how to install WinRunner on a single =
computer or on a network. gﬁgp?;
WinRunner Customization Guide explains how to customize WinRunner to &Back
meet the special testing requirements of your application.

WebTest User’s Guide teaches you how to use the WebTest add-in to test your
Web site.

TSL Reference Guide describes Test Script Language (TSL) and the functions it
contains.

WinRunner Tutorial Lesson 12, page 186

Where Do You Go from Here?

Online Resources

WinRunner includes the following online resources:

Read Me First provides last-minute news and information about WinRunner.

Books
Online
What’'s New in WinRunner describes the newest features in the latest versions
of WinRunner. @& Find
Books Online displays the complete documentation set in PDF format. Online AFg;‘i’n

books can be read and printed using Adobe Acrobat Reader 4.0, which is
included in the installation package. Check Mercury Interactive’s Customer @ Help
Support web site for updates to WinRunner online books. ‘ ’

Note that in order to view the Books Online you must first install the Acrobat

Reader. To install the Acrobat Reader, choose Programs > WinRunner > . [=] .
opo
Documentation > Acrobat Reader Setup on the Start menu. Chgpter

WinRunner Context Sensitive Help provides immediate answers to questions & Back
that arise as you work with WinRunner. It describes menu commands and dialog
boxes, and shows you how to perform WinRunner tasks. Check Mercury
Interactive’s Customer Support web site for updates to WinRunner help files.

TSL Online Reference describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions. Check Mercury Interactive’s
Customer Support site for updates to the TSL Online Reference.

WinRunner Tutorial n 12, page 187

Where Do You Go from Here?

WinRunner Sample Tests includes utilities and sample tests with accompanying
explanations. Check Mercury Interactive’s Customer Support site for updates to
WinRunner help files.

WinRunner Quick Preview opens an overview of WinRunner in your default gﬁﬁﬁz
browser.

@ Find
Technical Support Online uses your default web browser to open Mercury
Interactive’s Customer Support web site. AFg;‘i’n

Support Information presents the locations of Mercury Interactive’s Customer 2 Help
Support web site and home page, the e-mail address for sending information

requests, the name of the relevant news group, the location of Mercury ‘ ’

Interactive’s public FTP site, and a list of Mercury Interactive’s offices around the

world. =]
Top of
Chapter

Mercury Interactive on the Web uses your default web browser to open Mercury
Interactive’s home page. This site provides you with the most up-to-date & Back
information on Mercury Interactive and its products. This includes new software
releases, seminars and trade shows, customer support, educational services,
and more.

WinRunner Tutorial Lesson 12, page 188

WinRunner Tutorial, Version 6.0
© Copyright 1994 - 1999 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury

Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice gﬁﬁ:ﬁ:
and does not represent a commitment on the part of Mercury Interactive.

. : - : : I #h Find
Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as Find
expressly provided in any written license agreement from Mercury Interactive. Again
WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of ‘? Help
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra
SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, ‘
Fast Scan, and Visual Web Display are trademarks of Mercury Interactive Corporation in the United States

and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations. &= Back

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue

Sunnyvale, CA 94089

Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRTUT6.02/01

	WinRunner® Tutorial
	Table of Contents
	Welcome to the WinRunner Tutorial
	Using This Tutorial
	Typographical Conventions

	Introducing WinRunner
	The Benefits of Automated Testing
	Understanding the Testing Process
	Exploring the WinRunner Window

	Getting Started with RapidTest
	How Does WinRunner Identify GUI Objects?
	Spying on GUI Objects
	Using the RapidTest Script Wizard
	Running the User Interface Test
	Analyzing Test Results

	Recording Tests
	Choosing a Record Mode
	Recording a Context Sensitive Test
	Understanding the Test Script
	Recording in Analog Mode
	Running the Test and Analyzing the Results
	Recording Tips

	Synchronizing Tests
	When Should You Synchronize?
	Creating a Test
	Changing the Synchronization Setting
	Identifying a Synchronization Problem
	Synchronizing the Test
	Running the Synchronized Test

	Checking GUI Objects
	How Do You Check GUI Objects?
	Adding GUI Checkpoints to a Test Script
	Running the Test
	Running the Test on a New Version
	GUI Checkpoint Tips

	Checking Bitmaps
	How Do You Check a Bitmap?
	Adding Bitmap Checkpoints to a Test Script
	Viewing Expected Results
	Running the Test on a New Version
	Bitmap Checkpoint Tips

	Programming Tests with TSL
	How Do You Program Tests with TSL?
	Recording a Basic Test Script
	Using the Function Generator to Insert Functions
	Adding Logic to the Test Script
	Understanding tl_step
	Debugging the Test Script
	Running the Test on a New Version

	Creating Data-Driven Tests
	How Do You Create Data-Driven Tests?
	Converting Your Test to a Data-Driven Test
	Adding Data to the Data Table
	Adjusting the Script with Regular Expressions
	Customizing the Results Information
	Running the Test and Analyzing Results
	Data-Driven Testing Tips

	Reading Text
	How Do You Read Text from an Application?
	Reading Text from an Application
	Teaching Fonts to WinRunner
	Verifying Text
	Running the Test on a New Version
	Text Checkpoint Tips

	Creating Batch Tests
	What is a Batch Test?
	Programming a Batch Test
	Running the Batch Test on Version 1B
	Analyzing the Batch Test Results
	Batch Test Tips

	Maintaining Your Test Scripts
	What Happens When the User Interface Changes?
	Editing Object Descriptions in the GUI Map
	Adding GUI Objects to the GUI Map
	Updating the GUI Map with the Run Wizard

	Where Do You Go from Here?
	Getting Started
	Getting Additional Information

