
Online Guide

Find

Books
Online

 Again

Help

FindWinRunner®

Customization Guide
��������	
�

������

Table of Contents

WinRunner Customization Guide Page 2

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

0
Table of Contents

Welcome to WinRunner Customization ... 5
Using This Guide.. 5
WinRunner Documentation Set .. 6
Online Resources... 7
Typographical Conventions .. 9

Chapter 1: Introduction... 10

PART I: CUSTOMIZING GUI CHECKS

Chapter 2: Creating Custom GUI Checks for Standard
Objects ... 19

About Creating Custom GUI Checks for Standard Objects.............. 20
Creating a Capture Function .. 25
Creating a Comparison Function.. 30
Registering a New Property Check .. 35
Associating a New Property Check with a GUI Object Class 37
Modifying the Default Checks for a GUI Object Class...................... 40

Table of Contents

WinRunner Customization Guide Page 3

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 3: Creating GUI Checks for Custom Objects................ 43
About Creating GUI Checks for Custom Objects 44
Adding a Custom GUI Object Class for Verification 47
Defining a Custom Check for a Custom GUI Object Class 53

Chapter 4: Creating GUI Checks: Advanced Topics 55
About Advanced Topics in Creating GUI Checks............................. 56
Adding a New GUI Object Class for Verification 58
Creating Capture and Comparison Functions 61
Registering the New Check .. 62
Setting the Default Checks... 65
Implementing Advanced GUI Checking.. 66

PART I I: CUSTOMIZING RECORDING

Chapter 5: Customizing Recorded Statements 73
About Customizing Recorded Statements.. 74
Understanding Custom Record Functions.. 76
Developing a Custom Record Function.. 81
Associating a Custom Record Function with a GUI Object Class 87
Developing a Custom Execution Function.. 88
Example of a Custom Record Function.. 90

Table of Contents

WinRunner Customization Guide Page 4

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 6: Adding Custom Properties for GUI Objects............. 98
About Adding Custom Properties for GUI Objects 99
Developing a Query Function for a Custom Property..................... 101
Developing a Verification Function for a Custom Property............. 103
Registering a Custom Property .. 106
Assigning a Custom Property to a GUI Object Class 108
Example of a Custom Property Function.. 112

Chapter 7: Customizing Assigned Logical Names................... 117
About Customizing Assigned Logical Names................................. 118
Understanding Logical Name Functions... 120
Developing a Logical Name Function... 121
Associating a Logical Name Function with a
Custom GUI Object Class .. 122

PART I I I : USING THE WINRUNNER API

Chapter 8: The Mercury API Functions 125
About API Functions... 126

Index .. 136

Welcome to WinRunner Customization

WinRunner Customization Guide Page 5

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

0
Welcome to WinRunner Customization

Welcome to WinRunner Customization. By customizing various aspects of
WinRunner, you extend WinRunner’s ability to meet your testing requirements.

Using This Guide

This guide describes the main concepts behind customizing WinRunner. It
provides step-by-step instructions to help you extract the most out of WinRunner,
while ensuring that you meet the testing requirements of your application.

This guide contains three parts:

 Part I: Customizing GUI Checks

Describes how to develop and implement custom checks for custom GUI objects.

 Part II: Customizing Recording

Describes how to customize the way in which WinRunner records operations on
custom objects in order to improve test script readability.

 Part III: Using the WinRunner API

Describes how to use WinRunner’s API functions to enable you to test application
functionality that is invisible at the level of the user interface, and applications that
have no user interface.

Welcome to WinRunner Customization

WinRunner Customization Guide Page 6

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner Documentation Set

In addition to this guide, WinRunner comes with a complete set of documentation:

WinRunner User’s Guide explains how to use WinRunner to meet the special
testing requirements of your application.

WinRunner Installation Guide explains how to install WinRunner on a single
computer or on a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how to
start testing your application.

WebTest User’s Guide teaches you how to use the WebTest add-in to test your
Web site.

TSL Reference Guide describes Test Script Language (TSL) and the functions it
contains.

Welcome to WinRunner Customization

WinRunner Customization Guide Page 7

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Online Resources

In addition to this guide, WinRunner includes the following online resources:

Read Me First provide last-minute news and information about WinRunner.

Books Online displays the complete documentation set in PDF format. Online
books can be read and printed using Adobe Acrobat Reader 4.0, which is
included in the installation package. Check Mercury Interactive’s Customer
Support web site for updates to WinRunner online books.

WinRunner Context-Sensitive Help provides immediate answers to questions
that arise as you work with WinRunner. It describes menu commands and dialog
boxes, and shows you how to perform WinRunner tasks. Check Mercury
Interactive’s Customer Support web site for updates to WinRunner help files.

TSL Online Reference describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions. Check Mercury Interactive’s
Customer Support site for updates to the TSL Online Reference.

WinRunner Sample Tests includes utilities and sample tests with accompanying
explanations. Check Mercury Interactive’s Customer Support site for updates to
WinRunner help files.

Technical Support Online uses your default web browser to open Mercury
Interactive’s Customer Support web site.

Welcome to WinRunner Customization

WinRunner Customization Guide Page 8

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Support Information presents the locations of Mercury Interactive’s Customer
Support web site and home page, the e-mail address for sending information
requests, the name of the relevant news group, the location of Mercury
Interactive’s public FTP site, and a list of Mercury Interactive’s offices around the
world.

Mercury Interactive on the Web uses your default web browser to open Mercury
Interactive’s home page. This site provides you with the most up-to-date
information on Mercury Interactive and its products. This includes new software
releases, seminars and trade shows, customer support, educational services,
and more.

Welcome to WinRunner Customization

WinRunner Customization Guide Page 9

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements of
the functions that are to be typed in literally.

Italics Italic text indicates variable names.

Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items of
the same format may be included. In a program example,
three dots are used to indicate lines of a program that
have been intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.

Introduction

WinRunner Customization Guide Chapter 1, page 10

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

1
Introduction

WinRunner offers an extensive array of features that you can use to test your
software. You can extend these capabilities by customizing WinRunner to meet
the particular requirements of your application. This guide provides detailed
information on how you can customize WinRunner to enhance your testing
capabilities.

You can customize WinRunner in the following areas:

• GUI checks

If WinRunner’s standard GUI checks do not completely meet your specific
testing requirements, you can extend your verification capabilities by creating
custom property checks.

• Recording test scripts

If your application contains custom objects, you can ensure that your test scripts
are easy to read and understand by customizing the functions that WinRunner
records into the scripts.

• Using the Mercury API

You can use the Mercury API (Application Programming Interface) to record and
execute functions in your application that are not connected to the user interface.

Introduction

WinRunner Customization Guide Chapter 1, page 11

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Customizing GUI Property Checks
WinRunner provides a variety of property checks for checking the GUI objects in
your application. If WinRunner’s standard property checks do not completely
meet your testing requirements, you can extend your testing capabilities by
creating custom GUI property checks. With WinRunner, you can customize GUI
property checks in three ways:

• Chapter 2, Creating Custom GUI Checks for Standard Objects, describes
how to develop custom property checks to perform on standard GUI objects. For
example, you can develop a property check for the size of the font used in an
editor. When you associate the new property check with the standard edit class,
it is displayed in the GUI checkpoint dialog boxes whenever you create or edit a
checkpoint for an edit class object.

Introduction

WinRunner Customization Guide Chapter 1, page 12

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following Check GUI dialog box displays the standard property checks for
edit class objects:

Introduction

WinRunner Customization Guide Chapter 1, page 13

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following Check GUI dialog box displays a custom property check as well as
the standard property checks for edit class objects:

Custom check

Introduction

WinRunner Customization Guide Chapter 1, page 14

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• Chapter 3, Creating GUI Checks for Custom Objects, describes what to do if
your application has GUI objects that do not belong to any of WinRunner’s
standard classes. You can create custom verification classes for these objects,
and then specify which property checks to include when checking objects of
these custom classes.

For example, you can create a custom class for verification called “pbTool.”
When you create a GUI checkpoint on a pbTool class object, the available
property checks are displayed in the Properties pane in either the Check GUI
dialog box or the Create GUI Checkpoint dialog box. You can also add
customized property checks for this new custom class. These customized
property checks are displayed in the GUI checkpoint dialog boxes whenever you
create or edit a GUI checkpoint on objects of that class.

Introduction

WinRunner Customization Guide Chapter 1, page 15

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following Check GUI dialog box displays the standard property checks on an
object belonging to a custom class. A custom object is any object that does not
belong to one of the standard classes used by WinRunner. These objects are
assigned to the generic “object” class, which includes the following checks:

Custom class

Introduction

WinRunner Customization Guide Chapter 1, page 16

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can also add custom checks to a custom class:

• Chapter 4, Creating GUI Checks: Advanced Topics, describes how to create
your own user interface for the GUI checkpoint dialog box that is opened when
you create a check on a GUI object belonging to a custom object class. The
chapter also describes how to implement a custom utility to display the results of
a custom check.

Custom check

Custom class

Introduction

WinRunner Customization Guide Chapter 1, page 17

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Customizing Recording
When you record operations on standard GUI objects, WinRunner creates test
scripts that are easy to read and understand. However, when you operate on
custom GUI objects, whose behavior differs significantly from that of WinRunner’s
standard objects, the resulting test script contains generic obj_ TSL statements.

If your application contains custom objects, you can ensure that your test scripts
are easy to read and understand by customizing the functions that WinRunner
records into the scripts. WinRunner enables you to customize recorded
statements in three ways:

• Chapter 5, Customizing Recorded Statements, describes how to specify the
function calls that WinRunner records into your test scripts when you operate on
custom GUI objects.

• Chapter 6, Adding Custom Properties for GUI Objects, describes how to add
your own properties to any GUI object class to improve WinRunner’s ability to
uniquely identify the GUI objects in your application.

• Chapter 7, Customizing Assigned Logical Names, describes how to
customize the way that WinRunner assigns logical names to custom GUI objects
in your application. By doing so, it is immediately apparent which recorded
statement refers to which GUI object.

Using the WinRunner API
Chapter 8, The Mercury API Functions, describes all the Mercury API functions
that you need for inside testing.

WinRunner Customization Guide Page 18

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part I

Customizing GUI Checks

Customizing GUI Checks
Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 19

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

2
Creating Custom GUI Checks for Standard Objects

You can enhance WinRunner’s ability to check GUI objects in your application by
developing custom property checks to perform on standard GUI objects.

