XRunner’
User’s Guide
Version 6.0

G

MERCURY INTERACTIYVE

XRunner User’s Guide—Version 6.0

© Copyright 1994, 1995, 1996 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of
Mercury Interactive Corporation, and may not be copied, reproduced, or used in any way without the
express permission in writing of Mercury Interactive. Information in this document is subject to
change without notice and does not represent a commitment on the part of Mercury Interactive.

Patents pending.

XRunner and WinRunner are registered trademarks of Mercury Interactive Corporation. LoadRunner,
TestDirector, TestSuite, Visual Testing, TSL and Context Sensitive are trademarks of Mercury
Interactive Corporation.

This document also contains Registered Trademarks, Trademarks and Service Marks that are owned
by their respective companies or organizations. Mercury Interactive Corporation disclaims any
responsibility for specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
470 Potrero Avenue

Sunnyvale, CA 94086

Tel. (408) 523-9900

Fax. (408) 523-9911

XRUG6.0/01

Table of Contents

Welcome to XRUNNEKovveiiiiiiiiieiceeeee e xiii
USINgG This GUIAEceeiiiiiiiiiiiiiiiiiiiiieee et xiii
XRunner Documentation Set........cccooovieiiiiiiiiiiiiiiiiieeeeee s Xiv
ONIINE RESOUICES .evvuniiiiieeiiiieee et e e et e e st eeeeaaas XV
Typographical CONVeNtioNS..........uuvvviiiiiiiiiiiiiieiiiieiieeeeeeeeeeeeeeeeeeeeennn XV

PART I: STARTING THE TESTING PROCESS

Chapter T: INtroductionccooccciiiiiiiiiiii e 3
XRunner Testing MOAeSccceeimiiiiiieiiiiiieeeeeereeeee e 4
The XRunner Testing PrOCeSS.....cccovvviiiiiieiiiiiiiiiiieeieineeeeeeeeee S
Working with LoadRUNNEToooiviiiiiiiiiiiicciieeeec e 6
Chapter 2: XRunner at @ Glancecccoccciviiiiiiiiniiiiiiiceiiieeeeeee 7
Starting XRUINET ... 7
The Main XRunner Windowcccoviiiiiiiinniiiiiniiecccceeeeeee 8
Selecting XRunner Commandsccceeevvemiieeeeeinnniiiieeeeeennnirneeeeennn 9
Configuring XRunner SOftKeyscccccovvvriiiiiiiiiiniiiiiieeiiieeeeen 11

PART II: UNDERSTANDING THE GUI MAP

Chapter 3: Introducing Context Sensitive Testing...........ccccvvveeeeennn. 15
About Context Sensitive Testing........cccccvvvvviiiiiiiniiiiiieieee, 15
How a Test Identifies GUI ODJeCtSccovvvomiiiiiiiiinniiiiiiiiieeiiiiieeeeenn 16
Physical DeSCIiPtions.....cccuvvveiiiiiiiiiiiiec et 19
LOZICAl NAINIES ...ovvviiiiiiiiiiiiiieieiiitee e 19
The GUIMAaP ciiiiiiiiiiiiie ettt 20

Setting the Window Contextccccccevvnniiiiiiiiiniiieeeeen 22

XRunner User’s Guide

Chapter 4: Creating the GUIMap.........cccccccceeiiinniiiiiiiiiiiee, 23
About Creating the GUIMapoccovviiiiiiiiiiiiieeeee 23
Learning the GUI with Test Wizardcccccveeiiiiniiiiiiieiiineeeeeen, 24
Learning the GUI by Recordingccccoeevvveeeeeiinniiiiiieiieiiiiiieeeeeen, 25
Learning the GUI Using the GUI Map EditOr........ccccceeevviiiiiieeernnnnnne 25
Saving the GUI Map ..c..uviiiiiiiiiiiiiiieeceeeeeieteee et 27
Loading the GUI Map File.......cccuiiiiiiiiiiiiiiiiiiiiiiieeee e 28
Chapter 5: Editing the GUIMapooccciiiiiiiiiiiiiiiiiiiieieieeeee e, 31
About Editing the GUI Map ...ccooviiiieiiiiiiiiiiiieeee et 31
The Run Wizard.........oooviiiiiiiiiiiieiiiieeceeccee e 32
The GUIMap EditOrccuuiiiiiiiiiiiiiiiiiiiiiiiie, 34
Modifying Logical Names and Physical Descriptions...........cccueeeeee.. 36
Using a Single Description for Varying Labels.........cccccccceeeeinninnneeeen. 37
Copying and Moving Objects between Filesccccceevviiiiieeeennnn. 38
Finding an Object in a GUI Map File......cccccccviiiiniiiiiiiiiiniiiiieeeeeenn, 40
Finding an Object in Multiple GUI Map Filesccccccevvvniiieneennnn. 40
Manually Adding an Object to a GUI Map Fileccccuvveiieennnnnnneen. 41
Deleting an Object from a GUI Map Filecccccooviiiiiiiiiiniiiiiienneennn, 41
Clearing a GUIMap File.....cccoomniiiiiiiiiiiiiiiiiieceiiccee e 42
Filtering Displayed ODJectscc.uvvveeeiiiiiiiiiiiiieeeeiiiieeee e 42
Saving Changes to the GUI Map.......ccoovvviieiiiiiiiiiiiiiiiiieieiiieeeeeeee 43
Chapter 6: Configuring the GUIMaPpccocciiiiniiiiiiiiiiiiiiieces 45
About Configuring the GUIMapccccccovvviiiiiiiiiiiiiiiiieeeeeeeeeeee, 45
Viewing GUI Object Attributescceeeeermiiiiiiiiiiiniiiiieeeeeeeeeieeeee, 46
Understanding the Default GUI Configuration............cccccceevvnunneneeen. 48
Identifying Objects with the Same Name.........occcuvveeeiiirnniiiiiieeeennnnn. 50
Configuring Record Attributesccccoevvviieeiiiiiiiiiiiiccceeee 51
Configuring the Record Method.........ooocciieeiiiiiniiiiiiiieee, 55
Configuring the Selectorcccuuviieiiiiiiiiiiiiiieee e 58
Configuring the Record Method For a Specific Object...........ccccc....... 59
The Class AttriDULe ...ccoevviiiiiiiiie e 59
AL ATETTDULES .oeeieiiiiieiiieeee e 60
Default Attributes Learnedcccoooveeiiniiiiinniiiiiniicciieec e 64
Working with Motif and Xt Resourcesccccceeevviiiiieeeeeennnniiieeeeen. 64

Table of Contents

PART IlIl: CREATING TESTS

Chapter 7: Creating Testsccoovvimiiiiiiiiiiiiiiiiieee e 69
About Creating Tests ...ccovvvviiiiiiiriiiiiieeeee e 69
Context Sensitive RecOTdingeeeeeeiimiiiiieiiiiiiiiiiieeeeeeniieeeeenn 70
ANalog ReCOTAING ...ccvviiiiiiiiiiiiiiiiiiiiiiiee et 71
CRECKPOINTS. .ttt et e s e 72
Synchronization POINtS.........ooiiiiiiiiiiiiie e 72
Planning @ TeSTueeeieriiiiiiiiiiee ettt et e et e e e s s 73
Documenting Test Informationccooccuvvieeeeininniiiiiiiiiiiiiieeeeen, 73
ReCOTAING @ TOST ...veviiiiiiiiiiiiiiiee ettt 74
Programming @ TeSTcoovviiiiiiiiiiiiiiiiiiiiiiiie e 75
EdIting @ TeSt....ueeiiiiieiiiiiieiee ettt 76
Managing Test FIlesuuuuiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeee e 76
Chapter 8: Checking GUI Objectsccccuvviiiiiiiiniiiiiiiiiiciiiieeeeeen 79
About Checking GUI ObjJectS......covvuviiieieiiiiiiiiieeeeeeeiiiieeee e 79
Checking a Single Object or Windowccceeeeeiiiiiiiiieeeieeiniiiiieeennnn 80
Checking Two or More Objects in @ Windowccccceeeeenninnneeeenn. 81
Checking All Objects in @ WindOWooecvviieeeeiiniiiiiieeeeeeeniiiieeeeeenn 83
Modifying GUI ChecKlistS......cceiiriiiiiiiieeeeiiiiiieeeeeeeeiiiieeeee e 84
Checking Attributes Using check_info Functionsccccccuvveeereeennn. 88
Default Checks and Custom Checks.......cccuveeeeiiiiniiiiiieiiieiiiiiiiieeeee, 89
Chapter 9: Checking Bitmaps:

Context Sensitive Testing ..., 99
About Checking Bitmaps in Context Sensitive Testing...................... 99
Checking Window and Object Bitmaps.......cccccceeeerrniiviiieeeeennnnineeeen. 101
Checking Area Bitmapscccooovriiiiiiiiiimiiiiiieeeeeeeereieeeee e 103
Using Data COMPIESSION ...cuvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeieeieeeeeeeeeeeneeeeeeeeenn 104
Chapter 10: Checking Bitmaps: Analog Testing............cceeeuvveeeeeen. 105
About Checking Bitmaps in Analog Testing........cccoevvveieeeeerniiunnnnee. 105
Checking Window Bitmapseeeeeeeeniiiiiiiieeeniiiiieeeeeeeeeiiieeeeenn 106
Checking Area Bitmapscccoeorviiiiiieieriniiiieeeeeee et 107
Checking Windows with Varying Names.......ccccoeeuveeereeerrniiiiieeenen. 108
Checking Unnamed WindOWsScccceevrniiiiieeeeeiiiniiiiiieeeeenriiieeeee. 109

XRunner User’s Guide

vi

Chapter 11: Filtering Bitmaps........ccccoooeeiieiiiiiiniiiiiiiiiiieeeeen 111
About FIIterscoocoiiiiiiiiiiii 111
Creating FIITeTS ...ccoiiiiiiiiiiiiiiiii e 114
Displaying Filters......cccoiiiiiiiiiiiiii e 116
Altering Filter Attributes........ccciiiiiiiii e, 116
Activating and Deactivating Filters...........c..cccciiiiiiiiiiiiiiiiiee 117
Defining Filters with Regular EXpressions.......cccoecuvveeeeeeiiniiiiieneeennn, 118
Deleting Filters from the Database..........cccceveeiiiiniiiiiiiieiiiinieeen. 119
Chapter 12: Checking Textccooiiiiiiiiiiiiiiiiiceeee e 121
About Checking TeXteeeeiiiiiiiiiiiiieiieiiiecee e 121
Identifying Application FONtScccccviiiiieeiiiiinniiiiiieiieeiiiieeeeen 123
Identifying Fonts Supported by XRunner........cccoccvvvveeeeerrnnnnnneeneenn. 125
Teaching Fonts t0 XRUNNETccoviviiiiiiiiiiiiiiiiiiiie, 126
Reading TeXt. ..ot 130
Searching fOr TeXt ...covuviiiiriiiiiiiiee e 131
Comparing TeXt ...cooeiiiiiiiiiiiiiiiii e 134
Synchronizing Test Execution:

Context Sensitive Testingccoooiiiiiiiiiieee 137
About Synchronizing Test Execution..........ccccceeeiniiiiiiiieeeninniiieenen. 137
Waiting for Window and Object Bitmapsccccoeevevviiieeeeinnnineenen. 138
Waiting for Area Bitmaps.....ccccovvviiiieiiiiiiiiiiieeeeiee e 140
Waiting for Attribute Values.........ccccceeeiiiiiiiiiiiiiiiii e, 142
Chapter 13: Synchronizing Test Execution:

ANalog TeStingoeeiiiiiiiiiiii e 145
About Synchronizing Tests in Analog Testing..........ccccccevvvviivneeeeeen. 146
Waiting for Window Bitmapscccceeeeiiiniiiieiiiiiiiiieee e, 147
Waiting for Area Bitmaps.....ccccovvviiiieiiiiiiiniiieeeiee e 148
Windows with Varying Namescccccceevvniiiieiiiininiiiiieee e, 149
Waiting for Windows or Selected Regions to be Redrawn 150
Chapter 14: Enhancing Window Comparison

and Synchronizationcccoccciiiiiiiiiii e 153
About Adjusting Configuration Parameters........cocccuvvveeeeeerrnnneeeeen. 153
How Configuration Parameters Affect Window Functions.............. 154
Adjusting the XR_TIMEOUT Parameter......cccccccovvvvireeerirnnnnnneneeeennn. 155
Setting the Delaycccuvviiiiiiiiiiiiee e 156
Chapter 15: Handling Unexpected Events and Errors..................... 157
About Handling Unexpected Events and Errors.........ccccceevvvnneeeeee. 157
Handling Popup EXCePtions..........eeeeeeiiiiiiieeieeeinniiiieeeeeeeeiiieee e 159
Handling TSL EXCEPHIONS «.cceevuiiiiiiieeeiiiiiiieeie e 164
Handling Object EXCEPHiONSevvvveeeeiiiiiiiiiieeeeiiiiiiceeeeeeiiieee e 168

Table of Contents

PART IV: PROGRAMMING WITH TSL

Chapter 16: Enhancing Your Test Scripts with Programming 175
About Enhancing Your Test SCIipts.....ccccovviviiieerieeiinniiiieeeeeeeeee, 175
StatemMents ..., 177
Comments and White Space..........cccceeeviiiiiiiiiiiiiiieeeeeiiieeee, 177
Constants and Variables.........ccocciiviiiiiniiii e 178
Performing Calculations........ccoovviiiiiiiiiriiniiiieieeeeeeeeeeeee e, 178
Creating Stress CONditiOnS.......oovvvieereeeriiiiiiiieeeeerrieeeee e 180
Decision-MakKing.......ccovviiiiiiiiiiiiiiiii e 182
Sending Messages to @ Reportoooeeiiiiiiiiiii e 184
Starting Applications from a Test SCripteeeeeevviiiiieeiiiiiiniiiieeeeen, 185
Defining Test StePS ...cccuiiiiiiiiiiieeiiiiee et 186
Chapter 17: Using Visual Programmingccccoccceinniiiiinnneeen, 187
About Visual Programming.........cccuuveeeeeiriiniiiiieieeennniiiieeeee e e 187
Generating a Function for a GUI Object........ccccceevvnniiiiieieiinnininieeen. 189
Selecting a Function from a LiSt.......ccccovriiiiiiiieiiininiiiiiiieeeiniiiieeeeen, 191
Assigning Argument Valuescc.uuveieeeeiiniiiiiiieieeeeeniiiieee e 192
Modifying the Default Function in a Categoryc.ccceeeeveeeenunnnnne. 194
Chapter 18: Calling Testscooouiiiiiiiiiiiiiiieeeeeee e, 195
AbOUt Calling TeStS ..ceeeieiiniiiiiiiieieeiiiiiieeeeee et e e e 195
Using the Call Statementcoeevvveiiiiiiiiiiiiie, 196
Returning to the Calling Test..........cevvieriiiiiiiieeeiiiiiiiee e, 197
Setting the Search Path........ccccooiiiiiiiiiiiii e, 199
Defining Test Parametersccuueeeeeeerniiiiiieeeeeinnnieeeeeeeeeiiiieeeeenn 200
Calling the check _file Testcccuuveeeiiiiiiiiiiiiie e 203
Chapter 19: Creating User-Defined Functions..............cccccccoounnieeee. 205
About User-Defined FUNCtions.......cccocceeeevviiiiniiiiieniceecenee, 205
FUNCHON SYNTaX ciiiiiiiiiiiiiiiiiiiii e 206
Return Statement..........occcoiiiiiii 211
User-Defined Function Exampleccccceeeiiiniiiiiiiiiiniiiiieeeeeee 212
Chapter 20: Creating Compiled Modules.............ccccccovviiiininnn, 213
About Compiled ModUIESccceerrriiiiiiiiieiiiiiiiieieeee e 213
Contents of a Compiled Moduleccccoeviviiieiiiiiiiniiiiiiieeerniieeeen. 214
Creating a Compiled Module..........ccccceiriiiiiiiiiiiininiieeceeen, 215
Loading and Unloading a Compiled Module............ccccceevrniieenneenn. 216
Incremental Compilation.........coocviiiiiiieiiniiiiieiieceeeeeeeee e, 218
Compiled Module Example............eeeeeiiiiniiiiieiiiiiiniieieee e, 219

vii

XRunner User’s Guide

Chapter 21: Using Dynamically Linked Libraries....................c......... 221
About Calling External FUNCtions........ccovevvveiiiiiininiiiciiiieeee, 221
Loading External Librariesccccccevmniiiiiiiiiiiiniiiciieeeeeen 222
Declaring External Functions in TSL........ccccccceeiiniiiiieiiiiiniiiieeeeen, 222
Standard C Library EXxamples........cccccceeiiiiiiiiiiiiiiniiiiiiieeee e, 224
Chapter 22: Using Regular EXpressionsccccceeeeeeeeinniiiieeeeennnn. 229
About Regular EXPressionsococvveeeeeeeeiiniiiiieeeieniniiiieee e e 229
When to Use Regular EXPressions.........coovvuvvieeeeiiinniiiieieeeeenniiieeeen. 230
Regular EXpression Syntaxoooveeeeiiiiiiinieeeeeee 231

PART V: RUNNING TESTS

viii

Chapter 23: Running Tests...........cceeiiiiiiiiiiiieeeiiiiieeeeeeeeee e 237
About RUNNING TeStS .uueviiiiiiieiiiiiiiiieeee e 237
XRunner Test Execution Modes........c.ceeovvieiiiniiiceniiiieeniieceeieeenn 238
XRunner Run Menu Commandscccoovuuiiiiiiiiiniiiiiennn, 240
Running a Test to Check Your Applicationccccceeeeeenniriieeeennnnn. 241
Running a Test to Debug Your Test SCript.....ccoovvvveveeeiinniiiieeiennnnn. 242
Running a Test to Update Expected Results............cceevveeereeeeeeeeeennnn. 242
Controlling Test Execution by Modifying

Configuration Parameterseeeeeeiiniiiieeeeeeeriniiiiieeeeerrieeee e 246
Chapter 24: Analyzing Test Resultsccccceeerniiiiieiiiinnnniieeeeen, 247
About Viewing Test Results......ccccvveeieiiiiiiiiiiiiiiiiiiiiiee e, 247
Test Results SUMMATYoccuvviiiiiiiiiiiiiiiiieee et 249
Test ReSULES LOZ .evvveeiiiiiiiiiiiiiie ettt et e e e 251
The Test TTeE ...cccciiiiiiiiiiiii s 253
Viewing All Captures....cc..ueeeeeiieriiiiiieeeeeeenniiiieeeee e e e e e e e s eieeeeees 254
Viewing the Results of @ Testccueveveiiiiiiiiiiiiiiee e 255
Viewing the Results of a GUI Checkpointccccovvuiiiiieeeiinnninnenen. 255
Viewing the Results of a Bitmap Checkpointcccceeeeeeeriniiinneeen. 257
Controlling How Bitmaps are Displayedcooecuvvvveeeiinniiiieeeennnn. 258
Filtering ReSULES ...ccccerriiiiiiiiiieiieeee e 261
Updating Expected Results......cccccceniiiiiiiiiiii e 262
Printing RESULLS ...ccooiiiiiiiiiiiiiiie e 263
Chapter 25: Running Batch Testsccccceiiiiiiiiiiiiiinniiiiiieeeen, 265
About Running Batch Tests.......cccuveeieiiiiiiiiiiiiiiiiii e, 265
Creating a Batch Testoooiiiiiiiiii e 266
Executing a Batch Testooooriiiiiiiiiiiii e 267
Storing Batch Test ReSultsc...uveeeeieiiiiiiiiiieeeiieecceee e 268
Viewing Batch Test Results.......ooocuvieereeiiiiiiiiiiiiiiiiiiiee e, 269

Table of Contents

Chapter 26: Running Tests from the Command Line 271
About Running Tests from the Command Linecccccccoovunnnnnee. 271
Using the Command Line with XRunner.........ccccccooviiiiiiinnnnnnnnne. 272
Command Line OPtionsccoevuviiieeeieriiiiiiieeeeeeeereieeee e 272
Chapter 27: Running Tests in the Background 277
About Background Testingccoovveuiiieieeiiimniiiiiieiieeeriiiiieee e 277
Running a Background Testooeeiiiiiiiiiiiiiii e 278
Setting the Background XRunner Startup Options.......ccccevvuvvveeeeeeen. 279
Setting the Background Environment Optionsccccceevvvvieeeeneeen. 279
Running Background Tests from the Command Line...................... 280
Stopping a Background Runccccceeviiiiiiiiiiiiiiiniiieee e, 281
Chapter 28: Running Tests on Remote Hostscccccceeviiiiieeeen. 283
About Running Tests on Remote HOStSccevveeeeiiiiiiiiiiiiiiieeinns 283
Connecting XRunner to a Remote AUT.........coeeeiiiiiiiiiiiiiiiee 284
Disconnecting XRunner from Applications.........ccccuveeeeeeernniiinieennen. 284

PART VI: DEBUGGING TESTS

Chapter 29: Debugging Test Scripts........cccceeeeeiiiiiiiiiiineeiiniieeeen. 289
About Debugging Test SCIIPtS ...cccuvvvivieeeiiiiiiiieieeeeeeeiiieeeeee e 289
Running a Single Line of a Test SCriptcccvveeeeiiiiiiiieeiieeenniiiieeeen, 290
Pausing Test EXeCUtion.........ooviiiiiiiiie s 291
Chapter 30: Using Breakpointscccooccuiiiiiiiiiniiiiiiiciiniiiieeeen, 293
AbOUt BreaKpOints....ccceieiiiiiiiiiiiiiiiiiieiee et 293
Breakpoint TYPeS .cccoviiiiiiiiiiiiiiiiii s 295
Setting Break at Line Breakpoints........ccccovvvviieeeiiiiinniiiiiieeiiiniieee, 296
Setting Break in Function Breakpoints........ccccccovvviiiieeiieinnniiiienneen. 298
Modifying Breakpoints..........ceeiiiiiiiiiiieieiiiiiiiiieeeeeeriieeee e 300
Deleting BreakpoOintscc.veeeeiiieriiiiiiieieeiieiieeeeeeeeeiieeeeee e 302
Chapter 31: Monitoring Variablescccccooiiiiiiiiiinniiienn. 303
About Monitoring Variables..........ccccuuveiiiiiiiniiiiiiiiiiiiiiiieee e 303
Adding Variables to the Watch Listccocovvviiiiiiiiiiinniiiiiiiieieie, 305
Viewing Variables in the Watch LiSt......ccoooovieeiiiiinnniiiiiiiiiiinee, 306
Modifying Variables in the Watch Listccccccceeeiinniiiiiiiinnninne, 307
Assigning a Value to a Variable in the Watch List..........cccccoevnnnnne. 308
Deleting Variables from the Watch List........ccccccceernniiiiiiiiiinnninineen. 309

XRunner User’s Guide

PART VIl: CONFIGURING XRUNNER

Chapter 32: Changing System Defaults..............c.cccccceeinniiininnnnn. 313
About Changing System Defaultscocceeeeiiiiniiiiiiiieeeiiniieeen. 313
Configuration FIles..........ceiiiiiiiiiiiiiiiiiiieceeeeeee e 314
Modifying Configuration Settings from the Configuration Form ...315
Modifying Configuration Settings from a Test Script.......ccccvveeeeeen. 318
Environment Variables..........ccoccoviiiniiiiiiiiiiecce e 320
Configuration Parameterseeeeeeeririiiieeeieeeriniiiiieeeeerriieee e 321
Configuration File CONtentscccceevviiiiieeeeeeriiiiiieeeeeriiieeee e 351
Chapter 33: Initializing Special Configurations.....................cccco...... 355
About Initializing Special Configurations.........cccoecuvvieeeeeernnnnnenneeen. 355
Creating Startup Tests ...cooeiiiiiiiiiiiiiiiii e 356
Sample Startup Test......oooerieiiieieeeee e 356

PART Vill: WORKING WITH LOADRUNNER

Chapter 34: Testing Client/Server Systemscccccceevvniiieeeennnn. 361
About Testing Client/Server SYystemscc.eeeeeeeiriniiiiiiieeeeenniiieeeen. 361
Simulating Multiple USers........coooeieioiiiiiiiieee 362
Virtual User TeChNOlOgYcccoiiiiiiiiiiiiiieiiiiiiiieeeeeeeieee e 363
GUI VUSEIS ...ttt 364
Developing and Running Scenarios.........cccccceeeeerniiiiieeeeeennniiiieeeeenn. 365
Creating Scripts for XRunner GUI VUSerIS........coovuviireeeeinniiiiieenennnn. 366
Measuring Server Performance........cccccceeevnmiiieeeeiennniiiiiieeeeeeeriieeeee 368
Synchronizing Virtual User Transactionscccccevevveeeeeeeeeeeeeeeees 369
Creating a Rendezvouscccceeiiiiiiiiiiiiiiiiiie e 369
A Sample VUSET SCIIPT coovviiiiiiiiieiiieieeeee e 370

PART I1X: APPENDIXES

Appendix A: Troubleshooting..............cccccoovviiiiiiin, 375
Starting XRUNNOT ..ottt 375
LOGIN et 376
RECOTA ...t 376
RuUnning Tests ..o 377
File LOCKING «oeeiieiiiiiiiiiiiii e 377
Context Sensitive ... 378
Reading TeXt. ..ot 378
OnNliNe HelP cuueeiiiiiiiiiiiiiiieee et 379
TS et 379
Background OPerationccouvvvveeeeeeeiinniiiieeeeeeiieieee e 380
BItImaps .ccoeeiiiiiiiiiei e 380

Table of Contents

Command Line Interfacecccccovvviiiiiiiiiin 380
NEtWOTK ..oiiiiiiiiiii i, 380
User INnterface.........coceiiviiiiiiiiiiiii 381
HP PlatfOrmS....cueeeiiiiieieeieiiiiieee ettt e e 381
UnixWare PlatfOormsoocuvviiiiiieiiiiiiiieieeeeeeiiieeeeee e 381
Appendix B: Configuring Your Keyboardccccccoeiiiiiiiiinnnnn. 383
About Configuring Your Keyboardcccoevviieiiiiiiinniiiiiiiiienennee, 383
Defining Global Key Aliaseseeeeeeriniiiiiieeeeiniiiiieeeee e 384
Defining Platform-Specific Key Aliasesccccceevvvviiieerieeennniiineeenen. 386
Keyboard Error ChecKingccouvuviiiieieiiiiiiiiieieeeeeeiiieeeee e 388
Appendix C: External Utilities for Bitmap Capture/Check/Display..389
About External Bitmap Utilitiescccceeriiniiiiiiiiiiiniiiee s 389
Capture Utility . coeeeeeeiiiiiiiiiiiiiiiie e, 390
Compare Utility....oooeiiiiiiiiiiiii e 390
DiISPLay ULIILY .eevvveeeeeeiiiiiieeeee ettt e et e e 392
Appendix D: Support for Servers With No

Record/Replay EXtensionccccccoovniiiiiiiiiiiiiiiiiiiece e 393
The xextend Utilitycccccovvriiiiiiiiiiiee e 393
USING XOXTEIIA...eeeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee et e e e eeeeeeeeeeeeeeeeens 394
Appendix E: Using ToolTalk with XRunner...........ccccccoeiiiiiiiiinnnn. 395
Invoking XRunner in ToolTalk Mode.........ccccccevniiiiieeiieinnniiiienneen. 396
Requests From External Applications........ccccccceeerviiiieeeieeinnniiiieennen. 396
Appendix F: Using XRunner with SoftBenchccccooi. 409
About Using XRunner with HP SoftBenchccccooooiiieiiiinnnnnnnn. 409
The SoftBench-XRunner User Interfaceccuvveeeeeiniiiiiiieceeennnnns 410
Communicating With Other SoftBench Toolsccceeeverinnnneeen. 412
INA@X ..o 421

Xi

XRunner User’s Guide

Xii

Welcome to XRunner

Welcome to XRunner, Mercury Interactive’s automated GUI testing tool for
X Windows. XRunner gives you everything you need to quickly create and
execute sophisticated automated tests on your application.

Using This Guide

Part |

Part 1l

Part Il

Part IV

This guide describes the main concepts behind automated software testing.
[t provides step-by-step instructions to help you create, debug, and execute
tests, and to analyze test results.

This guide contains eight parts:

Starting the Testing Process

Provides an overview of XRunner and the main stages of the testing process.

Understanding the GUI Map

Describes Context Sensitive testing and the importance of the GUI map for
creating adaptable and reusable test scripts.

Creating Tests

Describes how to create test scripts and insert checkpoints that allow you to
check data in your application.

Programming with TSL

Describes how to enhance your test scripts using variables, control-flow
statements, arrays, user-defined functions, and XRunner’s visual
programming tools.

xiii

XRunner User’s Guide

Part V

Part VI

Part VII

Part VIII

Running Tests

Describes how to execute your automated tests and analyze test results.

Debugging Tests

Describes how you can control test execution in order to identify and isolate
bugs in test scripts.

Configuring XRunner

Describes how to change system defaults in order to adapt XRunner to your
testing environment.

Working with LoadRunner

Describes how to use XRunner, in combination with LoadRunner to test
client/server systems.

XRunner Documentation Set

Xiv

In addition to this guide, XRunner comes with a complete set of
documentation

XRunner Installation Guide explains how to install XRunner on a single
computer, or on a network.

XRunner Tutorial teaches you basic XRunner skills and shows you how to
start testing your application.

TSL Reference Guide describes Test Script Language (TSL) and the functions
it contains, and examples of how to use these functions.

XRunner Customization Guide explains how to customize XRunner to meet
the special testing requirements of your application.

Product Release Notes provides last-minute information that is not
included in the XRunner User’s Guide.

Online Resources

Welcome to XRunner

XRunner Online Help provides quick answers to questions that arise as you
work with XRunner. It describes menu commands and forms, and TSL
functions and guides you in tailoring XRunner’s Context Sensitive testing
features to meet the specific needs of your application.

TSL Online Help describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions.

Typographical Conventions

This book uses the following typographical conventions:

Bold

Italics

Helvetica

[]
{

Bold text indicates function names and the elements
of the functions that are to be typed in literally.

Italic text indicates variable names.

The Helvetica font is used for examples and statements
that are to be typed in literally.

Square brackets enclose optional parameters.

Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

In a line of syntax, three dots indicate that more items
of the same format may be included. In a program
example, three dots are used to indicate lines of a
program that have been intentionally omitted.

A vertical bar indicates that either of the two options
separated by the bar should be selected.

XV

XRunner User’s Guide

XVi

Part |

Starting the Testing Process

1

Introduction

Welcome to XRunner, Mercury Interactive’s automated testing tool for X
Windows applications. This guide provides you with detailed descriptions of
XRunner’s features and automated testing procedures.

Recent advancements in client/server software tools enable developers to
build applications quickly and with increased functionality. Quality
Assurance departments must cope with software that is dramatically
improved, but increasingly complex to test. Each code change,
enhancement, bug fix, and platform port necessitates retesting the entire
application to ensure a quality release. Manual testing can no longer keep
pace in this rapid development environment.

XRunner helps you to automate the testing process, from test development
to execution. You create adaptable and reusable test scripts which challenge
the functionality of your application. Prior to a software release, you can
execute these tests in a single overnight run—enabling you to detect bugs
and ensure superior software quality.

XRunner User’s Guide

XRunner Testing Modes

XRunner facilitates easy test creation by recording how you work on your
application. As you point and click on GUI (Graphical User Interface)
objects in your application, XRunner generates a test script in the C-like Test
Script Language (TSL). You can further enhance your test scripts with
manual programming. XRunner includes a Visual Programming tool which
helps you to quickly and easily add functions to your recorded tests.

XRunner offers two modes for recording tests:

Context Sensitive

Context Sensitive mode records your actions on the application under test in
terms of the GUI objects you select (such as windows, lists, and buttons),
ignoring the physical location of an object on the screen. Each time you
perform an operation on the application, a TSL statement is generated in the
test script that describes the object selected and the action performed.

As you record, XRunner writes a unique description of each selected object
to a GUI map. The GUI map consists of files that are maintained separately
from your test scripts. If the user interface of your application changes, you
only have to update the GUI map, and not hundreds of tests. This allows
you to easily reuse your Context Sensitive test scripts on future versions of
your application.

To run a test, you simply play back the test script. XRunner simulates a
human user by moving the mouse cursor over your application, selecting
objects, and entering keyboard input. XRunner reads the object descriptions
in the GUI map and then searches for objects that match the description in
the application under test (AUT). It can locate the objects within a window
even if their placement has changed.

Analog

Analog mode records mouse clicks, keyboard input, and the exact
coordinates traveled by the mouse. When the test is executed, XRunner
retraces the mouse tracks. Use Analog mode when exact mouse coordinates
are important to your test, such as when testing a drawing application.

Starting the Testing Process ¢ Introduction

The XRunner Testing Process

Testing with XRunner involves five main stages:

Create Tests Run Tests View Results

-)
Create GUI Map Debug Tests

Create the GUI Map

The first stage is to create the GUI map so that XRunner can recognize the
GUI objects in your application. Use the Test Wizard to review the user
interface of your application and systematically add descriptions of every
GUI object to the GUI map. Alternatively, you can add descriptions of
individual objects to the GUI map by clicking on objects while recording a
test.

Create Tests

Next, you create test scripts through recording, programming, or a
combination of both. While recording tests, insert checkpoints where you
want to check the response of the application under test (AUT). You can
insert checkpoints that check GUI objects and bitmaps. During this process,
XRunner captures data and saves it as expected results—the expected AUT
response to the test.

Debug Tests

Run tests in Debug mode to make sure that the test runs smoothly. You can
set breakpoints, monitor variables, and control test execution in order to

XRunner User’s Guide

identify and isolate bugs. Test results are saved in the debug directory, which
you can discard when you finish debugging the test.

Run Tests

Run tests in Verify mode. Each time XRunner encounters a checkpoint in
the test script, it compares current data in the AUT to the expected data
captured earlier. If any mismatches are found, it captures them as actual
results.

Analyze Results

Determine the success or failure of the tests. Following each test run, results
are displayed in a report. The report details all the major events that
occurred during the run, such as checkpoints, error messages, system
messages, O user messages.

If mismatches were detected at checkpoints, you can view the expected
results and actual results. For bitmap mismatches, you can also view a
bitmap that displays only the difference between the expected and actual
results.

Working with LoadRunner

LoadRunner is Mercury Interactive’s testing tool for client/server
applications. Using LoadRunner, you can simulate an environment where
many users are simultaneously engaged with a single server application. In
place of human users, it creates virtual users that execute automated tests on
the application under test. You can test an application’s performance “under
load” by simultaneously activating virtual users on multiple host
computers.

LoadRunner is an independent tool and can be purchased separately from
Mercury Interactive.

2

XRunner at a Glance

This chapter introduces the XRunner window and explains how to execute
XRunner commands.

This chapter describes:

Starting XRunner
The Main XRunner Window

Selecting XRunner Commands

O 0o o d

Configuring XRunner Softkeys

Starting XRunner
You start XRunner from your working directory by entering the command:

xrun &

After several seconds the main XRunner window is displayed on your
desktop.

XRunner User’s Guide

The Main XRunner Window
The main XRunner window contains the following key elements:

O the XRunner title bar displays the name of the test you are currently working
on

the menu bar, displaying menus with XRunner commands
O the toolbar, containing the commands you use most often

the status bar, providing information on the line number of the insertion
point, and the current mode in which XRunner is running

O the test script, consisting of statements generated by recording,
programming, or both. These statements are in TSL, Mercury Interactive’s
Test Script Language

O the execution arrow, indicating the line of the test script being executed. To
move the arrow to any line in the script, click the mouse in the left window
margin next to the line

O the insertion point, indicating where text can be inserted or edited

2 ¥Runner - [noname]

Fle Edit Create Run Debug Tools Options

D3| Bl 4 Of ¢ |m| w0

set_window ("Airspace”, 19); Iﬂm
edit_set{"Date of Right:","0113/99");
button_press("down_arrow_0"); test SCI’ipt menu bar.
list_select_item({"Fly From:_1","Portland"); 3
=) | button_press("down_arrow_1"); — XRunner title bar
list_select_item("Fly To:_1","Denver");
insertion point toolbar
button_press("Hights...");
Edited‘ Line 7
execution arrow status bar

Starting the Testing Process ® XRunner at a Glance

Selecting XRunner Commands

You can use the mouse to select XRunner commands from the menus and
from the toolbar. Certain XRunner commands can also be activated using
command softkeys.

Choosing Commands From a Menu

You can select XRunner menu commands using the mouse. In addition,
some of these commands can be selected using standard X Windows
accelerator key conventions. Other menu commands are selected using
softkeys.

Choosing Commands From the Toolbar

You can execute some XRunner commands by clicking on an icon in the

toolbar.
Test
Record Run from Break’at Pt
New Save Cut Top Step Location P
Dlﬂlﬁ' %l'f&’l)@ .l.l"l" ’wi‘h?rl@l@ Verify i ‘
Open Copy Paste Stop Pause Step Quick GUI Spy Help Select run
/Abort Into Watch mode

XRunner User’s Guide

10

Choosing Commands Using Softkeys

Several XRunner commands can be activated using command softkeys.
XRunner reads input from softkeys, even when the XRunner window is not
the active window on your screen, or when it is minimized. The following
table lists the default softkey configurations and their functions.

Command

Default Softkey
Combination

Function

run from arrow

F8

Executes the test from the line in
the script indicated by the
execution arrow.

STEP

F7

Executes and indicates only the
current line of the test script.

STEP INTO

Left Ctrl + F7

Like Step: however, if the current
line calls another test, the called

test is displayed in the XRunner

window but not executed.

PAUSE

F8

Stops test execution after all
previously interpreted TSL
statements have been executed.
Execution may be resumed from
this point.

STOP/ABORT

F6

Stops test recording or aborts test
execution.

GET TEXT

Left Ctrl + F1

Captures the text defined by the
locator.

MARK LOCATOR

Left Ctrl + F5

Records a move_locator_abs
statement with the current position
(in pixels) of the screen pointer.

RECORD FS Starts test recording. During
recording, the Record softkey
toggles between Context Sensitive
and Analog modes.

CHECK WINDOW F2 Captures an entire window bitmap.

Starting the Testing Process ® XRunner at a Glance

Command Defau!t So.ftkey Function
Combination

CHECK PARTIAL Left Ctrl + F2 Captures the part of the window

WINDOW defined by the locator.

WAIT WINDOW F4 Instructs XRunner to wait for a
specific window bitmap to be
redrawn.

WAIT PARTIAL WINDOW | Left Ctrl + F4 Instructs XRunner to wait for a
specific window area to be redrawn.

CHECK GUI (CHECKLIST) | Left Alt + F2 Opens the Check GUI form.

WAIT REDRAW WINDOW | F3 Instructs XRunner to wait for the
window to be redrawn, without
evaluating its contents.

WAIT REDRAW PARTIAL Left Ctrl + F3 Instructs XRunner to wait for a

WINDOW specific window area to be redrawn,
without evaluating its contents.

INSERT FUNCTION Left Ctrl + F9 Insert a function for a GUI object,

(OBJECT/WINDOW) using the Function Generator.

INSERT FUNCTION F9 Choose a function from the list in

(FROM LIST) the Function Generator.

Configuring XRunner Softkeys

Softkey assignments are configurable. If the application you are testing uses
one of the default softkeys preconfigured for XRunner, you can redefine
softkey bindings using the appropriate XRunner system parameter.

You use the Configuration form to change XRunner softkey definitions.

To change XRunner softkey definitions:

1 Display the Configuration form by selecting Configure from the Options
menu. The Configuration form opens.

2 Choose Initialization, then Softkeys. The current softkey definitions are
displayed.

11

XRunner User’s Guide

3 Modify the softkey definitions as needed.
4 To save all changes press Save.

5 For modified softkey settings to apply, you must restart XRunner.

Note: Any changes you make to the softkey configuration are automatically
inserted into the .xrunner configuration file in your home directory.

12

Part 1l

Understanding the GUI Map

3

Introducing Context Sensitive Testing

O o o o o

This chapter introduces Context Sensitive testing and explains how
XRunner identifies the Graphical User Interface (GUI) objects in your
application.

This chapter describes:

How a Test Identifies GUI Objects
Physical Descriptions

Logical Names

The GUI Map

Setting the Window Context

About Context Sensitive Testing

Context Sensitive testing lets you test your application the way that you see
it: in terms of GUI objects, such as windows, menus, buttons, and lists. Each
object has a defined set of properties that determine its behavior and
appearance. XRunner learns these properties and uses them to identify and
locate GUI objects during a test run. The physical location of the GUI
objects on the screen is not important.

Before you can begin Context Sensitive testing, XRunner must learn the
properties of each GUI object in your application. Use the Test Wizard to
guide you through the learning process. It systematically opens each
window in your application and learns the properties of the GUI objects it
contains. Additional methods are available for learning the properties of
individual GUI objects. For more information on the learning process, refer
to Chapter 4, “Creating the GUI Map.”

15

XRunner User’s Guide

GUI object properties are saved in the GUI map. XRunner uses the GUI map
to help it locate objects during a test run. It reads an object’s description in
the GUI map and then looks for an object with the same properties in the
application under test (AUT). You can open and view the GUI map in order
to gain a complete picture of the objects in your application.

The GUI map protects your investment in test development. As the user
interface of your application changes, you can continue to use previously
created tests. You simply add or delete object descriptions in the GUI map,
or edit existing descriptions so that XRunner can continue to find the
objects in your application.

How a Test Identifies GUI Objects

16

You create tests by recording or programming test scripts. A test script
consists of statements in Mercury Interactive’s test script language (TSL).
Each TSL statement represents mouse and keyboard input to the application
under test. For more information, refer to Chapter 7, “Creating Tests.”

XRunner uses an intuitive logical name to identify an object: for example
“Open” for an Open form, or “OK” for an OK button. This short name
connects XRunner to the object’s longer physical description. XRunner uses
this detailed description to ensure that each GUI object has a unique
identification. The physical description contains a list of the object’s
physical properties, or attributes: the Open form, for example, is identified as
a window with the label “Open”.

Together, the logical name and the physical description form the GUI map.
The following example illustrates the connection between the logical name
and the physical description. Assume that you record a test in which you
open a readme file using the Open form, and then press the OK button. The
test script looks something like this:

set_window ("Open");
list_select_item ("File Name"; "README");
button_press ("OK");

Understanding the GUI Map ¢ Introducing Context Sensitive Testing

XRunner learns the actual description—the list of attributes and their
values—for each of the three objects that are involved and writes this
description in the GUI Map:

Open window: {class:window, label:Open}
File Name list box: {class:list, attached_text:File Name}
OK button: {class:push_button, label:OK}

XRunner also assigns a logical name to each object. As it runs the test, it
reads the logical name of each object in the test script and refers to its
physical description in the GUI map. XRunner then uses this description to
find the object in the application under test.

17

XRunner User’s Guide

Test Script GUI Map

XRunner - fu/qauser/airl

Alafelulv]uf]«|2]8|o) BIE |

set_window ("Airspace’, 8);
menu_select_item{"Help;About...");
set_window("About’, 3);
button_press("0K');

XRunner: GUI Map Editor H=] E3

*L0 <Temporary > i

About '

XRunner reads logical —» Matches

name in test script and logical name
refers to GUI map file with
physical
AUT description

¥Runner: Open GUI File

ufgauserfairl /.

u/gauserfairl /. USIng. phys:cal
fufqauserfairl .. description,

fulgauserfairl fdb i locates object in
fufqauserfairl fexp AUT

18

Understanding the GUI Map ¢ Introducing Context Sensitive Testing

Physical Descriptions

XRunner identifies each GUI object in the application under test by its
physical description: a list of physical properties, called attributes, and their
assigned values. These attribute-value pairs appear in the following format
in the GUI map:

{attributel:valuel, attribute2:value2, attribute3:value3, ...}

For example, the description of the “Open” window contains two attributes:
class and label. In this case the class attribute has the value window, while
the label attribute has the value Open:

{class:window, label:Open}

The class attribute indicates the type of the object. Every object belongs to a
different class, according to its functionality: window, pushbutton, list,
radio button, menu, etc. XRunner always identifies an object by learning at
least its class attribute.

For each class, there is a set of default attributes: those attributes that
XRunner always learns. For a detailed description of all attributes, refer to
Chapter 6, “Configuring the GUI Map.”

Note that XRunner always learns the physical description of an object in the
context of the window in which it appears. This creates a unique physical
description for each object. For more information, see “Setting the Window
Context” in this chapter.

Logical Names

In the test script, XRunner does not use the full physical description for an
object. Instead, it assigns a short, intuitive name to each object: the logical
name.

An object’s logical name depends on its class. In most cases, the logical
name is the label that appears on an object: for a button, the logical name is
its label, such as OK or Cancel; for a window, the logical name is the
window title; for a list, the logical name is the text that appears next to or
above the list.

19

XRunner User’s Guide

For a static text object, the logical name is a concatenation of the text and
the string “(static)”. For example, the logical name of the static text “File
Name” is: “File Name (static)”.

In certain cases, several GUI objects in the same window are assigned the
same logical name, using a location selector (for example, LogicalNamel,
LogicalName2.) The purpose of the selector attribute is to create a unique
name for the object.

For example, if a window contains two buttons with the label OK, XRunner
uses a location selector to distinguish between the buttons. The buttons are
assigned numbers according to their positions within the window (from the
upper left corner of the window to its lower right corner): OK0O, and OKI.

OKko

—OK1

The GUI Map

20

The GUI map is the sum of one or more GUI map files. These files contain
the logical names and physical descriptions of GUI objects. In most cases,
you store all the GUI object information for your application in a single GUI
map file.

You can view the contents of the GUI map at any time by selecting GUI Map
Edit from the Tools menu to open the GUI Map Editor. You can view either
the contents of the entire GUI map, or the contents of individual GUI map

Understanding the GUI Map ¢ Introducing Context Sensitive Testing

files. GUI objects are grouped according to the window in which they
appear in the application.

File Edit View Options

GUI Buffer: flights_gui ki |

Windows: <All windows» 7

Objects:

Ahout
oK
hashoutDB
FxBur
"Create order hox..."
Order
"SHOW DETAILS"
"Flight Reservation”

"Aifine:{static)"
Analysis
"Arrival Time:"
"Arrival Time:(static)"

Physical Description:

class: menu_item,
label: "About..."

Expand Nl

Active GUI file: fufqauserffrank/flights_gui

The GUI map lets you easily keep up with changes made to the user
interface of the application under test. Instead of editing your entire suite of
tests, you only have to update the object descriptions in the GUI map.

test1

test2 GUI' M ap
test3
test4
tests
test6
test7
test8
test9
test10

For example, suppose the OK button in the Open form is changed to a Save
button. You do not have to edit every test script which uses this OK button.

21

XRunner User’s Guide

Instead, you can modify the OK button’s physical description in the GUI
map as in the example. The value of the label attribute for the button is
changed from OK to Save:

OK button: {class:push_button, label:Save}

During a test run, when XRunner encounters in the test script the logical
name “OK” in the Open form, it searches for a pushbutton with the label
“Save”.

You can use the GUI Map Editor to modify the logical names and physical
descriptions of GUI objects at any time during the testing process. In
addition, you can use the Run Wizard to update the GUI map during a test
run. The Run Wizard opens automatically if XRunner cannot locate an
object in the application under test. See Chapter 5, “Editing the GUI Map”
for more information.

Setting the Window Context

22

XRunner learns and performs operations on objects in the context of the
window in which they appear. When you record a test, XRunner
automatically inserts a set_window statement into the test script each time
the active window changes and an operation is performed on a GUI object.
All objects are then identified in the context of that window. For example:

set_window ("Open");
list_select_item ("Filename"; "README");
button_press ("OK");

The set_window function indicates that the Open window is the active
window. The file name and the OK button are learned within the context of
this window.

When programming a test, you need to enter the set_window function
manually when the active window changes. When editing a script, take care
not to delete necessary set_window statements.

4

Creating the GUI Map

O o o o o

This chapter describes how to teach XRunner the Graphical User Interface
(GUI) of the application under test and save the information for use during
testing.

This chapter describes:

Learning the GUI with Test Wizard
Learning the GUI by Recording

Learning the GUI Using the GUI Map Editor
Saving the GUI Map

Loading the GUI Map File

About Creating the GUI Map

XRunner can learn the GUI of your application in several ways. Usually, you
use the Test Wizard before you start to test in order to learn all the GUI
objects in your application at once. This ensures that XRunner has a
complete, well-structured basis for all your Context Sensitive tests. The
descriptions of GUI objects are saved in GUI map files. Since all testers can
share these files, there is no need for each user to learn the GUI individually.

If the GUI of your application changes during the software development
process, you can use the GUI Map Editor to learn individual windows and
objects in order to update the GUI map. You can also learn objects while
recording: you simply start to record a test and XRunner learns the
properties of each GUI object you manipulate in your application. This
approach is fast and lets a beginning user create test scripts immediately.

23

XRunner User’s Guide

However, it is unsystematic, and should not be used instead of the Test
Wizard if you are planning to develop comprehensive test suites.

You must load the appropriate GUI map files before you run tests. XRunner
uses these files to help locate the objects in the application under test. The
recommended method is to insert a GUI_load command into a startup test.
When you start XRunner, it automatically runs the startup test and loads
the specified GUI map files. For more information on startup tests, refer to
Chapter 34, “Initializing Special Configurations.” Alternatively, you can
insert a GUI_load command into individual tests, or use the GUI Map
Editor to load GUI map files manually.

Learning the GUI with Test Wizard

24

The Test Wizard allows XRunner to learn all windows and objects in your
application at once. It systematically opens every window in the application
and learns the GUI objects it contains. XRunner then instructs you to save
the information in a GUI map file. A GUI_load command that loads this file
is added to a startup test.

Welcome to the
Test Wizard!

The Wizard will create test scripts so
you can start testing right away.

To do this the wizard will:

"Walk through" your application.

Leam your application Graphical
User Interface {GUI).

| cancel | | wcmacx | Next>> | Help |

To start the Test Wizard, select the Test Wizard command from the Create
menu at any time.

Understanding the GUI Map ¢ Creating the GUI Map

Learning the GUI by Recording

When you record a test, XRunner first checks whether the objects you select
appear in the GUI map. If they do not, XRunner learns the objects and
inserts them into the temporary GUI map file.

In general, you should use recording as a learning tool for small, temporary
tests only. Use the Test Wizard to learn the entire GUI of your application.

Learning the GUI Using the GUI Map Editor

You can use the GUI Map Editor to learn an individual object or window, or
all objects in a window.

To learn GUI objects using the GUI Map Editor:
1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

25

XRunner User’s Guide

26

2 Press the Learn button. Select Window to learn a window or Object to learn

an object. The mouse pointer turns into a pointing hand. (To cancel the
operation, press the right mouse button.)

ile Edit View Options

GUI Buffer: flights_gui i?‘l
Window: <All windows» ¥

Objects:

= | eam | | learns windows or objects
hasboutDB : ; [Object :l
FXBur Window
"Create order box..." -
orr Modity... |

"SHOW DETAILS"
Flight Reservation"

“Airline:(static)"
Analysis

"Arrival Ti

Find [5~

Physical Description:

class: menu_item,
label: "About..."

Expand ~|

1 Active GUI file: ufqauserffrankiflights_gui

3 Place the hand on the desired object and click the left mouse button. If you

point at a window, you are asked if you want to learn all objects within the
window. Selecting No instructs XRunner to learn the window only.

GUI information about the learned objects is placed in the active GUI map
tile. See “Loading the GUI Map File” in this chapter for more information.

Note: XRunner learns objects according to its current default record
configuration. In cases where you want XRunner to learn different
attributes, you should modify the default record configuration before
learning objects. For details on modifying the default configuration, see
Chapter 6, “Configuring the GUI Map.”

Understanding the GUI Map ¢ Creating the GUI Map

Saving the GUI Map

When you learn GUI objects using recording, the object descriptions are
added to the temporary GUI map file. The temporary file is always open, so
that any objects it contains are recognized by XRunner. When you start
XRunner, the temporary file is loaded with the contents of the last testing

session.

To prevent valuable GUI information from being overwritten during a new
recording session, you should save the temporary GUI map files in a
permanent GUI map file.

To save the contents of the temporary file in a permanent GUI map file:

1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

File Edit View Options

GUI Buffer: | *L0 <Temporary> vl

Window: <All windows> 5 |

Objects:

FXBur
"Create order box..."
Order

"SHOW DETAILS"
"Flight Reservation”

"Fight Reservation Message"
0OK

"Password must be specified
"Symbol (static)"

Login
"Agent Hame:"
Cancel
Pr Fnd 057
Physical Description:
: class: push_button,
¥_name: "Flights..."
1
Expand ~]

Active GUI file: <Temporary>

2 Make sure that the <Temporary> file is displayed in the GUI File list. An
asterisk (*) next to the file name indicates that the GUI map file was
changed. The asterisk disappears when the file is saved.

27

XRunner User’s Guide

Choose Save from the File menu of the GUI Map Editor to open the Save
form.

Select a directory. Type in a new file name or select an existing file.

5 Press OK. The saved GUI map file is loaded and appears in the GUI Map

Editor.

You can also move objects from the temporary file to an existing GUI map
file. For details, refer to Chapter 5, “Editing the GUI Map.”

Loading the GUI Map File

28

XRunner uses GUI map files to locate objects in the application under test.
Before you run tests on your application, you must ensure that the
appropriate GUI map files are loaded.

XRunner does not fully load a GUI map file that “shadows” objects
contained in a previously loaded file. While loading the more recent file,
XRunner deletes duplicate objects from the buffer.

You can load GUI map files in one of two ways:

O using the GUI_load command

from the GUI Map Editor

You can view a loaded GUI map file in the GUI Map Editor. A loaded file is
marked with the letter “L".

Loading GUI Map Files Using the GUI_load Command

The GUI_load statement loads any GUI map file you specify. To load several
files, use a separate command for each one. You can insert the GUI_load
statement at the beginning of any test, but it is preferable to place it in a
startup test. This ensures that the GUI map files are loaded automatically
each time you start XRunner. For more information, refer to Chapter 34,
“Initializing Special Configurations.”

To load a file using GUI_load:

1 Open the test from which you want to load the file.

Understanding the GUI Map ¢ Creating the GUI Map

Type the GUI_load statement as follows, or select the function from the
Function Generator:

GUI_load (*file_name_full_path");
For example:

GUI_load ("/u/ga/flights.gui”)

See Chapter 18, “Using Visual Programming” for more information on the
Function Generator.

Run the test to load the file. See Chapter 24, “Running Tests” for more
information.

Loading GUI Map Files Using the GUI Map Editor
You can load a GUI map file manually, using the GUI Map Editor.

To load a GUI map file from the GUI Map Editor:

1 Select GUI Map Edit from the Tool menu to open the GUI Map Editor.

Choose Open from the File menu and select a GUI map file.

Note that by default, the file is loaded into the GUI map. If you only want to
edit the GUI map file, select the “Open for Editing Only” checkbox. See
Chapter 5, “Editing the GUI Map” for more information.

Click OK. The GUI map file is added to the GUI file list. The letter “L”
indicates that the file is loaded.

29

XRunner User’s Guide

30

35

Editing the GUI Map

This chapter describes how you can extend the life of your tests by
modifying descriptions of objects in the GUI map.

This chapter describes:

The Run Wizard

The GUI Map Editor

Modifying Logical Names and Physical Descriptions
Using a Single Description for Varying Labels
Copying and Moving Objects between Files
Finding an Object in a GUI Map File

Finding an Object in Multiple GUI Map Files
Manually Adding an Object to a GUI Map File
Deleting an Object from a GUI Map File
Clearing a GUI Map File

Filtering Displayed Objects

O oo oooooogogood

Saving Changes to the GUI Map

About Editing the GUI Map

XRunner uses the GUI map to identify and locate GUI objects in your
application. If the GUI of your application changes, you must update object
descriptions in the GUI map so that you can continue to use previously
created tests.

31

XRunner User’s Guide

You can update the GUI map in two ways:

during a test run, using the Run Wizard

at any time during the testing process, using the GUI Map Editor

The Run Wizard opens automatically during a test run if XRunner cannot
locate an object in the application under test. It guides you through the
process of identifying the object and updating its description in the GUI
map. This ensures that XRunner will find the object in subsequent test runs.

You can also manually edit the GUI map using the GUI Map Editor. You can
modify the logical names and physical descriptions of objects, add new
descriptions and remove obsolete descriptions. You can also move or copy
descriptions from one GUI map file to another.

Note that before you can update the GUI map, the appropriate GUI map
files must be loaded. You can load files using the GUI_load statement in a
test script or using the Open command in the GUI Map Editor. See
Chapter 4, “Creating the GUI Map” for more information.

The Run Wizard

32

The Run Wizard detects changes in the GUI of your application that
interfere with test execution. During a test run, it automatically opens when
XRunner cannot locate an object. The Run Wizard asks you to point to the
object in your application, determines why the object could not be found,
and then offers a solution. the Run Wizard suggests loading an appropriate
GUI map file; in most cases a new description is automatically added to the
GUI map or an existing description is modified. When this process is
completed, the test run continues. In future test runs, XRunner can
successfully locate the object.

For example, assume you run a test in which you press the Dismiss button
in an Open window.

set_window ("Open");
button_press ("Dismiss");

Understanding the GUI Map e Editing the GUI Map

If the Dismiss button is not in the GUI map, the Run Wizard opens, and
describes the problem.

[<Runner cannot find the object "Dismiss".

Press the "Hand" icon and then click on the object "Dismiss".

Cancel | <o Brank | Haale | E Help

Press the hand button in the wizard and point to the Dismiss button. The
Run Wizard then offers a solution.

235”2;'33”; Each object mentioned in a test script must exist in the GUI map.
E Press "OK" to add the push_button "Dismiss" to the GUI map.
B =t
|

A |

o

ER
hyzical Descp g
{ label & . .

[® Continue running the test

cancel | << Back | ok | | Hem

When you press OK, the Dismiss object description is automatically added
to the GUI map and XRunner resumes test execution. The next time you
run the test, XRunner is able to identify the Dismiss button.

Note that in some cases, the Run Wizard edits the test script instead of the
GUI map. For example, if XRunner cannot locate an object because the
appropriate window is not active, the Run Wizard inserts a set_window
statement in the test script.

33

XRunner User’s Guide

The GUI Map Editor

You can edit the GUI map using the GUI Map Editor. To open the GUI Map
Editor, select GUI Map Edit from the Tools menu.

Two views are available in the GUI Map Editor. By default, the contents of
individual GUI map files are displayed.

furners GT Hap Editor

Fle Edit View Options

GUI Buffer: l L1 flights_gui EI Lists the open GUI map files.

Windows: <All windows> i Lists the windows contained in the
selected GUI map file

Objects:

"Flight Reservation Message"

oK Shows the windows and objects in the

currently displayed GUI map file.

-------------- b Modify...
"Mo orders found. Please try ac} | °
oK

"Symbol(static)"
"Help Conients”

"Delete Order(static)"

Delete

Displays the physical description of
the selected window or object.

Find [[£7

B

Physical Descriplion:

class: static_text,
¥_hame: Symbol

Eqand [+ Expands the form so you can view the
contents of two GUI map files

Active GUI file: ftmp_mntiu/gauserifrankiflights_gui

When viewing the contents of specific GUI map files, you can expand the
GUI Map Editor to view two GUI map files simultaneously. This allows you
to easily copy or move descriptions between files.In the GUI Map Editor,
objects are presented in a tree according to the window in which they
appear. A drop down list in the Windows field displays the windows
contained in a particular GUI file. Click the name of a window to display the
objects it contains, or click <All Windows> to display all the windows in the
GUI map file, and the objects they contain.

34

Understanding the GUI Map e Editing the GUI Map

To view the contents of the entire GUI map, select GUI Map from the View
menu.

fle P Miew Oplioss
Window: E Flight Reservation Message I Shows the windows

in the GUI map.

Objects:

"Aight Reservation Message"
oK

"Password must be specified(static)"
ic)"

Objects within windows are indented.

— . Displays the physical description of the
selected window or object.

When you view the GUI map, click the Show Physical Description button to
display the physical description of any object you select from the Windows
list.

