
Online Guide

Find

Books
Online

 Again

Help

FindWinRunner®

Java Add-in Installation
and User’s Guide

Version 6.0

Table of Contents

Java Add-in Installation and User’s Guide page 2

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

0
Table of Contents

Welcome to the Java Add-in.. 5
Using this Guide ... 5
Typographical Conventions .. 7

PART I: INSTALLING THE JAVA ADD-IN

Chapter 1: Before You Install ... 9
Checking Your Java Add-In Package... 9
System Requirements .. 10

Chapter 2: Setting Up the Java Add-in .. 11
Running the Setup Program... 12
Configuring the Web Server ... 23
Modifying Your Selected JDK Version.. 24

Chapter 3: Verifying Your Java Add-in Installation.................... 26
About the Java Add-in Verifier.. 26
Using the Java Add-in Verifier .. 27

Chapter 4: Disabling or Uninstalling the Java Add-in................ 38
Disabling the Java Add-in Temporarily... 38
Uninstalling the Java Add-in ... 40

Table of Contents

Java Add-in Installation and User’s Guide page 3

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

PART I I: WORKING WITH THE JAVA ADD-IN

Chapter 5: Testing Standard Java Objects 43
About Testing Standard Java Objects .. 43
Activating the Java Add-in .. 44
Recording Context Sensitive Tests .. 45
Enhancing Your Script with TSL... 46
Invoking a Java Method.. 47
Setting the Value of a Java Bean Property....................................... 49
Configuring How WinRunner Learns Object Descriptions

and Runs Tests .. 51
Activating a Java Edit Object.. 55

Chapter 6: Configuring Custom Java Objects............................ 56
About Configuring Custom Java Objects.. 56
Adding Custom Java Objects to the GUI Map.................................. 57
Configuring Custom Java Objects with the Custom Object Wizard.. 59

Chapter 7: Using Java Direct Call (JDC) Mechanism................. 66
About Java Direct Call Mechanism... 66
Using the JDC Mechanism... 67
Preparing a TSL Script for use with JDC.. 69
Using JDC: An Example... 69

Table of Contents

Java Add-in Installation and User’s Guide page 4

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Chapter 8: Troubleshooting Java Add-in Recording
Problems... 72

Handling General Problems Testing Applets.................................... 72
Handling Specific Java Add-in Problems.. 73

Index .. 75

Welcome to the Java Add-in

Java Add-in Installation and User’s Guide page 5

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

0
Welcome to the Java Add-in

Welcome to WinRunner with add-in support for Java. The Java Add-in enables

you to test cross-platform Java applets and applications.

Using this Guide

This guide explains everything you need to know to install the Java Add-in and to
use WinRunner to successfully test Java applications and applets. It should be
used in conjunction with the WinRunner User’s Guide and the TSL Online
Reference.

This guide contains 2 parts:

 Part I: Installing the Java Add-in

Details the process of installing and verifying the Java Add-in, including:

• Before You Install

• Setting Up the Java Add-in

• Verifying Your Java Add-in Installation

• Disabling or Uninstalling the Java Add-in

Welcome to the Java Add-in

Java Add-in Installation and User’s Guide page 6

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 Part II: Working with the Java Add-in

Explains how to use the Java Add-in to test Java applications and applets

including:

• Testing Standard Java Objects

• Configuring Custom Java Objects

• Using Java Direct Call (JDC) Mechanism

• Troubleshooting Java Add-in Recording Problems

Welcome to the Java Add-in

Java Add-in Installation and User’s Guide page 7

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

• Bullets indicate options and features.

> The greater than sign separates menu levels (for
example, File > Open).

Bold Bold text indicates function names.

Italics Italic text indicates variable names.

Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items of
the same format may be included. In a program example,
three dots are used to indicate lines of a program that
were intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.

Java Add-in Installation and User’s Guide page 8

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part I

Installing the Java Add-in

Before You Install

Java Add-in Installation and User’s Guide Chapter 1, page 9

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

1
Before You Install

Before you install the Java Add-in, please review the following installation

procedures.

Checking Your Java Add-In Package

In addition to this guide, please make sure your Java Add-in package contains the

items below. If any item is missing or damaged, contact Mercury Interactive or

your local distributor.

• Java Add-in CD-ROM

• Registration Card

Before You Install

Java Add-in Installation and User’s Guide Chapter 1, page 10

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

System Requirements

In order to successfully run WinRunner with the Java Add-In, you need the

following minimum system requirements:

Platform An IBM-PC or compatible with a Pentium® /100MHz or
higher microprocessor.

Memory 32 MB of RAM memory.

Disk Space 24 MB of free disk space for a minimum installation, or 66
MB for a typical or complete installation. (An additional 5
MB of free disk space is required in your browser
installation folder.)

Operating System Windows 95, Windows 98, or Windows NT 4.0.

Prerequisites WinRunner 6.0 standalone installation.

Netscape 4.05 Professional Edition or higher, or Internet
Explorer 4.01 or higher, or JDK or JRE 1.15 or higher

Note: If the CLASSPATH variable in the autoexec.bat file contains more than
400 characters, modify this line to less than 400 characters prior to installation.

If you want to install from the network, map the installation drive before installing
and run the installation from the mapped drive.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 11

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

2
Setting Up the Java Add-in

The Java Add-in installation process involves two main stages:

• Running the Java Add-in setup program

• Configuring the Web server (for installations with Mercury classes on the Web
Server)

Note: Before you install the Java Add-in, you must have a WinRunner 6.0
standalone installation on your computer. If you intend to test applets in a
browser, you must have the browser installed. If you intend to test a Java Plug-in
or Jinitiator, these must be installed. If you intend to test a Java Application or
use the AppletViewer, you must have the Java Development Kit (JDK) or the
Java runtime environment (JRE) installed.