This chapter describes:

• Creating a Capture Function

• Creating a Comparison Function

• Registering a New Property Check

• Associating a New Property Check with a GUI Object Class

• Modifying the Default Checks for a GUI Object Class

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 20

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating Custom GUI Checks for Standard Objects

By inserting a GUI checkpoint into a test script, you instruct WinRunner how and
when to check the status of your application. As part of the process of inserting a
checkpoint, you define which object properties WinRunner will check. For each
GUI object class, WinRunner has a set of standard property checks from which
you select. If the standard property checks do not fulfill your testing requirements,
you can develop your own custom property checks. You add custom property
checks to a GUI checkpoint dialog box for the class of objects you want to check.
For information about standard checks on GUI objects and the GUI Checkpoint
dialog boxes, refer to the “Checking GUI Objects” chapter in the WinRunner
User’s Guide.

For example, suppose you want to check the size of the font used in an edit box.
You can develop a property check to check this property. If you associate the new
check with the standard edit class, the edit object is highlighted in the Objects
pane and the customized font size property is displayed along with the standard
edit class properties in the Properties pane.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 21

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI dialog box below displays the standard edit class property
checks:

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 22

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI dialog box below displays both the custom font size property
check and the standard edit class property checks:

Custom check

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 23

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a custom property to a GUI Checkpoint dialog box for a standard
WinRunner GUI object class, you perform the following steps:

 1 Create a function to capture the expected and actual results of the custom
property.

 2 Create a function to compare the expected and the actual results.

 3 Register the property.

 4 Associate the property with a standard GUI object class.

 5 Set the new property as a default property for the GUI object class (optional).

You can use WinRunner’s Function Generator to generate all the required
function calls, and then insert them directly into your test scripts. You can find the
functions in the “GUI verification” category of the Function Generator. For more
information on automatically generating and inserting functions, refer to the
“Generating Functions” chapter in the WinRunner User’s Guide.

Before using the capture and comparison functions, you must compile them.
Although you can do this by running the functions from a test script, it is
recommended that you include them in a compiled module and load the module
from a startup test. This makes the functions available for all your WinRunner
sessions. For more information on compiled modules, refer to the “Creating
Compiled Modules” chapter in the WinRunner User’s Guide.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 24

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can add properties to the GUI Checkpoint dialog box for a standard
WinRunner GUI object class, as described in this chapter. Alternatively, if your
application has GUI objects that do not belong to any of WinRunner’s standard
classes, you can define a new custom GUI object class for verification, and then:

• specify which properties are available to the new class. For more information,
see Chapter 3, Creating GUI Checks for Custom Objects.

• customize the GUI checkpoint dialog boxes with a custom user interface and
custom result display utility for the new class. For more information, see
Chapter 4, Creating GUI Checks: Advanced Topics.

Besides adding new property checks for a standard WinRunner class, you can
also add to or change the properties that are checked by default for a class. For
example, a standard check on a push button, by default, checks only that the
push button is enabled. You can specify any other standard or custom properties
that are checked by default for the push_button class. For instance, you might
want to include the button’s label as a default check.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 25

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Capture Function

You create a capture function to establish and store the expected and actual
results of a custom check. For example, if you develop a check for the size of the
font used in an edit box, it is the capture function that actually determines and
stores the font size.

The capture function has the following syntax:

public capture_function_name (in object, inout value [, in arg_list])

• capture_function_name is the name of your capture function.

• object is an in parameter that is assigned the description of the GUI object to
check.

• value is an inout parameter:

• If the result of the capture function is a number or a string, then the capture
function assigns the result of the function to the value parameter. For
example, in the above example you would assign the font size, say “10”, to
the value parameter.

• If the result of the capture function is either very long (greater than 2Kb), or
not in text format, then the capture function must store the result in a file. You
use the unique filename that WinRunner assigns to the value parameter.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 26

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• arg_list is an optional in parameter that is passed from the ui_function
parameter. You use the ui_function parameter only if you use the
gui_ver_add_class function to creating a GUI checkpoint dialog box with a
custom user interface. For more information, see Chapter 4, Creating GUI
Checks: Advanced Topics.

To make your capture function available to all tests, declare the function as
public. You replace capture_function_name with the name of your capture
function. For more information on user-defined functions, refer to the “Creating
User-Defined Functions” chapter in the WinRunner User’s Guide.

Example 1: Checking the Absolute X-Coordinate of an Object
In the following example, the user-defined get_abs_x capture function returns the
x-coordinate of the top left corner of a GUI object, relative to the screen origin. The
obj_get_info TSL function is called to determine the object’s screen coordinate,
abs_x.

public function get_abs_x (in object, inout value)
{

return (obj_get_info (object, "abs_x", value));
}

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 27

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following example presents a mechanism for storing the results of a capture
function in a file.

public function get_abs_x(in object, inout file)
{

auto x_coord, rc;
rc=obj_get_info(object, "abs_x", x_coord);
file_open(file,FO_MODE_WRITE);
file_printf(file,”%s”,x_coord);
file_close(file);
return(rc);

}

Example 2: Checking Text Color
The following example verifies the color of the text in an edit field. The
edit_get_text_color capture function uses the Windows API function GetDC to get
the device context of the edit field. The GetPixel function is used, first to find the
background color of the edit box, and then to find the foreground color. For more
information on using API functions, refer to the “Calling Functions from an
External Library” chapter in the WinRunner User’s Guide.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 28

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

load Windows API declarations
load("c:\\wrun\\lib\\win_api",1,1);

Capture Function
public function edit_get_text_color(in obj_name, inout rgb_val)
{

auto hWnd, hDc, ret, i, w, h, backcolor, rc;

get edit field’s width and height
rc=obj_get_info(obj_name, "handle", hWnd);
if(rc != E_OK)

return(rc);
rc=obj_get_info(obj_name,"height",h);
if(rc != E_OK)

return(rc);
rc=obj_get_info(obj_name,"width",w);
if(rc != E_OK)

return(rc);

get edit field’s device context
hDc=GetDC(hWnd);

find background color
backcolor=GetPixel(hDc,2,2);

find foreground color by scanning the edit field
for (i=1; i<w;i++)
{ ret=GetPixel(hDc,int(h/2),i);

if((ret != backcolor)|| (ret==0)) break;

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 29

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

}

release device context
ReleaseDC(hWnd, hDc);
rgb_val=ret;
return(E_OK);

}

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 30

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating a Comparison Function

After the capture function has determined the expected and actual results for a
custom check, WinRunner verifies the results to determine whether the check
passed. To verify a check, you can either use WinRunner’s standard comparison
function, default_compare_func, or create your own comparison function.

Using the Standard Comparison Function
The default_compare_func function compares the expected results to the actual
results. If the results match, the default_compare_func function returns 0,
otherwise the function returns 1. The function compares the results according to
their format—that is, either as a number or as a string.

The default_compare_func function works in all cases where there is a simple
comparison between expected and actual results. For example, you would use
the default_compare_func function if you were checking the absolute x
coordinate of an object. If the expected coordinate was 250, and the actual
coordinate was 200, then the default_compare_func function would return 1,
indicating a mismatch. If the expected and actual coordinates were both 250, then
the default_compare_func function would return 0, indicating a successful
check.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 31

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating Your Own Comparison Function
If a complicated comparison is required to determine the success of a check, then
you must develop your own comparison function. For example, suppose you are
comparing dates that can have different formats, such as 8 March 1996 or
08/03/1996. Because the default_compare_func function is ineffective in this
case, you must develop your own comparison function.

The comparison function has the following syntax:

public comparison_function_name (in expected, in actual [, in arg_list] [,
inout display_information])
{

...
return(Mercury_error_code);

}

• comparison_function_name is the name of your comparison function.

• expected is an in parameter. If the capture function assigned the expected
results to the value parameter, then the expected parameter is assigned the
value of the expected results. If the capture function stored its results in a file,
then the expected parameter is assigned the path and file name of the results
file.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 32

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• actual is an in parameter. If the capture function assigned the actual results to
the value parameter, then the actual parameter is assigned the value of the
actual results. If the capture function stored its results in a file, then the actual
parameter is assigned the path and file name of the results file.

• arg_list is an optional in parameter that is passed from the ui_function
parameter. You use the ui_function parameter only if you use the
gui_ver_add_class function to creating a GUI checkpoint dialog box with a
custom user interface. For more information, see Chapter 4, Creating GUI
Checks: Advanced Topics.

• display_information is an optional inout parameter that is used only if you specify
your own display function for the results of the check. WinRunner assigns to the
display_information parameter a unique file name. You can store in this file
information that you want to use when you call your display function. For more
information, see Chapter 4, Creating GUI Checks: Advanced Topics.

To make your comparison function available to all tests, declare the function as
public. You replace comparison_function_name with the name of your
comparison function. For more information on user-defined functions, refer to the
“Creating User-Defined Functions” chapter in the WinRunner User’s Guide.

The comparison function must return a Mercury error code: E_OK when the
expected and actual results match; E_DIFF when the results do not match.
E_DIFF is the error code for “GUI verification mismatch found.”

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 33

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 1: Simple Comparison Function
In the following example, a user-defined comparison function called
compare_number checks whether the expected and actual results of the check
are the same. An if/else statement is used to return E_OK if the results match,
and E_DIFF if they do not. Note that you could use the default_compare_func
function in this scenario.

public function compare_number(in expected, in actual)
{

if (expected==actual)
return(E_OK);

else
return(E_DIFF);

}

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 34

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example 2: Retrieving Results from a File
This example assumes that the capture function stored the expected and actual
results in files. The file names are passed to the comparison function as exp_file
and act_file respectively.

public function compare_number(in exp_file, in act_file)
{

auto expected, actual;

file_open(exp_file,FO_MODE_READ);
file_getline(exp_file, expected);
file_close(exp_file);
file_open(act_file,FO_MODE_READ);
file_getline(act_file, actual);
file_close(act_file);
if (expected==actual)

return(0);
else

return(E_DIFF);
}

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 35

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Registering a New Property Check

Once you have created and compiled the capture and comparison functions, you
must register the new check. This is done using the gui_ver_add_check TSL
function.

The gui_ver_add_check function has the following syntax:

gui_ver_add_check (check_name, capture_function, comparison_function
[,display_function] [,type]);

• check_name defines the name of the check. Note that the name of the check
cannot contain spaces. The check_name will appear at the bottom of the
appropriate check dialog box. See Associating a New Property Check with a
GUI Object Class on page 37.

• capture_function is the name of the capture function that you developed for the
check.

• comparison_function is either the default_compare_func function, or the name
of the comparison function that you developed for the check.