For example, if you click on the Show Description button and select the
Flight Reservation Message window in the Windows list, the following
physical description is displayed in the lower part of the GUI Map Editor:

{

class: window,
label: "!'Flight Reservation Message.*"

}

Note that if the value of an attribute contains any spaces or special
characters (such as the exclamation mark and asterisk in the above
example), the value is surrounded by quotation marks.

35

XRunner User’s Guide

Modifying Logical Names and Physical Descriptions

36

You can modify the logical name or the physical description of an object in
a GUI map file using the GUI Map Editor.

Changing the logical name of an object is useful when the logical name that
is assigned is not sufficiently descriptive, or is too long. For example,
suppose XRunner assigns the logical name Employee Address (static) to a
static text object. You can change the name to Address to make the scripts
easier to read.

Changing the physical description is necessary when an attribute value of
an object changes. For example, suppose that the label of a button is
changed from Insert to Add. You can modify the value of the label attribute
in the physical description of the Insert button as shown below:

Insert button:{class:push_button, label:Add}

During a test run, when XRunner encounters the logical name Insert in a
test script, it searches for the button with the label Add.

To modify an object’s logical name or physical description in a GUI map file:

1 Choose GUI Map Edit from the Tools menu. The GUI Map Editor opens.
2 If the appropriate GUI map file is not loaded, select File > Open in the GUI

Map Editor to open the file.

3 To see the objects in a window, display the drop down list of windows in the

Windows field. Click on the window name you need.

4 Select the window or object to modity.

Understanding the GUI Map e Editing the GUI Map

5 Click Modify. The Modify GUI Entry form is displayed.

Logical Hame:

Dismiss

Physical Description:

class: push_button,
label: Dismiss

}

OK

6 Edit the logical name or physical description as desired and click OK. The
change appears immediately in the GUI map file.

Using a Single Description for Varying Labels

For example, suppose your application contains a Start button whose label
sometimes toggles to Stop. You can define a regular expression in the
physical description of the button as follows:

Start button:{class:push_button, label: "ISt.*"}Dismiss

The regular expression in the value of the label attribute enables XRunner to
identify the button as long as the letters “St” are displayed and to
automatically ignore any other variations.

To use a regular expression in the description of a single object:
1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

2 In Windows/Obijects list, select the object you want to modify.

37

XRunner User’s Guide

3 Click Modify to open the Modify form.
4 In the Modify form, edit the attribute to conform to the following format:
{attribute: "Iregular_expression"}

The exclamation point indicates that this is a regular expression. For more
information, refer to Chapter 23, “Using Regular Expressions.”

For example, to change the label of the "Print Out # 3" window, to a generic
Print Out window, you enter:

{label: "!Print Out.*"}

Copying and Moving Objects between Files

You can update GUI map files by copying or moving the description of GUI
objects from one GUI map file to another. Note that you can only copy
objects from a GUI file that you have opened for editing only.

To copy or move objects between two GUI map files:
1 Choose GUI Map Edit from the Tools menu to open the GUI Map Editor.
2 Select File > Open in the GUI Map Editor to open both GUI map files.

38

Understanding the GUI Map e Editing the GUI Map

3 Press the Expand button in the GUI Map Editor. The form expands to
display two GUI map files simultaneously.

Runner: GUL HMap Editor ﬁ
Ale Edit View Options

GUI Buffer: *L1 flights_gui A7 GUI Buffer: | *L0 <Temporary=>

Windowr: <Al windows> w Windowr: <All windows> o

Objects: Objects:

About Leam - | [R T
oK "Create order boX..."
habouto orer

"Flight Reservation Messag "SHOW DETAILS"
oK Modiry... | |Login
"Password must be s "Agent Hame:"
"Symbol(static)" Cancel

Graphics 0K
"No orders found. Please try ag - "Password:"
oK
“Symbol(static)"

el Contents

Find @1
Physical Description Physical Description:
H Trace | f
class: windovr,
label: "t."Bur.™"
}
W Collapse "| i

Active GUI file: <Temporary >

4 Display a different GUI map file on each side of the form by selecting the
file names in the GUI File lists.

5 Select in one file the object(s) that you want to copy or move. To select all
objects in a window, choose Select All from the Edit menu.

6 Press the Copy or Move button.

7 To restore the GUI Map Editor form to its original size, press the Collapse
button.

39

XRunner User’s Guide

Finding an Object in a GUI Map File

40

B W N =

You can easily find the description of a specific object in a GUI map file by
pointing to the object in the application under test.

To find an object in a GUI map file:

Select GUI Map Edit from the Tools menu to open the GUI Map Editor.
Select File > Open to load the GUI map file.

Press Find. The mouse pointer turns into a pointing hand.

Click on the object in the application under test. The object is highlighted
in the GUI map file.

an Object in Multiple GUI Map Files

If an object is described in more than one GUI map file, you can quickly
locate all the object descriptions using the Trace button in the GUI Map
Editor. This is particularly useful if you learn a new description of an object
and want to find and delete older descriptions in other GUI map files.

To find an object in multiple GUI map files:

1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

Open the GUI Map files in which the object description might appear.

For each file, select File > Open to open the Open GUI File form. Choose the
GUI map file you want to open and deselect the Load File checkbutton.
Click OK.

Display the contents of the file with the most recent description of the
object.

Select the object in the Objects field.

5 Press the Expand button to expand the GUI Map Editor form.

Press the Trace button. The GUI map file in which the object is found is
displayed on the other side of the form, and the object is highlighted.

Understanding the GUI Map e Editing the GUI Map

Manually Adding an Object to a GUI Map File

You can manually add an object to a GUI map file by copying the
description of another object, and then editing it as needed.

To manually add an object to a GUI map file:
1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

2 Select File > Open in the GUI Map editor to open the appropriate GUI map
file.

3 Select the object to be used as the basis for editing.
4 Press the Add button to open the Add form.

5 Edit the appropriate fields and press OK. The object is added to the GUI map
file.

Deleting an Object from a GUI Map File

If an object description is no longer needed, you can delete it from the GUI
map file.

To delete an object from a GUI map file:

1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

2 Select File > Open in the GUI Map Editor to open the appropriate GUI map
file.

3 Select the object to be deleted. If you want to delete more than one object,
use the Shift key to make your selection.

4 Press the Delete button.

5 Select File > Save to save the changes to the GUI map file.

To delete all objects in a window:
1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

2 Select File > Open in the GUI Map Editor to open the appropriate GUI map
file.

3 Choose Clear All from the Edit menu.

41

XRunner User’s Guide

Clearing a GUI Map File

You can quickly clear the entire contents of the temporary GUI map file, or
any other GUI map file.

To delete the entire contents of a GUI map file:

Select GUI Map Edit from the Tools menu to open the GUI Map Editor.
Open the appropriate GUI map file.

Display the GUI map file at the top of the GUI File list.

B W N =

Choose Clear All from the Edit menu.

Filtering Displayed Objects

42

You can filter the list of objects displayed in the GUI Map Editor by using
any of the following filters:

O Logical name displays only objects with the specified logical name or
substring (for example, “Open” or “Op”).

O Physical description displays only objects that match the specified physical
description. Use any substring belonging to the physical description (for
example, specifying “w” will filter out all objects that contain a “w” in their
physical description).

O Class displays only the objects of the specified class, such as all the
pushbuttons.

Understanding the GUI Map e Editing the GUI Map

To apply a filter:
1 Select GUI Map Edit from the Tools menu to open the GUI Map Editor.

2 Select Filters from the Options menu to open the GUI Filters form.

1 Flter By Class

1 Filter By Logical Name

1 Filter By Physical Description

Apply | Close

3 Select the type of filter you want by clicking a checkbox and entering the
appropriate information.

4 Press the Apply button. The GUI Map Editor displays objects according to
the filter applied.

Saving Changes to the GUI Map

If you edit the logical names and physical descriptions of objects in the GUI
map, you must save the changes in the GUI Map Editor before ending the
testing session and exiting XRunner.

To save changes to the GUI map:

O Select File > Save in the GUI Map Editor to save changes in the appropriate
GUI map file.

O Select File > Save As to save the changes in a new GUI map file.

43

XRunner User’s Guide

44

6

Configuring the GUI Map

This chapter describes how you can configure the way XRunner identifies
GUI objects during Context Sensitive testing.

This chapter describes:

Viewing GUI Object Attributes

Understanding the Default GUI Configuration
Identifying Objects with the Same Name
Configuring Record Attributes

Configuring the Record Method

Configuring the Selector

Configuring the Record Method For a Specific Object
The Class Attribute

All Attributes

Default Attributes Learned

O o oo oo ogog oo g o

Working with Motif and Xt Resources

About Configuring the GUI Map

Each GUI object in the application under test (AUT) is defined by multiple
attributes, such as class, label, x, y, width, and height. XRunner uses these
attributes to identify GUI objects in the AUT during Context Sensitive
testing.

45

XRunner User’s Guide

When XRunner learns the description of a GUI object, it does not learn all
of its attributes. Instead, it learns the minimum number of attributes that
enables a unique identification of the object. For each object class (such as
push_button, list, window, or menu), XRunner learns a default set of
attributes: its GUI configuration.

For example, a standard push button is defined by 26 attributes (class, label,
text, nchildren, x, y, height, class, focused, enabled, etc.). In most cases,
however, XRunner needs only the class and label attributes to create a
unique identification for the push button.

Many applications also contain custom objects. A custom object is any
object whose class XRunner cannot identify. These objects are therefore
learned under the general class “object”. For more information on
implementing support for custom objects, refer to Chapter “Testing Custom
Widgets: Built-in Support” and both in the XRunner Customization Guide.

Attributes vary in their degree of portability. Some are unique to a specific
platform (non-portable), such as X_name or X_path. Some are semi-portable
(supported by multiple platforms, but their value is likely to change), such
as handle, or TOOLKIT _class. Others are fully portable (such as label,
attached_text, enabled, focused or parent).

Viewing GUI Object Attributes

46

Using the GUI Spy, you can view the attributes of any GUI object on your
desktop. You simply point to an object and the GUI Spy displays the
attributes and their values in the GUI Spy form. You can choose to view all
the attributes of an object, or only the default set of attributes defined for
the object class.

Understanding the GUI Map ¢ Configuring the GUI Map

To spy on a GUI object:

1 Choose the GUI Spy command from the GUI menu. The GUI Spy form
opens.

Press <point to= to start searching

Window Mame:

|§F|ight Reservation_1 Point to -» lets you spy on any
) window or object
Object Hame:
| FAights..} Learmn learns the highlighted
window or object
Description:

height: 61,

width: 80,

displayed: 1,

TOOLKIT_class: XmDrawnButton,

¥: 90,

x: 499,

handle: 2154592,

enabled: 0,

nchildren: 0,

abs_y: 160,

abs_x: 458,

¥_path: "oiForm;oiFlightFrame;oiAightFon
¥_window: 54526149, —
unitType: PIXELS,]
ancestorSensitive: 1,

horder\idth: 0,

sensitive: 0,

depth: 1,

background: white,

backgroundPizxmap: UNSPECIFIED_PIXM/

pastes the logical name of
the window or object into
the test script

Mercury attributes

Motif attributes

[® Full Description

When active, displays
all the attributes of the
window or object.

2 To view all the attributes defined for an object, click on the Full Description
checkbox. XRunner displays all the attributes of the object, including Motif
and Xt resources. To better view all the attributes displayed in the GUI Spy,
expand the Description field by resizing the form.

If the Full Description checkbox is not activated, the GUI Spy displays only
the default set of attributes for an object.

3 Press the “Point to” button. Click Window to spy on a window; click Object
to spy on an object. Point to an object on the screen. The object is
highlighted and the active window name, object name, and object
description (attributes-values) are displayed in the appropriate fields.

47

XRunner User’s Guide

Note that as you move the pointer over other objects, each one is
highlighted in turn and its description is displayed in the form.

To capture an object description in the GUI Spy form, point to the desired
object and press the STOP softkey.

Click Learn to learn the window or object, without closing the GUI Spy
form.

Click OK to learn the window or object, and close the GUI Spy form.

7 Click Cancel to ignore changes and close the form.

Understanding the Default GUI Configuration

48

For each class, XRunner learns a set of default attributes. Each default
attribute is classified as either obligatory or optional. (For a list of the default
attributes, see “All Attributes” in this chapter.)

An obligatory attribute is one that is always learned (if it exists).

An optional attribute is used only if the obligatory attributes do not provide a
unique identification of an object. Optional attributes are stored in a list,
from which XRunner selects the minimum number needed to identify the
object. XRunner begins with the first attribute in the list, continuing if
necessary to add attributes to the description until it obtains a unique
identification for the object.

For example, for the push_button class, the default obligatory attributes are
class and label. The optional attribute list contains the X_name and
class_index attributes.

Understanding the GUI Map ¢ Configuring the GUI Map

Examine the buttons in the Periodic application.

File Edit Help
The Periodic Table of Motif Widgets
Open Software Foundation, Inc. - August 1990
la
1
1} Atomic Number
Key —
separator | Ila ChTr[:. __ Actual Widget Va
a
2 6 13
Separator Widget Narae
- Frase 3 For
m o (5]
arrow button || option menu | 1Ib Va popup menu |
3 7 o 10 1 11
lter
Explotic 2 A | S
uidng| | N—T [a1skeruserssqauser aut/sunsran rper edicrs =
pushbutten ||| scale | Directoties Files scrollbar_||drawing area |
e/ L/ ceriodic/ Imakefile
4wz 3 /BT /sun/rdnd periodicy . . a Hakef ile a ot |8 2 1o
W lgnts| | o wors [e M] l
Lanbda
@ WHEY Selection B x
togglobutton || radiobox | [diskrusers/quuser T ssunsrint speriodics scrolled list]| drawnbution |
DON’TE 9 OPEN Softuare Foundation 16
helloorld fremem———
PANIC ot Ve 1
label I textedit | TITE SEIECTOR i Paned window |
*Dialog
Boxes
© Swap Enor.. 2 Information is Question authotity... ¢ Warming, Warning, Work in Progre:
You Lose Your Mind. L Power. But raise your hand first. | = Danger Dr. Smith... Meditating.
|
(=2

If you use the GUI Spy utility (which you access by selecting GUI Spy from
the Tools menu) to view the attributes of the Filter button, XRunner displays
the attributes class and label. The physical description of this button is
therefore:

{class:push_button, label:Filter}

For the OK buttons in the form, by contrast, XRunner learns the attributes
X_name and class_index, as well. The description of the bottom left OK
button, for example, is:

{class:push_button, label:OK, X_Name:OK, class_index:24}

This is because the values of the class and label obligatory attributes are the
same for all six buttons. XRunner adds the X_name optional attribute, but
its value is also the same for all buttons. By adding the class_index attribute
which is different for each button, the buttons are uniquely identified.

49

XRunner User’s Guide

Identifying Objects with the Same Name

50

When the obligatory and optional attributes do not achieve a unique
identification of an object XRunner uses the following selectors to uniquely
identify the objects.

O A location selector uses the spatial position of objects.

O An index selector uses the object’s hierarchical position within the parent

window.

For instance, suppose you configure the record attributes for push buttons
in your application as follows:

Obligatory Attributes: class, label
Optional Atttributes: none

In such a case, XRunner uses the locator selector to uniquely identify two
OK buttons appearing in the same window of the application.

The location selector uses the spatial order of objects within the window,
from the top left to the bottom right corners, to differentiate between the
buttons. In this example, the description of the upper OK button is:

{class:push_button, label:OK, location:0}

The lower OK button has a location of “1”.

Note that the selector is applied only after all attributes currently set for the
object class do not achieve a unique identification of a single object. The
selector thus appears last in the physical description.

For more information on setting record attributes, See “Configuring Record
Attributes,” below.

Understanding the GUI Map ¢ Configuring the GUI Map

Configuring Record Attributes

For each class of object, XRunner learns a set of default attributes. For a full
description of the default attribute learned for each class, see “Default
Attributes Learned”, on page 64.

Sometimes, you need to configure XRunner to learn different attributes for a
particular class. For example, let’s suppose your application uses an Edit
drop-down menu containing two Copy items. Using the regular
configuration, XRunner would be unable to achieve a unique description for
each menu item. In such a case, you could add the attribute position to the
list of obligatory attributes for the menu_item class. XRunner would then be
able to distinguish between the two menu items.

You can configure the attributes XRunner records and learns for a particular
class using either of two methods:

O Modifying record attribute parameters from the Configuration form

O Using a set_record_attr command in a test script.

Before you begin, note that not all attributes apply to all classes. The
following table lists each attribute and the classes to which it can be applied:

Attribute Classes

class all classes

label push_button, radio_button, check_button,
window, static, (object)

attached_text edit, list, scroll, spin, notebook, (object)

X all classes

y all classes

height all classes

width all classes

image_label pushbutton, check_button, radio_button

displayed all classes

51

XRunner User’s Guide

Attribute Classes

count list, menu_item, scroll

parent menu_item

position menu_item

sub_menu menu_item

focused all classes

handle all classes

active all classes

enabled all classes

value check_button, radio_button, list,
scroll, static_text, edit, spin

nchildren all classes

minimizable window

maximizable window

abs_x all classes

abs_y all classes

class_index all classes

mic_if_handles_windows | Java

orientation scroll

52

Understanding the GUI Map ¢ Configuring the GUI Map

Configuring Record Attributes in the Configuration Form

You use the Configuration form to modify class record attribute parameters.
Each parameter corresponds to a particular class, as the table below
illustrates. For each class record attribute parameter, you specify the
obligatory and optional attributes as well as the selector. For more
information on using the Configuration form, see Chapter 33, “Changing
System Defaults.”

Parameter Class
XR_WINDOW_REC_ATTR window
XR_PBUTTON_REC_ATTR push_button
XR_CBUTTON_REC_ATTR check_button
XR_RBUTTON_REC_ATTR radio_button
XR_LIST_REC_ATTR list
XR_EDIT_REC_ATTR edit
XR_SCROLL_REC_ATTR scroll
XR_MENU_REC_ATTR menu_item
XR_STATIC_REC_ATTR static_text
XR_NOTEBOOK_REC_ATTR notebook
XR_SPIN_REC_ATTR spin
XR_OBJ_REC_ATTR Obj ect

To configure the record attributes from the Configuration form:

1 Display the Configuration form by selecting Configure from the Options
menu.

2 Click the Recording tab. Click the Attributes tab. XRunner displays the class
record attribute parameters.

3 Scroll the form if necessary, until the class record attribute parameter you
want is displayed. Make changes to the obligatory and optional attributes
and selector as necessary.

53

XRunner User’s Guide

54

4 Click Apply to apply the changes for the current XRunner session only.

Click Save to save the changes for current and future sessions.

Configuring Record Attributes from a Test Script

You can use a set_record_attr TSL command to modify the attributes
XRunner learns or records for the current session. The set_record_attr
function has the following syntax:

set_record_attr (class, oblig_attr, optional_attr, selector);

Below are two examples that illustrate how to configure a standard class or a
TOOLKIT _class.

For instance, to configure the menu_item class so that the sub_menu
attribute is in the obligatory list instead of in the optional list, enter the
following:

set_record_attr ("menu_item", "class label sub_menu", "X_name class_index",
"location);

By default, a custom object is learned as the class object. Therefore, the
attributes learned are the default attributes of the object class. By
configuring a custom object, you can customize the learning and recording
of attributes for that object.

To configure a custom object, use the set_record_attr function with the
value of the TOOLKIT _class attribute of the object.

The example below shows how to configure a custom drawing object so that
its X_name attribute is in the optional list, instead of in the obligatory
attribute list.

Use the GUI Spy form (with Full Description selected) to find the value of
the TOOLKIT _class attribute (here, MyClass). Then use set_record_attr as
follows:

set_record_attr("MyClass", "class label", "X_name class_index", "location");.

For more information on the set_record_attr function, refer to the TSL
Reference Guide.

Understanding the GUI Map ¢ Configuring the GUI Map

Configuring the Record Method

By configuring the record method, you can determine the way XRunner
records mouse clicks and drags and key strokes on objects of a particular
class. You can configure a standard Mercury class, or a custom class.

For example, XRunner records all custom class objects as the class object,
using the obj_mouse_click and obj_mouse_drag functions. Instead, you
might want a particular custom object to be recorded using the
win_mouse_click or win_mouse_drag functions. In such a case, you
modify the record method for the TOOLKIT _class to MIC_MOUSE_WIN. Using
this configuration, XRunner records mouse operations relative to the top
level window of the custom object.

You configure the record method of a particular class using either of two
methods:

O Modifying class record method parameters from the Configuration form

O Using a set_record_method command in a test script.

Before you begin, study the table, below, describing the ten different record
methods available.

Method Description

MIC_RECORD_CS Records operations using Context Sensitive functions.
This is the default method for all the standard classes,
except the object class (for which the default is
MIC_MOUSE).

MIC_IGNORE Turns off recording.

MIC_KEYBOARD Records only keyboard operations (when keyboard focus is
set to the object of that class), using the type function.

MIC_MOUSE Records only mouse operations relative to the upper left
corner of the object/window on which the operation was
performed.

MIC_ALL Records mouse operations (relative to the object/window
on which the operation was performed) and keyboard
input.

55

XRunner User’s Guide

56

Method

Description

MIC_MOUSE_PARENT

Records only mouse operations, relative to the parent (one
level up) of the object on which the operation was
performed.

MIC_ALL_PARENT

Records mouse operations (relative to the parent of the
object on which the operation was performed) and
keyboard input.

MIC_MOUSE_WIN

Records only mouse operations, relative to the top level
window of the object on which the operation was
performed.

MIC_ALL_WIN

Records mouse operations (relative to the parent window
of the object on which the operation was performed) and
keyboard input.

MIC_RECORD_
ANALOG

Records all mouse-clicks, keyboard input and the exact
coordinates traveled by the mouse.

Understanding the GUI Map ¢ Configuring the GUI Map

Configuring the Record Method in the Configuration Form

You use the Configuration form to modify class record method parameters.
Each parameter corresponds to a particular class, as the table below
illustrates. For more information on using the Configuration form, see
Chapter 33, “Changing System Defaults.”

Parameter Class
XR_WINDOW_REC_METHOD window
XR_PBUTTON_REC_METHOD push_button
XR_CBUTTON_REC_METHOD check_button
XR_RBUTTON_REC_METHOD radio_button
XR_LIST_REC_METHOD list_item
XR_EDIT_REC_METHOD edit
XR_SCROLL_REC_METHOD scroll
XR_MENU_REC_METHOD menu_item
XR_STATIC_REC_METHOD static_text
XR_NOTEBOOK_REC_METHOD notebook
XR_SPIN_REC_METHOD spin
XR_OBJ_REC_METHOD object

To configure the record method using the Configuration form:

Display the Configuration form by selecting Configure from the Options
menu.

Click the Recording tab. Click the Methods tab. XRunner displays the class
record method parameters.

Display the drop down list of methods for the class record method
parameter you want to modify.

Click on the desired method.

5 Click Apply to apply the changes for the current XRunner session only.

Click Save to save the changes for current and future sessions.

57

XRunner User’s Guide

Configuring the Record Method from a Test Script

You can use a set_record_method TSL command to modify the attributes
XRunner learns or records for the current session. The set_record_method
function has the following syntax:

set_record_method (class, method);

For example, assume you want XRunner to ignore operations performed on
a custom drawing object. First, you find out the value of the TOOLKIT _class
attribute of the object using GUI Spy with Full Description selected. Assume
it is MyClass.

Next, you use set_record_method, as follows:

set_record_method ("MyClass", MIC_IGNORE);

For more information on the set_record_method function, refer to the TSL
Reference Guide.

Configuring the Selector

58

In cases where both obligatory and optional attributes cannot uniquely
identify an object, one of two selectors is applied: location or index.

A location selector performs a selection according to the position of objects
within the window: from top to bottom and from left to right. An index
selector performs a selection according to the object’s position in relation to
the hierarchy of objects within the entire screen. For an example of how
selectors are used, see “Understanding the Default GUI Configuration” in
this chapter.

By default, XRunner uses a location selector for all classes. You can change
the selector by modifying the settings for class record attribute parameters
in the Configuration form (see “Configuring Record Attributes”, on page
51).

Understanding the GUI Map ¢ Configuring the GUI Map

Configuring the Record Method For a Specific Object

You can configure the record method for a specific standard or custom
object.

Suppose while conducting Context Sensitive testing on a CAD/CAM
application, you wish to record the exact lines drawn by the mouse-cursor
inside a drawing area widget. You can configure the record method for the
drawing area object to MIC_RECORD_ANALOG. XRunner now records all
operations you perform in the drawing area in Analog mode.

To configure the record method for specific objects, you use a
set_obj_record_method statement in a test script. The function has the
following syntax:

set_obj_record_method (win, obj, method);

In the example above, you insert the following line into a test script:

set_obj_record_method (“DrawWindow”,”"DrawArea”,
MIC_RECORD_ANALOG);

For more information about the set_obj_record_method function, refer to
the TSL Reference Guide.

The Class Attribute

The class attribute is the prime attribute used by XRunner to identify the
type of GUI object. XRunner categorizes GUI objects according to the
following classes:

Classes Description

push_button A push (command) button.

check_button | A check button.

radio_button A radio (option) button.

list A list box. This can be a regular list, a combo box, an option
menu or a container.

59

XRunner User’s Guide

Classes Description

edit A single of multiple line edit field.

scroll A scroll bar, scale, or scroll box.

menu_item A menu item or cascade button (in Motif).

static_text Display-only text which is not part of any GUI object.

notebook A notebook.

spin A spin object.

object All objects not included in one of the classes described
above.

window Any application window, dialog box or form.

All Attributes

The following tables list all attributes used by XRunner in Context Sensitive
testing. Attributes are listed according to their portability levels: portable,
semi-portable, and non-portable.

60

Understanding the GUI Map ¢ Configuring the GUI Map

Portable Attributes

Attribute Description

abs_x The x coordinate of the top left corner of an object, relative to
the origin (upper left corner) of the screen display.

abs_y The y coordinate of the top left corner of an object, relative to

the origin (upper left corner) of the screen display.

attached_text

The static text located near the object.

class

See “The Class Attribute,” above.

class_index

The hierarchical position of the object among other objects of
the same class within the parent window.

comment Comment that user can include in the physical description.

count List objects: indicates the number of items in the list.
Menu_item objects: indicates the number of menu items a menu
contains.

displayed A Boolean value indicating whether the object is displayed: 1 if
visible on screen, 0 if not.

enabled A Boolean value indicating whether the object can be selected or
activated: 1 if enabled, O if not.

focused A Boolean value indicating whether keyboard input will be
directed to this object: 1 if object has keyboard focus, 0 if not.

height Height of object in pixels.

host The name of the host on which the application under test is
running.

label The text that appears on the object, such as a button label or
window title.

maximizable A Boolean value indicating whether a window can be

maximized. 1 if the window can be maximized, O if not.

mic_if handle
s_windows

Returns 1 if the the item is a window and O if the item is an
object. (For Java only.)

minimizable

A Boolean value indicating whether a window can be
minimized: 1 if the window can be minimized, O if not.

61

XRunner User’s Guide

62

Attribute Description

nchildren The number of children the object has: the total number of
descendants of the object.

orientation VSCROLL indicates a vertical scroll; HSCROLL indicates a
horizontal scroll.

parent The logical name of the parent of the object.

position Specifies the position (top to bottom) of a menu item within the
menu (the first item is at position 0).

submenu A Boolean value indicating whether a menu item has a sub-
menu: 1 if menu has submenu, O if not.

value Different for each class:
Radio and check buttons: 1 if the button is checked, O if not.
Menu_items: 1 if the menu is checked, O if not.
List objects: indicates the text string of the selected item.
Edit/Static objects: indicates the text field contents.
Scroll objects: indicates the scroll position.
Spin objects: indicates the contents.
All other classes: the value attribute is a null string.

width Width of object in pixels.

X The x coordinate of the top left corner of an object, relative to
the window origin.

y The y coordinate of the top left corner of an object, relative to

the window origin.

Understanding the GUI Map ¢ Configuring the GUI Map

Semi-Portable Attributes

Attribute

Description

handle

A run-time pointer to the object: the widget pointer.

image_label

Identifies labels that use pixmaps instead of strings. Format:
image_<checksum>, where checksum is a unique number.

TOOLKIT _class

The value of the toolkit class. The value of this attribute is the
same as the value of the X_class.

Non-Portable X Attributes

Attribute

Description

left_footer

(XView only) The Xview left window footer.

right_footer

(XView only) The Xview right window footer.

X_arrow

(Motif only) The direction of an arrow button ("up_arrow";
"down_arrow"; "right_arrow"; or "left_arrow").

X_attached_name

The X_name of a scrollbar work_window.

X_name The name assigned to the widget upon creation.
X_path The X_names of all ancestors concatenated with “;"”.
X_window (For window class only) For Motif: the window id of the Xt

widget. For XView: the window id of the XView widget.

63

XRunner User’s Guide

Default Attributes Learned

The following table lists the default attributes learned for each class. (The

default attributes apply to all methods of learning: the Test Wizard, the GUI

Map Editor, and recording.)

Class Obligatory Attributes Optional Attributes Selector
All buttons | class, label X_name, class_index location
list, edit class, attached_text X_name, class_index location
static_text class, X_name label, class_index location
scroll class, attached_text, X_attached_name, location
orientation X_name, class_index

window class, label X_name, class_index index

object class, X_class, X_name class_index location
menu_item | class, label X_name, class_index location
notebook class X_name, class_index location
spin class, attached_text X_name, class_index location

Working with Motif and Xt Resources

The GUI Spy command in the Tools menu allows you to view all the
resources for a specific object, including all Motif and Xt Resources. Any of
these resources can also be used as attributes.

You can use the obj_get_info TSL function to return the value of any Motif
or Xt resource.

For example, if you execute the command

obj_get_info (“OK”, “labelType”, out_val);

on the Flights application, (where labelType is a Motif resource of type
XmNlabelType), XRunner returns the value “STRING”.

64

Understanding the GUI Map ¢ Configuring the GUI Map

For more information on using the GUI Spy, see “Viewing GUI Object
Attributes”, on page 46 in this chapter.

65

XRunner User’s Guide

66

Part 1l

Creating Tests

7

Creating Tests

Using recording, programming, or a combination of both, you can quickly
create automated tests.

This chapter describes:

Context Sensitive Recording
Analog Recording

Checkpoints

Synchronization Points
Planning a Test

Documenting Test Information
Recording a Test

Programming a Test

Editing a Test

O o oo ooogogoodg

Managing Test Files

About Creating Tests

You can create tests using both recording and programming. Usually, you
start by recording a basic test script. As you record, each operation you
perform generates a statement in Mercury Interactive’s Test Script Language
(TSL). These statements appear as a test script. You can then enhance your
recorded test script, by typing in additional TSL functions and programming
elements or by using XRunner’s visual programming tool, the Function
Generator.

69

XRunner User’s Guide

Two modes are available for recording tests:

O Context Sensitive records the operations you perform on your application by

uniquely identifying Graphical User Interface (GUI) objects.

O Analog records keyboard input, mouse clicks, and the precise coordinates

traveled by the mouse pointer across the screen.

You can use both modes alternately during the same recording session.

You can further increase the power of your test scripts by adding GUI,
bitmap and text checkpoints, as well as synchronization points.
Checkpoints allow you to check your application by comparing its current
behavior to its behavior in a previous version. Synchronization points solve
timing and window location problems that may occur during a test run.

To create a test script, you perform the following main steps:

1 Decide on the functionality you want to test. Determine the checkpoints
and synchronization points you need in the test script.

2 Document general information about the test in the Test Header form.

3 Select a Record mode (Context Sensitive or Analog) and start recording the test
on your application.

4 Assign a test name and save the test in the file system.

Context Sensitive Recording

70

Context Sensitive mode records the actual operations you perform on your
application in terms of its GUI objects. As you record, XRunner identifies
each GUI object you click on (such as a window, button, or list), and the
type of operation performed (such as move, press, or select).

For example, if you click the OK button in the Open form, XRunner records
the following:

button_press ("OK");

Creating Tests ¢ Creating Tests

When it runs the test, XRunner looks for the Open form and the OK button
represented in the test script. If, in subsequent runs of the test, the button is
in a different location in the Open form, XRunner is still able to find it.

-

Filter

|_§;‘u/qauser/notes/*

Directories Files
/ufgqauser/frank .Hdefaults
Jufgauser/install Kdefaults-scosys

.aliases
.cetables
.cshro

Jufgauser/sqlr_t .desksetdefaults,
/ufgauser/tmp .desktop-sgi
fufgqauser/trash Ldt * Filter
K = fu/gauser/motes/*
Selection
I Ju/qauser/ Directories Files
/ufgauser/frank .Hdefaults
fufgqauser/install .Hdefaults-scosys
/ufgauser/lr_pc .aliases
[/ 11/ ser/notes .cetables
i /fu/qauser/public_cors .cshre
fufgqauser/sqlr_t .desksetdefaults
/u/gauser/tmp .desktop-sgi
fufgqauser/trash Ldt
In version 1, the OK 4 = AW, ™
button is left of center Selection
I /u/gauser/ l
In version 2, the OK button is
on the extreme left

Use Context Sensitive mode to test your application by operating on its user
interface. For example, XRunner can perform GUI operations (button clicks,
menu or list selections, etc.), and then check the outcome by observing the
state of different GUI objects (the state of a checkbox, the contents of a text
field, the selected item in a list, etc.).

Remember that Context Sensitive tests work with GUI map files. It is
strongly recommended that you read the “Understanding the GUI Map”
section of this guide before you start recording.

Analog Recording

Analog mode records keyboard input, mouse clicks, and the exact path
traveled by your mouse. For example, if you choose the Open command
from a File menu in your application, XRunner records the movements of

71

XRunner User’s Guide

the mouse pointer on the screen. When XRunner executes the test, the
mouse pointer retraces the coordinates.

In your test script, the menu selection described above might be represented

like this:

move_locator_track (1); mouse track

mtype ("<T110><kLeft>-"); left mouse button press
move_locator_track (2); mouse track

mtype ("<kLeft>+"); left mouse button release

Use Analog mode when exact mouse movements are an integral part of the
test, such as in a drawing application. Note that you can switch to Analog
mode during a Context Sensitive recording session.

Checkpoints

Checkpoints allow you to compare the current behavior of the application
under test to its behavior in an earlier version.

You can add three types of checkpoints to your test scripts:

O GUI checkpoints verify the attributes of GUI objects. For instance, you can
check that a button is enabled or see which item is selected in a list. See
Chapter 8, “Checking GUI Objects” for more information.

O Bitmap checkpoints take a “snapshot” of a window or area of your
application and compare this to an image captured in an earlier version.You
can add bitmap checkpoints for Context Sensitive or Analog testing. See
Chapter 9, “Checking Bitmaps: Context Sensitive Testing” and Chapter 10,
“Checking Bitmaps: Analog Testing” for more information.

O Text checkpoints read text from the screen and let you verify its contents.
See Chapter 12, “Checking Text” for more information.

Synchronization Points

Synchronization points allow you to solve anticipated timing problems
between the test and your application. For example, if you create a test that

72

Creating Tests ¢ Creating Tests

opens a database application, you can add a synchronization point that
causes the test to wait until the database records are loaded on the screen.

For Analog testing, you can also use a synchronization point to ensure that
XRunner repositions a window at a specific location. When you run a test,
the mouse cursor travels along exact coordinates. Repositioning the window
enables the mouse to reach the correct elements in the window. See
Chapter 14, “Synchronizing Test Execution: Analog Testing” for more
information.

Planning a Test

Plan a test carefully before you begin recording or programming. The
following are some points to consider:

O Determine the functionality you are about to test. It is best to design short,
specialized tests that check specific functions of the application, rather than
long tests that perform multiple tasks.

O Decide on the types of checkpoints and synchronization points you want to
use in the test.

O If you plan to use recording, decide for which parts of your test it would be
more appropriate to use the Analog recording mode and for which parts to
use the Context Sensitive mode.

O Determine the types of programming elements (such as loops, arrays, and
user-defined functions) that you want to add to the recorded test script.

Documenting Test Information

Prior to creating a test, you should document information about the test in
the Test Header form. You can enter the name of the test author, the type of
functionality tested, a detailed description of the test, and a reference to the
relevant functional specifications document.

You can also use the Test Header form to designate a test as a compiled
module and to define parameters for a test. For more information, refer to
Chapter 21, “Creating Compiled Modules” and Chapter 19, “Calling Tests.”

73

XRunner User’s Guide

To document test information:

1 Choose the Header command from the File menu. The Test Header form
opens.

est. Nane: /u/gauser/frank/edit test3s

Author: Parameter Name:
|jqauser!fmnk
Date: file_name
| 0318196 10:37:2% block_number Add Before
AUT Function: Add After
| Cul/Paste
- Delely ”—I
Functional Spec Traceback:
| 1.3.5- Editing, cullpasls 1 Compiled Module

Description:

Tcheck the cut/paste function of the editor. Make sure that large text blocks are
handled successfully.

oK | cancel |

2 Add information about the test. Note that the Test Header form
automatically displays the current date and time.

3 Click OK to save the test information and close the form.

Recording a Test
Consider the following guidelines when recording a test:

O Before you start to record, close all applications not required for the test.

Create your test so that it “cleans up” after itself. When the test is
completed, the environment should be as it was at the beginning of the test.
(For example, if the test started with the application window closed, then
the test should also close the window and not minimize it to an icon.)

O When recording, use mouse clicks rather than the Tab key to move around
within a window in the application under test.

O If you are recording in Analog mode, insert checkpoints using the softkeys
rather than the menus or buttons.

74

Creating Tests ¢ Creating Tests

O If you are recording in Analog mode, avoid typing ahead. For example,
when you want to open a window, wait until it is completely redrawn before
continuing to work. In addition, avoid holding down a mouse button when
this results in a repeated action (for example, using the scroll bar to move
the screen display). Doing so can initiate a time-sensitive operation that
cannot be precisely recreated. Instead, use discrete, multiple clicks to
achieve the same results.

To record a test:
1 From the Create menu, select Record—Context Sensitive or Record-Analog.
2 Perform the test as planned using the keyboard and mouse.

Insert checkpoints and synchronization points as needed by selecting the
appropriate commands from the Create menu: Check GUI, Check Bitmap,
Wait Bitmap, or Get Text. (Note that for text verification, XRunner must first
learn the font of the AUT).

3 To stop recording, select Stop Recording from the Create menu.

Programming a Test

You can use programming to create an entire test script or to enhance your
recorded tests. XRunner contains a visual programming tool, the Function
Generator, which provides a quick and error-free way to add TSL functions
to your test scripts. To generate a function call, you simply point to an
object in your application or select a function from a list. For more
information, see Chapter 18, “Using Visual Programming.”

You can also add general purpose programming features to your test scripts
such as variables, control-flow statements, arrays, and user-defined
functions. You type these elements directly into your test scripts. For more
information on creating test scripts with programming, see the
“Programming with TSL” section of this guide.

75

XRunner User’s Guide

Editing a Test

Use the commands in the Edit menu, or the corresponding buttons in the
toolbar to help you make changes to a test script. The following commands
are available:

Edit Command Description

Cut Deletes the selected text in the test script and places it onto
the Clipboard.

Copy Makes a copy of the selected text and places it onto the
Clipboard.

Paste Pastes the text on the Clipboard at the insertion point.

Delete Deletes the selected text.

Select All Selects all the text in the active test window.

Find Finds the specified character(s) in the active test window.

Go to Line Moves the insertion point to the specified line in the test
script.

Managing Test Files
You use the commands in the File menu to create, open, save, and close test

files.

Creating a New Test

Choose New from the File menu or click the New button. You are ready to
start recording or programming a test script.

76

A W N =

Creating Tests ¢ Creating Tests

Opening an Existing Test

Choose the Open command from the File menu or click the Open button.
The Open Test form is displayed.

Current Directory: II{quauser g

Test Name: |

Expected Results MName: |pxp 2.'

Directories: Tests:

hatchf win_t i

bugs{ win_tests

frank/

installf

Ir_pc/

notes!

public_coref

sqir_t!

tmpi

trash.oldf

trash/

users!

xteam/ a

41 41 3
OK | Filter | cancel |

You can use the Open Test form to load a test from the UNIX file system.

Note: The maximum number of tests you may have open simultaneously is
one hundred.

To open a test from the file system:

Select File > Open to open the Open Test form.

Use the Directories and Tests list boxes to locate your test.
In the Test Name field, select the name of the test to open.

If the test has more than one set of expected results, select the directory you
want to use from the Expected list. The default directory is exp.

Click OK to open the test.

77

XRunner User’s Guide

78

Saving a Test

The following options are available for saving tests:

Save changes to a previously saved test by selecting the Save command from
the File menu or clicking the Save button.

Save two or more open tests simultaneously by selecting Save All from the
File menu.

Save a new test script by selecting the Save As command from the File menu
or clicking the Save button. The Save As form is displayed.

Puriner: Save H

Current Directory: |flulqauser!fmnk
Test Name: |I

Directories: Tests:

v edit_test3
gui_test
open_test

[« 3

You can use the Save As form to a save a test in the UNIX file system.

To save a new test in the file system:
Open the Save As form.

Use the Directories and Tests list boxes to select the location that you want
to save the test.

In the Test Name field, type a name for the test. Use the standard UNIX
naming conventions.

Click OK to save the test.

Closing a Test

To close the current test, choose the Close command from the File menu.

8

Checking GUI Objects

By adding GUI checkpoints to your test scripts, you can compare the
behavior of GUI objects in two versions of your application.

This chapter describes:

Checking a Single Object or Window

Checking Two or More Objects in a Window
Checking All Objects in a Window

Modifying GUI Checklists

Checking Attributes Using check_info Functions

Default Checks and Custom Checks

O o o o o d

About Checking GUI Objects

Use GUI checkpoints in your test scripts to help you examine GUI objects in
your application and detect bugs. When you run a test, a GUI checkpoint
compares the behavior of GUI objects in the current version of the
application under test with the behavior in an earlier version.

For example, suppose you add several new customers to a client database,
and you want to make sure that their names appear in a client list. You can
create a GUI checkpoint that captures all the names in the list and saves this
information as expected results. When you run the test, XRunner compares
the current names in the list with the names captured earlier. If any
differences are detected, XRunner sends this information to the test report.

To create a GUI checkpoint, you point to GUI objects and select the
attributes that you want XRunner to check. You can check the default

79

XRunner User’s Guide

attributes recommended by XRunner, or you can define a custom check by
selecting different attributes. Information about the GUI objects and the
selected attributes is saved in a checklist. XRunner then captures the current
attribute values for the GUI objects and saves this information as expected
results. A GUI checkpoint is automatically inserted into the test script. This
checkpoint appears as an obj_check_gui or a win_check_gui statement.

When you run the test, XRunner compares the current state of the GUI
objects in the application under test to the expected results. If the expected
results and the current results do not match, the GUI checkpoint fails. The
results of the checkpoint can be viewed in the XRunner Report form. For
more information, see Chapter 25, “Analyzing Test Results.”

If you are manually programming a test, you can also use the function
check_gui to check GUI objects. For more information see the TSL Reference
Guide.

Note that any GUI object you check that is not already in the GUI map is
added automatically to the temporary GUI map file. See Chapter 3,
“Introducing Context Sensitive Testing” for more information.

Checking a Single Object or Window

80

You can use a GUI checkpoint to check a single object or window in the
application under test.

To create a GUI checkpoint for a single object or window:

For checking a window, select Check GUI > Window from the Create menu.
For checking an object, select Check GUI > Object.

The mouse pointer turns into a pointing hand.

To check the object or window with its default checks, click on it once. If
you clicked on a window, a help window asks if you want to check all the
objects inside it. Select No to check only the window itself.

To define a custom check, double-click on the object to bring up the
appropriate check form.

Select checks and click OK to close the form.

Creating Tests ¢ Checking GUI Objects

XRunner captures the GUI information and stores it in the test’s expected
results directory. A GUI checkpoint is inserted in your test script.

For an object, a GUI checkpoint has the following syntax:

obj_check_gui (object, checklist, expected results, time);

For a window, the syntax is:

win_check_gui (object, checklist, expected results, time);

For example, if you are performing an object check on the Departure Time
button in the Flight Reservation window, the resulting statement might be:

obj_check_gui ("Departure Time:", listl.ckl, guil, 1);

However, if you are performing a window check on the same window, the
resulting statement might be:

win_check_gui ("Flight Reservation”, list1.ckl, guil, 1);

Note that XRunner names the first checklist in the test list_1.ckl and the first
expected results file gui_I. For more information on the obj_check_gui and
win_check_gui functions see the TSL Reference Guide.

Checking Two or More Objects in a Window

You can use a GUI checkpoint to check two or more objects in a window. For
example, you can create a single checkpoint which checks the state of all the
pushbuttons in a certain window of your application.

81

XRunner User’s Guide

82

To create a GUI checkpoint for two or more objects in a window:

1 Select Check GUI > Checklist from the Create menu. The Check GUI form

opens.

Point To Object or Window to add new objects to checklist
or open an existing checklist.

Window: | Flight Reservation

Object(s) to check:

Date of Flight:
Help Icon
Add Al
Modify...
Delete All |
Checks:
1 Open Checklisl...
Yadth -
Compare{"TEXT")
Save As
EE

oK | cancel |

Flight Reservation Point to -> {— — Lets you add a window or object to

the checklist

2 Select Window or Object from the Point to options. Click Point To. Select
Object or Window from the options list. The mouse pointer turns into a

pointing hand.

3 To check an object or window according to its default checks, click on it
once. If you are performing a check on a window, a help window asks if you
want to check all the objects inside the window. Press No to check only the

window itself.

Creating Tests ¢ Checking GUI Objects

To define a custom check, double-click on the object or window to bring up
the appropriate check form.

Rectangle Active For example, when you double-click on a
MX O Width B Enabled pushbutton, this check form is displayed.
£1¥ 1 Height 1 Focused
{1 Label

[| Cancel

Mark the checks you want to perform and press the OK button.

4 The pointing hand remains active. You can continue to select objects by
repeating step 3 above for each object you want to check.

5 Press the right mouse button to stop the selection process and to restore the
mouse pointer to its original shape.

The “Objects to check” field contains the names of the window and objects
included in the GUI checkpoint.

6 To save the checklist and close the form, click the OK button.

XRunner captures the GUI information and stores it in the expected results
directory of the test. A win_check_gui statement is inserted in the test
script.

Checking All Objects in a Window

You can create a GUI checkpoint containing all the GUI objects in a
window.

To create a GUI checkpoint that checks all GUI objects in a window:

1 Select Check GUI > Checklist from the Create menu. The GUI Checklist
form opens.

2 Select Window from the Point to options. The mouse pointer turns into a
pointing hand.

3 Click once on the window you want to check. A help window asks whether
you want to check all the objects in the window. Select Yes.

83

XRunner User’s Guide

4 XRunner generates a new checklist containing all the objects in the window.

This may take a few seconds.

Note that the Object(s) to check field of the GUI Checklist form now
contains all the objects in the window. Select the name of an object. The
corresponding object flashes in the application window and the check(s) for
the object are displayed in the Checks field.

Click OK.

XRunner captures the GUI data, stores it in the test’s expected results
directory, and enters a win_check_gui statement in your test script.

Note: You can also add all objects in a window to the current checklist by
clicking the Add All button before you point to the window you wish to
capture. XRunner automatically inserts all GUI objects into the checklist
according to the default checks for each object class.

Modifying GUI Checklists

84

In addition to creating and using a GUI checklist while building your test,
you can use or make changes to a checklist you created earlier. You can:

O edit a checklist

O wuse a previously created GUI checklist in a new checkpoint

make a checklist available to other users

Editing Checklists

You can edit a GUI checklist that you created previously by adding and
deleting objects and checks. Note that before you start working, the objects
in the checklist must be loaded into the GUI map.

To edit an existing GUI checklist:

Select Check GUI > Checklist from the Create menu. The Check GUI form
opens.

Creating Tests ¢ Checking GUI Objects

2 Select Open CheckList to display the Open CheckList form. All checklists
created for the current test appear in the list box. To see checklists in the
Shared directory, select Shared from the Scope options.

pen Checklis

Scope: | 4 Test < Shared

Checklist Hame:

list1.ckl

Checklist Description:

iChecklist for window "XBur"

OK | Cancel |

3 Select a checklist from the list.
4 Click OK.

Displays checklists available (Test or Shared).

85

XRunner User’s Guide

86

The Open CheckList form closes and the selected list appears in the GUI
CheckList form.

Foint To Object or Window to add new objects to checklist

or open an existing checklist.

Object(s) to check:

Order

SHOW DETAILS
iotal_order
t0tal_orier_VSCROLL Maify... —— Opens an object’s check form for editing

Audd All

Delete —— Removes an object from the checklist

Delete NIMF — Clears the current checklist from the Window

Checks:

tem_enabled

[— Opens the Open CheckList form

To make changes to the checks selected for a specific object, select the object
in the list box and press Modify.

The appropriate Check form opens. Make the desired changes and click OK
to close the form. The changes you made appear in the Checks field.

To remove an object from the checklist, select the object in the list box and
press Delete.

To add an object to the checklist, the window that it checks must be open.
Click on the pointing hand and then on the object you want to add. When
the Check form for the object opens, select the checks you want and click
OK to close the form.

To save your changes, Click OK in the GUI CheckList form. XRunner
overwrites the previous checklist and inserts a checkpoint into the test
script.

To save the checklist under a new name, click Save As. The Save Checklist
form appears.

wnu A W N

Creating Tests ¢ Checking GUI Objects

Recall that if you overwrite an existing checklist, any expected results
captured earlier remain unchanged until the test is run. To update the
expected results, run the test.

Type a name into Checklist Name field. Select the appropriate scope option.
Press OK.

Using an Existing GUI Checklist in a Test

The following steps describe how to use an existing GUI checklist in a test.
Note that the appropriate GUI map file must be loaded before you run the
test. This ensures that XRunner can locate the objects to check in your
application.

To use an existing checklist in a test:

Select Check GUI > Checklist from the Create menu. The GUI CheckList
form opens.

Select Open CheckList. The Open Checklist form opens.
To see the checklists for the current test, select Test from the Scope options.
Display the list of checklists from the Checklist Name field.

To see checklists in the Shared directory, select Shared. Select the checklist
you want and click OK. The Open Checklist form closes and the selected list
appears in the Check GUI form.

Open the window in the application under test which contains the objects
shown in the checklist (if it is not already open).

Click OK. XRunner captures the GUI information and a GUI checkpoint is
inserted into your test script.

Saving a GUI Checklist in a Shared Directory

By default, checklists are stored in the directory of the current test. You can
specify that a checklist be placed in a shared directory to afford wider access.
This can be done while creating a GUI checklist or afterwards.

The configuration parameter XR_SHARED_CHECKLIST_DIR in the xrunner.cfg
file determines where the shared checklists are stored. For more
information, see Chapter 33, “Changing System Defaults.”

87

XRunner User’s Guide

To save a GUI checklist in a shared directory:

1 Select Check GUI > Checklist from the Create menu. The Check GUI form

opens.

2 In the Check GUI form, create a new GUI checklist. Alternatively, select a

checklist from the Open Checklist form and press the OK button.

3 Save the checklist by pressing the Save As button. The Save Checklist form is

displayed.

Click the Shared button in the Scope area. Enter a name for the shared
checklist. Click OK to save the checklist and to close the form.

Checking Attributes Using check_info Functions

88

You can check the attribute values of GUI objects using check_info
functions. A check function is available for each standard object class (for
example, button_check_info, edit_check_info, menu_check_info). You
must manually program these functions or generate them using the
Function Generator.

For example, button_check_info has the following syntax:

button_check_info (button, attribute, attribute_value);

The button parameter is the name of the button. The attribute parameter is
the attribute you want to check. The attribute_value parameter is a variable
which stores the current value of the attribute.

In most cases you use a check_info function in conjunction with a get_info
function. The get_info function gets the current value of an attribute and
the check_info function checks that this attribute value is correct.

For example, suppose that in the Flight Reservation application you want to
check the value that appears in the “Total” field. This value should be equal
to the number in the “Tickets” field multiplied by the price per ticket in the
“Price” field. In the test segment shown below, the edit_get_info function
gets the value in the “Tickets” field and assigns it to the variable “T”. This
function also gets the value in the “Price” field and assigns it to the value
“P”. The edit_check_info function then checks that the value in the “Total”

Creating Tests ¢ Checking GUI Objects

field is equal to P multiplied by T. If this value is incorrect, a message is sent
to a report.

edit_get_info("Tickets","value",T);
edit_get_info("Price","value",P);
if (edit_check_info ("Total", "value", P*T)!=E_OK)

report_msg("The total is incorrect);

For more information, refer to the TSL Reference Guide.

Default Checks and Custom Checks

When creating a GUI checkpoint, you determine the types of checks to
perform on GUI objects in your application. For each object class, XRunner
recommends a default check. For example, if you select a pushbutton, the
default check determines whether the pushbutton is enabled. Alternatively,
you can choose to define a custom check by selecting attributes from a
check form. For example, you can choose to check a pushbutton’s width,
height, label, and position in a window (x,y coordinates).

To use the default check, select a Check GUI command from the Create
menu. Point to a window or object in your application and click on it.
XRunner automatically captures default information about the window or
object and inserts a GUI checkpoint into the test script.

To create a custom check for an object, select a Check GUI command from
the Create menu. Point to a window or object and double-click on it. A
check form opens in which you select the attributes you want XRunner to
check. This form is different for each object class. Select checks and close the
form. XRunner captures information about the GUI object and inserts a GUI
checkpoint into the test script.

The following sections present the check forms for the different object
classes and the types of checks available.

89

XRunner User’s Guide

90

Object Check Form

This form opens when you select a Check GUI command and double-click
on a GUI object that belongs to the Mercury object class.

g
WX width 1 Enabled

MYy W Height {1 Focused

Cancel

X and Y: Check the x and y coordinates of the top left corner of the GUI
object, relative to the window origin (default checks).

Width and Height: Check the object’s width and height, in pixels (default
checks).

Enabled: Checks whether the object can be selected.

Focused: Checks whether keyboard input will be directed to this object.

Pushbutton Check Form

This form opens when you select a Check GUI command and double-click
on a pushbutton.

Rectangle Active
{1 x O Width M Enabled
1y L1 Height 1 Focused
1 Lal

X and Y: Check the x and y coordinates of the top left corner of the button,
relative to the window origin.

Width and Height: Check the button’s width and height, in pixels.
Enabled: Checks whether the button can be selected (default check).

Focused: Checks whether keyboard input will be directed to this button.

Creating Tests ¢ Checking GUI Objects

Label: Checks the button’s label.

Checkbutton Check Form

This form opens when you select a Check GUI command and double-click
on a check button.

X O Width {1 Enabled
¥ {1 Height {1 Focused
] Label
M State

X and Y: Check the x and y coordinates of the top left corner of the button,
relative to the window origin.

Width and Height: Check the button’s width and height, in pixels.
Enabled: Checks whether the button can be selected.

Focused: Checks whether keyboard input will be directed to this button.
Label: Checks the button’s label.

State: Checks the button’s state (on or off) (default check).

Radio Button Check Form

This form opens when you select a Check GUI command and double-click
on a radio button. The radio button check form identical to the Check
Button Check form. See “Checkbutton Check Form.”

91

XRunner User’s Guide

92

Scroll Check Form

This form opens when you select a Check GUI command and double-click
on a scrollbar object.

roll checks

Rectangle Active
Ox O width] Enabled
21y 1 Height] Focused

M Position

X and Y: Check the x and y coordinates of the top left corner of the
scrollbar, relative to the window origin.

Width and Height: Check the scrollbar’s width and height, in pixels.
Enabled: Checks whether the scrollbar can be selected.
Focused: Checks whether keyboard input will be directed to this scrollbar.

Position: Checks the current position of the scroll thumb within the
scrollbar. (default check).

List Check Form

This form opens when you select a Check GUI command and double-click
on a list object.

Rectangle Active
X O Width {1 Enabled
¥ {1 Height {1 Focused

M Selection
1 Content

£1 Iltems_count

oK | | cancel |

X and Y: Check the x and y coordinates of the top left corner of the list box,
relative to the window origin.

Creating Tests ¢ Checking GUI Objects

Width and Height: Check the list box’s width and height, in pixels.
Enabled: Checks whether an entry in the list can be selected.

Focused: Checks whether keyboard input will be directed to this list box.
Selection: Checks the current list selection (default check).

Content: Checks the contents of the entire list.

Items count: Checks the number of items in the list.

Edit Check Form

This form opens when you select a Check GUI command and double-click
on an edit object.

Rectangle Active
Hx 1 wadth 1 Enabled
Hy 1 Height 1 Focused
= Compare

< Number 4 Text |

1 Ignore Case

1 Format @ bate { Thne
]

1 Range | To |

C s o

X and Y: Check the x and y coordinates of the top left corner of the edit
object, relative to the window origin.

Width and Height: Check the edit object’s width and height, in pixels.
Enabled: Checks whether the edit object can be selected.

Focused: Checks whether keyboard input will be directed to this edit object.

93

XRunner User’s Guide

Compare: Checks the contents of the edit field as text (the default) or as
numbers.

Ignore case: Indicates that the check will not be case sensitive.

Note: The following checks (Format, Range, and Regular Expression) apply
to actual results only. They do not compare actual and expected results.

Format: Checks that the contents of the edit field are in the specified
format. To specify the format, check the format type (date or time) and
select the required format from the dropdown list.

Date Formats

XRunner supports a wide range of date formats. These are given below, with
an example for each.

dd/mm/yy24/03/99

mm/dd/yy03/24/99

dd/mm/yyyy03/24/1999

yy/dd/mm99/24/03

dd.mm.yy03.24.99

dd.mm.yyyy03.24.1999

dd-mm-yy03-24-99

yyyy-mm-dd1999-03-24

Day, Month dd, yyyyTuesday, March 24, 1999
Day dd Month yyyyTuesday 24 March 1999

dd Month yyyy24 March 1999

When the day or month begins with a zero (such as 03 for March), the O is
not required for a successful format check.

94

Creating Tests ¢ Checking GUI Objects

Time Formats

The following time formats are supported by XRunner:
hh.mm.ss10.20.56

hh:mm:ss10:20:56

hh:mm:ss ZZ10:20:56 A.M.

hh:mm: 10:20

Range: Checks that the contents of the edit field are within the specified
range. Select Range and specify the lower limit in the left edit field, and the
upper limit in the right edit field.

Regular Expression: Checks that the string in the edit field meets the
requirements of the regular expression. To define a regular expression, select
the Regular_Exp checkbox and type a string in the adjacent field. Note that
you do not need to precede the regular expression with an exclamation
point. For more information, see Chapter 23, “Using Regular Expressions.”

Static Text Check Form

The static text check form is identical to the edit check form. See “Edit
Check Form.”

95

XRunner User’s Guide

96

Window Check Form

This form opens when you select a Check GUI command and double-click
on a window.

X] Width "l Enabled
2y O Height] Focused

Style
1 Resizable
£1 Maximizable
£1 Minimizable

£1 System_menu

£1 Minimized
1 Maximized

W Count_objects
21 Label

X and Y: Check the x,y coordinates of the top left corner of the window.
Width and Height: Check the window’s width and height, in pixels.
Enabled: Checks whether the window can be selected.

Focused: Checks whether keyboard input will be directed to this window.
Resizable: Checks whether the window can be resized.

Minimizable or Maximizable: Check whether the window can be
minimized or maximized.

System_menu: Checks whether the window has a system menu.

Minimized or Maximized: Check whether the window is minimized or
maximized.

Count objects: Counts the number of GUI objects in the window (default
check).

Label: Checks the window’s label.

Creating Tests ¢ Checking GUI Objects

Menu Item Check Form

This form opens when you select a Check GUI command and double-click
on a menu.

I ltem_enabled

£1 ltem_position
£1 Has_sub_menu

£1 Sub_menus_count

Item enabled: Checks whether the menu is enabled (default check).
Item position: Checks the position of each item in the menu.
Has_sub_menu: Checks whether menu item has a submenu.

Sub_menus_count: Counts the number of items in the submenu.

97

XRunner User’s Guide

98

9

Checking Bitmaps:
Context Sensitive Testing

XRunner allows you to compare two versions of an application under test by
matching captured bitmaps. This is particularly useful for checking non-GUI
areas of your application, such as drawings or graphs.