If you re-install or install a new version of a Web browser or other Java
Environment, you must re-install the Java Add-in after the browser, JDK or plug-
in has been installed.

Before you re-install, however, be sure to close any browsers, Java applications
and WinRunner.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 12

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Running the Setup Program

The setup program installs the Java Add-in support in your WinRunner installation

folder.

To run the Java Add-in setup program:

 1 Insert the CD-ROM into the drive from which you want to install. If you are
installing from a network drive, connect to it.

 2 Select Run on the Start menu.

 3 Type the location from which you are installing, and setup.exe. For example,
type d:\setup.exe.

 4 Click OK. The WinRunner Java Add-in setup program starts.

 5 Read the Welcome dialog box. Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 13

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Specify the folder in which to install the Java Add-in. The destination folder must
be the WinRunner installation folder. If the installation folder that appears is not
the WinRunner installation folder, click Browse to find the correct destination
folder. Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 14

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 Select the Java environment(s) that you intend to use. Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 15

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 8 If you have a Java environment installed that is not supported by the Java Add-in
installation, you will receive a warning message similar to the one below.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 16

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

This message will tell you which environment and version you are using that is
not supported and will provide you with the URL from which you can download a
Java Add-in update.

• If you want to download the update now, and then restart the Java Add-in
installation, click No.

Create an updates folder under your WinRunner installation folder. Download
the Java Add-in update into the updates folder, and then run the Java Add-in
installation from the beginning. When you run the Java Add-in installation, it
will automatically install any updates located in the updates folder.

• If you want to continue the Java Add-in installation now and download the
update at a later time, click Yes.

Note: If you choose to download the update at a later time, you must re-install
the Java Add-in after you download the update.

 9 Choose Patch Browser or Install classes on the Web server.

If your Java applets require that all Java classes come from the Web server, the
Mercury classes must be installed in the same location as the Java classes.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 17

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you select Install classes on the Web server option, you must configure your
Web server after the setup program is completed. For more information, see
Configuring the Web Server on page 23.

If you do not have access to your Web server, you can patch your browser so
that classes beginning with “mercury” or “mic” can be accessed from the local file
system. This overwrites the built-in Java security so that any Java applet with
these classes can read from the local file system. To patch your browser, select
Patch Browser.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 18

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Click Next. If you chose to work with AppletViewer or a Java application, the
setup program checks whether you have the Java Development Kit (JDK) or
Java Runtime Environment (JRE) installed on your computer.

 10 If you have JDK or JRE installed on your computer, and you selected Java
Application (no browser) or AppletViewer as one of the Java environments
you intend to use, then the setup program prompts you to confirm the version
you are using.

• If the version displayed in the message is correct, click Yes.

• If the version is incorrect, click No.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 19

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 11 If you select No, the JDK/JRE dialog box opens. In the JDK/JRE dialog box,
select the JDK/JRE version you wish to use. Note that selecting a JDK/JRE
version which is different from the version you intend to use may cause
unpredictable results when you try to record or replay tests with WinRunner.

Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 20

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If you need to change the JDK/JRE version you use at another time, you
can use the Java Add-in Configuration Tool to quickly modify the Mercury
Environment to match the new JDK/JRE version. For more information refer to
Modifying Your Selected JDK Version on page 24.

 12 The installation process begins. To pause or quit the installation process, click
Cancel.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 21

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 13 Select a Program Folder. The default is WinRunner. Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 22

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 14 To complete the installation process, click Finish.

You must reboot your computer before using the Java Add-in.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 23

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring the Web Server

If you chose to install Mercury classes on the Web server during the setup

program, you must configure the Web server so that the Mercury classes are

installed in the same location as the Java classes.

To configure your Web server to work with your toolkit:

 1 On the Web server machine, find the location of your Java toolkit classes. The
location of these classes depends on the Web server you are using. Please
consult the Web server administrator to find the location.

 2 Copy the content of the folder WinRunner installation folder\classes\srv\ from the
client machine to the location of your Java toolkit classes on the Web server.

 3 Confirm that the folders: jclass, mercury, oracle and symantec are now located
on your Web server parallel to your Java toolkit classes.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 24

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Modifying Your Selected JDK Version

The Java Add-in Configuration Tool makes it possible to test in a multi-JDK

environment by quickly modifying the Mercury environment to match the JDK you

want to use, without requiring re-installation of the Java Add-in.

The Java Add-in Configuration Tool is installed during the Java Add-in installation,

and is included in the Java Add-in program group.

To modify your selected JDK version:

 1 Close any open Java applets or applications.

 2 Choose Programs > WinRunner > Java Add-in > Java Add-in Configuration
Tool from the Start menu. The Select JDK Version dialog box opens.

 3 Select the JDK version you want to use. Click Next.

 4 Browse to, or type, the path of your WinRunner folder or accept the path listed in
the window. Click Next.

 5 If you choose JDK version 1.2.x in step 3, the JDK 1.2 folder dialog box opens.
Browse to, or type, the name of your JDK/JRE 1.2.x folder or accept the path
listed in the window. Click Next.

Setting Up the Java Add-in

Java Add-in Installation and User’s Guide Chapter 2, page 25

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 The Mercury environment is modified according to your selection and a
confirmation message appears. Click OK.