• display_function is an optional parameter that enables you to use your own
display utility to view the results of a check. You use the display_function
parameter only if you use the gui_ver_add_class function to creating a GUI
checkpoint dialog box with a custom user interface. For more information, see
Chapter 4, Creating GUI Checks: Advanced Topics. For more information,
see Chapter 4, Creating GUI Checks: Advanced Topics.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 36

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• type is an optional parameter that indicates whether the check is for a window
(1) or for any other GUI object (0). If no type is declared, the default (0) is
assumed.

In the following example, the gui_ver_add_check function registers a check for
an object’s absolute x-coordinate.

gui_ver_add_check("Absolute_x","get_abs_x","compare_number", "",0);

The following example shows how to specify the default_compare_func
function when you register a check.

gui_ver_add_check("Absolute_x","get_abs_x","default_compare_func", "",0);

For additional information about the gui_ver_add_check function, refer to the
TSL Online Reference.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 37

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Associating a New Property Check with a GUI Object Class

Once you have registered the new property check, you must associate it with a
GUI object class. By associating the new property check with a class, you add the
property check to the bottom of the list of properties displayed for that class in the
GUI checkpoint dialog boxes.

You associate a property check with a class using the
gui_ver_add_check_to_class TSL function. This function has the following
syntax:

gui_ver_add_check_to_class � class, property�check_name ��

• class is the name of either the MSW_class or the standard class with which the
check is associated.

• property_check_name is the name of the property check you defined using the
gui_ver_add_check TSL function. The new property check will appear at the
bottom of the list of properties displayed for the class in the GUI checkpoint
dialog boxes.

Note that you can associate the same property check with more than one class
by repeating the gui_ver_add_check_to_class function for each GUI object
class.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 38

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example
In the following example, the Absolute_x check is added for the push_button
class:

gui_ver_add_check_to_class ("push_button", "Absolute_x");

The push_button parameter defines the GUI object class, while Absolute_x
defines the custom property check associated with it.

The following Check GUI dialog box displays the standard checks for
push_button class objects:

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 39

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following Check GUI dialog box displays a custom check as well as the
standard checks for push_button class objects:

For additional information about the gui_ver_add_check and the
gui_ver_add_check_to_class functions, refer to the TSL Online Reference.

Custom check

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 40

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying the Default Checks for a GUI Object Class

You can modify the default property checks for a GUI object class. Similarly, you
can define your custom property checks as default checks for a GUI object class.
For example, by default, WinRunner checks only whether a push button is
enabled. You can modify the default checks for the push_button class to include
your custom check, Absolute_x.

To define a custom property check as a default property check, you use the TSL
function gui_ver_set_default_checks. This function overwrites all previous
default property checks; when using it, you must include all the property checks
that you want to set as defaults for the GUI object class. Note that you can define
additional standard property checks as default property checks using the same
function.

The gui_ver_set_default_checks function has the following syntax:

gui_ver_set_default_checks�� class, check_name1...check_namen ��

• class is the name of either the MSW_class or the standard class for which you
want to set the default checks.

• check_name1-n are the names of the property checks to be set as defaults.

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 41

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example
In the following example, the Enabled and Absolute_x checks are set as the
default checks for the push_button class.

gui_ver_set_default_checks ("push_button", "Enabled Absolute_x");

In the following dialog box, the custom Absolute_x property check is added. The
standard default property check for the push_button class, Enabled, is selected:

Standard default
check

Custom check

Customizing GUI Checks • Creating Custom GUI Checks for Standard Objects

WinRunner Customization Guide Chapter 2, page 42

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following dialog box, both the custom Absolute_x property check and the
standard Enabled check are default property checks, i.e., they are selected by
default:

Note that when you define more than one default property check, separate the
default property checks with spaces, as in the example above.

For additional information about the gui_ver_set_default_checks function, refer
to the TSL Online Reference.

Custom check

Customizing GUI Checks
Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 43

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

3
Creating GUI Checks for Custom Objects

You can create custom GUI object classes for verification, and develop checks for
each custom class.

This chapter describes:

• Adding a Custom GUI Object Class for Verification

• Defining a Custom Check for a Custom GUI Object Class

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 44

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Creating GUI Checks for Custom Objects

Many applications contain GUI objects that do not belong to any of WinRunner’s
standard GUI object classes. By default, WinRunner recognizes these objects as
belonging to the generic object class. If your application contains such objects,
you can enhance your capability to check these objects by creating custom
verification classes for them. You then develop property checks and GUI
checkpoint dialog boxes for the new custom classes.

For each custom verification class you create, you can either:

• Use the standard WinRunner GUI checkpoint dialog boxes when you check the
custom objects, as described in this chapter. You can add custom property
checks to the standard dialog boxes, as required. For example, you may have
objects in your application that are classified by WinRunner as belonging to the
generic “object” class. You can create a custom class called “pbTool” for these
objects. The pbTool class will then have its own set of property checks which will
be displayed in the standard GUI checkpoint dialog boxes. Initially, the property
checks displayed in these dialog boxes are the same as those displayed as for
objects of the generic “object” class. Once you associate custom property
checks with a custom class, these property checks are displayed whenever you
create or edit a GUI checkpoint on objects belonging to this custom class.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 45

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

When WinRunner does not recognize the class of a GUI object, in this case an
object of the “pbTool” class, it assigns it to the generic “object” class. The GUI
checkpoint dialog boxes display the property checks associated with the generic
object class. For a list of property checks associated with the generic object
class, refer to the “Checking GUI Objects” chapter in the WinRunner User’s
Guide.

You can add custom checks for this custom class, as described in this chapter.
Develop your own GUI checkpoint dialog boxes with a customized user
interface. For more information, see Chapter 4, Creating GUI Checks:
Advanced Topics.

To add a new GUI object class for verification, and then develop and
specify the checks for it, you perform the following steps:

 1 Add a new custom GUI object class for verification.

 2 Create a capture function to establish the expected and actual results of the
check.

 3 Create a comparison function to compare the expected and the actual results.

 4 Register the check that is defined by the capture and comparison functions.

 5 Associate the new check with the new custom class.

 6 Set the default checks for the new class.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 46

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The capture and comparison functions that you develop must be compiled
before they can be used. Although you can do this by running the functions from
a test script, it is recommended that you include all of them in a compiled module
and load the module from a startup test. This makes the functions available in all
your WinRunner sessions. For more information on compiled modules, refer to
the “Creating Compiled Modules” chapter in the WinRunner User’s Guide.

You can use WinRunner’s Function Generator to generate all the required
function calls, and then insert them directly into your test scripts. You can find the
functions in the “GUI verification” category of the Function Generator. For more
information on automatically generating and inserting functions, refer to the
“Generating Functions” chapter in the WinRunner User’s Guide.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 47

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a Custom GUI Object Class for Verification

If you are implementing property checks for an object that does not belong to a
standard WinRunner GUI object class, you must first define a new verification
class for the object and then specify the property checks for the object class. You
define a new class using the gui_ver_add_class function. This function has the
following syntax:

gui_ver_add_class (class_name [, ui_function] [, default_check_function]);

• class_name is either the MSW_class property or the standard class property of
the object. Use the GUI Spy to find the MSW_class property. For information on
using the GUI Spy, refer to the “Configuring the GUI Map” chapter in the
WinRunner User’s Guide.

• The optional ui_function parameter enables you to develop and display the GUI
checkpoint dialog boxes with a customized user interface. You create your own
check dialog box only if this will enable you to more easily select the checks for a
given checkpoint. For more information, see Chapter 4, Creating GUI Checks:
Advanced Topics.

You can use the Property List button in the GUI checkpoint dialog boxes to call
the ui_function parameter. Note that this button is displayed only if at least one
object in the Objects pane of the dialog box belongs to a class for which the
ui_function parameter has been defined using the gui_ver_add_class function.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 48

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you do not specify a ui_function, the set of property checks displayed for the
new class will have the same checks as those displayed for the generic “object”
class. For information on associating property checks with a class, see
Associating a New Property Check with a GUI Object Class on page 37.

• The optional default_check_function parameter enables you to specify the
runtime default checks for the new class. You use the default_check_function
parameter only if you specify a ui_function, and you want to override the default
checks. For more information, see Chapter 4, Creating GUI Checks: Advanced
Topics.

Note that by default, the property checks displayed in the GUI checkpoint dialog
boxes for a custom class are the same as those displayed for the generic object
class. You can add your own custom checks for the custom class, so that they
will be displayed for that class in the GUI checkpoint dialog boxes.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 49

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The Check GUI dialog box below displays the default checks for any custom
object, which is associated with the generic “object” class:

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 50

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can add a custom check for this custom class, as shown in the dialog box
below:

You can also map custom objects to standard object classes. For additional
information, refer to the “Configuring the GUI Map” chapter in the WinRunner
User’s Guide.

Custom check

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 51

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example: Adding a New GUI Object Class for Verification
You can use WinRunner’s GUI Spy to see the properties of the toolbar in the Paint
application. For information on using the GUI Spy, refer to the “Configuring the
GUI Map” chapter in the WinRunner User’s Guide. WinRunner recognizes the
toolbar as belonging to the generic “object” class. The MSW_class property of the
toolbar is “pbTool.” You can create a custom class for the toolbar using the
following statement:

gui_ver_add_class ("pbTool")

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 52

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

;

By default, the property checks displayed in the GUI checkpoint dialog boxes for
the “pbTool” class are the same as those displayed for the generic “object” class.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 53

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Defining a Custom Check for a Custom GUI Object Class

Once you have created a custom class for verification, you can add property
checks to the custom class.

To add the property checks to a custom class, perform the tasks listed below. For
details of each of these tasks, see Chapter 2, Creating Custom GUI Checks for
Standard Objects.

 1 Create a capture function.

The capture function establishes and stores the expected and actual results for
the property check.

 2 Create a comparison function.

After the capture function has determined the expected and actual results for a
property check, WinRunner verifies the results to determine whether the check
passed. To verify a check, you can either create your own comparison function,
or use WinRunner’s standard comparison function, default_compare_func.

 3 Register the new check.

Once you have created a new GUI object class for verification and developed
and compiled the capture and comparison functions, you must register the new
check that the functions define. This is done using the gui_ver_add_check TSL
function.

Customizing GUI Checks • Creating GUI Checks for Custom Objects

WinRunner Customization Guide Chapter 3, page 54

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 Associate the new property check with a class.

Having registered the new property check, you associate it with a custom GUI
object class for verification. By associating the new property check with a class,
you add the property check to the list of property checks displayed for that class
in the GUI checkpoint dialog boxes. You associate the property check with a
class using the gui_ver_add_check_to_class TSL function.

 5 Set the default checks.

You set the default checks for a custom GUI object class using the
gui_ver_set_default_checks TSL function.

