
Content Manager
Software Version 9.4

COM SDK

Document Release Date: August 2019
Software Release Date: August 2019

Legal notices

Copyright notice

© Copyright 2008-2019 Micro Focus or one of its affiliates..

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Microsoft, Office, Windows, Windows Vista, Windows 7, Windows 8 and Windows Server are U.S. registered
trademarks of the Microsoft group of companies.

Oracle is a registered trademark of Oracle and/or its affiliates.

Documentation updates
The title page of this document contains the following identifying information:
l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

You can check for more recent versions of a document through the MySupport portal. Many areas of the
portal, including the one for documentation, require you to sign in with a Software Passport. If you need a
Passport, you can create one when prompted to sign in.

Additionally, if you subscribe to the appropriate product support service, you will receive new or updated
editions of documentation. Contact your Micro Focus sales representative for details.

Support
Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l Search for knowledge documents of interest
l Access product documentation
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts
l Submit and track service requests
l Contact customer support
l View information about all services that Support offers

Many areas of the portal require you to sign in with a Software Passport. If you need a Passport, you can
create one when prompted to sign in. To learn about the different access levels the portal uses, see the
Access Levels descriptions.

COM SDK

Content Manager (9.4) Page 2 of 101

https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Content Manager COM SDK 5
Using the Content Manager COM SDK 6

Technical Prerequisites and Assumptions 6
Using Content Manager COM SDK with .NET Applications 6
A Short History of the COM SDK 8

What is the Content Manager COM SDK? 10
Better Building Blocks 10
Hear, Say 10
ActiveX Controls (TSJOCX.DLL) 11

The Content Manager Object Model 12
Objects and Interfaces 12
Generic Interfaces 12
Methods and Properties 14

Using the Content Manager Object Model 16
DatabaseObject 16
Working with BaseObjects 16
WorkingWith Collections of BaseObjects 18
WorkingWith Child Objects 19
Object Properties 23
Acting on Content Manager Events 26

Common Scenarios – Code Samples 31
Connecting to a Database 31
Accessing a Record 38
Updating Records 41
Verifying 43
Trapping Run-Time Errors 53
Creating a Container File 68

General Code Examples 76
Checking Out a Document 91
Checking In a Document 93
Working with Locations 94

Reference 101
Objects 101

COM SDK

Content Manager (9.4) Page 3 of 101

Page 4 of 101Content Manager (9.4)

COM SDK

Content Manager COM SDK

This document describes the Component Object Model Software Development Kit (COM SDK) for
Content Manager. It provides an introduction to the design and content of the COM SDK, it gives
instructions and guidance for using the various tools and objects, and is the logical starting point for the
COM SDK documentation suite.

For those wanting to understand the capabilities of the COM SDK, this document can be read on its
own. For those intending to use the COM SDK, it serves as an orientation and introduction. For a
complete technical understanding, you can add a reference to the COM SDK (TRIMSDK.DLL) into the
object browser of your chosen Integrated Development Environment (IDE), where you will be able to
access detailed helpstrings for each object, method and property within the COM SDK.

Effective integration of Content Manager with other applications using the COM SDK requires a
technical understanding of it’s tools, as well as a user perspective of the Content Manager application
in general and (most importantly) a business understanding of the particular implementation of Content
Manager and any other application for which an integration is required.

COM SDK

Content Manager (9.4) Page 5 of 101

Using the Content Manager COM SDK

Technical Prerequisites and Assumptions

As the name implies, the Content Manager COM SDK components are based onMicrosoft's
Component Object Model (COM) standard. This documentation assumes the reader is a programmer
with an understanding of COM programming principles, the structure of COM-compliant object models
(i.e. objects, interfaces, methods and properties) and some experience of using a COM-compliant
programming language such as Visual Basic or C++. The code examples in the documentation are in
Visual Basic as well as C#, although any COM-compliant language can be used. The Visual Basic
examples are tested using the Visual Basic 6 compiler, while the C# examples are tested using
Microsoft Visual Studio .NET 2013, requiring the .NET Framework Version 4.5.

Using Content Manager COM SDK with .NET Applications

The Primary Interop Assembly (TRIMPIA20.DLL) for the COM SDK (TRIMSDK.DLL) is no longer
shipped with Content Manager. It is possible for developers wishing to access this SDK using .NET
languages to add a reference to the COM SDK and create their own Secondary Interop Assembly,
although they are encouraged to use the native .NET SDK (HP.HPTRIM.SDK.DLL) instead.

For programmers who wish to write a .NET application using the COM SDK, they need to run theCM_
COMComponents_x86.msi orCM_COMComponents_x64.msi file to register the COM SDK.

1. With elevated user rights, from the installationmedia, runCM_COMComponents_x86.msi or
CM_COMComponents_x64.msi file. TheWelcome dialog appears.

2. Click Next. The License Agreement dialog appears.

COM SDK

Content Manager (9.4) Page 6 of 101

3. Select I accept the license agreement and click Next.

The Destination Folder dialog appears.

4. Click Next to keep the default installation folder (recommended).

The Ready to Install the Application dialog appears.

5. Click Next. The Updating System dialog appears.

COM SDK

Content Manager (9.4) Page 7 of 101

The setup status dialog is displayed.

6. Click Finish to exit the setup wizard.

A Short History of the COM SDK

In the early days of the Content Manager (previously known as TRIM Records & Document
Management – from creation up to version 4.1 and Records Manager), it was generally not possible to
programatically access the TRIM Database without resorting to writing SQL. This was no easy task.
The programmer had to fully understand the data schema and the complex data relationships to
translate a user's requirement into a set of SQL statements. It was evenmore daunting if any data was
to bemodified, as it was necessary for the programmer to understand the application business rules to
avoid corrupting the Database.

To help clients avoid these pitfalls, when version 4.2 of TRIM was released in 1997, it included an extra
program that gave programmatic access to some of the internal application functionality through an
small subset of functions labelled the TRIM API. By using this API instead of SQL to access the TRIM
data, the business rules were automatically applied and therefore the Database integrity was
preserved. The TRIM 4.3 release expanded the capabilities of the API, exposingmore of TRIM's
underlying functionality and thereby enabling a wide variety of integration possibilities with other
applications. The business opportunities that this created has ensured that this version of the API has
been widely used as a successful means of seamlessly integrating TRIM data and functionality into
other applications. The TRIM 4.3 API was an out-of-process COM Automation server, implemented in
a file called "tsapi.exe".

In the version 5.0 release of TRIM, the application has been given amajor design overhaul, creating a
more robust, scalable enterprise architecture and a brand new look-and-feel. As this was a "from-the-
ground-up" redevelopment, the API was replaced by a comprehensive library of functions known as the
Software Development Kit. For the first time, most of the TRIM business functions can be accessed

COM SDK

Content Manager (9.4) Page 8 of 101

programatically. This gives the programmer vastly more control over the application and far greater
scope for integration than was previously possible.

Since version 6.0 of TRIM, new in-process server (HP.HPTRIM.SDK.DLL) has been added for .NET
solutions. This is covered in separate document.

TRIM and Records Manager are now referred to as Content Manager.

COM SDK

Content Manager (9.4) Page 9 of 101

What is the Content Manager COM SDK?

The Content Manager COM SDK is a suite of tools that allow programmers to create custom solutions,
services and integrated applications by leveraging the functionality of Content Manager using COM.
These tools give Content Manager clients and third-party integrators the opportunity to ERDM-enable
line-of-business applications, to create custom document-centric applications, and to increase the
return-on-investment of an organisation's information assets, such as Classification systems,
controlled vocabularies, and knowledge repositories.

The COM SDK is an in-process server implemented in a dynamic link library (DLL) file. This method of
implementationmeans that the COM SDK is loaded into the samememory space as the application
that invokes it. The result is fast execution of methods, and it also enables a number of separate
applications to work with different Databases through the same component.

At the core of the COM SDK is a comprehensivemodel of all business objects in Content Manager. All
data fields associated with these objects are exposed as properties through the COM SDK, and
various methods are provided to implement common application functionality. With very few
exceptions, it is possible to programmatically access via the COM SDK all aspects of Content
Manager that are available through the client user interface.

The security model is common to both the COM SDK and the Content Manager client application –
therefore any custom process that calls the COM SDK must connect to the Database using the current
user's login, and this user's Content Manager security profile determines the extent of data and
functionality that the process can access.

Better Building Blocks

Content Manager has been designed in such a way that all the business objects used in the application
are automatically exposed. This means that using the Content Manager COM SDK is very efficient,
and all the same underlying objects and properties that the application's programmers use to build the
Content Manager user interface are also available to third-party programmers via the COM SDK.

Hear, Say

As an Automation server, the Content Manager COM SDK defines themethods and properties that an
Automation client (a program ormacro) can invoke. Another way of thinking of this is that the COM
SDK is the set of questions that Content Manager can answer, and the commands that it will obey.

The client and server relationship is sometimes called themaster/slave relationship: the former does all
the talking, and the latter does all the doing (and does not speak until spoken to).

The COM SDK also includes a special class called TRIMEventProcessor. This is an outbound
interface, meaning that Content Manager calls methods on this interface in response to events that
occur within Content Manager. The integration programmer can write code that implements these
methods, and therefore can execute code in a server process in response to actions in the Content
Manager client.

COM SDK

Content Manager (9.4) Page 10 of 101

ActiveX Controls (TSJOCX.DLL)

The Content Manager client installation includes a number of ActiveX controls contained in amodule
called TSJOCX.DLL. Whilst this module continues to ship with Content Manager, the use of the
controls within it will be on an “at your own risk” basis andMicro Focus no longer provides ongoing
support andmaintenance for these controls.

COM SDK

Content Manager (9.4) Page 11 of 101

The Content Manager Object Model

Objects and Interfaces

To understand how objects in the Content Manager COM SDK are used, youmust have a basic
understanding of objects and interfaces, and how they are used in the Component Object Model,
otherwise known as COM. Interfaces are the key to understanding COM, and directly affect the way
COM objects in the SDK (and other COM-based object models) are used in code.

An object is an instance of a class, where a class is some common type of entity in an application.
Typical classes of objects in the Content Manager application are Records, Record Types and
Locations. Each class of object has properties, which represent the named data attributes that are
present on each instance of the class.

Generic Interfaces

In the Content Manager COM SDK, there are certain common interfaces that are implemented by many
different objects, in addition to the object's own default interface. The benefit of this is that different
types of objects can be treated polymorphically, using the common interface. It also allows
extensibility of the COMSDK, such that new types of objects can be introduced in later versions,
without breaking the existing interface.

The common interfaces in the Content Manager COM SDK are:

Interface Implemented By

IBaseObject Any objects that can be created and deleted independently.

IBaseChildObject Any object that can only exist as a 'child' of a Base object.

IBaseObjects Any collection of Base objects.

IBaseChildObjects Any collection of Base Child objects.

Which common interface is implemented depends on the type of object, i.e. whether it is considered a
BaseObject or a Child Object (or a collection of either of the two).

Base Objects

A BaseObject is any first-order entity in the Content Manager Database. It exists independently of
other objects (although it may be related tomany objects) and can be explicitly created or deleted by a
user with the appropriate authority.

Examples of base objects are Records, Locations, Record Types, Keywords, Schedules, Document
Stores, andmany others.

COM SDK

Content Manager (9.4) Page 12 of 101

BaseObjects are also called 'persistent' objects because they persist after the program code that
manipulates them is not executing (that is, the data for the object can be saved in the Content Manager
Database and retrieved later to recreate the object).

All BaseObjects have an internal Unique Row Identifier (URI) that uniquely identifies different objects
of the same type, andmost have a corresponding unique name or other identifier (such as Record
Number) that is visible to the user. Whenever a persistent object is modified in the SDK, youmust call
a 'Save' method on the object to commit the changes to the Content Manager Database.

Child Objects

Child objects, on the other hand, only exist as a dependent of another object.

Examples of Child objects are Requests (children of a Record), Addresses (children of a Location), and
Lookup Items (children of a Lookup Set).

Generally speaking, child objects are created indirectly, as a result of performing some task on a base
object or a dependent collection object.

Some child objects represent a relationship between Base objects, such as Record Locations, Record
Keywords, and Related Records. Adding or removing child objects does not directly affect the 'parent'
Base objects (for example, the AttachedKeyword object represents a Keyword (from the Thesaurus)
associated with a particular Record). Each instance of this object defines a relationship between a
Record object and a Keyword object, but if the AttachedKeyword instance is removed, the Record and
the Keyword objects themselves are unaffected.

Because of the dependence upon the parent object, child objects cannot be independently saved, but
the data they contain is persisted when the parent object is saved.

Collections

Collections are a special class of objects that are used to temporarily hold andmanipulate a set of
several objects of the same type. They have a standard interface that allows the programmer to access
the items in the collection directly by index position or to iterate through the collection sequentially. The
standard convention in the SDK is that a collection object takes the plural name of the type of object
that it contains (for example, the Locations collection is used to holdmultiple Location objects).

If a given object implements the IBaseObject interface, then the Collection of those objects will
implement the IBaseObjects interface. Similarly, if a given object implements the IBaseChildObject
interface, then the Collection of those objects will implement the IBaseChildObjects interface.

Collections for Base and Child Objects

Dependent or Child objects are those that can bemanipulated like other objects in the SDK but which
cannot be independently created or saved. These are usually dependent upon one or more persistent
objects in the Database, and often represent relationships rather than tangible objects. Typically, Child
objects are held in collections that are accessed via a property of their parent object.

An example of a dependent collection is the AttachedKeywords collection. This can be used like any
other collection object to navigate to the keywords it contains. However, even though the collection can
bemodified (by adding or removing relationships between keyword terms and the record), it is not

COM SDK

Content Manager (9.4) Page 13 of 101

independently saved. The information that the child collection represents is saved when the object on
which it is dependent is saved. In the case of the AttachedKeywords example, the relationship
between the record and the AttachedKeyword is saved in the Record object.

Methods and Properties

In the previous section we discussed the relationship between objects in the Object Model, and how
objects implement predefined interfaces. Each interface is defined as a specific set of methods and
properties, and it is through these that the object provides its functionality and data.

The definition of eachmethod and property is provided in the reference section of this documentation.
However, most object classes can be used according to generic processes, and these are discussed in
the next sections on theObject Model.

Common Properties

Many objects implement Properties with the same names. This makes it easier for the programmer to
learn the object model. Although not all objects implement these properties, themeaning is consistent
for those that do.

Property

Database Returns the Database object that created this object.

Uri Returns the internal number that uniquely identifies this object.

Verified Returns True if the current state of the object's data is valid.

Type Returns the object type for this object (for example, Record, Location etc).

ErrorMessage Returns the description of the last error associated with this object.

Common Methods

As with common Properties, many objects implement Methods with the same (or similar) names.

Method Description

GetProperty Returns the data value of a property identified by a property Id.

SetProperty Sets the data value of a property identified by a property Id.

GetPropertiesAsString Returns the data values of a set of properties for the object, as a string
formatted for the use specified.

Verify Checks the validity of the current state of the object's data.

