
Real User Monitor
Version 9.51, Released November 2018

RUM for Docker – Getting Started
Published November 2018

Legal Notices

Disclaimer
Certain versions of software and/or documents (“Material”) accessible here may contain branding from Hewlett-
Packard Company (now HP Inc.) and Hewlett Packard Enterprise Company. As of September 1, 2017, the Material
is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPE marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are
the property of their respective owners.

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 2018 Micro Focus or one of its affiliates

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is a registered trademark of The Open Group.
This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-
2002 Jean-loup Gailly and Mark Adler.

RUM for Docker – Getting Started

Real User Monitor (9.51) Page 2 of 25

Contents
Chapter 1: Introduction 5

Docker Technology 5
DockerizedMulti-tier Application 6

Chapter 2: Inter-container Traffic Monitoring with RUM 8
Features 8
Prerequisites 9
Step-by-step Guide 9

Chapter 3: Viewing Monitored Data and Topology in Reports 14
Chapter 4: Troubleshooting 18

Cannot See Containers 18
Cannot See Data 19

Appendix A: Enabling Remote API Access 21
Docker Engine 21
Docker Swarm 21
Kubernetes 21

Appendix B: Identifying Exposed vs Private Ports 23
Send Documentation Feedback 25

RUM for Docker – Getting Started

Real User Monitor (9.51) Page 3 of 25

Page 4 of 25Real User Monitor (9.51)

RUM for Docker – Getting Started

Chapter 1: Introduction

Docker Technology
Containerization or Dockerization is currently a hot and trending topic in the IT world. It allows you to get an
entire fleet of inter-connected software products up and running with just a few commands in amatter of
minutes. Nomore tedious installations! Nomore variability based on the host operating system! You can ship
your product with its ecosystem as a single image. And these files are only few hundredmegabytes!

Sounds too good to be true, doesn’t it? But this is indeed what Docker promises and delivers — the overhead
of running an application server reduced to a fraction of the time of the former app-per-VM deployments.

Now you could ask, “With all this simplicity, theremust be some downside! Why else doesn’t everyonemove
to Docker right away?”

The downside to containerization is an added complexity in monitoring your applications. Here is why:

l Docker containers have a small footprint. Whichmeans, there is a tendency to havemany more
applications running on each server.

l All these containers contend for limited resources in terms of RAM, CPU, etc. Over allocation of
containers on a Docker host could have a serious impact on all the containers and applications running on
that host.

l In such an overcrowded deployment, identifying a single container that starts to exhibit poor performance
or low availability now becomes akin to searching for a needle in a haystack.

Traditional agent-based solutions do not help much here since having an agent per container defeats the “be-
nimble” philosophy of containerization.

Furthermore, containers are usually deployed on the Docker engine’s private network bridge. Therefore, IPs
or hostnames are not useful anymore. You need container names and image names to correctly identify
containers.

So, how do youmaintain the same level of performance and availability monitoring for your applications once
you containerize them?

Real User Monitor (9.51) Page 5 of 25

Dockerized Multi-tier Application
To help visualize a deployment in the Docker world, let’s use the example of amulti-tier banking application,
Cyclos. Let’s say you recently containerized this application to be entirely hosted on a single Docker server
and you would like to ensure the same level of monitoring through RUM as before. The deployment is as
follows:

RUM for Docker – Getting Started
Chapter 1: Introduction

Real User Monitor (9.51) Page 6 of 25

The application has four tiers:

l Reverse Proxy tier – Receives requests from EndUsers and routes these requests to two load balancers
l Load Balancer tier – Receives requests from the reverse proxy and distributes these requests between
the web servers

l Web Server tier – Receives forwarded requests from the Load Balancer
l Database tier – Persistence layer for theWeb Servers
There are eight containers deployed on the Docker Host:

l A single Reverse Proxy container named apprp01
l Two Load Balancer containers named applb01 and applb02
l FourWeb Server containers named cyclosapp01, cyclosapp02, cyclosapp03, and cyclosapp05
l A single Database server container named appdb

