R

MICRO
I:IFEII::IJS

Real User Monitor

Version 9.51, Released November 2018

RUM for Docker - Getting Started

Published November 2018

RUM for Docker — Getting Started

Legal Notices

Disclaimer

Certain versions of software and/or documents (“Material”) accessible here may contain branding from Hewlett-
Packard Company (now HP Inc.) and Hewlett Packard Enterprise Company. As of September 1,2017, the Material
is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPE marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are
the property of their respective owners.

Warranty

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend

Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 2018 Micro Focus or one of its affiliates

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is a registered trademark of The Open Group.

This productincludes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-
2002 Jean-loup Gailly and Mark Adler.

Real User Monitor (9.51) Page 2 of 25

RUM for Docker — Getting Started

Contents

Chapter 1: IntrodUCtioN .. L 5
Docker TEChNOIOQY ... L 5
Dockerized Multi-tier Application 6

Chapter 2: Inter-container Traffic Monitoring with RUM 8
FeatUreS . 8
PrerEqUISI S L 9
Step-by-step GUITE .. 9

Chapter 3: Viewing Monitored Data and Topology in Reports 14

Chapter 4: Troubleshooting 18
Cannot See CoNtaINErS ... o L 18
CanNot See Data .. 19

Appendix A: Enabling Remote API ACCESSo oo 21
DOCKEr ENGING . . 21
DOCK I WM L 21
KUD I ES 21

Appendix B: Identifying Exposed vs Private Ports 23

Send Documentation Feedback 25

Real User Monitor (9.51) Page 3 of 25

RUM for Docker — Getting Started

Real User Monitor (9.51) Page 4 of 25

Chapter 1: Introduction

Docker Technology

Containerization or Dockerization is currently a hot and trending topic in the IT world. It allows you to get an
entire fleet of inter-connected software products up and running with just a few commands in a matter of
minutes. No more tedious installations! No more variability based on the host operating system! You can ship
your product with its ecosystem as a single image. And these files are only few hundred megabytes!

Sounds too good to be true, doesn’t it? But this is indeed what Docker promises and delivers — the overhead
of running an application server reduced to a fraction of the time of the former app-per-VM deployments.

Now you could ask, “With all this simplicity, there must be some downside! Why else doesn’t everyone move
to Docker right away?”

The downside to containerization is an added complexity in monitoring your applications. Here is why:
« Docker containers have a small footprint. Which means, there is a tendency to have many more
applications running on each server.

« All these containers contend for limited resources in terms of RAM, CPU, etc. Over allocation of
containers on a Docker host could have a serious impact on all the containers and applications running on
that host.

« Insuch an overcrowded deployment, identifying a single container that starts to exhibit poor performance
or low availability now becomes akin to searching for a needle in a haystack.

Traditional agent-based solutions do not help much here since having an agent per container defeats the “be-
nimble” philosophy of containerization.

Furthermore, containers are usually deployed on the Docker engine’s private network bridge. Therefore, IPs
or hostnames are not useful anymore. You need container names and image names to correctly identify
containers.

So, how do you maintain the same level of performance and availability monitoring for your applications once
you containerize them?

Real User Monitor (9.51) Page 5 of 25

RUM for Docker — Getting Started
Chapter 1: Introduction

Dockerized Multi-tier Application

To help visualize a deployment in the Docker world, let’s use the example of a multi-tier banking application,
Cyclos. Let’s say you recently containerized this application to be entirely hosted on a single Docker server
and you would like to ensure the same level of monitoring through RUM as before. The deployment is as

follows:

Real User Monitor (9.51) Page 6 of 25

RUM for Docker — Getting Started
Chapter 1: Introduction

The application has four tiers:

« Reverse Proxy tier — Receives requests from End Users and routes these requests to two load balancers

« Load Balancer tier — Receives requests from the reverse proxy and distributes these requests between

the web servers

« Web Server tier — Receives forwarded requests from the Load Balancer

« Database tier — Persistence layer for the Web Servers
There are eight containers deployed on the Docker Host:

« A single Reverse Proxy container named apprp01

« Two Load Balancer containers named applb01 and applb02

« Four Web Server containers named cyclosapp01, cyclosapp02, cyclosapp03, and cyclosapp05

« Asingle Database server container named appdb

.1o/httpd:latest
.1o/httpd:latest
.1lo/httpd:latest

‘ep -f "
‘cp - "
e e e
h run"

run"

run"
sh run"

