
Diagnostics
Version 9.51, Released November 2018

Java Agent Guide
Published November 2018

Legal Notices

Disclaimer
Certain versions of software and/or documents (“Material”) accessible here may contain branding from Hewlett-
Packard Company (now HP Inc.) and Hewlett Packard Enterprise Company. As of September 1, 2017, the Material
is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPE marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are
the property of their respective owners.

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2018 Micro Focus or one of its affiliates

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.
Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is a registered trademark of The Open Group.
Java is a registered trademark of Oracle and/or its affiliates.
Oracle® is a registered trademark of Oracle and/or its affiliates.

Acknowledgements
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by the Spice Group (http://spice.codehaus.org).
For information about open source and third-party license agreements, see the Open Source and Third-Party
Software License Agreements document.

Micro Focus Diagnostics (9.51) Page 2 of 263

Contents
Welcome to This Guide 8

How This Guide Is Organized 8
Diagnostics Documentation 8

Part 1: Introduction 10
Chapter 1: Diagnostics Java Agent Overview 11

About the Diagnostics Java Agent 11
Introducing the Diagnostics Profiler for Java 11
Features and Benefits of the Diagnostics Profiler for Java 11

Part 2: Installation and Configuration of the Java Agent 13
Chapter 2: Preparing to Install the Diagnostics Java Agent 14

Java Agent Installation Overview 15
System Requirements for the Diagnostics Java Agent 15

Chapter 3: Installing Java Agents 16
Pre-installation Checklist for the Java Agent 16
Installing and Configuring Java Agents 17
Silent Installation of the Java Agent 27
Setting File Permissions 28
Determining the Version of the Java Agent 28
Configuring for Firewalls, HTTPS, and Proxies 28
Uninstalling the Java Agent 28

Chapter 4: Preparing Application Servers for Monitoring with the Java Agent 30
About Preparing Application Servers for Monitoring 30
Examples for Configuring Application Servers 33

Example 1: Configuring GlassFish Application Server for Monitoring 34
Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring 36

Configuring a JBoss EAP Application 38
Example 3: Configuring Oracle Application Server for Monitoring 39

Using the Diagnostics JRE Instrumenter in Manual Mode 41
Example 4: Configuring SAP NetWeaver Application Server for Monitoring 42
Example 5: Configuring TIBCOActiveMatrix BusinessWorks and Service Bus for Monitoring 44
Example 6: Configuring Tomcat Application Server for Monitoring 46
Example 7: ConfiguringWebLogic Application Server for Monitoring 48
Example 8: Configuring webMethods Server for Monitoring 49
Example 9: ConfiguringWebSphere Application Server for Monitoring 53
Example 10: Configuration forWebSphere Application Server Liberty 56

Verify the Application Server is Running the Java Agent 58
About the JRE Instrumenter and Different Options to Invoke 58

Micro Focus Diagnostics (9.51) Page 3 of 263

Other Configuration Options 65
Probe Registration Auto-Assigment 65
ConfigureMonitoring of Multiple Java Processes on an Application Server 66
Adjusting the Heap Size for the Java Agent in the Application Server 69
Configuring the SOAP Message Handler 69
Configuring the Discovery of a New J2EE Server for CI Population 71
Special Considerations for Applications Based on theOSGi Framework 72

Chapter 5: Configuring for Azul or Cloud Environments 74
Java Agents on Azul 74
Java Agents in Cloud Environments 75

Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent 78
About Client Monitoring 78
Enabling Client Monitoring 79
Configuring and Disabling Client Monitoring 80
Manually Instrumenting HTML/JSP Pages for Client Monitoring 81

Chapter 7: Upgrading the Diagnostics Java Agent 82
Upgrade Java Agents 82
Upgrade Notes and Limitations 84

Part 3: Advanced Java Agent Configuration and Instrumentation 85
Chapter 8: Monitoring Profiles 86

About Monitoring Profiles 87
Understanding Types of Diagnostics Deployments 87
The PredefinedMonitoring Profiles 89
CustomMonitoring Profiles 89
Applying a Specific Monitoring Profile to a Probe 90
Overriding Settings in theMonitoring Profiles 91
Mapping Instrumentation Points to aMonitoring Profile 92
MappingMetrics to aMonitoring Profile 92
Mapping Property Values to aMonitoring Profile 92