Save Saves the current state of the object to the Content Manager Database

Delete Deletes the object from the Content Manager Database.

COM SDK

Content Manager (9.4) Page 14 of 101

Interactive Methods

Most methods allow the programmer to automatically perform some sort of data transformation in
Content Manager based on values provided in code. The values may be determined at design-time, or
they may be derived from the user at run-time through the custom application's user interface.
However, sometimes the integrated application requires that the user interacts directly with one or
more Content Manager objects, and therefore requires an Content Manager dialog to be displayed. The
Content Manager object model exposes various methods that allow the programmer to invoke standard
Content Manager dialogs to be displayed to the user.

These interactivemethods must only be called by code running on a client workstation, as most will
invoke amodal dialog, whichmust be explicitly cleared by the user before program execution can
continue.

The interactivemethods of an object are always identified by the suffix "UI" (for User Interface) and will
always take a ParentHWND parameter, which is a handle to the window object that will be the parent
of the dialog. (Windows requires this to know how the dialog should behave when the user switches
between running applications). In the Visual Basic development environment, the global property hWnd
will always contain a handle to the current active window, and can therefore be used as the argument
for the ParentHWND parameter. If the parent window handle is not able to be determined, you can pass
a "0" instead, in which case Content Manager will place the dialog in front of the current foreground
window of the current application. It is also possible to force a null parent for the dialog by passing a
handle of "–1". This will force the dialog to be a top level desktop window.

COM SDK

Content Manager (9.4) Page 15 of 101

Using the Content Manager Object Model

Database Object

The Database object is the top-level object in the Content Manager object model hierarchy. It is
generally the first object to be created when using the Content Manager COM SDK.

Becausemost objects in Content Manager can only exist in the context of a Database, the Database
object is used for accessing and creating all other persistent business objects in the Content Manager
COM SDK. These objects are dependent upon the Database object and cannot be created
independently.

NOTE:
There are certain helper objects in the object model that do not need a Database, such as
InputDocument, ExtractDocument, SignatureTool and EnumHelper.

Working with Base Objects

Accessing Persistent Objects

There are generally two ways to access existing persistent objects in the Content Manager Database.
Themost reliable way is to use the object's URI, as this is guaranteed to uniquely identify the object.
The alternative is to use the object's Name – inmost cases this is also unique, but the name of an
object can change after it is created, whereas the URI cannot.

The Database object has a number of methods for accessing different objects by their URI or Name, all
taking the form:

Get<object> (LookForValue as Variant) As <object>

To instantiate an existing object, youmust follow these steps:

1. Declare an object variable of the appropriate object type.

2. Determine the Name or URI of the object to be instantiated.

3. From aDatabase object, call the appropriate Get<object> method, passing the URI or Name as
an argument to themethod.

4. If the identifier is valid, the instantiated object will be returned by themethod and assigned to the
object variable.

COM SDK

Content Manager (9.4) Page 16 of 101

The following sample code instantiates an existing record object with a Record Id of "RP95/1".

In Visual Basic

In Visual Basic' Declare the object variable

Dim objRecord As TRIMSDK.Record

Dim vntRecId As Variant

' Determine the identifier

vntRecId = "RP95/1"

' Call Get… to instantiate the object

Set objRecord = objTRIM.GetRecord (vntRecId)

' Check that a record with this record number was found

If objRecord Is Nothing Then

Msgbox "Record ID not found or not accessible due to security."

End If

In C#

// Determine the identifier

string vntRecId = "RP95/1";

// Call Get… to instantiate the object

TRIMSDK.Record objRecord = db.GetRecord(vntRecId);

// Check that a record with this record number was found

if (objRecord == null)

{

MessageBox.Show("Record ID not found or not accessible due to security.");

}

Creating a New Object

All primary persistent objects can be created from the SDK viamethods on the Database object. The
format of thesemethods is "New<Objectname>".

A New<object> method returns a new instance of the specified object type. This object contains only
default information relating to the object type to begin with, and its properties must be set by code (or by
interaction with the user). Calling the "Save" method on the object commits the data to the Database.

The process for creating new objects is therefore as follows:

1. Define an object variable of the type <Object>.

2. On a Database object, call one of the NewObject methods (The return value is the new object).

COM SDK

Content Manager (9.4) Page 17 of 101

3. Set the properties of the <Object> variable, or call methods on it to set its data.

4. Call the Savemethod on the <Object> variable.

The following sample code create a new Keyword (Thesaurus Term) object.

In Visual Basic

' Declare the object variable

Dim objKeyword As TRIMSDK.Keyword

' Call New… to instantiate the object

Set objKeyword = objTRIM.NewKeyword

' Set properties

objKeyword.Name = "Example"

objKeyword.TopTerm = True

' Save to the Database

objKeyword.Save

In C#

// Declare the object variable and call New… to instantiate the object

TRIMSDK.Keyword objKeyword = db.NewKeyword();

// Set properties

objKeyword.Name = "Example";

objKeyword.TopTerm = true;

// Save to the Database

objKeyword.Save();

Working With Collections of Base Objects

Collections (of BaseObjects) are used tomanage related groups of objects of the same type.
Collections have several standardmethods for iterating through the individual objects, andmost have
additional methods for selecting objects to be included in the collection based on specific criteria.

When a collection is created it is always empty. Youmust call methods on the collection to select
object items to be included in the collection, based on criteria such as names or URIs. When the
collection contains object items, you can call methods that act upon the collection as a whole, such as
displaying the collection to the user, making a reference to the collection or printing the items in a
Report.

The process for creating and working with collections is as follows:

1. Define an object variable of the type <Objects>.

2. On a Database object, call one of the "Make<Objects>" methods.

COM SDK

Content Manager (9.4) Page 18 of 101

3. Add items to the collection using a "Select…" method, or allow the user to search for items using
the RefineUI method (if implemented on this collection type).

4. Call methods tomanipulate the collection as a group (see table below of common collection
methods), if required.

5. To access individual objects in the collection, call ChooseOneUI (user selection), Next
(sequential access), or Item (indexed access). Each of these will return an instantiated object of
the collection's type.

The following sample code allows the user to choose a single Record Type from all the Record Types
in the Database.

In Visual Basic

Dim colRecTypes As RecordTypes

Dim objRecType As RecordType

Set colRecTypes = objTRIM.MakeRecordTypes

Call colRecTypes.SelectAll

Set objRecType = colRecTypes.ChooseOneUI(hWnd)

In C#

TRIMSDK.RecordTypes colRecTypes = db.MakeRecordTypes();

colRecTypes.SelectAll();

int hWnd = Handle.ToInt32();

TRIMSDK.RecordType objRecType = colRecTypes.ChooseOneUI(hWnd);

Method Description

SelectAll Fill the collection with all the objects of its type from the Database.

SelectByPrefix Add items to the collection by name prefix.

SelectByUris Add specific items to the collection. Takes an array of object URIs.

other "Select…"
methods

Add items by other criteria. Different collection types will implement different
selectors.

RefineUI Allow the user to select items using a search dialog. Note: Not all collections
provide this method.

Working With Child Objects

Child objects are dependents of base objects, and represent either sub-items of the base object (for
example, Addresses of a Location) or relationships with other base objects (for example, Keywords
attached to a Record).

COM SDK

Content Manager (9.4) Page 19 of 101

The only base objects in the Content Manager Object Model that have Child objects are Records,
Locations and LookupSets (see the Object Model diagram). The names of Record child objects are
prefixed with "Rec", the names of Location child objects are prefixed with "Loc", and the name of the
LookupSet child objects are prefixed with "Cds".

The generic process for working with Child objects is slightly different to that for Base objects. Child
objects always belong to a collection of "children" that is only able to be instantiated from the parent
object. New child objects can be created by calling the New method on the collection, and they can be
deleted by calling the Deletemethod on the child object itself. Any changes to child objects (including
additions and removals) are committed to the Database when the parent object is saved.

The process for instantiating a collection of child objects is as follows:

1. Define a collection object variable of the type <ChildObjects>.

2. Set the collection object variable to receive the value of the <ChildObjects> read-only property on
an instantiated parent (Record, LookupSet or Location) object.

The following sample code instantiates the collection of Attached Keywords for the Record "RP95/1",
and displays them to the user.

In Visual Basic

Dim objRecord As Record

Dim colKeywords As RecKeywords

Set objRecord = objTRIM.GetRecord("RP95/1")

Set colKeywords = objRecord.RecKeywords

Call colKeywords.DisplayUI(hWnd)

In C#

TRIMSDK.Record objRecord = db.GetRecord("RP95/1");

TRIMSDK.RecKeywords colKeywords = objRecord.RecKeywords;

int hWnd = Handle.ToInt32();

colKeywords.DisplayUI(hWnd);

Editing Child Objects

The process for editing an existing child object is as follows:

1. Define an object variable of the type <ChildObject>

2. From an instantiated child collection, set the child object variable to receive the return value of the
GetByUri method, the Item(n) read-only property or the ChooseOnemethod.

3. Edit the properties of (and/or call methods on) the child object variable.

4. Save the parent object.

COM SDK

Content Manager (9.4) Page 20 of 101

The following sample codemodifies the contacts for the Record "G96/201", changing contacts of type
'Other' into type 'Addressee'.

In Visual Basic

Dim colContacts As RecLocations

Dim objContact As RecLocation

Set objRecord = objTRIM.GetRecord("G96/201")

Set colContacts = objRecord.RecLocations

For i = 0 To colContacts.Count - 1 ' NB collections are zero-based

Set objContact = colContacts.Item(i)

If objContact.RecLocType = rlContact _

and objContact.Subtype = ctOther Then

objContact.Subtype = ctAddressee

End If

Next

Call objRecord.Save

In C#

TRIMSDK.Record objRecord = db.GetRecord("G96/201");

TRIMSDK.RecLocations colContacts = objRecord.RecLocations;

TRIMSDK.RecLocation objContact;

for (int i = 0; i < colContacts.Count; i++)

// NB collections are zero-based

{

objContact = colContacts.Item(i);

if (objContact.RecLocType == rlRecordLocationType.rlContact

&& objContact.Subtype == ctContactType.ctOther)

{

objContact.Subtype = ctContactType.ctAddressee;

}

}

objRecord.Save();

COM SDK

Content Manager (9.4) Page 21 of 101

Creating New Child Objects

Not all Child collections support creation of new objects. The RecRevisions collection, for example,
cannot be explicitly added to because its members are only created through the process of checking in
a document as a new revision.

The process for creating a new child object is as follows:

1. Define an object variable of the type <ChildObject>

2. From an instantiated child collection, set the child object variable to receive the return value of the
New method.

3. Edit the properties of (and/or call methods on) the child object variable.

4. Save the parent Record or Location.

NOTE:
However, that in most cases the Record object also provides 'shortcut' methods as an
alternativemeans of creating new child objects, where the properties of the child object are set
through parameters on themethod (for example, the AttachRelationship method creates a new
RecRelationship child object).

(See the table below for the shortcut methods exposed by the Record interface).

Record Method Child Object Created

AttachContact RecLocation

AttachKeyword RecKeyword

AttachRelationship RecRelationship

MakeRequest RecRequest

Deleting Child Objects

Some child objects represent a sub-item of an object (such as a Location Address) that cannot exist
independently of the parent, and deleting the child object therefore permanently deletes the sub-item
from the Database. However, when you delete a child object that represents a relationship between
base items, you are only deleting the relationship, not the item (for example, deleting the RecKeyword
"Marine Animals" from the RecKeywords collection belonging to Record "RP95/2" simply detaches the
keyword from the record).

The process for deleting a child object is as follows:

1. Define an object variable of the type <ChildObject>

2. From an instantiated child collection, set the child object variable to receive the return value of the
GetByUri method, the Item(n) read-only property or the ChooseOnemethod.

COM SDK

Content Manager (9.4) Page 22 of 101

3. Call the Deletemethod on the child object variable.

4. Save the parent object.

Database Independent Objects

There are a number of objects in the object model that are not dependent on a Database object to be
used in the SDK. These objects are:

l InputDocument

l ExtractDocument

l SignatureTool

l EnumHelper

The above of objects are not instantiated through the database object, with a ‘Database.New<object>’
statement. They are simply instantiated on their own, as is any typical object in your IDE.

Object Properties

Overview

The standard data properties of an object are explicitly exposed – that is, there is a named property
representing each predefined value of an object. These properties are strongly typed –meaning that
each has a specific data type (for example, String, Boolean, Long Integer, Date) and the data variable
used to set or get the property valuemust match that type. An object's properties can be accessed
according to the conventions of the automation language you are using.

In Visual Basic (andmost other automation languages), an object property is accessed in the following
way:

strMyValue = objRecord.Title ' read the Title property

objRecord.Title = strMyValue ' update the Title property

(Some automation languages require property values to be accessed through special methods, in
which the property name is prefixed with values such as 'get_' to read and 'put_' to update).

It is also possible to manipulate object properties through generic methods, by using Content
Manager's internal property identifiers to specify a property (see the Property Ids section), and a variant
data type to hold the property's data value. This technique is discussed in the section on the
PropertyDef object.

Reading Properties

You can read the value of an individual Content Manager object property simply by accessing the
property by name. Properties always have a specific data type, and therefore your usage of the
property should be consistent with the property type. A Record object's Title property, for example, is a
String type, whereas the HomeLoc property returns a Location object.

COM SDK

Content Manager (9.4) Page 23 of 101

All Base and Child objects also expose aGetProperty method, and you can call this method to retrieve
a property value as a Variant type. Themethod requires that you pass as a parameter the unique
property identifier for the property you require.

Updating Properties

You can set or update the value of an object property by assigning a value of the correct data type
directly to the property by name.

NOTE:
That some named object properties are read-only, and therefore cannot be updated. The
reference documentation and the object viewer indicate which properties are read-only.

Most objects also expose a SetProperty method, and you can call this method to update the property
value by passing a new value argument as a Variant and the unique property identifier as an integer
value.

User-Defined Properties

In Content Manager, the system administrator can define any number of additional User Defined Fields
to be associated with Content Manager records. The values of these User Defined Fields can be
accessed and updated through the SDK by using the Record object's GetUserField and SetUserField
methods.

Thesemethods pass field values as variant data types, and require a FieldDefinition argument to
specify the desired field. A FieldDefinition object can be instantiated (by name or Uri) using the
GetFieldDefinitionmethod on the Database object.

(See The FieldDefinition Object section).

The PropertyDef Object

Generic handling of properties of all Content Manager objects is managed through the PropertyDef
object and its associated PropertyDefs collection.

A PropertyDef object manages the unique identifier for an object's property, and provides additional
information about the format and structure of the property. It does not, however, contain the data value
of the property.

Individual PropertyDef objects are instantiated by specifying a unique internal property Id (see the
section on Property Ids), or alternatively (andmore easily) by iterating through an instantiated
PropertyDefs collection. The collection is instantiated by calling one of the 'Select…' methods exposed
by the collection, each of which takes an argument identifying a base object type (amember of the
btyBaseObjectTypes enumeration). Thesemethods add property definitions to the collection for the
specified object type, and provide options to select all properties for the object type, all properties
available to the View Pane (or those included on the view pane by default), all modifiable properties or
all properties for a given subgroup.