.sh mysqgl"

"/bin/bash -c
.y

6 hours
6 hours a
6 hours
6 hours
6 hours a
6 hours a
6 hours
6 hours a

6 hours
p 6 hours
6 hours

About an hour

6 hours

rp@l

lbel

1bez
cyclos
cyclos
cyclos
cyclos

db

On being monitored by RUM, you would see the following topology discovered and displayed in the Docker

infrastructure report:

BP Application Health admin -

< Docker Multi_Tier_Cyclos App @1100% Performance ‘LWOO“ Availability {§) Volume B2 Appinfra (¥ Locations n
App Infrasiructure Docker Infrastruct_
DOCKER INFRASTRUCTURE
Avg
O] Total avg
Connection Total
Docker Host Availability Performance Action Download o :
Availability ~ Traffic
B Hits Time(sec)
(Mb)
DockerEngine01 ¢ > @ wooox @ owex SwE 007 4 esmu 6225
Avg §
appdd . Total Action Connection Avg Total
Container Avallability Performance Download
Hits Availability Traffic (Mb)
Time (sec)
applbO1 (17217.08) . 10000 % . 9991% 163 007 . 10000% 189
r r r appIpO1 (7217011 @ wo0ox @ wwex 6676 02 @ 10000% 973
cyclasappll cyclosapp02 yelosapp03 cyclosapp0s cyclosappO1 (1721706) @ 0ooox @ 10000% 1107 003 @ 10000% 184
CyclosappO2 (I721707) @ ooox @ 10000% 2 003 s6s7% o
cyclosappO3 (1721709) @ wooox @ 10000% 53 003 @ 10000% o1
appdb (1721702) @ ooox @ 10000% 40433 001 @ 10000% 4505
applbOl applb02
cyclosapp05 (1721705) . 10000 % . 10000 % 1089 003 . 10000 % 172
appib02 (17217010) @ oooox @ 10000% us2 o @ 10000% 191
apprp01

Real User Monitor (9.51)

Page 7 of 25

Chapter 2: Inter-container Traffic
Monitoring with RUM

Features

Easy 2-step configuration — Add Docker host connection details to the RUM engine, define your app in
APM and your application is monitored

Cluster ready — Support for monitoring Docker Swarm and Kubernetes based clusters
Automatic app tier discovery — Define only the front end. Backend tiers are auto discovered

Automatic container discovery — Ongoing changes such as new container additions during scale-up,
container deletions during scale-down, etc., are automatically detected and seamlessly monitored

Automatic Sniffer probe container management — RUM Sniffer probes are automatically deployed by
the RUM Engine onto monitored Docker hosts and their health is monitored. Zero manual intervention
required for probe installation and maintenance.

Advanced filtering based configuration — Filter containers per app based on wildcards for container
names and images

All new Docker Infra report — View Docker topology (Docker hosts and their associated containers),
application tier topology, and Docker container interaction graphs in a single report

Docker data in regular RUM reports — View data in regular RUM reports in the context of Docker
container names, container images, and the Docker host

Easy to

Configure

Reports for Cluster
Containers

RUM for
e Docker

it il Advanced
tomcat* cyclosapp*

Automatic

i Tier
~ Filtering A
mysal *appdo* 2 Discovery

Automatic : J 9
Sniffer Auton!atlc
Container

Type:
Port.

Probe \
Protocol

Container
&= Management

Discovery

Real User Monitor (9.51) Page 8 of 25

RUM for Docker — Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Prerequisites

« Docker Engines hosting the containers to be monitored must be version 1.10.3 or higher.

« For monitoring Docker Swarms, the Swarm managers must be version 1.1.3 or higher

« For monitoring Kubernetes clusters, the Kubernetes master must be version 1.1.7 or higher
« RUM Engine and APM must be version 9.30 or higher.

« All servers to be monitored under a RUM application with the Deployed on Docker option enabled must
be containers with bridge networking. Containers with host networking (started with --net ‘host’) must be
monitored as regular RUM applications (with the Deployed on Docker option disabled).

« Remote API ports of monitored Docker Engines, Docker Swarm managers, or Kubernetes Masters must
be enabled. See Appendix A: "Enabling Remote API Access" on page 21 for details.

« For monitoring configuration, keep a list of your Docker Engine, Docker Swarm manager, or Kubernetes
Master host IP addresses and a list of your container's private and/or exposed ports handy for
configuration.