Chapter 9: Automatically Assigning a Probe to an Application 94
About Automatic Probe Assignment 94
Configuring a Probe to Automatically Assign Applications 94
Configuring an Agent to Automatically Assign Applications 94
General Configuration 95

Chapter 10: Custom Instrumentation for Java Applications 96
About Instrumentation and Capture Points Files 96
Using Regular Expressions in Points Files 97
Coding Points in the Capture Points File 98
Defining Points With Code Snippets 103
Controlling Class MapCapture 113
Instrumentation Examples 114

Java Agent Guide

Micro Focus Diagnostics (9.51) Page 4 of 263

Understanding the Overhead of Custom Instrumentation 126
Instrumentation Control on a Per Layer Basis 126
Instrumented Location Throughput Throttling 127
Advanced Instrumentation Examples 128

Capturing HTTP Server Requests Based onQuery Parameters 129
Configuring Cross VM Correlations for New or CustomTechnologies 137
Tutorial for Configuring Cross VM Correlation for Custom Technologies 140
Maintaining Instrumentation from the Java Profiler UI 147
Default Layers Defined for Typical Java Classes andMethods 156

Chapter 11: Advanced Java Agent and Application Server Configuration 158
Advanced Configuration Overview 158
About Dynamic Configuration 159
Disabling the Java Diagnostics Profiler 160
Controlling Probe Logging 160
Setting the Probe’s Host Machine Name 161
Specifying a Different Probe IP Address 161
Setting the Active Products Mode 162
Controlling Automatic Method Trimming on the Agent 163
Configuring URI and Parameter Capture 164
Capturing Non-Sequential Server Requests 167
Configuring an Agent for a Proxy Server 167
Time Synchronization for Probes Running on VMware 168
Limiting Exception Tree Data 168
Diagnostics Probe Administration Page 170
Authentication and Authorization for Diagnostics Java Profilers 172
Configuring Collection of CPU TimeMetrics 174
Configuring Consumer IDs 175

A Value in the SOAP Body 179
Configuring SOAP Fault Payload Data 182
Configuring REST Services 183
Customizing Grouping JMS Temporary Queue/Topics 183
Configuring SQLQuery Parsing 183
Capturing SQL Parameters 184
Configuring Display of Application Name for Server Requests 185
Maintaining Probe Settings from the Java Profiler UI 186
Generating Performance Reports for JUnit Tests 189

Chapter 12: Java Agent Metrics Collectors 191
About Metrics Capture 191
What Metrics are Being Collected by the Java Agent 192
UnderstandingMetric Collector Entries 192
About Collecting Additional ProbeMetrics 194

Java Agent Guide

Micro Focus Diagnostics (9.51) Page 5 of 263

Modifying ProbeMetrics Already Being Captured 194
Stopping Capture of aMetric 194
Using Customizedmetrics.config Files for Multiple JVM Applications on a System 194

Chapter 13: Java Agent - SystemMetrics Capture 196
About SystemMetrics 196
SystemMetrics Captured by Default 196
Configuring the SystemMetrics Collector 197
Capturing Additional Custom SystemMetrics 198

Capturing Custom SystemMetrics onWindows Hosts 198
Capturing Custom SystemMetrics on Solaris Hosts 200
Capturing Custom SystemMetrics on Linux Hosts 200

Chapter 14: Java Agent - JMX Metrics Capture 203
About JMX Metrics 203
About Configuring JMX Metric Collectors 204
Additional Custom JMX Metrics 204
Getting a List of Available JMX orWebSphere PMI Metrics 204
Creating New JMX orWebSphere PMI Metrics Entries 206

Part 4: Using the Diagnostics Profiler for Java 210
Chapter 15: Diagnostics Profiler for Java 211