This chapter explains how to check bitmaps during Context Sensitive
testing. You can also check bitmaps when working in Analog mode. For
more information, see Chapter 10, “Checking Bitmaps: Analog Testing.”

This chapter describes:

O Checking Window and Object Bitmaps
O Checking Area Bitmaps

O Using Data Compression

About Checking Bitmaps in Context Sensitive Testing

You can check an object, a window, or an area of a screen in your
application as a bitmap. While creating a test, you indicate what you want
to check. XRunner captures the specified bitmap, stores it in the expected
results directory (exp) of the test, and inserts a checkpoint in the test script.
When you run the test, XRunner compares the bitmap currently displayed
in the application under test with the expected bitmap stored earlier. In the
event of a mismatch, XRunner captures the current actual bitmap and
generates a difference bitmap. By comparing the three bitmaps (expected,
actual, and difference), you can identify the nature of the discrepancy.

99

XRunner User’s Guide

Suppose, for example, your application includes a graph that displays
database statistics. You can capture a bitmap of the graph for comparison. If
there is a difference between the graph captured for expected results and the
one captured during the test run, XRunner generates a bitmap that shows
the difference, pixel by pixel.

In the expected graph, captured when the
test was created, 1 ticket was sold

B/
0772535 07127195 e

% Tokets

In the actual graph, captured during the test
run, 9 tickets were sold. This larger quantity
is reflected in the column on the

extreme right

0 |
0772395 128,
07/25/5

The difference bitmap shows the
discrepancy between the two graphs:

in the difference in height of the column on
the extreme right

When working in Context Sensitive mode, you can capture a bitmap of a
window, object, or of a specified area of a screen. XRunner inserts a

100

Creating Tests ® Checking Bitmaps: Context Sensitive Testing

checkpoint in the test script in the form of either a win_check_bitmap or
an obj_check_bitmap statement.

To check a bitmap, you start by selecting Check Bitmap from the Create
menu. To capture a window or other GUI object, you click on it with the
mouse. For an area bitmap, you mark the area to be checked using a
crosshairs pointer.

If the name of a window or object varies each time you run a test, you can
define a regular expression in the GUI Map Editor. This instructs XRunner to
ignore all or part of the name. For more information on using regular
expressions in the GUI Map Editor, see Chapter 5, “Editing the GUI Map.”

Note that some platforms and applications work with bitmaps that are not
drawn with Xlib calls. For these cases, you can use your own utilities for
capturing, verifying, and displaying bitmaps. For information, see
Appendix C, “External Utilities for Bitmap Capture/Check/Display.”

Checking Window and Object Bitmaps

You can capture a bitmap of any window or object in your application by
pointing to it with the mouse pointer. Note that during recording, when
you capture an object in a window that is not the active window, XRunner
automatically generates a set_window statement.

Checking Window Bitmaps

To insert a checkpoint for a window bitmap:

1 Select Check Bitmap/Window from the Create menu. The mouse pointer
changes into a pointing hand.

2 Point to the window you want to capture and click the left mouse button.
XRunner captures the bitmap and generates a check_bitmap statement in
the test script.

When you insert a checkpoint for a window bitmap, XRunner generates a
win_check_bitmap statement with the following syntax:

win_check_bitmap (object, bitmap, time);

101

XRunner User’s Guide

102

For example, when you click on the Graph window of the Flight Reservation
application, the resulting statement might be:

win_check_bitmap ("Graph", "Img_2", 1);

For more information on the win_check_bitmap function, see the
TSL Reference Guide.

Checking Object Bitmaps
To insert a checkpoint for an object bitmap:

Select Check Bitmap/Object from the Create menu. The mouse pointer
changes into a pointing hand.

Point to the object you want to capture and click the left mouse button.
XRunner captures the bitmap and generates a check_bitmap statement in
the test script.

When you insert a checkpoint for an object bitmap, XRunner generates an
obj_check_bitmap statement with the following syntax:

obj_check_bitmap (object, bitmap, time);

If you click on the Flights button in the Flight Reservation application, the
resulting statement might be:

obj_check_bitmap ("oi FlightListPB”, "Img1", 1);

For more information on the obj_check_bitmap function, see the TSL
Reference Guide.

Note: The execution of the win_check_bitmap and obj_check_bitmap
functions is affected by the current values specified for the XR_RETRY_DELAY,
XR_TIMEOUT, XR_MIN_DIFF and XR_RAISE_WINDOWS configuration parameters.
For more information on configuration parameters and how to modify
them, see Chapter 15, “Enhancing Window Comparison and
Synchronization.”

Creating Tests ® Checking Bitmaps: Context Sensitive Testing

Checking Area Bitmaps

You can define any rectangular area of the screen and capture it as a bitmap
for comparison. The area can be any size; it can be part of a single window,
or it can intersect several windows. The rectangle is identified by the
coordinates of its upper left and lower right corners, relative to the upper
left corner of the window in which the area is located. If the area intersects
several windows or is part of a window with no title (for example, a popup
window), its coordinates are relative to the entire screen (the root window).

To capture an area of the screen as a bitmap:

1 Select Check Bitmap > Area from the Create menu. The mouse pointer
changes to a crosshairs pointer.

2 Mark the area to be captured: press the left mouse button and drag the
mouse until a rectangle encloses the area, then release the mouse button.

3 To preview the area that will be captured, press and hold down the middle
mouse button. The coordinates and dimensions of the area are displayed, as
is the name of the window from which it is taken.

4 Press the right mouse button to complete the operation. XRunner captures
the area and generates a win_check_bitmap statement in your script.

Note: The execution of the win_check_bitmap function is affected by the
current specified for the XR_RETRY_DELAY, XR_TIMEOUT, XR_MIN_DIFF,
XR_WINDOWS_FRAMES, XR_WM_BORDER and XR_RAISE_WINDOWS configuration
parameters. For more information on configuration parameters and how to
modify them, see Chapter 15, “Enhancing Window Comparison and
Synchronization.”

The win_check_bitmap statement for an area of the screen has the
following syntax:

win_check_bitmap (window, bitmap, time, x, y, width, height);

For example, when you define an area in the Flight Reservation window, the
resulting statement might be:

103

XRunner User’s Guide

win_check_bitmap ("Flight Reservation”, "Img2", 1, 25, 25, 75, 60);

For more information on the win_check_bitmap function, see the TSL
Reference Guide.

Using Data Compression

XRunner's Data Compression feature allows you to reduce the size of files
generated during bitmap capture. To activate Data Compression, open the
Controls form and make sure that the Compress checkbox is selected (the
default).

As long as compression is activated, all captured bitmaps are compressed.
When you display a captured bitmap which is compressed, XRunner
automatically restores the uncompressed bitmap. No other operation is
required.

While XRunner takes slightly longer to capture and display compressed
bitmaps, the file size is significantly reduced. For example, a full-screen
capture that ordinarily requires 1 Mb of disk space takes only 30 Kb of disk
space in the compressed format.

XRunner uses the standard UNIX compression program; compressed files
are designated by the extension .Z in the file name. Such files can be
accessed and manipulated from the operating system shell. For example, the
UNIX command: zcat IMG.Z | xwud pipes an uncompressed version of the
bitmap to xwud.

You can also use the operating system to compress bitmaps that were not
compressed from within XRunner.

104

10

Checking Bitmaps: Analog Testing

You can capture all or part of your screen as a bitmap in order to compare
different versions of your application.

This chapter explains how to check bitmaps during Analog testing. You can
also compare bitmaps when working in Context Sensitive mode. For more
information, see Chapter 9, “Checking Bitmaps: Context Sensitive Testing.”

This chapter describes:

Checking Window Bitmaps
Checking Area Bitmaps
Checking Windows with Varying Names

O 0o o d

Checking Unnamed Windows

About Checking Bitmaps in Analog Testing

You can check a window or an area of your screen as a bitmap during Analog
testing. While creating a test, you indicate the part of the screen that you
want to check. XRunner inserts a checkpoint in the script, captures the
specified bitmap, and stores it in the expected results directory (exp) of the
test. When you run a test, XRunner compares the bitmap currently
displayed with the expected bitmap stored earlier. In the event of a
mismatch, XRunner captures the current bitmap and generates a difference
bitmap. By comparing the three bitmaps (expected, current, and difference),
you can identify the nature of the discrepancy. This is particularly useful for
Analog testing, where the precise movements of the mouse within your
application are critical.

105

XRunner User’s Guide

XRunner also repositions the current window during a test run if it appears
in a different location. Suppose your test involves opening a bitmap in a
drawing application and positioning it next to your application. By
inserting a bitmap checkpoint, you can ensure that during a test run
XRunner checks the window and positions it in the correct location.

When working in Analog mode, you can check either an entire window or
an area of the screen. You use a softkey to indicate the window or region to
be captured.

When you capture a bitmap for comparison, XRunner generates a
check_window statement in the test script.

XRunner’s Data Compression feature allow you to reduce the size of files
generated during bitmap capture. For more information, see Chapter 9,
“Checking Bitmaps: Context Sensitive Testing.”

Note that some platforms and applications work with images in non-
standard formats. For these cases, XRunner allows you to use your own
utilities for capturing, verifying, and displaying images. For more
information, see Appendix C, “External Utilities for Bitmap
Capture/Check/Display.”

Checking Window Bitmaps

106

You can capture a bitmap of any window in your application by selecting it
with the mouse pointer.

To capture a window bitmap:

1 Select Record-Analog from the Create menu to start recording.

Place the mouse pointer anywhere within the desired window.

3 Press the CHECK WINDOW softkey. The window is captured and a

check_window statement is generated in your test script. After you hear the
second beep, you can continue recording.

The check_window statement for a window bitmap has the following
syntax:

check_window (time, image, window, width, height, X, y);

Creating Tests ® Checking Bitmaps: Analog Testing

For example, when you capture the Flight Reservation window, the resulting
statement might be:

check_window (10, "Win1", "Flight Reservation", 30, 50, 10, 120);

For more information on the check_window function, see the TSL Reference
Guide.

Note: The execution of the check_window function is affected by the
current values specified for the XR_RETRY_DELAY, XR_TIMEOUT, XR_MIN_DIFF,
XR_MOVE_WINDOWS, XR_RAISE_WINDOWS, XR_WM_BORDER and
XR_WINDOW_FRAMES configuration parameters. For more information on
configuration parameters and how to modify them, see Chapter 15,
“Enhancing Window Comparison and Synchronization.”

Checking Area Bitmaps

You can define any rectangular area of the screen and capture it as bitmap
for comparison.The rectangular area can be any size; it can be part of a
single window or it can intersect several windows. The rectangle is identified
by the coordinates of its upper left and lower right corners, relative to the
upper left corner of the window in which the area is located. If the area
intersects several windows, or is part of a window with no title (a popup
menu, for example), its coordinates are relative to the entire screen (the root
window).

Note that you cannot capture a selected area when another mouse grab is in
effect (for example, when a menu is displayed with a mouse button pressed).
In such a case, program the command into the test script.

To capture an area bitmap:
1 Select Record-Analog from the Create menu to start recording.

2 Press the CHECK WINDOW AREA softkey. Recording is temporarily halted and
the pointer turns into a crosshairs pointer.

107

XRunner User’s Guide

3

4

Mark the area to be captured: press the left mouse button and drag the
mouse until a rectangle encloses the area. Release the mouse button.

To preview the area that will be captured, press and hold down the middle
mouse button. The coordinates and dimensions of the area are displayed, as
is the name of the window from which it is taken.

Press the right mouse button to complete the operation. XRunner captures
the area and generates a check_window statement in your script.

The check_window statement for an area bitmap has the following syntax:

check _window (time, image, window, width, height, x, y, relx1, relyl, relx2,
rely2);

For instance, when you press the CHECK WINDOW AREA softkey and define a
region within the Flight Reservation window, the resulting statement might
be:

check_window (10, "Img2", "Flight Reservation”, 30, 50, 10, 120, 20, 20, 50, 70);

For more information on the check_window function, see the TSL Reference
Guide.

Note: The execution of the check_window function is affected by the
current values specified for the XR_RETRY_DELAY, XR_TIMEOUT, XR_MIN_DIFF,
XR_MOVE_WINDOWS, XR_RAISE_WINDOWS, XR_WM_BORDER and
XR_WINDOW_FRAMES configuration parameters. For more information on
configuration parameters and how to modify them, see Chapter 15,
“Enhancing Window Comparison and Synchronization.”

Checking Windows with Varying Names

108

If the window you capture has a name that varies from run to run, you can
use a regular expression in the check_window statement to instruct
XRunner to ignore all or part of the window name.

Checking

Creating Tests ® Checking Bitmaps: Analog Testing

To use a regular expression instead of a window name, the “!” character
must precede the expression. For example, the following statement tells
XRunner to compare a window whose title begins with the string /tmpffile
and is followed by any single uppercase letter:

check_window (10, "Win2", "l/tmp/file[A-Z]", ...)

When XRunner searches for the window, it returns the first window of the
designated size whose title matches the specified regular expression.

If there are several windows of the specified size whose name matches the
specified regular expression, XRunner chooses the first window found in the
X server hierarchy. This means that you cannot predict which window will
be retrieved. When using regular expressions in your test script to describe
window names, avoid ambiguity that can lead to incorrect results.

For more information, see Chapter 23, “Using Regular Expressions.”

Unnamed Windows

If the window you capture has no title (a popup menu, for example), the
window parameter is an empty string, as follows:

check_window (time, image, ", width, height, x, y);

During test execution, XRunner waits for an unnamed window image with
the specified width and height to appear at the x, y coordinates.

If the window captured is not recognized by the server or if an icon is
captured, the syntax of the check_window statement is:

check_window (time, image);

109

XRunner User’s Guide

110

11

Filtering Bitmaps

XRunner lets you use filters to include or exclude regions of a window while
you perform bitmap checks.

This chapter describes:

Creating Filters

Displaying Filters

Altering Filter Attributes
Activating and Deactivating Filters

Defining Filters with Regular Expressions

O o o o o d

Deleting Filters from the Database

About Filters

XRunner allows you to check bitmaps in you application by comparing the
current bitmap with a bitmap captured as the expected results. XRunner
allows you check a specific area of the bitmap by setting a filter.

The Area of Interest

Filters allow you to define an area of interest, or the region of the bitmap
which will be compared with the expected results during verification. To
define the area of interest you can use two types of filters: exclude and
include. For example, you can create an exclude filter on a region of a

111

XRunner User’s Guide

window in which today’s date and time are displayed. During the check,
this area will be excluded from the comparison.

-t AUT window

- Exclude filter

AUT window and exclude filter

Include and Exclude Filters

An include filter defines a region of a bitmap to be included in a
comparison. It can only be used in combination with an exclude filter.
(Defining an include filter by itself is meaningless, since by default the
entire window is included in the comparison.) For example, in the
illustration below the white area is included in comparison and the shaded
area is excluded. This is achieved by first defining an exclude filter and then
defining a smaller include filter on top of it. The result is a “ring” which is
excluded from comparison.

-t AUT window

Exclude filter

Include filter

AUT window and exclude filter and include filter

To use a filter in your test, you first create the filter and define its properties.
You activate the filter in your test using the set_filter function.

112

Creating Tests e Filtering Bitmaps

Filters versus Partial Bitmaps

Filters and partial bitmaps share certain features. Both are used to capture
and compare part of a bitmap. However, they have different attributes and
uses.

A partial bitmap captures only part of a bitmap, thus using less disk space.
Only the area defined as a partial bitmap is captured.

——— AUT window

Captured Area

AUT window and partial bitmap

When filters are used, on the other hand, an entire bitmap is captured. For
example, two exclude filters are defined on one bitmap. During verification,
the entire bitmap is captured, but the filtered areas are not compared.

—— AUT window

- Exclude filter

Exclude filter

AUT window and two filters

113

XRunner User’s Guide

Creating Filters

Before setting a new filter, you define its location by selecting the Local or
Global checkbox. You may define the new filter locally (for the current test).
In addition, all new filters are stored in the Global Filter Library.

To create a filter:

1 Choose the Filters command from the Tools menu. The Filters form opens.

Displays the list of filters active
for the current test.

4 Local < Glohal 5 Active

Test: fuiqauserifrank/hitmap_test2

I =1
i
[ight_niter 3
—— Removes the selected filter from the database
—— Displays the selected filter
—— Hides the selected filter
——— Resets (deactivates) all active filters
¥
-4 3 |

Filter: filterD 30x38 Exclude

On window: XBur

Size 309 64, At offset (10, 0) The coordinates of the upper left corner of the
selected filter in relation to the upper left corner
oK Cancel
_ of the window for which it is defined.

2 Select the appropriate option button: Local or Global.

O Choose Local to display a list of filters defined for the current test and
to add a new filter to the local list.

O Choose Global to display a list of filters stored in the Global Filter
Library and to add a new filter to the Global Filter Library. (The Global
Filter Library is defined by the XR_GLOB_FILTER_LIB configuration
parameter.)

3 Click the New button. The mouse pointer changes to a crosshairs.

4 Place the pointer on the bitmap you want to filter. Press and hold down the
left mouse button. Rubber-band the area you wish to filter. Release the
mouse button. A filter window is displayed on the screen.

114

Creating Tests ¢ Filtering Bitmaps

If needed, modify the size of the filter. (Treat the filter as you would any
other bitmap.)

To check that the filter covers the desired area, place the pointer inside the
filter window and press and hold down the left mouse button. When the
button is depressed, the filter bitmap becomes transparent, displaying the
area beneath it.

5 To save the new filter, click inside the filter window with the right mouse
button. The Filter Properties form is displayed.

Mame: |j1igm_ﬁ|ter_3 Filter name
Type: ? Include {P Exclude Filter type

Lets you insert the dimensions of the selected
Defined on Window: filter and the name of the window for which
IIFIight Reservation g it is defined

Saves changes and closes the form

If desired, overwrite the filter name currently displayed in the Name field.

6 Select Include or Exclude to specify the filter type.
7 Click Select AUT window. The pointer turns into a pointing hand.

8 Place the pointer on the AUT window and click the left mouse button. The
name of the AUT window appears in the Defined on Window field; its
dimensions are displayed in the width and height fields.

If you defined a filter that extended beyond the boundaries of the selected
AUT window, it is trimmed to the window boundaries.

If the AUT window has a banner that varies from run to run, you can edit
the window name in the Defined on Window field to include a regular
expression (starting with the “!” character). For more details, see “Defining
Filters with Regular Expressions” on page 118.

Note that if you point on the screen (root window), the Defined on Window
field remains the default RootWindow.

9 Click OK to save the filter properties you assigned and close the form.

115

XRunner User’s Guide

Note: In each test you can define a maximum of ten local filters and ten
global filters. During a test run, you can set filters on a maximum of fifty
different windows. You can also set a maximum of fifty filters on a specific
window.

Displaying Filters

You can display a filter you are currently setting or one that has been
previously set.

To display a filter:

1 Select either the Local or Global filter list by clicking the appropriate button.

Select a filter from the list by clicking its name with the left mouse button.

3 Press Display. You can hide the filter by pressing the Hide button.

Altering Filter Attributes

116

You can change the size and position of a filter as you would a regular
window. You save any modifications in the Filter Properties form.

1 Select a filter from the filters list.

Press Display to display the filter.

3 Display the Filters Properties form by clicking with the right mouse pointer

inside filter window.

You can manipulate the filter window by positioning the mouse pointer on
of its borders or corners. Press and hold down the left mouse button. Resize
the filter window.

Press OK in the Filter Properties form.

Creating Tests ¢ Filtering Bitmaps

Activating and Deactivating Filters

To activate a filter in a test you must enter a set_filter statement preceding
the check_window statement that captures the window with the filter.
During test execution, XRunner searches for the specified filter in the Local
and Global Filter Library, searches for the specified AUT window and applies
the filter to the window.

The set_filter statement has the following syntax:

set_filter (“filter_name","window_name" ,width,height);

The last three parameters are optional. They are used in cases where the
name in the window banner changes during a test. Note that in order for
XRunner to identify the specified window, all three window parameters
must be included.

Let’s suppose, for instance, that you create an exclude filter on the Graph
window of the Flights Reservation application. The filter is of the Exclude
type. It has the dimensions 138 x 117 pixels and is saved locally with the
name top_left_filter. To activate the filter in a test, you program the
following statement:

set _filter ("top_left_filter", "Graph", 138, 117);

For further information about the set_filter function, refer to the TSL
Reference Guide.

The order in which filters are activated in the test script determines the
actual area of interest. For example, if an exclude filter that fully or partially
overlaps an include filter is activated after the include filter, the overlapped
region is excluded from the area of interest.

The reset_filter statement deactivates a filter that was previously activated.
This statement has the syntax:

reset_filter ("filter_name" [,"window_name", width, height]);

If the optional window parameters were specified in the set_filter
statement, then they must also be specified in the reset_filter statement.

117

XRunner User’s Guide

For further information about the reset_filter function, please refer to the
TSL Reference Guide.

Defining Filters with Regular Expressions

118

When you enter a regular expression (starting with the exclamation point (!)
character) in the Defined on Window field of the Filter Properties form, the
filter is used on every window having a banner that matches this regular
expression. This feature is useful for assigning filters to windows with names
that vary from run to run.

For example, if you enter the expression !/tmpf/file[A-Z] in the Defined on
Window field, the filter is used on any window which has a banner that
starts with the string /tmpf/file, and which is followed by any single uppercase
letter.

To define a filter with a regular expression, follow steps 1 through 8
described in “Creating Filters” in this chapter. After you click the pointing
hand in the AUT window and the window name is entered in the Defined
on Window field, edit the window name and enter the desired expression.
The expression must start with an exclamation point (!). For more
information, see Chapter 23, “Using Regular Expressions.”

Note the following points:

O Using several overlapping filters that each use a regular expression, may
produce unpredictable results.

O To avoid ambiguity, it is recommended that you use exactly the same
regular expression to define filters and the windows for which they are
applied.

0 When a check_window or wait_window function is called, XRunner
implements filters in the following sequence: First, all filters defined
specifically for the designated window (in the order in which they were
set); next, all absolute filters (defined on the root window); finally, all
tilters having regular expression banners that match the banner of the
window.

Creating Tests ¢ Filtering Bitmaps

Deleting Filters from the Database
You can delete defined filters from the XRunner database.

To delete a filter:
1 In the Filters form list box, select the name of the filter to be deleted.

2 Click Delete.

119

XRunner User’s Guide

120

12

Checking Text

XRunner allows you to read and check text in any area of your application.
This chapter describes:

Identifying Application Fonts
Identifying Fonts Supported by XRunner
Teaching Fonts to XRunner

Reading Text

Searching for Text

O 0o o o o o

Comparing Text

About Checking Text

You can use text checkpoints in your test scripts to read and check text in
GUI objects and in areas of the screen. While creating a test, you mark an
area containing text. XRunner reads the text and writes a TSL statement to
the test script. You can then add simple programming elements to your test
scripts to verify the contents of the text.

You can use a text checkpoint to:

O read text from the screen, using the Get Text menu command and the
get_text function

O search for text on the screen, using the find_text function

move the mouse pointer to a specified string on screen, using the
move_locator_text function

121

XRunner User’s Guide

122

O click on a specified string on screen, using the click_on_text function

O compare two strings, using the compare_text function

For example, the following script segment depicts a test in which the AUT
searches for the input name (read from an array). When the desired name is
found, XRunner reads the contents of the field containing the associated
address. Both the input name and address are then printed in an external
report file. This search and print operation is repeated until the AUT fails to
find an address for the last input name:

for i in names{

mouse is brought to Search Address command
move_locator_track(5);
click ("Left");

name is input from the name array
type (namefi);

input name is searched for
type ("<kReturn>");

acquire contents of address field
AddressForName = get_text (100, 34, 150, 50);
printf ("Name : %s, Address : %s \n",

nameli],

AddressForName) >> "/u/bart/srch_res.rep"”;

}

close ("/u/bart/srch_res.rep");

In the above example, the address is read from the application window
using the get_text function. Two additional functions are available:
find_text performs the reverse operation—searching for a specified string
and returning its location on the AUT screen; compare_text compares two
strings, ignoring any differences specified.

Before you can use XRunner to check text, you must first teach XRunner the
fonts used by your application.

Creating Tests ® Checking Text

Identifying Application Fonts

To identify the names of the fonts used by an application, you can start by
checking the application documentation.

If this information is not supplied, you must: (1) identify the font requested
by your application using the appropriate protocol analyzer, and (2) identify
the font provided by the server using the xfd utility. (This two-step process is
required since your application uses the font provided by the server. This is
not necessarily the same font initially requested by the application.)

Depending on the system you are using, begin by identifying the font
requested by your application.

O The xmon utility is provided with XRunner for Sun-Solaris and HP
machines.

O For IBM machines, the xscope utility is provided.

Identifying the Requested Font—Sun/Solaris and HP Machines

If you are using a Sun/Solaris or HP machine, start by using the xmon
protocol analyzer, as follows:

1 At the system prompt, enter the command:
xmonui | xmond &
The main window of xmonui is displayed.

2 In the Selected Requests region of this window, select “Main” from the
Detail options.

3 In the Selected Requests list box, select request 45 OpenFont.

4 Start your application from the command line with the -display option as
follows:

<application_name> -display <machine_name>:1

For example, if you are testing the textedit application on a machine called
venus, type:

textedit -display venus:1

123

XRunner User’s Guide

124

The names of the fonts requested by your application are now displayed in
the shell window in which you entered the command from step 1. For
example:

REQUEST: OpenFont
name: "screen-bold"

Identifying the Requested Font—IBM Machines

For IBM applications, you can use xscope or a similar protocol analyzer to
determine the fonts used:

At the system prompt, enter the command
xscope -v1 -i1 > scope_file

This connects xscope to the current X server and sets up a simulated
X server on display 1. Be sure to set the verbosity level to 1, using the
parameter value -v1. The output is redirected to the file scope_file.

Connect your application to the display monitored by xscope:
<application_name> -display <machine_name>:1

For example, if you are testing the textedit application on a machine called
venus, type:

textedit -display venus:1

All the requests and events passed between your application and the
X server are written to the file scope_file.

Open the file scope_file using a text editor.

Search the scope_file file for the string

"REQUEST: OpenFont."

A few lines below this entry you will find a line with the format:
name: "screen-bold"

The string is the name of the font requested by your application.

Creating Tests ® Checking Text

Identifying the Font Provided by the Server

Regardless of the platform you are working on, you must identify the font
provided by the server. To do so, use the X Windows xfd utility as follows:

1 At the system prompt, enter the command
xfd —fn <font_requested_by application>

[t is recommended that you enclose the name of the font in double
quotation marks ("LucidaSans....."), since font names often contain spaces
and special characters such as * and & which are otherwise expanded by the
shell.

2 The font provided by the server (and which is used by your application) is
displayed.

Once you have identified the font used by your application, you may want
to verify that XRunner is able to recognize this font. To do so, use the
method described below.

Identifying Fonts Supported by XRunner

To check whether the font used by your application is supported by
XRunner, you can use the following method:

XRunner provides a test which automatically checks whether a font is
supported. This test is located under the pathname
$(M_ROOT)/lib/font_test. To invoke this test, call it from an XRunner test
that includes the line:

t = call font_test (font name);

This test creates 300 random two-word pseudo-sentences and then types
each sentence in the vi text editor. The test then uses the get_text function
to access each of the typed sentences and compares each one with the
original generated sentence. The test assigns a grade between 0 and 100 to
the variable t. This grade indicates the percentage of matches during
comparison. It is recommended that when testing an application, you use
only fonts that have achieved a grade of 99.0 or higher.

125

XRunner User’s Guide

This test assumes that you have the file /usr/dict/words on your machine. If
you do not have this file, you must generate the random sentences yourself,
as explained in the test script.

Note: XRunner does not support recognition of all available X fonts. In
particular, XRunner may have difficulty recognizing very small, italic, or
oblique fonts. In general, when you display the fonts used by your
application using xlsfonts, the fourth field in the displayed standard name
indicates an i for italicized characters and o for oblique characters.

Teaching Fonts to XRunner

126

A font group is a collection of fonts that have been bound together for
specific testing purposes. Note that at any time, only one font group may be
active in XRunner. In order for any learned font to be recognizable, it must
belong to the active font group. However, a learned font can be assigned to
multiple font groups.

A font is a set of characters used by the application under test. For a given
font, each ASCII code corresponds to one character. Note that the size of a
font sets it apart from the same character set of a different size.

You teach XRunner fonts in three main steps:

Teach XRunner the set of characters (the font) used by the application,
using the xrmkfont utility.

Create a font group using the xrfontgrp utility, and add the learned font to
the group.

Use the setvar function from within a test script to activate the appropriate
font group before using any of the functions for checking text.

All learned fonts and defined font groups are stored in a font library. This
library is designated by the XR_GLOB_FONT_LIB parameter in the system
configuration file; by default, it is located in the $M_ROOT/fonts
subdirectory.

Creating Tests ® Checking Text

Teaching XRunner Fonts (xrmkfont)

You run the xrmkfont utility for each font XRunner learns. To run this
program, enter the following command line at your system level prompt:

xrmkfont -add | -del | -list | -string font | -blank [["] characters ["]]

You may specify one of four options when running xrmkfont. When none
of the options is invoked, the program learns all the uppercase and
lowercase letters and digits for the designated font.

O

-add appends any characters enclosed between optional quotation
marks to the file that stores the characters learned for the designated
font. This can be any font (or its alias) available on your server.

To view the names of all fonts recognized by your server, enter:
xlsfonts
at your system prompt.

Note that for XRunner to learn special characters, you may need to
enter an escape sequence. For example, to learn the exclamation mark
character (!), you must precede it with a backslash: \!

To boost XRunnetr’s ability to read text, keep the symbols you define for
a particular font to a minimum.

-blank defines the size of the specified blank character for the
designated font.

-del deletes the specified characters from the designated font.
-list displays all characters currently stored for the designated font.

-string defines the specified characters as the default set of characters
that are learned the first time that XRunner is taught the font.

This option can be used, for example, when learning a font with
missing characters, such as a font with the following character set:
abcdfghklm.

For example, to add the number (#) and dollar sign ($) characters to the
previously learned font 9x15, enter the following at the command line:

xrmkfont -add 9x15 ‘#$’

127

XRunner User’s Guide

128

To change the size of the blank character used for the previously learned
font 9x15 to 12, enter the following command line:

xrmkfont -blank 9x5 12

The font set data is stored in a file called font_name.mfn. By default, this file
is stored in the $(M_ROOT)/fonts subdirectory. To store the .mfn files in a
different directory, use the XR_GLOB_FONT_LIB configuration parameter.

Creating a Font Group (xrfontgrp)

After the application font has been learned, you must assign it to a font
group, using the xrfontgrp utility. This utility creates a font group that
includes all specified fonts. The command syntax for this program is:

xrfontgrp -add | -del | -list group_name font; [font, ... font,]

When running xrfontgrp, you must specify one of three options:

O -add creates a new font group, or adds new fonts to an already existing
group. Note that you must also use this option if you make a change to
an existing font already stored in a font group.

O -del deletes fonts from the specified font group.
O -list displays the fonts stored in the specified font group.

A font can be added to a font group only after it has been learned using the
xrmkfont utility.

For example, to add a new font 7x13 to the font 9x15 in the font group
editor, enter the following command line:

xrfontgrp -add editor 9x15 7x13

Note: the same font can be assigned to more than one font group. It is
necessary to define multiple font groups as xrfontgrp’s ability to recognize
text degrades as the number of fonts assigned to a group increases. In
general, limit the number of fonts contained in a font group to a maximum
of five.

Creating Tests ® Checking Text

The font group data is stored in a file called group_name.grp. By default, this
file is stored in the $(M_ROOT)/fonts subdirectory. To store the .grp files in
another directory, use the XR_GLOB_FONT_LIB configuration parameter. (Note,
however, that .grp files and the .mfn files must be stored in the same
directory.)

Note: The file format of fonts is platform-specific. If you are working on
several machines operating on different platforms, you must create a
separate fonts directory for each machine. For instance, (1)
/u/bart/ibm/fonts, (2)/u/bart/sun/fonts, (3) /u/bart/ncr/fonts.

Designating the Active Font Group

The final step before you can perform any of the functions for checking text
is to activate the font group that includes the font(s) used by your
application.

Only one group can be defined as active at any time. By default, this is the

group designated by the XR_FONT_GROUP configuration parameter. However,
within a test script you can activate a different font group using the setvar

function together with the XR_FONT_GROUP configuration parameter.

For example, to activate the font group named editor, add the following
statement to your script:

setvar ("XR_FONT_GROUP", "editor");

You may also specify the active font group

O through the command line interface, using the -fontgrp group_name
option. For more information, see Chapter 27, “Running Tests from the
Command Line.”

O in the Configuration form, using the XR_FONT_GROUP configuration
parameter. For more information, see Chapter 33, “Changing System
Defaults.”

129

XRunner User’s Guide

Reading Text

130

Once you teach XRunner the necessary fonts, place them in a font group
and activate that group, you can read text using the get_text function. This
function reads a single line of text from a specified area of the screen and
assigns it to a variable. The get_text function can be generated
automatically, using the Get Text menu command, or manually, by
programming.

Recording get_text

You can record a get_text statement in your test script using the Get Text
menu command or the GET TEXT softkey.

To record a get_text statement:

Select Get Text from the Create menu or press the GET TEXT softkey. The
recording of mouse and keyboard input stops and the mouse pointer
becomes a cross hairs.

Use the cross hairs to enclose the text to be read within a rectangle. Move
the mouse pointer to one corner of the text string. Press and hold down the
left mouse button. Then drag the mouse until the rectangle encompasses
the entire string and release the mouse button.

You can preview the string that is captured by pressing the middle mouse
button. The string is displayed directly beneath the text. If there is not
enough space there, the string is displayed in the upper left corner of the
screen. This step is optional.

To capture the string, click the right mouse button.

XRunner generates a get_text statement in the test script and assigns the
string located within the defined rectangle to the variable t. XRunner also
generates a comment (indicated by the # sign) in the test script, detailing
the actual text captured.

The syntax of the get_text statement is:

t = get_text (x1, y1, X2, y2);

For instance, when capturing the Date of Flight: label in the Flights
application, the generated statement might read:

Creating Tests ® Checking Text

t=get_text(74, 165, 169, 182) #Date of Flight:

For more information on the get_text function, refer to the TSL Reference
Guide.

Note: If the text in the rectangle is more than one line long, only a single
line is read—the line that is the farthest to the left. If two or more lines have
the same left margin, the bottom line is read.

Programming get_text

You can also program the get_text statement. You can specify the location
of the string to be read in either of the following ways:

O variable = get_text(x,y);

The x and y coordinates define a single pixel on the AUT window. The
variable is assigned the value of the string closest to this pixel. (The
search radius around the specified point is defined by the
XR_TEXT_SEARCH_RADIUS configuration parameter.)

O variable = get_text ();

When you do not specify a parameter (you leave the parentheses
empty), then the string closest to the location of the mouse pointer is
read. (The search radius is defined by the XR_TEXT_SEARCH_RADIUS
configuration parameter.)

For more information on the get_text function, refer to the TSL Reference
Guide.

Searching for Text

You can use the find_text function to search for text on the screen. This
function performs the reverse of get_text. Whereas get_text accesses any
text found in the designated area, find_text looks for a specified string and
returns its location on the screen. This location is expressed as a pair of x,y
coordinates that delineate a rectangle.

131

XRunner User’s Guide

132

The find_text function must be programmed in the test script, using the
following syntax:

find_text (string, result_array, X, Y1, X2, Y5);

In the following example, the find_text function locates the calculator
application. If the string”calculator” is found (the return value of the
function is 0), then the application is opened by clicking its icon and a
calculation is performed. If the calculator is not found, a message is sent to
the test execution report.

call init_test();

static coord_array[];

if (find_text("calculator",coord_array,0,0,100,1000))
report_msg ("Calculator not found");

else {

Calculate x coordinate of the icon.
x_coord = (coord_array [1] + coord_array [3])/2;

Calculate y coordinate of the icon.
y_coord = (coord_array [2] + coord_array [4])/2;

Move locator to calculator icon.
move_locator_abs (x_coord, y_coord);

Open calculator.
mtype ("<kLeft>-<kLeft>+<kLeft>-<kLeft>+");
call calculator_test ();

Note: to boost XRunner’s ability to read text, keep the search area defined
for find_text to a minimum.

For more information on the find_text function, refer to the TSL Reference
Guide.

Creating Tests ® Checking Text

Moving the Pointer to a String

The move_locator_text function searches for the specified string in the
indicated area of the screen. The position of the string is specified in terms
of the rectangle that encloses it. Once the text is located, the screen pointer
is moved to the center of this rectangle.

The move_locator_text function has the following syntax:

move_locator_text (string, search_area [, x_shift, y_shift]);

In the following example, move_locator_text is used to move the mouse
pointer to the appropriate edit fields in a form used to copy files.

open "Copy" form and move pointer 30 pixels left of the center of the rectangle
and click

call open_copy_form ();

move_locator_text ("From", 0, 0, 100, 100, 30, 0);

click ("Left");

type source file name and move pointer 40 pixels left of the center of the
rectangle and click

type (source_filename);

move_locator_text ("To", 0, 0, 100, 100, 40, 0);

click ("Left");

type destination file name
type (dest_filename);

confirm copying and close form
type ("<kReturn>");

For more information on the move_locator_text function, see the TSL
Reference Guide.

Clicking on a Specified Text String

The click_on_text function searches for a specified string in the indicated
area of the screen, moves the screen pointer to the center of the string, and
enters a sequence of mouse button clicks.

The click_on_text function has the following syntax:

133

XRunner User’s Guide

click_on_text (string, search_area [,"click_sequence "]);

In the following example, click_on_text is used to delete a group of files in
a file manager application.

call open_file_manager();

select first file to be deleted
click_on_text ("cost_001_ dat", 20, 30, 220, 130, "Left");

select shift and last file to be deleted, to select a group
click_on_text ("cost_007_dat", 20, 30, 220, 130, "Left");

open the "File" menu
click_on_text ("File", 20, 30, 220, 130, "Left");

select "Delete"” from the menu
click_on_text ("Delete", 20, 30, 220, 130, "Left");

confirm deletion (click "OK" in the dialog box)
click_on_text ("OK", "Full_screen", "Left");

For more information on the click_on_text function, see the TSL Reference
Guide.

Comparing Text

134

The compare_text function compares two strings, ignoring any specified
differences. It may be used in conjunction with the get_text function, or
separately.

The compare_text function has the following syntax:

variable = compare_text (strl, str2 [,charsl, chars2]);

The compare_text function returns 1 when the compared strings are
considered the same, and O when the strings are considered different. For
example, a portion of your test script compares the text string “File”
returned by the get_text function. Because the lowercase “1” character has
the same shape as the uppercase “I”, you specify that these two characters be
ignored.

Creating Tests ® Checking Text
t = get_text (10, 10, 90, 30);

if (compare_text (t, "File", "I", "I"))
move_locator_abs (10, 10);

135

XRunner User’s Guide

136

13

Synchronizing Test Execution:
Context Sensitive Testing

Synchronization compensates for inconsistencies in the performance of
your application during a test run. By inserting a synchronization point in
your test script, you can instruct XRunner to suspend the test run and wait
for a visual cue to be displayed before resuming execution.

This chapter describes:

O Waiting for Window and Object Bitmaps
O Waiting for Area Bitmaps
O Waiting for Attribute Values

About Synchronizing Test Execution

Applications do not always respond to user input at the same speed from
one test run to another. A synchronization point in your test script tells
XRunner to suspend test execution until the application under test is ready
and then to continue the test.

For example, suppose that when testing a drawing application you want to
import a bitmap from a second application and then rotate it. A human user
knows to wait for the bitmap to be fully redrawn before trying to rotate it.
XRunner, however, requires a synchronization point in the test script after
the import command and before the rotate command. Each time the test is
run, the synchronization point tells it to wait for the import command to be
completed before rotating the bitmap.

137

XRunner User’s Guide

You can synchronize your test on a window or GUI object in your
application, or on any rectangular area of the screen that you select. To
create a synchronization point, you select the Wait Bitmap command from
the Create menu and indicate a bitmap area or object in the application
under test. XRunner inserts a synchronization point in the script, captures
an image of the specified bitmap or object, and stores it in the expected
results directory (exp). The synchronization point appears as a
win_wait_bitmap or obj_wait_bitmap statement in the test script. When
you run the test, XRunner suspends test execution and waits for the
expected bitmap to appear. It then compares the current actual bitmap with
the expected bitmap captured earlier. When the bitmap appears, test
execution resumes.

If you are manually programming a test, you can also use the Analog
function wait_window to wait for a bitmap. For more information see the
TSL Reference Guide. Note that some platforms and applications work with
bitmaps that are not drawn with Xlib calls. For these cases, XRunner allows
you to use your own utilities for capturing, verifying, and displaying
bitmaps. For more information, see Appendix C, “External Utilities for
Bitmap Capture/Check/Display.”

XRunner also synchronizes your test when working in Analog mode. For
more information, see Chapter 14, “Synchronizing Test Execution: Analog
Testing.”

Waiting for Window and Object Bitmaps

138

You can create synchronization points that wait for window or object
bitmaps to appear in the application under test. During a test run, XRunner
suspends test execution until the specified bitmap is redrawn, and then
compares the current bitmap with the expected one captured earlier. If the
bitmaps match, test execution proceeds. In the event of a mismatch,
XRunner displays an error message (when the XR_MISMATCH_BREAK
configuration parameter is set to on. For more information, see Chapter 33,
“Changing System Defaults.”)

If the window or object you capture has a name that varies from run to run,
you can define a regular expression in the physical description of a window
or object in the GUI map. This instructs XRunner to ignore all or part of the

Creating Tests ® Synchronizing Test Execution: Context Sensitive Testing

name. For more information, refer to Chapter 5, “Editing the GUI Map” and
Chapter 23, “Using Regular Expressions.”

During recording, when you capture an object in a window other than the
active window, XRunner automatically generates a set_window statement.

Waiting for Window Bitmaps

To insert a synchronization point for a window bitmap:

Select Wait Bitmap/Window from the Create menu. If you are recording in
Analog mode, press the WAIT BITMAP softkey. The mouse pointer changes
into a pointing hand.

Point to the window you want to capture and click the left mouse button.
XRunner captures the bitmap and generates a wait_bitmap statement in
the test script.

The win_wait_bitmap statement has the following syntax:

win_wait_bitmap (object, image, time);

For example, when you click on the Flight Reservation window, the
resulting statement might be:

win_wait_bitmap ("Flight Reservation", "Img2", 1);

For more information on the win_wait_bitmap function, see the TSL
Reference Guide.

Waiting for Object Bitmaps
To insert a synchronization point for an object bitmap:

Select Wait Bitmap/Object from the Create menu. The mouse pointer
changes into a pointing hand.

Point to the object you want to capture and click the left mouse button.
XRunner captures the bitmap and generates a wait_bitmap statement in
the test script.

The obj_wait_bitmap statement has the following syntax:

obj wait_bitmap (object, image, time);

139

XRunner User’s Guide

If you click on the Flights button in the Flight Reservation window, the
resulting statement might be:

obj_wait_bitmap ("oiFlightsPB", "Imgl", 1);

For more information on the win_wait_bitmap function and
obj_wait_bitmap function, see the TSL Reference Guide.

Note: The execution of the win_wait_bitmap and the obj_wait_bitmap
functions is affected by the current values specified for the XR_RETRY_DELAY,
XR_TIMEOUT, XR_MIN_DIFF, XR_MOVE_WIN and XR_RAISE_WINDOWS
configuration parameters. For more information on configuration
parameters and how to modify them, see Chapter 15, “Enhancing Window
Comparison and Synchronization.”

Waiting for Area Bitmaps

140

You can use a synchronization point to have XRunner wait for a selected
area bitmap in your application. The selected area may be any size; it may be
part of a single object or window, or it may intersect several objects or
windows.

To select an area bitmap, you use a crosshairs pointer to define a rectangle
around the area. XRunner defines the rectangle using the coordinates of its
upper left and lower right corners. These coordinates are relative to the
upper left corner of the object or window within which the selected area is
located. If the selected area intersects several objects within a window, its
coordinates are relative to the window. If the selected area intersects several
windows, or is part of a window with no title (a popup menu, for example),
its coordinates are relative to the entire screen, or the root window.

During a test run, XRunner suspends test execution until the specified
bitmap is displayed. It then compares the current bitmap with the expected
bitmap. If the bitmaps match, the operation was successful and test
execution proceeds. In the event of a mismatch, XRunner displays an error

Creating Tests ® Synchronizing Test Execution: Context Sensitive Testing

message (when the XR_MISMATCH_BREAK configuration parameter is set to
on). For more information, see Chapter 33, “Changing System Defaults.”)

To define a synchronization point for an area bitmap:

Select the Wait Bitmap > Area command from the Create menu. If you are
recording in Analog mode, press the WAIT WINDOW (AREA) softkey. The
mouse pointer changes into a crosshairs pointer.

Use the crosshairs pointer to mark the area to be captured. Press the left
mouse button and drag the mouse until a rectangle encloses the area.
Release the mouse button.

You can preview the area that will be captured by pressing the middle mouse
button.

The selected region bitmap coordinates and dimensions are displayed, as is
the window name.

Press the right mouse button to complete the operation. XRunner captures
the bitmap and generates a win_wait_bitmap or obj_wait_bitmap
statement in your test script.

The obj_wait_bitmap statement for a selected area bitmap has the
following syntax:

obj_wait_bitmap (object, image, time, X, y, width, height);

The win_wait_bitmap statement for a selected area bitmap has the
following syntax:

win_wait_bitmap (window, image, time, x, y, width, height);

For example, suppose you are working with an application that downloads
complex bitmaps from your hard disk. You insert a synchronization point in
order to wait for a selected area bitmap to appear.

XRunner generates the following statement:

win_wait_bitmap ("Graph", "Img6", 30, 25, 25, 75, 60);

For more information on the win_wait_bitmap function and
obj_wait_bitmap function, see the TSL Reference Guide.

141

XRunner User’s Guide

Note: The execution of the win_wait_bitmap and the obj_wait_bitmap
functions is affected by the current values specified for the XR_RETRY_DELAY,
XR_TIMEOUT, XR_MIN_DIFF, XR_MOVE_WIN and XR_RAISE_WINDOWS
configuration parameters. For more information on configuration
parameters and how to modify them, see Chapter 15, “Enhancing Window
Comparison and Synchronization.”

Waiting for Attribute Values

142

You can create a synchronization point that instructs XRunner to wait for a
specified attribute value to appear in a GUI object. During a test run,
XRunner suspends test execution until the attribute value is detected, and
then continues the test. For example, you can have XRunner wait for a
button to become enabled or for an item to be selected in a list.

To create a synchronization point that waits for an attribute value, add one
of the following functions to the test script: edit_wait_info,
menu_wait_info, win_wait_info, list_wait_info, static_wait_info,
obj_wait_info, button_wait_info, scroll_wait_info.

For example, button_wait_info has the following syntax:

button_wait_info (button, attribute, value, time);

The button parameter is the name of the button. The attribute parameter is
any attribute that is used by the button object class. The value parameter is
the attribute value that must appear before the test run can continue. The
time parameter is the maximum number of seconds XRunner should wait,
added to the timeout value defined for the XR_TIMEOUT configuration
parameter.

Suppose while testing the Flight Reservation application you order a plane
ticket by filling in passenger and flight information and pressing an Insert
button. The application takes a few seconds to process the order. Once the
operation is completed, you press the Delete button to delete the order.

Creating Tests ® Synchronizing Test Execution: Context Sensitive Testing

In order for the test to run smoothly, a button_wait_info statement is
needed in the test script. This function tells XRunner to wait up to 10
seconds (plus the timeout interval) for the Delete button to become enabled.
This ensures that the test does not attempt to delete the test while the
application is still processing the order. The following is a segment of the
test script:

button_press ("Insert");
button_wait_info ("Delete","enabled",0,"10");
button_press ("Delete");

143

XRunner User’s Guide

144

14

Synchronizing Test Execution:
Analog Testing

O o o o

Synchronizing your test ensures that during a test run, XRunner checks the
position of the window and relocates it if necessary and delays test
execution until the window is redrawn.

This chapter explains how to synchronize test execution during Analog
testing. You can also synchronize test execution when working in Context
Sensitive mode. For more information, see Chapter 13, “Synchronizing Test
Execution: Context Sensitive Testing.”

Note that some platforms and applications work with bitmaps in non-
standard formats. For these cases, XRunner allows you to use your own
utilities for capturing, verifying, and displaying bitmaps. For more
information, see Appendix C, “External Utilities for Bitmap
Capture/Check/Display.”

This chapter describes:

Waiting for Window Bitmaps
Waiting for Area Bitmaps
Windows with Varying Names

Waiting for Windows or Selected Regions to be Redrawn

145

XRunner User’s Guide

About Synchronizing Tests in Analog Testing

146

In the X Windows environment, applications do not always respond at the
same speed: the time that elapses until a window is displayed may vary from
one execution to another. In addition, windows are likely to open at varying
screen locations during each run.

By defining synchronization points in your test script, you instruct XRunner
to pause test execution until a given window is completely displayed and
repositioned in a specific location. If the window appears within the
specified timeout, test execution proceeds.

Suppose while testing a drawing application, you wish to import a bitmap
from a second application and, once it is fully reproduced, rotate it. A
synchronization point inserted after the import command instructs
XRunner to capture the given bitmap and store it in the expected results
directory (exp) of your test. Then, during test a test run, XRunner locates the
window in the same position on the screen and waits for the bitmap to be
redrawn completely. XRunner compares the current bitmap displayed with
the expected bitmap stored earlier. If the bitmap is displayed completely
within the specified timeout, XRunner sends the rotation command to the
application and test execution proceeds.

While working in Analog mode, you can synchronize tests by using the
following softkeys:

The WAIT WINDOW softkey instructs XRunner to wait for a window bitmap to
be redrawn.

The WAIT PARTIAL WINDOW softkey instructs XRunner to wait for a selected
area bitmap to be redrawn.

You may want to suspend test execution only long enough for a window
bitmap or selected region bitmap to be redrawn—without evaluating its
contents. In such instances, you can define synchronization points by using
the following softkeys:

The WAIT REDRAW softkey instructs XRunner to wait for a window to be
redrawn; the contents of the window are disregarded.

The WAIT REDRAW PARTIAL WINDOW softkey instructs XRunner to wait for a
partial window to be redrawn; the contents of the window are disregarded.

Creating Tests ¢ Synchronizing Test Execution: Analog Testing

All four softkeys generate a wait_window statement in the test script. The
parameters included in the statement vary, according to the softkey used
and the bitmap captured.

While working in Context Sensitive mode, you may also synchronize test
execution. For more information see “Chapter 13, “Synchronizing Test
Execution: Context Sensitive Testing.”

Waiting for Window Bitmaps

You can instruct XRunner to suspend test execution in order to wait for a
window bitmap to be displayed. You do this by using the wAIT WINDOW
softkey to insert a synchronization point in your test script.

To define a synchronization point for a window bitmap:
1 Select Record-Analog from the Create menu to start recording.
2 Select a window in the application under test.
3 Press the wAIlT WINDOW softkey. A wait_window statement is generated in

your test script. After you hear a second beep, you can continue recording.

The wait_window statement for a window bitmap has the following
syntax:

wait_window (time, image, window [, width, height , X, y]);

For example, if you place the mouse pointer in the Flight Reservation
window of the and press the wAIT WINDOW softkey, the resulting
wait_window statement might be:

wait_window (20, "Win2", "Flight Reservation", 800, 600, 100, 120);

For more information on the wait_window function, refer to the TSL
Reference Guide.

147

XRunner User’s Guide

Note: The execution of the wait_window function is affected by the current
values specified for the XR_RETRY_DELAY, XR_TIMEOUT, XR_MIN_DIFF,
XR_MOVE_WINDOWS and XR_RAISE_WINDOWS configuration parameters. For
more information on configuration parameters and how to modify them,
see Chapter 15, “Enhancing Window Comparison and Synchronization.”

Waiting for Area Bitmaps

148

You can use a synchronization point to have XRunner wait for a selected
area bitmap in your application. You do this by using the WAIT PARTIAL
WINDOW softkey to insert a wait_window statement in your test script. This
can be particularly useful when capturing information such as an icon's title
or a menu extending beyond the window border.

The selected area bitmap you capture may be any size; it may be part of a
window or intersect several windows. XRunner defines the area using the
coordinates of its upper left (relx1, rely1) and lower right (relx2, rely2)
corners. These coordinates are relative to the upper left corner of the
window within which the selected area is located. However, if the selected
area intersects several windows, or is part of a window with no title (a popup
menu, for example), its coordinates are relative to the entire screen.

To define a synchronization point for an area bitmap:

1 Select Record-Analog from the Create menu to start recording.

Press the WAIT PARTIAL WINDOW softkey. Recording is temporarily halted and
the pointer turns into a crosshairs pointer.

Use the crosshairs pointer to enclose the area to be captured: press and hold
down the left mouse button and drag the mouse until a rectangle encloses
the desired area. Release the mouse button.

You may preview the area that will be captured by pressing the middle
mouse button. The area bitmap coordinates and dimensions are displayed,
as well as the window name.

Creating Tests ¢ Synchronizing Test Execution: Analog Testing

5 Press the right mouse button to complete the operation. Note that a
wait_window statement is generated in your test script. The pointer is
restored to its position prior to pressing the softkey and recording resumes.

The wait_window statement for a selected area bitmap has the following
syntax:

wait_window (time, image, window, width, height, x, y, relx1, relyl, relx2, rely2);

For instance, when you press the WAIT PARTIAL WINDOW softkey and define
an area within the Flight Reservation window, the resulting wait_window
statement might be:

wait_window (1, "Img1", "Flight Reservation", 800, 600, 100, 120, 10, 10, 50,
50);

For more information on the wait_window function, refer to the TSL
Reference Guide.

Note: The execution of the wait_window function is affected by the current
values specified for the XR_RETRY_DELAY, XR_TIMEOUT, XR_MIN_DIFF,
XR_MOVE_WINDOWS and XR_RAISE_WINDOWS configuration parameters. For
more information on configuration parameters and how to modify them,
see Chapter 15, “Enhancing Window Comparison and Synchronization.”

Windows with Varying Names

If the window you wait for has a name that varies from run to run, you can
use a regular expression in the window parameter of the wait_window
statement to instruct XRunner to ignore all or part of the name. For more
information on using regular expressions, see Chapter 23, “Using Regular
Expressions”.

149

XRunner User’s Guide

Waiting for Windows or Selected Regions to be Redrawn

150

You may want XRunner to suspend test execution only long enough for a
window with a specified name and dimensions to be redrawn—without
evaluating its contents. For synchronizing your test in this manner, you use
the WAIT REDRAW softkey and the WAIT REDRAW PARTIAL WINDOW softkey.

Wait Redraw Softkey

Suppose that while testing your application, you have to display a bitmap
which changes with each run. Pressing the WAIT REDRAW softkey instructs
XRunner to wait for the window to be redrawn without evaluating the
actual object. The wait_window statement generated has the following
syntax:

wait_window (35, ", "Flight Reservation",800, 600, 100, 120);

Note that the image parameter is left empty—reflecting the fact that
XRunner does not store a bitmap; only data related to the window is
recorded in the test script. During test execution, XRunner uses this data to
identify and position the window to be redrawn before continuing
execution but the contents of the window are not evaluated.

Often, the window you want XRunner to wait for is a menu or some other
unnamed window (having no banner). Pressing the WAIT REDRAW softkey
generates a wait_window statement with the following syntax:

wait_window (35);

In this case only the time parameter is assigned a value. During test
execution, XRunner waits for a window to be displayed beneath the mouse
pointer and to be completely redrawn before continuing execution.

Wait Redraw Partial Window Softkey
The WAIT REDRAW PARTIAL WINDOW softkey instructs XRunner to wait for a
area bitmap to be redrawn, without evaluating its contents.

By using this softkey, you temporarily suspend recording. The pointer
changes to a crosshairs pointer with which you can define a rectangle

Creating Tests ¢ Synchronizing Test Execution: Analog Testing
around the desired bitmap. The wait_window statement generated has the
following syntax.

wait_window (35, ", "Flight Reservation", 800, 600, 100, 120);

XRunner stores the size and position of the rectangle you define, but does
not capture the enclosed bitmap. During test execution, XRunner identifies
and repositions the window containing the selected region bitmap to be
redrawn, but the bitmap itself is not evaluated.

For details on how to define a area bitmap, refer to the section on the wAIr
WINDOW AREA softkey earlier in this chapter.

151

XRunner User’s Guide

152

15

Enhancing Window Comparison and
Synchronization

Configuration parameters can be adjusted in order to fine-tune window
comparison and synchronization.

This chapter describes:

O How Configuration Parameters Affect Window Functions
O Adjusting the XR_TIMEOUT Parameter
O Setting the Delay

About Adjusting Configuration Parameters

The execution of the win_check_bitmap, obj_check_bitmap,
check_window and wait_window functions is affected by the values
specified for six configuration parameters: XR_TIMEOUT, XR_SCR_REDRAW,
XR_RETRY_DELAY, XR_MOVE_WINDOWS, XR_RAISE_WINDOWS, and XR_MIN_DIFF.
Some “problematic” windows, such as large windows that are redrawn
slowly, require the adjusting of one or more of these variables in order to
ensure reliable test execution.

The value of configuration parameters can either be modified using the
Configuration form or from within the test script by using a setvar
statement. For a detailed description of each of these parameters and how
they can be set, see Chapter 33, “Changing System Defaults.”

The following examples demonstrate how configuration parameters affect
window functions. For each example, assume that the test is being executed

153

XRunner User’s Guide

in the default Verify mode and that the following values are assigned to
XRunner configuration parameters:

Configuration Parameter Value
XR_TIMEOUT 10 (seconds)
XR_RETRY_DELAY 2 (seconds)
XR_SCR_REDRAW 5 (seconds)
XR_MOVE_WINDOWS "on"
XR_RAISE_WINDOWS "on"
XR_MIN_DIFF 15 (pixels)

How Configuration Parameters Affect Window Functions

154

The following example illustrates how various configuration parameters
affect the execution of a check_window function.

check_window (7, "Win_3", "calctool", 400, 300, 120, 180);

When this statement is executed, XRunner first sets a time limit of 17
seconds for the check_window operation. (This is the value of the time
parameter (7) plus the value set for the XR_TIMEOUT configuration parameter
(10).) It then waits for a window named calctool having a width of 400 and
a height of 300 pixels.

Suppose that the specified window takes 3 seconds to come up on the
screen. When it appears, XRunner repositions the window so that its upper
left corner is located at screen coordinates 120, 180. XRunner then waits 5
seconds (the value set for the XR_SCR_REDRAW configuration parameter) to
allow the entire window to be fully redrawn.

At this point, 14 seconds still remain before a window comparison is made.
(Note that the 5 second redraw interval is not part of the time remaining to
complete the search.)

XRunner now moves on to the evaluation stage of the algorithm: The
window is sampled every 2 seconds (the value of the XR_RETRY_DELAY

Creating Tests ¢ Enhancing Window Comparison and Synchronization

configuration parameter) and with each sampling, the displayed window
bitmap is compared to the bitmap Win_3, stored in the current expected
results directory. Up to 15 pixels may differ between the two bitmaps (the
value of the XR_MIN_DIFF configuration parameter is 15). If a matching
bitmap does not appear within 14 seconds, XRunner captures the current
window and stores it as the actual bitmap in the current results directory. In
addition, the differing pixels are captured and are stored as the difference
bitmap.

Adjusting the XR_TIMEOUT Parameter

Drawing applications such as Icon Editor allow you to enlarge bitmaps by
issuing a “zoom” command. When you give this command, the program
performs a complex and lengthy calculation, then gradually displays the
enlarged bitmap. The content of the window changes continuously until
the zoom operation is completed. In the test you are creating, you may want
execution to wait until the final zoomed bitmap is displayed before entering
any further input to the AUT.