Note: The Java Add-in Configuration Tool enables you to modify the Mercury
environment only for SUN JDK 1.1.5 - 1.1.8 and 1.2 - 1.2.2 environments. If you
need to modify the Mercury Environment for any other Java environment such
as browsers or plug-ins, run the Java Add-in installation and select your required
environment(s) from the Select Components dialog box. For more information
see page 14.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 26

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

3
Verifying Your Java Add-in Installation

This chapter explains how to run and analyze the Java Add-in Verifier in order to

isolate installation problems.

About the Java Add-in Verifier

If you experienced problems installing the Java Add-in, or you successfully

installed it but experience difficulties when you try to launch WinRunner, record a

Java applet or application with WinRunner, or run a test script, you can verify your

Java Add-in installation by running the Java Add-in Verifier.

The Java Add-in Verifier checks the environment settings and installations that

will affect the performance and operation of the Java Add-in. It collects

information about the WinRunner version, the Java Add-in, and Java

development kits (JDKs) installed on your computer.

After the verification process is complete, you can view a report. The Java Add-

in Verifier saves this report as a log file that you can view in any text editing tool.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 27

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the Java Add-in Verifier

To verify your Java Add-in installation:

 1 Launch the Java Add-in Verifier. Choose Programs > WinRunner > Java
Verifier in the Start menu. The Java Add-in Verifier dialog box opens.

 2 Read the opening screen. Click Next.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 28

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 In the Installations dialog box, select an installation type and specify the types of
Java applications you run on your system.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 29

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Select one of the following installation types:

• Local classes only: select this option if all your classes in the classpath are
located on your computer.

• Remote classes only: select this option if all your class files are located on a
remote server.

• Remote and local classes: select this option if some of your class files are
located on your computer, and some of your class files are located on a
remote server.

Also, select the types of Java programs you run on your system:

• Java application

• Java applet

Click Next. The Java Add-in Verifier scans your computer’s hard disk, and
creates a list of the JDKs installed on your computer.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 30

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 4 In the JDK Detection dialog box, select the JDKs you use from the list.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 31

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If your JDK is not displayed in the list, first check your JDK installation and
make sure that your Java bin folder is in the system path variable. If the Java
Add-in Verifier is still unable to recognize the JDK, try to reinstall the JDK. If this
does not work, enter the name and location of the JDK in the text box or contact
Mercury Interactive Customer Support.

Select The JDK is using the JIT option check box if you are using your JDK’s
“just in time” compiler option. Note that by default JDK 1.1.6 and higher use JIT.

Click Next.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 32

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 The Java Add-in Verifier lists all of the WinRunner and Java Add-in installation
options the Java Add-in Verifier detected.

• The Mercury Installations list displays a list of Mercury Interactive products
installed on your computer such as: WinRunner, LoadRunner, and the
WebTest Add-in.

• The Java Add-in list displays a list of toolkits which have been defined in the
mercury.properties file.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 33

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: If the Java Add-in Verifier failed to detect a Mercury Interactive application,
first check the application separately. If it does not work properly, reinstall the
application. If the Java Add-in Verifier still fails to detect the application, contact
Mercury Interactive Customer support.

Read the list, and click Next.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 34

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 In the Browsers dialog box, select the Web browser(s) you are using to execute Java
applets. Click Next.

Note: If the Java Add-in Verifier failed to detect a browser installed on your computer,
first check the browser separately. If it does not work properly, reinstall the browser. If
the Java Add-in Verifier still fails to detect the browser, contact Mercury Interactive
Customer Support.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 35

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 In the Java Toolkits dialog box, select all Java toolkits used by your Java applet
or application.

If your toolkit is not listed, you can add the name of the toolkit in the text box.

If you are using your own custom toolkits and widgets, select the Use custom
toolkits and widget check box.

Click Next.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 36

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 8 In the User Information dialog box, type your name, the name of your company,
and any additional information you want to add to the log file. This information
will be included in the Java Add-in Verifier log file. Click Next.

Verifying Your Java Add-in Installation

Java Add-in Installation and User’s Guide Chapter 3, page 37

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 9 View the generated report in the Report View dialog box.

Click the Finish button to close the Java Add-in Verifier and generate the log file.
The log file is saved in the WinRunner installation folder\arch\JVerifier folder. You
can view the file in any text editor application.

Disabling or Uninstalling the Java Add-in

Java Add-in Installation and User’s Guide Chapter 4, page 38

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

4
Disabling or Uninstalling the Java Add-in

If you decide to use WinRunner without the Java Add-in, you have the option of

temporarily disabling the add-in, or uninstalling it.

Disabling the Java Add-in Temporarily

There are two ways to temporarily disable the Java Add-in:

• Disable the toolkit support in the mercury.properties file

• Remove the WinRunner classpaths

To temporarily disable the Java Add-in via the mercury.properties file:

 1 Select Programs > WinRunner > Java Add-in > mercury.properties from the Start
menu.

 2 In the mercury.properties file, place a pound sign (#) before the line starting with
mic_toolkit=. For example:

mic_toolkit=AWT, JFC, VCafe, KLG, Oracle

 3 Save and close the file.

 4 If you use Jinitiator, open the mercury.properties file from the Jinitiator Installation
folder\classes folder and repeat steps 2 and 3 for this file.