About the Java Diagnostics Profiler 211
How the Java Agent Provides Data for the Java Profiler 212
Java Diagnostics Profiler UI Navigation and Display Controls 213
Analyzing Performance Using the Call ProfileWindow 215
Thread Call Stack Trace Sampling 219
Comparison of Collection Leak Pinpointing and LWMD 221
Object Lifecycle Monitoring 222
HeapWalker Memory Analysis Execution Steps 224
HeapWalker Performance Characteristics 227
How to Access the Java Diagnostics Profiler 227
How to Enable LWMD for Collections Displays 228
How to Enable Allocation Capture 228
How to Enable Object Lifecycle Monitoring 229
How to Analyze Object Allocation 230
How to EnableMemory Analysis 230
Summary Tab Description 232
Hotspots Tab Description 234
Metrics Tab Description 236
Threads Tab Description 238
All Methods Tab Description 242
All SQL Tab Description 244
Collection Leaks Tab Description 245

Java Agent Guide

Micro Focus Diagnostics (9.51) Page 6 of 263

Collections Tab Description 247
Exceptions Tab Description 250
Server Requests Tab Description 252
Web Services Tab Description 254
Allocation/LifeCycle Analysis Tab Description 256
Memory Analysis Tab Description 258
Configuration Tab Description 260

Send Documentation Feedback 263

Java Agent Guide

Micro Focus Diagnostics (9.51) Page 7 of 263

Welcome to This Guide
Welcome to the Diagnostics Java Agent Guide. This guide describes how to install, configure and use the
Diagnostics Java Agent and the Diagnostics Profiler for Java.

The Diagnostics Java Agent captures events such as method invocations, collection sites, and the beginning
and end of business and server transactions.

The Diagnostics Java Agent works with other Software products such as LoadRunner, Application
PerformanceManagement, and Performance Center, and is an integrated part of Software's application
lifecycle solution which includes load testing, productionmonitoring, and trouble diagnosis.

The Diagnostics Profiler for Java is installed as part of the Diagnostics Java Agent. The Diagnostics Profiler
for Java provides a way for Java development teams tomonitor the performance and diagnose issues with
applications in the development environment. Softwaremakes this tool available at no cost, through an easy-
to-install trial software download.

How This Guide Is Organized
This guide contains the following parts:

l Part 1: "Introduction" on page 10
Provides a high level overview of the features, components, architecture, and outputs of the Diagnostics
Java Agent and the Diagnostics Profiler for Java.

l Part 2: "Installation and Configuration of the Java Agent" on page 13
Describes how to install and configure the Diagnostics Java Agent.

l Part 3: "Advanced Java Agent Configuration and Instrumentation " on page 85
Describes advanced configuration and instrumentation of the Java Agent and application server.

l Part 4: "Using the Diagnostics Profiler for Java" on page 210
Describes the UI of the Diagnostics Java Profiler, and how to use it.

Diagnostics Documentation
Diagnostics includes the following documentation. Unless specified otherwise, the guides are in PDF format
only and are available from the Software Support web site (https://softwaresupport.softwaregrp.com/) .

l Diagnostics User Guide and Online Help:Explains how to choose and interpret the Diagnostics views
in the Diagnostics Enterprise UI to analyze your monitored applications. To access the online help for
Diagnostics, chooseHelp > Help in the Diagnostics Enterprise UI. If Diagnostics is integrated with
another Micro Focus Software product the online help is also available through that product's Helpmenu.
The User Guide is a PDF version of the online help and their content is identical. The User Guide is
available from the Diagnostics online help Home page, from theWindows Start menu (openUser Guide),
or from the Diagnostics Server installation directory.

l Diagnostics Server Installation and Administration Guide:Explains how to plan a Diagnostics
deployment, and how to install andmaintain a Diagnostics Server.

Micro Focus Diagnostics (9.51) Page 8 of 263

https://softwaresupport.softwaregrp.com/

The following Agent guides contain content that supports agent installation, setup and configuration.
l Diagnostics Java Agent Guide:Describes how to install, configure, and use the Diagnostics Java
Agent and the Diagnostics Profiler for Java.

l Diagnostics .NET Agent Guide:Describes how to install, configure, and use the Diagnostics .NET
Agent and Diagnostics Profiler for .NET.

l Diagnostics Collector Guide:Explains how to install and configure a Diagnostics Collector.
l Diagnostics System Requirements and Support Matrixes Guide:Describes the system requirements
for the various Diagnostics components.

l Release Notes:Provides last-minute new information and known issues about each version of
Diagnostics. The PDF file is also located in the Diagnostics installation disk root directory.

l Diagnostics Data Model and Query API:Describes the Diagnostics datamodel and the query API you
can use to access the data. The guide is also available from the Diagnostics online help Home page.

l Diagnostics Frequently Asked Questions (FAQ):Gives answers to frequently asked questions. The
FAQ is also available from the Diagnostics online help Home page.