The following sample code demonstrates the use of a PropertyDefs collection, which is in this case
instantiated using themethod SelectViewPaneItems, passing the Record object type identifier. In a

COM SDK

Content Manager (9.4) Page 24 of 101

loop, a PropertyDef object is used to iterate the collection, and the program outputs each property's
Caption and the string representation of its data value.

In Visual Basic

Private Sub PrintProperties(objRecord As Record)

Dim objProp As New PropertyDef

Dim colProps As New PropertyDefs

Call colProps.SelectViewPaneItems(btyRecord)

For i = 0 To colProps.Count - 1

Set objProp = colProps(i)

Debug.Print objProp.GetCaption(objRecord.Database) & _

" : " & objRecord.GetPropertyAsString(objProp)

Next

End Sub

In C#

private void PrintProperties(Record objRecord)

{

TRIMSDK.PropertyDef objProp = new TRIMSDK.PropertyDef();

TRIMSDK.PropertyDefs colProps = new TRIMSDK.PropertyDefs();

// C# requires specification of default parameters

colProps.SelectViewPaneItems(btyBaseObjectTypes.btyRecord,false);

for (int i = 0; i < colProps.Count; i++)

{

objProp = colProps[i];

Console.WriteLine("{0}:{1}", objProp.GetCaption(objRecord.Database,
false),

objRecord.GetPropertyAsString(objProp, sdStringDisplayType.sdDefault,
false));;

}

}

COM SDK

Content Manager (9.4) Page 25 of 101

The FieldDefinition Object

Content Manager allows a large number of User Defined Fields to be assigned to records. Therefore
User Defined Fields cannot be interrogated using normal named properties of the record object.
Instead, accessing User Defined Fields is carried out using a dedicated object for managing these
fields, the FieldDefinition object, and its associated FieldDefinitions collection.

The Record object has a pair of methods for manipulating User Defined Fields, GetUserField and
SetUserField. Eachmethod takes a populated FieldDefinition object as a parameter.

Acting on Content Manager Events

There are a number of interfaces allowing the programmer to run custom code in response to events
that occur in Content Manager. They are:

l RecordAddIn

l FieldAddIn

l BaseObjectAddIn

l EventProcessor

RecordAddIn

The RecordAddIn gives access to generic entry points in various processes for the Record. Methods,
within which custom codemay be placed, are shown below in blue.

Although the RecordAddIn class is defined in the TRIMSDK Type Library (along with all the other
Content Manager COM SDK object classes), it is a special class, in that it is only an interface
definition, and the programmermust implement the interface to act uponmethod calls made by Content
Manager. (All other classes in the Type Library represent interfaces implemented by Content Manager,
and the programmer can call themethods on these interfaces).

The ErrorMessage property of the FieldAddIn (not shown in the diagram below) provides some
functionality for catching and displaying error messages to the user. If the PreSave or PreDelete return
false, the ErrorMessage property will be called and populated with the corresponding error message.
The SDK programmermay also call the ErrorMessage property explicitly in code and populate it with a
customized error message.

It should be noted that none of themethods of the RecordAddIn provide a ParentHWnd parameter (a
handle to the user’s current window). is not advisable to use dialogs in situations where no
ParentHWnd parameter is provided, as without a handle to the user’s window, the dialogs may be
popping up on the server machine with nobody to answer them.

COM SDK

Content Manager (9.4) Page 26 of 101

FieldAddIn

The FieldAddIn provides access to generic entry points in processes involving User Field modification.
Methods, within which custom codemay be placed, are shown below in blue.

Although the FieldAddIn class is defined in the TRIMSDK Type Library (along with all the other Content
Manager COM SDK object classes), it is a special class, in that it is only an interface definition, and the
programmermust implement the interface to act uponmethod calls made by Content Manager. (All
other classes in the Type Library represent interfaces implemented by Content Manager, and the
programmer can call themethods on these interfaces).

The ErrorMessage property of the FieldAddIn (not shown in the diagram below) provides some
functionality for catching and displaying error messages to the user. If the VerifyFieldValuemethod
returns ‘false’, the ErrorMessage property will be called and populated with the corresponding error

COM SDK

Content Manager (9.4) Page 27 of 101

message. The SDK programmermay also call the ErrorMessage property explicitly in code and
populate it with a customized error message.

Another feature of the FieldAddIn is the ParentHWnd parameter provided to the SelectFieldValue
method. This provides a handle to the user’s current window and enables custom dialogs to be
displayed to the user (even when the FieldAddIn is running on the server). It is not advisable to use
dialogs in situations where no ParentHWnd parameter is provided, as without a handle to the user’s
window, the dialogs may be popping up on the server machine with nobody to answer them.

It is often desirable to access the object to which the user field undergoing the selection or verification
belongs. This may be done using the FieldDefinitionmethod ‘GetCurrentObject’ for the user field
passed to the FieldAddInmethods. In contrast, in the BaseObjectAddIn, the parent object to the user
field is passed as a parameter to the SelectFieldValue and VerifyFieldValuemethods, so when using
the BaseObjectAddIn using the ‘GetCurrentObject’ method is not necessary.

BaseObjectAddIn

The BaseObjectAddIn is a generic AddIn that can respond to entry points within the Save or Delete
process for any Content Manager Object. Methods, within which custom codemay be placed, are
shown below in blue.

Although the BaseObjectAddIn class is defined in the TRIMSDK Type Library (along with all the other
Content Manager COM SDK object classes), it is a special class, in that it is only an interface
definition, and the programmermust implement the interface to act uponmethod calls made by Content
Manager. (All other classes in the Type Library represent interfaces implemented by Content Manager,
and the programmer can call themethods on these interfaces).

The ErrorMessage property of the BaseObjectAddIn (not shown in the diagram below) provides some
functionality for catching and displaying error messages to the user. If any of the PreSave, PreDelete,
or VerifyFieldValuemethods return ‘false’, the ErrorMessage property will be called and populated with
the corresponding error message. The SDK programmermay also call the ErrorMessage property
explicitly in code and populate it with a customized error message.

COM SDK

Content Manager (9.4) Page 28 of 101

Another feature of the BaseObjectAddIn is the ParentHWnd parameter provided to the
SelectFieldValuemethod. This provides a handle to the user’s current window and enables custom
dialogs to be displayed to the user (even when the FieldAddIn is running on the server). It is not
advisable to use dialogs in situations where no ParentHWnd parameter is provided, as without a handle
to the user’s window, the dialogs may be popping up on the server machine with nobody to answer
them.

The SelectFieldValue and VerifyFieldValuemethods of the BaseObjectAddIn differ from the
TRIMFieldAddIn in that a the object to which the user field belongs is passed to themethod. This
enables the programmer to access other properties and fields of the parent object, whichmay be useful
in selecting/verifying the value of the user field. It may also be used to set other properties and fields of
the parent object at the time a value for the user field is selected or verified.

EventProcessor

The EventProcessor interface is an AddIn that responds to the processing of an Content Manager
Event by the Content Manager Event Processor. Methods, within which custom codemay be placed,
are shown below in blue.

Although the TRIMEventProcessor class is defined in the TRIMSDK Type Library (along with all the
other Content Manager COM SDK object classes), it is a special class, in that it is only an interface
definition, and the programmermust implement the interface to act uponmethod calls made by Content
Manager. (All other classes in the Type Library represent interfaces implemented by Content Manager,
and the programmer can call themethods on these interfaces).

COM SDK

Content Manager (9.4) Page 29 of 101

The range of events processed by the Event Processor is wide, but includes actions such as users
logging on and off, records being created or modified, documents being accessed, and various security-
related events.

It is important to note that events are processed by the Event Processor (and the ProcessEvent
method called) at a later time to that at which the event occurred. As a result the SDK programmer
cannot rely on the object to which the event occurred still being in the state indicated by the event,
since the ProcessEvent method is not called in direct response to the event occurring. This must be
taken into account in the design of a program implementing the EventProcessor interface. For example,
if a hold is added to a record, the event ‘evHoldAdded’ is fired. However, by the time the
EventProcessor comes to process this ‘evHoldAdded’ event, the Holdmay have already been
removed from the record, so you cannot rely on the record being under a Litigation Hold at the time the
‘evHoldAdded’ event is processed.

COM SDK

Content Manager (9.4) Page 30 of 101

Common Scenarios – Code Samples

In this section, various common programming scenarios are discussed, with sample code to illustrate
how different tasks can be achieved.

Connecting to a Database

The Database object manages each client's connection to a Database, and in doing so it authenticates
the current user (from their network login) and applies their Content Manager security profile when
accessing any Content Manager data. The Database object's Connect method will attempt to connect
the user to their default Database. It does not require any parameters.

In Visual Basic

Dim objTRIM as TRIMSDK.Database

Dim colDBs as New TRIMSDK.Databases

If colDBs.Count > 1 Then

' Let user select a Database in a dialog

Set objTRIM = colDBs.ChooseOneUI(hWnd)

End If

objTRIM.Connect

COM SDK

Content Manager (9.4) Page 31 of 101

In C#

TRIMSDK.Database db = null;

TRIMSDK.Databases colDBs = new TRIMSDK.Databases();

if (colDBs.Count > 1)

{

int hWnd = Handle.ToInt32();

// Let user select a Database in a dialog

db = colDBs.ChooseOneUI(hWnd);

}

if (db != null)

{

db.Connect();

}

Similarly, if a particular namedDatabase is required, this could also be selected programmatically from
the Databases collection.

In Visual Basic

For i = 0 to colDBs.Count -1

Set objTRIM = colDBs.Item(i)

If objTRIM.Name = "MyTRIM" Then

objTRIM.Connect

Exit For

End If

Next

COM SDK

Content Manager (9.4) Page 32 of 101

In C#

for (int i=0; i < colDBs.Count; i++)

{

db = colDBs.Item(i);

if (db.Name == "MyTRIM")

{

db.Connect();

break;

}

}

Connecting to a default database

The following sample code demonstrates connecting to a Content Manager Database, when the
Content Manager Installation is a default database, or there is only one database.

In Visual Basic

Dim objTRIM As TRIMSDK.Database

Set objTRIM = New TRIMSDK.Database

objTRIM.Connect

In C#

TRIMSDK.Database db = new TRIMSDK.Database();

db.Connect();

NOTE:
Calling the Connect method in this way is optional. If the Database object is not connected
when amethod requiring a Database service is called, Content Manager will automatically
attempt a connection.

COM SDK

Content Manager (9.4) Page 33 of 101

Connecting to a specific database

The following sample code demonstrates connecting to a specific Content Manager Database by
setting the database id.

In Visual Basic

Dim objTRIM As TRIMSDK.Database

Set objTRIM = New TRIMSDK.Database

objTRIM.Id = “45” ‘45 is the id of the Content Manager Demonstration Database

objTRIM.Connect

In C#

TRIMSDK.Database db = new TRIMSDK.Database();

db.Id = “45”; //45 is the id of the Content Manager Demonstration Database

db.Connect();

NOTE:
Calling the Connect method in this way is optional. If the Database object is not connected
when amethod requiring a Database service is called, Content Manager will automatically
attempt a connection.

Allowing the user to choose a Database

Instantiates a Database selected by the user from a list of Databases.

COM SDK

Content Manager (9.4) Page 34 of 101

In Visual Basic

Dim p_TRIMDatabaseCollection As TRIMSDK.Databases

Dim p_TRIMDatabase As TRIMSDK.Database

' Instantiate collection of valid Content Manager Databases

Set p_TRIMDatabaseCollection = New TRIMSDK.Databases

' Display the list of Databases.

' Assign the selection to the modular level Content Manager Database variable

Set p_TRIMDatabase = p_TRIMDatabaseCollection.ChooseOneUI(hWnd)

If p_TRIMDatabase Is Nothing Then

Debug.Print "User Cancelled!"

Else

Debug.Print " Content Manager Database " & p_TRIMDatabase.Name & " is
Connected(T/F) - " & p_TRIMDatabase.IsConnected

End If

' Release object

Set p_TRIMDatabaseCollection = Nothing

COM SDK

Content Manager (9.4) Page 35 of 101

In C#

// Instantiate collection of valid Content Manager Databases

TRIMSDK.Databases dbCol = new TRIMSDK.Databases();

// Display the list of Databases.

// Assign the selection to the modular level Content Manager Database variable

int hWnd = Handle.ToInt32();

TRIMSDK.Database db = dbCol.ChooseOneUI(hWnd);

if (db == null)

{

Console.WriteLine("User Cancelled!");

}

else

{

Console.WriteLine("TRIM Database " + db.Name + " is Connected(T/F) - " +
db.IsConnected);

}

// Release object

dbCol = null;

Showing and editing the properties of the Content Manager
Database object

The following sample code demonstrates onemethod of customising the database properties in the
SDK.

COM SDK

Content Manager (9.4) Page 36 of 101

In Visual Basic

Private m_TRIMDatabase As TRIMSDK.Database

If m_TRIMDatabase.PropertiesUI(hWnd) Then

If m_TRIMDatabase.Verify Then

m_TRIMDatabase.Save

Else

MsgBox "Error Saving Database properties " & m_
TRIMDatabase.ErrorMessage, vbExclamation

End If

Else

Debug.Print "User Cancelled"

End If

In C#

private TRIMSDK.Database db = new TRIMSDK.Database();

int hWnd = Handle.ToInt32();

if (db.PropertiesUI(hWnd))

{

if (db.Verify(false))

{

db.Save();

}

else

{

MessageBox.Show("Error Saving Database properties " + db.ErrorMessage,"
",System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Exclamation);

}

}

else

{

Console.WriteLine("User Cancelled");

}

COM SDK

Content Manager (9.4) Page 37 of 101

Accessing a Record

To read information stored on records in a Content Manager Database, the API programmermust first
determine how to access the records required. If a particular record's internal or external unique
identifier is known, the associated record can be accessed directly and efficiently using the GetRecord
method. (If neither of these unique identifiers are known, it will be necessary to construct a search. This
is covered in the section Searching for Records).

Getting a Record by Record Number

Every record in Content Manager has a unique Record Number. This follows a pattern defined by the
Record Type and can bemanually entered by the user or set to be automatically generated by Content
Manager. Although the commonly used term is 'number', it is more correctly an identifier, as it is a
string that may contain alphanumeric characters. This string is accessible through the Record object's
Number property.

The Record Number can be used as the argument to be passed to the Database object's GetRecord
method, which takes a variant for the unique identifier and returns a pointer to the instantiated Record.

The following sample code instantiates the record 2002/0059 by record number:

In Visual Basic

Set objRecord = objTRIM.GetRecord ("2002/0059") ' instantiate by number

In C#

TRIMSDK.Record objRecord = db.GetRecord ("02/59"); //instantiate by number

NOTE:
Content Manager stores the Record Number in two formats. The expanded format (for example,
"2002/0059") is held in the LongNumber property, and the compressed format (for example,
"02/59") is held in the Number property. Both can be passed to the GetRecordmethod.