For additional information about the TSL functions described above, refer to the
TSL Online Reference.

Customizing GUI Checks
Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 55

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

4
Creating GUI Checks: Advanced Topics

You can create your own user interface for the GUI checkpoint dialog boxes for
objects of a custom GUI object class. In addition, you can implement your own
results display utility for the check.

This chapter describes:

• Adding a New GUI Object Class for Verification

• Creating Capture and Comparison Functions

• Registering the New Check

• Setting the Default Checks

• Implementing Advanced GUI Checking

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 56

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Advanced Topics in Creating GUI Checks

If your application contains objects that do not belong to a standard WinRunner
GUI object class, you can create a custom class in order to check them. For each
custom class, you can either:

• Use the standard WinRunner GUI checkpoint dialog boxes, which include the
standard checks for the generic “object” class, as well as any custom checks you
add. For more information, see Chapter 3, Creating GUI Checks for Custom
Objects.

• Develop your own GUI checkpoint dialog boxes with a customized user interface
and an associated results display facility, as described in this chapter.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 57

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a new GUI object class, and then develop a custom user interface
and custom results display utility, you perform the following steps:

 1 Define a new custom GUI object class, and develop GUI checkpoint dialog
boxes with a customized user interface.

 2 Create a capture function to establish the expected and actual results of the
check.

 3 Create a comparison function to compare the expected and the actual results.

 4 Register the property check that is defined by the capture and comparison
functions.

 5 Set the default checks for the new class.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 58

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding a New GUI Object Class for Verification

You define a new GUI object class for verification using the function
gui_ver_add_class. For details on defining a new class for verification, see
Chapter 3, Creating GUI Checks for Custom Objects.

Note that when you use the gui_ver_add_class function, the ui_function
parameter is the name of the user-defined function that enables you to develop
and display the GUI checkpoint dialog boxes with a customized user interface.
The Check GUI dialog box is displayed when you double-click a GUI object when
creating a GUI checkpoint. You create GUI checkpoint dialog boxes with a
customized user interface to enable you to more effectively select the checks for
a given checkpoint. For example, suppose you have a custom class for tables.
You could develop GUI checkpoint dialog boxes with a customized user interface
that enable you to easily select which columns of the table to compare, and on
what basis to compare the columns.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 59

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The ui_function parameter has the following syntax:

function�ui_function�(in window, in object, inout check_list, inout arg_list);

• window is the description of the window in which the object exists.

• object is the description of the object selected by the user.

• check_list serves two functions: The default checklist for the object is passed to
the function when the function is called. The function must pass a new checklist
as output. The checklist consists of one or more check names, separated by
spaces or commas.

• arg_list is a string that you want to return as an output. It is passed as a
parameter to each property check’s capture and comparison functions. You can
store the arg_list parameter in a file using the file name supplied by the arg_list
parameter.

You can use the Property List button in the GUI checkpoint dialog boxes to call
the ui_function parameter. Note that this button is displayed only if at least one
object in the Objects pane of the dialog box belongs to a class for which the
ui_function parameter has been defined using the gui_ver_add_class function.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 60

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The default_check_function parameter has the following syntax:

function default_check_function � in window, in object, inout check_list,
inout arg_list���

The parameters of default_check_function are the same as those for ui_function,
described above.

For an example of how to use the gui_ver_add_class function to develop
customized GUI checkpoint dialog boxes, see Implementing Advanced GUI
Checking on page 66.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 61

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Creating Capture and Comparison Functions

You create a capture function to establish and store the expected and actual
results for the custom property check. After the capture function has determined
the expected and actual results for a check, WinRunner verifies the results to
determine whether or not the check passed. To verify a check, you can either
create your own comparison function, or use WinRunner’s standard comparison
function, default_compare_func.

For details on capture and comparison functions, see Chapter 2, Creating
Custom GUI Checks for Standard Objects.

For an example illustrating the use of capture and comparison functions, see
Implementing Advanced GUI Checking on page 66.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 62

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Registering the New Check

Once you have created the capture and comparison functions, you register the
new property check that the functions define. For details on registering the check,
see Chapter 2, Creating Custom GUI Checks for Standard Objects.

Note that when you use the gui_ver_add_check function, the display_function
parameter enables WinRunner to use a custom display utility to view the results
of the check. For example, if you select a property check in the GUI Checkpoint
Results dialog box that has an associated display function, the Display button is

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 63

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

enabled, as shown below. You click the Display button to display the results of the
check using your display function. If you do not enter a display_function, then
WinRunner uses its default result display facilities�

Note that since “check2” has an associated display function, the Display button
is enabled.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 64

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The display_function parameter has the following syntax:

function display_function ��in expected, in actual, in result, in diff���

• expected is the expected result string or filename.

• actual is the actual result string or filename.

• result is the result of the compare function: 0 for a successful comparison, any
other value for a mismatch.

• diff is a string, received from the comparison function and may contain a
filename or any other information needed by the display function.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 65

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Default Checks

To set the default checks for the new check, you use the
gui_ver_set_default_checks function. For details on setting the default checks,
see Chapter 2, Creating Custom GUI Checks for Standard Objects.

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 66

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Implementing Advanced GUI Checking

The following example illustrates the use of most GUI verification customization
features. For the sake of simplicity, all the checks simply return random numbers.
The example adds a custom class, AfxWnd, and then adds the checks for the
class. The ui_function parameter uses WinRunner’s pause_test function to
create a simple output/input dialog box, as shown below.

This example presents a mechanism that can be used for GUI verification
customization. Using external DLLs, you can implement more sophisticated
output/input screens based on this prototype.

Dialog box with custom
user interface developed
using WinRunner’s
pause_test function

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 67

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This test is designed to operate on WinBurger, a sample application supplied with
WinRunner. The Reset button in WinBurger belongs to the “AfxWnd” custom
class, the class that is customized in this example. You can locate WinBurger in
your installation_directory\samples\bin\winbur folder.

load user-defined functions
reload("udf_gui");

Add new verification class, "AfxWnd"
rc=gui_ver_add_class("AfxWnd", "reset_ui_func"); # adds class “AfxWnd"

Register check1
rc=gui_ver_add_check("check1","check1_capt","compare1");

#Add check1 to class
gui_ver_add_check_to_class(“AfxWnd”,”check1”);

Register check2
rc=gui_ver_add_check("check2","check2_capt","compare2","display_func2");

#Add check2 to class
gui_ver_add_check_to_class(“AfxWnd”,”check2”);

Set default checks for new class
rc=gui_ver_set_default_checks("AfxWnd","check1");

udf_gui
function reset_ui_func(window, object, inout checklist, out arglist)
{

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 68

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

auto res=pause_test("GUI Verification Sample UI_function
Display\nPlease choose a check name.\nCurrent checks:" & checklist,
"check1", "check2", "Both");

if (res==0) {
checklist = "check1";
arglist = "User selected check1";

}
else
if (res==1) {

checklist = "check2";
arglist = "User selected check2";

}
else
if (res==2) {

checklist = "check1 check2";
arglist = "User selected check1 & check2";

}
else

return -1;
return 0;

}

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 69

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Capture Function #1
function check1_capture(object, inout value)
{

value = 100*rand();
return 0;

}

Capture Function #2
function check2_capture(object, inout file)
{

file_open(file,FO_MODE_WRITE);
file_printf(file, “%"S”,””The result of check2 was sent to a file.\n\nThe

result of check2 is: " & 100*rand())”);
file_close(file);
return 0;

}

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 70

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Comparison Function #1
function compare1(exp_val, act_val, arglist, inout diff_file)
{

diff_file = "";
if (exp_val != act_val) {

return E_DIFF;
}
return E_OK;

}

Comparison Function #2
function compare2(exp_file, act_file, arglist, inout diff_file)
{

auto exp_buf, act_buf;
read_file(exp_file, exp_buf);
read_file(act_file, act_buf);
if (exp_buf != act_buf || arglist != "") {

file_open(diff_file,FO_MODE_WRITE);
file_printf(diff_file,"Difference forced !");
file_close(diff_file);
return 1;

}
diff_file = "";
return E_DIFF;

}

Customizing GUI Checks • Creating GUI Checks: Advanced Topics

WinRunner Customization Guide Chapter 4, page 71

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Display Function
function display_func2(exp_file, act_file, result, diff_file)
{

auto exp_buf, act_buf, diff_buf;
read_file(exp_file, exp_buf);
read_file(act_file, act_buf);
read_file(diff_file, diff_buf);
pause_test("\nExpected: " & exp_buf & "\nActual: " & act_buf &

"\n\nResult: " & result & "\nDiff: " & diff_buf, "OK", "Cancel", "Close");
return 0;

}
function read_file(name, out buf)
{

auto tmp;
buf = "";
file_open(name,FO_MODE_READ);
if (name != "") {

while (file_getline(name,tmp)) {
buf = buf & tmp;

}
file_close(name);

}
}

WinRunner Customization Guide Page 72

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part II

Customizing Recording

Customizing Recording
Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 73

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

5
Customizing Recorded Statements

When you record operations on custom GUI objects, the resulting test script
contains generic obj_ TSL statements. You can make the test script easier to
read by creating custom record functions.

This chapter describes:

• Understanding Custom Record Functions

• Developing a Custom Record Function

• Associating a Custom Record Function with a GUI Object Class

• Developing a Custom Execution Function

• Example of a Custom Record Function

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 74

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Customizing Recorded Statements

Many applications contain custom GUI objects—objects that do not belong to any
of WinRunner’s standard GUI object classes. Because WinRunner is not familiar
with the behavior of such custom objects, whenever you operate one of them,
WinRunner records a generic obj_mouse statement into your test script.
Because these obj_mouse statements are generic, two problems can arise:

• The recorded statements are not descriptive, and the test script is therefore
difficult to read and analyze.

• The recorded statements do not fully describe the operations that were
performed. When you run the test, WinRunner does not correctly duplicate the
recorded operations.

By implementing custom record functions, you can resolve both these problems.

Custom record functions enable you to specify the statements that WinRunner
records in place of generic obj_ statements. That is, you specify the statement to
be recorded when you perform a specific operation on a GUI object belonging to
a custom object class.

To implement a custom record function, you perform the following tasks:

 1 Develop a custom record function.

 2 Associate the custom record function with a custom GUI object class.

 3 Implement a custom execution function, if required.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 75

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: You can combine a custom record function with a logical name function for
a given GUI object class, thereby further improving the readability of the
statements that WinRunner records into your test scripts. Logical name functions
enable WinRunner to assign descriptive logical names to custom GUI objects.
For more information, see Chapter 7, Customizing Assigned Logical Names.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 76

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding Custom Record Functions

To illustrate the use of a custom record function, consider the following scenario:

Note: The scenario assumes that you have not installed WinRunner with support
for Visual Basic. If you have the Visual Basic support installed, then custom
record function described in the scenario will already be implemented for the
spinbutton class.