Java Agent Guide
Diagnostics Documentation

Micro Focus Diagnostics (9.51) Page 9 of 263

Part 1: Introduction

Micro Focus Diagnostics (9.51) Page 10 of 263

Chapter 1: Diagnostics Java Agent Overview
This chapter introduces the Diagnostics Java Agent and the Diagnostics Java Profiler by providing a high-
level overview of features and components.

This chapter includes:

l "About the Diagnostics Java Agent" below
l "Introducing the Diagnostics Profiler for Java" below
l "Features and Benefits of the Diagnostics Profiler for Java" below

About the Diagnostics Java Agent
The Diagnostics Java Agent is installed on themachine that hosts the application that you want to monitor.

The agent captures events such as method invocations, collection sites, and the beginning and end of
business and server transactions.

The Java Agent works with many of Software’s Diagnostics products such as BSM/APM, LoadRunner, and
Performance Center.

The Java Agent and the application environment must be configured to enablemonitoring of your application.
Instructions for configuring the Java Agent and the application environment can be found in:

l "Preparing Application Servers for Monitoring with the Java Agent" on page 30
l "Preparing Application Servers for Client Monitoring with the Java Agent" on page 78
l "Custom Instrumentation for Java Applications" on page 96
l "Advanced Java Agent and Application Server Configuration" on page 158

Introducing the Diagnostics Profiler for Java
The Diagnostics Java Profiler is installed as part of the Java Agent.

The Diagnostics Profiler for Java provides a way for JAVA and SAP development teams tomonitor and
diagnose issues with the performance of applications in the development environment. Softwaremakes this
tool available at no cost, through an easy-to-install trial software download.

The Diagnostics Profiler for Java provides a strong foundation for collaborative diagnostics because it has
been built using the sameDiagnostics probe technology that is used in Software’s load testing and production
monitoring products. When you use the Diagnostics Java Profiler in the development environment to profile
applications and solve problems, you get a glimpse of the features that are included in the Diagnostics
Lifecycle Solution that enable you to solve the toughest performance problems throughout the application’s
lifecycle.

Features and Benefits of the Diagnostics Profiler for
Java
The following table describes some of the features and benefits of the Diagnostics Java Agent and the
Diagnostics Profiler for Java:

Micro Focus Diagnostics (9.51) Page 11 of 263

Feature Description Enables you to

Summary and Hotspots Identify the top performance hotspots in your applications.

Server Request Breakdown Identify where time is spent in an application.

Layer Breakdown Identify the slowest J2EE layer.

Slowest Roots Identify the slowest server request or application entry points for non-Web-
fronted applications.

Top 3 Slowest Instances Identify outliers to help diagnose intermittent problems.

VM Heap Usage Identify memory problems and garbage collection issues.

CollectionMemory Leak
Diagnostics

Identify the fastest growing and largest size JAVA collections, including the
caller, and the exact line number where collection was allocated.

Heap Breakdown including
Class and Size Information

Identify leaking objects, object growth trends, object instance counts, and
the byte size for objects.

SQLDiagnostics

(Slowest SQL)

Identify the slowest SQL query and report query information.

Synchronization Diagnostics Identify locks including hold times.

Exception Diagnostics
(including exception traces
and counts)

Identify exception counts and trace information (which often go undetected)

Layered view of Portal
Transaction data

Identify the layer in the J2EE stack that consumes themost time for Portal
transactions, along with the business context for the transaction, so that
end-user impact can be assessed. Themonitored layers include iVews,
portal server requests, WebDynPro and JSP DynPro applications.

Transaction breakdown of
portal server requests and
methods

Identify the worst performing server requests or methods, and the
applications and services that are being impacted

Cross Tier Transaction
Breakdown

Detect problems originating from NetWeaver or ABAP platforms.