Step-by-step Guide

Docker Host
=l ol x|| ¢l %] gl s m
| Enabled | Name | HostIP Type Probe
KubemetesMasterHosi01 KubemnetesMaster Manual
v DockerSwarmHost01 - .- DeckerSwarmManager Autoratic
DockerEngine01 - DockerEngine Automatic
DockerSwarmHost02 - . DockerSwarmManager Automatic
1. Add DOCkEf hOSt DockerEngine02 - DockerEngine Automatic
connection in RUM Engine
| End User Monitors [l [Monkoring Seftings
o oM | rum |
£+ T End User Monitors _ Application Location
- @
i ; Emuj;:mﬁ:‘;:g g Define host IP ranges of Docker Engines, Kubernetes masters or Docker Swarm managers that manage Docker containers relevant to this applcation tH
| @I‘CBS_IM_‘H;_C;(DU-;J... (=] * & B
L @) k8s_mutti_Tier_cyclos L (=]

IP Range Port SsL
s meesmae 808D -

2. Define

your app in
APM

Define routing domain:

¥ DegloyedonDocker Define Docker container port as: | Exposed| ¥ |

Follow these steps to setup RUM monitoring for a Dockerized Application:

1. Connect the RUM Engine to the Docker host and deploy the Sniffer probe container:

a. Ensure that the API port on your Host is open and accessible from the RUM Engine server. See
Appendix A:"Enabling Remote AP| Access" on page 21 for instructions.

b. Use the Docker Host Management screen to configure the connection to the Docker Host
(standalone Docker Engine, Kubernetes Master, or Docker Swarm Manager). Important fields to be
noted are:

Real User Monitor (9.51) Page 9 of 25

RUM for Docker — Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

o Host: Provide the IP of the Docker Host
o Type: Select the type of Docker Host being managed
o Port: Provide the exposed API port of the Docker Host

o Probe Management: Select whether Sniffer Probe containers should be automatically managed
by the engine or not (automatic probe management is currently supported for hosts of type
Docker Engine and Docker Swarm Manager).

Decker Host Management
Sl x| ¢l %] ol 5 m
Enabled | Name | HostIP | Tvpe

_E’Edit Host Configuration - Internet Explorer

Host Details
Enabled
Mame: * IDucherEnginem
Description: IPIain Cocker hast for Docker feature demo

Connection to Host

Host: * |

Type: I Docker Engine

Port: |78

Probe Management: | Automatic

Protocol ® HTTP O HTTPS
| Authentication ol
|_Proxy Sl
| 851 [

For further details on the various fields, refer to the Docker Host Management section of the
RUM Administration Guide, available on the Software Support web site
(https://softwaresupport.softwaregrp.com/).

c. If Automatic Probe Management has been selected for a Docker Host, RUM can automatically
deploy one RUM Shniffer probe container per Docker Host node.

If Manual Probe Management has been selected for a Docker Host:

i. Run the following command on the Host. For Cluster managed hosts, run the command on
each Docker Swarm node or each Kubernetes node. The RUM Sniffer probe image is
downloaded automatically from the Docker Hub and the container is started.

docker run -d --name rumsnifferprobe --net 'host' --cap-add=NET_ADMIN
hpsoftware/rumsnifferprobe:latest

Real User Monitor (9.51) Page 10 of 25

https://softwaresupport.softwaregrp.com/

RUM for Docker — Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

ii. Runthe command docker ps | grep rumsnifferprobe to confirm that the new container is
running successfully.

iii. Define the manually created probe under Configuration > Probe management.
d. RUM Engine runs discovery on enabled Docker Hosts every five minutes. For on demand
discovery, click the Force Docker Discovery button on the Docker Probe Management screen.

3,
Click the 2 icon on the Docker Host Management screen to navigate to the Force Docker

Discovery button.

Docker Probe Management - Docker

Node Probe Name Container Image Container Name Container Port Container Status

Docker Probe 1 rumsnifferprobe:9.27_v02 rumsnifferprobe_1464154793615 2020 Up O X V| B

2. Configure your Application as Deployed on Docker.

a. Ensure that Docker support for RUM Applications has been enabled in APM under Admin >
Platform Administration > Setup and Maintenance > Infrastructure Settings > Foundations >
EUM Administration > Enable Docker support for RUM applications.

b. Under Admin > End User Management > Monitoring, define a new RUM Application using the
following details:

i. Add the IP address of the Docker Engine host, or Kubernetes Master or Docker Swarm
Manager.