Assume that your application contains a custom “spinbutton.” If you click on the
upper arrow of the spinbutton, the associated counter is incremented by one. If
you click on the lower arrow, the counter is decremented by one. If you click on
either arrow and hold down the mouse button, the counter is incremented or
decremented continuously, as long as the button is held down.

Increment arrow

Decrement arrow

Counter

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 77

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Because this spinbutton does not belong to a standard GUI object class, you
create a custom class for the spinbutton, called simply “spinbutton.” Suppose
you record three different mouse clicks on the spinbutton. WinRunner records
statements similar to the following into your test script:

Improving the Readability of Recorded Statements
The above recorded statements are identical, except for the coordinates of the
mouse click. It is therefore difficult to distinguish what operation is recorded with
each statement. That is, was the increment arrow pressed, or the decrement
arrow? Was there a simple click, or was the mouse button held down for a period
of time?

Operation
Performed

Recorded Test Script Statement
Counter
Before

Counter
After

click on upper
arrow

obj_mouse_click
("SpinButton", 50, 22,
LEFT);

1 2

click on lower
arrow

obj_mouse_click
("SpinButton", 50, 58,
LEFT);

2 1

click on upper
arrow, mouse
button held down

obj_mouse_click
("SpinButton", 50, 22,
LEFT);

1 6

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 78

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

You can make the recorded test script easier to read and analyze by
implementing a custom record function—thereby enabling WinRunner to record
more descriptive statements.

From the above “customized” statements, it is immediately apparent that the
spin_up statement indicates a mouse click on the upper (increment) arrow, and
that the spin_down statement indicates a mouse click on the lower (decrement)
arrow.

Improving Execution Accuracy
WinRunner executes the first two “simple” mouse clicks as required. However, the
third statement, which represents the mouse button being pressed and held
down, is not executed correctly. The third mouse click is recorded with a generic
obj_mouse_click statement which contains no information describing how many
times the arrow was activated while the mouse button was held down. WinRunner
therefore executes a simple mouse click, and the counter increments from 1 to 2,
and not from 1 to 6, as is required.

Recorded Test Script Statement Operation Performed

spin_up ("SpinButton", 50, 22, LEFT); click on upper arrow

spin_down ("SpinButton", 50, 58, LEFT); click on lower arrow

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 79

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

By implementing a custom record function you can resolve the execution difficulty.
Custom record functions ensure that the statements that WinRunner records fully
describe the operations that you perform. This enables WinRunner to execute the
recorded statements as required.

The table below shows modified spin_up and spin_down statements. The
modification includes a parameter that defines how many times each arrow was
activated while the mouse button was held down.

Note that custom record functions generate functions that are not standard to
WinRunner. A custom execution function is required to execute a non-standard
function. For more information, see Developing a Custom Execution Function
on page 88.

Operation Performed
Recorded Test Script
Statement

Counter
Before

Counter
After

click on upper
arrow spin_up ("SpinButton", 1); 1 2

click on lower
arrow

spin_down ("SpinButton",
1); 2 1

click on upper
arrow, mouse
button held down

spin_up ("SpinButton", 5); 1 6

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 80

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Combining a Custom Record Function with a Logical Name
Function
You can further improve the readability of your test scripts by implementing a
custom record function together with a logical name function. Logical name
functions enable WinRunner to assign descriptive logical names to custom GUI
objects. For more information, see Chapter 7, Customizing Assigned Logical
Names.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 81

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Custom Record Function

In order to customize recorded statements in a test script, you create a custom
record function that returns a string when you perform a specific operation on an
object in a custom object class. WinRunner uses this string as the basis of the
statement it records into the test script.

For example, suppose you implement a custom record function that returns a
string when you click on a custom spinbutton. Before implementing the function,
WinRunner records a statement similar to the following:

obj_mouse_click("spinbutton",50,100);

After implementing the record function, WinRunner records a statement similar
to the following:

spin_up("spinbutton", 1);

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 82

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Writing the Custom Record Function
You write the custom record function in C-language, and compile and link it into a
DLL. You supply the name of the DLL when you associate the custom record
function with a GUI object class. See Associating a Custom Record Function
with a GUI Object Class on page 87.

The custom record function has the following prototype:

int function (HWND FAR* phWnd, UINT msg, WPARAM
wParam, LPARAM lParam, char* str, int size);

Parameters

phWnd The pointer to the handle of the GUI object that is being
acted upon. You can modify the contents of the pointer to
record an operation on a different GUI object.

msg The Windows message received.

wParam The first message parameter.

lParam The second message parameter.

str A buffer allocated by WinRunner. The record function
assigns the string to be recorded into the test script to the
allocated buffer.

size The size of the str buffer, in bytes.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 83

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The record function assigns the string that WinRunner will record into the test
script, to the str parameter. You use WinRunner’s “%m” format to create the
string, by substituting "%%m" for the GUI object’s logical name. For example, the
custom record function could assign the following string to the str parameter:

spin_up ("%%m", 1)

Do not include a semicolon (;) at the end of the string—WinRunner adds a
semicolon when it records the statement into the test script. WinRunner replaces
“%m” with the logical name of the GUI object when the statement is recorded
into the test script.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 84

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Returning a Value
The record function returns a value that describes the sending mode of the
function. For example, the following statement could be included in a custom
record function:

return(SEND_LINE);

The various sending mode options that you can return are described below:

• SEND_LINE

Instructs WinRunner to record the string returned in the str parameter into the
test script. If a string has been previously stored, WinRunner records that string
first into the test script.

• KEEP_LINE

Instructs WinRunner to store the string returned in the str parameter, and start
the timer. If a string has been previously stored, WinRunner records it into the
test script. If time-out occurs and no further mouse input is detected, WinRunner
records the new string into the test script. Use KEEP_LINE after detecting a
single mouse click. WinRunner waits to establish if the single mouse will be
followed by another click during the time-out period, thereby producing a double-
click.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 85

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

• KEEP_LINE_NO_TIMEOUT

Instructs WinRunner to store the string returned in the str parameter. If
WinRunner has previously stored a string, then WinRunner records that string
into the test script.

• REPLACE_AND_SEND_LINE

Instructs WinRunner to record the string returned in the str parameter into the
test script. If a string has been previously stored, WinRunner deletes that string.

• REPLACE_AND_KEEP_LINE

Instructs WinRunner to store the string returned in the str parameter, and start
the timer. If a string has been previously stored, WinRunner deletes it. If time-out
occurs and there is no further mouse input, WinRunner records the string into
the test script.

• CLEAN_UP

Instructs WinRunner to record the string stored in the str parameter into the test
script, if a stored string exists.

• NO_PROCESS

If the str parameter is empty, NO_PROCESS instructs WinRunner to record the
default function for the GUI object.

If the str parameter is not empty, NO_PROCESS instructs WinRunner not to
record any function.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 86

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Windows Messages
Although WinRunner monitors all Windows messages, only a small number of the
many Windows messages are actually processed. That is, WinRunner ignores all
but a few messages. The record functions that you implement may require that
WinRunner process additional messages. You use the add_record_message
TSL function to specify which additional messages to include. The
add_record_message function has the following syntax:

add_record_message (message_number);

• message_number is the number or identifier of the additional Windows message
that you want WinRunner to process.

For example, the following statement instructs WinRunner to add the
WM_MOUSEMOVE message to the list of messages that it processes.

add_record_message(512);

For an example of a custom record function, see Example of a Custom Record
Function on page 90.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 87

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Associating a Custom Record Function with a GUI Object Class

You use the add_cust_record_class function to associate the custom record
functions with a GUI object class. The add_cust_record_class function has the
following syntax:

add_cust_record_class (MSW_class, dll_name [,rec_func]
[, log_name_func] �;

• MSW_class is the MSW_class of the custom objects with which the custom
record function is associated.

• dll_name is the full path and filename of the DLL in which you compiled and
linked the custom record function. If a logical name function also exists for the
GUI object class, that function is also contained in this DLL. For more
information, see Chapter 7, Customizing Assigned Logical Names.

• rec_func is the name of the record function in the DLL. The record function
returns the string that WinRunner records into the test script.

• log_name_func is the name of the logical name function (if one exists) that is
included in the DLL. The log_name_func function supplies a custom logical
name for a custom GUI object in class MSW_class. For more information, see
Chapter 7, Customizing Assigned Logical Names.

In the following example, the add_cust_record_class function adds a custom
record function, SpinHighLevelRec, for the SpinButton class.

add_cust_record_class("SpinButton", "c:\\arch\\vb_util.dll",
"SpinHighLevelRec", " ");

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 88

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Custom Execution Function

If you implement a custom record function that generates a custom statement,
you must develop a custom execution function to enable WinRunner to execute
the recorded statement. For example, assume you develop a custom record
function that records the following function into your test script:

custom_function(2,2);

Because custom_function is a call to a user-defined function, WinRunner does
not recognize it, and consequently cannot execute the function. You develop a
user-defined function that defines what WinRunner must do each time it
executes a custom_function statement.

Custom execution functions obtain information from your application about the
custom object, such as its state or position, and then move the mouse cursor to
the required location and enter mouse or keyboard input. A number of TSL
functions, such as obj_get_info, can be used to retrieve information about the
object. Other TSL functions such as click, obj_mouse_drag, and
move_locator_abs can be used to execute the function.