Java Agent Guide
Chapter 1: Diagnostics Java Agent Overview

Micro Focus Diagnostics (9.51) Page 12 of 263

Part 2: Installation and Configuration of
the Java Agent

Micro Focus Diagnostics (9.51) Page 13 of 263

Chapter 2: Preparing to Install the Diagnostics
Java Agent
This chapter presents the information that you need as you prepare for the installation and configuration of the
Diagnostics Java Agent.

Note: The procedures in this chapter do not apply when installing the Java Agent in an AppPulse
environment. For information about AppPulse agent installation, see the Java Agent Quick Start guides.
These guides are available on the Diagnostics Agent Download and Setup page in AppPulse.

This chapter includes:

l "Java Agent Installation Overview" on the next page
l "System Requirements for the Diagnostics Java Agent" on the next page

Micro Focus Diagnostics (9.51) Page 14 of 263

Java Agent Installation Overview
The following is an overview of the steps involved in installing and configuring the Java Agent. Understanding
this workflow will help you plan your Java Agent installation.

Agents can optionally be auto-deployed. In that case some steps are performed automatically for you as
described below.

1. Prepare the host where the Java Agent is to be installed.
The host must contain the application server installation for the application to bemonitored.The host also
must meet the system requirements listed in the next section.

2. Obtain the Java Agent installation package and install (unpack) the Java Agent.
3. Run the Java Agent Setup program.

When running the setup, you can choose to auto-deploy an agent.
For more information, see "Installing and Configuring Java Agents" on page 17.

4. Instrument the JRE used by the application server.
Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of
instrumented classes under the Java Agent installation directory. Then with the proper JVM parameters
these instrumented classes will be loaded into the JVM that runs the application server.
If you chose to auto-deploy an agent, this step is performed automatically.
This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 30.

5. Configure the application server startup script.
Configure your application server JVM parameters to invoke the agent and use the instrumented
JRE when the application starts.
If you chose to auto-deploy an agent, this step is performed automatically.
This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 30.

6. Restart the application server to pick up the changes to the startup script.
7. Validate the agent installation and configuration.

Formore information, see "Verify the Application Server is Running the Java Agent" on page 58.

System Requirements for the Diagnostics Java Agent
For details on the system configurations that are recommended for hosting the Diagnostics Java Agent, refer
to the relevant version of theDiagnostics System Requirements and Support Matrices Guide on the
Software Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

Java Agent Guide
Chapter 2: Preparing to Install the Diagnostics Java Agent

Micro Focus Diagnostics (9.51) Page 15 of 263

https://softwaresupport.softwaregrp.com/group/softwaresupport/

Chapter 3: Installing Java Agents
This chapter describes how to install a Java Agent and give you information about the setup and configuration
of the Java Agent

Note: The procedures in this chapter do not apply when installing the Java Agent in an AppPulse
environment. For information about AppPulse agent installation, see the Java Agent Quick Start guides
on the Diagnostics Agent Download and Setup page in AppPulse.

This chapter includes:

l "Pre-installation Checklist for the Java Agent" below
l "Installing and Configuring Java Agents" on the next page
l "Silent Installation of the Java Agent" on page 27
l "Setting File Permissions" on page 28
l "Determining the Version of the Java Agent" on page 28
l "Configuring for Firewalls, HTTPS, and Proxies" on page 28
l "Uninstalling the Java Agent" on page 28

Pre-installation Checklist for the Java Agent
The following list is provided to help you gather the information that you will need during the installation of the
Java Agent.

l Determine whichmode the agent needs to operate in–it can only operate in onemode at a time. The
deployment scenario of your Diagnostics installation determines themode that you specify. Themode
affects the licensing impact of the agent as well as the default configuration of the agent. Themodes are
as follows:
l Diagnostics Profiler mode. Provides access to raw metric data on the agent host directly, without it
being processed. The agent instance does not connect to a Diagnostics Server.

l Diagnostics Mode for LoadRunner/Performance Center. The agent is used with a Diagnostics
Server in a load testing (or pre-production) environment where probes are used only in LoadRunner or
Performance Center runs.

l Enterprise Mode. Agent sends collectedmetrics to an on-premise Diagnostics Server and/or an
Software-as-a-Service (SaaS) Diagnostics Server.