Disabling or Uninstalling the Java Add-in

Java Add-in Installation and User’s Guide Chapter 4, page 39

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

To temporarily disable the Java Add-in by removing WinRunner
classpaths:

 1 Remove WinRunner installation folder\classes and WinRunner installation
folder\classes\srv from the classpath.

Disabling or Uninstalling the Java Add-in

Java Add-in Installation and User’s Guide Chapter 4, page 40

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Uninstalling the Java Add-in

To uninstall the Java Add-in:

 1 Select Programs > WinRunner > Java Add-in > Uninstall Java Add-in from
the Start menu.

Note: Alternatively, you may select Java Add-in from the Add/Remove Programs
dialog box (My computer > Control Panel > Add/Remove Programs).

 2 A message asks you to confirm that you want to remove the Java Add-in and all
of its components. Click Yes.

 3 When the uninstall process is complete, click OK.

 4 If you selected the Java Plug-in environment during installation of the Java Add-
in, go to Plug-in installation folder\plug\lib\bak. Move the rt.jar file to the lib folder
and delete the bak folder.

Disabling or Uninstalling the Java Add-in

Java Add-in Installation and User’s Guide Chapter 4, page 41

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 5 Remove the path WinRunner installation folder\classes and the path WinRunner
installation folder\classes\srv from the classpath.

• If you are working in Windows NT 4.0, from the Start menu select Settings >
Control Panel > System from the Start menu. In the System properties
dialog box, click the Environment tab. In both the System Variables list and
the User Variables list, delete WinRunner installation folder\classes from the
classpath. For example, c:\program files\WinRunner\classes. Click Close.

• If you are working in Windows 95 or Windows 98, open the file [Windows
Drive]:\autoexec.bat in any editing program. Delete WinRunner installation
folder\classes from the classpath. For example, c:\program
files\WinRunner\classes. Save and close the file, and reboot your computer.

The Java Add-in is now completely uninstalled.

Java Add-in Installation and User’s Guide page 42

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Part II

Working with the Java Add-in

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 43

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

5
Testing Standard Java Objects

This chapter explains how to activate the Java Add-in and describes how to

record standard Java objects and enhance scripts that test Java applets and

applications.

This chapter describes:

• Activating the Java Add-in

• Recording Context Sensitive Tests

• Enhancing Your Script with TSL

• Invoking a Java Method

• Configuring How WinRunner Learns Object Descriptions and Runs Tests

• Activating a Java Edit Object

About Testing Standard Java Objects

With the Java Add-in, you can record or write context sensitive scripts on all

standard Java objects from the supported toolkits in Netscape, Internet Explorer,

AppletViewer, or a standalone Java application.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 44

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Activating the Java Add-in

Before you begin testing your Java application or applet, make sure that you have

installed all the necessary files and made any necessary configuration changes. For

more information, refer to Chapter 2, Setting Up the Java Add-in.

To activate the Java Add-in:

 1 Select Programs > WinRunner > WinRunner in the Start menu. The Add-in
Manager dialog box opens.

 2 Select Java.

 3 Click OK. WinRunner opens with the Java Add-in loaded.

For more information on the Add-in Manager, refer to the WinRunner User’s Guide.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 45

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Recording Context Sensitive Tests

Once you start WinRunner with the Java Add-in active, then the Java environments

you selected during installation will always open with Mercury Java support active.

For more information about selecting Java environments see page 14.

You can confirm that your Java environment has opened properly by viewing the

Mercury confirmation message in the Java console.

Note: If you are running your tests from a browser with a Java plug-in, then opening
the Java console opens a second virtual machine and WinRunner cannot run tests
when 2 virtual machines are open. Close the browser and console and then re-open
the browser before running the tests.

If your Java application or applet uses standard Java objects from any of the

supported toolkits, then you can use WinRunner to record a Context Sensitive test in

Netscape, Internet Explorer, AppletViewer or a standalone Java application, just as

you would with any Windows application.

As you record, WinRunner adds standard Context Sensitive TSL statements into the

script. If you try to record an action on an unsupported or custom Java object,

WinRunner records a generic obj_mouse_click or win_mouse_click statement.

You can configure WinRunner to recognize your custom objects as push buttons,

check buttons, static text or edit fields by using the Java Custom Objects wizard. For

more information, refer to Chapter 6, Configuring Custom Java Objects.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 46

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Enhancing Your Script with TSL

WinRunner includes several TSL functions that enable you to add Java-specific

statements to your script. Specifically, you can use TSL functions to:

• Invoke a Java method.

• Set the value of a Java bean property.

• Configure the way WinRunner learns object descriptions and runs tests on Java
applets and applications.

• Send the ENTER key as the parameter to the specified Java object.

For more information about TSL functions and how to use TSL, refer to the TSL

Reference Guide or the TSL Online Reference.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 47

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Invoking a Java Method

You can invoke the a Java method for a specific object using the

java_activate_method function. This function has the following syntax:

java_activate_method (object, method, retval [, param1, ... param8]);

The object parameter is the logical name of the object. The method parameter
indicates the name of the Java method to invoke. The retval parameter is an
output variable that holds a return value from the invoked method. Note that this
parameter is required even for void Java methods. param1..8 are the parameters
to be passed to the Java method. All of the java method parameters, including
retval, must belong to one of the following Java types: Boolean, boolean, Integer,
int, or String.