In this situation, when recording the test, move the pointer into the
window after the zoomed bitmap is displayed and press the WAIT WINDOW
softkey. A statement like the following is generated in the TSL script:

wait_window (56, "Win_12", "Icon Editor", 800, 600, 100, 100);

When the test is played back, this statement will fail if the value recorded
for the time parameter (56 seconds) is too small to allow the desired bitmap
to be fully displayed.

To ensure that the screen has sufficient time to come up, increase the
specified value of the XR_TIMEOUT parameter to 100 seconds.

Note that the setting for the XR_TIMEOUT parameters defines the maximum
interval XRunner waits before it continues to the next statement in the test
script; if the expected bitmap is found before the time has lapsed, test
execution continues immediately.

155

XRunner User’s Guide

Setting the Delay

156

Suppose that you want to wait only for a window in the Icon Editor
application to be redrawn. Because the window is large, you do not want to
capture its bitmap; in addition, the contents of the window may change
with each run. In this situation, you can use the WAIT REDRAW softkey to
produce the following type of statement:

wait_window (150, ", "Icon Editor", 900, 700, 125, 116);

During the test run, XRunner may sample the window twice and then move
on to the next line before the window is redrawn. This occurs if the intervals
between consecutive samplings are too short. For example, if the redraw
starts only after 20 seconds and XRunner samples the window every 2
seconds, then after the first two samplings XRunner concludes that the
window is stable and is completely redrawn.

XRunner allows you to adapt the script to the behavior of a specific window
by controlling the XR_RETRY_DELAY configuration parameter. For a window
which is redrawn slowly, you can use the getvar and Setvar functions from
within the test script to temporarily increase the delay. For example:

old_delay = getvar("XR_RETRY_DELAY");

sample window every 30 seconds
setvar("XR_RETRY_DELAY", 30);
wait_window(150,"Icon Editor", 900, 700, 125, 116);

revert to previous value
setvar("XR_RETRY_DELAY", old_delay);

In the above example, XRunner samples the window every 30 seconds. This
is enough time for a change to appear in the window. XRunner therefore
concludes that the window is redrawn after only two consecutive bitmaps,
30 seconds apart, are the same.

Note: If the XR_RETRY_DELAY configuration parameter is set to 0, bitmap
checking is disabled.

16

Handling Unexpected Events and Errors

You can instruct XRunner to handle unexpected events and errors that
occur in your testing environment during a test run.

This chapter describes:

O Handling Popup Exceptions
O Handling TSL Exceptions
O Handling Object Exceptions

About Handling Unexpected Events and Errors

Unexpected events and errors during a test run can disrupt your test and
distort test results. This is a problem, particularly when running batch tests
unattended: the batch test is suspended until you perform the action
needed to recover.

Using exception handling, you can instruct XRunner to detect an unexpected
event when it occurs and act to recover the test run. For example, you can
instruct XRunner to detect a “Printer out of paper” message and call a
handler function. The handler function recovers the test run by clicking the
OK button to close the message.

157

XRunner User’s Guide

158

To use exception handling, you must implement and activate it.

Implement
Exception Handling
Activate
Define Exception B> | Exception Handling

Define Handler Function

Implement exception handling: Describe the event or error you want
XRunner to detect, and define the actions it will perform in order to resume
test execution. To do this, you define the exception and define a handler
function.

Activate exception handling: Instruct XRunner to look for any occurrence
of the exception you defined.

Normally, you implement and activate exception handling using the
Exceptions form. Alternatively, you can program exception handling in
your test script using TSL statements. Both methods are described in this
chapter.

XRunner enables you to handle the following types of exceptions:

Popup exceptions: Instruct XRunner to detect and to handle the
appearance of a specific window.

TSL exceptions: Instruct XRunner to detect and to handle TSL functions
that return a specific error code.

Object exceptions: Instruct XRunner to detect and to handle a changed
attribute for a specific GUI object.

Creating Tests ¢ Handling Unexpected Events and Errors

Handling Popup Exceptions

Test execution is often disrupted by a window that pops up unexpectedly
during a test run, such as a message box indicating that the printer is out of
paper. Test execution cannot continue until you close the window.

A popup exception instructs XRunner to detect a specific window that may
pop up during a test run and to recover test execution, for example by
clicking an OK button to close a window.

Defining Popup Exceptions
You use the Popup Exception form to define popup exceptions.

To define a popup exception:

1 Select Tools > Exception Handling to open the Exceptions form.

Exception Type: ‘ ? Popup ? TsL
L T

Display lists of existing exceptions
Object Exception List:

news_win_excp Hewr... F

Lets you define a new exception

Lets you modify the highlighted exception

Deletes the highlighted exception

Displays the names of existing exceptions

Closes the form

Exception is OFF Indicates if handling is active for the
highlighted exception

159

XRunner User’s Guide

160

2 Select Popup from the Exception Type list. Click New to open the Popup
Exception form.

Exception Hame: | winl_excp ——Exception name

I—— Window name

Window Hame: I Flight Reservation E = F —— Lets you insert the name of a
window by clicking on it

—— Displays the user-defined Function

Name field.

Handler Function Action:

‘ 4 Hit "Retum” ? Press "Cancel" ? Press "OK" ‘

‘ ‘ Define default handler actions

I% Activate by Default

Activates handling of the exception

- at all times.

3 In the Exception Name field, enter a new name.

4 In the Window Name field, enter the name of the popup window.

Type in the name of the window or click the pointing hand and click on the
window to insert the name of the window.

You can enter the window'’s title or its logical name. If the window is not in
the GUI map, XRunner assumes that the name you have specified is the
window’s title. You can also specify a regular expression.

Choose a handler function: select one of the defaults (click OK, click Cancel,
or hit the Return key), or press the User Defined button to specify a user-
defined handler. The form changes to display the user-defined Handler
Function Name field.

If you specify a user-defined handler function that is undefined or in an
unloaded compiled module, the Handler Function Definition form opens
automatically, displaying a handler function template. For more
information on defining handler functions, see “Defining Handler
Functions for Popup Exceptions” on page 161.

To make exception handling active at all times, click the Activate by Default
checkbox.

Creating Tests ¢ Handling Unexpected Events and Errors

7 Click OK to complete the definition and close the form. The new exception
appears in the Exceptions List in the Exceptions form. If the specified
window is not in the GUI map, XRunner adds it the map.

XRunner activates handling and adds the new exception to the list of
default popup exceptions in the Exceptions form. Default exceptions are
defined by the XR_EXCP_POPUP configuration parameter in the .xrunner
configuration file.

Instead of using the Popup Exception form, you can program the
define_popup_exception TSL function in your test script. Note that
exceptions you define using TSL are valid only for the current XRunner
session. For more information on the define_popup_exception function,
refer to the TSL Reference Guide.

Note: If you are running the X11 NeWS X server, XRunner may take several
seconds to detect popup exceptions. To overcome this problem, define an
object exception for the window, or use a different X server. (The MIXTrap and
MIXsun X servers are supplied with XRunner.)

Defining Handler Functions for Popup Exceptions

The handler function is responsible for recovering test execution. When
XRunner detects a specific window, it calls the handler function. You
implement this function to respond to the unexpected event in a way that
meets your specific testing needs.

When defining an exception from the Popup Exception form, you can
specify one of two types of handler functions:

O Default actions: XRunner presses the OK or Cancel button in the popup
window, or hits the Return key on the keyboard. To select a default handler,
click the appropriate button in the form.

O User-defined handler: If you prefer, specify the name of your own handler.
Click the User Defined button and enter a name in the Function Name field.

If you specify a user-defined handler which is either undefined or in an
unloaded compiled module, XRunner automatically displays a template in

161

XRunner User’s Guide

162

the Handler Function Definition form. You can use the template to help you
create a handler function. The handler function must receive the
window_name as a parameter.

To define your own handler function using the Handler Function Definition
form:

Define an exception using the Popup Exception form. Specify a new name
for the handler function.

Press OK. The form closes and the Handler Function Definition form opens,
displaying the handler function template.

nner: Handler Function Definiti

Paste Handler Function to Script:
public function 5
my_win_handler {in window)
{
}
B (]
e |

3 Create a function that closes the window and recovers test execution.

4 Press Paste to paste the statements into the XRunner editor. The Handler

Function Definition form closes.

You can further edit the test script if necessary. When you are done, save the
script in a compiled module.

User-defined handler functions must be stored in a compiled module. For
XRunner to call the function, the compiled module must be loaded when
the exception occurs. For more information, see Chapter 21, “Creating
Compiled Modules.”

Creating Tests ¢ Handling Unexpected Events and Errors

In the following example, the handler function is edited to handle an error
message. A Flights Reservation application sometimes displays a “FATAL
DATABASE ERROR” message, often as the result of a faulty database entry.
You can create a handler function that gets the faulty entry number and its
value, and writes the information to the test execution report. Then, it
dismisses the error message.

The script segment below shows how the handler function
(my_win_handler) can be edited in the template:

public function my_win_handler(string win_name)

{

auto order_num;

set_window("Open Order",2);

edit_get_text("Order Value",order_num);
report_msg("'Database error. Order number:" & order_num);
button_press (“OK);

}

Activating Popup Exception Handling
To instruct XRunner to look for any occurrence of the specific window,
exception handling must be activated.

Handling of all exceptions defined by the XR_EXCP_POPUP configuration
parameter is automatically activated when you start XRunner. To activate
exception handling from a test script, use TSL commands, as follows:

To instruct XRunner to begin to detect exceptions, insert the exception_on
TSL function at the appropriate point in your test script.

To instruct XRunner to stop detecting exceptions, use the exception_off
function. Use exception_off _all to stop the detection of all active
exceptions.

For more information on these functions, refer to the TSL Reference Guide.

163

XRunner User’s Guide

Handling TSL Exceptions

A TSL exception enables you to detect and respond to a specific error code
returned during test execution.

Suppose you are running a batch test on an unstable version of your
application. If your application crashes, you want XRunner to recover test
execution.

A TSL exception can instruct XRunner to detect a crash, which is signaled by
an E_APPLICATION_DEAD return value for any function, and to recover test
execution by exiting the current test, restarting the application, and
continuing with the next test in the batch.

Defining TSL Exceptions

You use the TSL Exception Definition form to define, modify and delete TSL
exceptions.

To define a TSL exception:
Choose Tools > Exception Handling to open the Exceptions form.

2 Choose TSL from the Exception Type options box and press New to open
the TSL Exception form.

Runner: TSL Exception

Exception Name: | list_select_excp Exception name

Retun Code: E_ILLEGAL_OPERATION A= Displays a list of return codes
Function Name: list_select_item = Displays a list of TSL functions
Handler Function: I list_item_handler E» Handler function name

‘ Activates handling of the
I Activate by Default exception at all times.

3 In the Exception Name field, enter a new name.

164

Creating Tests ¢ Handling Unexpected Events and Errors

From the Return Code list, select a return code.

5 Select a TSL function from the Function Name list. If you do not specify a

function, or select <<any function>>, XRunner defines the exception for any
TSL function that returns the specified return code.

In the Handler Function field, enter the name of a handler function.

If you specify a handler function that is undefined or resides in an unloaded
compiled module, the Handler Function form opens automatically,
displaying a handler function template. For more information on defining
handler functions, see “Defining Handler Functions for TSL Exceptions” on
page 166.

To make exception handling active at all times, click the Activate by Default
checkbox.

Click OK to complete the definition and close the form. The new exception
appears in the Exceptions List in the Exceptions form.

Once you have defined the exception, XRunner activates handling and adds
the exception to the list of default object exceptions in the Exceptions form.
Default exceptions are defined by the XR_EXCP_TSL configuration parameter
in the .xrunner configuration file.

As an alternative to using the TSL Exception form, you can create a TSL
exception in a test script using the define_TSL_exception function. Note
that exceptions you define using TSL are valid only for the current XRunner
session. For more information on define_TSL_exception, refer to the TSL
Reference Guide.

Note: For all exception types, XRunner does not handle TSL exceptions that
occur within handler functions.

165

XRunner User’s Guide

166

Defining Handler Functions for TSL Exceptions

The handler function is responsible for recovering test execution. When
XRunner detects a specific error code, it calls the handler function. You

implement this function to respond to the unexpected error in the way that
meets your specific testing needs.

If you specify a handler which is either undefined or in an unloaded
compiled module, XRunner automatically displays a template in the
Handler Function Definition form. You can use the template to help you

create a handler function. The handler function must receive the return_code

and the function_name as parameters.

To define a handler function using the Handler Function Definition form:

1 Define an exception using the TSL Exception form. Specify a new name for
the handler function.

2 Press OK. The form closes and the Handler Function Definition form opens,
displaying the handler function template.

Runner: Handler Function Dlefinition

Paste Handler Function to Script:
public function 5
list_item_handler {in rc, in func)
{
}
B (]

3 Create a function that recovers test execution.

4 Press Paste to paste the statements into the XRunner editor. The Handler
Function Definition form closes.

Creating Tests ¢ Handling Unexpected Events and Errors

5 You can further edit the test script if necessary. When you are done, save the
script in a compiled module.

In order for the exception to call the handler function, the compiled
module must be loaded when the exception occurs. For more information,
see Chapter 21, “Creating Compiled Modules.”

The following example uses the Flight Reservation application to
demonstrate how you can instruct XRunner to record a specific event in the
test report. In the application, it is illegal to select an item from the “Fly To:”
list without first selecting an item from the “Fly From:” list.

Suppose that you program a stress test to create such a situation. The test
selects the first item in the “Fly From:” list for every selection from the “Fly
To:” list. If the “Fly From:” list is empty, the command:

list_select_item ("Fly From:","#0");

returns the error code E_ITEM_NOT_FOUND.

You could implement exception handling to identify each occurrence of the
E_ITEM_NOT_FOUND return value for the list_select_item command. You do
this by defining a handler function that reacts by recording the event in the
test report.

Edit the handler function (list_item_handler) in the template as follows:

public function list_item_handler(rc,func_name)

{
report_msg("List Fly From: is empty");

}

Activating TSL Exception Handling

To instruct XRunner to look for any occurrence of the specific window,
exception handling must be activated.

Handling of all exceptions defined by the XR_EXCP_TSL configuration
parameter is automatically activated when you start XRunner.

In addition, you can activate exception handling from a test script using TSL
commands:

167

XRunner User’s Guide

O To instruct XRunner to begin exception detection, insert the exception_on
TSL function in the appropriate point in your test script.

O To instruct XRunner to stop exception detection, use the exception_off
function. Use exception_off _all to stop detection of all active exceptions.

For more information on these functions, refer to the TSL Reference Guide.

Handling Object Exceptions

During testing, unexpected changes can occur to GUI objects in the AUT.
These changes are often subtle but they can disrupt test execution and
distort results.

One example is a change in the color of a button. Suppose that your
application uses a green button to indicate that an electrical network is
closed; the same button may turn red when the network is broken.

You could use exception handling to detect a different color in the button
during the test run, and to recover test execution by calling a handler
function that closes the network and restores the button’s color.

Defining Object Exceptions

You use the Object Exception form to define, modify and delete object
exceptions.

To define an object exception:

1 Select Tools > Exception Handling to open the Exceptions form.

168

Creating Tests ¢ Handling Unexpected Events and Errors

2 Select Object from the Exception Type list and click New to open the Object
Exception form.

Exception Hame: |:lahel_excp

Window Hame: |EFIight Reservation

Object Name: IIJiFIightSIJStPB E = |>
Attribute: [parent kA Ii
value: |

Handler Function: | label_handler

— Exception name

—Lets you insert the name of the
window

L—Lets you insert the name of the
object

——Displays a list of attributes

[—Attribute value

I——Handler function name

= Activate by Default

Activates handling of the exception
at all times.

3 In the Exception Name field, type a new name.

object is found.

In the Window Name field, type the name of the window in which the

In the Object Name field, enter the name of the object. Type the name of

the window and the object, or press the pointing hand button and click on
the object. The names of the object and its parent window appear in the

field.

Note that for an object exception, the object and its parent window must be
in the loaded GUI map when exception handling is activated.

From the Attribute list, select the attribute for which you are defining the

object exception. You can also specify any Motif or Xt resource as an

attribute.

In the Value field, type in a value for the attribute you have selected. If you

do not specify a value, the exception will be defined for any change from

the current attribute value.

Note that the attribute you specify for the exception cannot appear in the
object’s physical description. If you attempt to specify such an attribute,

169

XRunner User’s Guide

170

10

XRunner will display an error message. To work around the problem,
modify the object’s physical description.

Enter the name of the handler function.

If you specify a handler function that is undefined or in an unloaded
compiled module, the Handler Function form opens, displaying a handler
function template. For more information on defining handler functions, see
“Defining Handler Functions for Object Exceptions” on page 170.

To make exception handling active at all times, click the Activate by Default
checkbox.

If you have not specified a value for the attribute, ensure that the object is
displayed when you press the OK button. You can activate exception
handling only if XRunner can learn the current value of the attribute.

Click OK to complete the definition and close the form. The new exception
appears in the Exceptions List in the Exceptions form.

Once you have defined the exception, XRunner activates handling and adds
the exception to the list of default object exceptions in the Exceptions form.
Default exceptions are defined by the XR_EXCP_OBJ configuration variable in
the .xrunner configuration file.

As an alternative to using the Object Exception form, you can create an
object exception in a test script using the define_object_exception
function. Note that exceptions you define using TSL are valid only for the
current XRunner session. For more information on
define_object_exception, refer to the TSL Reference Guide.

Defining Handler Functions for Object Exceptions

The handler function is responsible for recovering test execution. When
XRunner detects a changed attribute, it calls the handler function. You
implement this function to respond to the unexpected event in a way that
meets your specific testing needs.

If you specify a handler function which is either undefined or in an
unloaded compiled module, XRunner automatically displays a template in
the Handler Function Definition form. You can use the template to help you
create a handler function. The handler function must receive the window,
object, attribute and value as parameters.

Creating Tests ¢ Handling Unexpected Events and Errors

Note that the first command in the template is exception_off. This is
because an object exception does not detect the actual change in the
specified object attribute; rather, it detects a changed state in the specified
object attribute. The handler function must deactivate exception handling
as soon as the function begins to execute. If not, the exception will
immediately reoccur, calling the handler function endlessly.

To define a handler function using the Handler Function Definition form:
Define an exception using the Object Exception form.

2 Press OK. The form closes and the Handler Function Definition form opens,
displaying the handler function template.

Runner: Handler Function Definiti

Paste Handler Function to Script:

Jublic function i
label_handler {in win, in obj, in attr, in val})

ignore this exception while it’s handled:

exception_off({"label_excp"); Deactivates exception
handling immediately
if the value of “attr’ no longer equals “val’: after detection

exception_on("label_excp"});

}

Paste | cancel |

3 Create a function that recovers test execution.
4 Press Paste to paste the statements into the XRunner editor. The form closes.

5 You can further edit the test script if necessary. When you are done, save the
script in a compiled module. To enable exception detection, ensure that you
load the compiled module before test execution.

Handler functions must be stored in a compiled module. For XRunner to
call the handler function, the compiled module must be loaded at the
moment the exception occurs. For more information, see Chapter 21,
“Creating Compiled Modules.”

171

XRunner User’s Guide

172

The labels of GUI objects can become distorted during testing, often as a
result of memory management problems. You could, for instance,
implement exception handling to take care of such irregularities in the
Flights application.

The handler function called might send the unexpected event to a test
report, close and restart your application, then exit the current test and
continue to the next test in the batch. To do this, you would edit the
handler function (label_handler) in the template as follows:

public function label_handler(in win, in obj, in attr, in val)

{

#ignore this exception while it is handled:
exception_off("label_except");
report_msg("Label has changed");
menu_select_item (“File;Exit”);

system (“flights&");

#if the value of "attr" no longer equals "val":
exception_on("label_except");
texit;

}

Activating Object Exception Handling

To instruct XRunner to look for any occurrence of a changed object
attribute, exception handling must be activated.

Handling of all exceptions defined by the XR_EXCP_OBJ configuration
parameter is automatically activated when you start XRunner.

You can activate exception handling in a test script using TSL commands:

To instruct XRunner to begin detecting exceptions, insert an exception_on
statement in the appropriate point in your test script.

To instruct XRunner to stop detecting exceptions, use the exception_off
function. Use exception_off _all to stop detection of all active exceptions.

For more information on these functions, refer to the TSL Reference Guide.

Part IV

Programming with TSL

17

Enhancing Your Test Scripts with
Programming

O oo oo oo oo

XRunner test scripts are composed of statements coded in Mercury
Interactive’s Test Script Language (TSL). This chapter provides a brief
introduction to TSL and shows you how to enhance your test scripts using a
few simple programming techniques.

This chapter describes:

Statements

Comments and White Space
Constants and Variables

Performing Calculations

Creating Stress Conditions
Decision-making

Sending Messages to a Report

Starting Applications from a Test Script
Defining Test Steps

About Enhancing Your Test Scripts

When you record a test, a test script is generated in Mercury Interactive’s
Test Script Language (TSL). Each TSL statement in the test script represents
keyboard and mouse input to the application under test.

175

XRunner User’s Guide

176

TSL is a C-like programming language designed for creating test scripts. It
combines functions developed specifically for test creation with general
purpose programming language features such as variables, control-flow
statements, arrays, and user-defined functions. TSL is easy to use because
you do not have to compile. You simply enhance a recorded test script by
typing programming elements into the test window, and immediately
execute the test.

TSL includes four types of functions:

Context Sensitive functions perform specific tasks on GUI objects, such as
pressing a button or selecting an item from a list. Function names reflect the
purpose of the function, for example, button_press and list_select_item.

Analog functions depict mouse clicks, keyboard input, and the exact
coordinates traveled by the mouse.

Standard functions perform general purpose programming tasks, such as
sending messages to a report or performing calculations.

Customization functions allow you to adapt XRunner to your testing
environment.

XRunner includes a visual programming tool which helps you to quickly
and easily add TSL functions to your tests. For more information, see
Chapter 18, “Using Visual Programming.”

This chapter introduces some basic programming concepts and shows you
how to take advantage of a few simple programming techniques in order to
create more powerful tests. For more information on TSL, refer to the TSL
Reference Guide.

Programming with TSL ¢ Enhancing Your Test Scripts with Programming

Statements

When XRunner records a test, each line it generates in the test script is a
statement. A statement is any expression that is followed by a semicolon. A
single statement may continue beyond one line in the test script.

For example:

if (button_check_state("Underline", OFF) == E_OK)
report_msg("Underline checkbox is disabled.");

If you program a test script by typing directly into the test window,
remember to include a semicolon at the end of each statement.

Comments and White Space

When programming, you can add comments and white space to your test
scripts to make them easier to read and understand.

Comments

A comment is a line or part of a line in a test script that is preceded by a
pound sign (#). When you run a test, the TSL interpreter does not process
comments. Use comments to explain sections of a test script in order to
improve readability and to make tests easier to update.

For example:

Open the Open Order window in Flight Reservation application
set_window ("Flight Reservation”, 17);
menu_select_item ("File;Open Order...");

Select the reservation for James Brown

set_window ("Open Order", 18);

button_set ("Customer name", ON);

edit_set ("Value_0", "James Brown"); # Type James Brown
button_press ("OK");

177

XRunner User’s Guide

White Space

White space refers to spaces, tabs, and blank lines in your test script. The
TSL interpreter is not sensitive to white space unless it is part of a literal
string. Use white space to make the logic of a test script clear.

Constants and Variables

Constants and variables are used in TSL to manipulate data. A constant is a
value that never changes. It can be a number, character, or a string. A
variable, in contrast, can change its value each time you run a test.

Variable and constant names can include letters, digits, and underscores (_).
The first character must be a letter or an underscore. TSL is case sensitive,
therefore y and Y are two different characters. Certain words are reserved by
TSL and may not be used as names. For a complete list, refer to the TSL
Reference Guide.

You do not have to declare variables you use outside of function definitions
in order to determine their type. If a variable is not declared, XRunner
determines its type (auto, static, public, extern) when the test is run.

For example, the following statement uses a variable to store text that
appears in an edit field.

edit_get_text ("File Name:", text);
report_msg ("The File Name is " & text);

XRunner reads the value that appears in the File Name field and stores it in
the fext variable. A report_msg statement is used to display the value of the
text variable in a report. For more information, see “Sending Messages to a

Report” in this chapter.

Performing Calculations

178

You can create tests that perform simple calculations using mathematical
operators. For example, you can use a multiplication operator to multiply
the values displayed in two fields in your application. TSL supports the
following mathematical operators:

Programming with TSL ¢ Enhancing Your Test Scripts with Programming

+ addition
- subtraction (unary)

- subtraction (binary)

* multiplication

/ division

% modulus

Aor ** exponent

++ increment (adds 1 to its operand - unary operator)

- decrement (subtracts 1 from its operand - unary
operator)

TSL supports five additional types of operators: concatenation, relational,
logical, conditional, and assignment. It also includes functions that can
perform complex calculations such as sin and exp. See the TSL Reference
Guide for more information.

The following example uses the Flight Reservation application. XRunner
reads the price of both an economy ticket and a business ticket. It then
checks whether the price difference is greater than $100.

Select Economy button
set_window ("Flight Reservations");
button_set ("Economy"”, ON);

Get Economy Class ticket price from price field
edit_get_text ("price", economy_price);

Select Business button
button_set ("Business”, ON);

Get Business Class ticket price from price field
edit_get_text ("price", business_price);

Check whether price difference is greater than $100
if ((business_price - economy_price) > 100)
tl_step ("Price_check", 1, "Price difference is too large.");

179

XRunner User’s Guide

Creating Stress Conditions

180

You can create stress conditions in test scripts that are designed to determine
the limits of your application. You create stress conditions by defining a
loop which executes a block of statements in the test script a specified
number of times. TSL provides three statements that enable looping: for,
while, and do/while. Note that you cannot define a constant within a loop.

For Loop

A for loop instructs XRunner to execute one or more statements a specified
number of times. It has the following syntax:

for ([expressionl]; [expression2]; [expression3])
statement

First, expressionl is executed. Next, expression2 is evaluated. If expression2 is
true, statement is executed and expression3 is executed. The cycle is repeated
as long as expression2 remains true. If expression2 is false, the for statement
terminates and execution passes to the first statement immediately
following.

For example, the for loop below selects the file UL_TEST from the File Name
list in the Open window. It selects this file five times and then stops.

set_window ("Open");
for (i=0; i<5; i++)
list_select item ("File Name:_1", "Ul_TEST"); # Item Number 2

While Loop

A while loop executes a block of statements for as long as a specified
condition is true. It has the following syntax:

while (expression)
statement ;

While expression is true, the statement is executed. The loop ends when the
expression is false.

Programming with TSL ¢ Enhancing Your Test Scripts with Programming

For example, the while statement below performs the same function as the
for loop above.

set_window ("Open");
i=0;
while (i<5)
{
i++;
list_select_item ("File Name:_1", "UI_TEST"); # Item Number 2
}

Do/While Loop

A do/while loop executes a block of statements for as long as a specified
condition is true. Unlike the for loop and while loop, it tests the conditions
at the end of the loop rather than at the beginning. A do/while loop has the
following syntax:

do
statement
while (expression);

The statement is executed and then the expression is evaluated. If the
expression is true, then the cycle is repeated. If the expression is false, the
cycle is not repeated.

For example, the do/while statement below opens and closes the Order
window in Flight Reservation five times.

set_window ("Flight Reservation™);

i=0;

do
{
menu_select_item ("File;Open Order...");
set_window ("Open Order");
button_press ("Cancel");
i++;
}

while (i<5);

181

XRunner User’s Guide

Decision-making

182

You can incorporate decision-making into your test scripts using if/else
statements or switch statements.

If /Else Statement

An if/else statement executes a statement if a condition is true, otherwise it
executes another statement. It has the following syntax:

if (expression)
statementl,;

else
statement2;

expression is evaluated. If expression is true, statement] is executed. If
expressionl is false, statement2 is executed.

For example, the if/else statement below checks that the Flights button in
the Flight Reservation window is enabled. It then sends the appropriate
message to the report.

#Enter a value in the Fly From: edit field
set_window (“Flight Reservation”);
menu_select_item (“File; New Order”);
button_press (“down_arrow_0Q");
list_select_item (“Fly From:”, “Portland”);

#Enter a value in the Fly To: edit field
button_press (“down_arrow_1");
list_select_item (“Fly To:", “Denver”);

#Check that the Flights button is enabled
button_get_state (“oiFlightsListPB”, PB_value);
if (PB_value = ON)

tl_step ("Button_enabled", 0, “The Flights button was successfully enabled”);
else

tl_step ("Button_enabled", 1, “Flights button was not enabled. Check that
values for Fly From and Fly To are valid”);

Programming with TSL ¢ Enhancing Your Test Scripts with Programming

Switch Statement

A switch statement enables XRunner to make a decision based on an
expression that can have more than two values. It has the following syntax:

switch (expression)
{
case case_1:
statements
case case_2:
statements
case case_n:
statements
default: statement(s)

}

The switch statement consecutively evaluates each of the case expressions
until one is found that equals the initial expression. If no case is equal to the
expression, then the default statement(s) are executed. The default
statement(s) are optional.

Note that the first time a case expression is found to be equal to the
specified initial expression, no further case expressions are evaluated.
However, all subsequent statements enumerated by these cases are executed,
unless you use a break statement to pass execution to the first statement
immediately following the switch statement.

The following script reads a configuration file and parses it. The
configuration file consists of lines <variable> = <value>. If a line ends with a
backslash, the next line is considered as the continuation of this line.

while (getline conf_line < conf_file) {

Parse the line of the configuration file.
arg_num =1,
for (pos_in_str = 1; pos_in_str < length(conf_line); pos_in_str++)
switch(cur_char = substr(conf_line, pos_in_str, 1)) {
case" ":
break;
case "=":

arg_num-++;

183

XRunner User’s Guide

break;
case "\\":
if (getline conf_line < conf_file)
pos_in_str=0;

break;
default:
arg[arg_num] = arg[arg_num] & cur_char;
}
Verify that configuration file is correct
switch(arg[1])
{

case "ORDER_DIR":
if (arg[2] != getenv("HOME") & "/new_order_dir")
report_msg("Error in default definition of ORDER_DIR");
break;
case"":
break;
default:

report_msg("Unknown variable is defined: " & arg[1]);

Sending Messages to a Report

184

You can define messages in your test script and have XRunner send the
messages to the test report. To send a message to a report, add a report_msg
statement to your test script. The function has the following syntax:

report_msg (message);

The message can be a string, a variable, or a combination of both.

In the following example, XRunner gets the value of the label attribute in
the Flight Reservation window and enters a statement in the report
containing the message and the label value.

win_get_info("Flight Reservation”, "label", value);
report_msg("The label of the window is " & value);

Programming with TSL ¢ Enhancing Your Test Scripts with Programming

Starting Applications from a Test Script

You can start an application from within an XRunner test script by using the
TSL system statement. For example, you can add a system statement to a
startup test that will automatically open the application under test each
time you start XRunner. For more information, see Chapter 34, “Initializing
Special Configurations.”

The system function has the following syntax:

system (“command [&]");

The parameter command designates the system command to be executed
(including command options).

For example, by including the appropriate command line options within
the system statement, you can specify the exact location at which the AUT
window is to be brought up. For example, the TSL statement

system ("LD_LIBRARY_PATH=/usr/openwin/lib; export LD_LIBRARY_PATH,;
calctool -Wp 300 400&");

defines an environment variable LD_LIBRARY_PATH and invokes the calculator
application so that the upper left corner of its window is located at screen
coordinates 300, 400.

Note: The system statement is interpreted by a Bourne shell and therefore
can include only Bourne shell commands.

185

XRunner User’s Guide

Defining Test Steps

186

After you run a test, XRunner displays the overall result of the test (pass/fail)
in the Report form. If you want to determine whether sections of a test pass
or fail, add tl_step statements to the test script.

The tl_step function has the following syntax:

tl_step (step_name, status, description);

The step_name parameter is the name of the test step. The status parameter
determines whether the step passed (0), or failed (any value except 0). The
description parameter describes the step.

For example, in the following test script segment, XRunner enters a
two-letter password in the Flights Reservation application login window.
The tl_step function is used to determine whether the application processes
the illegal password.

set_window("Login");
edit_set("Agent_name", "Andy");
edit_set("Password", "mc");
button_press("OK");
if (‘'win_exists("Flights Reservation Message", 1));
tl_step("Password_check", 0, Application successfully processed password
of fewer than3 characters.");
else
tl_step("Password_check", 1, "Application failed to process password of
fewer than 3characters-expected message did not appear.");

When the test run is completed, you can view the test results in the
XRunner Report form. The report displays a result (pass/fail) for each step
you defined with tl_step.

18

Using Visual Programming

Visual programming helps you add TSL statements to your test scripts
quickly and easily.

This chapter describes:

Generating a Function for a GUI Object
Selecting a Function from a List

Assigning Argument Values

O 0o o d

Modifying the Default Function in a Category

About Visual Programming

When you record a test, XRunner generates TSL statements in a test script
each time you click on a GUI object or use the keyboard. In addition to the
recordable functions, TSL includes many functions that can increase the
power and flexibility of your tests. You can easily add functions to your test
scripts using XRunnet’s visual programming tool, the Function Generator.

The Function Generator provides a quick, error-free way to program scripts.
You can:

O Add Context Sensitive functions that perform operations on a GUI object or
get information from the application under test.

O Add Standard and Analog functions that perform non-Context Sensitive
tasks such as synchronizing test execution or sending user-defined messages
to a report.

O Add Customization functions that allow you to modify XRunner to suit
your testing environment.

187

XRunner User’s Guide

188

d

O

You can add TSL statements to your test scripts using the Function
Generator in two ways: by pointing to a GUI object, or by selecting a
function from a list. When you select the Insert Function command and
point to a GUI object, XRunner suggests an appropriate Context Sensitive
function and assigns values to its arguments. You can accept this suggestion,
modify the argument values, or select a different function altogether.

By default, XRunner suggests a “get” function. This is a function that
provides information about the object. For example, if you select

Insert Function > Object from the Create menu and point to an OK button,
XRunner opens the Function Generator form and generates the statement:

button_get_info ("OK", "enabled", value);

This statement examines the OK button and gets the current value of the
enabled attribute. The value can be 1 (enabled), or O (disabled).

Once you have generated a statement, you can use it in two different ways,
separately or in combination:

Paste the statement into your test script. When required, a set_window
statement is inserted automatically into the script before the generated
statement.

Execute the statement from the Function Generator.

Note that if you point to an object that is not in the GUI map, the object is
added automatically to the temporary GUI map file when the generated
statement is executed or pasted into the test script.

Programming with TSL e Using Visual Programming

Generating a Function for a GUI Object

With the Function Generator, you can generate a Context Sensitive function
simply by pointing to a GUI object in your application. XRunner examines
the object, determines its class, and suggests an appropriate function. You
can accept this default function or select another function from a list.

Using the Default Function for a Window or Object

When you generate a function by pointing to a window or an object in your
application, XRunner determines the class of the window or object and
suggests a function. For most classes, the default function is a “get”
function. For example, if you click on a list, XRunner suggests the
list_get_selected function.

To use the default function for a window or object:

1 Select Create > Insert Function > Window or > Object. The mouse pointer
changes into a pointing hand.

2 Point to a window or object in the application under test.

3 Click on an object with the left mouse button. The selected object or
window is highlighted. The Function Generator form opens and presents
the default function for the selected object. XRunner automatically assigns
argument values to the function.

To cancel the operation without selecting an object, press the right mouse
button.

4 To paste the statement into the test script, click OK. The function is pasted
into the test script at the insertion point and the Function Generator form
closes.

To execute the function, click Execute. The function is executed but is not
pasted into the test script.

ARunner: Function Generator

Pastes the function
enerated Function: I button_get_info {"OK", "enabled", "vag Cancel | L into the script
|

Execute | oK | Executes the

‘ function only

189

XRunner User’s Guide

190

5 Click the Close button to close the form.

Selecting a Different Function for a GUI Object

If you do not want to use the default function suggested by XRunner, you
can select a different function from a list.

To select a different function for a GUI object:

Select Create > Insert Function > Window or > Object. The mouse pointer
changes into a pointing hand.

Point to a window or object in the application under test.

3 Click on an object with the left mouse button. The selected object or

window is highlighted. The Function Generator form opens and presents
the default function for the selected object. XRunner automatically assigns
argument values to the function.

To cancel the operation without selecting an object, press the right mouse
button.

In the Function Generator form, click the Change button. The form expands
and displays a list of functions. The list includes only functions which can
be used on the GUI object you selected. For example, if you select a list
object, the Function Name list displays list_activate_item, list_close,
list_deselect_range etc.

Select a function from the Function Name list. The generated statement is
displayed at the top of the form. Note that XRunner automatically fills in

Programming with TSL e Using Visual Programming

argument values. A description of the function appears at the bottom of the
form.

#Runner: Function Generator &

Generated Function: |:hutton_get_info("","enahled",value); Close |
Category: | push_button A Paste |
Function Name: ﬂ hutton_get_info = Execute |
Description:

This function retums the value of a button attribute
argl is the button name
argZ is the requested attribute
ary3 is the returmned value.

Sal fs Dofalt

6 If you want to modify the argument values, press the Args button. The form
expands and displays a field for each argument. See “Assigning Argument
Values” in this chapter to learn how to fill in the argument fields.

7 To paste the statement into the test script, click Paste. The function is pasted
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed
but is not pasted into the test script.

8 You can continue to generate function statements for the same object by
repeating the steps above without closing the form. The object you selected
remains the active object and arguments are filled in automatically for any
function selected.

9 Click Close to close the form.

Selecting a Function from a List

When programming a test, you may want the test to perform a particular
task, but you do not know the exact function to use. The Function
Generator helps you to quickly and easily locate the function you need and
to insert the function into your test script. Functions are organized by
category; you select the appropriate category and the function you need

191

XRunner User’s Guide

from a list. A description of the function is displayed along with its
parameters.

To select a function from a list:

Select Insert Function > From List from the Create menu to open the
Function Generator form.

In the Category list, select a function category. For example, if you want to
view menu functions, select menu. If you do not know which category you
need, use the default all_functions.

Select a function from the Function Name list. If you select a category, only
the functions that belong to the category are displayed in the list. The
generated statement is displayed at the top of the form. Note that XRunner
automatically fills in the default argument values. A description of the
function appears at the bottom of the form.

To define or modify the argument values, press the Args button. The form
expands and displays a field for each argument. See “Assigning Argument
Values” in this chapter to learn how to fill in the argument fields.

To paste the statement into the test script, click Paste. The function is pasted
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed
but is not pasted into the test script.

You can continue to generate additional function statements by repeating
the steps above without closing the form.

Click Close to close the form.

Assigning Argument Values

192

When you generate a function using the Function Generator, XRunner
automatically assigns values to the function’s arguments. If you generate a
function by clicking on a GUI object, XRunner evaluates the object and
assigns the appropriate argument values. If you select a function from a list,
XRunner fills in default values when possible, and you fill in the rest.

Programming with TSL e Using Visual Programming

To assign or modify argument values for a generated function:

1 In the Function Generator form, select a category and a function name.

2 Click the Args button. The form expands according to the number of

arguments in

Generated Function:
Cateqgory:

Function Hame:

Description:

Sal fs Dofalt

button
attribute

out value:

the function.

¥Runner: Function Generator

| hutton_get_info{"","enabled" value);

| push_button

| hutton_get_info

argl is the button name
argZ is the requested attribute
ary3 is the returmned value.

This function retums the value of a button attribute

3 Assign values to the arguments. You can assign a value either manually or
automatically.

To manually assign values, type a value directly in an argument field. For
some fields, you can choose a value from a dropdown list.

To automatically assign values, click the pointing hand button and then click
on an object in your application. The appropriate values appear in the

argument fields.

Note that if you click on an object that is not compatible with the selected
function, a message states “Current function is invalid for the selected
object. Change Category?” Click Yes to change to the correct category. Click

No to cancel the operation.

193

XRunner User’s Guide

Modifying the Default Function in a Category

194

In the Function Generator, each function category has a default function.
When you generate a function by clicking on an object in your application,
XRunner determines the appropriate category for the object and suggests
the default function. In most Context Sensitive function categories this is a
“get” function. For example, if you click on an edit field, the default
function is edit_get_info. For Analog, Standard and Customization function
categories, the default is the most commonly used function in the category.
For example, the default function for the window category is
win_check_gui.

If you find that you frequently use a function other than the default for the
category, you can make it the default function.

To change the default function in a category:

1 Open the Function Generator form and select a function category.

In the Function Name list, select the function that you want to make the
default.

3 Click the Set as Default button.

Click Close to close the form.

The selected function remains the default function in its category until it is
changed or until XRunner is exited. To preserve changes to the default
function setting, add a generator_set_default_function command to your
startup test. For more information on startup tests, see Chapter 34,
“Initializing Special Configurations.”

The generator_set_default_func function has the following syntax:

generator_set_default_function (category_name, function_name);

For example:

generator_set_default_function ("push_button", "button_press");

sets the button_press function as the default for the push_button category.

19

Calling Tests

The tests you create with XRunner can call, or be called by, any other test.
When XRunner calls a test, parameter values can be passed from the calling
test to the called test.

This chapter describes:

Using the Call Statement
Returning to the Calling Test
Setting the Search Path

Defining Test Parameters

O o o o o

Calling the check_file Test

About Calling Tests

By adding call statements to test scripts, you can create a modular test tree
structure containing an entire test suite. A modular test tree consists of a
main test that calls other tests, passes parameter values, and controls test
execution.

When XRunner interprets a call statement in a test script, it opens and runs
the called test. Parameter values may be passed to this test from the calling
test. When the called test is completed, XRunner returns to the calling test
and continues the test run. Note that a called test may also call other tests.

By adding decision-making statements to the test script and return values,
you can use a main test to determine the conditions that enable a called test
to run.

195

XRunner User’s Guide

For example:

rc= call login ("John", Mercury);
if (rc == E_OK)
{

call insert_order();

}

else
}
tl_step ("Call Login", 1, "Login test failed";
call open_order ();

}

This test calls the login test. If login is executed successfully, XRunner calls
the insert_order test. If the login test fails, the open_order test is executed.

You commonly use call statements in a batch test. A batch test allows you to
call a group of tests and run them unattended. It suppresses all messages
that are normally displayed during execution, such as a message reporting a
bitmap mismatch. For more information, see Chapter 26, “Running Batch
Tests.”

Note: An XRunner call chain can contain a maximum of 100 called tests.

Using the Call Statement

196

A test is invoked from within another test by means of a call statement. This
statement has the following syntax:

call test_name ([parameterl, parameter2, ...parametern]);

Parameters are optional. However, when one test calls another, the call
statement should designate a value for each parameter defined for the called
test. If no parameters are defined for the called test, the call statement must
contain an empty set of parentheses.

Programming with TSL e Calling Tests

Any called test must be stored in a directory specified in the search path, or
be called with the full pathname enclosed within quotation marks.

For example:

call “/u/andy/qa/test_z" ();

While running a called test, you can pause execution and view the current
call chain. To do so, select Calls from the Debug menu.

Returning to the Calling Test
The treturn and texit statements are used to stop execution of called tests.

O The treturn statement stops the current test and returns control to the
calling test.

O The texit statement stops test execution entirely, unless tests are being
called from a batch test. In this case, control is returned to the main batch
test.

Both functions provide a return value for the called test. If treturn or texit is
not used, or if no value is specified, then the return value of the call
statement is O.

treturn

The treturn statement terminates execution of the called test and returns
control to the calling test. The syntax is:

treturn [(expression)];

The optional expression is the value returned to the call statement used to
invoke the test. For example:

#testa
if (call test_b() == "success")
report_msg("test.b succeeded");

197

XRunner User’s Guide

198

test b
if
(win_check_bitmap (“Win_2", “Calc”, 1))

treturn("success");
else
treturn("failure");

In the above example, test_a calls test_b. If the bitmap comparison in test_b
is successful, then the string “success” is returned to the calling test, test_a.
If there is a mismatch, then test_b returns the string “failure” to test_a.

texit

When tests are run interactively, the texit statement discontinues test
execution. However, when tests are called from a batch test, texit ends
execution of the current test only; control is then returned to the calling
batch test. The syntax is:

texit [(expression)];

The optional expression is the value returned to the call statement used to
invoke the test. For example:

batch_test
return_val = call help_test();
report. msg("help returned the value "& return_val);

help_test

call select. menu(help, index);

msg = get text(4,30,12,100);

if (msg == "Index help is not yet implemented")
texit("index failure");

In the above example, batch_test calls help_test. In help_test, if a particular
message appears on the screen, execution is stopped and control is returned
to the batch test. Note that the return value of the help_test is also returned
to the batch test, and is assigned to the variable return_val. If texit is not
used, return_val is 0.

Programming with TSL e Calling Tests

Note: If you started XRunner from the command line, and you are running
a test in regular mode, texit causes XRunner to exit.

For more information on batch tests, see Chapter 26, “Running Batch
Tests.”

Setting the Search Path

The Search Path determines the directories where XRunner will search for a
called test. To set the search path, select Search Path from the Options menu
and define a directory path in the Search Path form. The directories are
searched in the order of their appearance in the form.

e
Runner: Search Pathi l

Directories:

imirunner23/sunba2s-17/lib
uftmp_mntfjonfdemo

u/tmp _mnt/jon/derrick

AddbefnremE Copyl Changel Delete

Pathname: |A

O To add a directory to the search path, type the directory name in the
Pathname field. Use the Add Before and Add After buttons to position this
directory in the list.

O To change a directory, select the directory in the list, make the desired
changes in the edit field, and click the Change button.

O To delete a directory, select its name in the list and click the Delete button.

You can also set a search path by adding a setvar statement to a test script.
This search path is valid only for the current test run.

199

XRunner User’s Guide

For example:

setvar (“XR_SEARCH_PATH?", “/u/pearl/tests/ui_tests”);

This statement tells XRunner to search the /u/pearlitests/ui_tests directory for
called tests. For more information on the setvar function, see Chapter 33,
“Changing System Defaults.”

Defining Test Parameters

200

A parameter is a variable that is assigned a value from outside the test in
which it is defined. You can define one or more parameters for a test; any
calling test must then supply values for these parameters.

For example, suppose you define two parameters, starting x and starting_y
for a test. The purpose of these parameters is to assign a value to the initial
mouse position when the test is called. Subsequently, two values supplied by
a calling test will supply the x and y coordinates of the mouse pointer.

Defining Test Parameters in the Test Header Form

Parameters are defined in the Test Header form. To open this form select the
Header command from the File menu.

Author: Parameter Hame:
|jqauser!fmnk
Date: file_name Displays all available
[03name 103722 block_number parameters.
AUT Function:
| Cul/Paste
) BrEAS ml
Functional Spec Traceback:
| 1.3.5- Editing, cul/pasis 1 Compiled Module

Description:

Tcheck the cut/paste function of the editor. Make sure that large text blocks are
handled successfully.

ok | cancel

Programming with TSL e Calling Tests

To define a new parameter:

In the Test Header form, type the name of the parameter in the Parameter
Name field.

Select one of the parameters in the list and then choose either Add After or
Add Before.

Note that since parameter values are assigned sequentially, the order in
which parameters are listed determines the value that is assigned to a
parameter by the calling test.

Click OK to close the form.

To delete a parameter from the parameter list:

1 In the Test Header form, select the name of the parameter to be deleted.

Press the Delete button.

3 Click OK to close the form.

Test Parameter Scope

The parameter defined in the called test is known as a formal parameter. Test
parameters can be constants, variables, expressions, array elements, or
complete arrays.

Parameters that are expressions, variables, or array elements are evaluated
and then passed to the called test. This means that a copy is passed to the
called test. This copy is local; if its value is changed in the called test, the

original value in the calling test is not affected. For example:

test 1 (calling_test)
i=5;

call test 2(i);

print(i); # prints "5"

test 2 (called test), with formal parameter x
X =38;
print (x); # prints "8"

In the calling test (test_1), the variable i is assigned the value 5. This value is
passed on to the called test (test_2) as the value for the formal parameter x.

201

XRunner User’s Guide

202

Note that when a new value (8) is assigned to x in test_2, this change does
not affect the value of i in test_1.

Complete arrays are passed by reference. This means that, unlike array
elements, variables, or expressions, they are not copied. Any change made
to the array in the called test influences the corresponding array in the
calling test. For example:

#testq

a[1] = 17;

call test r(a);

print(a[1]); # prints "104"

test_r, with parameter x
X[1] = 104;

In the calling test (test_q), element 1 of array a is assigned the value 17.
Array a is then passed to the called test (test_r), which has a formal
parameter x. In test_r, the first element of array x is assigned the value 104.
Unlike the previous example, this change to the parameter in the called test
does affect the value of the parameter in the calling test, because the
parameter is an array.

All undeclared variables that are not on the formal parameter list of a called
test are global and may be accessed and altered from another called or
calling test. If a parameter list is defined for a test, and that test is not called
but is run directly, then the parameters function as global variables for the
test run. For more information about variables, refer to the TSL Reference
Manual.

The test segments below illustrates the use of global variables. Note that
test_a is not called, but is run directly.

test a, with parameter k
i=1;

=2

k=3;

call test_b(i);

print(j & k & I); # prints '256

Programming with TSL e Calling Tests

test b, with parameter j

=4
k=5;
| = 6;

print (i & j & K); # prints '145'

Calling the check_file Test

XRunner allows you to evaluate the behavior of the application under test
by capturing and comparing files. You do this by programming the
following statement in your test script:

call check_file ("filename");

Note that the full pathname must be included between quotes.

During test creation, XRunner captures the specified file and stores it as
expected results. During test execution, XRunner compares the contents of
the specified file with those stored as expected results. If a mismatch
between these two files is detected, XRunner captures the current file.

The file comparison is performed using the UNIX diff utility. The check_file
script is stored by default in the $M_ROOT/lib directory.

203

XRunner User’s Guide

204

20

Creating User-Defined Functions

You can expand XRunner’s testing capabilities by creating your own TSL
functions. You can use these user-defined functions in a test or a compiled
module. This chapter describes:

O Function Syntax
0 Return Statement

O User-Defined Function Example

About User-Defined Functions

In addition to providing built-in functions, TSL allows you to design and
implement your own functions. You can:

O create user-defined functions in a test script. You define the function once,
and then call it from anywhere within the test (including called tests).

O create user-defined functions in a compiled module. Once you load the
module, you can call the functions from any test. For more information, see
Chapter 21, “Creating Compiled Modules.”

User-defined functions are convenient in situations where you want to
perform the same operation several times in a test script. Instead of
repeating the code, you can write a single function that performs the
operation. This makes your test scripts modular, more readable, and easier to
debug and maintain.

A function can be called from anywhere in a test script. Since it is already
compiled, execution time is accelerated. For instance, suppose you create a
test that opens a number of files and checks their contents. Instead of

205

XRunner User’s Guide

recording or programming the sequence that opens the file several times,
you can write a function and call it each time you want to open a file.

Function Syntax

206

A user-defined function has the following structure:

[class] function name ([mode] parameter...)
{

declarations;

statements;

}

Class

The class of a function can be either static or public. A static function is
available only to the test or module within which the function was defined.

Once you execute a public function, it is available to all tests, as long as the
test containing the function remains open. This is convenient when you
want the function to be accessible from called tests. However, if you want to
create a function that will be available to many tests, you should place it in
a compiled module. The functions in a compiled module are available for
the duration of the testing session.

If no class is explicitly declared, the function is assigned the default class,
public.

Parameters

Parameters need not be explicitly declared. They can be of mode in, out, or
inout. For all non-array parameters, the default mode is in. For array
parameters, the default is inout. The significance of each of these parameter
types is as follows:

in: A parameter which is assigned a value from outside the function.

out: A parameter which is assigned a value from inside the function.

Programming with TSL ¢ Creating User-Defined Functions

inout: A parameter which can be assigned a value from outside or inside the
function.

A parameter designated as out or inout must be a variable name, not an
expression. When you call a function containing an out or an inout
parameter, the argument corresponding to that parameter must be a
variable, and not an expression. For example, consider a user-defined
function with the following syntax:

function get_date (out todays_date) { ... }

Proper usage of the function call would be

get_date (todays_date);

Illegal usage of the function call would be

get_date (date[i]); or get_date ("Today’s date is "& todays_date);

because both contain expressions.

Array parameters are designated by square brackets. For example, the
following parameter list in a user-defined function indicates that variable a
is an array:

function my_func (a[], b, ¢){ ... }

Array parameters can be either mode out or inout. If no class is specified, the
default mode inout is assumed.

Declarations

Normally in TSL, declaration is optional. In functions, however, variables,
constants, and arrays must all be declared. The declaration can be within the
function itself, or anywhere else within the test script or compiled module
containing the function. Additional information about declarations can be
found in the TSL Reference Guide.

207

XRunner User’s Guide

208

Variables
Variable declarations have the following syntax:

class variable [= init_expression];

The init_expression assigned to a declared variable can be any valid
expression. If an init_expression is not set, the variable is assigned an empty
string. The class defines the scope of the variable. It can be one of the
following:

auto: An auto variable can only be declared within a function and is local to
that function. It exists only as long as the function is running. A new copy
of the variable is created each time the function is called.

static: A static variable is local to the function, test, or compiled module in
which it is declared. The variable retains its value until the test is terminated
by an Abort command.

public: A public variable can only be declared within a test or module, and
is available for all functions, tests, and compiled modules.

extern: An extern declaration indicates a reference to a public variable
declared outside of the current test or module.

Remember that you must declare all variables used in a function within the
function itself, or within the test or module that contains the function. If
you wish to use a public variable that is declared outside of the relevant test
or module, you must declare it again as extern.

The extern declaration must appear within a test or module, before the
function code. An extern declaration cannot initialize a variable.

For example, suppose that in Test 1 you declare a variable as follows:

public window_color=green;

In Test 2, you write a user-defined function which accesses the variable
window_color. Within the test or module containing the function, you
declare window_color as follows:

extern window_color;

Programming with TSL ¢ Creating User-Defined Functions

With the exception of the auto variable, all variables continue to exist until
the Abort command is executed. The following table summarizes the scope,
lifetime, and availability (where the declaration can appear) of each type of
variable:

Declaration Scope | Lifetime Declare the Variable in...
auto local end of function | function

static local until abort function, test, or module
public global | until abort test or module

extern global | until abort function, test, or module

Note: In compiled modules, the Abort command initializes static and public
variables. For more information, see Chapter 21, “Creating Compiled
Modules.”

Constants

The const specifier indicates that the declared value cannot be modified. The
syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. If no class is explicitly
declared, the constant is assigned the default class public. Once a constant is
defined, it remains in existence until you exit XRunner.

For example, defining the constant MY_GUI_PATH using the declaration:

const MY_GUI_PATH = “/user/xrunner/gui”;
means that the assigned value /user/xrunner/gui cannot be modified. (This

value can only be changed by explicitly making a new constant declaration
for MY_GUI_PATH.)

209

XRunner User’s Guide

Arrays

The following syntax is used to define the class and the initial expression of
an array. Array size need not be defined in TSL.

class array_name [] [=init_expression]

The array class may be any of the classes used for variable declarations (auto,
static, public, extern).

An array can be initialized using the C language syntax. For example:

public hosts [] = {"lithium", "silver", "bronze"},

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that, as in C, arrays with the class auto cannot be initialized.

In addition, an array can be initialized using a string subscript for each
element. The string subscript may be any legal TSL expression. Its value is
evaluated during compilation. For example:

static gui_item []={
“class"="push_button",
“label"="OK",
"X_class"="XmPushButtonGadget",
"X"=10,
"Y"=60
2

creates the following array elements:

gui_item ["class"]="push_button"

gui_item ["label"]="OK"

gui_item ["X_class"]="XmPushButtonGadget"
gui_item ["X"]=10

gui_item ["Y"]=60

210

Programming with TSL ¢ Creating User-Defined Functions

Note that arrays are initialized once, that is the first time a function is run. If
you edit the array’s initialization values, the new values will not be reflected
in subsequent test runs. To reset the array with the new initialization values,
either interrupt test execution with the Abort command, or define the new
array elements explicitly. For example:

Regular Initialization Explicit Definitions
public number_list[]={1,2,3}; number_list[0] = 1;
number_list[1] = 2;
number_list[2] = 3;

Statements

Any valid statement used within a TSL test script can be used within a
function, except for the treturn statement.

Return Statement
The return statement is used exclusively in functions. The syntax is:

return (expression);

This statement passes control back to the calling function or test. It also
returns the value of the evaluated expression to the calling function or test.
If no expression is assigned to the return statement, an empty string is
returned.

211

XRunner User’s Guide

User-Defined Function Example

212

The following user-defined function opens the specified text file in an
editor. It assumes that the necessary GUI map file is loaded. The function
verifies that the file was actually opened by comparing the name of the file
with the label appearing in the window title bar after the operation is
completed.

function open_file (file)
{

auto Ibl;

set_window ("Editor");

Open the Open form
menu_select_item ("File;Open...");

Insert file name in the proper field and click OK to confirm
set_window ("Open");

edit_set(“Open Edit”, file);

button_press ("OK");

Read window banner label
set_window ("Editor");
win_get_info("Editor","label",Ibl);

#Compare label to file name
if (file !=1Ibl)

return 1;
else

return O;
}
rc=open_file(“/users/jon/dash/readme.txt”");
pause(rc);

21

Creating Compiled Modules

Compiled modules are libraries of frequently-used functions. You can save
user-defined functions in compiled modules and then call the functions
from your test scripts.

Contents of a Compiled Module
Creating a Compiled Module
Loading and Unloading a Compiled Module

Incremental Compilation

O 0o o o o

Compiled Module Example

About Compiled Modules

A compiled module is a script containing a library of user-defined functions
that you want to call frequently from other tests. When you load a compiled
module, its functions are automatically compiled and remain in memory.
You can call them directly from within any test.

For instance, you can create a compiled module containing functions that:

O compare the size of two files
O check your system's current memory resources

Compiled modules can improve the organization and performance of your
tests. Since you debug compiled modules before using them, your tests will
require less error-checking. In addition, calling a function that is already

compiled is significantly faster than interpreting a function in a test script.

You can compile a module in one of two ways:

213

XRunner User’s Guide

O run the module script using the XRunner Run commands

O load the module from a test script using the TSL load function.

If you need to debug a module or make changes, you can use the Step
command to perform incremental compilation. You only need to run the
part of the module that was changed in order to update the entire module.

You can add load statements to your startup test. This ensures that the
functions in your compiled modules are automatically compiled each time
you start XRunner. For more information, see Chapter 34, “Initializing
Special Configurations.”

Contents of a Compiled Module

214

A compiled module, like a regular test you create in TSL, can be opened,
edited, and saved. You indicate that a test is a compiled module by
activating the Compiled Module radio button in the Test Header form (see
“Creating a Compiled Module,” in this chapter).

The contents of a compiled module differs from that of an ordinary test: it
cannot include checkpoints or any analog input such as mouse tracking.
The purpose of a compiled module is not to perform a test, but to store
functions you use most so that they can be quickly and conveniently
accessed from other tests.

Unlike an ordinary test, all data objects (variables, constants, arrays) in a
compiled module must be declared before use. The structure of a compiled
module is similar to a C program file, in that it may contain the following
elements:

function definitions and declarations for variables, constants and arrays.
(For more information, see Chapter 20, “Creating User-Defined Functions.”)

prototypes of external functions (For more information, see the TSL
Reference Guide.)

load statements to other modules (For more information see “Loading and
Unloading a Compiled Module” in this chapter.)

Note that when user-defined functions appear in compiled modules:

Programming with TSL e Creating Compiled Modules

O A public function is available to all modules and tests, while a static
function is available only to the module within which it was defined.

O Theloaded module remains resident in memory even when test execution is
aborted. However, all variables defined within the module (whether static or
public) are initialized.

Creating a Compiled Module
Creating a compiled module is similar to creating a regular test script.

To create a compiled module:
1 Open a new test.
2 Write the user-defined functions.
3 Select Header from the File menu to open the Test Header form.

4 Select the Compiled Module button and click OK.

st Mame: Su/qausersfrank/edit test

Aarthor: Parameter Name:
| Yauser/frank
Date: file_name

| 03£18/96 10:37:27, block_number Add Before
AUT Function: Add After

| CutiPaste

. Dty 1
Functional Spec Traceback:

| 1.3.5- Editing, cutipaste 21 Compiled Module

Description: Compiled
module button

Tcheck the cutipaste function of the editor. Make sure that large text blocks are
handled successfully.