You can rerun the Agent setup to change themode of an existing agent installation.
l For all modes, the agent must be installed on themachine hosting the application that you want to monitor.
The Agent cannot monitor an application remotely.

l For all modes, determine the location of the application server startup script.
l For all modes, make sure the host meets the recommended system requirements. For details, refer to the
relevant version of theDiagnostics System Requirements and Support Matrices Guide on the
Software Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

Micro Focus Diagnostics (9.51) Page 16 of 263

https://softwaresupport.softwaregrp.com/group/softwaresupport/

l For agents installed in EnterpriseMode, you need the server connection details. For Diagnostics Servers,
this is the fully-qualified host name (FQDN) or IP address of the host of themediator server to which the
probe sends the collected data. Your deployment may require that multiple probes send data to the same
mediator. Your deployment may have nomediator servers in which case the collected data is sent to the
commander server. If the server is configured to use a port other than the default port, you need the port
number.
You can obtain the server host FQDN and port from the Diagnostics System Administrator.
For Software-as-a-Service (SaaS)-hosted servers, obtain the server connection details from your SaaS
administrator.

l For agents installed in EnterpriseMode or Diagnostics Mode for Load Runner/Performance Center, you
need an agent naming strategy. Each agent instance in the deployment environment is represented in the
same, shared Diagnostics Enterprise UI. Agent names must be unique and clear so that users can
distinguish between the different applications and types of probes among all in the deployment
environment.

l For agents installed in EnterpriseMode or Diagnostics Mode for Load Runner/Performance Center,
determine which agents belong in which agent groups. Probe groups are optional, logical groupings of
probes.

l For all modes, if there is a pre-existing installation of the Java Agent on the host machine and you want to
retain its configuration, follow the procedure in "Upgrading the Diagnostics Java Agent" on page 82.

Installing and Configuring Java Agents
The installation and configuration of the Java Agent includes the following steps:

"Step 1: Obtain the Installation Package" below

"Step 2: Start the Agent Setup" on the next page

"Step 3: Specify the Agent Mode" on page 19

"Step 4: Specify Agent Name, Group, and Auto-deployment" on page 20

"Step 5: Specify Diagnostics Server Information" on page 23

"Step 6: Specify RUM Integration Settings" on page 24

"Step 7: Review Post Setup Summary" on page 26

"Step 8: Verify Connectivity from the Agent to the Diagnostics Server" on page 27

Step 1: Obtain the Installation Package
1. Copy the Java Agent installation package to the target host. You typically obtain the package from one of

the following locations:
l The Diagnostics releasemedia.

l The Software Support site.

l The Downloads page in BSM/APM; select Admin > Platform Administration > Setup and
Maintenance > Category > Diagnostics.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 17 of 263

The package name indicates the platform on which it can be run:

On this platform: Use this package:

Windows DiagJavaAgent_<release number>.zip

All other platforms, including AIX,
Linux, or Solaris

DiagJavaAgent_<release number>.zip
or
DiagJavaAgent_<release number>.tgz

2. Extract all contents of the installation package to a directory on the target host.
If you are extracting the .tgz package for Linux/Unix systems, use the following command to extract the
files with their permissions: tar -pxvzf DiagJavaAgent_<release number>.tgz.

Note: OnAIX systems, youmust use the GNU version of tar, or install from the zip version of the
package.

Caution: Do not extract the zip contents to a temp directory.

Within the extracted files you see the JavaAgent/DiagnosticsAgent/ directory. This location is
hereafter referred to as <agent_install_directory>.

Step 2: Start the Agent Setup
Running the Agent Setup does not require root or administrative privileges.

If you plan to auto-deploy the agent, the user running the Agent Setupmust have permission tomodify the
application server startup script and permission to write files in the application server bin directory.

On AIX, Linux, or Solaris, the user that installs the Java Agent ideally is the same user that installed the
application server. The reason is that write access to the <agent_install_directory>/log directory is required by
application server. See "Setting File Permissions" on page 28.

Run the setup command appropriate for your platform. You can run the Agent Setup in graphical or console
mode.