Note: For cluster managed deployments, RUM will automatically discover the nodes
associated with your cluster via the cluster manager's API.

ii. Add the port that identifies the set of containers that would run this application. The port can be:
« Exposed - The published port of the container available for accessing the application.

« Private - The private port of the container that is available only to the other containers on the
same bridge.

See Appendix B: "ldentifying Exposed vs Private Ports" on page 23 for assistance in
identifying which port works best for you.

iii. Select the Deployed on Docker option and from the Define Docker container port as drop
down list, select Private or Exposed based on the type of port defined above.

Location

Define hest IP ranges of Docker Engines, Kubernetes masters or Decker Swarm managers that manage Doecker containers relevant to this application tier. IPs are mandatory, URLs are optional

* & | R

IP Range | Port | ssL URL
16.183.92.46-16.183.92.46 5080) -

[] Define routing domain

I Deployed on Docker Define Docker container port as: | Exposadlvil

iv. Assign the application to the correct RUM Engine and select All probes.

Real User Monitor (9.51) Page 11 of 25

RUM for Docker — Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

Note: The engine routes the configuration to the correct RUM Sniffer probe container (the
Shniffer probes present on Docker Hosts that have containers that match your application

definition).
Status: ® active O Inactive
Protocol: HTTP-Web

Template name:
Tier name:

Profile database:

General Web Application

LB-Tier

Engines

: - Al probes

Dovamtime / Event Schedule

["] A=sign Appication 360 Bcense

v. Toallow RUM to automatically discover backend tiers, select the Enable automatic tier
discovery option. It is recommended that this option be unchecked once all tiers relevant to
your application have been discovered.

tion "Dk | MultiTier”
General Session Data Collection Pages Events:
| i itoring Tiers

Enable automatic tier discavery
Backend Tiers
* & | K

Tier Name Template Name =

auto-disovered-fier-General_Web ‘General Web Application HTTP-Web
aute-disovered-tier-MySQL MySQL MySGL

3. Advanced configuration — fine tuning container selection per tier.

To control exactly which containers are mapped to each of your Application Tiers, click the E icon on

the Docker Host Management screen to add filters. You can use the wild-card character "*" to build rules
for container-to-app tier matching.

The example below shows the image-container name filter applied to the multi-tier Cyclos application
described earlier.

Application Performance Management - Real User Monitor Engine

Health » Configuration ~ Tools « Help «

| | Docker Pattem Filers Setings

Application Name Tier Hame Container Image Filter Contaimer Manw Fitter

[] Docker_Mufi_Tier_Cyclos_App LE-Tier *httpd* *apprp* a4
|D Docker_Mulfi_Tier_Cyclos_ App aulo-disovered.Ser-General Web tomcal® wﬂwsaw'| & %
[0 Docker_Muli_Tier_Cyclos_App aulo-disoversd-tier-MySQOL "mysgl® *appd” el 4

_%%@ﬁ

The image-container name filter combination tomcat* and cyclosapp* listed for auto-discovered-tier-
General_Web ensures that only containers with names such as cyclosapp@l or cyclosapp2

Real User Monitor (9.51) Page 12 of 25

RUM for Docker — Getting Started
Chapter 2: Inter-container Traffic Monitoring with RUM

spawned from any version of the tomcat image are monitored for that tier. This also ensures that
containers with names like jpetstore@1l are not monitored for this tier.

Real User Monitor (9.51) Page 13 of 25

Chapter 3: Viewing Monitored Data and
Topology in Reports

Now that you set up the monitoring, you can start keeping an eye on Docker container level data for your
Dockerized Multi-Tier Cyclos application in APM's Application Health.

1. Let’s begin with the Application Health Dashboard. The Application Health Dashboard provides a real-
time view of the availability and performance of your applications.

won | 3 7

Dashboard: Applicationd (2) Groups (00 Qn ke | N---]
Standalone_Cyclos_Ban... | TR Swarm_Cyclos_Banking._. Pt
Critical Good
From: 571G, #09 Fromc 3730010, 722
Bocallability Avvailalilny
— . e
. N . .

In this scenario, RUM has detected a problem with the availability of the Cyclos application.
2. Click the red availability icon to drill down into the App Overview report.