Getting a Record by URI

The Unique Row Identifier or URI of a record is an internal unique number that is transparent to the
everyday user of Content Manager. It is the primary key on the TSRECORD table in the Database and
provides an internal unique identifier for every record.

To instantiate a record by its URI, you can pass the numeric URI as the argument to the Database
object's GetRecordmethod.

The following sample code instantiates the record by URI:

In Visual Basic

Set objRecord = objTRIM.GetRecord (130) ' instantiate by URI

COM SDK

Content Manager (9.4) Page 38 of 101

In C#

objRecord = db.GetRecord (130); // instantiate by URI

Once an instantiated record object has been returned by the GetRecordmethod, the programmer can
access properties and call methods on the object. These are discussed in the following subsections.

Reading Basic Properties

Most of themetadata directly associated with a record is exposed through properties on the Record
interface. Most properties return primitive data types (strings, numbers or dates) and can be
interrogated directly. Themeanings of these properties are generally self-evident from their names, but
are also given in the object browser and in the reference section.

Examples of basic readable properties of a record are:

Property Example value

Number "G1997/0770"

Title "Greenhouse Journal of Global Warming - Dugong Habitats"

DateCreated #8/20/1997#

ExternalId "GJGW 97PB"

AccessionNbr 5617

In Visual Basic

Dim objRec As Record

Set objRec = objTRIM.GetRecord ("G97/770")

If objRec.AccessionNbr > 5000 and objRec.DateCreated < #01/01/2000# Then

Msgbox objRec.Title, , "Record " & objRec.Number

End If

COM SDK

Content Manager (9.4) Page 39 of 101

In C#

TRIMSDK.Database db = new TRIMSDK.Database();

TRIMSDK.Record objRecord = db.GetRecord ("G97/770");

DateTime date = new DateTime(2000,01,01);

if (objRecord.AccessionNbr > 5000

&& objRecord.DateCreated < date)

{

MessageBox.Show (objRecord.Title, "Record " + objRecord.Number);

}

Accessing Related Objects

Many attributes of a Content Manager record represent other objects, such as the RecordType,
Classification and Container attributes. These are properties where the data type of the property is an
object interface reference.

The following sample code instantiates a record object (in variable objRecord) and then assigns its
Container to another variable (objContainer).

In Visual Basic

Dim objRecord As Record

Dim objContainer As Record

Set objRecord = objTRIM.GetRecord ("G99/15")

Set objContainer = objRecord.Container ' objContainer is now 97/1004

In C#

TRIMSDK.Record objRecord = db.GetRecord ("G99/15");

TRIMSDK.Record objContainer = objRecord.Container; ' objContainer is now 97/1004

Accessing Record Location Information

A Content Manager record has various properties concerning related location information. These
properties of a Record all return an instantiated Location object:

l CurrentLoc – Current (Assignee) location of the record

l HomeLoc – Normal location of the record

l OwnerLoc – Location of the Owner or responsible Organization for the record

l AuthorLoc – Person who authored the electronic document

COM SDK

Content Manager (9.4) Page 40 of 101

l CreatorLoc – Person who registered the record in Content Manager

l AddresseeLoc – Person to whom the record is addressed

l PrimaryContactLoc – Themain contact person (or organization) for the record.

The following sample code shows how to access the properties andmethods of these location objects
by creating and instantiating them:

In Visual Basic

Dim objRec as Record

Dim objLoc as Location

Set objRec = objTRIM.GetRecord ("2002/0059") ' instantiate the record

Set objLoc = objRec.AuthorLoc ' get the author location object

Msgbox "Author's name is: " & objLoc.FormattedName

In C#

// instantiate the record

TRIMSDK.Record objRecord = db.GetRecord ("G99/15");

// get the author location object

TRIMSDK.Location objLoc = objRecord.AuthorLoc;

MessageBox.Show ("Author's name is:" + objLoc.FormattedName);

Updating Records

So far we have only considered themethods for reading information from records in Content Manager.
The COM SDK also allows you to update Content Manager records, either by updating the values of
properties on a given record object, or by callingmethods on the record.

Updating properties is the simplest way tomodify themetadata of a record. You simply assign a new
value of the correct data type to the named property of the object. Field-level verification is carried out,
and an error will be raised if the property update is invalid (see also Verifying and Error Trapping
section). For more complicated types of update to a record, youmust generally call methods that
instruct Content Manager to modify the record, based on arguments passed.

Modifying Properties

The simplest way to update data in an Content Manager record is to modify the named properties on the
Record object. This can only be done on properties that are not marked as read-only. This includes
most of the Date properties, certain Location properties (AuthorLoc, AddresseLoc andOtherLoc) and
miscellaneous properties such as External Id, Priority, Accession Number and Foreign Barcode.

COM SDK

Content Manager (9.4) Page 41 of 101

In Visual Basic

Set objRecord = objTRIM.GetRecord(30)

objRecord.Title = "New title for this record"

objRecord.DateDue = Date + 10 ' Due in ten days

objRecord.DatePublished = #20/05/2002#

Set objRecord.AuthorLoc = objTRIM.CurrentUser

In C#

TRIMSDK.Record objRecord = db.GetRecord(30);

objRecord.Title = "New Title for this record";

objRecord.DateDue = DateTime.Today.AddDays(10);

DateTime datePub = new DateTime(2002,05,20);

objRecord.DatePublished = datePub;

objRecord.AuthorLoc = db.CurrentUser;

Calling Update Methods

To update other data on a record where read-write properties are not available, youmust call a method
instead. Updatemethods generally begin with the prefix 'Set…' and they include a parameter for the
new data value you wish to apply.

In Visual Basic

Call objRecord.SetCurrentLocation(objMyUnitLoc);

In C#

TRIMSDK.Location objMyUnitLoc = db.CurrentUser;

objRecord.SetCurrentLocation(objMyUnitLoc,DateTime.Today);

COM SDK

Content Manager (9.4) Page 42 of 101

In many cases other parameters can be specified that control the behavior of the update:

In Visual Basic

' Set Current location to me, effective from yesterday

Call objRecord.SetCurrentLocation(objTRIM.CurrentUser, Date - 1)

In C#

// Set Current location to me, effective from yesterday

DateTime yesterday = DateTime.Today.AddDays(-1);

objRecord.SetCurrentLocation(db.CurrentUser, yesterday);

Updating Properties Using SetProperty

To update a record's properties where the internal identifier of the property is known (see Property Ids),
you can use the SetProperty method. This requires passing the property identifier and a variant
containing the data value.

In Visual Basic

' Set the title (property id=3)

Call objRecord.SetProperty(3, "Barrier Reef manatee population figures")

In C#

// Set the title (property id=3)

objRecord.SetProperty(3, "Barrier Reef manatee population figures");

Verifying

When a record object is modified via the SDK, there are two levels of verification that must be carried
out before the changes can be committed to the Database.

The first is field-level verification, which checks that the change to an individual property is legal. An
example would be to check that a Record’s Date Created is not in the future. If a property update
cannot be carried out because of field-level verification, the attempt to set the property will cause a run-
time error to be raised and the update will not be carried out.

The second level of validation is object-level verification (sometimes called cross-field verification).
This checks that the values of all fields on the object are consistent with each other. An example of
object-level verification would be that the Date Registered is not earlier than the Date Created. Object-
level verificationmay be performed by the object’s Verify method. It is also carried out automatically
whenever the object is saved.

Object-level verification for a single property may be performed by the base object’s VerifyProperty
method. This checks that the value of a nominated property is consistent with all other current values

COM SDK

Content Manager (9.4) Page 43 of 101

for the object. The VerifyProperty method also sn optional the capability to fail if the property is
mandatory and has not been set.

The Verify Method

The Record object (and every other base object) has a Verify method. This can be called to perform
object-level verification prior to saving the object. Themethod returns false if there are any errors in the
state of the object, and the error description will be stored in the object's ErrorMessage property. If
there are no errors, themethod returns true and the Verified property (see The Verified Property) is set
to true.

Themethod contains an optional parameter FailOnWarnings which, if set to true, will cause the Verify
method to check for warning conditions as well as error conditions, and to fail if a warning is
encountered.

In Visual Basic

If Not objRecord.Verify(True) Then

Msgbox objRecord.ErrorMessage,,"Verify Failed"

Else

objRecord.Save

End If

In C#

if (! objRecord.Verify(true))

{

MessageBox.Show(objRecord.ErrorMessage,"Verify Failed");

}

else

{

objRecord.Save();

}

If it is not called explicitly in code, the Verify method will be automatically called before an object is
saved and if verification fails it will not be saved. This ensures that data cannot become corrupted and
that business rules are observed when using the SDK, just as they are for users of the Content
Manager Client interface.

COM SDK

Content Manager (9.4) Page 44 of 101

The Verified Property

Base objects also have a Verified Boolean read-only property, which is false whenever the object is
instantiated. It is set to true when the Verify method confirms that it is in a legal state to be saved to the
Database.

The following sample code demonstrates how the Verified property changes according to the state of
the object.

COM SDK

Content Manager (9.4) Page 45 of 101

In Visual Basic

' To demonstrate the Verified property

Dim objTRIM As TRIMSDK.Database

Set objTRIM = New TRIMSDK.Database

' Instantiate the Record

Dim objRecord As TRIMSDK.Record

Dim msg As String

Dim oldTitle As String

Set objRecord = objTRIM.GetRecord("02/59")

msg = "The Record object has just been instantiated. Verified property is set to:
" & objRecord.Verified

MsgBox (msg)

' Verify the Record, with default FailOnWarnings = false

objRecord.Verify (False)

msg = "The Record has just been verified. Verified property is set to: " &
objRecord.Verified

MsgBox (msg)

oldTitle = objRecord.Title

msg = "Would you like to change the title of the Record?"

If MsgBox(msg, vbYesNo, vbQuestion) = VbMsgBoxResult.vbYes Then

objRecord.Title = "new Title"

msg = "The title of the Record has just been changed. The Record has not yet
been checked for internal consistency. Verified property is set to: " &
objRecord.Verified

MsgBox (msg)

Else

msg = "No changes have been made, so the Record is still internally
consistent. Verified property is set to: " & objRecord.Verified

MsgBox(msg)

End If

' now save the changes if the object is verified

If Not objRecord.Verified Then

If objRecord.Verify() Then

objRecord.Save

COM SDK

Content Manager (9.4) Page 46 of 101

msg = "The changes made to the Record have been verified, and it has
just been saved (so the changes are now committed to the Database). The Verified
property is now set to: " & objRecord.Verified

MsgBox (msg)

Else

msg = "Record Verify failed:" & objRecord.ErrorMessage & ". Because
of this, it has not been saved."

MsgBox (msg)

End If

Else

msg = "Record was verified, so there were no changes to save.")

MsgBox(msg)

End If

MsgBox ("Reverting back to original title of record...")

objRecord.Title = oldTitle

objRecord.Save

COM SDK

Content Manager (9.4) Page 47 of 101

In C#

// To demonstrate the Verified property

// Instantiate the Record

TRIMSDK.Record objRecord = db.GetRecord("02/59");

MessageBox.Show("The Record object has just been instantiated. Verified property
is set to: " + objRecord.Verified);

// Verify the Record, with default FailOnWarnings = false

objRecord.Verify(false);

MessageBox.Show("The Record has just been verified. Verified property is set to: "
+ objRecord.Verified);

string oldTitle = objRecord.Title;

if (MessageBox.Show("Would you like to change the title of the Record?","",
MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{

objRecord.Title = "new Title";

MessageBox.Show("The title of the Record has just been changed. The Record
has not been checked for internal consistency. Verified property is set to: " +
objRecord.Verified);

}

else

{

MessageBox.Show("No changes have been made, so the Record is still internally
consistent. Verified property is set to: " + objRecord.Verified);

}

// now save the changes if the object is verified

if (! objRecord.Verified)

{

if (objRecord.Verify(false))

{

objRecord.Save();

MessageBox.Show("The changes made to the Record have been verified,
and it has just been saved (so the changes are now committed to the Database). The
Verified property is now set to: " + objRecord.Verified);

}

else

COM SDK

Content Manager (9.4) Page 48 of 101

{

MessageBox.Show("Record Verify failed:" + objRecord.ErrorMessage + ".
Because of this, it has not been saved. The Verified property is now set to: " +

objRecord.Verified);

}

}

else

{

MessageBox.Show("Record was verified, so there were no changes to save. The
Verified property is now set to: " + objRecord.Verified);

}

MessageBox.Show("Reverting back to original title of record...");

objRecord.Title = oldTitle;

objRecord.Save();

The Verified Property

Base objects also have a Verified Boolean read-only property, which is false whenever the object is
instantiated. It is set to true when the Verify method confirms that it is in a legal state to be saved to the
Database.

The following sample code demonstrates how the Verified property changes according to the state of
the object.

COM SDK

Content Manager (9.4) Page 49 of 101

In Visual Basic

' To demonstrate the Verified property

Dim objTRIM As TRIMSDK.Database

Set objTRIM = New TRIMSDK.Database

' Instantiate the Record

Dim objRecord As TRIMSDK.Record

Dim msg As String

Dim oldTitle As String

Set objRecord = objTRIM.GetRecord("02/59")

msg = "The Record object has just been instantiated. Verified property is set to:
" & objRecord.Verified

MsgBox (msg)

' Verify the Record, with default FailOnWarnings = false

objRecord.Verify (False)

msg = "The Record has just been verified. Verified property is set to: " &
objRecord.Verified

MsgBox (msg)

oldTitle = objRecord.Title

msg = "Would you like to change the title of the Record?"

If MsgBox(msg, vbYesNo, vbQuestion) = VbMsgBoxResult.vbYes Then

objRecord.Title = "new Title"

msg = "The title of the Record has just been changed. The Record has not yet
been checked for internal consistency. Verified property is set to: " &
objRecord.Verified

MsgBox (msg)

Else

msg = "No changes have been made, so the Record is still internally
consistent. Verified property is set to: " & objRecord.Verified

MsgBox(msg)

End If

' now save the changes if the object is verified

If Not objRecord.Verified Then

If objRecord.Verify() Then

objRecord.Save

COM SDK

Content Manager (9.4) Page 50 of 101

msg = "The changes made to the Record have been verified, and it has
just been saved (so the changes are now committed to the Database). The Verified
property is now set to: " & objRecord.Verified

MsgBox (msg)

Else

msg = "Record Verify failed:" & objRecord.ErrorMessage & ". Because
of this, it has not been saved."

MsgBox (msg)

End If

Else

msg = "Record was verified, so there were no changes to save.")