On beingmonitored by RUM, you would see the following topology discovered and displayed in the Docker
infrastructure report:

RUM for Docker – Getting Started
Chapter 1: Introduction

Real User Monitor (9.51) Page 7 of 25

Chapter 2: Inter-container Traffic
Monitoring with RUM

Features
l Easy 2-step configuration – Add Docker host connection details to the RUM engine, define your app in
APM and your application is monitored

l Cluster ready – Support for monitoring Docker Swarm and Kubernetes based clusters
l Automatic app tier discovery – Define only the front end. Backend tiers are auto discovered
l Automatic container discovery –Ongoing changes such as new container additions during scale-up,
container deletions during scale-down, etc., are automatically detected and seamlessly monitored

l Automatic Sniffer probe container management – RUM Sniffer probes are automatically deployed by
the RUM Engine ontomonitored Docker hosts and their health is monitored. Zeromanual intervention
required for probe installation andmaintenance.

l Advanced filtering based configuration – Filter containers per app based on wildcards for container
names and images

l All new Docker Infra report – View Docker topology (Docker hosts and their associated containers),
application tier topology, and Docker container interaction graphs in a single report

l Docker data in regular RUM reports – View data in regular RUM reports in the context of Docker
container names, container images, and the Docker host

Real User Monitor (9.51) Page 8 of 25

Prerequisites
l Docker Engines hosting the containers to bemonitoredmust be version 1.10.3 or higher.
l Formonitoring Docker Swarms, the Swarmmanagers must be version 1.1.3 or higher
l Formonitoring Kubernetes clusters, the Kubernetes master must be version 1.1.7 or higher
l RUM Engine and APMmust be version 9.30 or higher.
l All servers to bemonitored under a RUM application with theDeployed on Docker option enabledmust
be containers with bridge networking. Containers with host networking (started with --net ‘host’) must be
monitored as regular RUM applications (with theDeployed on Docker option disabled).

l Remote API ports of monitored Docker Engines, Docker Swarmmanagers, or Kubernetes Masters must
be enabled. See Appendix A: "Enabling Remote API Access" on page 21 for details.

l Formonitoring configuration, keep a list of your Docker Engine, Docker Swarmmanager, or Kubernetes
Master host IP addresses and a list of your container’s private and/or exposed ports handy for
configuration.

Step-by-step Guide

Follow these steps to setup RUMmonitoring for a Dockerized Application:

1. Connect the RUM Engine to the Docker host and deploy the Sniffer probe container:
a. Ensure that the API port on your Host is open and accessible from the RUM Engine server. See

Appendix A:"Enabling Remote API Access" on page 21 for instructions.
b. Use the Docker Host Management screen to configure the connection to the Docker Host

(standalone Docker Engine, Kubernetes Master, or Docker SwarmManager). Important fields to be
noted are:

RUM for Docker – Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Real User Monitor (9.51) Page 9 of 25

o Host:Provide the IP of the Docker Host
o Type:Select the type of Docker Host beingmanaged
o Port:Provide the exposed API port of the Docker Host
o Probe Management:Select whether Sniffer Probe containers should be automatically managed

by the engine or not (automatic probemanagement is currently supported for hosts of type
Docker Engine and Docker SwarmManager).

For further details on the various fields, refer to theDocker Host Management section of the
RUM Administration Guide, available on the Software Support web site
(https://softwaresupport.softwaregrp.com/).

c. If Automatic ProbeManagement has been selected for a Docker Host, RUM can automatically
deploy one RUM Sniffer probe container per Docker Host node.
If Manual ProbeManagement has been selected for a Docker Host:
i. Run the following command on the Host. For Cluster managed hosts, run the command on

each Docker Swarm node or each Kubernetes node. The RUM Sniffer probe image is
downloaded automatically from the Docker Hub and the container is started.

docker run -d --name rumsnifferprobe --net 'host' --cap-add=NET_ADMIN
hpsoftware/rumsnifferprobe:latest

RUM for Docker – Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Real User Monitor (9.51) Page 10 of 25

https://softwaresupport.softwaregrp.com/

ii. Run the command docker ps | grep rumsnifferprobe to confirm that the new container is
running successfully.

iii. Define themanually created probe underConfiguration > Probe management.
d. RUM Engine runs discovery on enabled Docker Hosts every fiveminutes. For on demand

discovery, click the Force Docker Discovery button on theDocker Probe Management screen.