Standalone_Cyclos_Bankin... ~ £

App Overview

B 99.10x ek g

0.03 s

o
=)
=

@ 1.6k

[li54) 0
7 132
87 il "
¢ N i g m_ﬁ_l -'E- ia i g I " i i I "1 N

3. Next, click the Real User Monitorl@ icon on the left panel on the screen.

R

Real User Monitor (9.51) Page 14 of 25

RUM for Docker — Getting Started
Chapter 3: Viewing Monitored Data and Topology in Reports

Here we see RUM data for all applications. The Cyclos application’s availability is 89%.

-Af- Application Health admin I::—) ‘@ ?

>> RUM Applications Status L 2] 4 H D W V o
Application Performance Availability = Volume

@ Standalone_Cyclos_Banking_App . 99% & = 565

[][I[I Swarm_Cyclos_Banking_App @ oz ® 10.B9% of sessions had full availability |

4. To navigate to the Docker Infra report, click Availability value (89%) > App Infra > Docker
Infrastructure. The Docker Infrastructure report displays:

« Docker containers that make up your application

« Network connections made between the containers. Notice the impact the current issue has on your
application’s containers.

« End-user facing container apprp01 that is part of the Reverse-Proxy tier is impacted.

« One of the two backend load-balancer containers, applb01, is impacted.

A~ Application Health admin I::—) @

>> ¢ Standalone_Cyclos_Banking_App ‘1‘?9% Performance .‘; 89% Avallabilty {g) Volume .;’5: App Infra @ Locations H D v | O

App Infrastructure Docker Infrastruct

B>

DOCKER INFRASTRUCTURE

Il]

]
E appdb
B

]]]]

cydosapp05 cydasapp0é cyclosap) oyglbsapp03 cydosapp0l

]

applb0z applbl applbO1
Tier auto-disovered-tier-General Web
Container image dockerio/htipdatest
Availability 8%
Performance 8%
Action Hits 34
Total Requests 3360

Total Connection Attempts 755

g ®

apprpol

Real User Monitor (9.51) Page 15 of 25

RUM for Docker — Getting Started
Chapter 3: Viewing Monitored Data and Topology in Reports

5. Click the icon on the right (
The Docker Infrastructure report displays:

« Docker nodes that host the application’s containers

) to view the deployment of your containers over Docker nodes.

« Application availability, performance, and connection metrics per container and aggregated upwards

to the parent node.

Notice the container named cyclosapp01 (one of the containers that applb01 routes traffic to) is
facing connection problems. This container is the root cause of the current application level
availability drop. Also, we can see that the container is hosted on the Docker Engine node

StandaloneDockerEngine.

App Infrastructure

Docker Infrastruct.

DOCKER INFRASTRUCTURE

O]

appdb

J

cydasapplé

J

cyclosapp03

]

apphh01

]

eyclosapplS cyclosapp0

cyddasappl?

applb02

apprp01

Total

Avg

— % Download Connection
Docker Host Availability Performance Action . AR
N Time Availability
Hits
(seq)
StandaloneDockerEngl | 9806 % . og74% 91077 055 4 90s5%
ot o Connection
Container Availability Performance Action Download R
~ Availability
Hits Time (sec)
cyclosapp02 (172.17.04) . 100.00 ' 10000 % l 001 . 100.00 %
cyclosapp03 (17217.0.6) . 10000 ' 10000 % 86 002 . 10000 %
applp02 (17217.011) . 9997' 10000% 3328 015 . 10000 %
Cyclosappos (17217.07) (@ 10000 10000% 2945 001 @ 10000%
cyclosapp06 (1721705) @y 10000 10000% 14b 002 @ 10000%
applbO1 (17217.010) & =@ anx I 182 @ 10000%
appdb (17217.03) . 100.00 '. 10000% 74629 0.01 . 100.00 %
apprp01 (17217.012) . 9342 ' 90472% 6431 040 . 10000 %
cyclosapp01 (17217.08) . 100,00 . 0126 % 309 252

@ 14699 %

The only remaining action is to resolve the problem by recreating or fixing the affected root-cause container
cyclosapp01 that is hosted on the Docker Engine StandaloneDockerEngine.

In addition to the Docker Infrastructure report, Docker containers are also represented in traditional RUM
reports such as the Session Analyzer report and Application Infrastructure Summary report, and also within

active filters of RUM reports under the Servers tab.

Docker containers are identified by their Fully Qualified Container Names (FQCN) in the following format:

<container_name>.<image_name>.<image_version>.<docker_host>

The following shows the mapping for our representative application, Cyclos, in the Application Infrastructure

Summary report.