MsgBox(msg)

End If

MsgBox ("Reverting back to original title of record...")

objRecord.Title = oldTitle

objRecord.Save

COM SDK

Content Manager (9.4) Page 51 of 101

In C#

// To demonstrate the Verified property

// Instantiate the Record

TRIMSDK.Record objRecord = db.GetRecord("02/59");

MessageBox.Show("The Record object has just been instantiated. Verified property
is set to: " + objRecord.Verified);

// Verify the Record, with default FailOnWarnings = false

objRecord.Verify(false);

MessageBox.Show("The Record has just been verified. Verified property is set to: "
+ objRecord.Verified);

string oldTitle = objRecord.Title;

if (MessageBox.Show("Would you like to change the title of the Record?","",
MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{

objRecord.Title = "new Title";

MessageBox.Show("The title of the Record has just been changed. The Record
has not been checked for internal consistency. Verified property is set to: " +
objRecord.Verified);

}

else

{

MessageBox.Show("No changes have been made, so the Record is still internally
consistent. Verified property is set to: " + objRecord.Verified);

}

// now save the changes if the object is verified

if (! objRecord.Verified)

{

if (objRecord.Verify(false))

{

objRecord.Save();

MessageBox.Show("The changes made to the Record have been verified,
and it has just been saved (so the changes are now committed to the Database). The
Verified property is now set to: " + objRecord.Verified);

}

else

COM SDK

Content Manager (9.4) Page 52 of 101

{

MessageBox.Show("Record Verify failed:" + objRecord.ErrorMessage + ".
Because of this, it has not been saved. The Verified property is now set to: " +

objRecord.Verified);

}

}

else

{

MessageBox.Show("Record was verified, so there were no changes to save. The
Verified property is now set to: " + objRecord.Verified);

}

MessageBox.Show("Reverting back to original title of record...");

objRecord.Title = oldTitle;

objRecord.Save();

Trapping Run-Time Errors

It is up to the programmer to determine how they wish to deal with possible errors when updating an
object. However, they must be aware that error checking takes place even when directly updating
properties, so it will be necessary to provide some error-trapping code to prevent run-time errors being
displayed to the user if there is a possibility of errors being raised.

Saving the Record to the Database

All of the updatemethods and property changes made through the Record interface are only applied to
the object in memory. The changes are not committed to the TRIM Database until the object is saved.

Calling the Savemethod on the record object will commit the changes to the Database, applying all
updates since the object was instantiated (or since it was last saved).

NOTE:
That if the record has not been verified, Save will automatically call the Verify method and will
only commit the changes if the verification succeeds.

COM SDK

Content Manager (9.4) Page 53 of 101

In Visual Basic

Set objRecord = objTRIM.GetRecord("G97/770")

With objRecord

.Title = .Title & " plus New Part of Title"

.DateDue = #1/1/2003#

Set .AuthorLoc = objTRIM.CurrentUser

Call .Save ' commit all these changes to the Database

End With

In C#

TRIMSDK.Record objRecord = db.GetRecord("G97/770");

objRecord.Title = objRecord.Title + " plus New Part of Title";

DateTime dateDue = new DateTime(2003,1,1);

objRecord.DateDue = dateDue;

objRecord.AuthorLoc = db.CurrentUser;

objRecord.Save(); // commit all these changes to the Database

Searching for Records

One of themost powerful features of TRIM is the wide range of search criteria that can be applied to
select records from the Database. The SDK has many features available for creating complex and
sophisticated searches, yet it can also be used with aminimum of code.

The RecordSearch object enables TRIM records to be retrieved by creating a search expression from a
number of search clauses, and has methods to navigate the records that meet the search criteria. The
RecordSearch object also allows boolean and, or and not relationships to logically combine search
clauses, and setting filters and sort criteria. The object also has file functions for saving searches to or
loading from disk.

To set the search criteria for a record search, you can either call search clausemethods explicitly, or
display the TRIM search dialog to allow the user to specify the search criteria, or a combination of the
two.

The process of searching for records via the SDK is as follows:

1. Construct a RecordSearch object

2. Add a search clause

3. Add additional clauses and combine them with logical operators (optional)

4. Apply Record Type filters (optional)

5. Display the criteria to the user (optional)

COM SDK

Content Manager (9.4) Page 54 of 101

6. Execute the search query

7. Process the results sequentially, or

8. Copy the results to a record collection.

In Visual Basic

Dim objSearch As RecordSearch

Dim colRecords As Records

' Construct a new search object

Set objSearch = objTRIM.NewRecordSearch

' Search for "reef" in record titles

Call objSearch.AddTitlewordClause("reef")

' Hold the results in a collection

Set colRecords = objSearch.GetRecords

In C#

// Construct a new search object

TRIMSDK.RecordSearch objSearch = db.NewRecordSearch();

// Search for "reef" in record titles

objSearch.AddTitleWordClause("reef");

// Hold the results in a collection

TRIMSDK.Records colRecords = objSearch.GetRecords();

Creating a RecordSearch Object

Like any other object, the RecordSearch object must be constructed by the Database object, in this
case using the NewRecordSearchmethod. A RecordSearch object is a temporary object, and therefore
does not need to be instantiated from the Database (the exception to this is Saved Searches, which will
be covered later).

In Visual Basic

Dim objSearch As RecordSearch ' declare the search object

Set objSearch = objTRIM.NewRecordSearch ' make the object

Call objSearch.EditQueryUI(hWnd) ' call methods on the object…

COM SDK

Content Manager (9.4) Page 55 of 101

In C#

// declare & make the search object

TRIMSDK.RecordSearch objSearch = db.NewRecordSearch();

int hWnd = Handle.ToInt32();

objSearch.EditQueryUI(hWnd); // call methods on the object…

Adding a Search Clause

Once you have created the search object, youmust then add at least one search clause before it can
be executed to return results. There aremany different search clauses available; the full list can be
found in the Reference section.

The following sample code retrieves records that contain the word "reef" within the title, you could add a
TitleWord clause passing the argument "reef".

In Visual Basic

objSearch.AddTitlewordClause("reef") ' search for titles with "reef"

In C#

objSearch.AddTitleWordClause("reef"); //search for titles with "reef"

To retrieve records that were created since January 1, 2001, you would add a Date Created clause
passing the arguments "1/1/2001" and the current date, as follows:

In Visual Basic

objSearch.AddDateCreatedClause(#01/01/2001#, Date)

In C#

System.DateTime dateCreated = new DateTime(2001,01,01);

objSearch.AddDateCreatedClause(dateCreated, DateTime.Today);

You can build search criteria by callingmultiple methods, and applying specific logical relationships,
using the Boolean operators, as described below.

Boolean Operators - And, Or, Not

An advanced search can be constructed by combining several search clauses with the Boolean
operators 'And', 'Or' and 'Not'. When a Boolean operator is applied to two clauses (or one in the case of
'Not') the result is a single clause. This resultant clause can also be the subject of another Boolean
operation.

The sequence in which these clauses and operators must be declared in the search object is known as
Reverse Polish Notation. Clauses (or 'operands') are declared first, and then anOperator is declared.

COM SDK

Content Manager (9.4) Page 56 of 101

This operates on the last two declared clauses (or the last one for a 'Not' operation). The clauses
affected by the operation are replaced by a single clause representing the Boolean combination.

For example, consider the following sequence of declarations:

Clause: A

Clause: B

Operator: Not

Operator: And

This results in the logical proposition: 'A and (not B)'.

The following sample code uses RecordSearch object methods:

In Visual Basic

objSearch.AddTrayClause(ttWorkTray)

objSearch.AddDateCreatedClause(Date, Date)

objSearch.AddCaveatClause("Medical in Confidence")

objSearch.Not

objSearch.And

objSearch.Or

objSearch.AddLocationClause(objAdminLoc, ltCurrent)

objSearch.And

In C#

objSearch.AddTrayClause(ttTrayType.ttWorktray);

DateTime dateFrom = new DateTime(2001,1,1);

DateTime dateTo = new DateTime(2002,1,1);

objSearch.AddDateCreatedClause(dateFrom, dateTo);

objSearch.AddCaveatClause("Medical in Confidence");

objSearch.Not();

objSearch.And();

objSearch.Or();

TRIMSDK.Location objAdminLoc = db.GetLocation("Administration");

objSearch.AddLocationClause(objAdminLoc, ltSearchLocationType.ltCurrent, true);

objSearch.And();

This results in the search: "(Records in my Worktray or (created today and without the Caveat
Ministerial in Confidence)) and currently located in Administration unit".

COM SDK

Content Manager (9.4) Page 57 of 101

User Selected Search Criteria

In many cases the programmer will not know the details of the search criteria and instead will delegate
the search criteria to the user. To do this, you can call the RecordSearch object's EditQueryUI method.
This will display the TRIM Search dialog to the user and update the object's search criteria according to
their selections.

You can pre-populate the search criteria by calling a searchmethod before calling the EditQueryUI
method. If you specify multiple searchmethods prior to calling it, the Advanced Search dialog will be
displayed.

In Visual Basic

Set objSearch = objTRIM.NewRecordSearch

Call objSearch.AddTitleWordClause("Press")

Call objSearch.AddDateRegisteredClause((Date – 1), Date)

Call objSearch.And

If Not objSearch.EditQueryUI(hWnd) Then

Exit Sub ' (Search dialog cancelled)

End If

In C#

TRIMSDK.RecordSearch objSearch = db.NewRecordSearch();

objSearch.AddTitleWordClause("Press");

DateTime yesterday = DateTime.Today.AddDays(-1);

DateTime today = DateTime.Today;

objSearch.AddDateRegisteredClause(yesterday, today);

objSearch.And();

int hWnd = Handle.ToInt32();

if (! objSearch.EditQueryUI(hWnd))

{

return; // (Search dialog cancelled)

}

Applying Filters

An optional step in searching for records is to filter the returned records on the basis of Record Type,
disposition, class and finalized status. The default is to include all records that meet the criteria,

COM SDK

Content Manager (9.4) Page 58 of 101

regardless of these categories. To apply filtering, there aremethods on the RecordSearch object
prefixed with 'Filter…'

In Visual Basic

With objSearch

.AddTitleWordClause("manatee")

.FilterClass(rcReference) ' include only Reference class

.FilterDisposition(rdDestroyed, False) ' include all except Destroyed

.FilterTypes(colMyTypes) ' include Types matching this collection

End With

In C#

objSearch.AddTitleWordClause("manatee");

// include only Reference class

objSearch.FilterClass(rcRecordClass.rcReference,true);

// include all except Destroyed

objSearch.FilterDisposition(rdRecordDisp.rdDestroyed, false);

// include Types matching this collection

objSearch.FilterRecordTypes(colMyTypes);

Sorting

Another optional step when constructing a record search is to define the sort order for the search
results.

The Sort method allows you to specify up to three different sort criteria, and whether to sort in
ascending (the default) or descending order for each.

The following sample code sorts the results by ascending Priority, then Record Type, then descending
Date Due.

In Visual Basic

Call objSearch.Sort(rsPiority,,rsRecordType,,rsDateDue, True)

In C#

objSearch.Sort
(rsRecordSortFields.rsPriority,false,rsRecordSortFields.rsRecordType,false,rsRecord
SortFields.rsDateDue, true);

COM SDK

Content Manager (9.4) Page 59 of 101

Displaying Results

Once the search criteria, filters and sort order have been specified, you can retrieve the records that
match the criteria. These records can either be processed sequentially in code (see Processing
Results Sequentially) or they can be copied to a record collection for reporting or displaying to the user.

To copy the results to a Records collection, youmust call the GetRecords method.

In Visual Basic

Dim objSearch As RecordSearch

Dim colResults As Records

Set objSearch = objTRIM.NewRecordSearch

Call objSearch.AddTitleWordClause("water")

Set colResults = objSearch.GetRecords

Call colResults.DisplayUI(hWnd) ' browse the results

In C#

TRIMSDK.RecordSearch objSearch = db.NewRecordSearch();

objSearch.AddTitleWordClause("water");

TRIMSDK.Records colResults = objSearch.GetRecords();

int hWnd = Handle.ToInt32();

colResults.DisplayUI(hWnd); // browse the results

When the results have been copied to a Records collection, you have several options for displaying
records, including allowing the user to select one record (ChooseOneUI), to select multiple records
(ChooseManyUI) or simply to browse the results for viewing (DisplayUI).

Processing Results Sequentially

If there is no need to display the search results or to handle them as a collection of records, they can be
retrieved one at a time by repeatedly calling the Next method. This returns a single Record object each
time it is called (returning a null object when there are nomore records to return)

The following sample code performs a search then adds up the values in a User Defined Field called
'Actual Cost', subtotalled by month based on the date the record was created.

COM SDK

Content Manager (9.4) Page 60 of 101

In Visual Basic

Dim sCosts(12) As Single

Dim iMonth As Integer

' Get the user-defined field "Actual Cost"

Dim objCost As FieldDefinition

Set objCost = objTRIM.GetFieldDefinition("Actual Cost")

' Create the search

Set objSearch = objTRIM.NewRecordSearch

Call objSearch.AddTitleWordClause("Project Cost Report")

' Process the results in a loop

Set objRecord = objSearch.Next

Do Until objRecord Is Nothing

iMonth = Month(objRecord.DateCreated)

sCosts(iMonth) = sCosts(iMonth) + objRecord.GetUserField(objCost)

Set objRecord = objSearch.GetNext

Loop

COM SDK

Content Manager (9.4) Page 61 of 101

In C#

double[] sCosts = new double[12];

int iMonth;

// Get the user-defined field “Actual Cost”

TRIMSDK.FieldDefinition objCost = db.GetFieldDefinition("Actual Cost");

// Create the search

TRIMSDK.RecordSearch objSearch = db.NewRecordSearch();

objSearch.AddTitleWordClause("Project Cost Report");

// Process the results in a loop

TRIMSDK.Record objRecord = objSearch.Next();

while (objRecord != null)

{

iMonth = objRecord.DateCreated.Month;

double cost = Convert.ToDouble(objRecord.GetUserField
(objCost,TRIMSDK.sdStringDisplayType.sdDefault))

sCosts[iMonth] = sCosts[iMonth] + cost;

objRecord = objSearch.GetNext();

}

Simple Record Search

The following sample code adds a TitleWord clause to the Record Search object to find a specified
indexedWord.

COM SDK

Content Manager (9.4) Page 62 of 101

In Visual Basic

// Assumes TRIMDatabase is a valid TRIMSDK Database

// Instantiate a new TRIM record search object

Set RecordSearch = TRIMDatabase.NewRecordSearch

If Not RecordSearch.AddTitleWordClause(txtLookFor.Text) Then

MsgBox "Add Title Word Clause error " & RecordSearch.ErrorMessage,
vbExclamation

Exit Sub

End If

// Fill the Records Collection from the Search object

Set RecordResults = RecordSearch.GetRecords

// Instantiate a record by choosing it from the collection

Set RecordItem = RecordResults.ChooseOneUI(hWnd)

If RecordItem Is Nothing Then

Debug.Print "User cancelled!"

Else

Debug.Print RecordItem.Number & " - " & RecordItem.Title

End If

COM SDK

Content Manager (9.4) Page 63 of 101

In C#

// Assumes TRIMDatabase is a valid TRIMSDK Database

// Instantiate a new TRIM record search object

TRIMSDK.RecordSearch recordSearch = db.NewRecordSearch();

if (! recordSearch.AddTitleWordClause("title"))

{

MessageBox.Show("Add Title Word Clause error " + recordSearch.ErrorMessage,
"", MessageBoxButtons.OK,MessageBoxIcon.Exclamation);

return;

}

// Fill the Records Collection from the Search object

TRIMSDK.Records recordResults = recordSearch.GetRecords();

// Instantiate a record by choosing it from the collection

int hWnd = Handle.ToInt32();

TRIMSDK.Record recordItem = recordResults.ChooseOneUI(hWnd);

if (recordItem == null)

{

Console.WriteLine("User cancelled!");

}

else

{

Console.WriteLine(recordItem.Number + " - " + recordItem.Title);

}

Boolean ‘Or’ Record Search

The following sample code performs a Record search - Adding two TitleWord clauses with anOr to the
Record Search object in order to find records with title words of txtSearch1.Text or txtSearch2.Text.