Graphical mode on Windows:

<agent_install_directory>\setup.cmd

Graphical mode on AIX, Linux, or Solaris:

export DISPLAY=<hostname>:0.0
<agent_install_directory>/setup.sh

The "xhost +" commandmust have been executed on the host where the installation is to be displayed (the
<hostname> used in the export command).

Console mode on Windows:

<agent_install_directory>\setup.cmd -console

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 18 of 263

Console mode on AIX, Linux, or Solaris:

<agent_install_directory>/setup.sh -console

Step 3: Specify the Agent Mode

Select themode appropriate for the agent:

l Diagnostics Profiler Mode:Configure the agent as a Diagnostics Java Profiler. The Diagnostics Java
Profiler does not connect to a Diagnostics server and is accessed through its own user interface.
Diagnostics Profiler mode is typically used when installing the Diagnostics Java Profiler trial software prior
to purchasing the Diagnostics product.
When you select Diagnostics Profiler Mode there are no other configuration options. Select Finish to
complete the configuration and skip to "Step 7: Review Post Setup Summary" on page 26.

l Diagnostics Mode for LoadRunner/Performance Center (AD License):Configure the agent for use
with a Diagnostics Server in a load testing (or pre-production) environment where probes are used only in
LoadRunner or Performance Center runs.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 19 of 263

The agent will be configured in AD licensemode whichmeans the agent will only be counted against your
Diagnostics AD license capacity when the agent is in a LoadRunner or Performance Center testing run.
See "Licensing Diagnostics" in Diagnostics Server Installation and Administration Guide for more
information on AD license capacity.

l Enterprise Mode (AM License):Configure the agent to send collected data to one of the following:
l Diagnostics. The agent will connect to a Diagnostics Server that is installed locally, in your
deployment environment.

l Diagnostics with SaaS-hosted mediator. The agent will connect to a Diagnostics Server that is
hosted on an SaaS system on-premise at Micro Focus.

l Diagnostics with RUM Client Monitor. The agent will connect to a Diagnostics Server according to
the selectedmode (Diagnostics orDiagnostics with SaaS-hosted mediator) and enables the
integration between Diagnostics and Real User Monitor (RUM). For details on the integration, refer to
the RUMClient Monitor-Diagnostics Integration Guide located on the Software Support web site
(https://softwaresupport.softwaregrp.com/).

Note: This option is only available when installing the Java Agent onWindows, using setup.cmd in
the graphical mode.

For those agents with Enterprisemode set, the agent will be counted against your Diagnostics AM license
capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or Performance Center run and the results
will be stored in a specific Diagnostics database for that run, for example, Default Client:21. When the agent
is in AD mode it will NOT send any data to the server unless the probe is part of a LoadRunner/Performance
Center run.

The advantage of running a probe in AD mode is that probes in AD mode are only counted against license
capacity if they are in a LoadRunner or Performance Center test run. For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but only have 5 are in a run at any one time then you would only
need an AD license capacity of 5 probes.

In consolemode enter an X to select themode for installation.

Click Next (in consolemodeEnter) to continue to the next step.

Step 4: Specify Agent Name, Group, and Auto-deployment
This step is skipped if the agent configuration specified in the previous step is Diagnostics Profiler Mode.

Assign a name to the Java Agent and specify the group to which it belongs. For agents that will monitor
Tomcat, JBoss, orWebSphere application servers, you can optionally choose to auto-deploy the agent.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 20 of 263

https://softwaresupport.softwaregrp.com/

l Agent Nam:eEnter a name that uniquely identifies the agent within the Diagnostics Enterprise User
Interface. You can use - , _ and all alphanumeric characters in the name. The agent name is assigned as
the default probe entity name. When assigning a name to an agent, choose a name that will help you
recognize the application beingmonitored and the system the agent is installed on (for example if installing
on the system ovrserver130 with aWebLogic application server you could use the agent nameWL10_
MedRec_ovrserver130).
Diagnostics does not support localization of agent names.
If you have a single agent installed on a system and plan tomonitor multiple application servers you
specify unique probe names and parameters in the application server startup script. See "Configure
Monitoring of Multiple Java Processes on an Application Server" on page 66.