OK | cancel

5 Choose Save from the File menu.

Save your modules in a location that is readily available to all your tests.
When a module is loaded, XRunner locates it according to the Search Path

215

XRunner User’s Guide

you define. For more information on defining a Search Path, see Chapter 19,
“Calling Tests”.

6 Compile the module using the load function. See “Loading and Unloading

a Compiled Module” in the following section of this chapter for more
information.

Loading and Unloading a Compiled Module

216

In order to access the functions in a compiled module you need to load the
module. You can load it from within any test script using the load
command; all tests will then be able to access the function until you quit
XRunner or unload the compiled module.

If you create a compiled module that contains frequently-used functions,
you can load it from your startup test. For more information, see
Chapter 34, “Initializing Special Configurations.”

You can load a module either as a system module or as a user module. A
system module is generally a closed module that is “invisible” to the tester.
[t is not displayed when it is loaded, cannot be stepped into and is not
stopped by a pause command. A system module is not unloaded when you
execute an unload() statement with no parameters (global unload).

A user module is the opposite of a system module in these respects.
Generally, a user module is one that is still being developed. In such a
module you might want to make changes and compile them incrementally.

load

The load function has the following syntax:

load (module_name [,1|0] [,1|0]);

The module_name is the name of an existing compiled module.

Two additional, optional parameters indicate the type of module. The first
parameter indicates whether the function module is a system module or a
user module. 1 indicates a system module. 0 indicates a user module.
(Default=0)

Programming with TSL e Creating Compiled Modules

The second optional parameter indicates whether a user module appears in
the Switch menu. O (the default) indicates that the module appears in the
Switch menu. (Default=0).

When the load function is executed for the first time, the module is
compiled and stored in memory. This module is ready for use by any test
and does not need to be reinterpreted.

A loaded module remains resident in memory even when test execution is
aborted. All variables defined within the module (whether static or public)
are still initialized.

unload

The unload function removes a loaded module or selected functions from
memory. It has the following syntax:

unload (module_name | test_name [, "function_name']);

For example, the following statement removes all functions loaded within
the compiled module named mem_test.

unload ("mem_test");

An unload statement with empty parentheses removes all modules loaded
within all tests during the current session, except for system modules.

reload

If you make changes in a module, you should reload it. The reload function
removes a loaded module from memory and reloads it (combining the
functions of unload and load).

The syntax of the reload function is:

reload (module_name [,1]|0] [,1|0]);

The module_name is the name of an existing compiled module.

Two additional optional parameters indicate the type of module. The first
parameter indicates whether the module is a system module or a user
module. 1 indicates a system module. O indicates a user module. (Default=0)

217

XRunner User’s Guide

The second optional parameter indicates whether a user module appears in
the Switch menu. O (the default) indicates that the module appears in the
Switch menu. (Default=0).

Note: Do not load a module more than once. To recompile a module, use
unload followed by load, or the reload function.

If you try to load a module that has already been loaded, XRunner does not
load it again. Instead, it initializes variables and increments a load counter. If
a module has been loaded several times, then the unload statement does
not unload the module, but rather decrements the counter. For example,
suppose that test A loads the module math_functions, and then calls test B.
Test B also loads math_functions, and then unloads it at the end of the test.
XRunner does not unload the function; it decrements the load counter.
When execution returns to test A, math_functions is still loaded.

Incremental Compilation

In addition to using the load function to compile a module, you can also
compile a module by executing the module script. This is especially useful
when you are developing or modifying a module. If a module has already
been loaded, and you modify it or add just a few lines, you can run those
statements step by step. The compiled version of the module is
automatically updated. Note that if you make a change within a function,
you must run the entire function.

To perform incremental compilation:

1 Open the module.

2 In the Header form, deactivate the Compiled Module checkbox.
Select OK to close the form.

3 To load an entire module, select Run from Top from the Run menu.

To incrementally compile part of a module, run the necessary statements
using the Step command.

218

Programming with TSL e Creating Compiled Modules

4 Open the Header form and change the test type back to Compiled Module.
Select OK to close the form.

5 Save the module if required and close it.

Compiled Module Example

The following module contains two simple, all-purpose functions that you
can call from any test. The first function receives a pair of numbers and
returns the number with the higher value. The second function receives a
pair of numbers and returns the one with the lower value.

return maximum of two values
function max (x,y)

{

if (x>=y)
return x;

else
returny;

}

return minimum of two values
function min (x,y)

{
if (x>=y)
returny;
else
return x;
}

219

XRunner User’s Guide

220

22

Using Dynamically Linked Libraries

XRunner allows you to call any function residing in an external dynamically
linked library.

This chapter describes:

O Loading External Libraries
O Declaring External Functions in TSL

O Standard C Library Examples

About Calling External Functions

To extend the power of your automated tests, XRunner allows you to take
advantage of functions in external dynamically-linked libraries. Your test
scripts can call a function in any external library, provided you can interface
with the library using C.

The load_dll TSL command allows you to access:
O standard function libraries such as libc, libll and libm

O custom libraries specific to your application

Before you can program calls to functions in external libraries, you perform
two main steps:

1 Load the external library using a load_dll statement

2 Declare each function you need to call as an external type function

221

XRunner User’s Guide

Loading External Libraries

You must load the external dynamically-linked libraries containing the
functions you want to call, using the load_dll standard function. This
function performs a runtime load of the required libraries. The syntax of the
function is:

load_dll (pathname);

The pathname is the full pathname of the dynamically-linked library to be
loaded.

For example:

load_dll (“/usr/lib/libc.s0.1.9);

To unload the dynamically-linked library, use the unload_dll function.
The syntax of the unload_dll function is:

unload_dll (pathname);

Declaring External Functions in TSL

222

You must write an extern declaration for each C function you want to call.
The extern declaration must appear before the function call. Normally, you
store these declarations in an initialization test. (For more information, see
Chapter 34, “Initializing Special Configurations.”)

The syntax of the extern declaration is:

extern type function_name (paraml, paramz2,...);

The type refers to the return value of the function. Type can be one of the
following:

char (signed and unsigned)float

short (signed and unsigned)double

int (signed and unsigned)string (equivalent to char* in C)
long (signed and unsigned)unsigned int

Programming with TSL e Using Dynamically Linked Libraries

Each parameter must include the following information:
[mode] type [name] [<size>]

The mode can be either in, out, or inout. The default is in. Note that these
values must appear in lowercase letters.

The type can be any of the values listed for type, above, but not float or
double.

An optional name can be assigned to the parameter to improve readability.

The <size> is required only for an out or inout parameter of type string. (See
below.)

For example, suppose you want to call a function called set_clock that sets
the time on a clock application. The function is part of an external DLL that
you loaded with the load_dll statement. To declare the function, write:

extern int set_clock (string name, int time);

The set_clock function accepts two parameters. Since they are both input
parameters, no mode is specified. The first parameter, a string, is the name
of the clock window. The second parameter specifies the time to be set on
the clock. The function returns an integer that indicates whether the
operation succeeded.

Once the extern declaration is interpreted, you can call the set_clock
function the same way you call a TSL built-in function:

result = set_clock ("clock v. 3.0", 3);

If an extern declaration includes an out or inout parameter of type string, you
must budget the maximum possible string size by specifying an integer
<size> after the parameter type or (optional) name. For example, the
statement below declares the function get_clock_string, that returns the
time displayed in a clock application as a string in the format of: “The time
is...”

extern int get_clock_string (string clock, out string time <20>);

The size should be large enough to avoid an overflow. If no value is specified
for size, the default is 128.

223

XRunner User’s Guide

TSL identifies the function in your C code by its name only. You must pass
the correct argument information from TSL to the C function. TSL does not
check arguments. If the information is incorrect, the operation fails.

In addition, your C function must adhere to the following conventions:

Any argument designated as a string in TSL must be associated with an
argument of type char* in C.

Any argument of mode out or inout in TSL must be associated with a pointer
in C. For instance, an argument out int in TSL must be associated with an
argument int* in the C function.

For example, the following declaration in TSL:

extern int set_clock (string name, inout int time);

must appear as follows in C:

int set_clock (char* name, int* time);

Standard C Library Examples

224

The following are several examples of tests that call functions in the
standard C library, libc.

The gethostname Function

The first example uses the gethostname function to determine the current
host machine. The program assigns a specific test to “HP3.0” if it is the
current host. Otherwise it assigns a general test to the host.

Load the appropriate file from the lib directory.
rc = load_dll ("/usr/lib/libc.s0.1.8”);

Declare the external function.
extern int gethostname(out string name, in int len);

Search for the first 10 characters of the host name.
gethostname(host_name, 10);

Programming with TSL e Using Dynamically Linked Libraries

Assign a specific test depending on the host machine.
if (host_name == “HP3.0")

call hp30_test();
else

call general_test();

The time Function

The second example uses the rindex function to extract a filename from its
full pathname. Unlike the TSL index function that indicates the position of
one string within another, the rindex function returns a substring of a
string, str. The substring begins from the last occurrence of the character c in
the string and ends with the terminating character in the string.

Load the appropriate file from the lib directory.
rc = load_dll (“/usr/lib/libc.s0.1.9);

Declare the external function.
extern string rindex(string str, in char c);

Assign the full pathname to an output variable
string = "/u/usr_name/dir_1/dir_2/dir_3/file_name”;

Extract file_name from full pathname
a= substr (rindex (string, ascii (")), 2);

The putenv Function

C library functions are not limited to read-only operations. This example
illustrates how a library function can be used to assign a value to an
environment variable. The TSL getenv function may be complemented with
the putenv function.

Load the appropriate file from the lib directory.
rc = load_dll (“/usr/lib/libc.s0.1.8);

Declare the external function
extern int putenv();

Assign a new value to an environment variable
putenv("ENV_VAR=my_value");

225

XRunner User’s Guide

226

Customizing the TSL set_window Function

The next example uses the Xlib XBell and XRaiseWindow functions to
customize the TSL set_window function. The customized version overrides
the built-in function definition. In the built-in version, when a set_window
statement fails, XRunner will return only an error code. In this version,
whenever the statement fails, XRunner sounds a beep and raises the window
to the top of the display.

Load the X11.s0.4.3 library.
rc = load_dll(*/usr/fopenwin/lib/libX11.s0.4.3");

Declare the Xlib functions.

extern int XOpenDisplay(in string dpy);

extern int XFlush(in int dpy);

extern int XBell(in int dpy);

extern int XRaiseWindow(in int dpy, in int w);

public dpy;

extern int window_to_wid(in string window, in int x);

Connect a client program to X server konishiki, server 0, display 0.
dpy = XOpenDisplay(“konishiki:0.0");
if (tdpy)

texit;
public function set_window(in winname, in time);
{

autostatus = E_OK;

auto oldwin, doagain;

auto i=1, len;

static last_wid;

extern dpy;

extern root;

if (nargs() == 1)

time = 0;

Save information about the set_window function call in case an error
occurs.
save_report_info(“set_window");
len = length(winname);
while (i<=len &&
(substr(winname,i,1)==""||
substr(winname,i,1)=="\t"||

Programming with TSL e Using Dynamically Linked Libraries

substr(winname,i,1)=="\n *))
i++;

If winname is description, return ILLEGAL_PARAMETER.
if ((substr(winname,i,1)=="{*{
status=E_ILLEGAL_PARAMETER,;

Report the error description when an error occurs.
process_return_value(status, winname, T_WINDOW, 0, doagain);
return(status);

}
oldwin=GUI_get_window();

Identify the GUI object or window using the included input parameters.
status = activate_function(T_WINDOW,winname,”_set_window”, time);
if(status = E_OK)

GUI_set_window(oldwin);
else{

status=GUI_set_window(winname);

if(status == E_OK)

win_find(winname, -1,-1,last_wid);

Raise the window to the top of the stacking order.
XRAISEWindow(dpy,last_wid);

Ring the bell.
XBell(dpy)
XBell(dpy);

Flush the output buffer and display all queued requests
XFlush(dpy);

}

return(status);

227

XRunner User’s Guide

228

23

Using Regular Expressions

You can use regular expressions to increase the flexibility and adaptability of
your tests. This chapter describes:

O When to Use Regular Expressions

O Regular Expression Syntax

About Regular Expressions

Regular expressions allow XRunner to identify objects with varying names
or titles. You can use regular expressions in TSL statements or in object
descriptions in the GUI map. For example, you can define a regular
expression in the physical description of a pushbutton so that XRunner can
locate the pushbutton if its label changes.

A regular expression is a string which specifies a complex search phrase. In
most cases the string is preceded by an exclamation point (!). By using
special characters such as a period (.), asterisk (*), caret (*), and brackets ([]),
you define the conditions of the search. For example, the string “lwindo.*”
matches both “window” and “windows”. See “Regular Expression Syntax”
in this chapter for more information.

Note that XRunner regular expressions include options similar to those
offered by the UNIX grep command. For additional information, see the
UNIX manpages for ed(1).

229

XRunner User’s Guide

When to Use Regular Expressions

230

Use a regular expression when the name of a GUI object can vary each time
you run a test. For example, you can use a regular expression:

In the physical description of an object in the GUI map, so that XRunner
can ignore variations in the object’s label. For example, the physical
description:

{

class: push_button
label: "1St.*"

{

allows XRunner to identify a pushbutton if its label toggles from “Start” to
IlStOle‘

In a GUI checkpoint, when evaluating the contents of an edit object or
static text object with a varying name. You define the regular expression by
creating a custom check for the object. For example, if you select a Check
GUI command from the Create menu and double-click on a static text
object, you can define a regular expression in the static text checks form:

Note that when using a regular expression to perform a check on a static
text object or edit object, it should not be preceded by an exclamation point.

In a text checkpoint, to locate a varying text string using the find_text
function. For example, the statement:

find_text ("Edit", "win.*", coord_array, 640, 480, 366, 284);

allows XRunner to find any text in the object named “Edit” that begins with

”

win”.

"

Note that when using a regular expression to perform a check on a static
text object or edit object, it should not be preceded by an exclamation point.

Since windows often have varying labels, XRunner defines a regular
expression in the physical description of a window. For more information,
see Chapter 5, “Editing the GUI Map.”

Programming with TSL ¢ Using Regular Expressions

Regular Expression Syntax

Regular expressions must begin with an exclamation point (!), except when
defined in a GUI check form or in a text checkpoint. All characters in a
regular expression are searched for literally, except for a period (.), asterisk
(*), caret (*), and brackets ([]), as described below. When one of these special
characters is preceded by a backslash (\), XRunner searches for the literal
character.

The following options can be used to create regular expressions:

Matching Any Single Character
A period (.) instructs XRunner to search for any single character. For
example,

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other
single character. A series of periods indicates a range of unspecified
characters.

Matching Any Single Character within a Range

In order to match a single character within a range, you can use brackets
([D). For example, to search for a date that is either 1968 or 1969, write:

196[89]

You can use a hyphen (-) to indicate an actual range. For instance, to match
a year in the 1960s, write:

196[0-9]

Brackets can be used in a physical description to specify the label of a static
text object that may vary:

{

class: static_text,
label: "!Quantity[0-9]"
}

231

XRunner User’s Guide

232

In the above example, XRunner can identify the static_text object with the
label “Quantity” when the quantity number varies.

A hyphen does not signify a range if it appears as the first or last character
within brackets, or after a caret (*).

A caret () instructs XRunner to match any character except for the ones
specified in the string. For example:

["A-Za-z]
matches any non-alphabetic character. The caret has this special meaning

only when it appears first within the brackets.

Note that within brackets, the characters “.”, “*”, “[“ and “\” are literal. If
the right bracket is the first character in the range, it is also literal. For
example:

(1g-m]

matches the “]“ and g through m.

Matching One or More Specific Characters

An asterisk (*) instructs XRunner to match zero or more occurrences of the
preceding character. For example:

Q*

causes XRunner to match Q, QQ, QQQ, etc. For example, in the following
physical description, the regular expression enables XRunner to locate any
pushbutton that starts with “O” (for example, On or Off).

{

class: push_button
label: "1O.*"

}

The above statement uses two special characters: “.” and “*”. Since the
asterisk follows the period, XRunner locates any combination of characters.
You can also use a combination of brackets and an asterisk to limit the label
to a combination of non-numeric characters only:

Programming with TSL ¢ Using Regular Expressions

{
class: push_button
label: "1O[a-zA-Z]*"
}

233

XRunner User’s Guide

234

Part V

Running Tests

24

Running Tests

Once you have developed a test script, you run the test to check the
behavior of your application.

This chapter describes:

XRunner Test Execution Modes

XRunner Run Menu Commands

Running a Test to Check Your Application
Running a Test to Debug Your Test Script
Running a Test to Update Expected Results

O o o o o d

Controlling Test Execution by Modifying Configuration Parameters

About Running Tests

When you run a test, XRunner interprets your test script, line by line. The
execution arrow in the left margin of the test script marks each TSL
statement as it is interpreted. As the test runs, XRunner operates your
application as though a person were at the controls.

You can run your tests in three modes:

O Verify mode, to check your application
O Debug mode, to debug your test script
O Update mode, to update the expected results

237

XRunner User’s Guide

You select the run modes from the dropdown list of modes on the toolbar or
from the Run mode options in the Run menu. The Verify mode is the
default run mode.

By 7| verity
Debuy
Use XRunner’s Run commands to run your tests. You can run an entire test,
or a portion of a test. Before running a Context Sensitive test, load the

necessary GUI map files. For more information, see Chapter 4, “Creating the
GUI Map.”

You can run individual tests, or use a batch test to run a group of tests. A
batch test is particularly useful when your tests are long and you prefer to
run them overnight or at other off-peak hours. For more information, see
Chapter 26, “Running Batch Tests.”

XRunner Test Execution Modes

238

XRunner provides three modes in which you run your tests—Verify, Debug,
and Update. You use each mode during different phases of the testing
process.

Verify Mode

Use the Verify mode to check your application. XRunner compares the
current response of your application to its expected response. Any
discrepancies between the current and expected responses are captured and
saved as verification results. View the verification results in the Report form to
determine the outcome of the test. For more information see Chapter 25,
“Analyzing Test Results.”

You can save as many sets of verification results as you require. To do so,
continue to run your test, each time saving the results in a new directory.
You specify the directory name for the results using the Set Results Directory
form. This form appears every time you run a test in the Verify mode.

Running Tests ® Running Tests

Debug Mode

Use the Debug mode to help you identify bugs in a test script. Running a
test in the Debug mode is the same as running a test in the Verify mode,
except that debug results are always saved in the debug directory. Because
only one set of debug results is stored, the Set Results Directory form does
not appear when you run a test in the Debug mode.

Once you run a test in the Debug mode, the Debug mode continues to be
the default run mode for the current XRunner session—until you activate
another mode.

Use XRunner’s debugging facilities when you debug a test script:

Control the execution of your tests using the Step commands in the Run
menu. This allows you to execute a single line of a test script. For more
information, see Chapter 30, “Debugging Test Scripts.”

Set breakpoints to pause test execution at specified points in the test script.
For more information, see Chapter 31, “Using Breakpoints.”

Use the Watch List to monitor variables used in a test script as the test runs.
For more information, see Chapter 32, “Monitoring Variables.”

Update Mode

Use the Update mode to update the expected results of a test. For example,
you might choose to update the expected results for a GUI checkpoint
which checks a pushbutton, if the default status of the pushbutton changes
from enabled to disabled.

Note that after a test has run in Update mode or has been aborted, Verify
automatically becomes the default run mode, again.

By default, XRunner saves expected results in the exp directory, overwriting
any existing expected results. Generally, only one set of expected results is
stored, but you can create multiple sets if required. For more information,
see “Generating Multiple Expected Results”, on page243 in this chapter.

You can update the expected results for a test in one of two ways:

Globally overwrite the full existing set of expected results by running the
entire test using a Run command.

239

XRunner User’s Guide

O Update the expected results for individual checkpoints and synchronization

points using the Run from Arrow command or a Step command.

XRunner Run Menu Commands

240

You use the commands in XRunner’s Run menu to execute your tests. When
a test is running, the execution arrow in the left margin of the test script
marks each TSL statement as it is interpreted.

Run from Top Command

The Run from Top command runs the active test from the first line in the
test script. If the test calls another test, XRunner displays the script of the
called test. Execution stops at the end of the test script.

Run from Arrow Command

The Run from Arrow command runs the active test from the line in the
script marked by the execution arrow. In all other aspects, the Run from
Arrow command is the same as the Run from Top command.

Quick Run Commands

The Quick Run commands deactivate the execution arrow during test
execution and allow you to run tests more quickly. You can use the Quick
Run commands to run a test either from the top of the test script, or from
the execution arrow.

Step Commands

You use a Step command to run a single statement in a test script. For more
information, see Chapter 30, “Debugging Test Scripts.”

Abort Command

You can abort a test run immediately by selecting the Abort command.
When you abort a test, test variables and arrays become undefined. Unsaved
modifications to configuration parameters, however, are retained. After
stopping a test, you can access only those functions that you loaded using
the load command. You cannot access functions that you compiled using

Running Tests ® Running Tests

the Run commands. Recompile these functions to regain access to them. For
more information, see Chapter 21, “Creating Compiled Modules.”

Pause Command

The Pause command pauses test execution. Unlike the Abort command,
which immediately terminates execution, a paused test continues running
until all previously interpreted TSL statements are executed. When you
pause a test, test variables and arrays maintain their values—as do unsaved
modifications to configuration parameters. To resume execution of a paused
test, select the appropriate Run command. Execution resumes from the
point that you paused the test.

Running a Test to Check Your Application

When you run a test to check the behavior of your application, XRunner
compares the current results with the expected results. You specify the
directory in which the verification results for the test are saved.

To run a test to check your application:
1 Open the test if it is not already open.
2 Select Verify from the dropdown list of Run modes on the toolbar.
3 Choose the appropriate Run command.

The Set Results Directory form opens, displaying a default directory name
for the verification results, for example, res6.

Runner: Set Results Directory

Result name:

Eﬁress EI

£1 Use debug mode (Don’t popup this form)

[® Display report at end of test

oK

241

XRunner User’s Guide

4 You can save the test results under the default directory name. To use a
different name, type in a new name or select an existing name from the
dropdown list.

To instruct XRunner to display the test report automatically following the
test run (the default), select the “Display report at end of test” checkbox.

Click OK. The Set Results Directory form closes and XRunner runs the test
according to the Run command you selected.

5 Test results are saved in the directory you specified.

Running a Test to Debug Your Test Script

When you run a test to debug your test script, XRunner compares the
current results with the expected results. Any differences are saved in the
debug results directory. Each time you run the test in the Debug mode,
XRunner overwrites the previous debug results.

To run a test to debug your test script:
1 Open the test if it is not already open.
2 Select Debug from the dropdown list of modes on the toolbar.
3 Choose the appropriate Run command.

To execute the entire test, choose the Run from Top command. The test runs
from the top of the test script and generates a set of Debug results.

To execute a portion of the test, choose the Run from Arrow command, or
one of the Step commands. The test runs according to the Run command
you selected, and generates a set of Debug results.

Running a Test to Update Expected Results

When you run a test to update expected results, the new results replace the
expected results created earlier and become the basis of comparison for
subsequent test runs.

242

Running Tests ® Running Tests

To run a test to update the expected results:

1 Open the test if it is not already open.

Select Update from the dropdown list of modes on the toolbar.

3 Choose the appropriate Run command.

To update the entire set of expected results, choose the Run from Top
command.

To update only a portion of the expected results, choose the Run from Arrow
command, or one of the Step commands.

XRunner runs the test according to the Run command you select and
updates the expected results. The default directory for the expected results is

exp.

Generating Multiple Expected Results

You can generate more than one set of expected results for any test. You may
want to generate multiple sets of expected results if, for example, the
response of your application varies according to the time of day. In such a
scenario, you would generate a set of expected results for each defined
period of the day.

To create a different set of expected results for a test:

Choose Open from the File menu. The Open Test form opens. Note that if
the test is already open, you must reopen it.

243

XRunner User’s Guide

2 In the Open Test form, select the test for which you want to create multiple
sets of expected results. Enter a unique directory name for the new expected
results in the Expected field.

Current Directory: |§furmoshek
Test Hame: |

Expected Results Hame: E version_3
Directories: Tests:

ol qui_reg
MCf myinit
datf

.hhf

.netscapef

softhenchf

vuef

Xvpics!

Mailf

ar-01f

batch_1¢

enginef

filters/

B B

Filter | Cancel |

3 Click OK. The Open Test form closes.
4 Select Update from the dropdown list of Run modes on the toolbar.

5 Choose the Run from Top command to generate a new set of expected
results.

XRunner runs the test and generates a new set of expected results, in the
directory you specified.

Running a Test with Multiple Sets of Expected Results

If a test has multiple sets of expected results, you specify which expected
results to use before running the test.

To run a test with multiple sets of expected results:

1 Choose Open from the File menu. The Open Test form opens.

244

Running Tests ® Running Tests

Note that if the test is already open, but is accessing the wrong set of
expected results, you must reopen the test.

In the Open Test form, select the test that you want to run. The Expected
field displays all the sets of expected results for the selected test.

Select the required set of expected results from the Expected field, and click
OK. The Open Test form closes.

Select Verify from the dropdown list of Run modes on the toolbar.

5 Choose the appropriate Run command. The Set Results Directory form

opens, displaying a default directory name for the verification results—for
example, RES_1.

Click OK to begin test execution, and to save the test results in the default
directory. To use a different verification results directory, type in a new name
or select an existing name from the dropdown list.

Click OK. The Set Results Directory form closes. XRunner runs the test
according to the Run command you selected and saves the test results in the
directory you specified.

245

XRunner User’s Guide

Controlling Test Execution by Modifying Configuration
Parameters

246

You can control how a test is run using XRunnet’s configuration parameters.
For example, you can set the time XRunner waits at a bitmap checkpoint for
a bitmap to appear, or the speed that a test is run.

You modify parameter settings from the Configuration form. To display the
form choose Configure from the Options menu. You can also modify
configuration parameter settings from within a test script using the setvar
function.

For example, the default for the XR_MIN_DIFF parameter (that defines the
minimum number of pixels that constitute a bitmap mismatch) is 0. If you
assign a new value to a configuration parameters, you can choose to make
this the default value when you exit XRunner.

For a more comprehensive discussion of controlling test execution with
configuration parameters, refer to Chapter 33, “Changing System Defaults.”

25

Analyzing Test Results

After you execute a test, you can view a report of all the major events that
occurred during the run and analyze the success or failure of the test.

This chapter describes:

Test Results Summary

Test Results Log

The Test Tree

Viewing All Captures

Viewing the Results of a Test

Viewing the Results of a GUI Checkpoint
Viewing the Results of a Bitmap Checkpoint
Controlling How Bitmaps are Displayed
Filtering Results

Updating Expected Results

O o oo oo ogog oo g o

Printing Results

About Viewing Test Results

The Report form presents all the information related to the results of test
execution. You can view both textual and graphical representations of the
test run. The type of information displayed depends on whether the test was
run in Verify mode and on the types of checkpoints performed (bitmap or
GUI).

247

XRunner User’s Guide

248

XRunner provides the following information:

The test summary tells you whether the test passed or failed and lists all
checkpoints that were performed. Technical details include the test name;
the expected results directory (for verification runs); the time and date of
execution; and the name of the test operator.

The test log details the major events that occurred during the test run. These
include the start and termination of the test; GUI and bitmap checkpoints;
changes in the progress of the test flow; changes to configuration
parameters; displayed report messages; and run-time errors.

The color-coded test tree shows all tests executed during the run (including
called tests) and the result for each. Select a test from the tree to “jump” into
the results for that test.

The All Captures option displays all captured GUI and bitmap data for the
current test.

Depending on the test performed, you can view the following:

Bitmaps captured during the run: for a test run containing no mismatches,
this will be the bitmap(s) constituting the expected results; following a
verification mismatch, this will be the bitmap(s) constituting the difference
between the expected and the actual bitmap.

For a captured GUI, the results for each check are displayed in table form: for
all runs, the expected results for each check; following a verification
mismatch, you can see the actual results as well as the expected results for
each check.

For all tests, any error message, user message or system message generated
during the run.

Running Tests ¢ Analyzing Test Results

Test Results Summary

File Options
Test Hame: |]"u!qauserffrank!gui_test x
Test Results: resl i?. Expected Directory: exp

1 Show Script| | 1 Mismatch Only |
Test Result: fail i
Number of detected bitmap mismatches: 0
Number of detected gui mismatches: 1 >
Total number of bitmap checkpoints: 0
Total number of checked gui files: 1 >
Process duration time: 363 sec.
Total windows sync time: 0 sec 0 millisec,
B (]
Operator Name: qauser Date: Sun Mar 31 16:15:53 1996

ihniate | {Hapiay |

When you open a report for a test run, XRunner displays a summary. The
following information can appear:

Test Name: The name of the test.

A check or a cross: Depicts the overall result of the test run—either pass or
fail.

Results Directory: The directory containing the verification results of the
last test run.

Expected Results Directory: The name of the expected results directory
used for the test.

Summary: Displays Test Results Summary. Also toggles between other
displays: Test Log and All Images.

Test Result: Indicates whether the test passed or failed. For a batch test, this
refers to the batch test and not to the main tests that it called.

249

XRunner User’s Guide

250

Number of detected bitmap mismatches: Number of bitmaps that did not
match expected results.

If you double-click on a bitmap checkpoint line displaying a bitmap,
XRunner displays a detailed list of bitmap checkpoints for the test. When
the list is displayed, the ‘>’ sign changes to ‘<’.

Bitmap checkpoints are displayed in the following format: Img_1 clock(3)
indicates: the first bitmap (_1) captured for the clock test. The number in
parentheses indicates the line in the test script that contains the
check_window, win_check_bitmap or obj_check_bitmap statement
associated with this bitmap, in this case line 3.

The letters E, A or D following the bitmap checkpoint indicate whether
there is an expected, actual of difference available stored on the disk.

To display available bitmaps, double click on the checkpoint, or highlight
the checkpoint and press Display. By highlighting several entries, you can
display the bitmaps captured for several checkpoints.

Number of detected GUI mismatches: Total number of verified GUI
captures that did not match expected results.

If you double-click on a GUI mismatches line displaying a ‘>’, XRunner
displays a detailed list of GUI checkpoints. If the list is displayed, the ‘>’
changes to a ‘<.

GUI checkpoints are displayed in the following format: gui_1 clock (4)
indicates: GUI checkpoint number 1, captured for the clock test. The fourth
line in the test script contains the obj_check_gui or win_check_gui
statement associated with this GUI capture.

To display the GUI data, double-click on the GUI checkpoint, or highlight
the checkpoint and press Display. By highlighting several entries, you can
display the GUI data captured for several checkpoints.

Total number of bitmap checkpoints: Number of captured bitmaps.
Total number of GUI checkpoints: Number of GUI captures.

Total run time: Total time (in hr:min:sec) that elapsed from start to finish of
the current test run.

Running Tests ¢ Analyzing Test Results

Total windows sync time: Total time (in seconds and milliseconds) spent
on synchronizing window events.

Date: The date and time of the test run.
Operator Name: The login name of the user who ran the test.

Display: Displays captured GUI data or bitmaps, depending on the selected
line in the Report.

Update: Replaces the previously expected GUI data or bitmaps with those in
the actual results. If several GUI or bitmap checkpoints are selected when
you press Update, the combined actual results for all selected checkpoints
are stored as expected results.

Test Results Log

Display

File Options
Test Hame: |]"u!qauserffrank!gui_test x
Test Results: resl i?. Expected Directory: exp

1 Show Script| | £1 Mismatch Only |

Line Event Details Result Time

start run gui_test Fun 00:00:00 =

context sensitive error | set_window: Object is not in the GUI E error 00:00:03

stop run qui_test pause 00:00:15

start run qui_test run 00:01:39

start GUI checkpoint

guil 00:01:42

ihniate | {Hapiay |

To display the test log, select Test Log from the Display options. The log
provides detailed information on every major event that occurred during

251

XRunner User’s Guide

252

the specified execution of the selected test. The row describing a successful
checkpoint appears, by default, in green. The row describing a mismatch or
failure appears, by default, in red. You can change the default report color
settings from the Configuration form:

The XR_PASS_COLOR configuration parameter defines the color indicating a
successful test run.

The XR_FAIL_COLOR configuration parameter defines the color indicating a
failed test run.

If XRunner performed GUI and bitmap checks or transmitted messages
during test execution, you can click on the event in the log to see the
relevant information. The log can include the following:

Show Script: When activated, highlights the TSL command corresponding
to the line in the report.

Mismatch Only: When activated, displays only mismatches for the test run.

Bitmap checkpoints: double-click on the row to view the selected bitmap.
In the case of a mismatch, you can view the Expected bitmap, the Actual
bitmap captured and a Difference bitmap showing the discrepancy between
the two. You can view the bitmaps captured for several checkpoints by
clicking on several rows.

GUI checkpoints: double-click on the row to bring up the Verification
Results form for the selected checkpoint.

System, User, or Error messages created during the test run: double-click
on the row to see the message.

Running Tests ¢ Analyzing Test Results

The Test Tree

| I
| ¥Runner Report: Test Tree

The test tree opens automatically when you select Test Log. You can also
open it by selecting Test Tree from the Options menu of the Results form.

When you view the results of a test that calls other tests, the test tree shows
all the tests associated with this test run.

Each test is color-coded to indicate whether it passed or failed and to show
the currently selected test:

Shading indicates the currently selected test.
Green indicates a test that passed.
O Red indicates a test that failed.

Red and green are the default colors for failed and successful test runs.
Report colors are configurable. For more details, see “Test Results Log”, on
page251 in this chapter.

Before viewing test results, make sure that all tests called during the run are
in the XRunner search path. For more information, see Chapter 19, “Calling
Tests.”

253

XRunner User’s Guide

Viewing All Captures

254

To display a complete list of GUI and bitmap data stored in a specific results
directory, select All Captures from the Display options.

Fle Options
Test Hame: |]"u!qauserffrank!ﬂight1 x
Test Results: res3d i?. Expected Directory: exp

All Images I | £1 Show Script| |t| Mismatch 0n|y|

guil flightl (?)
gui? flightl (?)
gui3 flightl (?)

Imgl flightl (?)
Img2 flightl (?)
Img3 flightl (?)

e — i NN

update |

Display |

All Captures displays all existing expected, actual and difference data for all
GUI and bitmap checkpoints in the selected results directory. For example,
suppose that a test bitmap_chk_2 contains five bitmap checkpoints. If,
during the last test run, you executed a test from the line containing the
third checkpoint, All Captures would allow you to view the data captured
during all previous runs, as well as those captured for points 3,4 and 5 in the

last run.

To display one or more files in the list, double-click the appropriate lines, or

highlight the lines and press Display.

To update expected results, highlight the line and press Update.

Running Tests ¢ Analyzing Test Results

Viewing the Results of a Test

When a test run is completed, you can view detailed test results in the
Reports form. To open the form, select Reports from the Tools menu or click
on the Reports icon. If you ran a test in Verify mode and selected the “Show
Results” option in the Results form, the Report automatically opens when a
test run is completed. For more information, see Chapter 24, “Running
Tests.”

The Report form opens and displays the results of the current test. You can
view both expected, debug, and verification results in the Report form. By
default, the Report form displays the results of the most recently executed
test run. To view other results, select a results directory from the Test Results
list. Examine the results in the test summary and test log. When available,
click on called tests in the test tree to view their results. In order to place the
report file automatically into the test directory, insert the following line
when performing the XRunner configuration:

XR_AUTO_REPORT = TRUE

To close the Report form, select the Quit command from the File menu.

Viewing the Results of a GUI Checkpoint

A GUI checkpoint helps you to identify changes in the look and
performance of GUI objects in your application. The results of a GUI
checkpoint are presented in a table opened from the Report form. The table
lists every object checked during the GUI check and the type of check
performed. Each check is listed as either passed of failed and the expected
and actual results are shown. If one or more objects fail, the entire GUI
checkpoint is marked as failed in the test log.

To display the results of a GUI checkpoint:

1 Open the Report form. In the test log, look for entries that contain the end
check GUI statement in the Event column. Failed GUI checks appear in red;
passed GUI checks appear in green.

255

XRunner User’s Guide

256

2 Double-click on a GUI checkpoint entry in the test log or click on the GUI

checkpoint entry and press the Display button. The GUI Check Results form

opens:

Runners GUI Check Result:

ihniate Selonind Chenk

Check List: Result Expected Actual
Aight Reservation Passed

Count_objects 1 1
Customer Hame: Failed

Compare{"TEXT") * dfd

B
T o] [Gear |

Checklist: Displays the complete GUI checklist. Each object in the checklist
is followed by its check(s). Checks in the Checklist are indented.

Result: Indicates the result for each check, either “Passed” or “Failed.” An
asterisk next to the check indicates a mismatch.

Expected: Displays the expected results for each check.

Actual: Displays the actual results for each check (in the case of GUI
mismatch only).

Show failures only: When checked, only the checks that failed are
displayed.
Update selected check: Replaces the expected results with the actual results

for a selected check.

Expand: When a particular check is selected, displays values that are too
long to fit into the main list box.

The form lists every object checked and the type of check performed. Each
check is listed as either passed or failed and the expected and actual results
are shown.

Running Tests ¢ Analyzing Test Results

To view results that are too long to fit into the main table, click the Expand
button to expand the form. Press the Collapse button to collapse the form to
its original size.

HRunner: GUI Check Results:

1 Show Failures Only Update Selected Check

Result Expected

ight Reservation

Compare("TEXT")

4 To display only failed checks, select the Show Failures Only checkbox.
5 Click OK to close the form.

Viewing the Results of a Bitmap Checkpoint

A bitmap checkpoint compares expected and actual bitmaps in your
application. In the Report form you can view pictures of the expected and
actual results. If a mismatch is detected by a bitmap checkpoint during a
verification run, you can also view bitmaps showing the differences between
the expected and actual results.

To view the results of a bitmap checkpoint:

1 In the test log, look for entries that contain the check bitmap statement in
the Event column.

2 To display the results of one or more bitmap checkpoint, double-click on
their entries in the log or select the entries and press the Display button. For

257

XRunner User’s Guide

a mismatch, the expected, actual, and difference bitmaps are displayed; for
all other runs, only the bitmaps constituting the expected results are
displayed.

Expected Actual Difference

3 To remove a bitmap from the screen, click anywhere inside the window.

Controlling How Bitmaps are Displayed

For bitmap checkpoints, you can control which types of bitmaps are
displayed. You can also control whether to use the colormap stored with the
bitmap, or the currently installed colormap.

258

Running Tests ¢ Analyzing Test Results

To control how bitmaps are displayed:

1 In the report Options menu, select the Controls command. The Controls
form opens.

¥Runner Report: Controls |_ O] x|

2 Click on checkboxes to select options.
3 Click OK to save the display configuration and close the form.
The Controls form includes the following buttons and fields:

Display Expected Bitmap: Displays the expected bitmap

Display Actual Bitmap: Displays the actual bitmap captured during the
verification run (available only when a mismatch occurs).

Display Difference Bitmap: Displays the discrepancy between the expected
and actual bitmaps (available only when a mismatch occurs).

B/W Differences: When activated, difference bitmaps are displayed in black
and white instead of color. This may make it easier to discern the recorded
discrepancy.

259

XRunner User’s Guide

260

Use Other Display: Sends the display of the specified bitmap to the screen
of another workstation. Use the X DISPLAY environment variable format to
specify the destination display. For example, type in mercury:0, where
mercury is a server name for which you have the appropriate authorization.

Current: Uses the colormap currently installed to display the selected
bitmap. No colormap changes occur on the screen. This means that if the
AUT uses a different colormap than the one currently installed, the colors
in the displayed bitmap may be different from those used when you
captured the bitmap.

Original: Installs the colormap stored with the captured bitmap. This
colormap affects all windows currently displayed on the screen and may
distort the colors used in the current environment.

Adjusted: Modifies the current colormap in order to approximate the
correct colors in the displayed bitmap window. This may be useful, for
example, for displaying color bitmaps on a monochrome display. Selecting
this option affects all other windows on the screen.

Note that only one colormap can be installed at any given time. If your
tested application uses a different colormap than other windows on the
screen, you may have to compromise while displaying bitmaps: either the
captured AUT window bitmap or some other windows opened on the screen
may be displayed with the wrong colors.

If your window manager is set to change the colormap manually, then in
addition to selecting the Original or Adjusted options, you may need to
“unlock” the colormap focus using the appropriate menu command or
softkey. For further information, see your window manager documentation.

Filtering Results

Running Tests ¢ Analyzing Test Results

You can choose to view only specific types of results by filtering the events

in the test log.

To filter results:

1 Select Filters from the report Option menu. The Filters form opens.

Test Log Filters:

[® Test calls
[® GUI Checks

[Bitmap Checks

[System Messages
[% Error Messages

[User Messages

[Apply

Close |

2 Select the types of results that you want to view in the test log. Deselect any
result types that you do not want to view. The default filter configuration
displays all result types.

3 Click Apply to save the filter configuration for the current XRunner session
and to close the form.

4 Click Close to close the form.

261

XRunner User’s Guide

Updating Expected Results

262

If a bitmap or GUI checkpoint fails, you can update the expected results
directory (exp) with data in the verification results directory. The next time
you run the test, the new expected results will be compared to the actual
results in the application.

To update the expected results of a bitmap checkpoint:

1 Select one or more mismatched bitmap checkpoint from the test log.

Press the Update button.

3 A message states that overwriting expected results cannot be undone. Select

Yes to update the results.

To update the expected results of a GUI checkpoint:
In the test log, select one ore more mismatched GUI checkpoint.

To update the results for the entire GUI checkpoint, click the Update button.

3 To update the results for a specific check within the GUI checkpoint,

double-click on the GUI checkpoint entry in the log, or press the Display
button. The GUI Check Results form opens.

Select a failed check and click the Update Selected Check button.

Printing Results

Running Tests ¢ Analyzing Test Results

You can print test results directly from the Report form. Simply select the
Print command from the File menu in the form.

Print Options:

[% Filtered Report

[¥ GUI Results

< Current Test Only
4Full Report

Print to | 4 Printer < File

Print Command:

[

Cancel |

In the Print form that is displayed, you can select

O a filtered report or GUI results

O the results for the current test or for a full test run (for example a test call

chain)

O to send test results to a printer or to a disk file

Click OK to print the results.

263

XRunner User’s Guide

264

26

Running Batch Tests

XRunner allows you to execute a group of tests unattended. This can be
particularly useful when you want to run a large group of tests overnight or
at other off-peak hours.

This chapter describes:

Creating a Batch Test
Executing a Batch Test
Storing Batch Test Results

O 0o o d

Viewing Batch Test Results

About Running Batch Tests

You can run a group of tests unattended by creating and executing a single
batch test. A batch test is a test script which contains call statements to
other tests. It opens and executes each test, and saves the test results.

Batch Test

Test Test Test Test

At first glance, a batch test appears to be a regular test that includes call
statements. A test only becomes a “batch test” when the batch test flag has

265

XRunner User’s Guide

been set to ON before you execute the test. When running in Batch mode,
XRunner suppresses all messages that would ordinarily be displayed during
execution, such as a message reporting a bitmap mismatch. XRunner also
suppresses all pause statements and any halts in execution resulting from
runtime errors.

By suppressing all messages, XRunner can run a batch test unattended. This
differs from a regular, interactive test run in which messages appear on the
screen and prompt you to click a button in order to resume test execution. A
batch test enables you to run tests overnight or during off-peak hours, so
that you can save time while testing your application.

When a batch test run is completed, the results can be viewed in the
XRunner Report form. The form displays the results of all the major events
that occurred during the run.

Note that you can also execute a group of tests from the command line. For
more information, see Chapter 27, “Running Tests from the Command
Line.”

Creating a Batch Test

266

A batch test is a test script that calls other tests. You program a batch test by
typing call statements directly into the test window and setting the value for
the XR_BATCH_MODE parameter in the Configuration form to ON.

A batch test may include programming elements such as loops and decision-
making statements. Loops enable a batch test to run called tests a specified
number of times. Decision-making statements such as if/else and switch
condition test execution on the results of a test called previously by the
same batch script. For more information, see Chapter 17, “Enhancing Your
Test Scripts with Programming.”

For example, the following batch test executes three tests in succession,
then loops back and calls the tests again. The loop specifies that the batch
test should call the tests ten times.

Running Tests ® Running Batch Tests

for (i=0; i<=10; i++)
{
call'/u/andy/pbtests/open” ();
call'/u/andy/pbtests/save" ();
call'/u/andy/pbtests/setup"” ();

}

Executing a Batch Test

You execute a batch test in the same way that you execute a regular test.
Choose a mode (Verify, Update, or Debug) from the dropdown list in the
icon bar or the Run menu and then select the Run from Top command from
the Run menu. For more information, see Chapter 24, “Running Tests.”

When you run a batch test, XRunner opens and executes each called test. All
messages are suppressed so that the tests are run without interruption. If you
are running the batch test in Verify mode, the current test results are
compared to the expected test results saved earlier. If you are running the
batch test in order to update expected results, new expected results are
created in the expected results directory for each test. See the section
“Storing Batch Test Results” in this chapter for more information. When the
batch test run is completed, the test results can be viewed in the Report
form.

Note that if your tests contain TSL texit statements, XRunner interprets
these statements differently for a batch test run than for a regular test run.
During a regular test run, texit terminates test execution. During a batch
test run, texit halts execution of the current test only and control is
returned to the batch test.

You can enable a batch test to run unattended using either of two methods:

O Using the Configuration form: Before running the batch test from
XRunner, ensure the setting for the XR_BATCH_MODE configuration
parameter is ON. The default setting is OFF. Click Apply to apply the change
for the current session or Save to apply the change for current and future
sessions.

267

XRunner User’s Guide

O From the command line: Run the batch test using the -batch option. For

example, to run the batch test /u/bert/qa/batch1, enter the following at the
UNIX prompt:

xrun -t /u/bert/ga/batchl -batch ON

Storing Batch Test Results

268

When you run a regular, interactive test, results are stored in a subdirectory
under the test. The same is true when a test is called by a batch test.
XRunner saves the results for each called test separately in a subdirectory
under the test. A subdirectory is also created for the batch test that contains
the overall results of the batch test run.

For example, suppose you create three tests, Open, Setup, and Save. For each
test, expected results are saved in a exp subdirectory under the test directory.
Suppose you also create a batch test that calls the three tests. Prior to
executing the batch test in Verify mode, you tell XRunner to save the results
in a directory called res1. When the batch test is run, it compares the current
test results to the expected results saved earlier. Under each test directory,
XRunner creates a subdirectory called res1 in which it saves the verification
results for the test. A res1 directory is also created under the batch test to
contain the overall verification results for the entire run.

Batch Test——— exp
res1

Open Setup Save
\ \ \

exp exp exp
resl res] res]

If you run the batch test in Update mode in order to update expected results,
XRunner overwrites the expected results in the exp subdirectory under each
test and under the batch test.

Note that if you run the batch test from XRunner, without modifying the
XR_BATCH_MODE configuration parameter or using the -batch option,
XRunner saves results only in a subdirectory under the batch test. This can
cause problems later, if you choose to run the tests independently, since

Running Tests ® Running Batch Tests

XRunner will not know where to look for the previously saved expected and
verification results.

Viewing Batch Test Results

When a batch test run is completed, you can view information about the
events that occurred during the run in the XRunner Report form. If one of
the called tests fails, then the batch test is marked as failed.

The test log section of the Report form lists all the events that occurred
during the batch test run. Each time a test is called, a call_test entry is listed
in the log. To view the results of the called test, double-click on its call_test
entry. For more information on viewing test results in the Report form, see
Chapter 25, “Analyzing Test Results.”

269

XRunner User’s Guide

270

27

Running Tests from the Command Line

g
g

You can run tests directly from your UNIX command line according to the
options that you define in advance.

This chapter describes:

Using the Command Line with XRunner

Command Line Options

About Running Tests from the Command Line

O 0o o o o g

Running tests from the command line enables you to use XRunner together
with UNIX system facilities and other processes and applications. This is
particularly useful for performing a large batch run of tests requiring much
system initialization and administration. You can use the command line to
prepare a script that:

recompiles the new AUT release

loads the relevant tests

creates a temporary work space for running the tests
invokes XRunner

executes the tests

moves the test results to a storage area

271

XRunner User’s Guide

Using the Command Line with XRunner

Most of the functional options that you can set within XRunner can also be
set from the command line. For example, the following command invokes
XRunner, loads a batch test, sets the results directories and the delay option,
and runs the test.

xrun -E -t /v1_3/newclock -run -batch -exp ER1 -verify res5 -delay 3&

An Execution license copy of XRunner is invoked. The test, newclock
(located in directory v1_3), is loaded and then run. The expected results for
the run are stored under the subdirectory ER1. The verification results are
written to subdirectory resS. The delay between consecutive screen
samplings is set to three seconds.

Command Line Options

272

The following is a description of each command line option.

-auto_load {on | off}

Activates or deactivates automatic loading of the temporary GUI map file.
(Default = on)

-auto_load_dir pathname

Determines the directory in which the temporary GUI map file (temp.gui)
resides. This option is applicable only when auto load is on.

-batch {on | off}

Runs the loaded test as a batch test.
(Default = off)

-beep {on | off}

Activates or deactivates the XRunner system beep.
(Default = on)

-click_delay non-negative integer
Defines the delay (in tenths of a second) that XRunner waits after

interpreting a single click of a mouse button.
(Default = 10 [tenths of a second])

Running Tests ® Running Tests from the Command Line

-compress {on | off}

Activates or deactivates the compressed storage of captured bitmaps.
(Default = off)

-cycle

Specifies the cycle name. (Used for TestDirector integration.)

-D | -E
Specifies what type of XRunner license is to be invoked: Development (-D)

or Execution (-E).
(Default = -D)

-dblclk_time non-negative integer

Defines the longest possible interval (in tenths of a second) that can elapse
between two clicks for them to still constitute a double-click.
(Default = 30 [tenths of a second])

-delay non-negative integer
Defines the time (in seconds) that XRunner waits between consecutive

samplings of the screen.
(Default = 1[seconds])

-display display name
Displays the XRunner user interface on a remote workstation. Although

XRunner and the AUT both run on the same local machine, the XRunner
window will appear on the designated remote machine.

The display name must specify the name of the remote machine on which
you want the XRunner interface to appear and the number of the display.

-exp expected_results_name

Assigns a name to the subdirectory in which expected results are stored. In a
verification run, specifies the set of expected results used as the basis for the
verification comparison.

(Default = exp)

-fast_replay {on | off}

Activates or deactivates fast test execution.
(Default = off)

273

XRunner User’s Guide

274

-focus_delay non-negative integer

Defines the delay (in tenths of a second) that XRunner waits from the time
the mouse is moved to a new window until input is entered.
(Default = 10 [tenths of a second])

-fontgrp group_name

Specifies the active font group when XRunner is invoked.

-kbd_delay non-negative integer

Defines the delay (in tenths of a second) that XRunner waits after
interpreting a keyboard entry.
(Default = 0)

-min_diff non-negative integer
Defines the number of pixels that constitute the threshold for a bitmap

mismatch.
(Default = O [pixels])

-mismatch_break {on | off}

Activates or deactivates Break on Mismatch before a verification run.

The functionality of Break on Mismatch is different than when running a
test interactively. In an interactive run, the test is paused. For a test invoked
from the command line, the first occurrence of a comparison mismatch
terminates test execution.

(Default = off)

-move_windows {on | off}

Activates or deactivates the automatic relocation of windows.
(Default = on)

-raise_windows {on | off}

Activates or deactivates the automatic raising of moved windows.
(Default = on)

-redraw non-negative integer

Defines the time (in seconds) that XRunner waits for the screen to be
redrawn after it moves a window during test execution.
(Default = 3[seconds])

Running Tests ® Running Tests from the Command Line

-run

Instructs XRunner to execute the loaded test.

-script_font font name

Specifies the font in the XRunner window.

-search_path pathname

Defines the directories to be searched for tests to be opened and/or called.
Note that the search_path can specify multiple directories. The search path
is given as a string enclosed in quotation marks; a space serves as the
delimiter between adjacent directory names.

(Default = Invocation directory and $M_ROOT/lib)

-server name

Accesses an X server on a remote workstation. The server name should
specify the name of the remote display on which the AUT is running.

-sync_mode {on | off}

Activates or deactivates synchronization for test execution.
(Default = on)

-sync_time

Defines the maximum time (in seconds) thast XRunner waits for a
synchronization event.

-t testname

Specifies the name of the test to be loaded in the XRunner window. This can
be the name of a test stored in a directory specified in the search path or the
full pathname of any test stored in your system.

-td_log_dirname
Determines the directory in which the XRunner logfile resides.

-test_director {on | off}
Activates or deactivates TestDirector integration support.

-timeout non-negative integer

Defines the global timeout variable (in seconds) used by XRunner.
(Default = 1[second])

275

XRunner User’s Guide

-user_name

Used for TestDirector integration.

-verify verification_results_name

Specifies that the test is to be run in Verify mode and assigns a name to the
subdirectory in which the test results are stored.

-window_frames {on | off}

Includes or excludes application window frames from bitmap comparison.
(Default = on)

-wm_borders {on | off}

Determines whether bitmaps are captured with their window frame.
(Default = on)

276

28

Running Tests in the Background

XRunner lets you execute tests in the background while you use your mouse
and keyboard to develop tests or to work with other applications.

This chapter describes:

Running a Background Test
Setting the Background XRunner Startup Options
Setting the Background Environment Options

Running Background Tests from the Command Line

O o o o o

Stopping a Background Run

About Background Testing

Background testing lets you execute a test and continue to use your
workstation for other purposes. For example, you can execute a test in
background mode while developing a new test in the XRunner window.

Background tests are run in the Background Test window. This is a self-
contained testing environment based on Mercury Interactive’s Virtual X
Server technology. The Background Test window can be iconized while
executing a test. Your mouse and keyboard are free, so you can continue
working in other windows.

The Background Test form is used to activate and set options for background
testing. There are two types of background test parameters: background
XRunner start-up options and background environment options.
Background XRunner start-up options include the pathname of the test to
be executed, the test execution mode, and the command line options.

277

XRunner User’s Guide

Background environment options include the window manager and the
virtual display ID.

Running a Background Test

To run a test automatically in background mode:

1 Select the Background Run command from the Tools menu. The
Background Run form appears.

2 Enter the full pathname of the test you want to open in the Test Pathname
field.

3 Select the Run or Quick Run test execution modes.
4 Set additional Startup and Environment options (see the following sections.)

5 Click OK. The Background Run window opens and the test is executed.
When the test is completed, the Background Test window closes.

Fle Edit Create Run Debuy Tools Options Help

Dl BlELS) efawlu] =[F]als] BlF]

set_window({" Flight Reservation”, 4);
= |Button_press{’ Graph Icon");

win_check_bitmap ("Graph*, "Img1", 1);

button_press("Close");

If you select the Idle test run mode from the Background Run form, the
Background Test window opens with a background XRunner inside. Use the
File and Run menus of the background XRunner to open and execute tests.

278

Running Tests ® Running Tests in the Background

You can invoke the AUT by using the system function or by typing the
following at the UNIX command line:

aut -display <displayname>

Where aut is the application under test and -displayname is the name in the
banner of the Background Run window.

For more information on using the system command to start your
application, see Chapter 34, “Initializing Special Configurations.”

Setting the Background XRunner Startup Options

Follow the steps below to set the desired start-up options in the Background
Run form:

O To select the test run mode, activate the Idle, Quick Run, or Run checkbox.

O For a Verification run, click the Verify check box and enter the name of a
results directory in the Name field.

O Enter the command line parameters you want to set in the Command line
options field. The command line options -server and -display cannot be set
from this field. For more information about command line options see
Chapter 27, “Running Tests from the Command Line.”

O Check the Quit Foreground XRunner checkbox if you want to quit XRunner
and run only the Background Run window.

Setting the Background Environment Options

The following background environment options can be set in the
Background Run form:

O Enter the name of the window manager you want to use in the Background
Run window in the Window Manager field. The default option is the Motif
window manager.

O Click the Lock Screen checkbox to lock the Background Run window to
mouse and keyboard input. This prevents accidental keyboard and mouse

279

XRunner User’s Guide

input that may disturb test execution. Tests are executed in batch mode to
prevent popup messages.

If you want to run more than one session you must enter a unique display
number for each window. Enter the ID number of the Background Run
window in the Display ID field. The default is zero.

Running Background Tests from the Command Line

280

The Background Test window can be opened using the command line
interface. Type at the UNIX command line:

bg_xrun [-id display_number -wm window manager -lock
-server -display -command_line_options]
-id display_number

Defines the display number of the Background Test window. (The actual
display number is the ID plus the 1000 base address).
(Default = 0)

-wm window manager

Defines the name of the window manager.
(Default = mwm)

- lock

Sets the Lock Screen option.
(Default = no lock)

-server name

The name of the workstation on which the Background Run virtual (xgate)
window will run and will execute a selected test.

-display display name

The display on which the Background Run XRunner window will appear.

- command_line_options command_line_options

Sets the command line options.
(Default = no command line options set.)

Running Tests ® Running Tests in the Background

For more information see Chapter 27, “Running Tests from the Command
Line.”

The Background Run window opens in Idle mode. To execute a test in Run
or Quick Run mode the testname and command line options -animate (for a
Run) or -run (for a Quick Run) must be included in the script.

For example, the following command line would load XRunner and the
newclock test on metal using the olwm window manager. The test would be
run on copper in virtual window ID 1002. The test run would lock out all
keyboard and mouse input.

bg_xrun -id 2 -wm olwm -lock -server copper:0 -display metal:0 -t/v1_3/newclock
-run

Stopping a Background Run

If the Lock Screen option was not selected, close the test and then exit
XRunner from the File menu of the background XRunner. This will close the
Background Run window.

Click the Kill button to stop a background run during execution if the Lock
Screen option is set. Test execution stops and the Background Run window
closes. The Kill command might not close the AUT.

281

XRunner User’s Guide

282

29

Running Tests on Remote Hosts

This chapter describes how to perform Context Sensitive testing when
XRunner and the application under test (AUT) are running on different
machines, or on different displays.

This chapter describes:

O Connecting XRunner to a Remote AUT

O Disconnecting XRunner from Applications

About Running Tests on Remote Hosts

XRunner can be connected simultaneously to more than one remote
machine. You can also test your application using several local or remote
XRunners.

XRunner automatically begins a name server process called mc_svc on each
host you use to connect XRunner and your AUT. The mc_svc process
registers current connections between the AUT and XRunner.

To connect XRunner to applications running on a remote host or display,
you use an aut_connect statement in a test script. To disconnect XRunner
from an application running on a remote host or display, use an
aut_disconnect statement.

There are two additional functions that are useful when XRunner and your
AUT are running on different hosts or displays: aut_set sets the application
with which XRunner will communicate and aut_get returns information on
the remote AUT connected to XRunner. For more information on the
aut_set and aut_get functions, refer to the TSL Reference Guide.

283

XRunner User’s Guide

Connecting XRunner to a Remote AUT

To connect XRunner to a remote application, run an aut_connect statement
in a test script.

The aut_connect function has the following syntax:

aut_connect (host, app_name, instance_id, display);

For example, to connect XRunner to all applications running on the host
called metal, and the display xterm8:0, run aut_connect as follows:

aut_connect("metal","AUT","*" "xterm8:0");

The connection is valid for all AUTs matching the description in the
aut_connect statement (whether they are already running or not). You do
not need to re-execute the aut_connect statement each time you start the
AUT.

For more information on the aut_connect function, refer to the TSL
Reference Guide.

Disconnecting XRunner from Applications

The aut_disconnect function disconnects XRunner from an application
running on a remote host.

The aut_disconnect function has the following syntax:

aut_disconnect ([host, app_name, instance_id, display]);

Specifying arguments for the aut_disconnect function is optional. If no
arguments are specified, aut_disconnect disconnects XRunner from all
applications running on remote hosts.