Note: If the function returns Boolean or boolean output, the retval parameter will
return the string representation of the output: “true” or “false”.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 48

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

For example, you can use the java_activate_method function to perform actions on

a list:

Add item to the list at position 2:
java_activate_method("list", "add", retval, "new item", 2);

Get number of visible rows in a list:
java_activate_method("list", "getRows", rows);

Check if an item is selected:
java_activate_method("list", "isIndexSelected", isSelected, 2);

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 49

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Setting the Value of a Java Bean Property

You can set the value of a Java bean property with the obj_set_info function. This

function works on all properties that have a set method. The function has the following

syntax:

obj_set_info (object, property, value);

The object parameter is the logical name of the object. The object may belong to any
class. The property parameter is the object property you want to set. Refer to the
WinRunner Users Guide for a list of properties. The value parameter is the value that
is assigned to the property.

Note: When writing the property parameter name in the function, convert the capital
letters of the property to lowercase, and add an underscore before letters that are
capitalized within the Java bean property name. Therefore the Java bean property,
MyProp becomes my_prop in the TSL statement.

For example, for a property called MyProp, which has method setMyProp(String), you

can use the function as follows:

obj_set_info(object, my_prop, "Mercury");

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 50

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

The obj_set_info function will return ATTRIBUTE_NOT_SUPPORTED for the
property, my_prop if one of the following statements is true:

• The object does not have a method called setMyProp.

• The method setMyProp() exists, but it has more than one parameter, or the
parameter does not belong to one of following Java classes: String, int, boolean,
Integer or Boolean.

• The value parameter is not convertible to one of the above Java classes. For
example, the method gets an integer number as a parameter, but the function's
value parameter was a "non numeric value".

• The setMyprop() method throws a Java exception.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 51

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring How WinRunner Learns Object Descriptions
and Runs Tests

You can configure how WinRunner learns descriptions of objects, records tests, and

runs tests on a Java applet or application with the set_aut_var function. The function

has the following syntax:

set_aut_var (variable, value);

The following variables and corresponding values are available:

EDIT_REPLAY_MODE Controls how WinRunner performs actions on edit
fields. Use one or more of the following values:

“S”-uses the setValue () method to set a value of the
edit object.

“P”-sends KeyPressed event to the object for every
character from the input string.

“T”-sends KeyTyped events to the object for every
character from the input string.

“R”-sends KeyReleased event to the object for
every character from the input string.

Default value: “PTR”.

Note that the default action sends a triple event to
the edit field (KeyPressed-KeyTyped-
KeyReleased).

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 52

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

EVENT_MODEL Sets the event model that will be used to send
events to the AUT objects. Use one of the following
values:

“NEW”-for applications written in the new event
model

“OLD”-for applications written in the old even model

“DEFAULT”- Uses the OLD event model for AWT
objects and NEW for all other toolkit objects.

Default value: "DEFAULT"

MAX_TEXT_DISTANCE Sets the maximum distance in pixels, to look for
attached text.

Default value: 100

REPLAY_INTERVAL Sets the processing time in milliseconds between
the execution of two functions.

Default value: 200

RETRY_DELAY Sets the maximum time in milliseconds to wait
before retrying to execute a command.

Default value: 1000

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 53

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

SKIP_ON_LEARN Controls how WinRunner learns a window. Mercury
Interactive classes listed in the variable are ignored.
May contain a list of Mercury Interactive classes,
separated by spaces. By default, only non-“object"
objects are learned.

Default value: "object"

TABLE_RECORD_MODE Sets the record mode for a table object (CS or
ANALOG).

“CS”: indicates that the record mode is Context
Sensitive.

“ANALOG”: records only low-level (Analog) table
functions: tbl_click_cell, tbl_dbl_click_cell, and
tbl_drag. (JFC JTable object only).

Default value: “CS”

COLUMN_NUMBER Minimum number of columns for an Oracle table to
be considered a table object. Otherwise the edit
fields are treated as separate objects.

Default value: 2

MAX_COLUMN_GAP The maximum number of pixels between objects in
a table to be considered a column.

(Oracle only)

Default value: 12

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 54

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

MAX_LINE_DEVIATION The maximum number of pixels between objects to
be considered to be on a single line. (Oracle only)

Default value: 8

MAX_LIST_COLUMNS The maximum number of columns in an Oracle LOV
object to be considered a list. A larger number
constitutes a table. (Oracle only)

Default value: 99

MAX_ROW_GAP The maximum number of pixels between objects to
be considered one table row. (Oracle only)

Default value: 12

RECORD_BY_NUM Controls how items in list, combo box, and tree view
objects are recorded. The variable can be one of the
following values: list, combo, tree, or a combination
separated by a space. If one of these objects has
been detected, numbers are recorded instead of the
item names.

Testing Standard Java Objects

Java Add-in Installation and User’s Guide Chapter 5, page 55

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Activating a Java Edit Object

You can activate an edit field with the edit_activate function. This is the equivalent of

a user pressing the ENTER key on an edit field. This function has the following syntax:

edit_activate (object);

The object parameter is the logical name of the edit object on which you want to
perform the action.

For example, if you want to enter John Smith into the edit field, "Text Fields_0", then
you can set the text in the edit field and then use edit_activate to send the activate
event as in the following script:

set_window("swingsetapplet.html", 8);
edit_set("Text Fields:_0", "John Smith 2");
edit_activate("Text Fields:_0");

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 56

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

6
Configuring Custom Java Objects

This chapter explains how to add Java objects to the GUI map and to configure

custom Java objects as standard GUI objects.