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 89

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The following example shows the TSL implementation of the spin_up execution
function. You may want to base the implementation of your execution functions
on the example below.

public function spin_up(win, times){
auto hWnd;
auto res;

get GUI object handle to send to DLL
res = obj_get_info(win, "handle", hWnd);
if(res != E_OK)

return(res);

call DLL, _spin_up
res = _spin_up(hWnd, times);

internal TSL function, called if _spin_up fails
if(res != E_OK)

process_return_value(res);
return(res);

}

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 90

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example of a Custom Record Function

The following example illustrates the implementation of a custom record function
for the Visual Basic control, ThunderlistBox. You may want to base the
implementation of your custom record functions on this example. The file
cust_rec.h is included to set the return values for the record function.

filename: cust_rec.h

// Return values for recording function
#define SEND_LINE 0
#define KEEP_LINE 1
#define REPLACE_AND_SEND_LINE 2
#define REPLACE_AND_KEEP_LINE 3
#define CLEAN_UP 4
#define KEEP_LINE_NO_TIMEOUT 5
#define NO_PROCESS 6

filename: cust_rec.c

#define EXPORTED _far _pascal __export
#include <windows.h>
#include "cust_rec.h"
#include <windowsx.h> // Windows Messages Cracker

#define MAXKEYS 9
BOOL isMouseUponObject(HWND hwin, LPARAM lParam);
WORD GetListKey (HWND hwin, WPARAM wParam);

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 91

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

// Custom Recording for ThunderListBox
//---
// ThunderListBox
//
// Implementation of the Visual Basic ListBox
// All the ListBox commands are written by the Windows Messages Cracker's
// format
//
// NOTE:
// WM_KEY* messages are received not as in the Windows documentation,
// rather:
// wParam = scan code; and for extended keys, top most bit is set.
// lParam does not contain interesting information.
//---

int EXPORTED ThunderListBox(HWND FAR* pwin, UINT msg,
 WPARAM wParam, LPARAM lParam,
 LPSTR rec_str, int len)
{
 static bMouseDown = FALSE;
 static bPushKeyDown = FALSE;
 WORD wVirtKey;
 int nReturn = SEND_LINE;
 int nItemSel;
 char szBuff[255];

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 92

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 UINT ss;

 HWND win = *pwin;
 switch (msg) {
 case WM_LBUTTONDBLCLK:
 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // if something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the command line
 wsprintf(rec_str,
 "ActivateThunderListItem (\"%%m\", \"%s\")", (LPSTR)szBuff);
 // replacing the previous one which was "SelectThunderListItem"
 nReturn = REPLACE_AND_SEND_LINE;
 }
 break;

 // set the bMouseDown Flag
 case WM_LBUTTONDOWN:
 if (isMouseUponObject(win, lParam))
 bMouseDown = TRUE;
 break;

 case WM_LBUTTONUP:
 if (bMouseDown) { // if the bMouseDown flag has been set

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 93

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 bMouseDown = FALSE;
 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // and something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the command line
 wsprintf(rec_str,
 "SelectThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 // and keep it for the DBLCLICK case
 nReturn = KEEP_LINE;
 }
 }
 break;

 case WM_KEYDOWN:
 // get the real VirtKey value
 // and if it's valid - set the bPushKeyDown flag
 ss = HIWORD(lParam);
 ss = LOBYTE(ss);
 ss = MapVirtualKey(ss, 1);

 if (GetListKey (win, wParam) != 0xFFFF)
 bPushKeyDown = TRUE;
 break;

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 94

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 case WM_KEYUP:
 // get the real VirtKey value
 wVirtKey = GetListKey (win, wParam);
 if (bPushKeyDown && (wVirtKey != 0xFFFF)) {
 // if it's valid and the bPushKeyDown flag has been set -
 // reset the flag
 bPushKeyDown = FALSE;

 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // if something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the appropriate command line
 // - Activate or Select
 if (wVirtKey == VK_RETURN)
 wsprintf(rec_str,
 "ActivateThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 else
 wsprintf(rec_str,
 "SelectThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 }
 }
 break;

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 95

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 default:
 break;
 }

 return (nReturn);
}

//---
// isMouseUponObject
// Check if the Mouse is placed upon the hwin Window Rectangle
//---

BOOL isMouseUponObject(HWND hwin, LPARAM lParam)
{
 RECT rect;
 POINT ptMouse;
 BOOL bResult;

 // Get the local mouse coordinates
 ptMouse.x = LOWORD(lParam);
 ptMouse.y = HIWORD(lParam);

 // Get the Object's Window coordinates
 GetWindowRect(hwin, (RECT FAR*)&rect);

 // Convert the local mouse coordinates to the Window one

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 96

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 ClientToScreen(hwin, (POINT FAR*)&ptMouse);

 // test if the mouse upon the Object Window's rectangle
 bResult = PtInRect((const RECT FAR*)&rect, ptMouse);

 return bResult;
}

//---
// GetListKey
// Recognize if the Key message corresponds to any of the Virtual Keys:
// VK_RETURN, VK_UP, VK_RIGHT, VK_LEFT, VK_DOWN, VK_HOME,
// VK_END, VK_PRIOR, VK_NEXT,
//
// Assume that wParam and lParam have been changed and for some reason
// for the Keyboard’s keys (except the ENTER) and for KeyPad's ENTER
there
// is a topmost bit being added to the wParam value
//---

WORD GetListKey(HWND hwin, WPARAM wParam)
{
 int i;
 BOOL bKeyPad,
 bNumLock;

Customizing Recording • Customizing Recorded Statements

WinRunner Customization Guide Chapter 5, page 97

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 // regular movement & executive keys
 WORD wVirtKeys[MAXKEYS] =
 {VK_RETURN, VK_UP, VK_RIGHT, VK_LEFT,
 VK_DOWN, VK_HOME, VK_END, VK_PRIOR, VK_NEXT};

 // KeyPad's key values have been recognized by debugging
 bKeyPad = ((wParam >= 0x47) && (wParam <= 0x51));

 // check the NUMLOCK key's toggle - test the lowest bit
 bNumLock = 0x01 & GetKeyState(VK_NUMLOCK);

 if (!bKeyPad || (bKeyPad && !bNumLock)) {
 // process all the keys but the <NUMLOCK<->KEYPAD> case
 // (except the KeyPad's ENTER)
 for (i = 0; i < MAXKEYS; i++) {
 // reset the wParam's topmost bit and test the Virtual Keys.
 if ((wParam & 0x7F) == MapVirtualKey(wVirtKeys[i], 0))
 // return the current Virtual Key's value
 return wVirtKeys[i];
 }
 }

 // return "nothing"
 return 0xFFFF;
}

Customizing Recording
Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 98

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

6
Adding Custom Properties for GUI Objects

You can add your own properties to any GUI object class to improve WinRunner’s
ability to uniquely identify the GUI objects in your application.

This chapter describes:

• Developing a Query Function for a Custom Property

• Developing a Verification Function for a Custom Property

• Registering a Custom Property

• Assigning a Custom Property to a GUI Object Class

• Example of a Custom Property Function

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 99

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Adding Custom Properties for GUI Objects

WinRunner uniquely identifies each GUI object in your application by developing
a physical description for the object. This physical description is made up of a list
of the object’s obligatory properties. When the obligatory properties do not
provide unique identification, WinRunner includes optional properties into the
physical description. If this still does not uniquely identify the object, then
WinRunner includes a selector as well. See your WinRunner User’s Guide for
more information on how WinRunner identifies GUI objects.

The inclusion of optional properties and selectors can lead to long and complex
physical descriptions. To improve the efficiency with which WinRunner identifies
GUI objects, you can register your own user-defined or custom properties. For
example, every GUI object created using Visual Basic is assigned the vb_name
property. Within a given window, the vb_name property is always unique. If you
have installed WinRunner with Visual Basic support, then the vb_name property
is automatically added as a custom property. This enables WinRunner to more
efficiently identify the GUI objects in your Visual Basic applications.

Like Visual Basic, most other development environments also assign properties
to their GUI objects. By defining these properties as custom WinRunner
properties, you enhance WinRunner’s ability to uniquely identify GUI objects in
your applications.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 100

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To add a custom property, you perform the following tasks:

 1 Develop a query function to obtain the value of the custom property, whenever
the value is required.

 2 Develop or specify a function that verifies whether the custom property of a given
GUI object has the required value.

 3 Register the custom property.

 4 Assign the custom property to a GUI object class.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 101

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Query Function for a Custom Property

You create a query function to evaluate and return the value of a custom property
of a GUI object. For example, suppose you add the custom property
new_property. It is the query function that actually evaluates and returns the value
of new_property for a given GUI object, whenever the value is required.

You write the query function in C-language, and compile and link it into a DLL. You
supply the name of the DLL when you register the custom property. See
Registering a Custom Property on page 106.

The query function has the following prototype:

���
����������	������������������ ����������	
��

Parameters

hWnd The handle of the GUI object for which the custom
property is being evaluated.

str A buffer allocated by WinRunner to which the query
function assigns the value of the custom property.

size The size of the str buffer in bytes.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 102

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The query_func function is a library-defined callback function that WinRunner
calls whenever the value of a custom property is required. The query_func
function is a placeholder for the library-defined function name. The actual name
must be exported by including it in an EXPORTS statement in the library’s
module-definition (.DEF) file.

For an example of a query function for a custom property, see Example of a
Custom Property Function on page 112.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 103

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Verification Function for a Custom Property

WinRunner uses a verification function to identify GUI objects in your application
whose custom property has the required value.

Understanding the Verification Function
To understand the role of a verification function, consider the following scenario.
Suppose that you open the GUI Map Editor, and select a custom object. The
object is uniquely identified by the class property, object, and its custom property,
new_property. Suppose that the value of new_property is Object1. The physical
description of the object is therefore:

{class:"object", new_property:"Object1"}
When you click the Show button in the GUI Map Editor, WinRunner attempts to
highlight the selected object. But first it must locate it.

To locate the required object, WinRunner systematically examines each object in
your application, and enquires: Does this object belong to the “object” class? If
not, WinRunner queries the next object. If that object belongs to the “object” class,
WinRunner calls the query function to establish the value of the object’s custom
property, new_property. Having established the value of new_property,
WinRunner calls the verification function to determine if this value matches the
required value, Object1. If the verification function indicates a mismatch,

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 104

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

WinRunner continues searching for the required object. When the query function
returns a value of “Object1”, the verification function indicates that the correct
object is found, and WinRunner highlights the object.

Using Standard and Custom Verification Functions
The function that you use to verify the value of a custom property can be one of
WinRunner’s standard property verification functions, or your own custom
verification function.

The standard property verification functions are:

• string_verify, which compares the value of the custom property as a string.

• num_verify, which compares the value of the custom property as a number.

• bool_verify, which compares the value of the custom property as a boolean
expression.

You use a standard function whenever a simple comparison of property values
can verify a custom property. For example, suppose you are checking the
custom property new_property, and that the value is always a string such as
“Object1” or “Object2”. You can use the standard string_verify function to verify
the new_property property.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 105

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Custom Verification Function
If your custom property requires complex comparison for verification, then the
standard verification functions are inadequate, and you must develop your own
custom verification function.

The verification function has the following prototype:

�����
���������	������������������������

Parameters

hWnd The handle of the window or GUI object for which the
property is being verified.

str A buffer containing the value of the custom property. The
value is established by the query function. The verification
function compares this value to the required value of the
custom property.

The verification function must return TRUE if the check passes, and FALSE if the
check fails.