For example, to disconnect XRunner from an application “WinApp”,
running on a host called sunny, and the display xterm4:0, run
aut_disconnect as follows:

aut_disconnect ("sunny","WinApp","*","xterm4:0");

284

Running Tests ® Running Tests on Remote Hosts

In this example, “WinApp” was defined by the MC_AUT_NAME environment
variable before starting the application under test. This made is possible to
then specify a hypothetical “WinApp” for the app_name parameter instead
of the default “AUT”.

For more details on the aut_disconnect function, refer to the TSL Reference
Guide.

285

XRunner User’s Guide

286

Part Vi

Debugging Tests

30

Debugging Test Scripts

Controlling test execution can help you to identify and eliminate bugs in
your test scripts.

This chapter describes:

O Running a Single Line of a Test Script

0 Pausing Test Execution

About Debugging Test Scripts

After you create a test script you should check that it runs smoothly,
without errors in syntax or logic. In order to detect and isolate bugs in a
script, you can use the Step and Pause commands to control test execution.

Three Step commands are available:

O The Step command lets you run a single line of a test script.

O The Step Into command lets you call and display another test or user-
defined function.

O The Step Out command—used in conjunction with the Step Into
command—Ilets you complete the execution of a called test or user-
defined function.

In addition, you can use the Pause command or the pause function to
temporarily suspend test execution.

You can also control test execution by setting breakpoints. A breakpoint
pauses a test run at a predetermined point, allowing you to examine the

289

XRunner User’s Guide

effects of the test on your application. For more information, see
Chapter 31, “Using Breakpoints.”

To help you debug your tests, XRunner allows you to monitor variables in a
test script. You define the variables you want to monitor in a Watch List. As
the test runs, you can view the values that are assigned to the variables. For
more information, see Chapter 32, “Monitoring Variables.”

When debugging a test script, run the test in the Debug mode. The results of
the test are saved in a debug directory. Each time you run the test, the
previous debug results are overwritten. Continue to run the test in the
Debug mode until you are ready to run the test in Verify mode. For more
information on using the Debug mode, see Chapter 24, “Running Tests.”

Running a Single Line of a Test Script

290

You can run a single line of a test script using the Step, Step Into and Step
Out commands in the Run menu.

Step Command

The Step command executes only the current line of the active test script—
the line marked by the execution arrow.

When the current line calls another test or a user-defined function, the
called test or function is executed in its entirety but the called test script is
not displayed in the XRunner window.

Step Into Command

The Step Into command executes only the current line of the active test
script. However, in contrast to the Step command, if the current line of the
executed test calls another test or a user-defined function:

The test script of the called test or function is displayed in the XRunner
window.

The called test or function is not executed. Use the Step or Step Out
commands to continue test execution.

Debugging Tests ¢ Debugging Test Scripts

Step Out Command

You use the Step Out command only after entering a test or a user-defined
function using the Step Into command. The Step Out command executes to
the end of the called test or user-defined function, returns to the calling test,
and then pauses test execution.

Pausing Test Execution

You can temporarily suspend test execution by selecting the Pause
command or by adding a pause statement to your test script.

Pause Command

You can suspend the execution of a test by choosing the Pause command in
the Run menu or pressing the PAUSE softkey. A paused test stops running
when all previously interpreted TSL statements have been executed. Unlike
the Abort command, the Pause command does not initialize test variables
and arrays.

To resume execution of a paused test, select the appropriate Run command
in the Run menu. The test run continues from the point that you invoked
the Pause command, or from the execution arrow if you moved it while the
test was suspended.

The pause Function

When XRunner processes a pause statement in a test script, test execution
halts and a message box is displayed. If the pause statement includes an
expression, the result of the expression appears in the message box. The
syntax of the pause function is:

pause ([expression]);

In the following example, the pause function suspends test execution and
displays the time that elapsed between two points.

tl=get_time();
t2=get_time();
pause ("Time elapsed is" & t2-t1);

291

XRunner User’s Guide

For more information on the pause function, see the TSL Reference Guide.

292

31

Using Breakpoints

A breakpoint marks a place in the test script where you want to pause a test
run. Breakpoints help to identify bugs in a script.

This chapter describes:
Breakpoint Types
Setting Break at Line Breakpoints

Setting Break in Function Breakpoints

Modifying Breakpoints

O o o o o

Deleting Breakpoints

About Breakpoints

By setting a breakpoint you can stop a test run at a specific place in a test
script. A breakpoint is indicated by a breakpoint marker in the left margin of
the test window.

File Edit Create Run Debug Tools Options

D[]r| [Bl£[0] [e[u]w]n] [=[2[a]#]

. for (i=1; i<10; i++) { .
(N B breakpoint
bh=c+1;

XRunner pauses test execution when it reaches a breakpoint. You can
examine the effects of the test run up to the breakpoint, make any necessary
changes, and then restart the test from the breakpoint. Use the Run from

293

XRunner User’s Guide

294

Arrow command to restart the test run. Once restarted, the test continues
until the next breakpoint is encountered, or the test is completed.

You can use breakpoints to:

suspend test execution and inspect the state of your application.

0 monitor the entries in the Watch List. For more information, see
Chapter 32, “Monitoring Variables.”

O mark a point from which to begin stepping through a test script using
the Step commands. For more information, see Chapter 30,
“Debugging Test Scripts.”

Two types of breakpoints are available: Break at Line and Break in Function.
A Break at Line breakpoint stops a test at a specified line number in a test
script. A Break in Function breakpoint stops a test when it calls a specified
user-defined function in a loaded compiled module.

You set a pass count for each breakpoint you define. The pass count
determines the number of times the breakpoint is passed before it stops the
test run. For example, suppose you program a loop that performs a
command twenty-five times. By default the pass counter is set to zero, so
test execution stops after each loop. If you set the counter to 25, execution
stops only after the twenty-fifth iteration of the loop.

Note: The breakpoints you define are active only during your current
XRunner session. If you terminate your XRunner session, you have to
redefine breakpoints to continue debugging the script in another session.

Debugging Tests ¢ Using Breakpoints

Breakpoint Types

XRunner allows you to set two types of breakpoints: Break at Line and Break
in Function.

Break at Line

A Break at Line breakpoint is defined by a test name and a test script line
number. The breakpoint marker appears in the left margin of the test script,
opposite the specified line. A Break at Line breakpoint might, for example,
appear in the Breakpoints form as:

ui_test[137]:0

This means that the breakpoint marker appears in the test named ui_test at
line 137. The number after the colon represents the pass counter, here set to
zero (the default). This means that the test will stop every time the
breakpoint is passed.

Break in Function

A Break in Function breakpoint is defined by the name of a user-defined
function and the name of the compiled module in which the function is
located. When you define a Break in Function breakpoint, the breakpoint
marker appears in the left margin of the XRunner window, opposite the first
line of the function. XRunner halts the test run every time the specified
function is called. A Break in Function breakpoint might, for example,
appear in the Breakpoints form as:

ui_func [ui_test : 25] : 10

This indicates that a breakpoint has been defined for the line containing the
function ui_func, in the compiled module ui_test: in this case line 25. The
pass counter is set to 10, meaning that the test will be stopped each time the
function has been called ten times.

295

XRunner User’s Guide

Setting Break at Line Breakpoints

You set Break at Line breakpoints using the Breakpoints form, the mouse, or
the Toggle Breakpoint command.

To set a Break at Line breakpoint using the Breakpoints form:
1 Select Breakpoints from the Debug menu to open the Breakpoints form.

HRunner: Breakpoints!

Break At Line:
derick [2] : 0 Opens the New Breakpoints form

Lists currently defined At Line

" Delete breakpoints

Delete All

Break In Function:

my_func [derick :9] : 0

Closes the Breakpoints form

2 Click New to open the New Breakpoint form.

Break: At line =]

In Test:

At Line:

Pass Count: |9

296

Debugging Tests ¢ Using Breakpoints

Select At Line from the Break toggle options. Select the test name from the
In Test list. Modify the line number and pass count as required.

Click OK to set the breakpoint and close the form. The new breakpoint is
displayed in the Break at Line list in the Breakpoints form.

The breakpoint marker appears in the left margin of the test script, opposite
the specified line.

Click Close to close the Breakpoints form.

To set a Break at Line breakpoint using the mouse:

Move the mouse pointer to the left margin of the XRunner window, to the
line in the test script at which you want test execution to stop.

Click the right mouse button. The breakpoint symbol appears in the left
margin of the XRunner window.

To remove the breakpoint, click on the breakpoint symbol with the right
mouse button or select the Toggle Breakpoint command.

To set a Break at Line breakpoint using the Toggle Breakpoint command:

Move the insertion point to the line of the test script where you want test
execution to stop.

Activate the Toggle Breakpoint command by selecting it from the Debug
menu. The breakpoint symbol appears in the left margin of the XRunner
window.

To remove the breakpoint, click on the breakpoint symbol with the right
mouse button or select the Toggle Breakpoint command again.

297

XRunner User’s Guide

Setting Break in Function Breakpoints

A Break in Function breakpoint stops test execution at the user-defined
function that you specify. You can set a Break in Function breakpoint using
either the Breakpoints form or the Break in Function command.

To set a Break in Function breakpoint using the Breakpoints form:

1 Select Breakpoints from the Debug menu to open the Breakpoints form.

Runner: Breskpoints

Break At Line:
derick(2): 0 Mew...

. Delete

derick(4): 0

Delete All

Break In Function:

my_func{derick:9): 0
eric{derick:19): 0

2 (Click the New button to open the New Breakpoint form.

298

Debugging Tests ¢ Using Breakpoints

3 Select In Function from the Break toggle options. The form changes so that
you can type in a function name and a pass count value.

Break: | In Function =i |

Function: |

Pass Count:

4 Enter the name of a user-defined function in the Function field. The
function must be compiled by XRunner. For more information, see
Chapter 20, “Creating User-Defined Functions” and Chapter 21, “Creating
Compiled Modules.”

5 Enter a value in the Pass Count field.
6 Click the OK button to close the form.

7 The new breakpoint is displayed in the Break in Function list of the
Breakpoints form. Click Close to close the form.

The breakpoint symbol appears in the left margin of the XRunner window.

299

XRunner User’s Guide

To set a Break in Function breakpoint using the Break in Function
command:

Choose the Break in Function command from the Debug menu. The New
Breakpoint form opens.

Break: | In Function =i |

Function: |

Pass Count:

Enter the name of a user-defined function in the Function field. The
function must be compiled by XRunner. For more information, see
Chapter 20, “Creating User-Defined Functions” and Chapter 21, “Creating
Compiled Modules.”

3 Enter a value in the Pass Count field.

Close the form by clicking OK. The breakpoint symbol appears in the left
margin of the XRunner window.

To close the Breakpoints form, click Close.

Modifying Breakpoints

300

You can modify the definition of a breakpoint using the Breakpoints form.
You can change the breakpoint’s type, the test or line number for which it is
defined, and the value of the pass counter.

To modify a breakpoint:

1 Select Breakpoints from the Debug menu to open the Breakpoints form.

2 Choose a breakpoint in one of the lists by clicking on it.

Debugging Tests ¢ Using Breakpoints

3 Click Modity to open the Modify Breakpoint form.

1 Modif:

4 To change the type of Breakpoint, select a breakpoint type from the Break
toggle options.

To select another test, select the name of a test from the In Test option list.

To change the line number in which the breakpoint will appear, enter a new
value in the At Line field.

To change the Pass Count, enter a new value in the Count field.

5 Click OK to close the form.

301

XRunner User’s Guide

Deleting Breakpoints

302

B W N =

You can delete a single breakpoint or all breakpoints defined for the current
test using the Breakpoints form.

To delete a single breakpoint:

Select Breakpoints from the Debug menu to open the Breakpoints form.
Select a breakpoint in either the Break at Line or the Break in Function field.
Click Delete. The breakpoint is removed from the list.

Click Close to close the Breakpoints form.

Note that the breakpoint symbol is removed from the left margin of the

XRunner window.

To delete all breakpoints:

1 Open the Breakpoints form.

Click the Delete All button. All breakpoints are deleted from both lists.

3 Click Close to close the form.

Note that all breakpoint symbols are removed from the left margin of the
XRunner window.

32

Monitoring Variables

The Watch List displays the values of variables, expressions and array
elements during a test run. You use the Watch List to speed up the
debugging process.

This chapter describes:

Adding Variables to the Watch List

Viewing Variables in the Watch List

Modifying Variables in the Watch List

Assigning a Value to a Variable in the Watch List

O o o o o

Deleting Variables from the Watch List

About Monitoring Variables

The Watch List lets you monitor the values of variables, expressions and
array elements while you debug a test script. You simply add the elements
that you want to monitor to the Watch List. During a test run, you can view

303

XRunner User’s Guide

the current values at each break in execution—such as after a Step
command, at a breakpoint, or at the end of a test.

File Edit Create Run Debug Tools Options Help
D] [al4]0] (@]m] <[plale| Be
for (i=1; i==10; i++)
{
asi; A
bz Ml
pause(); a:10 i .' :
a*h : 220 b
*
4 o] Delete Al |
s
Line 30 mercary
interactive

For example, in the following test, the Watch List is used to measure and
track the values of variables a and b. After each loop is executed, the test
pauses so that you can view the current values.

for (i=1;i<=10; i++)

{

a=i
b=i+12;
pause ();
}

After XRunner executes the first loop, the test pauses and the variables and
their values are displayed in the Watch List as follows:

al
b:13

When XRunner completes the test run, the Watch List shows the following
results:

a:10
b:22

304

Debugging Tests Monitoring Variables

If a test script has several variables with the same name but different scopes,
the variable is evaluated according to the current scope of the interpreter.
For example, suppose both fest_a and test_b use a static variable x, and test_a
calls test_b. If you include the variable x in the Watch List, the value of x
displayed at any time depends on whether XRunner is interpreting test_a or
test_b.

If you select a test from the Calls list (Debug > Calls), the context of the
variables and expressions in the Watch List changes. XRunner automatically
updates their values in the Watch List.

Adding Variables to the Watch List

You add variables, expressions, and arrays to the Watch List using the Quick
Watch form.

To add a variable, an expression, or an array to the Watch List:

1 Select Debug > Quick Watch to open the Quick Watch form.

Expression: | o

Value: | 22

2 In the Expression field, enter the variable, expression, or array that you want
to add to the Watch List.

3 Click Evaluate to see the current value of the new entry. If the new entry
contains a variable or an array that has not yet been initialized, the message
“<cannot evaluate>" is displayed in the Value field. The same message is
displayed if you enter an expression that contains an error.

4 Press Add. The Quick Watch form closes and the new entry appears in the
Watch List.

305

XRunner User’s Guide

Note: Do not add expressions to the Watch List that assign or increment the
value of variables; this can affect test execution.

Viewing Variables in the Watch List

Once variables, expressions, and arrays have been added to the Watch List,
you can use the Watch List to view their values.

To view the values of variables, expressions and arrays in the Watch List:

1 Select Debug > Watch List to open the Watch List form.

Variables:

numberszZ : <array> By

i,

QJ‘
=
N
It
=

Dminte

PE] Delete All |

2 The variables and expressions and arrays are displayed; current values
appear after the colon.

306

Debugging Tests Monitoring Variables

3 To view values of array elements, double-click on the array name. The
elements and their values are displayed below the array name. Double-click
on the array name to hide the elements.

Variables:

a:10 5
b:22
a*h : 220

= _nu_mh_er_sZTl]]_:1 —————————— | Rty

numbersz[l] : 2
numbersz[2] : 3

=-|
%
4
i
3
v
.

Dminte

PE] Delete All |

4 Click Close to exit the form.

Modifying Variables in the Watch List

You can modify variables and expressions in the Watch List using the
Modify Watch form. For example, you can turn variable b into the
expression b + 1, or you can change the expression b + 1 into b * 10. When
you close the Modify Watch form, the Watch List is automatically updated
to reflect the new value for the expression.

To modify an expression in the Watch List:
1 Select Debug > Watch List to open the Watch List form.
2 Select the variable or expression that you want to modify.

3 Click Modify to open the Modify Watch form.

Expression: |Ia"h

Value: | 220

307

XRunner User’s Guide

4 Change the expression in the Expression field as needed. Click the Evaluate
button to see the value of the modified expression. The new value of the
expression appears in the Value field.

5 Click OK to close the Modify Watch form. The modified expression and its
new value appear in the Watch List.

Assigning a Value to a Variable in the Watch List

You can assign new values to variables and array elements in the Watch List.
For example, variable b with the value 2 can be assigned the value 10. Values
can be assigned only to variables and array elements, not to expressions.

To assign a value to a variable or an array element:
1 Select Debug > Watch List to open the Watch List form.
2 Click on the variable or array element to which you want to assign a value.

3 Click Assign to open the Assign Variable form.

Expression: I b

Value: | 23

4 Enter the new value for the variable or array element in the New Value field.

5 Click OK to close the form. The new value is displayed in the Watch List.

308

Debugging Tests Monitoring Variables

Deleting Variables from the Watch List

You can delete selected variables, expressions and arrays from the Watch
List, or you can delete all the entries in the Watch List.

To delete a variable, an expression, or an array:
1 Select Debug > Watch List to open the Watch List form.

2 Click on the variable, expression or array that you want to delete.

Note: An array can be deleted only if its elements are hidden. To hide the
elements of an array, double-click on the array name in the Watch List.

3 Click Delete to remove the entry from the list.

4 Click Close to close the Watch List form.

To delete all entries in the Watch List:
1 Open the Watch List form.
2 Click Delete All. All entries are deleted.

3 Click Close to close the form.

309

XRunner User’s Guide

310

Part VI

Configuring XRunner

33

Changing System Defaults

This chapter lists XRunner configuration parameters and describes how you
can change their default values.

This chapter describes:

Configuration Files

Modifying Configuration Settings from the Configuration Form
Modifying Configuration Settings from a Test Script
Environment Variables

Configuration Parameters

O o o o o d

Configuration File Contents

About Changing System Defaults

XRunner system configuration parameters are defined in the xrunner.cfg file,
which is located under /dat in your installation directory. Each parameter
affects a specific XRunner function.

You can adapt XRunner to your testing environment by modifying the
default values of the system parameters. There are three methods for
changing system defaults:

O Using the XRunner Configuration form: display XRunner
configuration parameters by selecting Configure from the Options
menu. You can apply changes you make to the current session, or save
them for the current and future sessions.

313

XRunner User’s Guide

O Using a setvar function in a test script: program a setvar TSL command,
passing the configuration parameter and modified value as arguments.
The new setting takes effect immediately but is not automatically saved
for future sessions.

O Modifying settings in your .xrunner file: open the file in any text
editor, make the necessary changes and save the file. Changes take
effect the next time you start XRunner.

Configuration Files
XRunner has three levels of configuration files:

O The bottom-level file, xrunner.cfg is a system-wide configuration file. It
is created by the XRunner installation program, and is normally
maintained by the system administrator. The xrunner.cfg file resides in
the /dat subdirectory of the XRunner installation directory.

Included with xrunner.cfg is the machine.cfg file. This file holds all
platform-dependent items (such as softkey configuration). It is
automatically copied to the correct machine version by the XRunner
installation script.

O The middle-level configuration file is optional. An environment
variable, XR_CFG_FILE, designates the name and location of this file. This
file can be used to set values specific to a group of users testing the
same application.

O The top-level configuration file (optional) is the .xrunner file stored in
your home directory. This file can be used to tailor XRunner to your
individual needs.

When you invoke XRunner, these configuration files are read sequentially. If
the same configuration parameter is assigned a value by more than one of
these files, the value set for this variable is the one specified in the highest
level configuration file.

System configuration files assign values to parameters which affect specific

XRunner functions. This chapter describes the configuration parameters and
their default values, and provides an overview of the syntax and data types

of the configuration files.

314

Configuring XRunner ¢ Changing System Defaults

Modifying Configuration Settings from the Configuration
Form

The Configuration form displays all the settings for the configuration
parameters in the .xrunner file. The form provides you with a convenient
method for making changes to system defaults, without having to open the
xrunner configuration file. Parameters are arranged in the form by category
and subcategory to make your work easier. The form also has a built-in
search facility for finding parameters.

Funner: Configuration Yariablesi:

Find Parameter: |

¥R_BATCH_MODE & on @ Off Execution

v |
IR | XR_MISMATCH_BREAK % on & Off : 4
: | XR_FAST_REPLAY
e~ M . T
~
ey ®on o Initialization
e 4 on o
IRRNS | XR_SYNCHRONIZED @ on & off
PN | XR_RETRY_DELAY | 2 <L
rea | XR_CLICK_DELAY | 10 <L
el xR DBLCLK TIME A <]
" -'..,,?‘_ General configuration parameters for test execution | | 1
General Bitmaps | Paths
E Apply I Save | Close |

Using the Configuration form, you can apply configuration changes for the
current or future sessions.

O Click Apply to apply a change for the current XRunner session and to
leave the form open.

O Click Save to save the changes to the .xrunner configuration file.

Changes apply for the current and future sessions. The Configuration
form closes.

315

XRunner User’s Guide

O Click Close to close the Configuration form without applying any
changes.

Note: XRunner records changes saved to the .xrunner file in a special
reserved area appearing below the line:

Reserved: Please do not write beyond this line

Since previous values are overwritten each time the .xrunner file is updated,
it is recommended you insert personal comments above the line.

Finding Parameters

There are three ways to locate a specific parameter:

O The Configuration form is organized according to categories and
subcategories. Select a category (from among the major tabs displayed
on the right side of the notebook) and a subcategory (from among the
minor tabs displayed at the bottom of the notebook), then scroll down
the page if necessary until you find the desired parameter.

O Use the spinbox at the lower right corner to scroll the pages until you
find the parameter you need.

O Perform a quick search by entering a string or part of a string in the
Find Parameter field at the top of the form. Press Enter. XRunner opens
the notebook at the relevant page and highlights the requested
parameter. If there is more than one parameter that matches the string,
you can continue to press Enter until XRunner displays the parameter
you need.

Parameter Categories

There are 12 pages to the Configuration Notebook. There are six categories
and 10 subcategories of parameters:

316

Configuring XRunner ¢ Changing System Defaults

Execution

This category includes the parameters controlling the way XRunner runs
tests. These are the parameters you generally modify the most. They include
the following subcategories:

O General test execution parameters, for example, XR_TIMEOUT for setting
the global timeout (in seconds) used by XRunner

O Bitmap parameters control the display of bitmaps during test
execution, for example, XR_RAISE_WINDOWS for bringing the bitmap to
be checked to the front of the screen display during the test run.

O Path parameters, for example, XR_SHARED_CHECKLIST_DIR which sets the
directory in which XRunner stores shared checklists for GUI
checkpoints. Note that changes made to path parameters take effect
only from the next time you invoke XRunner.

Recording

This category includes:

O Class Record Attribute parameters, for example, XR_WINDOW_REC_ATTR
that defines the way XRunner records and learns objects of the window
class.

O Class Record Method parameters, for example,
XR_PBUTTON_REC_METHOD that defines the attributes XRunner records
and learns for the push_button class of objects.

AUT

This category includes parameters that control aspects of your application.

They include:

a

AUT Customization parameters, for example,
MIC_BUTTON_CLICK_LOCATION that defines the location of the mouse-
click performed on button objects during test execution Analog mode.

Text Checkpoint parameters, for example, XR_FONT_GROUP that sets the
default active font group for defining checkpoints in a test script.

Keyboard parameters, for example, MIC_CLICK_BUTTON that defines
which mouse button is used to perform mouse clicks.

317

XRunner User’s Guide

Ul

These parameters define aspects of the XRunner User Interface, for example,
XR_HIDE_BUBBLE_HELP which you use to display or hide XRunner’s bubble
help.

Environment

This category contains parameters which control your test execution
environment, for example, Expected Directory which defines the directory
XRunner is currently using to save expected results for the next test run.

Initialization

Initialization parameters could also be called “hardware parameters”. They
define the configuration of sofkeys and input devices and are the least likely
to change from one session to another.

They include:

O Softkey parameters, for example, XR_SOFT_PAUSE which defines the key
combination that executes a Pause command during a test run.

O Input Device parameters, for example, XR_INP_KBD_NAME which
designates the path and name of the keyboard definition file.

Modifying Configuration Settings from a Test Script

318

The setvar function allows you to modify configuration settings from
within a test script. This enables you to control when the value of a
configuration parameter affects the test run. For example, you can set
different run speeds for different sections of the script.

You can retrieve the current value of a configuration parameter using the
getvar function. By using a combination of setvar and getvar statements in
a test script, you can control how XRunner executes a test.

setvar

You use the setvar function to modify a configuration setting from within
the test script. This function has the syntax:

setvar (parameter, value);

Configuring XRunner ¢ Changing System Defaults

In this function, parameter may specify any configuration parameter.
For example:

setvar ("XR_MISMATCH_BREAK", "Off");

disables the break on mismatch mechanism. The new setting remains in
effect during the testing session until it is changed again, either from the
Configuration form or with another setvar statement.

getvar

You use the getvar function to retrieve the current value of a configuration
parameter. The syntax of this statement is:

user_variable = getvar (parameter);

In this function, parameter may specify any configuration parameter.
For example:

nowdelay = getvar ("XR_CLICK_DELAY");

Assigns the current value of the click delay (the interval that XRunner waits
after inputting a single click during a test run) to the user-defined variable
nowdelay.

Note that some configuration parameters are set by XRunner and cannot be
changed using setvar or the Configuration form. For example, the value of
the Test Name parameter is always the name of the current test. Use the
getvar function to retrieve these read-only values.

Controlling Test Execution with setvar and getvar

You can use a combination of getvar and setvar statements to control test
execution. For example, in the following test script fragment, XRunner
checks the bitmap Img1. The getvar and setvar functions are used to
control the value of the XR_TIMEOUT and XR_RETRY_DELAY configuration
parameters. The getvar statement is used to retrieve their current values of
these parameters and setvar is used to assign them new values for this
particular win_check_bitmap statement. After the window is checked,
setvar is used to return the parameters to their original values.

319

XRunner User’s Guide

t = getvar ("XR_TIMEOUT");

d = getvar ("XR_RETRY_DELAY");

setvar ("XR_TIMEOUT", 30);

setvar ("XR_RETRY_DELAY", 3);

win_check_bitmap ("calculator”, Img1, 2, 261,269,93,42);
setvar ("XR_TIMEOUT", t);

setvar ("XR_RETRY_DELAY", d);

Environment Variables

320

You define environment variables before invoking XRunner. You must
define the variables in the same shell that you invoke XRunner. They are
not part of the XRunner configuration and are not saved from session to
session.

M_ROOT = installation directory

Determines the directory in which your XRunner installation files reside.

XR_TSL_INIT = startup test pathname

Designates the path and name of a startup test file. Use a startup test to
configure recording, load compiled modules, and load GUI map files when
invoking XRunner.

(Default= $M_ROOT/dat/tslinit)

MC_AUT_NAME

Defines an application name for the Mercury Communication Server
(mc_svc). When the variable has been defined, you can use the aut_connect
and aut_set functions with any name you define for your application,
instead of using the default “AUT”. This parameter should be defined in the
same shell from which you run your application.

MIC_TOOLKIT

Defines the type of toolkit used by the tested application. By default this
variable is set to Motif. If your application uses XView, you should set this
variable to XView; if your application uses Olit, set it to Olit; for Open
Interface set it to Open_interface.

Configuring XRunner ¢ Changing System Defaults

XRUN_TEST_EXT

Defines the extension to be used by XRunner for record and test execution.
By default, XRunner searches for one of the following extensions (in the
following order) and uses the first one that is found: Record (R6), XTrap,
XTestExtension1, and XTEST.

XRUN_UI

Activates XRunner’s user-defined user interface feature. In order to modify
the XRunner menu bar or to program a dialog box to appear during
interactive test execution, XRUN_UI must be defined and set to any value
(such as 1 or On) before XRunner is started.

XRUN_WM

Defines the window manager used by the application. This environment
variable should be defined only if you are using one of the following
window managers: xuwm, dxwm, decmwm or fywm.

Configuration Parameters

The configuration parameters described in this section are organized
according to the categories in the Configuration form. Note, however, that a
few configuration parameters are not included in the form and must be
modified using a setvar command, or manually in your .xrunner file.
Parameters that do not appear in the form are indicated where applicable.

If a value for a parameter is not specified in the middle- or top-level
configuration file, then XRunner uses system default values defined in the
xrunner.cfg file created by the XRunner installation program.

Test Execution Parameters

XR_AUTO_LOAD = {On|Off}

Activates or deactivates automatic loading of the temporary GUI map file
when XRunner is invoked.

(Default = On)

[Note that the value of this parameter cannot be set using the Configuration
form.]

321

XRunner User’s Guide

322

XR_BEEP = {On|Off}

Activates or deactivates the system beep that is produced whenever a
checkpoint or an error occurs.

(Default = On)

XR_BATCH_MODE = {On|Off}

Activates or deactivates XRunner’s batch mode. When batch mode is
activated, XRunner suppresses messages during a test run, so that a test can
run unattended.

(Default = Off)

XR_CLICK_DELAY = integer

Sets the interval, in tenths of a second, that XRunner waits after inputting a
single click during a test run. During a fast (default) test run, using a longer
setting ensures that two consecutive single clicks are not misinterpreted as a
double-click. Note that this does not apply to double-clicks. If a double-click
is recorded, it executes as a double-click regardless of the value of the
XR_CLICK_DELAY configuration parameter.

(Default = 10 [tenths of a second])

XR_DBLCLK_TIME = integer

Defines the maximum permitted interval, in tenths of a second, that can
elapse between two clicks, and still constitute a double-click. It is advised to
make the setting consistent with your system default. The minimum value is
10 (tenths of a second).

(Default = 30 [tenths of a second])

XR_FAST_REPLAY = {On|Off}
Sets the default test run speed.

(Default = On, fast run speed)

XR_FOCUS_DELAY = integer

Defines the amount of time, in tenths of a second, that XRunner waits
during execution from the time the mouse is moved to a new window until
input is entered. This is particularly important when XR_FAST_REPLAY is set to

Configuring XRunner ¢ Changing System Defaults

On, since it ensures that XRunner does not send keystrokes to a new
window before it is ready to receive them.

(Default = 10 [tenths of a second])

XR_KBD_DELAY = integer
Sets the interval, in tenths of a second, that XRunner waits after inputting a
single keyboard event during a test run.

(Default = 0)

XR_KEY_EDITING = {On|Off}

Activates or deactivates key editing. When activated, XRunner generates
more concise type statements, representing only the net result of pressing
and releasing input keys. This makes your test script easier to read.
Whenever the exact order of keystrokes is important for your test, you
should disable key editing.

For example, typing the letter “A” with key editing off produces the
following statement:

type ("<kShift>-a-<kShift>+a+");

With key editing on, the statement is:
type ("A");

For more information on key editing, see the type function in the TSL
Reference Guide.

(Default = On)

XR_MISMATCH_BREAK = {On|Off}

Activates/deactivates the break on mismatch mechanism. When active,
XRunner pauses execution and displays a message whenever a mismatch
occurs or a Context Sensitive function fails during a verification run. This
parameter should be used only when working interactively.

(Default = On)

323

XRunner User’s Guide

324

XR_WM_OFFSET_X and XR_WM_OFFSET_Y = integer

Specifies an offset to be applied whenever a window is moved by a
wait_window or check_window command. If the upper left corner of the
window is designated in the command by the coordinates x,y specifying an
offset causes the window to be moved to the position x+wm_offset_x,
y+wm_offset_y. (Negative offsets are also accepted.)

This parameter is useful only for applications running under the twm
window manager.

(Default = 0)

[Note that the value of this parameter cannot be set using the Configuration
form.]

XR_RETRY_DELAY = integer

Instructs XRunner to determine whether a window is stable before capturing
it for a bitmap checkpoint or a synchronization point during a test run. To
be declared stable, a window must not change between two consecutive
samplings. For example, when XR_DELAY is two seconds and XR_TIMEOUT is
ten seconds, XRunner checks the window in the application under test
every two seconds until two consecutive checks produce the same results or
until ten seconds have elapsed. Setting the value to O disables all image
checking.

(Default = 1[second])

XR_SCR_REDRAW_TIME = integer

Sets the time interval (in seconds) that XRunner waits for the entire screen
to be redrawn after it moves a window during a verification run.

(Default = 10 [seconds])

XR_SYNC_TIME = integer

Determines the maximum amount of time (in seconds) that the system
waits for an expected synchronization event. When an event is not received,
XRunner waits up to the predefined XR_SYNC_TIME (in seconds) and then
continues execution. If this time is exceeded, the run continues after a slight
delay.

(Default = 10 [seconds])

Configuring XRunner ¢ Changing System Defaults

[Note that the value of this parameter cannot be set using the Configuration
form.]

XR_SYNCHRONIZED = {On|Off}

Determines whether XRunner monitors X server messages and sends input
to the AUT only when it is ready to receive it. If you set this parameter to
Off, the reliability of test execution may be impaired.

(Default = On)

XR_TIMEOUT = integer

Sets the global timeout (in seconds) used by XRunner. This value is added to
the time parameter imbedded in GUI checkpoint or synchronization point
statements to determine the maximum amount of time that XRunner
searches for the specified window.

The maximum time is calculated by adding the time parameter of the
statement to the value set for the XR_TIMEOUT parameter.

For example, in the statement:

win_check_bitmap ("calculator”, Img1, 2, 261, 269, 93, 42);

when the XR_TIMEOUT parameter is set to 10 seconds, this operation takes a
maximum of 12 (2+10) seconds.

(Default = 10[seconds])

Bitmap Parameters

XR_COMPRESS = {On|Off}

Activates or deactivates compression of captured bitmaps. Capture and
display of compressed bitmaps is slightly slower, yet file size is significantly
reduced.

(Default = On)

XR_WINDOW_FRAMES = {On|Off}

Determines whether the window frame is included in bitmap comparison.
When activated, window frames are compared. When deactivated, only the
window contents are compared. (In both cases, window frames are included

325

XRunner User’s Guide

326

in the captured window.) Note that this parameter has no influence on
bitmap comparison when the XR_WM_BORDER parameter is set to Off.

(Default = On)

XR_WM_BORDER = {On|Off}

Determines whether windows are captured with the window frame. When
activated, the window frame is captured.

(Default = On)

XR_MOVE_WINDOWS = {On|Off}

Causes XRunner to automatically return the opened window to the location
specified in any GUI checkpoint or synchronization point statement that
references this window. Note that if you set this parameter to Off, you
should take measures to ensure that during a test run, windows open in the
correct, previously-recorded position.

(Default = On)

XR_RAISE_WINDOWS = {On|Off}

Brings the window to be checked during a bitmap checkpoint or
synchronization point to the front of the screen display during a test run.

(Default = On)

XR_MIN_DIFF = integer

Defines the number of pixels that constitute the threshold for bitmap
mismatch comparison. When this value is set to 0, a single pixel mismatch
constitutes a window mismatch.

(Default = 0 [pixels])

XR_IMAGE_MODE = image mode

Defines the mode that XRunner uses to capture, verify and display bitmaps.
By default, XR_IMAGE_MODE is set to xwd. The two other valid values are gl
and external. If XR_IMAGE_MODE is set to either xwd or gl, XRunner uses its
own built-in code to capture, verify and display bitmaps. If XR_IMAGE_MODE
is set to external, XRunner uses all three external utilities that you provide
to capture, verify and display bitmaps. For more information, see
Appendix C, “External Utilities for Bitmap Capture/Check/Display.”

Configuring XRunner ¢ Changing System Defaults

(Default = xwd)

XR_CAPTURE_UTIL = external utility pathname

Defines the path of the external utility that XRunner uses to capture
bitmaps. Note that XR_CAPTURE_UTIL is effective only if the XR_IMAGE_MODE
configuration parameter is set to “external”.

XR_DISPLAY_UTIL = external utility pathname

Defines the path of the external utility that XRunner uses to display
bitmaps. Note that XR_DISPLAY_UTIL is effective only if the XR_IMAGE_MODE
configuration parameter is set to “external”.

XR_COMPARE_UTIL = external utility pathname

Defines the path of the external utility that XRunner uses to compare
bitmaps during test runs. Note that XR_COMPARE_UTIL is effective, only if the
XR_IMAGE_MODE configuration parameter is set to “external”.

XR_VERIFY_UTIL = external utility pathname

Defines the path of the external utility that XRunner uses to verify bitmaps.
Note that XR_VERIFY_UTIL is effective only if the XR_IMAGE_MODE
configuration parameter is set to “external”.

Path Parameters

XR_AUTO_LOAD_DIR = directory pathname

Determines the directory in which the temporary GUI file (temp.gui) resides.
When you activate automatic loading of the temporary GUI file, this is the
directory from which the file is loaded.

(Default is your home directory)

XR_AUTOMOUNT_MAP = map file pathname

Points to the automount map file.
(Default = $M_ROOT/dat/automount.map)

XR_GLOB_FILTER_LIB = library pathname

Identifies the directory in which the Global Filter Library resides. When you
invoke XRunner, this library becomes the active Global Filter Library.

327

XRunner User’s Guide

328

(Default = $M_ROOT/filters)

XR_SEARCH_PATH = directory pathname(s)

Sets the directory paths that XRunner searches for called tests. Any test
stored in a directory that is specified by this parameter can be opened or
called.

Identify each directory by its full logical pathname. A space delimits
between the pathnames of two different directories. The order in which
directories are listed determines the order in which they are searched for the
specified test.

You can view the directory paths currently defined for XR_SEARCH_PATH by
choosing Search Path from the Options menu.

(Default = Current Directory and installation directory\lib)

[Note that the value of this parameter cannot be set using the Configuration
form.]

XR_SHARED_CHECKLIST_DIR = pathname

Sets the directory in which XRunner stores shared checklists for GUI
checkpoints. These are checklists that you define as “shared” when you
create them using the Check GUI form. In the test script, shared checklist
files are designated by SHARED_CL before the file name in a
win_check_gui, obj_check_gui, or check_gui command.

(Default = $SM_ROOT/chklist)

XR_TMPDIR = pathname

Sets the directory in which XRunner stores temporary tests. Each temporary
test is assigned a name having the format: nonam**, where each asterisk is a
digit. These tests are created when you choose New from the File menu, and
are automatically deleted unless explicitly saved. The directory designated
by this parameter should have at least five megabytes of storage available for
these temporary tests. Note that this parameter takes precedence over the
TMP environment variable.

(Default = /tmp)

Configuring XRunner ¢ Changing System Defaults

XR_FILE_LOCKING = {On|Off}

Parameter to be used when running XRunner on SunOS 4.1. SunOS 4.1 has
a documented bug with file-locking over the NFS. Locking a file on an NFS-
mounted partition may hang the file server. If you are running on this
version of the SunOS, you MUST set XR_FILE_LOCKING to Off. This bug was
fixed in SunOS 4.1.1

Dec workstations might have the same problem. In the event of file-locking,
set XR_FILE_LOCKING to Off.

(Default = On)
[Note that the value of this parameter cannot be set using the Configuration

form.]

Class Record Method

The following parameters allow you to specify how mouse clicks/drags or
keystrokes on objects of a particular class are recorded. For a list of the
different record methods, see Chapter 6, “Configuring the GUI Map.”

XR_WINDOW_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on
windows.

(Default = MIC_RECORD_CS)

XR_CBUTTON_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on check
buttons.

(Default = MIC_RECORD_CS)

XR_RBUTTON_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on radio
buttons.

(Default = MIC_RECORD_CS)

329

XRunner User’s Guide

XR_PBUTTON_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on push
buttons.

(Default = MIC_RECORD_CS)

XR_MENU_REC_METHOD = record_method
Defines the record method for mouse clicks/drags or keystrokes on menus.

(Default = MIC_RECORD_CS)

XR_SCROLL_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on scroll
bars.

(Default = MIC_RECORD_CS)

XR_LIST_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on lists.
(Default = MIC_RECORD_CS)

XR_SPIN_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on
spinboxes.

(Default = MIC_RECORD_CS)

XR_EDIT_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on edit
objects.

(Default = MIC_RECORD_CS)

XR_NOTEBOOK_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on
notebooks.

(Default = MIC_RECORD_CS)

330

Configuring XRunner ¢ Changing System Defaults

XR_STATIC_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on static
text objects.

(Default = MIC_RECORD_CS)

XR_OBJ_REC_METHOD = record_method

Defines the record method for mouse clicks/drags or keystrokes on an object
in the general Mercury object class.

(Default = MIC_RECORD_CS)

Class Record Attributes

The following parameters define the set of attributes XRunner identifies
while learning a specific class of GUI objects.

O When modifying settings for these parameters in the .xrunner file, use
the following syntax:

parameter = obligatory_attribute, obligatory_attribute, ...
obligatory_attribute,,,
optional_attribute, optional_attribute, ... optional_attribute,,
selector.

For example:
XR_STATIC_REC_ATTR = class X_name, label class_index, location

O To modify settings for these parameters from a test script, use the
set_record_attr TSL function. Refer to the TSL Reference Guide for
more details.

For a full description of the default obligatory attributes, optional attributes
and selectors for each class, see Chapter 6, “Configuring the GUI Map.”

XR_WINDOW_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning windows.

(Default = class label, X_name class_index, index)

331

XRunner User’s Guide

XR_OBJ_REC_ATTR = attribute list

Defines the attributes XRunner identifies when learning objects in the
general Mercury object class.

(Default = class X_class X_name, class_index, location)

XR_PBUTTON_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning push buttons.

(Default = class label, X_name class_index, location)

XR_CBUTTON_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning check buttons.

(Default = class label, X_name class_index, location)

XR_RBUTTON_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning radio buttons.

(Default = class label, X_name class_index, location)

XR_MENU_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning menus.

(Default = class label, X_name class_index, location)

XR_SCROLL_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning scroll bars.

(Default = class attached_text orientation, X_attached_name X_name
class_index, location)

XR_LIST_REC_ATTR = attribute list

Defines the attributes XRunner identifies when learning lists.
(Default = class attached_text, X_name class_index, location)

XR_EDIT_REC_ATTR = attribute list

Defines the attributes XRunner identifies when learning edit objects.

(Default = class attached_text, X_name class_index, location)

332

Configuring XRunner ¢ Changing System Defaults

XR_SPIN_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning spinboxes.

(Default = class attached_text, X_name class_index, location)

XR_STATIC_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning static text objects.

(Default = class X_name, label class_index, location)

XR_NOTEBOOK_REC_ATTR = attribute list
Defines the attributes XRunner identifies when learning a notebook object.

(Default = class, X_name class_index, location)

Context Sensitive Customization
The parameters in this category allow you to customize XRunner to meet
the specific testing requirements of your application.

MIC_BUTTON_CLICK_LOCATION = {CENTER|CORNER}

Defines the location of the mouse-click performed on button objects during
test execution in the analog mode.

Note that this adjustment can be made only for applications running under
Motif.

(Default = CENTER)

MIC_EDIT_RECORD_MULTIPLE = {0|1}

Defines the method for recording single-line edit fields. Normally, single-
line edit fields are recorded as single-lines. The alternative method is to
record them as multi-line edit-fields.

Note that this adjustment can be made only for applications running under
Motif.

(Default = 0, single-line)

333

XRunner User’s Guide

334

MIC_EDIT_REPLAY_BY_CHAR = {0|1}

Defines the method for executing edit_ TSL commands. Normally, entire
strings are inserted into edit fields as a single event. The alternative method
is to insert the string a single character at a time.

Note that this adjustment can be made only for applications running under
Motif.

(Default = 0, inserts entire string as a single event)

MIC_ATT_TEXT_DISTANCE = integer
Defines the radius of the area XRunner searches between a GUI object and

possible static text tag while learning/recording the object.

(Default = 50 [pixels])

MIC_ATT_TEXT_CORNER = {UPPER_LEFT | UPPER_RIGHT |
LOWER_LEFT | LOWER_RIGHT |
ATT_DISABLE}

Defines the point from which XRunner begins to search for a possible static
text tag.

The options are:

UPPER_LEFT Begins search in upper-left corner.
UPPER_RIGHT Begins search in upper-right corner.
LOWER_LEFT Begins search in lower-left corner.
LOWER_RIGHT Begins search in lower-right corner.
ATT_DISABLE Disables the search for attached_text.

(Default = MIC_ATT_DISABLE)

MIC_MAX_LIST_ITEM_LENGTH = integer

Defines the maximum number of characters XRunner records in list item
objects. By default, XRunner records the name of the selected item in a list,
for instance:

(list_select_item(<list>, "my_name");

Configuring XRunner ¢ Changing System Defaults

If the selected item's length is longer than the default 128 characters,
XRunner records its position in the list, instead, for instance:

(list_select_item(<list>, "#7");

Use this parameter to set the maximum length of a list item for which
XRunner should record a name and not a number.

The maximum setting is 256.
(Default = 128 [characters])

MIC_LIST_TAG = {TAG_BY_ATT_TEXT|TAG_BY_X_NAME}

Defines how XRunner suggests logical names when learning list objects.
The options are:

TAG_BY_ATT_TEXT Name suggested according to attached text.
TAG_BY_X_NAME Name suggested according to X_name.
This adjustment can be made only for applications running under Motif.

(Default = TAG_BY_ATT_TEXT)

MIC_COMBO_OPEN = {0|1}

Defines the manner in which XRunner operates on combobox widgets
during test execution. XRunner can select a list item from the displayed list
by opening the combobox, then closing it. Alternatively, the list item is
selected without opening and closing the combobox.

This adjustment can be made only for applications running under Motif.
(Default = 1, opens and closes comboboxes)

MIC_EDIT_TAG = {TAG_BY_ATT_TEXT|TAG_BY_X_NAME}
Defines how XRunner suggests logical names when learning edit objects.

The options are:

TAG_BY_ATT_TEXT Name suggested according to attached text.
TAG_BY_X_NAME Name suggested according to X_name.

335

XRunner User’s Guide

336

This adjustment can be made only for applications running under Motif.
(Default = TAG_BY_ATT_TEXT)

MIC_SPIN_TAG = {TAG_BY_ATT_TEXT|TAG_BY_X_NAME}

Defines how XRunner suggests logical names when learning spin objects.
The options are:

TAG_BY_ATT _TEXT Name suggested according to attached text.
TAG_BY_X_NAME Name suggested according to X_name.

This adjustment can be made only for applications running under Motif.
(Default = TAG_BY_ATT_TEXT)

MIC_SPIN_RECORD = {On|Off}

Defines the method by which XRunner records operations on spin objects.
When recording the resultant value in the spin-box only, without
performing mouse-clicks, a spin_set command is generated. When
recording the mouse-clicks that scroll the spin box, a spin_next or
spin_prev command is generated.

This adjustment can be made only for applications running under Motif.
Default = On (records spin_set)

MIC_SPIN_MAX_EVENTS = integer

Defines the maximum number of mouse-clicks to be performed on spin
objects. If the operation requires a number of clicks greater than that set,
XRunner automatically sets the spin object to the specific value directly.

This adjustment can be made only for applications running under Motif or
using CDE Dt Widgets.

(Default = 200 [mouse-clicks])

MIC_TAG_CREATE = {TAG_AS_IS | TAG_LOCATION | TAG_CLASS_INDEX |
TAG_BY_X_NAME | TAG_BY_ATT_TEXT}

Defines the way XRunner creates a logical name from the physical
description in the GUI map.

Configuring XRunner ¢ Changing System Defaults

The options are:

TAG_AS_IS Configures the Context Sensitive libraries not to
perform a name-check on existing objects; they do not
create a unique tag for the object, either.

TAG_CLASS_INDEX Configures the Context Sensitive libraries to add a
suffix of type <class_index> to the logical name if the
name is not unique.

TAG_LOCATION Configures the Context Sensitive libraries to add a
suffix of type <tag_location> to the logical name if the
name is not unique.

(Default = TAG_LOCATION)
MIC_EDIT_ACTIVATE_LOW_LEVEL = {On|Off}

Executes the edit_activate command on low level.

In OLIT, most test execution actions are performed on low level, that is,
using the server extensions.

In Motif, most test execution actions are performed directly through
messages to the widgets. If you are using Motif, you may specify that certain
actions be performed on low level instead of by messages.

(Default = Off)

MIC_LIST_ACTIVATE_LOW_LEVEL = {On|Off}

Executes the list_activate_item and list_select_item commands on low
level.

In OLIT, most test execution actions are performed on low level, that is,
using the server extensions.

In Motif, most test execution actions are performed directly through
messages to the widgets. If you are using Motif, you may specify that certain
actions be performed on low level instead of by messages.

(Default = Off)

MIC_MENU_SELECT_LOW_LEVEL = {On|Off}

Executes the menu_select_item command on low level.

337

XRunner User’s Guide

338

In OLIT, most test execution actions are performed on low level, that is,
using the server extensions.

In Motif, most test execution actions are performed directly through
messages to the widgets. If you are using Motif, you may specify that certain
actions be performed on low level instead of by messages.

(Default = Off)

MIC_BUTTON_SET_LOW_LEVEL = {On|Off}

Executes the button_set command on low level.

In OLIT, most test execution actions are performed on low level, that is,
using the server extensions.

In Motif, most test execution actions are performed directly through
messages to the widgets. If you are using Motif, you may specify that certain
actions be performed on low level instead of by messages.

(Default = Off)

MIC_BUTTON_PRESS_LOW_LEVEL = {On|Off}

Executes the button_press command on low level.

In OLIT, most test execution actions are performed on low level, that is,
using the server extensions.

In Motif, most test execution actions are performed directly through
messages to the widgets. If you are using Motif, you may specify that certain
actions be performed on low level instead of by messages.

(Default = Off)

MIC_XPATH_ONLY = {On|Off}

Forces XRunner to learn the X_name attribute only when creating physical
descriptions for GUI objects. This parameter should be defined as On only if
your application uses unique X_names.

Note, this adjustment can be made only for applications running under
Motif.

(Default = Off, uses regular attributes)

Configuring XRunner ¢ Changing System Defaults

MIC_NO_IN_PARENT = {On|Off}

Enables/disables an XRunner check that scans the entire hierarchy of a
given widget to verify if the widget is clipped out of its parent area.

Note that for applications running under Olit, this parameter must be set to
On at all times.

(Default = On, does not perform the check)

MIC_ICON_RECORD = {REC_ICON_PATH|REC_ICON_LABEL|
REC_ICON_INDEX}

Defines the method in which XRunner records operations performed on
icons inside container objects.

The options are:

REC_ICON_PATH The icon is identified by all the labels in the path of
the icon hierarchy.

REC_ICON_LABEL The icon is identified by its label only.

REC_ICON_INDEX The icon is identified by its serial number in relation to
the container, as assigned by XRunner.

Note that these adjustments can be made only for applications running
under Motif.

(Default = REC_ICON_PATH)

MIC_RECOVERY= {On|Off}

Activates/disables the recovery facility that prevents the application under
test from crashing in the event of certain Context Sensitive operations.

(Default = On, recovery enabled)

MIC_CACHE_EXCP = {0|1}
Enables/disables caching for objects.

(Default = 0)

[Note that the value of this parameter cannot be set using the Configuration
form. Use a setvar statement in a test script]

339

XRunner User’s Guide

340

MIC_EXACT_RGB =1

Enables/disables RGB values to color strings when creating the physical
description in the GUI Map.

Note, this adjustment can be made only for applications running under
Motif.

(Default is undefined, conversion enabled)

[Note that the value of this parameter cannot be set using the Configuration
form. Use a setvar statement in a test script.]

MIC_RGB_DATABASE = pathname
Defines the location of a user-defined RGB database file.

Note, this adjustment can be made only for applications running under
Motif.

(Default is the RGB database file in the /dat subdirectory of your home
directory.)

[Note that the value of this parameter cannot be set using the Configuration
form. Use a setvar statement in a test script.]
Learn Window Parameter

XR_LEARN_TIMEOUT = integer

Defines the timeout during which XRunner learns windows.

(Default = 180[seconds]

Recording Level Parameter

XR_REC_LEVEL = integer

Sets the default recording mode. O sets Analog and 1 sets Context Sensitive.

(Default = 1)

Configuring XRunner ¢ Changing System Defaults

Text Checkpoint Parameters

XR_FONT_GROUP = font group name

Sets the default active font group. The designated font group must be
defined in a font library designated by the XR_GLOB_FONT_LIB parameter. The
value assigned to this parameter can be overridden from within a test script,
using a setvar function, for example:

setvar ("XR_FONT_GROUP", "my_fonts");
(Default = stand)

XR_GLOB_FONT_LIB = library pathname
Identifies the directory in which the Global Font Library resides.

(Default = $M_ROOT/fonts)

XR_TEXT_PREVIEW_FONT = font name

Specifies the name of the font to be used when previewing text captured by
the GET TEXT or WAIT BITMAP AREA command.

(Default = 9x15)

XR_TEXT_RECOGNITION_TIMEOUT = integer

Sets the maximum interval that XRunner waits when searching for text.
Default = 500 [milliseconds]

XR_TEXT_REMARKS = {On|Off}

Determines whether the text that is captured in a text checkpoint is inserted
into the test script as a remark during test creation.

(Default = On)

[Note that the value of this parameter cannot be set using the Configuration
form.]

XR_TEXT_REMOVE_BLANKS = {On|Off}

Determines whether leading and trailing blanks found in the recognized
text are removed.

(Default = On)

341

XRunner User’s Guide

XR_TEXT_SEARCH_RADIUS = integer

Sets the radius (in pixels) of the search for text around a point, when no
parameters are specified in the get_text function.

(Default = 15 [pixels])

XR_UCFG_TEXT = {On|Off}
Enables or disables text checkpoint features.

(Default = On)

Application Mouse and Keyboard Parameters

MIC_CLICK_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to perform mouse clicks.

(Default = Left)

MIC_DBL_CLICK_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to perform double clicks.

(Default = Left)

MIC_DRAG_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to perform drags.

(Default = Left)

MIC_WIN_ACTIVATE_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to activate a window.

(Default = Left)

MIC_EDIT_ACTIVATE_KEY = key

Defines which key is pressed at the end of writing to an edit field to activate
it. Any of the following keys can be defined: Return, Ctrl, Home, Esc.

(Default = Return)

MIC_EDIT_ACTIVATE_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to activate an edit item.

342

Configuring XRunner ¢ Changing System Defaults

(Default = Left)

MIC_EDIT_CLICK_BUTTON = {Left|Middle|Right}

Defines which mouse button is used to move the focus to an edit field
before writing into it.

(Default = Left)

MIC_SCROLL_CLICK_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to scroll.

(Default = Left)

MIC_LIST_ACTIVATE_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to activate a list item.

(Default = Left)

MIC_LIST_ACTIVATE_KEY = key

Defines which key is used to activates a list item. Any of the following keys
can be defined: Return, Ctrl, Home, Esc.

(Default = Return)

MIC_LIST_OPEN_BUTTON = {Left|Middle|Right}
Defines which mouse-button opens a list box.

(Default = Left)

MIC_LIST_CLOSE_BUTTON = {Left|Middle|Right}
Defines which mouse-button closes a list box.

(Default = Left)

MIC_ADD_OR_DESELECT_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to add or deselect items in a list box.

(Default = Left)

MIC_LIST_SELECT_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to select items in a listbox.

343

XRunner User’s Guide

(Default = Left)

MIC_SPIN_CLICK_BUTTON = {Left|Middle|Right}

Defines which mouse button is used to select a spin object.
(Default = Left)

MIC_SPIN_MIN_KEY = key

Defines which key is used to go to the beginning of a spin object.
(Default = Home)

MIC_SPIN_MAX_KEY = key

Defines which key is used to go to the end of a spin object.
(Default = End)

MIC_BUTTON_PRESS_BUTTON = {Left|Middle|Right}

Defines the mouse-button used to perform button_press commands during
test execution.

(Default = Left)

MIC_MENU_OPEN_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to open a menu.

(Default = Left)

MIC_MENU_CLOSE_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to close a menu.

(Default = Left)

MIC_POPUP_MENU_POPUP_BUTTON = {Left|Middle|Right}
Defines which mouse button is used to open a popup menu.

(Default = Right)

MIC_POPUP_MENU_POPUP_SELECT = {Left|Middle|Right}
Defines which mouse button is used to select an item from a popup menu.

(Default = Left)

344

Configuring XRunner ¢ Changing System Defaults

XRunner User Interface

XR_HIDE_BUBBLE_HELP = {On|Off}
Displays/hides icon bubble help.

(Default = Off, bubbles visible)

XR_INSERT_NEWLINES = {On|Off}

Specifies if XRunner inserts a blank line before and after GUI checkpoint
and Synchronization point statements.

(Default = On)

XR_EDITOR_MAX_CHARS = integer

Determines the maximum number of characters that can be written per line
in the XRunner window. When a generated script statement extends beyond
this maximum length during a record session, the script line is split between
two or more lines.

(Default = 80)

XR_REPORT_PASS_COLOR = string

Defines the color used in the test report to indicate a successful test run. The
color is used in the “check” on the upper right corner of the test report
summary and in lines detailing specific successful events in the test report
log.

(Default = green4)

XR_REPORT_FAIL_COLOR = string

Defines the color used in the test report to indicate a failed test run. The
color is used in the “cross” on the upper right corner of the test report
summary and in lines detailing specific failed events in the test report log.

(Default = red)
Execution Environment Parameters

The following parameters appear in the Configuration form, but are read-
only.

345

XRunner User’s Guide

346

Current Directory = pathname

Indicates the current working directory for the test. There is no default value
for this parameter.

Expected Results Directory = pathname

Defines the full pathname of the expected results directory associated with
the current execution of the test. There is no default value for this
parameter.

Line Number = integer

Displays the current line of the execution marker in the test script. There is
no default value for this parameter.

Results Directory = integer

Sets the full pathname of the results directory during a verification run.
There is no default value for this parameter.

System Mode = {verify|update|debug}
Defines the current mode: either Verify, Debug, or Update.

Test Name = pathname

Defines the full pathname of the current test. There is no default value for
this parameter.

Softkey Parameters

The following parameters define XRunner’s softkeys. Note that any
modifications you make to softkey settings from the Configuration form are
invalid for the current session. Changes take effect when you restart
XRunner.

XR_SOFT_ANIMATE = softkey

Defines the RUN FROM ARROW softkey. Pressing this key is equivalent to
choosing the Run from Arrow command from the Run menu.

(Default = F8)

XR_SOFT_MARKLOCATOR = softkey

Defines the MARK LOCATOR softkey used to record the absolute coordinate
position (in pixels) of the screen pointer.

Configuring XRunner ¢ Changing System Defaults

(Default = Ctrl Left FS)

XR_SOFT_PAUSE = softkey

Defines the PAUSE softkey. Pressing this softkey is equivalent to choosing the
Pause command from the Run menu.

(Default = F8)

XR_SOFT_RECORD = softkey

Defines the RECORD softkey. Pressing this softkey is equivalent to choosing
the Record-Context Sensitive command from the Run menu.

(Default = F5)

XR_SOFT_STEP = softkey

Defines the STEP softkey. Pressing this softkey is equivalent to choosing the
Step command from the Run menu.

(Default = F7)

XR_SOFT_STEP_INTO = softkey

Defines the STEP INTO softkey. Pressing this softkey is equivalent to choosing
the Step Into command from the Run menu.

(Default = Ctrl Left F7)

XR_SOFT_STOP = softkey

Defines the sTOP softkey. Pressing this softkey is equivalent to choosing the
Stop command from the Run menu (when recording) or the Abort
command from the Run menu (when running a test).

(Default = F6)

XR_SOFT_CHECK_WINDOW = softkey

Defines the CHECK WINDOW softkey. Pressing this softkey is equivalent to
choosing the Check Bitmap > Window command from the Create menu.
(Default = F2)

XR_SOFT_CHECK_PARTIAL_WINDOW = softkey

Defines the CHECK WINDOW (AREA) softkey. Pressing this softkey is equivalent
to choosing the Check Bitmap > Area command from the Create menu.

347

XRunner User’s Guide

348

(Default = Ctrl Left F2)

XR_SOFT_GET_TEXT = softkey
Defines the GET TEXT softkey.

(Default = Ctrl Left F1)

XR_SOFT_WAIT_WINDOW = softkey

Defines the WAIT WINDOW softkey. Pressing this softkey is equivalent to
choosing the Wait Bitmap > Window command from the Create menu.

(Default = F4)

XR_SOFT_WAIT_PARTIAL_WINDOW = softkey

Defines the WAIT WINDOW (AREA) softkey. Pressing this softkey is equivalent
to choosing the Wait Bitmap > Area command from the Create menu.