This chapter describes:

• Adding Custom Java Objects to the GUI Map

• Configuring Custom Java Objects with the Custom Object Wizard

About Configuring Custom Java Objects

With the Java Add-in you can use WinRunner to record test scripts on most Java

applications and applets, just like you would in any other Windows application. If

you record an action on a custom or unsupported Java object, however,

WinRunner maps the object to the general object class in the WinRunner GUI

map. When this occurs, you can use the Custom Object wizard to configure the

GUI map to recognize these Java objects as a push button, check button, static

text or text field. This makes the test script easier to read and makes it easier for

you to perform checks on relevant object properties.

After using the wizard to configure a custom object, you can add it to the GUI map,

record actions and run it as you would any other WinRunner test.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 57

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Adding Custom Java Objects to the GUI Map

Once the Java Add-in is loaded, you can add custom Java objects to the GUI map

by recording an action or using the GUI Spy to learn the objects. By default, however,

these objects will each be mapped to the general object class, and activities

performed on those objects will generally result in generic obj_mouse_click or

win_mouse_click statements. The objects will usually be identified in the GUI map

by their label property, or if WinRunner does not recognize the label, by a numbered

class_index property.

For example, suppose you wish to record a test on a sophisticated subway routing

Java application. This application lets you select your starting location and

destination, and then suggests the best subway route to take. The application allows

you to select which bus line(s) you prefer to use for your travels.

Since WinRunner cannot recognize the custom Java check boxes as GUI objects,

when you check one of the options, the GUI map defines the objects as:

{
class: object,
label: "M (Nassau St Express)"
}

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 58

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

If you were to record a test in which you selected the “M”, “A” and “Six” lines as your
preferred lines, WinRunner would create a test script similar to the following:

set_window("Line Selection", 1);
obj_mouse_click("M (Nassau St Express)", 6, 32, LEFT);
obj_mouse_click("A (Far Rockaway) (Eighth Av...", 10, 30, LEFT);
obj_mouse_click("Six (Lexington Ave Local)", 5, 27, LEFT);

This test script is difficult to understand. If, instead, you use the Custom Object
wizard in order to associate the custom objects with the check button class,
WinRunner records a script similar to the following:

set_window("Line Selection", 8);
button_set("M (Nassau St Express)", ON);
button_set("A (Far Rockaway) (Eighth Av...", ON);
button_set("Six (Lexington Ave Local)", ON);

Now it is easy to see that the objects in the script are check buttons and that the
user selected (turned ON) the three check buttons.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 59

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Configuring Custom Java Objects with the Custom Object Wizard

You configure a custom Java object in WinRunner using the Custom Object wizard

in order to assign the object to a standard GUI class and to object properties which

will uniquely identify the object.

To configure a Java object using the Custom Object wizard:

 1 Open your Java application containing custom Java objects.

 2 Choose Tools > Java GUI Map Configuration. The Custom Object Welcome
screen opens. Click Next.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 60

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Click the Mark Object button. Point to an object in the Java application. The object
is highlighted. Click any mouse button to select the object. A default name appears
in the Object class field.

 4 Click the Highlight button if you want to confirm that the correct option was
selected. The object you selected is highlighted.

 5 If you want to select a different object, repeat steps 3 and 3. When you are satisfied
with your selection, click Next.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 61

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 6 Select a standard class object for the object you selected. Click Next.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 62

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 7 Select an appropriate custom property and corresponding property value from the
property list on the right to uniquely identify the object, or accept the suggested
property and value.

If you selected check_button as the standard object, two custom properties are
necessary. After selecting the first property, click Next Property to select the
second property for the object. Click Next.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 63

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 8 If you wish to learn another custom Java object, click Yes. The wizard returns to the
Mark Custom Object screen. Repeat steps 3-6 for each custom object you want to
configure. If you are finished configuring custom Java options, click No.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 64

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 9 The Finish screen opens. Click the Finish button to close the Custom Object
wizard.

Configuring Custom Java Objects

Java Add-in Installation and User’s Guide Chapter 6, page 65

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 10 Close and reopen your Java application or applet in order to activate the new
configuration for the object(s).

Note: The new object configuration settings will not take effect until the Java
application or applet is restarted.

Once you have configured a custom Java option using the Custom Object wizard,
you can add the objects to the GUI map or record a test as you would in any
Windows application. For more information on the GUI map and recording scripts,
refer to the WinRunner User’s Guide.

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 66

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

7
Using Java Direct Call (JDC) Mechanism

This chapter explains how to use the Java Direct Call (JDC) Mechanism to call

Java functions from TSL scripts.

This chapter describes

• Using the JDC Mechanism

• Preparing a TSL Script for use with JDC

• Using JDC: An Example

About Java Direct Call Mechanism

JDC enables you to specify a Java function to execute from the TSL script. This

user-defined Java function may contain any standard Java code.

Unlike the java_activate_method function described in Chapter 5, Testing

Standard Java Objects, JDC functions work on Java applications that do not

have any Java User Interface object bound to them. These functions can retrieve

string parameters provided in TSL.

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 67

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Using the JDC Mechanism

You can call use standard Java code to call a Java function from a TSL script.

To enable the JDC mechanism:

 1 Create a Java class listing and implementing all methods to be called from the
TSL script.

All methods must follow the prototype convention:

public int jdc_< func_name >(String [] params);
func_name a name of the function

params an array of parameters passed from WinRunner.

 2 Register JDC class(es) with WinRunner by using the following TSL statement:

set_aut_var("JDC_CLASSES", "foo.bar.class1;foo.bar.class2");

Note: You can create as many JDC classes as required. JDC classes must be
found in the CLASSPATH.