Real User Monitor (9.51)

Page 16 of 25

RUM for Docker — Getting Started
Chapter 3: Viewing Monitored Data and Topology in Reports

| Docker HostIP |

Container’s
name

[m Elcydusappmltmmnﬂlh—-s I

Container's image name
and image version

Real User Monitor (9.51) Page 17 of 25

Chapter 4: Troubleshooting

Cannot See Containers

Symptom: After configuring a Docker Host and assigning an application to the Engine, no container(s)
appear in the Application Health > Docker Infrastructure report.

Troubleshooting Steps:

1. Check the API connection between RUM and the Docker Host:

From the RUM Engine server, access the Docker Host server with a browser using the following URL:
http://<docker_host_ip>:<docker_host_port>/version

You should receive a version.json file to download in response. If version.json is not returned as the

response, you may be using the wrong port or IP address to connect to the Docker Host.

2. Next, check the containers retrieved by the Engine:

a. Open the Engine JMX: http://<RUM_Engine>:8180/jmx-console/

b. Click RUM.modules on the left.
c. Click service=ConfigurationManagerConf.
d

Search for the operation getDockerContainerCollection and click Invoke.

| MR LY e

getUDRetrievedDataTypes [Ljava.lang.String;

Gets the
names of UD
retrieved data
types

[no parameters)

getDockerContainerCollection [java.lang.String

Get current
Docker
Container

(Codlection

[no parameters]
Invoke

getDockerImageCollection java.lang.5tring

Get current
Docker Image
Collection

[no parameters]

e. Verify that the container you expect to see in the RUM reports appears in the output.

Real User Monitor (9.51)

Page 18 of 25

RUM for Docker — Getting Started
Chapter 4: Troubleshooting

JMX MBean Operation View | Eakioigert | BaoMen |

PReinvokie MBean Operaton

DockerContziners = {

DockerContainer = {
containerID = {02b7227¢1cd53f1adBbT4c97162a507846a25£50532392730734c350150T4093e)

containerMame = {cyclozappdd}
dockerHost = | (Docker)}
ipaddress = | }

privatePorts = {E0B0]
exposedPorts:privatePorts = {3234:8080}
networkMode = {default}

isDeleted = {fzlse}

parentImage = {tomcat:7-jrel}
currentStatus = {Up 3 wezka}
managedBy = {DockerEngins}

1
i

DockerContziner = {

containerIl = {f2ecé03Za710b1£6330cdbabalded)35520e04a811221F1307fak1EE1c733253)
containerMame = {appds}
dockezHost = { {Deckerh}
ipkddress = { }
privatePorts = {33(e]
exposedPorts:privatePorts = {}
networkMode = {defanlt}
ispeleted = {fzlze}
parentImage = {ayszl:5.C}
currentStatus = {Up 3 w==ks}
managedBy = {DockerEngins=}
1

f. If you do not see your container listed, check whether the container is actually running on the Docker

host.

3. Finally, check the <RUM>\log\config.manager.log for any errors or exceptions thrown during RUM
Engine’s discovery run.

Cannot See Data

Symptom: After configuring a Docker Host and assigning an application to the Engine, no data appears for
the application in RUM reports.

Troubleshooting Steps:

For monitoring, RUM requires the RUM Sniffer probe container to run on the Docker Host and a connection to
the probe must be established in the Engine’s Probe Management page. These steps are handled
automatically for Docker Hosts flagged for Automatic Probe Management.

1. From the Docker Host Management page, navigate to the Docker Probe Management page by clicking

W/
the © icon. This page displays the list of Nodes managed by your Docker Host and details of the

probe container that resides on each node.

Docker Probe Management - Docker

Node Probe Name Container Image Container Name Container Port Container Status

Docker Probe 1 rumsnifferprobe:9.27_v02 rumsnifferprobe_1464154793615 2020 Up g E il g

For each probe:

Real User Monitor (9.51) Page 19 of 25

RUM for Docker — Getting Started
Chapter 4: Troubleshooting

Check the Container Status column to ensure that your probe container is currently Up.
b. Click the Check RUMProbe Process Status button to check whether the probe’s RUMProbe

process is currently running in the probe container.

c. Click the Retrieve Container Log button to check the last 20 lines of the probe container’s

capture.log.

d. Click the Remove and Recreate Container button to force a cleanup and re-creation of the probe

container.