(Default = Ctrl Left F4)

XR_SOFT_WAIT_REDRAW = softkey

Defines the WAIT REDRAW softkey. Pressing this softkey instructs XRunner to
wait for a specific window to be redrawn, without evaluating its contents.

(Default = F3)

XR_SOFT_WAIT_REDRAW_PARTIAL_WINDOW = softkey

Defines the WAIT REDRAW AREA softkey. Pressing this softkey instructs
XRunner to wait for a specific window area to be redrawn, without
evaluating its contents.

(Default = Ctrl Left F3)

XR_SOFT_CHECK_GUI = softkey

Defines the CHECK GUI softkey. Pressing this softkey is equivalent to choosing
the Check GUI > Checklist command from the Create menu.

(Default = Alt Left F2)

Configuring XRunner ¢ Changing System Defaults

XR_SOFT_OBJ_FUNC_CALL = softkey

Defines the INSERT FUNCTION softkey. Pressing this softkey is equivalent to
choosing the Insert Function > Object/Window command from the Create
menu.

(Default = Ctrl Left F9)

XR_SOFT_GEN_FUNC_CALL = softkey

Defines the INSERT FUNCTION FROM LIST softkey. Pressing this softkey is
equivalent to choosing the Insert Function > From List command from the
Create menu.

(Default = F9)

Sun NeWS Server Parameter

XR_NEWS_COMPAT = {On|Off}

Instructs XRunner to use the lower left corner of the screen as the
coordinate system origin, as in previous versions (version 1.6 and earlier of
XRunner). This parameter should be set to On only if you are using Sun's
NeWS server and have tests that were created on previous versions of
XRunner.

(Default = Off)
[Note that the value of this parameter cannot be set using the Configuration

form.]

Exceptions

The configuration parameters for exceptions do not appear in the
Configuration form.

XR_EXCP_POPUP = exception list

Defines popup exceptions. Exceptions in the list are separated by blank
spaces.

There is no default value for this parameter.

349

XRunner User’s Guide

350

XR_EXCP_OBJECT= exception list

Defines object exceptions. Exceptions in the list are separated by blank
spaces.

There is no default value for this parameter.

XR_EXCP_TSL = exception list
Defines TSL exceptions. Exceptions in the list are separated by blank spaces.

There is no default value for this parameter.

Input Device Parameters

XR_INP_CAPS_POLICY = {0|1}

Sets the event that XRunner records for the CapsLock key. This parameter
can be set to one of two values:

0 Normal mode. Pressing the CapsLock key generates
both press and release events.

1 Shift-release mode (common on European keyboards).
Pressing the CapsLock key generates only a press
event. Pressing the Shift key generates the release
event for the CapsLock key. (Until the Shift key is
pressed, additional presses on the CapsLock key have
no effect.)

(Default = 0)

XR_INP_KBD_NAME = file pathname

Designates the path and name of the keyboard definition file. This file
specifies the language that appears in the test script when you type on the
keyboard during recording. For XRunner 4.0 and higher, all necessary
keyboard information is acquired by default from the XServer, instead of
from a keyboard file. For XRunner 4.0 or higher, set this parameter to
NONE.

(Default = NONE)

XR_KBD_ALIAS_FILE = file pathname

Defines the file containing global key aliases.

Configuring XRunner ¢ Changing System Defaults

(Default file located in $M_ROOT/dat)

XR_INP_KBD_DEV_ID = keyboard device id

Specifies the keyboard device id used by XTestExtension1. Most machines
work with the default value. For some IBM X Terminal and DEC Alpha
machines this parameter must be set to 2. You may ignore this parameter if
you are running the Sun NeWS server.

(Default = 0)

XR_INP_MKEYS = mouse_button_code string

Assigns a unique name (string) to each of the mouse buttons. When a test is
recorded in Analog mode, this name is the expression enclosed in the TSL
type statement generated whenever the specified button is activated. For
example, the default name assigned to each of the three mouse buttons
(when pressed alone or in conjunction with the Shift key) are as follows:

XR_INP_MKEYS=0x01 Right S_Right\
0x02 Middle S_Middle\
0x04 Left S Left\
0x08 Aux1 S_Auxl

Note that button codes are specified here in hexadecimal notation. When
defining your mouse keys, be sure to use hexadecimal notation.

XR_INP_MOUSE_DEV_ID = mouse device id
Specifies the mouse device id used by XTestExtension1.

(Default = 1)

Configuration File Contents

System configuration files are text files that can include the following types
of data:

0 assignment statements
O directives

O blank lines

351

XRunner User’s Guide

352

O comments

Assignment Statements

The main purpose of the configuration file is to allow the assignment of
values to XRunner configuration parameters. The values assigned to these
parameters determine how the program will run. Most of these values will
be defined by the top-level (~/.xrunner) configuration file following system
installation.

Other parameters point to system locations. For example, the parameter
XR_GLOB_FILTER_LIB identifies the directory in which the Global Filter Library
is stored.

In addition to assignment statements used to set values for parameters, you
can assign values to user-defined variables. A typical use would be to assign
an arbitrary shorthand name to a path which may appear any number of
times in the configuration file. For example, the line

P153T = /project_15/ver_3/tests

assigns the specified pathname to the variable P153T. Whenever the name
of this variable subsequently appears in the configuration file, the associated
path will be understood. Thus if the location of the Global Filters Library is
specified by the line

XR_GLOB_FILTER_LIB = $(P153T)/.

XRunner will understand that this logical folder resides under the pathname
/project_15/ver_3/tests.

Note the following points:

O Theequal sign (=) is always used to assign a value to a variable, whether
this variable is a system parameter or a user-defined variable.

O Whenever a user-defined variable is initiated in the file, the name of
this variable must be enclosed within parentheses; the enclosed
variable name is preceded by a dollar sign character ($). Note that
environmental variables may also be accessed using the same
convention.

Configuring XRunner ¢ Changing System Defaults

O If the same item appears more than once in the configuration file, the
last value assigned to this item will be used by the system.

Regarding case sensitivity of names, note the following points:

O Names of variables and system parameters appearing in the
configuration file are not case sensitive.

O Boolean values assigned to variables or parameters are not case
sensitive.

O Values assigned to certain system parameters may be case sensitive,
depending on the nature of the parameter.

Directives

The configuration file can contain one or more include-directives. An
include-directive is used to integrate the entire contents of the specified file
in the configuration data processed by XRunner. An include-directive is
composed of:

O the character @ in the first column of the file line
0 the label include

O the @ character, followed by the name of the file (enclosed between
quotation marks) to be integrated at this point

For example:

@include "@Iloc _file"

@include "@/file2"

Note that each file to be integrated in the configuration data must be
specified by its own include entry.

Include-directives can be nested: A file that is referenced by an include entry
in the configuration file may in turn contain its own include directives to
other files. Such nesting is supported up to ten levels. When a relative name
is used to specify the file to be integrated, the specified name must express

353

XRunner User’s Guide

354

the location of this file relative to the file in which the calling include-
directive appears.

Blank Lines and Comments

As it processes, a configuration file ignores blank lines and comments.
Comments may be inserted in a file using the number sign (#). All text that
appears between a number sign and the end of a line is understood to be a
comment.

Line Format

When a record in the configuration file extends beyond a single line, the
backslash character (\) indicates that the record continues on the next line.

XR_INP_MKEYS=0x01 Right S_Right\
0x02 Middle S_Middle\
0x04 Left S Left\
0x08 Auxl S_Auxl

In the above example, the XR_INP_MKEYS parameter is used to assign a unique
name (string) to each of the mouse buttons when pressed alone as well as in
conjunction with the Shift key.

When more than one value is assigned to the same parameter or user-
defined variable, the delimiter between the values is a blank space.

Special Characters

The backslash character (\) can also be used within a configuration file as an
escape character. If a record must include a special character which has a
different, reserved function, precede the special character with a backslash.
The character that follows will then be read literally by the XRunner
interpreter. (For example, in order that a backslash be understood as a literal
backslash, type in a double backslash [\\].)

The backslash character is also used to indicate literal carriage return
(ENTER) and tab characters in the configuration file.

Quotation marks (") can be used to indicate that two or more string
segments constitute a single value.

34

Initializing Special Configurations

By creating startup tests, you can automatically initialize special testing
configurations each time you invoke XRunner.

This chapter describes:

O Creating Startup Tests
O Sample Startup Test

About Initializing Special Configurations

A startup test is a test script that is automatically executed each time you
start XRunner. You can create startup tests that load GUI map files and
compiled modules, configure recording, and invoke the application under
test.

You can create startup tests on two levels:

O On the first level, you define the XR_TSL_INIT environment variable so it
points to the full path of the startup test. This test can be used to
customize XRunner for a group of users testing the same application.
For example

setenv XR_TSL_INIT /ga/share/qinit

O The second level startup test is the fslinit test stored in your home
directory. This test can be used to tailor XRunner to your individual
needs.

355

XRunner User’s Guide

Creating Startup Tests

It is recommended that you add the following types of statements to your
startup test:

O load statements, which load compiled modules containing user-
defined functions that you frequently call from your test scripts.

O GUI_load statements, which load one or more GUI map files. This
ensures that XRunner recognizes the GUI objects in your application
when you execute tests.

O asystem statement that invokes the application under test.

statements that enable XRunner to generate custom record TSL
functions when you operate on custom objects, such as
add_cust_record_class.

By including the above elements in a startup test, XRunner automatically
compiles all designated functions, loads all necessary GUI map files,
configures the recording of GUI objects, and loads the application under
test.

Note that you can use the Test Wizard to create a basic startup test called
mytest which loads a GUI map file and the application under test.

You can create a startup test for a group of users, or you can create startup
tests for each individual user.

Sample Startup Test

356

The following is an example of the types of statements that might appear in
a startup test:

Load the compiled module "ga_funcs"
load ("ga_funcs", 1, 1);

Load the GUI map file "bank.gui"
GUI_load ("/ga/gui/bank.gui");

Configuring XRunner ¢ Initializing Special Configurations

Invoke the sample Flights application
system ("cd" & getenv("M_ROOT") & "/samples/bin/frs/";

set M_ROOT= "& getenv("M_ROOT") & "; export M_ROOT;
Jairspacelb &");

357

XRunner User’s Guide

358

Part VIl

Working with LoadRunner

35

Testing Client/Server Systems

Today’s applications are run by multiple users over complex, client/server
systems. With LoadRunner, Mercury Interactive’s client/server testing tool,
you can simulate the load of real users interacting with your server and
measuring system performance. Note that LoadRunner is an independent
testing tool and must be purchased separately.

This chapter describes:

Simulating Multiple Users

Virtual User Technology

GUI Vusers

Developing and Running Scenarios
Creating Scripts for XRunner GUI Vusers
Measuring Server Performance
Synchronizing Virtual User Transactions

Creating a Rendezvous

O oo o oo oo o

A Sample Vuser Script

About Testing Client/Server Systems

Software testing is no longer confined to testing applications that run on a
single, stand-alone workstation. Applications are run in a network
environment where multiple client PCs or UNIX workstations interact with
a central server.

361

XRunner User’s Guide

Modern client/server architectures are complex. While they provide an
unprecedented degree of power and flexibility, these systems are difficult to
test. LoadRunner simulates server load and then accurately measures and
analyzes server performance and functionality. This chapter provides an
overview of how to use LoadRunner and XRunner to test your server. For
detailed information about how to test a client/server system refer to your
LoadRunner documentation.

Simulating Multiple Users

362

With LoadRunner, you simulate the interaction of multiple users (clients)
with the server by creating scenarios. A scenario defines the events that will
occur during each client/server testing session, such as the number of users,
the actions they perform, and the machines they use. For more information
about scenarios, refer to the LoadRunner Controller User’s Guide.

In the scenario, LoadRunner replaces the human user with a virtual user
(Vuser). A Vuser simulates the actions of human users and submits input to
the server. A scenario can contain tens, hundreds, or thousands of Vusers.

1 LoadRunner
: ‘ Controller

LoadRunner replaces human users with virtual users

Working with LoadRunner e Testing Client/Server Systems

Virtual User Technology

There are three types of Vusers, each designed to handle different aspects of
today’s client/server architectures:

0O DB Vusers
RTE Vusers
O GUI Vusers

DB Vusers submit input to the server without relying on client software.
Instead, they directly access the server through API calls. This lets you
simulate large numbers of users accessing the server simultaneously.

You describe the actions DB Vusers will perform by writing C programs.
These include functions that control test execution, specify the input to
submit to the server, and measure server performance. For additional
information, refer to the LoadRunner DB Vuser User’s Guide.

RTE Vusers operate character-based client applications in Mercury
Interactive’s remote terminal emulator. With RTE Vusers, you create C
programs that type input and wait for output from a remote terminal
emulator. For additional information, refer to the LoadRunner RTE Vuser
User’s Guide.

GUI Vusers operate graphical user interface applications in environments
such as Motif. Each GUI Vuser simulates a real user submitting input to and
receiving output from a client application.

A GUI Vuser replaces a human user that operates a client application. The
client application can be any application used to access the server, such as a
database client. Each GUI Vuser executes a Vuser script, a test that describes

363

XRunner User’s Guide

the actions it performs during the scenario. It includes statements that
measure and record the performance of the server.

Runrer - Ju/ jonyder 1ck,

File Edit Record Replay Debug Utilities GUI Options

ro(i=1; i< 10; i+) {

A GUI Vuser

GUI Vusers

LoadRunner works with two types of GUI Vusers:

O XRunner
VXRunner

An XRunner GUI Vuser uses an existing XRunner installation as a Vuser.
LoadRunner invokes XRunner on a remote host and runs existing XRunner
scripts through its controller. This type of GUI Vuser has full XRunner
capabilities, but is limited to a single copy of XRunner per host; it can only
simulate a single X Windows user per host.

A VXRunner GUI Vuser uses an enhanced version of XRunner, VXRunner,
to incorporate additional LoadRunner capabilities. VXRunner allows you to
develop and simulate multiple X Windows users on a single host. VXRunner
does not support Context Sensitive testing or verification, but it is ideal for
simulating load testing with X Window client applications. For more
information, refer to the LoadRunner GUI Vuser User’s Guide

LoadRunner is equipped with a Virtual User Development Environment
(VUDE). The VUDE consist of VXRunner, an xterm window (from which
you invoke an application), and a client application. You develop

364

Working with LoadRunner e Testing Client/Server Systems

VXRunner scripts through LoadRunner inside the VUDE, the Virtual User
Development Environment.

Virtual User Development Environment (smiley).

smiley:/tmp_mnt/u/jay>teller &
[1] 29062
smiley:/tmp_mnt/u/jay>[]

Replay Debug Utilities Options

Welcame to ATM Services!

Please insert your card.

mercary

You create your Vuser script with VXRunner, the same way you create tests
in XRunner, with recording and programming. Vuser scripts created by
VXRunner can be assigned to multiple GUI Vusers on a single host. This is
ideal for load testing and environments where a limited number of host
machines are available. You create Vusers and assign tests through a scenario
script. For more details about the VUDE and scenario scripts, refer to the
LoadRunner GUI Vuser User’s Guide.

Developing and Running Scenarios

You develop a scenario script in which you create Vusers, assign tests to
Vusers, and designate which workstations will host Vusers during the
scenario. With the controller, you run the scenario. After you run a scenario,
you analyze server performance with the controller’s performance analysis
graphs and reports.

365

XRunner User’s Guide

The following procedure summarizes the process of testing your server with
LoadRunner and XRunner GUI Vusers. For more detailed information, refer
to the LoadRunner GUI Vuser User’s Guide.

Create Vuser scripts.

A Vuser script describes the actions a Vuser will perform during the scenario.
You create GUI test scripts with XRunner. A GUI Vuser script contains TSL
statements specially designed for client/server testing. For example, a GUI
Vuser script contains transaction statements to measure server performance
and rendezvous statements to synchronize the actions of Vusers on multiple
hosts.

Create the scenario with a scenario script.

A scenario consists of many Vusers. To create Vusers, assign Vuser scripts,
and designate host machines, you write a script in the Scenario Script
window using LoadRunner statements. You must replay the scenario script
to set up the scenario.

Run the scenario.

When you click on Run from the controller, LoadRunner executes the script
and records scenario performance data. You use this information to generate
analysis of server performance. The scenario will end when all the Vusers
complete executing their designated Vuser scripts.

Analyze server performance.

After the scenario run, you can use LoadRunner’s graphs and reports to
analyze server performance.

Creating Scripts for XRunner GUI Vusers

366

To create a script for an XRunner GUI Vuser, you use XRunner as you
normally would through recording and programming. In addition, you add
several LoadRunner functions that allow you to measure system
performance and synchronize multiple Vusers.

To create a script for a VXRunner GUI Vuser, you must invoke VXRunner
through LoadRunner. For a detailed explanation of VXRunner GUI Vusers,
refer to the LoadRunner GUI Vuser User’s Guide.

Working with LoadRunner e Testing Client/Server Systems

To create a script for an XRunner GUI Vuser:

1 Open XRunner.

Invoke the client application.

A client application is any application used to access and interact with the
server, such as a database client.

Record operations on the client application.

Use XRunner to record the keyboard and mouse strokes you want the Vuser
to perform on the client application. The actions are automatically recorded
and transcribed into a Vuser script.

Edit your Vuser script with XRunner and program additional TSL
statements. Enhance the test script using loops and other control-flow
structures.

Define actions within the Vuser script as transactions to measure server
performance.

A Transaction measures the server’s response time to requests submitted by
Vusers. For instance, you can define a transaction that measures how long it
takes the server to respond to an SQL query sent by a Vuser. After you define
the transaction, you use it to measure server performance under different
loads. For example, you can measure how the server performs when one
user or one hundred users perform the transaction.

Add synchronization points to the Vuser script. These tell the Vuser to wait
for a specific event to occur, and then resume script execution.

Synchronization points ensure that transactions accurately measure the
time it takes the server to respond to requests sent by users. For example,
you could insert a synchronization point that waits for confirmation that a
request has been processed. The user knows that the server has processed the
request when the word “Done” appears in the client application.

Add rendezvous points to the Vuser script to coordinate the actions of
multiple Vusers.

During a scenario run, each time a Vuser encounters a rendezvous point, it
pauses and waits for other Vusers to arrive at a designated meeting place (the
rendezvous). LoadRunner ensures the Vusers cannot leave the rendezvous

until the last Vuser arrives, or it receives a command to release them. When

367

XRunner User’s Guide

all the Vusers have arrived at the rendezvous, they are released together and
perform the next task in their Vuser scripts.

8 Save your script and close XRunner.

Measuring Server Performance

368

Transactions measure how your server performs under the load of many
users. A transaction may be a simple task, such as entering text into a text
field, or it may be an entire test which includes multiple tasks. LoadRunner
measures the performance of a transaction under different loads. You can
measure the time it takes to perform the same transaction by a single user or
by a hundred users.

The first stage of creating a transaction is to declare its name at the start of
the Vuser script. When you assign the Vuser script to a Vuser, in the
LoadRunner controller, LoadRunner scans the Vuser test for transaction
declaration statements. If the script contains a rendezvous declaration,
LoadRunner reads the name of the transaction and displays it in the
Transactions window.

To declare a transaction, you use the declare_transaction function. The
syntax of this function is:

declare_transaction ("transaction_name");

The transaction_name can be any string expression that names the
transaction. The string can contain letters, numbers, and underscore
characters (_). Note that the first character of the name cannot be a number.

Next, you mark the point where LoadRunner will start to measure the
transaction. To mark the start of a transaction you insert a start_transaction
statement into your Vuser script. This must be placed immediately before
the action you want to measure. The syntax of this function is:

start_transaction (transaction_name);

The transaction_name is the name you assigned in the declare_transaction
statement.

Working with LoadRunner e Testing Client/Server Systems

To indicate the end of the transaction, you insert an end_transaction
statement into your Vuser script. If the transaction to be analyzed is the
entire test, then the end_transaction statement will be the last line in the
Vuser test script. The syntax of this function is:

end_transaction (transaction_name , [status]);

The transaction_name parameter is the name you assigned in the
declare_transaction statement. The status parameter can be set to PASS or
FAIL. This tells LoadRunner if the transaction passed or failed. The default is
PASS.

Synchronizing Virtual User Transactions

For transactions to accurately measure server performance, they must reflect
the time the server takes to respond to user requests. A human user knows
that the server has completed processing a task when a visual cue, such as a
message, appears. For instance, suppose you want to measure the time it
takes for a database server to respond to user queries. You know that the
server completed processing a database query when the answer to the query
is displayed on the screen. In Vuser tests, you instruct the Vusers to wait for
a cue by inserting synchronization points.

Synchronization points tell the Vuser to wait for a specific event to occur,
such as the appearance of a message in an object, and then resumes script
execution. If the object does not appear, the Vuser continues to wait until
the object appears or the timeout expires. You can synchronize transactions
by using any of XRunner’s synchronization or object functions. For more
information about synchronizing GUI Vuser tests, refer to the LoadRunner
GUI Vuser User’s Guide. For more information about XRunner’s
synchronization functions, see Chapter 13, “Synchronizing Test Execution:
Context Sensitive Testing.”

Creating a Rendezvous

When designing a scenario, you need to coordinate the test runs of two or
more Vusers. You coordinate multiple Vusers by creating a rendezvous.

369

XRunner User’s Guide

A rendezvous is a meeting place for Vusers. To designate the meeting place,
you insert rendezvous statements into your Vuser scripts. When the
rendezvous statement is interpreted, the Vuser is held by the controller until
all the members of the rendezvous arrive. When all the Vusers have arrived,
they are released together and perform the next task in their Vuser scripts.

The first stage of creating a rendezvous is to declare the name of the
rendezvous at the start of the Vuser script. When you assign the Vuser script
to a Vuser, LoadRunner scans the script for rendezvous declaration
statements. If the script contains a rendezvous declaration, LoadRunner
reads the name of the rendezvous and creates a rendezvous. If you create
another Vuser that runs the same script, the controller will add the Vuser to
the rendezvous.

To declare a rendezvous, you use the declare_rendezvous function. The
syntax of this functions is:

declare_rendezvous ("rendezvous_name");

where rendezvous_name is the name of the name of the rendezvous. The
rendezvous_name must be a string constant and not a variable or an
expression.

Next, you indicate the point in the Vuser test where the rendezvous will
occur by inserting a rendezvous statement. The rendezvous statement tells
LoadRunner to hold the Vuser at the rendezvous until all the other Vusers
arrive. The function has the following syntax:

rendezvous (rendezvous_name);

where rendezvous_name is the name of the rendezvous.

A Sample Vuser Script

370

In the following sample Vuser test, the “Ready” transaction measures how
long it takes for the server to respond to a login request from a user. The user
clicks the Login button. The user knows that the request has been processed
when the word “Done” appears in the client application’s Status field.

Working with LoadRunner e Testing Client/Server Systems

Declare the transaction and rendezvous names
declare_transaction ("Ready");
declare_rendezvous ("wait");

Mouse pointer moved to deposit button
move_locator_abs (10, 10, 0);

Start measuring deposit operation
start_transaction ("Ready");

Set the rendezvous point
rendezvous ("wait");

Click left mouse button on Login button
click ("Left");

Wait for "Done" to appear in the window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Ready transaction

if (rc ==0)
end_transaction ("Ready", PASS);
else

end_transaction ("Ready", FAIL);

In the first part of the Vuser script, the declare_transaction and
declare_rendezvous functions declare the names of the transaction and
rendezvous points in the Vuser script. In this script, the transaction “Ready”
and the rendezvous “wait” are declared. The declaration statements enable
the LoadRunner controller to display transaction and rendezvous
information.

Declare the transaction and rendezvous names
declare_transaction ("Ready");
declare_rendezvous ("wait");

Next, the mouse is moved to the location of the Login button on the screen.

Mouse pointer moved to deposit button
move_locator_abs (10, 10, 0);

A start_transaction statement is inserted just before the Vuser presses the
Login button. This instructs LoadRunner to start recording the “Ready”

371

XRunner User’s Guide

372

transaction. The “Ready” transaction measures the time it takes for the
server to process the request sent by the Vuser.

Start measuring deposit operation
start_transaction ("Ready");

A rendezvous statement ensures that all Vusers will press the Login button
at the same time, thus creating heavy load on the server.

Set the rendezvous point
rendezvous ("wait");

Click left mouse button on Login button
click ("Left");

Before LoadRunner can measure the time taken to perform the transaction,
it must wait for a queue to say that the server has finished processing the
request. LoadRunner uses the wait_text function to check for a specific text.
The user knows that the request has been processed when the “Done”
message appears within a certain location on the screen. The timeout is set to
five seconds.

Wait for "Done" to appear in the window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

The final section of the test measures the time it took to perform the
transaction. An If statement is defined to process the results of the
wait_text function. If the message appeared inside the field, within the
timeout, the first end_transaction statement records the time it took to
perform the transaction. It also notes that the transaction passed. If the
timeout expired, and the message did not appear, the transaction fails.

End transaction.

if (rc == 0)
end_transaction ("OK", PASS);
else

end_transaction ("OK", FAIL);

Part IX

Appendixes

A

Troubleshooting

The following paragraphs present solutions to some problems you may
encounter when working with XRunner.

Starting XRunner

The XRunner window does not open and the message “system error” is
displayed.

XRunner could not connect to its License Manager. The error message is
misleading. Check that the MERCURY_ELMHOST environment variable points
to the name of your License Manager machine and that the License
Manager is running.

XRunner does not start on the standard MIT X11R4 server, or starts on
the standard MIT X11RS5, but no softkeys are available.

In order to run, XRunner needs special capture and execution “hooks”
installed in the X server. This release of XRunner includes:

O An enhanced version of the MIT X11R4 server which provides the
required hooks with the Input Synthesis Extension

O An enhanced version of the MIT X11RS5 server which provides the
required hooks with the DEC-XTRAP extension.

XRunner refuses to open and the system message “Unable to connect -
XXX Program not registered” appears.

This problem can occur if XRunner is terminated in an incorrect manner.
Check that another xrun process is not running. If you find such a process,
kill it by entering the command:

Kill -9 XRunner_process_id

375

XRunner User’s Guide

Login

Record

376

The XRunner window comes up, but nothing is drawn in the window
and XRunner hangs.

You must kill the xrun and crvx or crux processes in order to recover. Make
sure that you do not have a file locking problem: Note any messages from
the lock manager daemon when you kill XRunner. Try to set the
configuration parameter XR_FILE_LOCKING in your XRunner.cfg file to
FALSE. If XRunner starts correctly this time, set this parameter to FALSE for
all users using XRunner.

You login after a system crash and receive the message, “number of
licenses has reached the limit.”

This happens because it takes the license manager three minutes to update.
Wait three minutes and then try to login again.

An inappropriate type command is written to the test script when the

record softkey is pressed.

This happens when the RECORD softkey is pressed shortly after the keyboard
is activated. Keyboard events are cached in the X server, and are erroneously
identified as part of user input in the current recording session. Wait about

two seconds before pressing the Record button.

The display of a captured window is faulty.
XRunner verifies only windows which are at the front of the window stack.
Always bring a window to the front before capturing it.

Your machine beeps several times when a window is captured.
This is normal and does not affect operations.

When learning the GUI (using recording or any other method), the
physical description of objects learned is wrong (i.e., does not reflect the
default recording of the learned object).

Run the command csmode_init(); This will reset all default attributes for
all classes.

Appendix ® Troubleshooting

When a two-button mouse is used, pressing the right button is recorded
as <kMiddle>. Pressing both buttons simultaneously is recorded as
<kRight>.

Change the value of the XR_INP_MKEYS system parameter in the xrunner.cfg
file, so that the value <kRight> is assigned to the right mouse button.

Running Tests

Execution hangs when playing sequences which cause long X server
grabs.

You can recover by manually handling the grab situation. For example, if a
pop-up window has grabbed the server and XRunner has failed to close it,
you should try to close it manually. Note that using a Quick Run command
instead of Run may prevent this problem. TSL grab and ungrab functions
provide a reliable solution to the grabbing problem.

A programmed sequence which simulates a mouse drag does not work
correctly.

Some applications do not accept such programmed actions as being
equivalent to a mouse drag. Insert a move_locator_rel function call with a
low x, y value (for example, 1,1) after the first mtype statement.

Using XRunner softkeys impairs xterm operation.
Try reassigning frequently used softkeys (for example, ABORT and CHECK
WINDOW).

File Locking

When you try to run a test, XRunner displays the message: “Test
<test_name> is locked by <user_name> with process ID XXXX “.

XRunner has a test locking system that prevents one user from modifying a
test while another user is editing the same test. XRunner displays the
message in one of two situations:

O when the test is simultaneously being edited by another user.

O when XRunner is abnormally terminated during test creation and the
lock file is not removed.

377

XRunner User’s Guide

First, if the file was locked by a user other than yourself, ensure that user is
not currently editing the test.

If not, you can delete the lock file from the UNIX prompt, by issuing the
following command:

rm <test_name>/lock

For example, if you attempted to open the test /home/xrunner/test/samplel
from XRunner and received an error message, enter

rm /home/xrunner/test/samplel/lock

The test will be unlocked. Try to open it from within XRunner.

Context Sensitive

You are unable to record or run tests, and the message “The XRunner
version and the Context Sensitive Library version are not the same”
appears in stderr.

You are trying to record or run an application that is linked with a Context
Sensitive Library version which is not the same as the current XRunner
version. Check both version numbers and make sure that they are identical.

Operations on pop-up menus do not execute properly (Motif only).
Sometimes, when you execute a test, the part of the script which should
open a pop-up menu and select an item does not succeed. XRunner executes
on standard Motif pop-up menus only.

Check that the mouse clicks that operate the pop-up menus conform to the
standard Motif conventions. If not, you can often configure mouse buttons
in order to solve this problem. For more information, contact Mercury
Support.

Reading Text

XRunner has difficulty recognizing very small or italic fonts.
XRunner provides a test which automatically checks whether a font is

378

Appendix ® Troubleshooting

supported. This test is located under the pathname $(M_ROOT)/lib/font_test.
This test must be called by an XRunner test which contains the line:

t= call font_test(font_name);

XRunner confuses characters which use the same bitmap.

This confusion may also arise when the active font group has several fonts
with very similar characters. Change the XR_TEXT_CHECK_DIST configuration
parameter to TRUE. This causes XRunner to check the distance of characters
from the base line.

Online Help

TSL

The “Using Help” option in Hyperhelp does not work.
Before invoking XRunner, type at the prompt:

setenv HOHPATH $M_ROOQOT/dat

The Output redirection operators “>” and “>>" do not work correctly.
In some cases, the output files are not flushed; in all cases, files are created in
the XRunner startup directory and not in the current directory. Make sure
that you close files so that XRunner flushes file buffers.

An error message “Syntax error” occurs with a legal type statement.
You may have created a type statement with a variable which begins with
one of the special type string character values (for example, - or +). Insert a
“\'7, for example, type("\" x) to prevent the special interpretation of the
first special character.

XRunner, and in some cases the X server, hang when a system
command is executed.

You probably invoked XRunner in the background and used a system
function to start a command which waits for fty input. This causes XRunner
to block waiting for input. In some cases you get the message: “xrun
(stopped on tty input).” Make sure that XRunner is not started as a
background process.

379

XRunner User’s Guide

Background Operation

When working with XR in background mode, you try entering input
and receive the message “Suspended (tty input).”
At the command line, type fg (moves XRunner to foreground).

Bitmaps

XRunner does not display the selected bitmap.

Make sure that the standard X window system program xwud is in your
path. XRunner bitmaps are in standard xwd format and XRunner uses the
xwud program for bitmap displays. Also check the shell window from which
you invoked XRunner for other error messages. A common message is “too
many processes” when displaying several bitmaps. If this happens, close a
few bitmaps and try displaying the bitmap you need again.

Command Line Interface

Parameters cannot be passed to a test called from the command line.
Use environment variables to store parameter values, then use the TSL
getenv function to retrieve the desired values.

Network

XRunner will not connect to a remote machine.
Make sure that:

O you are trying to connect to a supported server.

O the DISPLAY environment variable is defined correctly and you have
provided the correct values for the -server and/or the -display options.

O you have permission to connect to the remote machine. Use the xhost
utility to set remote access permissions.

O if the remote machine runs the standard OpenWindows (X11/NeWS)
server, verify that it was started with the parameters:

380

Appendix ® Troubleshooting

-noauth and -defeateventsecurity.

O the remote machine running OpenWindows (X11/NeWS) can be
recorded only by another Sun machine.

User Interface

The XRunner window appears to come up without a cursor.

The cursor color and background color are the same. Open and close any
XRunner form (such as the Test Header), and the cursor appears in a visible
color.

HP Platforms

When using the HP X Terminal version B.04.01, the server hangs when
XRunner is started.

This is caused by a bug in the HP server. Use an earlier server version
(B.03.01).

UnixWare Platforms

Pressing F1 (UnixWare Help key) causes XRunner to hang.
Set the Help key to a different key (such as Alt F1) in the keyboard folder.

A filter jumps to a different on-screen location, then returns to its
correct location.

Set the environment variable XRUN_FL_DELAY to an interval longer than the
default, 0.65 (seconds). This variable sets the delay time (in seconds) for
placing the filter in the location where it is defined.

381

XRunner User’s Guide

382

Configuring Your Keyboard

This chapter describes:

O Defining Global Key Aliases
O Defining Platform-Specific Key Aliases

About Configuring Your Keyboard

In XRunner 4.0 and higher, all keyboard data is acquired from the Xserver
and not (as in previous releases) from a specific keyboard file.

The change in keyboard mechanism may create conflict, for instance, when
you run tests created with XRunner 3.0 on XRunner 4.0, or when
transporting test scripts across platforms which use different keyboards.

By modifying the key definitions contained in alias files, you allow XRunner
to identify a key by several names. For example, you can define ESC and Esc
as aliases for the Escape key, so that when programming, you can use the
abbreviations without causing errors.

The following example illustrates how key aliases may be integrated in your
tests:

Suppose that while recording a test on a Sun machine, you repeatedly hit
the Line Feed key to advance to the next line. In the script sequence
generated, the type statement includes the name LineFeed.

At a later date, you decide to play back this test on an HP machine.
However, the HP does not have a LineFeed key. When the
type(“<kLineFeed>") statement is reached, execution stops, and an error
message is generated indicating “No such key.”

383

XRunner User’s Guide

You can prevent this situation by assigning the alias LineFeed to the Return
key in the HP platform-specific keyboard configuration file. During test
execution on the HP machine, XRunner will press Return rather than
LineFeed to advance to the next line.

The files containing key aliases are defined by two configuration parameters:

O XR_KBD_ALIAS_FILE for defining global (cross-platform) aliases

O XR_MACHINE_DB_NAME for defining platform-specific aliases

Defining Global Key Aliases

384

You use the XR_KBD_ALIAS_FILE configuration parameter to define global key
aliases. The default file is located in $M_ROOT/dat.

If your test requires a specific key which is not defined in the alias file, add a
new alias to the default file or create your own alias file. Ensure the
XR_KBD_ALIAS_FILE configuration parameter is defined for the correct file.
Then restart XRunner.

The data in alias files is organized according to the following format:
<KeySymName/Key Code> <key_name> <shift_name> <aliases>

for example:

keysym-name/ key-codekey-name shift-name aliases
XK_F29 F29 S_F29 PgUp
XK_KP_7 KP_7 S KP_7 Home
XK_Insert Insert S_Insert Ins
XK_KP_0 KP_0 S_KP_O KP_Insert
XK_KP_1 KP_1 S KP_1 End
XK_KP_9 KP_9 S_KP_9 Prior
XK_Multi_key Multi_key S_Multi_key Compose
XK_Num_Lock Num_Lock S_Num_Lock NumLock
XK_Alt_Graph Alt_Graph S_Alt_Graph script_switch

The following paragraphs describe the data in each column.

Appendix ¢ Configuring Your Keyboard

KeySyms/Key Code

The first column of the file specifies the key code. This can be one of two
codes: a KeySym, or a key code.

In the alias file supplied with XRunner, each key is identified by a KeySym.
A KeySym is a name that the X Server assigns to each key. Through
KeySyms, XRunner identifies most keys on most platforms. The format of a
KeySym is a string starting with the characters XK_.

Note that the KeySym string used to identify a key does not necessarily
resemble, the name actually printed on the key.

Alternatively, the Code column can specify the absolute, numeric code
associated with any given key. This code may be expressed as a decimal,
octal, or hexadecimal value. For example, the RETURN key on a keyboard
may be represented by one of the following scan codes:

decimal 25
octal 033
hexadecimal 0x5A

Note that scan codes represented in octal notation are always preceded by
the prefix “O” (uppercase o). Scan codes represented in hexadecimal
notation are preceded by the prefix “0x” (zero-lowercase x).

The keyboard definition file must not assign the same code (KeySym or Scan
Code) to more than one physical key.

Formal Name

The second column specifies the formal name. The formal name of a key is
the character string that will be generated in the TSL script when this key is
activated during a record session. Conversely, when this code is encountered
by the XRunner interpreter during test execution, the appropriate input will
be sent to the AUT.

The formal name may consist of one to twenty characters: letters (upper-
and lowercase), digits, and underscores. The first character must be a letter
or underscore.

385

XRunner User’s Guide

By editing the keyboard definition file you can configure the TSL code
generated when specific keystrokes are entered. However, if you intend to
edit the key name, you should do so before generating tests. In this way the
code appearing in your test scripts will always be played back correctly
during test execution.

The keyboard definition file must not assign the same name to more than
one physical key.

Shift

The third column specifies the shift attribute of the key. This shift attribute
is the value associated with the key when it is pressed in the Shift mode (the
SHIFT key is held down). As with the key name, the indicated value may
consist of one to twenty characters: letters (upper- and lowercase), digits,
and underscores. The first character must be a letter or underscore.

The keyboard definition file must not assign the same shift to more than
one physical key.

Alias

The fourth column specifies the alias(es) defined for each key. The keyboard
configuration files supplied with XRunner already include aliases required
to make tests compatible across supported machines.

Note that you cannot assign an alias which is already used as the formal
name or as the alias of another key. To assign several aliases to the same key,
separate the aliases with commas.

Defining Platform-Specific Key Aliases

386

XR_MACHINE_DB_NAME points XRunner to the appropriate keyboard and
configuration files for the specific platform or server. You modify aliases
contained in this file, when you want the alias to apply only to a specific
platform. By default, the alias file defined for this parameter resides in
$M_ROOT/dat.

The data in a platform-specific alias files is organized according to the
following format:

Appendix ¢ Configuring Your Keyboard

PLATFORM/SERVER <platform_name> <kbd_file> <cfg_file> <alias_file>
for example:

PLATFORM/SERVER Platform Name Kbd File Cfg File Alias File

PLATFORM sun - generic.cfg sun_alias
PLATFORM hp - generic.cfg hp_alias
SERVER gold:0 - generic.cfg sun_type_alias

The following paragraphs describe the data in each column.

PLATFORM/SERVER

The first column can specify either PLATFORM or SERVER. For instance, if
you work on Sun and on some X servers, use a type 4 keyboard, and on
others a type 5 keyboard, then you can specify a different keyboard
configuration file for each one.

The Platform Name

The second column can specify: sun, ibm, hp, dec, solaris, visual, sgi, dg,
Ncr, sco, Or any server name.

Kbd File

The third column indicates the corresponding keyboard file per platform. If
you are not planning to work in this way, you can replace the Kbd file with
a hyphen.

Cfg File

The next column specifies a configuration file for each platform. This file is
important if you are planning to run XRunner on one platform, and check
an application running on another platform. When you invoke XRunner
with the -server option, XRunner reads the necessary keyboard file and
configuration file for that platform, thus ensuring correct test execution.

Alias File

The fifth column indicates the corresponding alias file per platform.

387

XRunner User’s Guide

Keyboard Error Checking

388

When XRunner comes up, it reviews the alias file and the keyboard, and
reports problems it identified to the error message file. This message file is
called xr_kbd.err and is created in the current directory.

You can use the information provided in the error file to update the alias
configuration file before the next time you work with XRunner.

C

External Utilities for Bitmap
Capture/Check/Display

Some platforms and applications work with bitmaps in non-standard
formats. XRunner allows you to use your own utilities to capture, check, and
display bitmaps.

This chapter describes the following:

O Capture Utility
O Compare Utility
O Display Utility

About External Bitmap Utilities

XRunner allows you to use your own external utilities for capturing,
checking and displaying bitmaps. The mode that XRunner uses to handle
bitmaps is defined by the XR_IMAGE_MODE configuration parameter. By
default, the image mode is set to xwd. The image mode can also be set to gl
and external.

If XR_IMAGE_MODE is set to xwd or gl, XRunner uses its own built-in code to
capture, check and display bitmaps. For more information, see Chapter 33,
“Changing System Defaults.”

To use external utilities instead of XRunner’s built-in utilities, you must first
set the XR_IMAGE_MODE configuration parameter to external. Then, specify
the path of each of the three utilities you want to use, using the appropriate
configuration parameters. These are the XR_CAPTURE_UTIL, XR_COMPARE_UTIL
and XR_DISPLAY_UTIL configuration parameters.

389

XRunner User’s Guide

Capture Utility

This utility captures a bitmap and saves it to a file.

status = my_capture -id <window id> -rect <x y w h> -display <display nhame>
[-compress] -out <dump file name>

-id specifies the X Window ID of the window to be captured.

-rect specifies the coordinates that define a bitmap area rectangle relative to
the window origin. The x and y parameters are the pixel offsets from the
origin of the window; w and h are the width and height of the rectangle.
The special values -1,-1,-1,-1 indicate the full window.

-display specifies the name of the display used for the window. If the
display parameter is not provided, the current display is used.

-compress specifies that the utility will compress the bitmap file. The
compression method can be the standard UNIX compression format or any
proprietary format. The only limitation is that the display and compare
utilities must be able to identify the bitmap as compressed.

-out specifies the full pathname of the bitmap file to be written. The only
modification the utility may make to this name is the addition of a known
extension identifying it as a compressed file.

The utility’s return status is O for success and -1 for failure. In case of failure,
error messages are printed to stderr.

Compare Utility

390

This utility compares a window on screen with a bitmap file on disk.

status = my_compare -id <window id> -rect <x y w h> -display <display_name>
[-compress] -in <bitmap file> [-act <actual file name>] [-diff <diff file
name>]
-min_diff <n> [-filter <filter file>]

-id specifies the X Window ID of the window to be compared.

Appendix ¢ External Utilities for Bitmap Capture/Check/Display

-rect specifies the coordinates that define a bitmap area rectangle relative to
the origin of the window. The x and y parameters are the pixel offsets from
the origin of the window; w and h are the width and height of the rectangle.
The special values -1,-1,-1,-1 indicate the full window.

-display specifies the name of the display used for the window. If the
display parameter is not provided, the current display is used.

-compress specifies that the utility will compress the bitmap file. The
compression method can be the common UNIX compression format or any
proprietary format. The only limitation is that the display and compare
utilities must be able to identify the bitmap as compressed.

-in specifies the full pathname of the expected bitmap file. This is the file
captured previously by the capture utility. If this file is in compressed
format, then it must be uncompressed prior to comparison, and then
compressed again.

-act specifies the full pathname of the actual bitmap file in case of a
mismatch.

-diff specifies the full pathname of the difference bitmap file in case of a
mismatch. Each pixel in the bitmap which is not a difference pixel must
have a special value identifying it as such.

-min_diff specifies the number of pixels that can be different without
constituting a mismatch.

-filter is a name of a file containing a representation of the Area of Interest.
Each character in this file represents a pixel in the bitmap. The bitmap is
laid out row by row, starting with the top left pixel. Each pixel filtered out
(i.e., not compared) has a corresponding character with the value 1. Each
pixel compared has a corresponding character with the value 0.

The utility’s return status is O for success and 1 for a mismatch. In case of
failure, error messages are printed to stderr, and the return value is -1.

391

XRunner User’s Guide

Display Utility

392

This utility displays a window on screen.

my_display [-bw] -display <display> -title <window title> <file_name>

-bw indicates that a difference bitmap is displayed in black and white. Each
pixel in the bitmap which is a difference pixel is displayed as black (or the
darkest color available). Each pixel in the bitmap which is a non-difference
pixel is displayed as white (or the lightest color available).

-display specifies name of the display used to display the bitmap. If the
display name is not provided, the current display is used.

-title is the title to be displayed in the window banner. For <filename>,
specify the full pathname of the bitmap file to be displayed. This is the file
captured previously by the capture utility, in a known format. If the file is in
compressed format and must be uncompressed for display, then the file
must be compressed again following display.

The utility’s return status is O for success. In case of failure, error messages
are printed to stderr, and the return value is -1.

Support for Servers With No
Record/Replay Extension

This chapter describes the xextend utility.

Ordinarily, XRunner provides record and replay capabilities using either the
XTestExtension1, DEC-XTRAP or Record (R6) standard extensions. (Users
working with Sun NeWS servers enjoy the same support without any of
these two extensions being explicitly present.)

A further alternative is the xgate server. You can find xgate in the /bin
subdirectory of your installation directory.

If none of these is suitable, you can use the xextend utility.

The xextend Utility

Xextend is based on the public domain utility xmond. Xextend sits
transparently between the X clients and an X server. To the clients it
behaves exactly like an X server; to the server, it behaves exactly like a
number of X clients.

When you connect your AUT and XRunner to xextend, the application sees
xextend as a real server to which it is connected. This server appears to have
an additional extension called XREC. The XREC extension (emulated by
xextend) allows XRunner to record the client application connected to
xextend. The operation of the application connected to xextend is not
affected in any way while XRunner connected to xextend detects the
additional XREC extension.

No problem results if one of the standard extensions is already present when
you connect your application to xextend. The standard extension is used,

393

XRunner User’s Guide

and XREC is simply ignored. If the XREC extension introduced by xextend is
the only available recording extension, XRunner uses it for its operation.

Using xextend

394

To connect an application to xextend, enter the following command at your
system prompt:

xextend [options]

The xextend options are as follows:

-server display_name

This option sets the X display to which xextend connects for record
purposes.

-port display_number

This option sets the port on which xextend listens for client
communications. This port is always on the host on which xextend is
running. The defaultis 1. The display_number entered in the command line
used to invoke the application must be the same as the display number
specified by the -port option to xextend. If no other value is indicated, you
must enter the default 1 as the display_number.

Then invoke the application to be connected as follows:

application_name -display <display_name> :display_number

Note that in addition to the AUT, XRunner must also be individually
invoked and connected to xextend. While not mandatory, it is recommended
to connect all applications (including the window manager) to xextend.

Using ToolTalk with XRunner

XRunner (on SunOS/Solaris platforms) supports the ToolTalk service, which
allows applications to communicate with each other. For detailed
information about how to install and use ToolTalk, refer to The ToolTalk
Service: An Inter-Operability Solution.

XRunner supports three forms of ToolTalk communication:

O Requests from external applications to perform XRunner file operations and
run commands. For example, a configuration control application can
retrieve the latest version of a particular XRunner test, and from within the
application run the specified test on XRunner.

O XRunner notices regarding file operations and run commands, which are
automatically sent to external applications. For instance, a test management
application can monitor XRunner’s run commands and automatically keep
track of which tests were run.

O User-defined ToolTalk messages which are sent from within a TSL test script.
For example, an XRunner user can send a message to a configuration-
control application and request that it retrieve a certain test.

Note: A demo application that communicates with XRunner can be found
under $M_ROOT/samples/tooltalk. The README file under this directory
describes the demo application.

395

XRunner User’s Guide

Invoking XRunner in ToolTalk Mode

To allow ToolTalk communication with XRunner, you must invoke XRunner
in ToolTalk mode. In your .xrunner configuration file, define the
XR_TOOLTALK system parameter as follows:

XR_TOOLTALK = TRUE

To invoke XRunner in ToolTalk mode through the command line interface,
use the -tooltalk option.

Requests From External Applications

396

XRunner handles ToolTalk requests from external applications to perform
file operations and run commands. The table below lists the operations that
XRunner supports. At the end of this section you can find examples for each
of the available requests.

In terms of the scope of requests, XRunner supports the TT_SESSION (the
default) and TT_FILE_IN_SESSION options. If you use TT_FILE_IN_SESSION
(so that only an XRunner with a specific test receives the request), you
should define the test name using the tt_message_file_set function.

The message arguments that appear in the table are:

Operation: The operation to be performed by XRunner. (Inserted in the
tt_prequest_create and tt_notice_create ToolTalk functions).

Arg mode: One of two argument modes: TT_IN or TT_OUT. (Inserted in the
tt_message_arg_add ToolTalk function.)

Arg type: Integer or string. (Inserted in the tt_message_arg_add ToolTalk
function.)

Arg content: The content of the argument. (Inserted in the
tt_message_arg_add ToolTalk function.) The “Force” option indicates that

Appendix ® Using ToolTalk with XRunner

the operation should be performed while ignoring any currently unsaved

changes.
. A Arg Arg
Operation Description Mode Type Arg Content
XR_new_test Create a new test | TT_IN integer | O =do not force
1 = force
TT_OUT | string Testname
(temporary test
name)
XR_open_test Open an TT_IN string Expected results
existing test directory
TT_IN integer | O =do not force
1 = force
XR_save_test Save current test | - - -
XR_save_as_test | Save as the TT_IN string New test name
current test
TT_IN integer | O =do not force
1 = force
XR_close_test Close current test | TT_IN integer | 0 =do not force
1 = force
XR_get_test_ Get the current TT_OUT | string Current test name
name test name
XR_get_mode Return TT_OUT | integer | Current mode:
XRunner's 0 =idle
current mode 1 = Analog record
2 = Context
Sensitive record
3 =run
4 = verify
XR_get_sysvar Get a system TT_IN string Configuration item
variable value
TT_OUT | string Configuration item

value

397

XRunner User’s Guide

Arg Arg

Operation Description Mode Type

Arg Content

XR_record Start recording TT_IN integer | Recording level:

0 = Analog

1 = Context
Sensitive

XR_record_stop | Stop recording

XR_replay Start execution TT_IN integer | Run mode:

0 = quick run
1=run

2 = step

3 = step into

TT_IN integer | Line number (0 =
execute from
current line

position.)
XR_abort Abort test
execution
XR_pause Pause test
execution
XR_set_verify Set verify mode TT_IN string Verification results
on/off directory (full path
name)

The following examples illustrate the usage of each of the available requests.

XR_new_test

msg = tt_prequest_create(TT_SESSION, "XR_new_test");
tt_message arg_add(msg, TT_IN, "integer”, NULL);

tt message arg_ival_set(msg, O, force);

tt message arg _add(msg, TT_OUT, "string", NULL);

XR_open_test

msg = tt_prequest_create(TT_SESSION, "XR_open_test");
tt_message arg_add(msg, TT_IN, "string", testname);
tt_message arg_add(msg, TT_IN, "string", exp_name);

398

Appendix ® Using ToolTalk with XRunner

tt message arg_add(msg, TT_IN, "integer", NULL);
tt_message_arg_ival_set(msg, 2, force);
tt_message send(msg_out);

XR_save_test

msg = tt_prequest_create(TT_SESSION, "XR_save_test");
tt_message send(msg_out);

XR_save_as_test

msg = tt_prequest_create(TT_SESSION, "XR_save_as_test");
tt_message arg_add(msg, TT_IN, "string", testname);

tt message arg_add(msg, TT_IN, "integer”, NULL);

tt message _arg_ival_set(msg, 1, force);

tt_message send(msg_out);

XR_close_test

msg = tt_prequest_create(TT_SESSION, "XR_close_test");
tt_message arg_add(msg, TT_IN, "integer”, NULL);

tt message_arg_ival_set(msg, 0, force);

tt_ message send(msg_out);

XR_get_test_name

msg = tt_prequest_create(TT_SESSION, "XR_get_test name");
stat = tt_message_arg_add(msg, TT_OUT, "string", NULL);
tt_message send(msg_out);

XR_get_mode

msg = tt_prequest_create(TT_SESSION, "XR_get_mode");
tt message arg_add(msg, TT_OUT, "integer", NULL);
tt_message_send(msg_out);

XR_get_sysvar

msg = tt_prequest_create(TT_SESSION, "XR_get_sysvar");
tt_ message arg_add(msg, TT_IN, "string", sysval);

tt message arg _add(msg, TT_OUT, "string", NULL);
tt_message send(msg_out);

XR_record

msg = tt_prequest_create(TT_SESSION, "XR_record");
tt_message arg_add(msg, TT_IN, "integer”, NULL);

399

XRunner User’s Guide

tt_ message_arg_ival_set(msg, 0, recording_level);
tt_message send(msg_out);

XR_record_stop

msg = tt_prequest_create(TT_SESSION, "XR_record_stop");
tt_message send(msg_out);

XR_replay

msg = tt_prequest_create(TT_SESSION, "XR_replay");
tt_message arg_add(msg, TT_IN, "integer”, NULL);
tt_message_arg_ival_set(msg, O, run_mode);

stat = tt_message_arg_add(msg, TT_IN, "integer", NULL);
stat = tt_message_arg_ival_set(msg, 1, line_no);
tt_message send(msg_out);

XR_abort

msg = tt_prequest_create(TT_SESSION, "XR_abort");
tt_message send(msg_out);

XR_pause

msg = tt_prequest_create(TT_SESSION, "XR_pause");
tt_message send(msg_out);

XR_set_verify

msg = tt_prequest_create(TT_SESSION, "XR_set_verify");
tt_message arg_add(msg, TT_IN, "string", result_directory);
tt message_arg_add(msg, TT_IN, "integer”, NULL);

tt_ message_arg_ival_set(msg, 1, on_off);

tt_message send(msg_out);

The following example illustrates how a configuration control application
uses ToolTalk to request XRunner to open the latest version of a specified
test.

/* get the test name*/

cc_get_test_name(test);

/* create a message for XRunner to open test*/

msg = tt_prequest_create(TT_FILE_IN_SESSION, "XR_open_test");
/* add expected results directory argument*/

tt_message arg_add(msg, TT_IN, "string", "exp3.2");

400

Appendix ® Using ToolTalk with XRunner

/* Open test even if an unsaved test is currently open*/
tt_message arg_add(msg, TT_IN, "integer”, NULL);
tt_message_arg_ival_set(msg, 1, 1);

/* set the test name*/

tt_ message_file_set(msg, test);

/* add callback to handle return codes*/
tt_message_callback _add(msg, cc_msg_callback);

/* send the message*/

tt_message_send(msg);

This can be followed by a request to run the specified test:

msg = tt_prequest_create (TT_FILE_IN_SESSION, "XR_replay");
tt_ message_file_set(msg, test);

tt_ message arg_add(msg, TT_IN, "integer”, 0);

/* select run mode*/

tt_message arg_add(msg, TT_IN, "integer”, 1);

/* begin at the first line*/

tt message callback add(msg, cc_msg_callback);
tt_message_send(msg);

XRunner Notices

When invoked in ToolTalk mode, XRunner automatically sends the
following notices regarding file and run operations:

Notice Description Files

XR_created_new_test A new test was created.

XR_opened_test A test was opened. Test name
XR_saved_test A test was saved. Test name
XR_saved_as_test A test was saved as. New test name
XR_closed_test A test was closed. Test name

401

XRunner User’s Guide

Notice Description Files
XR_started_recording XRunner started recording. Test name;
“noname” for
new test
XR_stopped_recording | XRunner stopped executing. Test name
XR_started_replay XRunner started executing. Test name
XR_stopped_replay XRunner stopped replaying Test name
due to end of test, step or
breakpoint.
XR_paused Test execution paused. Test name
XR_aborted Test execution aborted. Test name
XR_changed_verify_ Verify mode was set to on/off
mode

The following example illustrates how a test management application can wait for
XRunner to complete test execution:

[* create observation pattern, so that ToolTalk knows we */
[* are interested in XR_stopped_replay messages within */
[* the session*/

pat = tt_pattern_create();

tt_pattern_category_set (pat, TT_OBSERVE);
tt_pattern_scope_add (pat, TT_SESSION);
tt_pattern_op_add (pat, "XR_stopped_replay");
tt_pattern_register (pat);

[* receive message*/

msg_in = tt_message_receive ();

mark = tt_mark ();

/* handle end of replay message*/
if (Istrcmp (tt_message_op (msg_in), "XR_stopped_replay"))

/* test management function to handle end of execution*/
tm_handle_end_of replay ();

402

Appendix ® Using ToolTalk with XRunner

ToolTalk Messages from within TSL

You can send two types of ToolTalk messages from within an XRunner test
script: notices and requests. Using TSL built-in functions, you first create a
notice or a request, add attributes and arguments, and then send it.

When you send a request, XRunner waits the specified number of seconds

for the response to the request. You can then examine the value of any of

the message’s attributes or arguments. Note that it is your responsibility to
destroy the message when it is no longer needed. (The maximum number
of messages you can create is 20.)

Below are the descriptions of notices and requests that XRunner supports.
At the end of this section you can find two examples that illustrate the use
of notices and requests.

notice = tooltalk_create_notice ("operation");
Creates a tooltalk notice, with the following default attributes:

class: TT_NOTICE
address: TT _PROCEDURE
scope: TT_SESSION
operation: operation

Returns a number between 1 and 20, or O for an error.

request = tooltalk_create_request ("operation");

Creates a tooltalk request with the following default attributes:

class: TT_MESSAGE
address: TT_PROCEDURE
scope: TT_SESSION
operation: operation

Returns a number between 1 and 20, or O for an error.

tooltalk_set_attr (msg, attr,, val,, attr,, val,, .., attr,, val,);

Sets the attributes of a message.

403

XRunner User’s Guide

404

msg The notice or request for which attributes are set.

Attributes are set using pairs of attribute-value arguments. Attributes can be

one of the following: "address", "scope", "operation", "file", "object", "otype,"
n.n

"handler", "handler_ptype", "disposition", "session".
Note that attribute values should be set as strings. For example:

tooltalk_set_attr (msg, "scope”, "TT_SESSION");

tooltalk_set_arg (msg, arg_number,, mode,, type,, value,, ...);

Sets the arguments of a message.

msg The notice or request for which arguments are set.

arg_number The argument number. The first argument should be 0
and additional arguments must have consecutive
numbers. If the same arg_number appears twice in a
the function, the last appearance is the one used.

mode One of the following integers: 1 for TT_IN, 2 for
TT_OUT, 3 for TT_INOUT. You may also predefine
constants in your startup test.

type The type of argument: either "integer" or "string."
value The argument value. Use 0 or " for arguments of the
type TT_OUT.

Note that currently you can set a maximum of 10 arguments per message.

tooltalk_send_notice (notice);

Sends a notice.

notice The notice to be sent.

state = tooltalk_send_request (request, timeout);

Sends a request and waits <timeout> seconds for a response.

state Indicates the state of the request: (-1) if timeout was
reached before a reply was received, (0) for
TT_HANDLED, (1) for TT_FAILED.

Appendix ® Using ToolTalk with XRunner

request The request to be sent (integer).

timeout The number of seconds XRunner should wait for the
request to return.

status = tooltalk_get_attr (message, attribute, value);

Returns the value of an attribute of a message.

status The variable that stores the return value of the
function
(0 if succeeds;1 if fails).

message The name of the message (integer).

attribute The attribute to be returned (string). Valid attributes
are: "address", "scope", "operation", "file", "object",
"otype", "handler", "handler_ptype", "disposition",

"session", "status", "status_string".

value The variable that will store the value of the attribute
(string).

status = tooltalk_get_arg (message, arg_number, value);
Returns the value of an argument of a message.

status The variable that stores the return value of the
function (0 if succeeds;1 if fails).

message The name of the message (integer).

arg_number The number of the argument.

value The variable that will store the value of the argument
(string).

tooltalk_destroy_msg (message);
Destroys a message.

message The name of the message to be destroyed (integer).

session = tooltalk_get_session ();
Returns the default ToolTalk session.

405

XRunner User’s Guide

406

In the following example, a notice (check_notice) is sent from within a test
script to a test management application. The notice is sent following a
check_window function, and notifies the test management application
about the results of the function.