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 68

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 3 Provide an "extern" definition for the JDC function in TSL.

For example, if you have defined a JDC function in your Java class as:

public int jdc_print_strings(String[] param);

make the following declaration in TSL:

extern int jdc_print_strings(in string p1, in string p2);

When calling Java, param[0] will contain p1 and param[1] will contain p2.

 4 Call the JDC function from TSL:

jdc_print_strings("str1", "str2");

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 69

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Preparing a TSL Script for use with JDC

Your TSL script must begin with the function jdc_aut_connect. This function
establishes a connection between WinRunner and Java applications and must
be executed at least once. You use this function as follows:

jdc_aut_connect (in_timeout);

Using JDC: An Example

The example below shows how a user prepares the Java source file with

definitions for two Java functions. Then the user registers the Java functions with

WinRunner so that he can call the Java functions from the TSL script.

Preparing the Java Source File

The following sample Java source file defines 2 Java functions for later use in the

TSL script.

// Sample File of JDC calling mechanism.

public class JdcExample {

/**
 This function will print the first parameter that it
receives to the console

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 70

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

 */
 public static int jdc_simple_call(String[] params) {
 String first_param = params[0];
 System.out.println("jdc_simple_call called: Got parameter: " +

first_param);
 return 0;
 }

 /**
 This function will return the upper case version of the first

parameter string in the second parameter.
 */
 public static int jdc_out_par_call(String[] params) {
 // Convert input parameters
 String in_par = params[0];
 String out_par = params[1];

 System.out.println("jdc_out_par_call called: Got parameter: " +

in_par);
 out_par = in_par.toUpperCase();
 // Prepare output parameters
 params[1] = out_par;
 return 0;
 }
}

Using Java Direct Call (JDC) Mechanism

Java Add-in Installation and User’s Guide Chapter 7, page 71

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Registering JDC with WinRunner and calling Java functions
in the TSL Script

The TSL script segment below shows how to define the “extern” declaration, to
load and register the JDC classes defined in the Java source code, and then to
call the Java functions.

define "extern" declaration
extern int jdc_simple_call(in string str);
extern int jdc_out_par_call(in string str1, out string str2<256>);

load and register JDC classes
set_aut_var("JDC_CLASSES", "JdcExample");
jdc_aut_connect(10);

call JDC functions - this will print the parameter to the Java console
r1=jdc_simple_call("my string");
r2=jdc_simple_call(256);

this will put the Upper Case form of the parameter in the UpperCaseParam var.
r3=jdc_out_par_call("my string", UpperCaseParam);

pause(UpperCaseParam);

Troubleshooting Java Add-in Recording Problems

Java Add-in Installation and User’s Guide Chapter 8, page 72

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

8
Troubleshooting Java Add-in Recording Problems

Once you complete the Java Add-in installation process, you should be able to

successfully record from Netscape, Internet Explorer, or a standalone Java

application.

Handling General Problems Testing Applets

To analyze problems testing applets from Netscape or Internet Explorer:

 1 Perform each of the following checks:

• View the Java console and confirm that one of the following confirmation
messages appears: “Mercury Java support is active” or “Init Mercury support”.

• Confirm that you are able to test your applet with the AppletViewer.

• Run the Java Add-in Verifier in order to verify your Java Add-in installation.

• For more information about running the Java Add-in Verifier, see Verifying
Your Java Add-in Installation on page 26.

 2 If any of the above checks are not successful, close WinRunner and all browsers
and re-install the Java Add-in.

 3 If you still have problems testing applets from Netscape or Internet Explorer, please
contact Mercury Support.

Troubleshooting Java Add-in Recording Problems

Java Add-in Installation and User’s Guide Chapter 8, page 73

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Handling Specific Java Add-in Problems

If you are having specific problems installing or recording, try the relevant

solutions from the following list:

• If the Java Add-in setup program displays the following message:

The Setup program was unable to locate a version of JDK/JRE on this computer.

Map to the installation drive from Network Neighborhood or the Windows
Explorer.

• If the Java console and a Java plug-in are open simultaneously, the Java add-in
support will not function properly as this scenario results in two virtual machines
and WinRunner cannot distinguish between them.

Close the browser and Java console, then re-open the browser and try again.

• If you have JDK 1.1.x installed and you want to test an applet, enter:

AppletViewer <URL address>

• If you have JDK 1.2.x installed and you want to test an applet, enter:

AppletViewer -J-Xbootclasspath:<WinRunner installation folder>\classes;<WinRunner
installation folder>\classes\srv;<Java Add-in installation
folder>\jre\lib\rt.jar;%classpath% <URL address>

Troubleshooting Java Add-in Recording Problems

Java Add-in Installation and User’s Guide Chapter 8, page 74

In

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

Note: To test a Java application running under JDK 1.2.x, you must start the
application with the following line:

java -Xbootclasspath:<WinRunner installation folder>\classes;<WinRunner installation
folder>\classes\srv;<Java installation folder>\jre\ lib\rt.jar;%classpath% <Application
class>

To test Java applets running in AppletViewer under JDK 1.2.x, you must start the
applet with the following line:

AppletViewer -J-Xbootclasspath:<WinRunner installation
folder>\classes;<WinRunner installation folder>\classes\srv;
<Java installation folder>\jre\lib\rt.jar;%classpath% <Applet URL>

• If you have JRE installed and you want to test an application, enter:

jre -cp %classpath% <Application class>
Then check the classpath and verify that it contains the WinRunner installation
folder\classes folder and WinRunner installation folder\classes\srv folder.