2. When you are satisfied that the probe container is healthy, enable traffic discovery for a few minutes to
view the traffic that the probe actually sees. In Configuration > Probe Management, select the probe
deployed on the Docker Host that contains your application and click Probe Traffic Discovery.

Probe Management

EEFT EIEEEL

-
| Enabled | Name [pr.obe Traffic Discovery
v dockerengineli_DockerProbe

You should see traffic relevant to your application in the discovery result. If you do not see traffic, it could

mean that there is no traffic being generated on your application for the probe to capture.

Prebe Traffic Discovery for Probe &niagns

Sumenary Vitner _| Crormenin) e Server View |

Search
| [Seicibonan |

Sample period: 1172002005 5:08 PM-5.23 PM
Peak total traffic: 1619 Mbs

Server Type

[Erstn
Déscovery Start Tene: (GMTs05:30) Channs, Koloats, Mumibal, New Delhi 11202015 050508 PW

=

Load Balancer :

= EHTTR et
= [@cyciosappiz |

=} (= G080
Bar24704 [1??.1.?.13.4]
= | % sockerengrie rumdey nd he com
5= 9090 4
= 1?21#&5 (1721705)
= {® cycosapsot_|
o = g8l ;
= 11}703[1?21?03]
:.-{_!'rm]
=BT 02 (172170
- F306
& = Urkniown Probocol

781

3

1

3

Si¥

511

514
1184

11851
1151

209
z00
z09

-

Peak pagesisec (HTTP traffic ondy): 12] Web Servers !

P4

i

p
" % Throughput Throtighput {kbis)

1781

saz -
Az

LB
9.3
5]
k]

209

i

209

034
033
0

Peak
Traffic (Mbs)
© 343
17 88
i7 83
17 88
1388
1388
1388
1288
1288

1288

F]
1
1
1]

Peak

& o

Sereer More

Pmc:m:cmﬁm’mEmwmlﬂn Details
12
-]
L]
" 17247 0.5
7
7
7
&
!
172AT OS5

Real User Monitor (9.51)

Page 20 of 25

Appendix A: Enabling Remote API
Access

Docker Engine

RUM requires access to the Docker Engine’s remote API for container discovery. Steps to enable remote
access are detailed in the Docker documentation in Bind Docker to another host/port or a UNIX socket.

The sample steps below are specifically for Docker Engine’s deployed on Ubuntu 16.04.

Open the file /lib/systemd/system/docker.service
2. Modify the following line:

ExecStart=/usr/bin/docker daemon -H fd:// -H tcp://0.0.0.0:2375
3. Reload the configuration and restart the Docker daemon:

sudo systemctl daemon-reload

sudo systemctl restart docker.service
4. Check that the Docker daemon successfully started with the API port.

:~# ps -ef | grep docker))
9311 1. 82228 @ 80:80:082 Sfusr/bin/ daemon -H 0.8.8.8:2375 -H unix:///var/run/

9616 9552 @ 22:52 pis/1 00:00:00 grep --color=auto
&

5. From the RUM Engine server, access the Docker host server with a browser (like IE) using the following
URL: http://<docker_host_ip>:2375/version.

You should receive a version.json file to download in response.
6. Use the port configured above (2375 by default) to configure Docker hosts on the RUM Engine.

Docker Swarm

The Docker Swarm API is mostly compatible with the Docker Engine Remote API. As with Docker hosts,
RUM leverages the Swarm Manager remote API for container and node discovery and probe deployment.

Steps to enable remote access are detailed in the Docker documentation at Docker Swarm Discovery and
Docker Swarm API.

Run the command ps -ef | grep swarm manage to determine the API port.

root@iwfvm@7505:~# ps -ef | grep 'swarm manage’

root 4079 883 0 16:38 7 Pe:00:01 / -H :4000| --replication --advertise
14000 consul:// 18500

Kubernetes

Like the Docker offerings, Kubernetes API subsystem is available for RUM to perform Container Discovery
and Management. By default, it is available on port 8080. Choose --secure-port when a secure connection is

Real User Monitor (9.51) Page 21 of 25

https://docs.docker.com/engine/reference/commandline/dockerd#daemon-socket-option
https://docs.docker.com/swarm/discovery/
https://docs.docker.com/swarm/swarm-api/

RUM for Docker — Getting Started
Appendix A: Enabling Remote API Access

mandated. Details are available on the Kube-API Server page.