As with the query function, the verification function is written in C-language, and
is compiled and linked into the same DLL as the query function.

For an example of a verification function for a custom property, see Example of
a Custom Property Function on page 112.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 106

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Registering a Custom Property

In order to make a new custom property available to WinRunner, you must name
the property and register it. You use the add_record_attr function to register a
new custom property. This function has the following syntax:

add_record_attr (attr_name, dll_name, query_func_name, verify_func_name
);

• attr_name is the name of the custom property that is being registered.

• dll_name is the full path and filename of the DLL in which the query and
verification functions are defined.

• query_func_name is the name of the query function that is included in the DLL.

• verify_func_name is one of WinRunner’s standard property verification
functions, or the name of the verification function that is included in the DLL.

The following example registers the custom new_property property.

add_record_attr("new_property", "c:\\arch\\vb_util.dll",
"new_property_query", "string_verify");

After executing the add_record_attr function, the new custom property,
new_property, appears in the Available Properties list in the Configure Class
dialog box. The new property is available to all standard and custom GUI object
classes—you must assign it to the appropriate classes.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 107

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The new custom
property, new_property,
was added using the
add_record_attr
function.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 108

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Assigning a Custom Property to a GUI Object Class

After registering a custom property, you must assign the property to the
appropriate custom class, usually as an obligatory property. You assign a property
using the set_record_attr function. It is recommended that you use the Configure
Class dialog box to generate the required set_record_attr function, and paste it
into your test script.

The following example assigns the custom new_property property to the custom
cust_object class.

set_record_attr("cust_object","class, new_property","MSW_id","location");
For additional information about the set_record_attr function, refer to the TSL
Online Reference.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 109

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To assign a custom property to a GUI object class using the Configure
Class dialog box:

 1 Click Tools > GUI Map Configuration. The GUI Map Configuration dialog box
opens.

 2 From the Class List, highlight the class with which you will associate the new
custom property. Because your class is a custom class, you will find it at the
bottom of the list, marked with a U (for user-defined) against the left border of the
list.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 110

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click the Configure button. The Configure Class dialog box opens.

 4 Locate and select your new custom property in the Available Properties list.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 111

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Click the Insert button below the list of obligatory properties. The new custom
property is added to the list of obligatory properties. Examine the
set_record_attr function in the Generated TSL Script box. Note that the new
property is added to the list of obligatory properties.

 6 Locate and select any property in the obligatory list which WinRunner no longer
requires for unique identification.

 7 Click the Insert button below the list of optional properties or below the list of
available properties, as required. The selected property moves to the
appropriate list.

 8 Repeat steps 6 and 7 to remove all the obligatory properties that are no longer
required.

Note: Although the class property may not be needed for unique identification,
do not remove it from the list of obligatory properties.

 9 Click Paste to paste the generated TSL statements into your test script.

 10 Click OK to close the Configure Class dialog box.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 112

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Example of a Custom Property Function

The example below illustrates the structure and implementation of a custom
property function. You may want to base the implementation of your custom
property functions on this example.

In the example, the property query function is called vb_name_query. The
vb_name property is equivalent to the "Name" property for controls in a Visual
Basic application.

The value of the property is retrieved by calling the VBAPI function,
VBGetControlName. VBGetControlName must be called on the stack of the task
that owns the window “hWnd”. This is done by means of window ‘subclassing’.
The window procedure of “hWnd” via SetWindowLong is changed to
“VbCtrlProc”. Then a (special) message is sent to “hWnd”. This message is
picked up by VbCtrlProc in the context of the task that created 'hWnd'. VbCtrlProc
processes the message by calling VBGetControlName. The cust_att.h file sets
the return values for the custom property function.

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 113

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Filename: cust_att.h

#define WR_VB_SERVICE_STRING "MY_MESSAGE_IDENTIFIER_1"
enum {

VB_GET_CTRL_NAME_IND,
VB_GET_CTRL_INDEX_IND,

};

typedef struct {
HWND hWnd;
LPSTR value;

} VB_GET_CTRL_NAME_STRUCT;

typedef VB_GET_CTRL_NAME_STRUCT FAR* LPVBGCNS;

Filename: cust_att.c

#define EXPORTED _far _pascal __export

#include <windows.h>

#include <vbapi.h> // for VBGetHwndControl and VBGetControlName

#include "cust_att.h"

LRESULT EXPORTED VbCtrlProc(HWND hWnd,UINT message,WPARAM
wParam,LPARAM lParam);

HANDLE hmodDLL;

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 114

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

static UINT WR_VB_SERVICE_MSG = 0;

static FARPROC def_proc;

int FAR PASCAL LibMain
(
 HANDLE hModule,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine
)
{
 hmodDLL = hModule;

WR_VB_SERVICE_MSG =
RegisterWindowMessage(WR_VB_SERVICE_STRING);
 return 1;
}

void EXPORTED vb_name_query(HWND hWnd, LPSTR value, int length)
{

VB_GET_CTRL_NAME_STRUCT name_struct = {hWnd, value};

def_proc = (FARPROC)SetWindowLong(hWnd, GWL_WNDPROC,
(LONG)VbCtrlProc);

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 115

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

SendMessage(hWnd, WR_VB_SERVICE_MSG,
(WPARAM)VB_GET_CTRL_NAME_IND,
(LPARAM)(LPVBGCNS)&name_struct);

SetWindowLong(hWnd, GWL_WNDPROC,(LONG)def_proc);
}

LRESULT EXPORTED VbCtrlProc(
HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)
{

if(message == WR_VB_SERVICE_MSG) {
switch(wParam) {

case VB_GET_CTRL_NAME_IND:
{

LPVBGCNS p_name_struct = (LPVBGCNS)lParam;
HCTL hctl = VBGetHwndControl(p_name_struct->hWnd);
if(hctl)

VBGetControlName(hctl,p_name_struct->value);
return((LRESULT)TRUE);

}
default:

return((LRESULT)TRUE);

Customizing Recording • Adding Custom Properties for GUI Objects

WinRunner Customization Guide Chapter 6, page 116

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

}
}
return(CallWindowProc(def_proc, hWnd, message, wParam, lParam));

}

int EXPORTED vb_tag_query(HWND win, LPSTR value, int len)
{

vb_name_query(win, value, len);
if(value[0] == '\0')

return(FALSE);
return(TRUE);

}

Customizing Recording
Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 117

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

7
Customizing Assigned Logical Names

You can customize the way that WinRunner assigns logical names to custom GUI
objects.

This chapter describes:

• Understanding Logical Name Functions

• Developing a Logical Name Function

• Associating a Logical Name Function with a Custom GUI Object Class

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 118

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About Customizing Assigned Logical Names

By implementing logical name functions, you can control the logical names that
WinRunner assigns to custom GUI objects in your application. For example,
suppose that your application contains a spinbutton that does not belong to any
of WinRunner’s standard GUI object classes. The spinbutton operates a counter
for the quantity of tickets sold in a theater. When you click the spinbutton,
WinRunner records a statement similar to the following:

obj_mouse_click ("SpinButton_2", 150, 300, LEFT);

The logical name, SpinButton_2, provides little indication of which GUI object is
being acted on, especially if your application contains numerous spinbuttons. By
implementing a logical name function you can improve the descriptiveness of the
logical name that WinRunner assigns to the counter. In place of “SpinButton_2”
your logical name function could return the logical name “Tickets_Sold_(spin)”,
resulting in the following recorded statement:

obj_mouse_click ("Tickets_Sold_(spin)", 150, 300, LEFT);

From the customized logical name, it is immediately apparent to which GUI
object the recorded statement is referring.

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 119

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To implement a logical name function, you perform the following steps:

 1 Develop a logical name function that generates logical names for a custom GUI
object class.

 2 Associate the logical name function with a custom GUI object class.

Note that although you can modify the logical name of any GUI object using the
GUI Map Editor:

• You can use the GUI Map Editor only after WinRunner has already assigned
a logical name.

• When using the GUI Map Editor, you must manually modify each logical
name, as required.

In contrast, a logical name function actually generates logical names the first
time that WinRunner requires them, and a single logical name function can
generate logical names for all the GUI objects in a given custom class.

You can combine a custom record function with a logical name function for a
custom GUI object class. This combination ensures that the statements that
WinRunner records into your test scripts are intuitive. That is, that the recorded
statements describe both the actions performed, and the objects being acted
upon. For more information, see Chapter 5, Customizing Recorded
Statements.

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 120

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Understanding Logical Name Functions

When a GUI object is added to the GUI map, or when you use the GUI Spy to view
the properties associated with a GUI object, WinRunner attempts to assign a
descriptive logical name to the object. Therefore, if a GUI object has associated
text, such as the label on a push button, WinRunner uses this text as the basis of
the logical name. In most instances, this produces a logical name which is
sufficiently descriptive of the GUI object.

If a GUI object has no associated text, WinRunner uses the MSWclass property
as the basis of the logical name. This can result in a logical name that is not
descriptive of the object which it represents. This, in turn, results in recorded test
script statements that do not clearly describe the GUI objects with which they are
associated. By implementing logical name functions, you enable WinRunner to
establish and record more intuitive logical names for your custom GUI objects.

The logical names functions that you implement can employ various approaches
to generate the required descriptive logical names. The approach you choose
depends on the application being developed and the development environment
used. The simplest approach is provided by those programmers who create
databases containing descriptive details of all the GUI objects used in an
application, as they develop the application. If you can find and access such a
database, it may be the ideal source for all your custom logical names.

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 121

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Developing a Logical Name Function

You write the logical name function in C-language format, and compile and link it
into a DLL. You supply the name and location of the DLL when you associate the
logical name function with a GUI object class. For more information, see
Associating a Logical Name Function with a Custom GUI Object Class on
page 122.

The logical name function has the following prototype:

�������	��
���������������� !�������������	
���

hWnd The handle of the GUI object for which a logical name is
being established.

str A buffer allocated by WinRunner for the logical name. The
logical name function stores the generated logical name
in the str parameter.

size The size of the str buffer, in bytes.

For an example of a logical name function for a custom object, see the example
at the end of Chapter 6, Adding Custom Properties for GUI Objects.

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 122

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Associating a Logical Name Function with a
Custom GUI Object Class

You use the add_cust_record_class function to associate a logical name
function with a GUI object class. The add_cust_record_class function has the
following syntax:

add_cust_record_class (MSW_class, dll_name [, rec_func]
[, log_name_func]);

• MSW_class is the custom class with which the logical name function is
associated. The custom class must have already been defined.