• If you have Microsoft JView and you want to set the classpath, use only the
classpath environment variable. Do not use the /cp /cp:p or /cp:a options.

Index

Testing Java Applications and Applets page 75

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

A

activate changes 65
activating an edit field 55
Add-in Manager 44
adding custom Java objects to the GUI map

57–58
AppletViewer 14

C

check button 61, 62
classes

Java 16
local 29
Mercury 16
remote 29
remote and local 29

configuring custom Java objects 56–65
configuring the way WinRunner learns 51
configuring the web server 23
conventions. See typographical conventions
Custom Object Wizard 59–65
custom property 62

D

disabling or uninstalling the Java Add-in
38–41

disabling the Java Add-in temporarily 38

E

edit field 61
edit_activate function 55
ENTER key 55
extern definition 68

G

GUI spy 57

H

highlight 60

I

installation, verifying 26–37
installing the Java Add-in 11–25
Internet Explorer 14
invoking a Java method 47
invoking a java method 47

0
Index

Index

Testing Java Applications and Applets page 76

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

J

Java Add-In package 9
Java Add-in Verifier, launching 27
Java Add-in, starting the 44
Java application 14
Java bean properties, setting the value of 49
Java Direct Call Mechanism 66–71
Java environment(s) 14
java method 47
java method, invoking 47
Java Plug-in 14
Java Wizard 59–65
java_activate_method function 47
JDC 66–71
jdc_aut_connect function 69
JDK 18
JDK detection 30
JInitiator 14
JIT option 31
JRE 18
JView 74

L

local access 17
local classes 29

M

mark object 60
mercury.properties file 38
Microsoft JView 14

N

Netscape 14
no browser 14

O

obj_mouse_click function 45
obj_mouse_click statement 57
obj_set_info function 49

ATTRIBUTE_NOT_SUPPORTED return
value 50

object configuration, activate changes in 65
Oracle 14

P

patch browser 17
program folder 21
push button 61

Index

Testing Java Applications and Applets page 77

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

R

registering JDC classes with WinRunner 67
remote classes 29

S

sending the ENTER key 55
set_aut_var 51
set_aut_var function

COLUMN_NUMBER variable 53
EDIT_REPLAY_MODE variable 51
EVENT_MODEL variable 52
MAX_COLUMN_GAP variable 53
MAX_LINE_DEVIATION variable 54
MAX_LIST_COLUMNS variable 54
MAX_ROW_GAP variable 54
MAX_TEXT_DISTANCE variable 52
RECORD_BY_NUM variable 54
REPLAY_INTERVAL variable 52
RETRY_DELAY variable 52
SKIP_ON_LEARN variable 53
TABLE_RECORD_MODE variable 53

setting the value of a Java bean property 49
setup program, running the 12
standard class object 61
static text 61
system requirements 10

T

troubleshooting
handling specific Java Add-in problems 73
Java Add-in recording problems 72–74
Java Add-in setup 73
Java console 73
JDK/JRE 73
JView 74
testing applets 72

TSL functions, using with Java applications and
applets 43–55

typographical conventions in this guide 7

U

uninstall Java Add-in 38–41
uninstall Java Add-in, how to 40

V

variables, for set_aut_var 51–54
Verifier

report 37
Verifier, launching 27
verifying your Java Add-in installation 26–37

Index

Testing Java Applications and Applets page 78

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Back

Find

Find

Help

Chapter
Top of

Books
Online

 Again

W

win_mouse_click function 45
win_mouse_click statement 57

In

Find

Books
Online

 Again

Find

Help

Back

WinRunner - Java Add-in Installation and User’s Guide, Version 6.0

© Copyright 1994 - 1999 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra
SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan,
Fast Scan, and Visual Web Display are trademarks of Mercury Interactive Corporation in the United States
and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRJAVA55IUG6.0/01

	WinRunner® Java Add-in Installation and User's Guide
	Table of Contents
	Welcome to the Java Add-in
	Using this Guide
	Typographical Conventions

	Installing the Java Add-in
	Before You Install
	Checking Your Java Add-In Package
	System Requirements

	Setting Up the Java Add-in
	Running the Setup Program
	Configuring the Web Server
	Modifying Your Selected JDK Version

	Verifying Your Java Add-in Installation
	About the Java Add-in Verifier
	Using the Java Add-in Verifier

	Disabling or Uninstalling the Java Add-in
	Disabling the Java Add-in Temporarily
	Uninstalling the Java Add-in

	Working with the Java Add-in
	Testing Standard Java Objects
	About Testing Standard Java Objects
	Activating the Java Add-in
	Recording Context Sensitive Tests
	Enhancing Your Script with TSL
	Invoking a Java Method
	Setting the Value of a Java Bean Property
	Configuring How WinRunner Learns Object Descriptions and Runs Tests
	Activating a Java Edit Object

	Configuring Custom Java Objects
	About Configuring Custom Java Objects
	Adding Custom Java Objects to the GUI Map
	Configuring Custom Java Objects with the Custom Object Wizard

	Using Java Direct Call (JDC) Mechanism
	About Java Direct Call Mechanism
	Using the JDC Mechanism
	Preparing a TSL Script for use with JDC
	Using JDC: An Example

	Troubleshooting Java Add�in Recording Problems
	Handling General Problems Testing Applets
	Handling Specific Java Add-in Problems

	Index