Run the command ps -ef | grep kube-api to determine the API port.

root@iwf-vmoees54:~# ps -ef | grep kube-api

root 1502 1 1 Febls ? 1-06:08:22 /Jopt/biny server --insecure-bind-address=0.0.0.0

--1nsecure-port=8080 --etcd-servers=http://127.0.0.1:4001 --logtostderr=true --service-cluster-1ip-range=19

/24 --admission-control=NamespacelLifecycle,LimitRanger,ServiceAccount,ResourceQuota,SecurityConte
Deny ervice-node-port-range=30000-32767 --client-ca-file=/srv/kubernetes/ca.crt --tls-cert-file=/srv/
kubernetes/server.cert --tls-private-key-file=/srv/kubernetes/server.ke

Real User Monitor (9.51) Page 22 of 25

http://kubernetes.io/docs/admin/kube-apiserver/

Appendix B: Identifying Exposed vs

Private Ports

There are two ways to determine exposed and private ports of containers.

« Directly on the Docker Host:

On the Docker Host, run docker ps to show the container ports.
docker ps -
IMAGE C) CREATED
tomcat:7-jre o lina.s " 4
] . st

tomca

In the screenshot above:

STATUS
Up 4 days
Up 5 days

PORTS

9.0.0.0:92
9.0.0.8:

o 9295 is the exposed port for container cyclosapp05. 8080 is the private port.

o 9293 is the exposed port for container cyclosapp02. 8080 is the private port.

« Container cyclosapp10 has no private or exposed port.

« From the RUM Engine (after connecting the Docker Host to it):
a. Open the Engine JMX: http://<RUM_Engine>:8180/jmx-console/

Click RUM.modules on the left.

b
c. Click service=ConfigurationManagerConf.
d

Search for the operation getDockerContainerCollection and click Invoke.

i et

NAMES

getUDRetrievedDataTypes [Ljava.lang.5tring;

Gets the
names of UD
retrieved data
types

[no parameters)

getDockerContainerCollection [java.lang.String

Get current
Docker
Container

SCollection

[no parameters]
Invaoke

getDockerImageCollection java.lang.5tring

Get current
Docker Image
Collection

[no parameters]

e. Inthe sample output screenshot below, we see that container cyclosapp03 has a private port 8080

and a corresponding exposed port 9294.

Real User Monitor (9.51)

Page 23 of 25

RUM for Docker — Getting Started
Appendix B: Identifying Exposed vs Private Ports

We also see that container appdb has a private port 3306. It has no exposed ports.
JMX MBean Operation View [tkorgert | Bowhean |

Reinvoke MBean Operaton

DockerContziners = {
DockerContainer = {
containerID = {02b7227¢1-432f1ad3k74c97162a507846aa5F59532305730739c32510RT7493e}
containerName = {cyclozappdi}
dockerHost = { (Docker)}
ipaddress = (N 1
privatePorts = {80ED)
exposedPortsiprivatePorts = [3234:8080}
networkMode = {default}
izDeleted = {fzl=e}
parentImage = {tomcat:7-jrel}
currentStatus = {Up 3 weszka}
managedBy = {DockerEngins}
t
DockerContziner = {
containerID = {f2ect0aZaTldb1£6330c4babaldedd355a0e04ab112211137fab1EE1CT33253])
containerlame = {appdb}
dockerHost = | (Tccker)}
iphddress = { 1
privatePorts = {33(6)
exposedPorts:privatzPorts = {}
networkMode = {defsnlt}
isDeleted = {false}
parentImage = {myszl:5.5}
currentStatus = {Up 3 we=cka)
managedBy = {DockerEngins}

b

Real User Monitor (9.51) Page 24 of 25

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on RUM for Docker — Getting Started (Real User Monitor 9.51)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to doc.feedback@microfocus.com.

We appreciate your feedback!

Real User Monitor (9.51) Page 25 of 25

mailto:doc.feedback@microfocus.com?subject=Feedback on RUM for Docker � Getting Started (Real User Monitor 9.51)

	Chapter 1: Introduction
	Docker Technology
	Dockerized Multi-tier Application

	Chapter 2: Inter-container Traffic Monitoring with RUM
	Features
	Prerequisites
	Step-by-step Guide

	Chapter 3: Viewing Monitored Data and Topology in Reports
	Chapter 4: Troubleshooting
	Cannot See Containers
	Cannot See Data

	Appendix A: Enabling Remote API Access
	Docker Engine
	Docker Swarm
	Kubernetes

	Appendix B: Identifying Exposed vs Private Ports
	Send Documentation Feedback