Perform check_window*/
return_status = check_window (1,"Win_1","mainwin",
150,150,74,74);

Create notice*/
check_notice = tooltalk_create_notice ("TM_check");
if (check_notice) {

Set notice arguments to includes the result of
the check window function*/
tooltalk_set_argument(check notice,

0, TT_IN, "integer", return_status,

1, TT_IN, "string", "check_window");
tooltalk_send_notice(check_notice);
tooltalk_destroy_msg(check_notice);

}

In the next example, a request is sent to a configuration control application
to get the latest version of the test, before the test is called.

function get_test (in testname)
{
auto ret_val = 1;
auto status = 1;
auto test_req = 0;
test_req = tooltalk_create _request ("CC_get_test");
if (test_req) {
tooltalk_set_arg (test_req,0,TT_IN,"string",testname);
ret_val = tooltalk_send_request (test_req, 30);
if (Iret_val) {
ret_val = tooltalk_get_attr (test_req,"status",
status);

}

tooltalk_destroy_msg (tst_req);

}

if (Iret_val &&! status)

Appendix ® Using ToolTalk with XRunner

return (0);
if (ret_val)
return (SEND_FAILED);
if (status)
return (GET_TEST_FAILED);

Error Messages

Following are the error messages for ToolTalk notices and requests sent from
within a test script. Error messages can be received as TSL errors, or as the
status attribute of a message.

TSL Status Error

Error Attribute

-10201 1550 Illegal parameter

-10202 1551 File parameter is incorrect

-10203 1552 XRunner’s mode is incorrect for this operation
-10204 1553 Illegal command for this test

-10205 1554 Test has unsaved changes

-10206 1555 Argument’s value is out of bounds

-10207 1556 Argument’s value is incorrect for this function
-10208 1557 Supported number of messages exceeded
-10209 1558 Message does not exist

-10210 1559 Tooltalk Error

-10211 1560 An XRunner form is up, preventing operation

407

XRunner User’s Guide

408

F

Using XRunner with SoftBench

XRunner is one of the integrated HP SoftBench tools you can use for
developing and testing software.

This chapter describes:

O The SoftBench-XRunner User Interface
O Communicating With Other SoftBench Tools

About Using XRunner with HP SoftBench

XRunner is fully integrated with the SoftBench set of development tools.
This allows you the convenience, for instance, of:

O invoking XRunner from the SoftBench ToolBar

O running an XRunner test from the SoftBench Development Manager,
Debugger, or Editor

O building an XRunner executable in the SoftBench Program Builder

Interaction between XRunner and other SoftBench tools is enabled at
installation. To assist you, the XRunner icon appears in the SoftBench
ToolBar and an XRunner menu item is included in the main window of
several SoftBench tools.

The communication between XRunner and other SoftBench tools takes
place via BMS (Broadcasting Message Server) messages. A full list of messages
supported by XRunner appears in this chapter. You use these messages the
same way you use standard BMS messages.

409

XRunner User’s Guide

In addition, the send_message TSL function allows you to send BMS
messages from an XRunner test script.

The SoftBench-XRunner User Interface
When you install the integrated SoftBench-XRunner package, XRunner

appears in the SoftBench user interface.

SoftBench ToolBar

XRunner is one the tools you can invoke from the SoftBench ToolBar:

SoftBench View Tool Utilities Options Help

fufmike

E

Editor Builder Debugger Develop Static XRunner
Manager Analyzer

ek ¥]

 Show Running Tools... i

Select ToolBar Setup from the Options menu. Select XRunner from the
Available Tools list, then click Add to ToolBar. An XRunner icon appears in
the ToolBar window.

410

Appendix ¢ Using XRunner with SoftBench

SoftBench Program Editor

XRunner appears, with slight variations, in the menu-bar of many
SoftBench tools. For example, this is how the XRunner menu appears in the
SoftBench Program Editor:

File Edit Buffer Procedure Block ; XRunner: Show System Stack Options Help

File: murphy: /disk16/users/mike /Untitled Start Text (W]
Run

Run from Top

Eval ‘RunFrom Arrow

Step

Step Into
- Pause .
ne: [f] cowmn: [] Abort

Click Start to invoke XRunner.

O Click Run to display a menu of XRunner Run commands. For a full
description of these commands, see Chapter 24, “Running Tests.”

O Click Eval to instruct the TSL interpreter to evaluate a selected line in
the editor.

SoftBench Development Manager

In the SoftBench Development Manager window, the XRunner menu
contains the Open command for opening tests and the Run commands for
running an open test.

XRunner tests are named with a .tst extension. Double-clicking on a test
starts XRunner if it is not up and loads the test. When you click an XRunner
test, the Actions menu displays two options: Browse and Open Test.

XRunner executables are named with an .xrun extension. An XRunner
executable is an application which has been linked with Mercury
Interactive’s Context Sensitive libraries and is ready for testing with
XRunner. Double-clicking on a .xrun file invokes the executable.

411

XRunner User’s Guide

SoftBench Program Builder

You can use the Program Builder tool to generate XRunner executables.
Simply add a .xrun extension to the target name and press Build. During the
build, SoftBench automatically links the target with Mercury Interactive’s
Context Sensitive libraries. The executable is ready for testing with XRunner.

SoftBench Debugger
The XRunner menu in this window contains
O a Start command for invoking XRunner

O aRun menu containing XRunner Run commands. For a full description
of these commands, see Chapter 24, “Running Tests.”

Communicating With Other SoftBench Tools

412

The communication between XRunner and other SoftBench tools takes
place via BMS (Broadcasting Message Server) messages. Communication can
take place on three levels:

O Requests from SoftBench tools to perform XRunner file operations and
run control commands. For example, a configuration management
application can retrieve the latest version of a particular XRunner test,
and from within the application, run the specified test in XRunner.

O XRunner notices regarding file operations and run control commands
that are automatically sent to SoftBench tools. For instance, a test
management application can monitor XRunner’s run commands and
automatically keep track of which tests were run.

O User-defined BMS messages that are sent from within a TSL test script.
For example, an XRunner user can send a message to a configuration
management application and request that it retrieve a certain test.

Appendix ¢ Using XRunner with SoftBench

SoftBench Request Messages
XRunner handles BMS requests from other SoftBench tools to perform file
operations and run commands.

These messages are displayed in the SoftBench Message Monitor. The table
below lists the operations that XRunner supports. For more information, see
the HP SoftBench Programmer’s Reference.

The message arguments are:

O Action: The operation to be performed by XRunner.

Data: The information needed to perform a requested action. The data
can be used as the DATA instance in the send_message TSL function
(see above section).

Data type can be an integer or string, depending on the Data argument.

Content describes the options available. The “force” option indicates that
the action should be performed while ignoring any currently unsaved
changes.

Action Description Data Data Data content
type
R NORMALIZE Normalize - - -
XRunner window
R ICONIFY Iconify XRunner | - - -
window
R START Start XRunner - - -
R STOP Quit XRunner - - -
R XR_new_test Create a new test | force int 0 = do not force
(optional) (default)
1 = force

413

XRunner User’s Guide

Action Description Data Data Data content
type
R XR_open_test Open an existing | testname | string | Full path of test
test
exp string | Expected results
directory
force int 0 = do not force
(optional) (default)
1 = force
R XR_save_test Save current test - - -
R XR_save_as_test | Save as the testname | string | Full path of new
current test test
force int 0 = do not force
(optional) (default)
1 = force
R XR_close_test Close current test | force int 0 = do not force
(optional) (default)
1 = force
R XR_record Start recording mode int Recording level:
0 = Analog
1 = Context
Sensitive
R XR_record_stop | Stop recording - - -
R XR_run Run test mode int Run mode:
0 = Run From Top
1 = Run From Line
2 = Step
3 = Step Into
line int Line number (0 =

run from current
line position-
default)

Appendix ¢ Using XRunner with SoftBench

Action

R XR_open_run

Description

Combine XR_run
and
XR_open_test

Data

testname

mode

line

Data
type

int

int

int

Data content

Full path of test.
For this option,
you must also
supply the
expected results
directory

Run mode:

0 = Run From Top
1 = Run From Line
2 = Step

3 = Step Into

Line number (0 =
run from current
line position-
default)

R XR_set_verify

Set verify mode
on or off

on

force
(optional)

dirname

int

int

string

0 = off (default)
1=o0n

0 = do not force
(default)

1 = force (for this
option, you must
specify a results
directory)

Verification
Results directory
(full path name)

R XR_abort

Abort test
execution

R XR_pause

Pause test
execution

415

XRunner User’s Guide

416

Action Description Data Data Data content
type
R XR_eval Evaluate a statement | string
statement in the
XRunner
interpreter
R XR_lower Lower the - - -
XRunner window
R XR_raise Raise the - - -
XRunner window
R XR_move_ Move the line int Line number (0 =
execution_marker | execution marker move to first line-
default)
R XR_move_ Move the cursor line int Line number (0 =
cursor move to first line-

default)

Appendix ¢ Using XRunner with SoftBench

XRunner Notification Messages

The following notices are sent by XRunner during a file operation or run

command:
Notices Description Files
R XR_connected Communication established. -
R XR_ready XRunner is ready to receive -
requests.
R XR_opened._test A test was opened. Test name
R XR_saved_test A test was saved. Test name

R XR_saved_as_test

A test was saved as.

New test name

R FILE_MODIFIED
(SoftBench notice)

Message sent in addition to
XR_saved_test or
XR_saved_as_test

R XR_closed_test A test was closed. Test name
R XR_started_recording XRunner started recording. Test name;
“noname” for
new test
R XR_stopped_recording XRunner stopped recording. Test name
R XR_started_run XRunner started test execution. | Test name
R XR_stopped_run XRunner stopped test execution | Test name
due to end of test, step or
breakpoint.
R XR_paused Test execution paused. Test name
R XR_aborted Test execution aborted. Test name
R XR_changed_verify_mode | Verify mode was set to on/off. Test name

R XR_evaled

Evaluation request processed

R XR_exited

XRunner exited.

417

XRunner User’s Guide

418

Sending BMS Requests and Notifications From a Test Script
You can use the send_message TSL function in an XRunner test script to
send BMS messages to other SoftBench tools.

The send_message function takes a single parameter demarcated by double
quotation marks. It can receive two sets of arguments, depending on
whether the message you are sending is a notification or a request.

Notification Messages
The syntax is as follows:

send_message ("N action [operand] [status] [‘data’] ['replydata’]");

N Indicates a notification message.

action A user-defined notification action.

operand (Optional) You may pass NULL as an argument. For
XRunner’s notifications, the value is DISPLAY.

status (Optional) Either PASS or FAIL. The default is PASS.

data (Optional) A set of data enclosed in single quotation

marks. See the SoftBench documentation for a full list
of possible BMS notification messages. XRunner
notification messages are described in this chapter.

replydata (Optional) A set of data enclosed in single quotation
marks. Typically, an error message is passed if STATUS
is FAIL.

For example, suppose you wish to enhance XRunner's notifications by
sending a BMS message informing other SoftBench tools that a
check_window command failed.

In your test script, you might program the following lines:

if (check_window(1, "Winl1", "XBur", -1, -1, -1, -1) == 0) {
send_message('N XR_check host:0 FAIL 'tmp/test7 1' ‘check Failed.™);
}

Here, the OPERAND is set to equal DISPLAY and DATA is the testname and
the line number of the check_window statement.

Appendix ¢ Using XRunner with SoftBench

For more information on the parameters used in the send_message
function, please refer to the HP SoftBench Programmer’s Reference.

419

XRunner User’s Guide

420

Request Messages
The syntax is as follows:

send_message (" R toolclass action [operand] [data] ");

R Indicates a request message.

toolclass: The SoftBench tool to which the request belongs, for
example, EDIT.

action The action requested.

operand (Optional) The object of the action, usually a filename.

You may pass NULL as an argument.

data (Optional) A string. It specifies additional data needed
to perform the ACTION. This chapter contains a
description of data instances for possible ACTIONS.

For example, at the end of a test run, you may wish to view your AUT's
logfile in your preferred SoftBench editor. DATA is not used.

The command you program in a TSL script might be:

send_message ("R EDIT WINDOW /tmp/aut.log");

Here, DATA has not been specified.

For more information on the parameters used in the send_message
function, please refer to the HP SoftBench Programmer’s Reference.

Index

Symbols

" quotation marks, in configuration files 354

" quotation marks, in GUI map files 35

@, in configuration files 353

\ backslash character, in configuration files
354

\\ double backslash character, in
configuration files 354

A

Abort command 240
abs_x attribute 52, 61
abs_y attribute 52, 61
Acrobat Viewer xv
active attribute 52
actual bitmap 99
add_cust_record_class function 356
adding objects to a GUI map file 41
aliases, keyboard configuration 386, 387
All Captures, XRunner report 254
Analog mode 4, 71
application mouse parameters 342—344
argument values, assigning 192—193
array parameters, user-defined functions 207
Assign Variable form 308
assignment statements, configuration files
352—353
attached_text attribute 51, 61
attributes 45—64
checking 88
class 59
classes applicable for each 51—52
default 64
non-portable X 63, 64
obligatory 48
optional 48

portability, degrees of 46
portable 61
record configuration 51—54, 331—333
viewing 46—48
AUT
illustration 17
learning 23—29
parameters 317
aut_connect function 284
aut_disconnect function 284
aut_get function 283
aut_set function 283
auto variable, user-defined functions 208
auto_load command line option 272
auto_load_dir command line option 272
automatic loading, command line option
272
automount map file 327

Background Run command 278
Background Run window 278
Background Test window 278
background testing 277—281

environment options 279

from the command line 280

overview 277

running a test 278

stopping test execution 281

troubleshooting 380

XRunner start-up options 279
backslash character (\), configuration files

354

batch command line option 272
batch mode, parameter to activate 322
batch tests 265—269

421

command line option 272
creating 266—267
executing 267—268
expected results 268
overview 265
storing results 268
verification results 268
viewing results 269
beep command line option 272
beep when checkpoint or error 322
bitmap checkpoints
Analog 105—109
Context Sensitive 99—104
filtering 111—119
of an area of the screen, in Analog
testing 107
of an area of the screen, in Context
Sensitive testing 103
of objects, in Context Sensitive testing
102
of unnamed windows, in Analog
testing 109
of windows with varying names, in
Analog testing 108
of windows, in Analog testing 106
of windows, in Context Sensitive
testing 101
test results 257—261
bitmap comparison, enhancing using
configuration parameters 153—156
bitmap compression 104
bitmap compression parameter 325
bitmap display, troubleshooting 380
bitmap filters. See filters
bitmap mode parameter 326
bitmap parameters 325—327
bitmap verification. See bitmap checkpoints
bitmaps, external utilities. See external
bitmap utilities
bitmaps, mismatch parameter 326
blank lines, configuration files 354
blanks parameter 341
BMS messages, SoftBench 412
Break at Line breakpoint 295, 296—297
Break at Location button, XRunner toolbar 9
Break in Function breakpoint 295, 298—300

422

Break in Function command 300
Break on Mismatch command line option
274
break on mismatch parameter 323
breakpoints 293—302
Break at Line 295, 296—297
Break in Function 295, 298—300
deleting 302
modifying 300—301
overview 293—294
Breakpoints form
Break at Line 296
Break in Function 298
Broadcasting Message Server (BMS) messages,
SoftBench 412
bubble help parameter 345
button_wait_info function 142

C

C libraries, calling functions in. See
dynamically linked libraries
calculations, in TSL 178, 179
call statement 196
call_test entry, test log 269
calling tests 195—203
call statement 196
defining parameters 200
maximum number 196
overview 195—196
returning to calling tests 197
setting the search path 199
specifying the search path 328
texit statement 198
treturn statement 197
CapsLock key, input device parameters 350
capture utility, external 390
capturing bitmaps for comparison, adjusting
configuration parameters 153—156
capturing bitmaps. See bitmap checkpoints
capturing images for synchronization. See
synchronization
cfg file, keyboard configuration 387
changes in GUI discovered during test run.
See Run Wizard
characters, maximum number in window

345
Check Bitmap Area command 103
Check Bitmap/Object command 102
Check Bitmap/Window command 101
check button record attribute parameter 332
check button record method parameter 329
Check forms 89—97
CHECK GUI (CHECKLIST) softkey 11
Check GUI Checklist command 82, 83, 84,
87, 88
Check GUI form 82
Check GUI Object command 80
CHECK GUI softkey 348
Check GUI Window command 80
CHECK PARTIAL WINDOW softkey 11, 107,
347
CHECK WINDOW (AREA) softkey 11, 107, 347
CHECK WINDOW softkey 10, 106, 347
check_button class 59
check_file test 203
check_gui function 80
check_info functions 88
check_window function 106, 108, 109
Checkbutton Check form 91
checking images. See bitmap checkpoints
checkpoints
bitmap 72, 99—104
GUI 72, 7997
overview 72
text 72, 121—135
updating expected results 262
class attribute 51, 59, 61
class record attribute parameters 331—333
class record method parameters 329—331
class_index 52
classes
applicable for each attribute 51—52
default attributes 64
Clear All command 41, 42
clearing a GUI map file 42
click delay parameter 322
click_delay command line option 272
click_on_text function 133
client application, definition 367
client/server systems, testing. See
LoadRunner

Index

Close command 78
Collapse button (GUI Map Editor) 39
command line interface, troubleshooting
380

command line test options 271-276
comment attribute 61
comments

in configuration files 354

in TSL 177
compare utility, external 390
compare_text function 134
comparing bitmaps. See bitmap checkpoints
comparing files 203
compiled modules 213—219

creating 215

example 219

incremental compilation 218

loading 216

overview 213—214

reloading 217

structure 214

Test Header form 215

unloading 217
compress command line option 273
compressing data in bitmap capture 104
configuration files

assignment statements 352—353

blank lines and comments 354

directives 353—354

line format 354

overview 314

special characters 354
Configuration form

finding parameters 316

parameter categories 316—318

to configure record attributes 53

to configure record method 57
configuration parameters 321—354

class record attributes 53

class record methods 57

effect on bitmap capture 153—156

exceptions 349—350

for application mouse and keyboards

342—344
for bitmaps 325—327
for class record attributes 331—333

423

for class record methods 329—331 by recording 25

for context sensitive customization overview 23—24
333—340 using the GUI Map Editor 25
for execution environment 345—346 with the Test Wizard 24
for input devices 350—351 current bitmap 105
for learning windows 340 current directory, setting 346
for paths 327—329 custom check, GUI checkpoints 89
for recording 340 custom objects, defined 46
for softkeys 346—349 Customization Guide xiv
for test execution 321—325 Cut button, XRunner toolbar 9
for text checkpoints 341—342 Cut command 76
for the Sun NeWS server 349
for user interface 345 D
configurations, initializing 355—356
configuring D | E command line option 273
GUL See GUI configuration. data compression of captured bitmaps 104
keyboard. See keyboard, configuring date formats, Edit Check form 94
record attributes from a test script 54 DB Vusers, LoadRunner 363
record attributes in the Configuration dblclk_time command line option 273
form 53 Debug mode 237, 239, 242
record method for specific objects Debug results 239, 242
from a test script 59 debugging test scripts 289—292
record method from a test script 58 overview 289—290
record method in the Configuration Pause command 291
form 57 pause function 291
selectors 58 Step command 290
XRunner softkeys 11 Step Into command 290
constants, in TSL 178 Step Out command 291
Context Sensitive decision-making in TSL 182
mode 4, 70 if/else statements 182
Context Sensitive testing switch statements 183
customization parameters 333—340 declare_rendezvous function 370
introduction to 15—22 declare_transaction function 368
troubleshooting 378 default checks, GUI checkpoints 89
Controller, LoadRunner 365—366 default softkeys 10
Controls command, report Options menu define_object_exception function 170
259 define_popup_exception function 161
conventions. See typographical conventions define_TSL_exception function 165
Copy button (GUI Map Editor) 39 defining functions. See user-defined
Copy button, XRunner toolbar 9 functions
Copy command 76 delay command line option 273
copying descriptions of GUI objects from Delete command 76
one GUI map file to another 38 deleting objects from a GUI map file 41
count attribute 52, 61 descriptions. See physical descriptions
creating tests 69—78 destroy message, ToolTalk 405
creating the GUI map 23—29 development license command line option

424

273
difference bitmap 99, 105
directory, setting the current 346
display command line option 273
display utility, external 392
displayed attribute 51, 61
DLLs. See dynamically linked libraries
double backslash character (\\),
configuration files 354
double-click interval command line option
273
double-click interval parameter 322
dynamically linked libraries 221—227
declaring external functions in TSL
222224
examples 224—227
loading and unloading 222
overview 221

Edit Check form 93
edit class 60
edit object record attribute parameter 332
edit object record method parameter 330
edit_wait_info function 142
editing tests 76
editing the GUI map 31—43
enabled attribute 52, 61
end_transaction function 369
environment parameters 318, 345—346
environment variables 320—321
error handling. See exception handling
error messages, ToolTalk 407
exception handling 157—172

See also exceptions
Exception Handling command 157—172
exception_off function 163, 168, 172
exception_off_all function 163, 168, 172
exception_on function 163, 168, 172
Exceptions form 157—172
exceptions, object 168—172

activating 172

defining 168—170

defining handler functions 170—172
exceptions, popup 159—163

Index

activating 163
defining 159—161
defining handler functions 161—163
exceptions, TSL 164—168
activating 167—168
defining 164—165
defining handler functions 166—167
exclude filter 112
execution arrow, XRunner main window 8
execution environment parameters 345—346
execution license command line option 273
execution parameters 317
exp command line option 273
Expand button (GUI Map Editor) 39
expected bitmap 99, 105
expected results 239, 242, 243
creating multiple sets 243
selecting 244
updating 240
updating for bitmap and GUI
checkpoints 262
expected results directory, setting 346
extension type 321
extern declaration 222
extern variable, user-defined functions 208
external bitmap utilities 389—392
capture utility 390
compare utility 390
display utility 392
external C functions, declaring in TSL
222224
external image utilities. See external bitmap
utilities
external libraries. See dynamically linked
libraries

F

fast test execution command line option 273
fast_replay command line option 273
file locking, troubleshooting 377
file management 76
Filter Properties form 115
filters
activating/deactivating 117
creating 114

425

deleting 119
displaying 116
global library 114
in checking bitmaps 111—119
include/exclude 112
maximum number 116
modifying attributes 116
overview 111
regular expressions 118
See also test results, filtering
versus partial bitmaps 113
Filters command 114
Filters command, report Options menu 261
Filters form 114
Filters form (GUI Map Editor) 43
Filters form, XRunner report 261
filters, in GUI Map Editor 42
Find command 76
find_text function 131
finding
a single object in a GUI map file 40
multiple objects in a GUI map file 40
focus delay parameter 322
focus_delay command line option 274
focused attribute 52, 61
font command line option 275
font group
creating 128
definition 126
designating the active 129
maximum number of fonts 128
setting default 341
font library 126
font_test test 125
fontgrp command line option 274
fonts
definition 126
supported by XRunner 125
teaching XRunner 126—129
troubleshooting 378
used by application under test
123—126
Function Generator 187—194
assigning argument values 192—193
changing the default functions 194
choosing a function from a list 191

426

choosing a non-default function for a
GUI object 190
get functions 188
overview 187
using the default function for a GUI
object 189
Function Generator form. See Function
Generator
functions
calling from DLLs. See dynamically
linked libraries
storing in a compiled module. See
compiled modules
user-defined. See user-defined
functions

G

generating functions 187—194
See also Function Generator
generator_set_default_function function 194
get functions 188
GET TEXT softkey 10, 130, 348
get_info functions 88
get_text function 130, 131
getvar function 318—320
Glbal Font Library pathname 341
global bitmap filters 114
Global Filter Library 114, 327
Go to Line command 76
group_name.grp, font group data file 129
GUI changes discovered during test run. See
Run Wizard
GUI Checklist form 86
GUI checklists
editing 84
modifying 84—88
sharing 87
using existing 87
GUI checkpoints 79—97
checking a single object 80
checking a window 83
checking attributes 88
checking multiple objects 81
custom checks 89
default checks 89

test results 255257
GUI configuration 45—64
default 48—49
record attributes 51—54
record method 55—58
record method for specific objects 59
GUI map
configuring 45—64
viewing 20
GUI Map command (GUI Map Editor) 35
GUI Map Editor
copying/moving objects between files
38
deleting objects 41
description of 34
expanded view 39
filtering displayed objects 42
Learn button 25
loading GUI files 29
overview 20—22
GUI map files
adding objects 41
clearing 42
copying/moving objects between files
38
deleting objects 41
editing 3143
finding a single object 40
finding multiple objects 40
loading multiple files 28
loading temporary 321
loading using the GUI Map Editor 29
loading using the GUI_load function
28
saving 27
saving changes 43
temporary 327
tracing objects between files 40
GUI map, creating 23—29
by recording 25
overview 23—24
using the GUI Map Editor 25
with the Test Wizard 24
GUI objects
checking 7997
checking attribute values 88

Index

custom checks 89

default checks 89

identifying 19
GUI Spy 46—48
GUI Spy, viewing Motif and Xt resources 64
GUI Test Builder. See GUI Map Editor
GUI Vusers, LoadRunner 363, 364—365
GUI, of application under test

learning with recording 25

learning with Test Wizard 24

learning with the GUI Map Editor 25
GUI_load function 28, 356

handle attribute 52, 63
Handler Function Definition form 162, 166,
170
Handler function template
for popup exceptions 162
for TSL exceptions 166
object exceptions 172
handler functions
for object exceptions 170—172
for popup exceptions 161—163
for TSL exceptions 166—167
Header command 73, 200, 215
height attribute 51, 61
Help button, XRunner toolbar 9
HP machines
identifying application fonts 123
troubleshooting 381
HP SoftBench 409—420

IBM machines, identifying application fonts
124

icon bubble help parameter 345

identifying GUI objects 19

image mode parameter 326

image_label attribute 51, 63

include filter 112

include-directive, configuration files
353354

incremental compilation 218

427

index selector 50, 58
initialization parameters 318
initialization tests. See startup tests
input device parameters 350—351
INSERT FUNCTION (FROM LIST) softkey 11
INSERT FUNCTION (OBJECT/WINDOW)
softkey 11

Insert Function command

From List 191

Object/Window 189, 190
INSERT FUNCTION FROM LIST softkey 349
insertion point, XRunner main window 8
installation directory 320

K

kbd file, keyboard configuration 387
kbd_delay command line option 274
key aliases. See keyboard, configuring
key assignments, default 10
key code, keyboard configuration 385
key editing parameter 323
keyboard delay command line option 274
keyboard error checking 388
keyboard file per platform 387
keyboard interval parameter 323
keyboard parameters 342—344
keyboard shortcuts 10
keyboard, configuring 383—388

error checking 388

global key aliases 384—386

overview 383

platform-specific key aliases 386—387
KeySym, keyboard configuration 385

L

label attribute 51, 61

labels, varying 37

leading blanks parameter 341
Learn button, GUI Map Editor 25
learn timeout parameter 340
learn window parameter 340
left_footer attribute 63

license command line option 273
license limit, troubleshooting 376

428

line number, configuration parameter 346
List Check form 92
list class 59
list record attribute parameter 332
list record method parameter 330
list_wait_info function 142
load function 216, 240, 356
load_dll function 222
loading the GUI map file 28—29
using the GUI Map Editor 29
using the GUI_load function 28—29
LoadRunner 361—372
Controller 365—366
creating Vuser scripts 366
DB Vusers 363
description 6
GUI Vusers 363, 364—365
measuring server performance 368
overview 361
rendezvous points 369
RTE Vusers 363
sample Vuser script 370—372
scenarios 362, 365—366
simulating multiple users 362
synchronizing transactions 369
transactions 368
local bitmap filters 114
location selector 50, 58
logical name
defined 19
modifying 36—37
login, troubleshooting 376
loops, in TSL 180
do/while loops 181
for loops 180
while loops 180

M_ROOT 320

machine.cfg file 314

main XRunner window 8

MARK LOCATOR SOftkey 10, 346
maximizable attribute 52, 61
maximum character number 345
MC_AUT_NAME 320

mc_svc 283
mc_svc name 320
menu bar

choosing commands from 9

XRunner main window 8
Menu Item Check form 97
menu record attribute parameter 332
menu record method parameter 330
menu_item class 60
menu_wait_info function 142
Mercury Communication Server name 320
messages, ToolTalk

argument value 405

arguments 404

attribute value 405

attributes 403

destroy 405
MIC_ADD_OR_DESELECT_BUTTON 343
MIC_ALL, record method 55
MIC_ALL_PARENT, record method 56
MIC_ALL_WIN, record method 56
MIC_ATT_TEXT_CORNER 334
MIC_ATT_TEXT_DISTANCE 334
MIC_BUTTON_CLICK_LOCATION 333
MIC_BUTTON_PRESS_BUTTON 344
MIC_BUTTON_PRESS_LOW_LEVEL 338
MIC_BUTTON_SET_LOW_LEVEL 338
MIC_CACHE_EXCP 339
MIC_CLICK_BUTTON 342
MIC_COMBO_OPEN 335
MIC_DBL_CLICK_BUTTON 342
MIC_DRAG_BUTTON 342
MIC_EDIT_ACTIVATE_KEY 342
MIC_EDIT_ACTIVATE_LOW_LEVEL 337
MIC_EDIT_CLICK_BUTTON 343
MIC_EDIT_RECORD_MULTIPLE 333
MIC_EDIT_REPLAY_BY_CHAR 334
MIC_EDIT_TAG 335
MIC_EXACT_RGB 340
MIC_ICON_RECORD 339
mic_if_handles_windows 52
MIC_IGNORE, record method 55
MIC_KEYBOARD, record method 55
MIC_LIST_ACTIVATE_BUTTON 342, 343
MIC_LIST_ACTIVATE_KEY 343
MIC_LIST_ACTIVATE_LOW_LEVEL 337

Index

MIC_LIST_CLOSE_BUTTON 343
MIC_LIST_OPEN_BUTTON 343
MIC_LIST_SELECT_BUTTON 343
MIC_LIST_TAG 335
MIC_MAX_LIST_ITEM_LENGTH 334
MIC_MENU_CLOSE_BUTTON 344
MIC_MENU_OPEN_BUTTON 344
MIC_MENU_SELECT_LOW_LEVEL 337
MIC_MOUSE, record method 55
MIC_MOUSE_PARENT, record method 56
MIC_MOUSE_WIN, record method 56
MIC_NO_IN_PARENT 339
MIC_POPUP_MENU_POPUP_BUTTON 344
MIC_POPUP_MENU_POPUP_SELECT 344
MIC_RECORD_ANALOG, record method 56
MIC_RECORD_CS, record method 55
MIC_RECOVERY 339
MIC_RGB_DATABASE 340
MIC_SCROLL_CLICK_BUTTON 343
MIC_SPIN_CLICK_BUTTON 344
MIC_SPIN_MAX_EVENTS 336
MIC_SPIN_MAX_KEY 344
MIC_SPIN_MIN_KEY 344
MIC_SPIN_RECORD 336
MIC_SPIN_TAG 336
MIC_TAG_CREATE 336
MIC_TOOLKIT 320
MIC_WIN_ACTIVATE_BUTTON 342
MIC_XPATH_ONLY 338
min_diff command line option 274
minimizable attribute 52, 61
mismatch_break command line option 274
MIXsun X server, for detecting popup
exceptions 161
MIXTrap X server, for detecting popup
exceptions 161
Modify Breakpoint form 301
Modify GUI Entry form (GUI Map Editor) 37
Modify Watch form 307
modifying logical names of objects 36—37
modifying physical descriptions of objects
36—37
modules, compiled. See compiled modules
monitoring variables. See Watch List
Motif resources, viewing with GUI Spy 64
Motif, toolkit type 320

429

mouse button click delay command line
option 272

mouse parameters 342—344

Move button (GUI Map Editor) 39

move windows parameter 326

move_locator_text function 133

move_windows command line option 274

moving descriptions of GUI objects from one
GUI map file to another 39

multiple applications, testing. See remote
hosts, running tests on

mytest startup test 356

names. See logical names
nchildren attribute 52, 62
New Breakpoint form
Break At Line 296
Break in Function 299
New button 76
New button, XRunner toolbar 9
New command 76
NeWS X server, for detecting popup
exceptions 161
non-portable attributes
available 63
defined 46
notebook class 60
notebook record attribute parameter 333
notebook record method parameter 330
notices, ToolTalk 403

(o)

obj_check_bitmap function 102
obj_check_gui function 81
obj_get_info command 64
obj_wait_bitmap function 139, 141
obj_wait_info function 142

Object Check form 90

object class 60

Object Exception form 169

object exceptions parameter 350
object exceptions. See exceptions, object
object record attribute parameter 332

430

object record method parameter 331
objects, identifying uniquely with a selector
50
obligatory attributes 48
Olit, toolkit type 320
online help
resources xv
troubleshooting 379
Online resources xv
Open button 77
Open button, XRunner toolbar 9
Open Checklist form 85, 87
Open command 77
Open Interface, toolkit type 320
Open Test form 77
opening tests
from file system 77
maximum number 77
operators, in TSL 179
optional attributes 48
orientation attribute 52, 62

P

parameters
array parameters, user-defined
functions 207
configuration. See configuration
parameters
defining for a test 200—203
formal 201
in user-defined functions 206
parent attribute 52, 62
Paste button, XRunner toolbar 9
Paste command 76
path parameters 327—329
Pause button, XRunner toolbar 9
Pause command 241, 291
pause function 291
PAUSE softkey 10, 291, 347
pausing test execution using breakpoints
293—-302
physical description
changing regular expressions in the
37
defined 19

modifying 36—37
platform, keyboard configuration 387
Popup Exception form 160
popup exceptions parameter 349
portability, degrees of 46
portable attributes
available 61—63
defined 46
position attribute 52, 62
pound sign (#), in TSL 177
Print command, XRunner report 263
printing test results 263
programming in TSL 175—186
calculations 178
comments 177
constants 178
decision-making 182
defining steps 186
loops 180
overview 175—176
sending messages to a report 184
starting applications from a test script
185
statements 177
variables 178
white space 178
programming, visual. See Function
Generator
public class, user-defined functions 206
public variable, user-defined functions 208
push button record attribute parameter 332
push button record method parameter 330
push_button class 59
Pushbutton Check form 90

Q

Quick Run commands 240
Quick Watch button, XRunner toolbar 9
Quick Watch command 305
Quick Watch form 305
quotation marks
in configuration files 354
in GUI map files 35

Index

Radio Button Check form 91
radio button record attribute parameter 332
radio button record method parameter 329
radio_button class 59
raise windows parameter 326
raise_windows command line option 274
reading text 130—131
automatically while recording 130
manually by programming 131
troubleshooting 378
Record - Analog command 75
Record - Context Sensitive command 75
Record button, XRunner toolbar 9
record configuration 26, 45—64
record configuration,default 48—49
record methods
available for use 55—56
configuring 55—58
configuring for specific objects 59
parameters 329—331
RECORD softkey 10, 347
recording level parameter 340
recording parameters 317
recording tests
Analog mode 71
Context Sensitive mode 70
guidelines 74
See also tests, creating
troubleshooting 376
redraw command line option 274
regular expressions 229—233
changing, in the physical description
37
in check_window functions 109
in filters 118
in find_text function 132
in GUI checkpoints 230
in physical descriptions 230
in text checkpoints 230
overview 229
syntax 231233
reload function 217
remote hosts, running tests on 283—285
connecting to a remote AUT 284
disconnecting from applications

431

284—285

overview 283

troubleshooting 380
rendezvous function 370
rendezvous points (LoadRunner) 367, 369
Report form

all captures display 254

setting colors 345

test results log 251

test results summary 249

test tree 253
report_msg function 184
requests, ToolTalk 403
reset_filter function 117
results directories

debug 242

expected 239, 243

verify 238, 241
results directory, setting 346
results of tests. See test results
retry delay parameter 324
return statement 211
right_footer attribute 63
RTE Vusers, LoadRunner 363
run command line option 275
Run from Arrow command 240
RUN FROM ARROW softkey 10, 346
Run from Top button, XRunner toolbar 9
Run from Top command 240
Run menu commands 240—241
run modes

Debug 237, 239, 242

Update 237, 239

Verify 237, 238, 241
Run Wizard 32—33
running tests 237—246

aborting a test 240

batch run 265—269

checking your application 241

controlling with configuration

parameters 246

debugging a test script 242

for debugging 289—292

from command line 271276

in the background 277—281

modifying system defaults 318—320

432

on remote hosts 283—285
overview 237—238

pausing execution 241, 291

run modes 237

test execution parameters 321—325
troubleshooting 377

updating expected results 242

S

Save As command 78
Save As form 78
Save button 78
Save button, XRunner toolbar 9
Save Checklist form 86
Save command 78
saving changes to the GUI map file 43
saving tests 78
scenario script, LoadRunner 366
scenarios, LoadRunner 362, 365—366
Scope options, Open Checklist form 87
screen redraw command line option 274
screen redraw time parameter 324
Script Wizard. See Test Wizard
script_font command line option 275
scroll bar record attribute parameter 332
scroll bar record method parameter 330
Scroll Check form 92
scroll class 60
scroll_wait_info function 142
Search Path form 199
search paths, setting 199
search_path command line option 275
Select 139
Select All command 76
Select run mode button, XRunner toolbar 9
selectors

configuring 58

index 50, 58

location 50, 58
semi-portable attributes

available 63

defined 46
send notice, ToolTalk 404
send request, ToolTalk 404
send_message function 418, 420

server command line option 275
server fonts, identifying 125
server performance, measuring (with
LoadRunner) 368
server support, specialized 393—394
server, keyboard configuration 387
session, ToolTalk 405
Set Results Directory form 241
set_filter function 117
set_obj_record_method command 59
set_record_attr command 54, 331
set_record_method command 58
set_window function 22
set_window statement 101
setvar function 129, 199, 246, 318—320
shadowing, in GUI map files 28
shift attribute, keyboard configuration 386
SoftBench 409—420
communicating with other SoftBench
tools 412
Debugger 412
Development Manager 411
Message Monitor 413
Program Builder 412
Program Editor 411
request messages 413—416
Toolbar 410
XRunner notification messages 417
softkey parameters 346—349
softkeys
configuring for XRunner 11
default 10
spin class 60
spinbox record attribute parameter 333
spinbox record method parameter 330
spying on GUI objects 46—48
start_transaction function 368
startup tests
creating 356
overview 355
sample 356
specifying pathname 320
static class, user-defined functions 206
Static Text Check form 93, 95
static text object record attribute parameter
333

Index

static text object record method parameter
331
static variable, user-defined functions 208
static_text class 60
static_wait_info function 142
status bar, XRunner main window 8
Step button, XRunner toolbar 9
Step command 240, 290
Step Into button, XRunner toolbar 9
Step Into command 290
STEP INTO softkey 10, 347
Step Out command 291
STEP softkey 10, 347
steps, defining in a test script 186
Stop Recording command 75
STOP softkey 347
Stop/Abort button, XRunner toolbar 9
STOP/ABORT softkey 10
stress conditions, creating in tests 180
strings. See text strings
sub_menu attribute 52, 62
summary, test results 249
Sun NeWS server parameters 349
Sun/Solaris machines, identifying
application fonts 123
sync_mode command line option 275
synchronization command line option 275
synchronization points 72
synchronization points (LoadRunner) 367,
369
synchronization time parameter 324
synchronization, Analog testing 145—151
introduction 146
waiting for partial window (area)
bitmaps 148—149
waiting for redrawing
windows/partial windows 150—151
waiting for window bitmaps 147—148
waiting for windows with varying
names 149
synchronization, Context Sensitive testing
137—143
introduction 137—138
waiting for area bitmaps 140—142
waiting for attribute values 142—143
waiting for window and object

433

bitmaps 138—140
synchronization, fine tuning with
configuration parameters 153—156
system beep command line option 272
system beep parameter 322
system defaults, changing 313—354
configuration files 314
environment variables 320—321
from a test script 318—320
from Configuration form 315—318
overview 313—314
See also configuration parameters
system function 185
system mode, setting 346

T

t command line option 275
temporary GUI map file
saving 27
temporary tests directory 328
test execution
modifying system defaults 318—320
pausing 291
pausing using breakpoints 293—302
See also running tests
test execution parameters 321—325
Test Header form 73, 200, 215
test log, XRunner report 251
test name, defining 346
Test Report button, XRunner toolbar 9
test results 247—263
bitmap checkpoints 257—261
filtering
for batch tests 269
GUI checkpoints 255—257
overview 247—248
printing 263
summary 249
test log 251
test tree 253
updating expected 262
viewing all captures 254
test script 69
enhancing. See programming in TSL
running. See running tests

434

to change system defaults 318—320
to configure record attributes 54
to configure record method 58
to configure record method for
specific objects 59
XRunner main window 8
Test Script Language (TSL) 69, 175—186
See also programming in TSL
test tree, XRunner report 253
Test Wizard
learning the GUI of an application 24
starting 24
startup tests 356
testing process
analyzing results 247—263
introduction 5
running tests 237—246
testname command line option 275
tests, calling. See calling tests
tests, creating 69—78
checkpoints 72
documenting test information 73
editing 76
guidelines when recording 74
in Analog mode 71—72
in Context Sensitive mode 70—71
new 76
opening existing 77
overview 69—70
planning 73
programming 75
recording 75
saving 78
synchronization points 72
texit statement 198, 267
text
checking 121—135
comparing 134
reading 130—131
searching for 131—134
text checkpoints 121—135
clicking on text 133
comparing text 134
creating a font group 128
identifying fonts supported by
XRunner 12§

identifying fonts used by application
123—126

moving the pointer to text 133

overview 121

parameters 341—342

reading text 130—131

searching for text 131—134

teaching XRunner fonts 126—129
text recognition timeout parameter 341
text recognition. See text checkpoints
text remove blanks parameter 341
text search radius parameter 342
text string

clicking a specified 133

moving the pointer to a 133
text verification. See text checkpoints
time formats, Edit Check form 95
timeout command line option 275
timeout parameter 325
title bar, XRunner main window 8
tl_step function 186
Toggle Breakpoint command 297
toolbar

choosing commands from 9

XRunner main window 8
toolkit type 320
toolkit_class attribute 63
ToolTalk 395—407
tooltalk_create_notice 403
tooltalk_create_request 403
tooltalk_destroy_msg 405
tooltalk_get_arg 405
tooltalk_get_attr 405
tooltalk_get_session 405
tooltalk_send_notice 404
tooltalk_send_request 404
tooltalk_set_arg 404
tooltalk_set_attr 403
trailing blanks parameter 341
transactions (LoadRunner) 367, 368
transactions, synchronizing (for

LoadRunner) 369

treturn statement 197
troubleshooting 375—381

background operation 380

bitmap display 380

Index

command line interface 380

context sensitive features 378

file locking 377

HP platforms 381

login 376

online help 379

reading text 378

record 376

running tests 377

starting XRunner 375

TSL 379

UnixWare platforms 381

user interface 381
TSL

Reference Guide xiv

troubleshooting 379

XRunner main window 8
TSL Exception form 164
TSL exceptions parameter 350
TSL exceptions. See exceptions, TSL
twm window manager 324
typographical conventions in this guide xv

U

UI parameters 318, 345
UnixWare platforms, troubleshooting 381
unload function 217
unload_dll 222
Update mode 237, 239
updating expected results of a checkpoint
262
user interface
feature 321
parameters 345
troubleshooting 381
user-defined functions 205—212
array declarations 210
array parameters 207
class 206
constant declarations 209
declaration of variables, constants
and arrays 207—211
example 212
overview 205—206
parameters 206

435

return statement 211
syntax 206—211
variable declarations 208—209

Vv

value attribute 52, 62
variables
environment 320—321
in TSL 178
monitoring. See Watch List
system. See system defaults, changing
verification
bitmap. See bitmap checkpoints
GUI. See GUI checkpoints
results 238, 241
text. See text checkpoints
verify command line option 276
Verify mode 237, 238, 241
viewing test results. See test results
Virtual User Development Environment
(VUDE) 364
virtual users (with LoadRunner) 362,
363—364

visual programming. See Function Generator

VUDE, Virtual User Development
Environment 364

Vuser (with LoadRunner) 362, 363—364

Vuser scripts, LoadRunner 366

VXRunner 364—365

w

Wait Bitmap > Area command 141
WAIT BITMAP softkey 139

Wait Bitmap/Object command 139
Wait Bitmap/Window command 139
WAIT PARTIAL WINDOW softkey 11, 148
WAIT REDRAW AREA softkey 348

WAIT REDRAW PARTIAL WINDOW softkey 11,

150
WAIT REDRAW softkey 150, 348
WAIT REDRAW WINDOW softkey 11
WAIT WINDOW (AREA) softkey 348
WAIT WINDOW AREA softkey 141
WAIT WINDOW softkey 11, 147, 348

436

wait_window function
waiting for partial window (area)
bitmaps 149
waiting for redrawing partial windows
151
waiting for redrawing windows 150
waiting for window bitmaps 147
Watch List 303—309
adding variables 305—306
assigning values to variables 308
deleting variables 309
modifying expressions 307—308
overview 303—305
viewing variables 306—307
Watch List command 306
Watch List form 306
white space, in TSL 178
width attribute 51, 62
wildcard characters. See regular expressions
win_check_bitmap function 101, 103
win_check_gui function 81
win_wait_bitmap function 139, 141
win_wait_info function 142
window border parameter 326
Window Check form 96
window class 60
window frame command line option 276
window frame parameter 325
window manager type 321
window move parameter 326
window raising command line option 274
window raising parameter 326
window record attribute parameter 331
window record method parameter 329
window relocation command line option
274
window_frames command line option 276
wm_borders command line option 276

X

X attribute 51, 62

X Windows applications 3
X_arrow attribute 63
X_attached_name attribute 63
X_name attribute 63

X_path attribute 63

X_window attribute 63

xextend utility 393—394

xfd utility 125

xgate record/replay extension 393
xmon protocol analyzer 123
xmond, public domain utility 393
XR_AUTO_LOAD 321
XR_AUTO_LOAD_DIR 327
XR_AUTOMOUNT_MAP 327
XR_BATCH_MODE 322

XR_BEEP 322

XR_CAPTURE_UTIL 327, 389
XR_CBUTTON_REC_ATTR 332
XR_CBUTTON_REC_METHOD 329
XR_CFG_FILE 314
XR_CLICK_DELAY 322
XR_COMPARE_UTIL 327, 389
XR_COMPRESS 325
XR_DBLCLK_TIME 322
XR_DISPLAY_UTIL 327, 389
XR_EDIT_REC_ATTR 332
XR_EDIT_REC_METHOD 330
XR_EDITOR_MAX_CHARS 345
XR_EXCP_OBJ 170
XR_EXCP_OBJECT 350
XR_EXCP_POPUP 161, 349
XR_EXCP_TSL 165, 350
XR_FAIL_COLOR 252
XR_FAST_REPLAY 322
XR_FILE_LOCKING 329
XR_FOCUS_DELAY 322
XR_FONT_GROUP 129, 341
XR_GLOB_FILTER_LIB 327
XR_GLOB_FONT_LIB 126, 129, 341
XR_HIDE_BUBBLE_HELP 345
XR_IMAGE_MODE 326, 389
XR_INP_CAPS_POLICY 350
XR_INP_KBD_DEV_ID 351
XR_INP_KBD_NAME 350
XR_INP_MKEYS 351
XR_INP_MOUSE_DEV_ID 351
XR_INSERT_NEWLINES 345
xr_kbd.err, keyboard error checking file 388
XR_KBD_ALIAS_FILE 350, 384—386
XR_KBD_DELAY 323

Index

XR_KEY_EDITING 323
XR_LEARN_TIMEOUT 340
XR_LIST_REC_ATTR 332
XR_LIST_REC_METHOD 330
XR_MACHINE_DB_NAME 386—387
XR_MENU_REC_ATTR 332
XR_MENU_REC_METHOD 330
XR_MIN_DIFF 154, 326
XR_MISMATCH_BREAK 138, 323
XR_MOVE_WINDOWS 154, 326
XR_NEWS_COMPAT 349
XR_NOTEBOOK_REC_ATTR 333
XR_NOTEBOOK_REC_METHOD 330
XR_OBJ_REC_ATTR 332
XR_OBJ_REC_METHOD 331
XR_PASS_COLOR 252
XR_PBUTTON_REC_ATTR 332
XR_PBUTTON_REC_METHOD 330
XR_RAISE_WINDOWS 154, 326
XR_RBUTTON_REC_ATTR 332
XR_RBUTTON_REC_METHOD 329
XR_REC_LEVEL 340
XR_REPORT_FAIL_COLOR 345
XR_REPORT_PASS_COLOR 345
XR_RETRY_DELAY 154, 324
XR_SCR_REDRAW 154
XR_SCR_REDRAW_TIME 324
XR_SCROLL_REC_ATTR 332
XR_SCROLL_REC_METHOD 330
XR_SEARCH_PATH 328
XR_SHARED_CHECKLIST_DIR 87, 328
XR_SOFT_ANIMATE 346
XR_SOFT_CHECK_GUI 348
XR_SOFT_CHECK_PARTIAL_WINDOW 347
XR_SOFT_CHECK_WINDOW 347
XR_SOFT_GEN_FUNC_CALL 349
XR_SOFT_GET_TEXT 348
XR_SOFT_MARKLOCATOR 346
XR_SOFT_PAUSE 347
XR_SOFT_RECORD 347
XR_SOFT_STEP 347
XR_SOFT_STEP_INTO 347
XR_SOFT_STOP 347
XR_SOFT_WAIT_PARTIAL_WINDOW 348
XR_SOFT_WAIT_REDRAW 348
XR_SOFT_WAIT_REDRAW_PARTIAL_WINDOW

437

348
XR_SOFT_WAIT_WINDOW 348
XR_SPIN_REC_ATTR 333
XR_SPIN_REC_METHOD 330
XR_STATIC_REC_ATTR 333
XR_STATIC_REC_METHOD 331
XR_SYNC_TIME 324
XR_SYNCHRONIZED 325
XR_TEXT_PREVIEW_FONT 341
XR_TEXT_RECOGNITION_TIMEOUT 341
XR_TEXT_REMARKS 341
XR_TEXT_REMOVE_BLANKS 341
XR_TEXT_SEARCH_RADII 342
XR_TEXT_SEARCH_RADIUS 131
XR_TIMEOUT 154, 325
XR_TMPDIR 328
XR_TOOLTALK 396
XR_TSL_INIT 320, 355
XR_UCFG_TEXT 342
XR_VERIFY_UTIL 327
XR_WINDOW_FRAMES 325
XR_WINDOW_REC_ATTR 331
XR_WINDOW_REC_METHOD 329
XR_WM_BORDER 326
XR_WM_OFFSET_X 324
XR_WM_OFFSET_Y 324
XREC extension 393
xrfontgrp utility 128
xrmkfont utility 127
XRUN_TEST_EXT 321
XRUN_UI 321
XRUN_WM 321
XRunner

configuration files 314

context senstive help xv
Customization Guide xiv
introduction 3—6

main window 8

menu bar 8

online resources xv

starting 7

starting, troubleshooting 375
status bar 8

title bar 8

using with LoadRunner 361—372
using with SoftBench 409—420

438

using with ToolTalk 395—407
XRunner file (.xrunner) 314
XRunner window, overview 7—12
xrunner.cfg file 314
xscope protocol analyzer 124
Xt resources, viewing with GUI Spy 64
Xview, toolkit type 320

Y
y attribute 51, 62

G

MERCURY INTERACTIVE

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Main Telephone: (408) 822-5200
Sales & Information: (800) TEST-911

Customer Support: (408) 822-5400
Fax: (408) 822-5300
Home Page: www.merc-int.com
*XRUG6. 0/ 01

Customer Support: web.merc-int.com

	XRunner
	Using This Guide
	XRunner Documentation Set
	Online Resources
	Typographical Conventions

	Starting the Testing Process
	Introduction
	XRunner Testing Modes
	The XRunner Testing Process
	Working with LoadRunner

	XRunner at a Glance
	Starting XRunner
	The Main XRunner Window
	Selecting XRunner Commands
	Configuring XRunner Softkeys

	Understanding the GUI Map
	Introducing Context Sensitive Testing
	About Context Sensitive Testing
	How a Test Identifies GUI Objects
	Physical Descriptions
	Logical Names
	The GUI Map
	Setting the Window Context

	Creating the GUI Map
	About Creating the GUI Map
	Learning the GUI with Test Wizard
	Learning the GUI by Recording
	Learning the GUI Using the GUI Map Editor
	Saving the GUI Map
	Loading the GUI Map File

	Editing the GUI Map
	About Editing the GUI Map
	The Run Wizard
	The GUI Map Editor
	Modifying Logical Names and Physical Descriptions
	Using a Single Description for Varying Labels
	Copying and Moving Objects between Files
	Finding an Object in a GUI Map File
	Finding an Object in Multiple GUI Map Files
	Manually Adding an Object to a GUI Map File
	Deleting an Object from a GUI Map File
	Clearing a GUI Map File
	Filtering Displayed Objects
	Saving Changes to the GUI Map

	Configuring the GUI Map
	About Configuring the GUI Map
	Viewing GUI Object Attributes
	Understanding the Default GUI Configuration
	Identifying Objects with the Same Name
	Configuring Record Attributes
	Configuring the Record Method
	Configuring the Selector
	Configuring the Record Method For a Specific Object
	The Class Attribute
	All Attributes
	Default Attributes Learned
	Working with Motif and Xt Resources

	Creating Tests
	Creating Tests
	About Creating Tests
	Context Sensitive Recording
	Analog Recording
	Checkpoints
	Synchronization Points
	Planning a Test
	Documenting Test Information
	Recording a Test
	Programming a Test
	Editing a Test
	Managing Test Files

	Checking GUI Objects
	About Checking GUI Objects
	Checking a Single Object or Window
	Checking Two or More Objects in a Window
	Checking All Objects in a Window
	Modifying GUI Checklists
	Checking Attributes Using check_info Functions
	Default Checks and Custom Checks

	Checking Bitmaps: Context Sensitive Testing
	About Checking Bitmaps in Context Sensitive Testing
	Checking Window and Object Bitmaps
	Checking Area Bitmaps
	Using Data Compression

	Checking Bitmaps: Analog Testing
	About Checking Bitmaps in Analog Testing
	Checking Window Bitmaps
	Checking Area Bitmaps
	Checking Windows with Varying Names
	Checking Unnamed Windows

	Filtering Bitmaps
	About Filters
	Creating Filters
	Displaying Filters
	Altering Filter Attributes
	Activating and Deactivating Filters
	Defining Filters with Regular Expressions
	Deleting Filters from the Database

	Checking Text
	About Checking Text
	Identifying Application Fonts
	Identifying Fonts Supported by XRunner
	Teaching Fonts to XRunner
	Reading Text
	Searching for Text
	Comparing Text

	Synchronizing Test Execution: Context Sensitive Testing
	About Synchronizing Test Execution
	Waiting for Window and Object Bitmaps
	Waiting for Area Bitmaps
	Waiting for Attribute Values

	Synchronizing Test Execution: Analog Testing
	About Synchronizing Tests in Analog Testing
	Waiting for Window Bitmaps
	Waiting for Area Bitmaps
	Windows with Varying Names
	Waiting for Windows or Selected Regions to be Redrawn

	Enhancing Window Comparison and Synchronization
	About Adjusting Configuration Parameters
	How Configuration Parameters Affect Window Functions
	Adjusting the XR_TIMEOUT Parameter
	Setting the Delay

	Handling Unexpected Events and Errors
	About Handling Unexpected Events and Errors
	Handling Popup Exceptions
	Handling TSL Exceptions
	Handling Object Exceptions

	Programming with TSL
	Enhancing Your Test Scripts with Programming
	About Enhancing Your Test Scripts
	Statements
	Comments and White Space
	Constants and Variables
	Performing Calculations
	Creating Stress Conditions
	Decision-making
	Sending Messages to a Report
	Starting Applications from a Test Script
	Defining Test Steps

	Using Visual Programming
	About Visual Programming
	Generating a Function for a GUI Object
	Selecting a Function from a List
	Assigning Argument Values
	Modifying the Default Function in a Category

	Calling Tests
	About Calling Tests
	Using the Call Statement
	Returning to the Calling Test
	Setting the Search Path
	Defining Test Parameters
	Calling the check_file Test

	Creating User-Defined Functions
	About User-Defined Functions
	Function Syntax
	Return Statement
	User-Defined Function Example

	Creating Compiled Modules
	About Compiled Modules
	Contents of a Compiled Module
	Creating a Compiled Module
	Loading and Unloading a Compiled Module
	Incremental Compilation
	Compiled Module Example

	Using Dynamically Linked Libraries
	About Calling External Functions
	Loading External Libraries
	Declaring External Functions in TSL
	Standard C Library Examples

	Using Regular Expressions
	About Regular Expressions
	When to Use Regular Expressions
	Regular Expression Syntax

	Running Tests
	Running Tests
	About Running Tests
	XRunner Test Execution Modes
	XRunner Run Menu Commands
	Running a Test to Check Your Application
	Running a Test to Debug Your Test Script
	Running a Test to Update Expected Results
	Controlling Test Execution by Modifying Configuration Parameters

	Analyzing Test Results
	About Viewing Test Results
	Test Results Summary
	Test Results Log
	The Test Tree
	Viewing All Captures
	Viewing the Results of a Test
	Viewing the Results of a GUI Checkpoint
	Viewing the Results of a Bitmap Checkpoint
	Controlling How Bitmaps are Displayed
	Filtering Results
	Updating Expected Results
	Printing Results

	Running Batch Tests
	About Running Batch Tests
	Creating a Batch Test
	Executing a Batch Test
	Storing Batch Test Results
	Viewing Batch Test Results

	Running Tests from the Command Line
	About Running Tests from the Command Line
	Using the Command Line with XRunner
	Command Line Options

	Running Tests in the Background
	About Background Testing
	Running a Background Test
	Setting the Background XRunner Startup Options
	Setting the Background Environment Options
	Running Background Tests from the Command Line
	Stopping a Background Run

	Running Tests on Remote Hosts
	About Running Tests on Remote Hosts
	Connecting XRunner to a Remote AUT
	Disconnecting XRunner from Applications

	Debugging Tests
	Debugging Test Scripts
	About Debugging Test Scripts
	Running a Single Line of a Test Script
	Pausing Test Execution

	Using Breakpoints
	About Breakpoints
	Breakpoint Types
	Setting Break at Line Breakpoints
	Setting Break in Function Breakpoints
	Modifying Breakpoints
	Deleting Breakpoints

	Monitoring Variables
	About Monitoring Variables
	Adding Variables to the Watch List
	Viewing Variables in the Watch List
	Modifying Variables in the Watch List
	Assigning a Value to a Variable in the Watch List
	Deleting Variables from the Watch List

	Configuring XRunner
	Changing System Defaults
	About Changing System Defaults
	Configuration Files
	Modifying Configuration Settings from the Configuration Form
	Modifying Configuration Settings from a Test Script
	Environment Variables
	Configuration Parameters
	Configuration File Contents

	Initializing Special Configurations
	About Initializing Special Configurations
	Creating Startup Tests
	Sample Startup Test

	Working with LoadRunner
	Testing Client/Server Systems
	About Testing Client/Server Systems
	Simulating Multiple Users
	Virtual User Technology
	GUI Vusers
	Developing and Running Scenarios
	Creating Scripts for XRunner GUI Vusers
	Measuring Server Performance
	Synchronizing Virtual User Transactions
	Creating a Rendezvous
	A Sample Vuser Script

	Appendixes
	Troubleshooting
	Starting XRunner
	Login
	Record
	Running Tests
	File Locking
	Context Sensitive
	Reading Text
	Online Help
	TSL
	Background Operation
	Bitmaps
	Command Line Interface
	Network
	User Interface
	HP Platforms
	UnixWare Platforms

	Configuring Your Keyboard
	About Configuring Your Keyboard
	Defining Global Key Aliases
	Defining Platform-Specific Key Aliases
	Keyboard Error Checking

	External Utilities for Bitmap Capture/Check/Display
	About External Bitmap Utilities
	Capture Utility
	Compare Utility
	Display Utility

	Support for Servers With No Record/Replay Extension
	The xextend Utility
	Using xextend

	Using ToolTalk with XRunner
	Invoking XRunner in ToolTalk Mode
	Requests From External Applications

	Using XRunner with SoftBench
	About Using XRunner with HP SoftBench
	The SoftBench-XRunner User Interface
	Communicating With Other SoftBench Tools