COM SDK

Content Manager (9.4) Page 64 of 101

In Visual Basic

' Assumes TRIMDatabase is a valid TRIMSDK Database

' Instantiate a new TRIM record search object

Set p_RecordSearch = TRIMDatabase.NewRecordSearch

If Not p_RecordSearch.AddTitleWordClause(txtSearch1.Text) Then

MsgBox "Add Title Word Clause error " & p_RecordSearch.ErrorMessage,
vbExclamation

Exit Sub

End If

If Not p_RecordSearch.AddTitleWordClause(txtSearch2.Text) Then

MsgBox "Add Title Word Clause error " & p_RecordSearch.ErrorMessage,
vbExclamation

Exit Sub

End If

If Not p_RecordSearch.Or Then

MsgBox "Adding Boolean 'OR' failed " & p_RecordSearch.ErrorMessage,
vbExclamation

Exit Sub

End If

' Fill the Records Collection from the Search object

Set p_RecordResults = p_RecordSearch.GetRecords

' Instantiate a record by choosing it from the collection

Set p_RecordItem = p_RecordResults.ChooseOneUI(hWnd)

If p_RecordItem Is Nothing Then

Debug.Print "User cancelled!"

Else

Debug.Print p_RecordItem.Number & " - " & p_RecordItem.Title

End If

COM SDK

Content Manager (9.4) Page 65 of 101

In C#

// Assumes TRIMDatabase is a valid TRIMSDK Database

// Instantiate a new TRIM record search object

TRIMSDK.RecordSearch recordSearch = db.NewRecordSearch();

if (! recordSearch.AddTitleWordClause("txtSearch1.Text"))

{

MessageBox.Show("Add Title Word Clause error " + recordSearch.ErrorMessage,
"", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

return;

}

if (! recordSearch.AddTitleWordClause("txtSearch2.Text"))

{

MessageBox.Show("Add Title Word Clause error " + recordSearch.ErrorMessage,
"", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

return;

}

if (! recordSearch.Or())

{

MessageBox.Show("Adding Boolean 'OR' failed " + recordSearch.ErrorMessage,
"", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

return;

}

// Fill the Records Collection from the Search object

TRIMSDK.Records recordResults = recordSearch.GetRecords();

// Instantiate a record by choosing it from the collection

TRIMSDK.Record recordItem = recordResults.ChooseOneUI(Handle.ToInt32());

if (recordItem == null)

{

Console.WriteLine("User cancelled!");

}

else

{

Console.WriteLine(recordItem.Number + " - " + recordItem.Title);

COM SDK

Content Manager (9.4) Page 66 of 101

}

Saved Search

The following sample code creates a Saved Search (Saving the record search object).

In Visual Basic

' Display the properties of a RecordSearch object

' returns True if the user presses OK

If p_RecordSearch.PropertiesUI(hWnd) Then

If p_RecordSearch.Verify(True) Then

' If no errors or warnings, Save the Record Search

p_RecordSearch.Save

MsgBox "Saved Search created - " & p_RecordSearch.Name,
vbInformation

Else

' Display Errors

MsgBox "Record Search Verify failed: " & p_RecordSearch.ErrorMessage,
vbExclamation

End If

End If

COM SDK

Content Manager (9.4) Page 67 of 101

In C#

TRIMSDK.RecordSearch recordSearch = db.NewRecordSearch();

int hWnd = Handle.ToInt32();

// Display the properties of a RecordSearch object

// returns True if the user presses OK

if (recordSearch.PropertiesUI(hWnd))

{

if (recordSearch.Verify(true))

{

// If no errors or warnings, Save the Record Search

recordSearch.Save();

MessageBox.Show("Saved Search created - " + recordSearch.Name, "",
MessageBoxButtons.OK, MessageBoxIcon.Information);

}

else

{

// Display Errors

MessageBox.Show("Record Search Verify failed: " +
recordSearch.ErrorMessage, "", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}

Creating a Container File

This scenario describes the general processes for using the SDK to create a record of a generic Record
Type we are calling a 'Container File'. In this and the next scenario (Creating a Document) we are
assuming that the reader is familiar with the concept of Record Types. These are described in Content
Manager Help – Administrator Guide – Record Types.

While it is up to the Administrator of each TRIM implementation to determine the Record Types to be
used, it is typical to follow a standard records management practise of having at least two Record
Types, one representing Container Files (or Folders) and one representing Documents (the actual
names used for the Record Types may of course vary). Container Files are usually created and
maintained by specialist records managers, as it is generally at this level that Classification systems,
Retention Schedules, Security, Thesaurus Terms (keywords), controlled titling and other records
management metadata are applied. Documents, on the other hand, are usually created by end-users,
and require little specific metadata other than the identification of the appropriate Container File to
which the Document belongs, as all other metadata and context is inherited from the Container.

The general steps for creating a new Container File record are as follows:

COM SDK

Content Manager (9.4) Page 68 of 101

1. Instantiate the appropriate Record Type object

2. Instantiate a new Record object of this Type

3. Identify the Classification or Keywords for titling the record (optional)

4. Set the free text title

5. Assign Security Levels and Caveats (optional)

6. Relate the record to associated Locations (optional)

7. Relate to other records (optional)

8. Assign other metadata or User Defined Fields (optional)

9. Assign a record identifier

10. Save the Record object.

Creating a Record of a given Type

When creating any record, the Record Type for the new recordmust be identified. This can be done
programmatically if the Record Type's URI or Name is known at design-time, or the choicemay be
given to the user at run-time. In either case, the end result is to instantiate an existing Record Type
object (using the GetRecordTypemethod), and to pass this object to the Database object's
NewRecordmethod.

In Visual Basic

' Create a new Case File record

Set objRecType = objTRIM.GetRecordType("Case File")

Set objRecord = objTRIM.NewRecord(objRecType)

In C#

//Create a new Case File record

TRIMSDK.RecordType objRecType = db.GetRecordType("Case File");

TRIMSDK.Record objRecord = db.NewRecord(objRecType);

NOTE:
It is possible to create new Record Types using the COM SDK; however, this is not
recommended as this is generally an Administrator's function only).

Controlled and Free Text Titling

Titles for Container Files are often subject to controlled vocabulary or Classification structures such as
a Thesaurus or Classification (file) plan, which give records managers greater control over file creation,
retrieval and Retention. Even when such controlled titling is used, each file will typically also have a
'free text' title part. The titlingmethod used is determined by the Record Type, and is usually set by the

COM SDK

Content Manager (9.4) Page 69 of 101

TRIM Administrator. Thus a record with Classification titlingmay have a title such as: "Insurance –
Property – Storm damage toMackay information center", where the first two terms are generated from
a predefined hierarchical Classification structure and the remaining part of the title is 'free text'
describing the specifics of the file. The generated title terms are determined by the Classification
codes, usually defined as a numerical sequence such as "610/600/". The free text title is set via the
TypedTitle property.

In Visual Basic

If objRecordType.TitlingMethod = tmClassification Then

' Assign classification of 610/600/ = Insurance – Property

objRecord.Classification = objTRIM.GetClassification("610/600/")

End If

objRecord.TypedTitle = "Storm damage to Mackay information center"

In C#

if (objRecordType.TitlingMethod == tmTitlingMethods.tmClassification)

{

// Assign classification of 610/600/ = Insurance - Property

objRecord.Classification = db.GetClassification("610/600/");

}

objRecord.TypedTitle = "Storm damage to Mackay information center";

Similarly, Thesaurus (or Keyword) titling allows a file to be titled using either a choice of individual
keywords from a controlled list or a specific 'branch' of related terms according to a hierarchical
structure (similar to a record plan or Classification). A Thesaurus-titled file might have a name such as
"Administration – Finance – Donations – Bequest from the estate of Lady Marchcroft".

In Visual Basic

objRecord.GeneratedTitle = "Administration - Finance - Donations"

objRecord.TypedTitle = "Bequest from the estate of Lady Marchcroft"

In C#

objRecord.GeneratedTitle = "Administration - Finance - Donations";

objRecord.TypedTitle = "Bequest from the estate of Lady Marchcroft";

Security Levels and Caveats

The security profile of an individual TRIM record is governed by three security controls: a Security
Level, a set of zero or more Caveats, and Access Control.

(See Content Manager Help File – Administrator Guide – Ch1 - Security).

COM SDK

Content Manager (9.4) Page 70 of 101

Access Control is discussed in the next section.

Security Levels and Caveats determine the access that a TRIM user has to themetadata of a record.
These security specifications are usually applied to Record Types (and inherited by records of each
type when they are created) but can be set explicitly on individual records. Every user has amaximum
Security Level and zero or more Caveats – in order to access a particular record, the user must have
the same or a higher Security Level andmust have all the Caveats associated with the record.

Assigning Security Levels and Caveats to a record via the SDK is straightforward. Both the
SecurityLevel object and the SecurityCaveat object can be instantiated by full name or by abbreviation.
The instantiated SecurityLevel object is assigned to the record's SecLevel property. Each instantiated
SecurityCaveat object can be passed to the record's AddCaveat method.

In Visual Basic

Dim objCav as SecurityCaveat

Dim objSec as SecurityLevel

' Assign "Confidential" level

Set objSec = objTRIM.GetSecurityLevel("Confidential")

Set objRecord.SecLevel = objSec

' Assign "Research Projects" Caveat

Set objCav = objTRIM.GetSecurityCaveat("Research Projects")

Call objRecord.AddCaveat(objCav)

' Assign "Staff in Confidence" Caveat

Call objRecord.AddCaveat(objTRIM.GetSecurityCaveat("Staff in Confidence"))

In C#

// Assign "Confidential" level

TRIMSDK.SecurityLevel objSec = db.GetSecurityLevel("Confidential");

objRecord.SecLevel = objSec;

// Assign "Research Projects" Caveat

TRIMSDK.SecurityCaveat objCav = db.GetSecurityCaveat("Research Projects");

objRecord.AddCaveat(objCav);

// Assign "Staff in Confidence" Caveat

objRecord.AddCaveat(db.GetSecurityCaveat("Staff in Confidence"));

NOTE:
That it is also possible to assign a string value of comma-separated Security Level and Caveat
names (not abbreviations) to the Record object's Security property. If the string can be
completely parsed into legal security values, they will be assigned to the record. The following
sample code produces the same result as the sample above.

COM SDK

Content Manager (9.4) Page 71 of 101

In Visual Basic

' Assign security level and two Caveats

objRecord.Security = "Confidential, Research Projects, Staff in Confidence"

In C#

// Assign security level and two Caveats

objRecord.Security = "Confidential, Research Projects, Staff in Confidence";

Access Control

In addition to Security Levels and Caveats, Access Control provides fine-grained control over different
methods of access to a record and its electronic attachment. (See Content Manager Help File –
Administrator Guide – Ch 1- Security – Access Control).

Access Control associates individual users or groups of users with specific actions allowed for a
record. The actions are:

l readingmetadata

l updatingmetadata

l viewing the electronic object

l updating the electronic object

l deleting the record

l changing Access Control details

Each action can be granted access as follows:

l Public (all users)

l Private (only one user)

l Inherited (same access as the Container record)

l Ad hoc (a set of named locations)

The default for a record that has no Access Control specified is that all users can perform all actions
(subject to Security Levels and Caveats).

Access Control is normally applied to individual Container records, andmay be inherited by contained
records or explicitly set for each contained record.

The SetAccessControlDetails method of the Record object is used to add specifications of the Access
Control for the record. This method requires that you specify one of the six actions listed above and the
access level (including the locations, if private or ad-hoc).

The following sample code grants these rights:

l Public access to view themetadata

l Inherited access to update themetadata

COM SDK

Content Manager (9.4) Page 72 of 101

Only the Records Manager can delete the record.

NOTE:
That the connected user must have 'Modify Access Control' permission for this code to work.

In Visual Basic

Call objRecord.SetAccessControlDetails(dxViewRecord, asPublic)

Call objRecord.SetAccessControlDetails(dxUpdateMetadata, asInherited)

Call objRecord.SetAccessControlDetails(dxDeleteRecord, asPrivate,
objTRIM.GetLocation("Records Manager"))

In C#:

objRecord.SetAccessControlDetails(dxRecordAccess.dxViewRecord,
asAccessControlSettings.asPublic,null);

objRecord.SetAccessControlDetails(dxRecordAccess.dxUpdateMetadata,
asAccessControlSettings.asInherited,null);

objRecord.SetAccessControlDetails(dxRecordAccess.dxDeleteRecord,
asAccessControlSettings.asPrivate, db.GetLocation("Records Manager"));

Relationships

The context of a document in TRIM is generally provided by the Container file in which it is logically
enclosed. To provide useful context for a Container file record, you can use various techniques such as
a Classification system. You can also provide context by creating relationships with other records in
the Database. TRIM defines some standard relationship types, but you can also create custom
relationship definitions. Apart from the generic type of "related", all relationship types in TRIM are
transitive, meaning that the relationship has a subject and an object (for example, the transitive
relationship "A supersedes B" is not the same as "B supersedes A").

In the SDK, you use the Record object's AttachRelationship method to relate another record to the
current record. The record on which themethod is being called is the subject of the relationship, and the
other record (passed as an argument to themethod) is the object. The relationship type is determined
by passing a value of the rrRecordRelationship enumeration.

The following sample code creates a relationship of "Record A supersedes Record B".

In Visual Basic

objRecordA.AttachRelationship(objRecordB, rrDoesSupersede)

In C#

objRecordA.AttachRelationship(objRecordB, rrRecordRelationship.rrDoesSupersede);

COM SDK

Content Manager (9.4) Page 73 of 101

Record Locations

Defining relationships between a Container file and location objects (people and places) provides
additional and useful context for the record.

Unlike record relationships, which can be user defined, you can only use TRIM's predefined standard
relationship types for record locations (and for contacts, see Record Contacts).

Record Locations represent actual (in the case of paper and other physical records) or logical (in the
case of electronic records) places where a record resides. Every record in TRIM has a property
representing it's Current Location (where the record is now) and another for it's Home Location (where
the record should normally be or where it is to be returned). There is also a property for Owner Location
– the exact meaning of this can vary according to the practises of each TRIM implementation, but
normally represents the person or body that is responsible for the record. The Home andOwner location
of a record are typically derived from the default values for each Record Type, but all record location
properties can be set on creation of a new record or modified later.

The Record object has methods for setting or changing the value of these location properties, which
allow the option of specifying the date & time of the change of location (the default is the current time).