Click the icon on the Docker Host Management screen to navigate to the Force Docker
Discovery button.

2. Configure your Application as Deployed on Docker.
a. Ensure that Docker support for RUM Applications has been enabled in APM underAdmin >

Platform Administration > Setup and Maintenance > Infrastructure Settings > Foundations >
EUM Administration > Enable Docker support for RUM applications.

b. UnderAdmin > End User Management > Monitoring, define a new RUM Application using the
following details:
i. Add the IP address of the Docker Engine host, or Kubernetes Master or Docker Swarm

Manager.

Note: For cluster managed deployments, RUMwill automatically discover the nodes
associated with your cluster via the cluster manager’s API.

ii. Add the port that identifies the set of containers that would run this application. The port can be:
l Exposed - The published port of the container available for accessing the application.
l Private - The private port of the container that is available only to the other containers on the
same bridge.

See Appendix B: "Identifying Exposed vs Private Ports" on page 23 for assistance in
identifying which port works best for you.

iii. Select theDeployed on Docker option and from theDefine Docker container port as drop
down list, select Private orExposed based on the type of port defined above.

iv. Assign the application to the correct RUM Engine and select All probes.

RUM for Docker – Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Real User Monitor (9.51) Page 11 of 25

Note: The engine routes the configuration to the correct RUM Sniffer probe container (the
Sniffer probes present on Docker Hosts that have containers that match your application
definition).

v. To allow RUM to automatically discover backend tiers, select theEnable automatic tier
discovery option. It is recommended that this option be unchecked once all tiers relevant to
your application have been discovered.

3. Advanced configuration – fine tuning container selection per tier.

To control exactly which containers aremapped to each of your Application Tiers, click the icon on
the Docker Host Management screen to add filters. You can use the wild-card character "*" to build rules
for container-to-app tier matching.
The example below shows the image-container name filter applied to themulti-tier Cyclos application
described earlier.

The image-container name filter combination tomcat* and cyclosapp* listed for auto-discovered-tier-
General_Web ensures that only containers with names such as cyclosapp01 or cyclosapp02

RUM for Docker – Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Real User Monitor (9.51) Page 12 of 25

spawned from any version of the tomcat image aremonitored for that tier. This also ensures that
containers with names like jpetstore01 are not monitored for this tier.

RUM for Docker – Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Real User Monitor (9.51) Page 13 of 25

Chapter 3: Viewing Monitored Data and
Topology in Reports
Now that you set up themonitoring, you can start keeping an eye on Docker container level data for your
DockerizedMulti-Tier Cyclos application in APM's Application Health.

1. Let’s begin with the Application Health Dashboard. The Application Health Dashboard provides a real-
time view of the availability and performance of your applications.

In this scenario, RUM has detected a problem with the availability of the Cyclos application.
2. Click the red availability icon to drill down into the AppOverview report.

3. Next, click the Real User Monitor icon on the left panel on the screen.

Real User Monitor (9.51) Page 14 of 25

Here we see RUM data for all applications. The Cyclos application’s availability is 89%.

4. To navigate to the Docker Infra report, click Availability value (89%) > App Infra > Docker
Infrastructure. The Docker Infrastructure report displays:
l Docker containers that make up your application

l Network connections made between the containers. Notice the impact the current issue has on your
application’s containers.

l End-user facing container apprp01 that is part of the Reverse-Proxy tier is impacted.

l One of the two backend load-balancer containers, applb01, is impacted.