• dll_name is the full path and filename of the DLL in which you included the
logical name function. If a custom record function exists for the GUI object class,
then that function will be included in the same DLL. For more information, see
Chapter 5, Customizing Recorded Statements.

• rec_func is the name of the record function (if it exists) that is included in the
DLL. The record function returns the string that will be recorded into the test
script. For more information, see Chapter 5, Customizing Recorded
Statements.

• log_name_func is the name of the logical name function that you included in the
DLL. The log_name_func function supplies custom logical names for custom
GUI objects in the MSW_class class.

Customizing Recording • Customizing Assigned Logical Names

WinRunner Customization Guide Chapter 7, page 123

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

In the following example, the add_cust_record_class function associates the
logical name function, vb_log_name, with the custom SpinButton class.

add_cust_record_class ("SpinButton", "c:\\winrun\\arch\\vb_util.dll", " ",
"vb_log_name");

Combining a Custom Record Function with a Logical Name
Function
You can further improve the readability of your test scripts by implementing a
custom record function together with a logical name function. You use the
add_cust_record_class function to combine a custom record function with a
logical name function for a custom GUI object class. This combination ensures
that the statements that WinRunner records into your test scripts describe both
the actions performed, and the objects being acted upon. For more information,
see Chapter 5, Customizing Recorded Statements.

For more information and an example of a logical name function combined with a
custom property function, see Chapter 6, Adding Custom Properties for GUI
Objects.

WinRunner Customization Guide Page 124

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part III

Using the WinRunner API

Using the WinRunner API
The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 125

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

8
The Mercury API Functions

This chapter contains all of the WinRunner API (Application Programmer
Interface) functions that you need. This chapter includes:

• Type definitions for AUT functions

• Macros

The functions appear in the above order. Within the macro group, functions are
arranged alphabetically. Some of the functions return or refer to WinRunner error
codes. For more information on error codes, see the TSL Online Reference.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 126

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

About API Functions

There are several types of functions in the API.

A type declaration defines how the execution functions you implement in the AUT
are structured. The only type definition you need for inside testing is
MicFunctionProc.

Macros can be used in the functions you implement in the AUT. The macros are:

• mic_cp_from_string

• mic_cp_to_string

• mic_destroy_buf

• mic_destroy_string

• mic_get_object

• mic_init_buf

• mic_init_string

• mic_set_object

You use the following types in macros:

• MicString

• MicObjectBuf

• MicObject

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 127

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

�����	�
���
�����
�������
���
����

MicFunctionProc
describes the prototype of any playback function (function type).

�"#�
�$������%&'(������)�*���������
���������%��+�,�������
���

Registered with mic_if by MicRegisterFunction.

Argument

args MicArgList is a pointer to a structure containing all of the
parameters that are passed to the function.

Description
MicFunctionProc is the type for any playback function implemented by the toolkit
that corresponds to a TSL playback command.(The toolkit is the development
environment used to develop the application you are testing.) The function can
have any number of input/output parameters. The parameters are passed in a
data structure. In order to retrieve the parameters, the toolkit must use
MicExtractArgs.

Return Value
This function returns MIC_E_OK for success or one of the WinRunner error codes
for failure. For a list of error codes, refer to the TSL Online Reference.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 128

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

������

mic_cp_from_string
copies a MicString to a string (macro).

-���./
��01��(�$
 2

�������
�����
���������������������

Parameters

str A string to which MicString is copied.

str_name The MicString.

Description
This macro copies a MicString to a string.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 129

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_cp_to_string
copies a string to a MicString (macro).

-���./
��01��(�$
 2

�������
���
���������������������

Parameters

str_name A MicString.

str The string to be copied to the MicString.

Description
This macro copies a string to a previously initialized MicString.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 130

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_destroy_buf
frees an object buffer of type MicObjectBuf (macro).

-���./
��01��(�$
 2

����	��
������
�������������

Parameters

buf_name A buffer to be freed.

Description
This macro frees an object buffer.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 131

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_destroy_string
frees a string of type MicString (macro).

-���./
��01��(�$
 2

����	��
�����
����������������

Parameters

str_name A string to be freed.

Description
This macro frees a string.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 132

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_get_object
returns an object from an object buffer of type MicObjectBuf (macro).

-���./
��01��(�$
 2

������
������
������������	������

Parameters

buf_name The buffer from which the GUI object is retrieved.

index The zero-based index of the GUI object in the buffer.

Description
This macro returns an GUI object from zero-based location index in an object
buffer.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 133

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_init_buf
initializes a buffer of type MicObjectBuf (macro).

-���./
��01��(�$
 2

�������
���
������������

Parameters

buf_name A buffer to initialize.

Description
This macro allocates a buffer named buf_name. To manage the buffer, you can
use the following additional macros: mic_set_object, mic_get_object,
mic_destroy_buf.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 134

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_init_string
initializes a string of type MicString (macro).

-���./
��01��(�$
 2

�������
��
����������������

Parameters

str_name The string to be initialized.

Description
This macro allocates a string. To manage the string, you can use the following
additional macros: mic_cp_to_string, mic_cp_from_string, mic_destroy_string.

Using the WinRunner API • The Mercury API Functions

WinRunner Customization Guide Chapter 8, page 135

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

mic_set_object
sets an object of type MicObject in an object buffer of type MicObjectBuf (macro).

-���./
��01��(�$
 2

������
������
������������	���������������

Parameters

buf_name The buffer in which the object is filled.

index The index of the object in the buffer.

object The object to be set.

Description
This macro fills an object at zero-based location index in an object buffer. To
manage the buffer, you can use the following additional macros: mic_set_object,
mic_get_object, mic_destroy_buf.

Index

WinRunner Customization Guide Page 136

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

A

Acrobat Reader 7
add_cust_record_class function 87, 122
add_record_attr function 106
add_record_message function 86
API functions 125–135

C

Capture functions
creating 25, 53, 61
syntax 25

Comparison functions
creating 30, 53, 61
syntax 31

conventions. See typographical conventions
custom objects, creating checks for 43–54

D

default_check_function, syntax 60
Display button, in GUI checkpoint dialog boxes

63
display_function, syntax 64

G

GUI checks, advanced 55–71
adding a new object class 58
creating a capture function 61
creating a comparison function 61
registering a new check 62
sample test script 66
setting default checks 65

GUI checks, for custom objects 43–54
adding a new class 47
associating a check with a class 54
creating a capture function 53
creating a comparison function 53
registering a new check 53
setting default checks 54

GUI checks, for standard objects
adding a function to a category 37
creating capture functions 25
creating comparison functions 30
modifying default checks 40
registering a new check 35

gui_ver_add_check function 35
gui_ver_add_check_to_class function 37
gui_ver_add_class function 47
gui_ver_set_default_checks function 40

0
Index

Index

WinRunner Customization Guide Page 137

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

L

logical name functions 117–123
associating with a GUI object class 122
combining with record function 123
developing 121

M

Mercury API 125–135
mic_cp_from_string function 128
mic_cp_to_string function 129
mic_destroy_buf function 130
mic_destroy_string function 131
mic_get_object function 132
mic_init_buf function 133
mic_init_string function 134
mic_set_object function 135
MicFunctionProc function 127
MicObject type 126, 135
MicObjectBuf type 126, 130, 132, 133, 135
MicString type 126, 128, 129, 131, 134

O

online help 7
online resources 7

P

properties, custom 98–111
assigning to a GUI object class 108
developing query functions 101
developing verify functions 103
registering 106

Property List button in the GUI checkpoint
dialog boxes 47, 59

R

Readme file 7
record functions, customizing 73–97

adding Windows messages 86
associating with a GUI object class 87
developing 81
developing an execution function 88
return values 84

S

sample tests 7
set_record_attr function 108
standard objects, creating checks for 19–42
support information 8

Index

WinRunner Customization Guide Page 138

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

T

technical support online 7
TSL Online Reference 7
TSL Reference Guide 6
typographical conventions in this guide 9

U

ui_function, syntax 59

W

WebTest User’s Guide 6
WinRunner

context-sensitive help 7
online resources 7
sample tests 7

WinRunner Installation Guide 6
WinRunner Tutorial 6
WinRunner User’s Guide 6

In

Find

Books
Online

 Again

Find

Help

Back

WinRunner Customization Guide, Version 6.0

© Copyright 1994 - 1999 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra
SiteTest, Astra QuickTest, Astra LoadTest, Topaz, RapidTest, QuickTest, Visual Testing, Action Tracker, Link
Doctor, Change Viewer, Dynamic Scan, Fast Scan, and Visual Web Display are trademarks of Mercury
Interactive Corporation in the United States and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRCG6.02/01

	WinRunner® Customization Guide
	Table of Contents
	Welcome to WinRunner Customization
	Using This Guide
	WinRunner Documentation Set
	Online Resources
	Typographical Conventions
	Introduction

	Customizing GUI Checks
	Creating Custom GUI Checks for Standard Objects
	About Creating Custom GUI Checks for Standard Objects
	Creating a Capture Function
	Creating a Comparison Function
	Registering a New Property Check
	Associating a New Property Check with a GUI Object Class
	Modifying the Default Checks for a GUI Object Class

	Creating GUI Checks for Custom Objects
	About Creating GUI Checks for Custom Objects
	Adding a Custom GUI Object Class for Verification
	Defining a Custom Check for a Custom GUI Object Class

	Creating GUI Checks: Advanced Topics
	About Advanced Topics in Creating GUI Checks
	Adding a New GUI Object Class for Verification
	Creating Capture and Comparison Functions
	Registering the New Check
	Setting the Default Checks
	Implementing Advanced GUI Checking

	Customizing Recording
	Customizing Recorded Statements
	About Customizing Recorded Statements
	Understanding Custom Record Functions
	Developing a Custom Record Function
	Associating a Custom Record Function with a GUI Object Class
	Developing a Custom Execution Function
	Example of a Custom Record Function

	Adding Custom Properties for GUI Objects
	About Adding Custom Properties for GUI Objects
	Developing a Query Function for a Custom Property
	Developing a Verification Function for a Custom Property
	Registering a Custom Property
	Assigning a Custom Property to a GUI Object Class
	Example of a Custom Property Function

	Customizing Assigned Logical Names
	About Customizing Assigned Logical Names
	Understanding Logical Name Functions
	Developing a Logical Name Function
	Associating a Logical Name Function with a Custom GUI Object Class

	Using the WinRunner API
	The Mercury API Functions
	About API Functions
	MicFunctionProc
	mic_cp_from_string
	mic_cp_to_string
	mic_destroy_buf
	mic_destroy_string
	mic_get_object
	mic_init_buf
	mic_init_string
	mic_set_object

	Index