The following sample code sets the record's Home location to the unit called "Administration", and the
Current location to the connected user.

In Visual Basic

objRecord.SetHomeLocation(objTRIM.GetLocation("Administration"))

objRecord.SetCurrentLocation(objTRIM.CurrentUser)

In C#

objRecord.SetHomeLocation(db.GetLocation("Administration"));

objRecord.SetCurrentLocation(db.CurrentUser,DateTime.Now);

Record Contacts

Unlike record locations (see Record Locations), which tend to be internal units, Record Contacts are
more commonly people or organisations that have a direct association with the record, andmay be
internal or external to the organisation. Using the AttachContact method, TRIM allows each contact to
be specifically identified as an Author, Addressee, Representative or Client. Other contact relationship
types must use the generic type of 'Other'.

The following sample code sets the record's Representative (and primary contact) to be the connected
user, and the Client to be the organisation called "My Organization".

COM SDK

Content Manager (9.4) Page 74 of 101

In Visual Basic

objRecord.AttachContact(objTRIM.CurrentUser, ctRepresentative, True)

objRecord.AttachContact(objTRIM.GetLocation("My Organization"), ctClient)

' ctClient = Client

In C#

objRecord.AttachContact(db.CurrentUser, ctContactType.ctRepresentative,
true,DateTime.Now);

objRecord.AttachContact(db.GetLocation("My Organization"),
ctContactType.ctClient,false,DateTime.Now);

// ctClient = Client

COM SDK

Content Manager (9.4) Page 75 of 101

General Code Examples

The following sample code demonstrates many of the features described above. The code will work
with the Demonstration Database.

In Visual Basic

Dim objTRIM As New Database

Dim objRecord As Record

Dim objRecordB As Record

' Create a new File Folder record

Set objRecordType = objTRIM.GetRecordType("Research Project File")

Set objRecord = objTRIM.NewRecord(objRecordType)

With objRecord

' Set keyword title and free text title

.GeneratedTitle = "Administration - Finance - Donations"

.TypedTitle = "Bequest from the estate of Lady Marchcroft"

' Relate to the superseded record

Set objRecordB = objTRIM.GetRecord("76/915")

Call .AttachRelationship(objRecordB, rrDoesSupersede)

' Assign "Confidential" security level

.SecLevel = objTRIM.GetSecurityLevel("Confidential")

' Add "Research Projects" Caveat

Call .AddCaveat(objTRIM.GetSecurityCaveat("Research Projects"))

' Access Control - only this user can update

Call .SetAccessControlDetails(dxUpdateMetadata, asPrivate,
objTRIM.CurrentUser)

' Locations

Call .SetHomeLocation(objTRIM.GetLocation("Administration"))

Call .SetCurrentLocation(objTRIM.CurrentUser)

' Contacts

Call .AttachContact(objTRIM.CurrentUser, ctAuthor, True)

Call .AttachContact(objTRIM.GetLocation("Bay Books"), ctClient)

' Verify and Save

COM SDK

Content Manager (9.4) Page 76 of 101

If Not .Verify Then

MsgBox .ErrorMessage

Else

.Save

End If

End With

COM SDK

Content Manager (9.4) Page 77 of 101

In C#

TRIMSDK.Database db = new TRIMSDK.Database();

// Create a new File Folder record

TRIMSDK.RecordType objRecordType = db.GetRecordType("Research Project File");

TRIMSDK.Record objRecord = db.NewRecord(objRecordType);

// Set keyword title and free text title

objRecord.GeneratedTitle = "Administration - Finance - Donations";

objRecord.TypedTitle = "Bequest from the estate of Lady Marchcroft";

// Relate to the superseded record

TRIMSDK.Record objRecordB = db.GetRecord("76/915");

objRecord.AttachRelationship(objRecordB, rrRecordRelationship.rrDoesSupersede);

// Assign "Confidential" security level

objRecord.SecLevel = db.GetSecurityLevel("Confidential");

// Add "Research Projects" Caveat

objRecord.AddCaveat(db.GetSecurityCaveat("Research Projects"));

// Access Control - only this user can update

objRecord.SetAccessControlDetails(dxRecordAccess.dxUpdateMetadata,
asAccessControlSettings.asPrivate, db.CurrentUser);

// Locations

objRecord.SetHomeLocation(db.GetLocation("Administration"));

objRecord.SetCurrentLocation(db.CurrentUser,DateTime.Now);

// Contacts

objRecord.AttachContact(db.CurrentUser, ctContactType.ctAuthor, true,DateTime.Now);

objRecord.AttachContact(db.GetLocation("Bay Books"),
ctContactType.ctClient,false,DateTime.Now);

// Verify and Save

if (! objRecord.Verify(false))

{

MessageBox.Show (objRecord.ErrorMessage);

}

else

{

objRecord.Save();

COM SDK

Content Manager (9.4) Page 78 of 101

}

Creating a Document

This scenario describes the general processes for using the SDK to create a record of a generic Record
Type we are calling a 'Document'.

(See Searching for Records - Creating a Container File).

While Container Files are usually created andmaintained by specialist records managers, Documents,
on the other hand, are usually created by end-users, and require little specific metadata other than the
identification of the appropriate Container File to which the Document belongs, as most other metadata
and context is inherited from the Container. A Document record usually consists of an electronic object
(the source document, image or other file), a unique identifier (whichmay be automatically generated by
TRIM), a record title and any other metadata required to profile and index the record, and a pointer to the
Container File from which the document derives its context.

The general steps for creating a new Document record are as follows:

1. Instantiate the appropriate Record Type object

2. Instantiate a new Record object of this Type

3. Identify the Container File for the document

4. Set the free text title

5. Attach an Electronic file

6. Assign the record's Author or other contacts (optional)

7. Set Access Control to the elecronic document (optional)

8. Assign other metadata or User Defined Fields (optional)

9. Save the Record object.

COM SDK

Content Manager (9.4) Page 79 of 101

Titling and Numbering

Titling for documents is generally straightforward – free text titling is the norm, and the title simply
needs to succinctly describe the document or record. Record numbers may be assigned explicitly or
they may be automatically generated – this is configured on the Record Type properties. If the number
is explicitly assigned, the number (in expanded format) must be assigned to the LongNumber property
(it must be unique or the record will not be saved).

In Visual Basic

objRecord.Title = "Letter from executor regarding disbursements of Lady
Marchcroft's bequest"

objRecord.LongNumber = "XK/008934"

In C#

objRecord.Title = "Letter from executor regarding disbursements of Lady
Marchcroft’s bequest";

objRecord.LongNumber = "XK/008936";

Assigning to a Container

Although it is not compulsory, it is most common that an electronic record is logically assigned to a
Container file that represents the subject matter, case, client file or other contextual grouping relevant
to the document.

To assign a record to a Container, the existing Container recordmust be instantiated (by Id or URI) and
then passed as an argument to the (contained) record object's SetContainer method. Themethod
includes a parameter for specifying whether the record is also 'enclosed in' the Container, i.e. that the
current location should reflect that it is with the Container.

In Visual Basic

Dim objContainer As Record

Set objContainer = objTRIM.GetRecord("76/915")

objRecord.SetContainer(objContainer, True)

In C#

TRIMSDK.Record objContainer = db.GetRecord("76/915");

objRecord.SetContainer(objContainer, true);

Attaching an Electronic Document

Document records can represent physical paper documents, but mostly they will include an electronic
attachment, whether this is a word-processing document, scanned image or other type of file.

COM SDK

Content Manager (9.4) Page 80 of 101

To attach an electronic document to a record, the file name and pathmust be used to instantiate an
InputDocument object. This object is then passed as an argument to the record object's SetDocument
method. Themethod includes parameters for specifying whether this should replace any existing
document (or be added as a new revision), whether it should bemarked as checked out to the current
user, and any comments to be added to the record's Notes field.

In Visual Basic

Dim objDoc As New InputDocument

Call objDoc.SetAsFile("C:\myDocs\ThisFile.doc")

Call objRecord.SetDocument(objDoc, False, False, "Created via SDK")

In C#

TRIMSDK.InputDocument objDoc = new InputDocument();

// note that in C# the \ character is an escape symbol,

// unless the string is preceded by an @.

objDoc.SetAsFile(@"C:\myDocs\ThisFile.doc");

objRecord.SetDocument(objDoc, false, false, "Created via SDK");

Alternatively, if the file to be attached is not known until run-time, you can call the SetDocumentUI
method, which will display a dialog for the user to select the file.

In Visual Basic

If Not objRecord.SetDocumentUI(hWnd, "TheDefault.doc", "Attach Document", False)
Then

Msgbox "Action cancelled."

Exit Sub

End If

In C#

int hWnd = Handle.ToInt32();

if (! objRecord.SetDocumentUI(hWnd, "", "Attach Document", false))

{

MessageBox.Show("Action cancelled.");

}

COM SDK

Content Manager (9.4) Page 81 of 101

Document Author

Record Contacts are TRIM location objects commonly representing people or organisations that have a
direct association with the record. Themost common type of Contact to be specified for an electronic
document is the Author. Although the AttachContact method can be used for this and other contact
types, a shortcut is provided through the AuthorLoc property.

The following sample code sets the document's Author to be the connected user.

In Visual Basic

objRecord.AuthorLoc = objTRIM.CurrentUser

In C#objRecord.AuthorLoc = db.CurrentUser;

Access Control for Documents

Formore information on this subject, see Searching for Records - Access Control.

The SetAccessControlDetails method of the Record object is used to add specifications of the Access
Control for the record. This method requires that you specify one of the six actions listed above and the
access level (including the locations, if private or ad-hoc). For Document records, the typical action is
to assign View and Update rights to the electronic document.

The following sample code grants the following:

l Private access to the connected user for updating the electronic document

l Public access to view the Document.

In Visual Basic

Call objRecord.SetAccessControlDetails(dxUpdateDocument, asPrivate,
objTRIM.CurrentUser)

Call objRecord.SetAccessControlDetails(dxViewDocument, asPublic)

In C#

objRecord.SetAccessControlDetails(dxRecordAccess.dxUpdateDocument,
asAccessControlSettings.asPrivate, db.CurrentUser);

objRecord.SetAccessControlDetails(dxRecordAccess.dxViewDocument,
asAccessControlSettings.asPublic,null);

COM SDK

Content Manager (9.4) Page 82 of 101

Setting User-Defined Fields

Any type of record can have any number of User Defined Fields associated with it. (For background
information on User Defined Fields, seeObject Properties - The FieldDefinition Object)

To assign values to User Defined Fields on a record, youmust instantiate a FieldDefinition object
representing the User Defined Field, and pass this and a Variant containing the data value to the
Record object's SetUserField method.

The following sample code assumes that a User Defined String Field called "Job Code" has been
created in TRIM. It assigns a value of "D0933" to this field on the current record.

In Visual Basic

Call objRecord.SetUserField(objTRIM.GetFieldDefinition("Job Code"), "D0933")

In C#objRecord.SetUserField(db.GetFieldDefinition("Job Code"), "D0933");

COM SDK

Content Manager (9.4) Page 83 of 101

Creating a Record with user input

In Visual Basic

' Modular level (m_)

Private m_TRIMDatabase As TRIMSDK.Database

' Procedural level variables (p_)

Dim p_RecordTypes As TRIMSDK.RecordTypes

Dim p_RecordType As TRIMSDK.RecordType

Dim p_NewRecord As TRIMSDK.Record

' Instantiate a collection of Record Types.

Set p_RecordTypes = m_TRIMDatabase.MakeRecordTypes

' Fill the collection with all Record Types, before filtering

p_RecordTypes.SelectAll

' Instantiate a Record Type by choosing it from the collection

Set p_RecordType = p_RecordTypes.ChooseOneUI(hWnd)

If p_RecordType Is Nothing Then

Debug.Print "User pressed Cancel"

Exit Sub

End If

' Instantiate a new Record of the Record Type passed in.

Set p_NewRecord = m_TRIMDatabase.NewRecord(p_RecordType)

' Display the properties of new Record

' Returns True if the user selects OK.

If p_NewRecord.PropertiesUI(hWnd) Then

If p_NewRecord.Verify Then

p_NewRecord.Save

MsgBox "Created a new record - " & p_NewRecord.Number

Else

MsgBox "Error saving new Record properties " & _p_
NewRecord.ErrorMessage, vbExclamation

End If

End If

COM SDK

Content Manager (9.4) Page 84 of 101

' Clean Up

Set p_RecordTypes = Nothing

Set p_RecordType = Nothing

Set p_NewRecord = Nothing

COM SDK

Content Manager (9.4) Page 85 of 101

In C#

private TRIMSDK.Database db = new TRIMSDK.Database();

// Instantiate a collection of Record Types.

TRIMSDK.RecordTypes recordTypes = db.MakeRecordTypes();

// Fill the collection with all Record Types, before filtering

recordTypes.SelectAll();

// Instantiate a Record Type by choosing it from the collection

int hWnd = Handle.ToInt32();

TRIMSDK.RecordType recordType = recordTypes.ChooseOneUI(hWnd);

if (recordType == null)

{

Console.WriteLine("User pressed Cancel");

return;

}

// Instantiate a new Record of the Record Type passed in.

TRIMSDK.Record newRecord = db.NewRecord(recordType);

// Display the properties of new Record

// Returns True if the user selects OK.

if (newRecord.PropertiesUI(hWnd))

{

if (newRecord.Verify(false))

{

newRecord.Save();

MessageBox.Show("Created a new record - " + newRecord.Number);

}

else

{

MessageBox.Show("Error saving new Record properties " +
newRecord.ErrorMessage, "", MessageBoxButtons.OK,MessageBoxIcon.Exclamation);

}

}

// Clean Up

recordTypes = null;

COM SDK

Content Manager (9.4) Page 86 of 101

recordType = null;

newRecord = null;

COM SDK

Content Manager (9.4) Page 87 of 101

Creating a Record with no user input

In Visual Basic

' Modular level (m_)

Private m_TRIMDatabase As TRIMSDK.Database

' Procedural level variables (p_)

Dim p_RecordTypes As TRIMSDK.RecordTypes

Dim p_RecordType As TRIMSDK.RecordType

Dim p_NewRecord As TRIMSDK.Record

Set m_TRIMDatabase = New TRIMSDK.Database

On Error GoTo err_handler

'// Instantiate a Record Type from its name or Uri

Set p_RecordType = m_TRIMDatabase.GetRecordType("Research Project File")

If p_RecordType Is Nothing Then

'// Name or Uri did not uniquely identify a record type.

Debug.Print "Error instantiating Record Type."

Exit Sub

End If

Set p_HomeLocation = m_TRIMDatabase.GetLocation("Llewellyn, Brian (Professor) OBE")

If p_HomeLocation Is Nothing Then

'// Name or Uri did not uniquely identify a TRIM Location.

Debug.Print "Error instantiating Location: " & p_RecordType.ErrorMessage

Exit Sub

End If

'// Instantiate a new Record of the Record Type passed in.

Set p_NewRecord = m_TRIMDatabase.NewRecord(p_RecordType)

'// Complete all of the new record's properties.

With p_NewRecord

'// An error is raised if any of these properties fail.