RUM for Docker – Getting Started
Chapter 3: ViewingMonitored Data and Topology in Reports

Real User Monitor (9.51) Page 15 of 25

5. Click the icon on the right () to view the deployment of your containers over Docker nodes.

The Docker Infrastructure report displays:
l Docker nodes that host the application’s containers

l Application availability, performance, and connectionmetrics per container and aggregated upwards
to the parent node.
Notice the container named cyclosapp01 (one of the containers that applb01 routes traffic to) is
facing connection problems. This container is the root cause of the current application level
availability drop. Also, we can see that the container is hosted on the Docker Engine node
StandaloneDockerEngine.

The only remaining action is to resolve the problem by recreating or fixing the affected root-cause container
cyclosapp01 that is hosted on the Docker EngineStandaloneDockerEngine.

In addition to the Docker Infrastructure report, Docker containers are also represented in traditional RUM
reports such as the Session Analyzer report and Application Infrastructure Summary report, and also within
active filters of RUM reports under theServers tab.

Docker containers are identified by their Fully Qualified Container Names (FQCN) in the following format:

<container_name>.<image_name>.<image_version>.<docker_host>

The following shows themapping for our representative application, Cyclos, in the Application Infrastructure
Summary report.

RUM for Docker – Getting Started
Chapter 3: ViewingMonitored Data and Topology in Reports

Real User Monitor (9.51) Page 16 of 25

RUM for Docker – Getting Started
Chapter 3: ViewingMonitored Data and Topology in Reports

Real User Monitor (9.51) Page 17 of 25

Chapter 4: Troubleshooting

Cannot See Containers
Symptom: After configuring a Docker Host and assigning an application to the Engine, no container(s)
appear in theApplication Health > Docker Infrastructure report.

Troubleshooting Steps:

1. Check the API connection between RUM and the Docker Host:
From the RUM Engine server, access the Docker Host server with a browser using the following URL:
http://<docker_host_ip>:<docker_host_port>/version
You should receive a version.json file to download in response. If version.json is not returned as the
response, youmay be using the wrong port or IP address to connect to the Docker Host.

2. Next, check the containers retrieved by the Engine:
a. Open the Engine JMX: http://<RUM_Engine>:8180/jmx-console/
b. Click RUM.modules on the left.
c. Click service=ConfigurationManagerConf.
d. Search for the operation getDockerContainerCollection and click Invoke.

e. Verify that the container you expect to see in the RUM reports appears in the output.

Real User Monitor (9.51) Page 18 of 25

f. If you do not see your container listed, check whether the container is actually running on the Docker
host.

3. Finally, check the <RUM>\log\config.manager.log for any errors or exceptions thrown during RUM
Engine’s discovery run.

Cannot See Data
Symptom:After configuring a Docker Host and assigning an application to the Engine, no data appears for
the application in RUM reports.

Troubleshooting Steps:
Formonitoring, RUM requires the RUM Sniffer probe container to run on the Docker Host and a connection to
the probemust be established in the Engine’s ProbeManagement page. These steps are handled
automatically for Docker Hosts flagged for Automatic ProbeManagement.

1. From the Docker Host Management page, navigate to the Docker ProbeManagement page by clicking

the icon. This page displays the list of Nodes managed by your Docker Host and details of the
probe container that resides on each node.

For each probe:

RUM for Docker – Getting Started
Chapter 4: Troubleshooting

Real User Monitor (9.51) Page 19 of 25

a. Check the Container Status column to ensure that your probe container is currently Up.
b. Click theCheck RUMProbe Process Status button to check whether the probe’s RUMProbe

process is currently running in the probe container.
c. Click theRetrieve Container Log button to check the last 20 lines of the probe container’s

capture.log.
d. Click theRemove and Recreate Container button to force a cleanup and re-creation of the probe

container.
2. When you are satisfied that the probe container is healthy, enable traffic discovery for a few minutes to

view the traffic that the probe actually sees. InConfiguration > Probe Management, select the probe
deployed on the Docker Host that contains your application and click Probe Traffic Discovery.

You should see traffic relevant to your application in the discovery result. If you do not see traffic, it could
mean that there is no traffic being generated on your application for the probe to capture.