'// Thesaurus titling

.GeneratedTitle = "ADMINISTRATION - FINANCE - LEASES AND RENTAL AGREEMENTS -
SUPPLIER [Larger than Life Ventures]"

COM SDK

Content Manager (9.4) Page 88 of 101

' p_Keyword.Name

'// Free text titling

.TypedTitle = "New Record Title"

'// Record's Home location

.SetHomeLocation p_HomeLocation

If p_NewRecord.Verify Then

p_NewRecord.Save

Debug.Print "Created a new record - " & p_NewRecord.Number

Else

MsgBox "Error saving new Record" & p_NewRecord.ErrorMessage,
vbExclamation

End If

End With

Set p_RecordType = Nothing

Set p_NewRecord = Nothing

Set p_HomeLocation = Nothing

Exit Sub

err_handler:

'// The error message is also populated in the Err object.

MsgBox "Error: " & Err.Description, vbExclamation

Set p_RecordType = Nothing

Set p_NewRecord = Nothing

Set p_HomeLocation = Nothing

COM SDK

Content Manager (9.4) Page 89 of 101

In C#

TRIMSDK.Database db = new TRIMSDK.Database();

try

{

// Instantiate a Record Type from its name or Uri

TRIMSDK.RecordType recordType = db.GetRecordType("Research Project File");

if (recordType == null)

{

// Name or Uri did not uniquely identify a record type.

Console.WriteLine ("Error instantiating Record Type.");

return;

}

TRIMSDK.Location homeLocation = db.GetLocation("Llewellyn, Brian
(Professor) OBE");

if (homeLocation == null)

{

// Name or Uri did not uniquely identify a TRIM Location.

Console.WriteLine("Error instantiating Location: " +
recordType.ErrorMessage);

return;

}

// Instantiate a new Record of the Record Type passed in.

TRIMSDK.Record newRecord = db.NewRecord(recordType);

// Complete all of the new record's properties.

// An error is raised if any of these properties fail.

// Thesaurus titling

newRecord.GeneratedTitle = "ADMINISTRATION - FINANCE - LEASES AND RENTAL
AGREEMENTS - SUPPLIER [Larger than Life Ventures]"; //p_Keyword.Name

// Free text titling

newRecord.TypedTitle = "New Record Title";

// Record's Home location

if (newRecord.Verify(false))

{

COM SDK

Content Manager (9.4) Page 90 of 101

newRecord.Save();

Console.WriteLine("Created a new record - " + newRecord.Number);

}

else

{

MessageBox.Show("Error saving new Record" +
newRecord.ErrorMessage,"",MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}

recordType = null;

newRecord = null;

homeLocation = null;

return;

}

catch(Exception ex)

{

// The error message is also populated in the ex object.

MessageBox.Show("Error: " + ex.Message, "",
MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

}

Checking Out a Document

When an electronic document in TRIM needs to be updated, it must first be checked out to a user, to
prevent others from attempting to edit the same document. On completion of the changes, it can be
check-in to make the updated version available in TRIM.

Locating the Document

Various methods can be used to locate and instantiate the document that is to be checked out. If the
unique identifier (Record Number or URI) is known, it can be passed to the Database object's
GetRecordmethod. Alternatively the record can be located by the user, either through an interactive
search or by selecting from the contents of a specific Container file.

The following sample code combines some elements of the options described above, by using a
Records collection to display the contents of a specific Container file, and instantiating the record that
the user selects from a displayed result list.

COM SDK

Content Manager (9.4) Page 91 of 101

In Visual Basic

Dim objContainer As Record

Dim objDoc As Record

Dim colContents As Records

Set objContainer = objTRIM.GetRecord("96/715")

Set colContents = objTRIM.MakeRecords

Call colContents.SelectContentsOf(objContainer)

Set objDoc = colContents.ChooseOneUI(hWnd)

If Not objDoc.IsElectronic Then

Exit Sub

End If

In C#

TRIMSDK.Record objContainer = db.GetRecord("96/715");

TRIMSDK.Records colContents = db.MakeRecords();

colContents.SelectContentsOf(objContainer);

int hWnd = Handle.ToInt32();

TRIMSDK.Record objDoc = colContents.ChooseOneUI(hWnd);

if (objDoc != null && ! objDoc.IsElectronic)

{

return;

}

Check Out Options

Once the appropriate electronic document has been identified and instantiated, the object can be
programmatically checked out to a specific file destination by calling the GetDocument method.

In Visual Basic

If objDoc.IsElectronic Then

Call objDoc.GetDocument("C:\tmp\MyFile.doc", True, "Checked out via SDK")

End If

COM SDK

Content Manager (9.4) Page 92 of 101

In C#

if (objDoc.IsElectronic)

{

objDoc.GetDocument(@"C:\tmp\MyFile.doc", true, "Checked out via SDK", " ");

}

Alternatively, a user can choose a document to check out to their TopDrawer via a dialog by calling
TopDrawerDisplayUI on a collection of records.

The following sample code allows a user to select from their list of favorite documents.

In Visual Basic

Call colRecords.SelectFavorites

Call colRecords.TopDrawerDisplayUI(hWnd)

In C#

colRecords.SelectFavorites();

int hWnd = Handle.ToInt32();

colRecords.TopDrawerDisplayUI(hWnd);

Checking In a Document

After a document has been edited and it is ready to be returned to TRIM, it must be Checked-in. This
can be donemanually either through the TRIM or TopDrawer clients (if the document was checked out
to TopDrawer). To Check-in a document programmatically, youmust use the SetDocument method of
the record that has been checked-out. Themethod provides options for adding notes and specifying
whether the latest revision should replace the current one or be stored as a new revision.

In Visual Basic

If objDoc.CheckedOutTo.Uri = objTRIM.CurrentUser.Uri Then

objDoc.SetDocument("C:\tmp\MyFile.doc", True, False, "Checked in via SDK")

End If

COM SDK

Content Manager (9.4) Page 93 of 101

In C#

if (objDoc.CheckedOutTo.Uri == db.CurrentUser.Uri)

{

TRIMSDK.InputDocument document = new InputDocument();

document.SetAsFile(@"C:\myDocs\ThisFile.doc");

objDoc.SetDocument(document, true, false, "Checked in via SDK");

}

To check-in a document interactively, you can use the SetDocumentUI method. This will display a
TRIM dialog to allow the user to specify the check-in options.

In Visual Basic

If Not SetDocumentUI(hWnd, "MyFile.doc", "Check-In", False) Then

MsgBox "Check-in cancelled"

End If

In C#

int hWnd = Handle.ToInt32();

if (! objDoc.SetDocumentUI(hWnd, "", "Check-In", false))

{

MessageBox.Show("Check-in cancelled");

}

Working with Locations

The Location object is an encapsulation of all properties andmethods associated with Persons,
Organizations, Positions andGroups. Locations can be identified by name or by URI, and can be
selected on other criteria, such as date of birth, nicknames, or membership of a particular organization,
role or group.

Finding a Person by Name

Although the names of non-persons (Units, Positions andOrganizations) must be unique, this is not the
case for persons (Staff Names & Contacts). However, TRIM allows you to store a 'nickname' for any
person, and this can be used as a substitute for a persons namewhen searching.

To find a particular person by name, youmust pass the person's combined name and title to the
Database object's GetLocationmethod.

COM SDK

Content Manager (9.4) Page 94 of 101

In Visual Basic

Dim objLoc As Location

Set objLoc = objTRIM.GetLocation("Abbott, Peter (Mr)")

In C#

TRIMSDK.Location objLoc = db.GetLocation("Abbott, Peter (Mr)");

Alternatively, you can pass a sub-string of the person's name followed by a wildcard (asterisk)
character, as long as the text provided uniquely identifies a location.

In Visual Basic

Set objLoc = objTRIM.GetLocation("Abbott, P*")

Set objLoc = objTRIM.GetLocation("Abbott*")

Set objLoc = objTRIM.GetLocation("Abbott, Peter*")

In C#

objLoc = db.GetLocation("Abbott, P*");

objLoc = db.GetLocation("Abbott*");

objLoc = db.GetLocation("Abbott, Peter*");

If the sub-string does not uniquely identify a location (i.e. there are nomatches, or there is more than
onematch) then a null object will be returned.

In Visual Basic

Set objLoc = objTRIM.GetLocation("Abb*") ' finds Abbott and Abbey

If objLoc Is Nothing Then Exit Sub

In C#

objLoc = db.GetLocation("Abb*"); //finds Abbott and Abbey

if (objLoc == null)

{

return;

}

Creating a New Staff Member

To create a new staff member, youmust instantiate a new location by calling the NewLocationmethod
on the Database object. You then define the type of the location by assigning a value (in this case
lcPerson) to the LocType property. You can then set various properties representing the person's
name, contact details such as telephone numbers and addresses, administrative details such as
employee ID numbers and so on.

COM SDK

Content Manager (9.4) Page 95 of 101

If the new person is to be a TRIM user, then there are login and security details to be provided. You will
need to specify the user's network login ID and optionally an expiry date. For the security profile, you
are required to either explicitly state the user's Security Level (and optionally any Caveats) and a user
category, or if role-based security is used you can specify that the user takes the profile of a predefined
group or user.

Relationships such as membership of units or reporting lines are created using the AddRelationship
method and passing parameters for the related location and the relationship type.

Addresses (including electronic addresses such as email or URL) are added by calling the New method
on the LocAddresses or LocEAddresses collection properties.

COM SDK

Content Manager (9.4) Page 96 of 101

In Visual Basic

Dim objUnit As Location

Dim objBoss As Location

Dim objPeer As Location

Dim objRole As Location

Dim objSec As SecurityLevel

Dim objEmail As LocEAddress

Dim bRoleSecurity As Boolean

bRoleSecurity = False

Set objRole = objTRIM.GetLocation("Project Manager")

Set objLoc = objTRIM.NewLocation

With objLoc

.LocType = lcPerson

' Name

.Surname = "Evans"

.GivenNames = "David"

.Initial1 = "D"

.Initial2 = "W"

.Honorific = "Mr"

' Personal & Administrative

.IsWithin = True ' Internal to the org

.IdNumber = 793906

.ReviewDate = Date + 365

.DateOfBirth = #11/29/1966#

.PhoneNo = "555 123496"

.MobileNo = "+44 7939 062736"

.Notes = "Created via SDK"

' Login details

.CanLogin = True

.LoginExpires = Date + (365 * 3) ' Valid for 3 years

.LogsInAs = "evans" ' Network login id

' Security

COM SDK

Content Manager (9.4) Page 97 of 101

If bRoleSecurity Then

.UseProfileOf = objRole

Else

Set objSec = objTRIM.GetSecurityLevel("Confidential")

.SecLevel = objSec

.UserType = utRecordsWorker

End If

' Email address

Set objEmail = .LocEAddresses.New

objEmail.EAddressType = etMail

objEmail.EAddress = "david@gbrmpa.com.au"

objEmail.Description = "Default business email"

' Relationships

Call .AddRelationship(objRole, lrHasGroups)

Set objUnit = objTRIM.GetLocation("Administration")

Call .AddRelationship(objUnit, lrMemberOf, True)

Set objBoss = objTRIM.GetLocation("Neumann, Ilse*")

Call .AddRelationship(objBoss, lrBossedBy)

' Confirm & Save

If .Verify(True) Then

.Save

MsgBox .FormattedName & " created."

Else

MsgBox .ErrorMessage

End If

End With

COM SDK

Content Manager (9.4) Page 98 of 101

In C#

bool bRoleSecurity = false;

TRIMSDK.Location objRole = db.GetLocation("Project Manager");

TRIMSDK.Location objLoc = db.NewLocation();

objLoc.LocType = lcLocationType.lcPerson;

// Name

objLoc.Surname = "Evans";

objLoc.GivenNames = "David";

objLoc.Initial1 = "D";

objLoc.Initial2 = "W";

objLoc.Honorific = "Mr";

// Personal & Administrative

objLoc.IsWithin = true; // Internal to the org

objLoc.IdNumber = Convert.ToString(793906);

objLoc.ReviewDate = DateTime.Today.AddYears(1);

DateTime dob = new DateTime(1966,11,29);

objLoc.DateOfBirth = dob;

objLoc.PhoneNo = "555 123496";

objLoc.MobileNo = "+44 7939 062736";

objLoc.Notes = "Created via SDK";

// Login details

objLoc.CanLogin = true;

objLoc.LoginExpires = DateTime.Today.AddYears(3); // Valid for 3 yrs

objLoc.LogsInAs = "evans"; // Network login id

// Security

if (bRoleSecurity)

{

objLoc.UseProfileOf = objRole;

}

else

{

TRIMSDK.SecurityLevel objSec = db.GetSecurityLevel("Confidential");

COM SDK

Content Manager (9.4) Page 99 of 101

objLoc.SecLevel = objSec;

objLoc.UserType = utUserTypes.utRecordsWorker;

}

// Email address

TRIMSDK.LocEAddress objEmail = objLoc.LocEAddresses.New();

objEmail.EAddressType = etEAddressType.etMail;

objEmail.EAddress = "david@gbrmpa.com.au";

objEmail.Description = "Default business email";

// Relationships

objLoc.AddRelationship(objRole, lrLocRelationshipType.lrHasGroups,false);

TRIMSDK.Location objUnit = db.GetLocation("Administration");

objLoc.AddRelationship(objUnit, lrLocRelationshipType.lrMemberOf, true);

TRIMSDK.Location objBoss = db.GetLocation("Neumann, Ilse*");

objLoc.AddRelationship(objBoss, lrLocRelationshipType.lrBossedBy,false);

// Confirm & Save

if (objLoc.Verify(true))

{

objLoc.Save();

MessageBox.Show(objLoc.FormattedName + " created.");

}

else

{

MessageBox.Show(objLoc.ErrorMessage);

}

COM SDK

Content Manager (9.4) Page 100 of 101

Reference

Objects

The reference section detailing themethods and properties of each Content Manager COM SDK object
has been replaced by helpstrings which appear in the object browser of your chosen IDE. These
helpstrings contain themost up-to-date information about eachmethod and property in the Content
Manager COM SDK.

COM SDK

Content Manager (9.4) Page 101 of 101

	Content Manager COM SDK
	Using the Content Manager COM SDK
	Technical Prerequisites and Assumptions
	Using Content Manager COM SDK with .NET Applications
	A Short History of the COM SDK

	What is the Content Manager COM SDK?
	Better Building Blocks
	Hear, Say
	ActiveX Controls (TSJOCX.DLL)

	The Content Manager Object Model
	Objects and Interfaces
	Generic Interfaces
	Methods and Properties

	Using the Content Manager Object Model
	Database Object
	Working with Base Objects
	Working With Collections of Base Objects
	Working With Child Objects
	Object Properties
	Acting on Content Manager Events

	Common Scenarios – Code Samples
	Connecting to a Database
	Accessing a Record
	Updating Records
	Verifying
	Trapping Run-Time Errors
	Creating a Container File

	General Code Examples
	Checking Out a Document
	Checking In a Document
	Working with Locations

	Reference
	Objects