RUM for Docker – Getting Started
Chapter 4: Troubleshooting

Real User Monitor (9.51) Page 20 of 25

Appendix A: Enabling Remote API
Access

Docker Engine
RUM requires access to the Docker Engine’s remote API for container discovery. Steps to enable remote
access are detailed in the Docker documentation in Bind Docker to another host/port or a UNIX socket.

The sample steps below are specifically for Docker Engine’s deployed on Ubuntu 16.04.

1. Open the file /lib/systemd/system/docker.service
2. Modify the following line:

ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:2375

3. Reload the configuration and restart the Docker daemon:

sudo systemctl daemon-reload

sudo systemctl restart docker.service

4. Check that the Docker daemon successfully started with the API port.

5. From the RUM Engine server, access the Docker host server with a browser (like IE) using the following
URL: http://<docker_host_ip>:2375/version.
You should receive a version.json file to download in response.

6. Use the port configured above (2375 by default) to configure Docker hosts on the RUM Engine.

Docker Swarm
The Docker Swarm API is mostly compatible with the Docker Engine Remote API. As with Docker hosts,
RUM leverages the SwarmManager remote API for container and node discovery and probe deployment.

Steps to enable remote access are detailed in the Docker documentation at Docker Swarm Discovery and
Docker Swarm API.

Run the command ps -ef | grep swarm manage to determine the API port.

Kubernetes
Like the Docker offerings, Kubernetes API subsystem is available for RUM to perform Container Discovery
andManagement. By default, it is available on port 8080. Choose --secure-portwhen a secure connection is

Real User Monitor (9.51) Page 21 of 25

https://docs.docker.com/engine/reference/commandline/dockerd#daemon-socket-option
https://docs.docker.com/swarm/discovery/
https://docs.docker.com/swarm/swarm-api/

mandated. Details are available on the Kube-API Server page.

Run the command ps -ef | grep kube-api to determine the API port.

RUM for Docker – Getting Started
Appendix A: Enabling Remote API Access

Real User Monitor (9.51) Page 22 of 25

http://kubernetes.io/docs/admin/kube-apiserver/

Appendix B: Identifying Exposed vs
Private Ports
There are two ways to determine exposed and private ports of containers.

l Directly on the Docker Host:
On the Docker Host, run docker ps to show the container ports.

In the screenshot above:
l 9295 is the exposed port for container cyclosapp05. 8080 is the private port.

l 9293 is the exposed port for container cyclosapp02. 8080 is the private port.

l Container cyclosapp10 has no private or exposed port.

l From the RUM Engine (after connecting the Docker Host to it):
a. Open the Engine JMX: http://<RUM_Engine>:8180/jmx-console/
b. Click RUM.modules on the left.
c. Click service=ConfigurationManagerConf.
d. Search for the operation getDockerContainerCollection and click Invoke.

e. In the sample output screenshot below, we see that container cyclosapp03 has a private port 8080
and a corresponding exposed port 9294.

Real User Monitor (9.51) Page 23 of 25

Wealso see that container appdb has a private port 3306. It has no exposed ports.

RUM for Docker – Getting Started
Appendix B: Identifying Exposed vs Private Ports

Real User Monitor (9.51) Page 24 of 25

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on RUM for Docker – Getting Started (Real User Monitor 9.51)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to doc.feedback@microfocus.com.

We appreciate your feedback!

Real User Monitor (9.51) Page 25 of 25

mailto:doc.feedback@microfocus.com?subject=Feedback on RUM for Docker � Getting Started (Real User Monitor 9.51)

	Chapter 1: Introduction
	Docker Technology
	Dockerized Multi-tier Application

	Chapter 2: Inter-container Traffic Monitoring with RUM
	Features
	Prerequisites
	Step-by-step Guide

	Chapter 3: Viewing Monitored Data and Topology in Reports
	Chapter 4: Troubleshooting
	Cannot See Containers
	Cannot See Data

	Appendix A: Enabling Remote API Access
	Docker Engine
	Docker Swarm
	Kubernetes

	Appendix B: Identifying Exposed vs Private Ports
	Send Documentation Feedback