l Agent Group:Enter a name for an existing group or a new group to be created. The agent group name is
case-sensitive. The agent group name is used as the probe group name.
Probe groups are logical groupings of probes. The performancemetrics for a probe group are aggregated
and can be displayed onmany of the Diagnostics views. For example, you can assign all of the probes for
a particular enterprise application to a probe group so that you canmonitor both the performance at the
group level and the performance based on individual probe entities.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 21 of 263

l Application Server Home Directory:Enter or browse to select the home directory for the Tomcat,
JBoss, orWebSphere application server to bemonitored. For example, C:\JBossAll\jboss-as-web-
7.0.2.Final for JBoss, or <C:\Program Files\IBM\WebSphere\AppServer> forWebSphere.

Note:

l For application servers that are not Tomcat, JBoss, orWebSphere, leave this field empty and refer
to "Examples for Configuring Application Servers " on page 33.

l You can auto-deploy the agent for Tomcat application servers that have a startup script (that is,
applications that run as a process) as well as for Tomcat applications that run as aWindows
service. For Tomcat applications that run as aWindows service, note:
o The startup script is also changed.
o Only those services whose catalina.home property points to the location of the relevant startup

script are changed.
o Auto-deploying Tomcat as aWindows service causes the JRE Instrumenter to run in

Automatic Explicit Mode. For details, see "Using the JRE Instrumenter in Automatic Explicit
Mode" on page 60.

o For details on how tomanually configure a Tomcat application as aWindows service, refer to
"To configure a Tomcat server without a startup script" in "Example 6: Configuring Tomcat
Application Server for Monitoring" on page 46.

The Setup programmodifies the startup script (for Tomcat and JBoss), or the xml file (forWebSphere), for
the application server so that the application server runs enabled for monitoring by the Java agent the next
time it is started. The original, initial version of themodified file is saved as a backup in the same location.
The file is named as follows: Agentbackup_year_month_day_originalFileName. For example,
Agentbackup_2018_05_15_domain.bat.

File Modified by the Setup Backup File

For Tomcat:
<TOMCAT_HOME>/bin/catalina.[bat|sh]

<TOMCAT_HOME>/bin//Agentbackup_
<date>_catalinacatalina.[bat|sh]

For JBoss Version 7.x, Wildfly 8:
<JBOSS_HOME>/bin/domain.[bat|sh]

<JBOSS_HOME>\bin\Agentbackup_<date>_
domain.[bat|sh]

For JBoss Version 7.x, Wildfly 8:
<JBOSS_HOME>/bin/standalone.[bat|sh]

<JBOSS_HOME>\bin\Agentbackup_<date>_
standalone.[bat|sh]

For JBoss Version 6.x:
<JBOSS_HOME>/bin/run.[bat|sh]

<JBOSS_HOME>/bin/Agentbackup_<date>_
run.bat

ForWebSphere:
<WAS_HOME>/profiles/<profile_
name>/config/cells/<cell_name>/nodes/<node_
name>/servers/<server_name>/server.xml

<WAS_HOME>/profiles/<profile_
name>/config/cells/<cell_
name>/nodes/<node_name>/servers/<server_
name>/Agentbackup_<date>_server.xml

The Post Setup Summary dialog indicates whether the startup script has beenmodified successfully.
Select Next (in consolemodeEnter) to continue with the next step.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 22 of 263

Step 5: Specify Diagnostics Server Information
Enter the configuration information for the Diagnostics Server and additional options.

l Diagnostics Server:Enter the host name or IP address of the host of the Diagnostics Server to which
this agent will connect. Specify the fully qualified host name rather than just the simple host name. In a
mixedOS environment, where UNIX is one of the systems, this is essential for proper network routing.
Typically this is the Diagnostics mediator server. In environments with no Diagnostics mediator servers,
specify the Diagnostics Commander Server details here.
If this agent is being deployed forSoftware-as-a-Service (SaaS) then anMicro Focus SaaS administrator
will provide you with the information on the host name and port to use. Also note that for anMicro Focus
SaaS environment the Enable gzip option will be checked automatically for you and you will not see the
Enable SSL option because it is configured on the Diagnostics Commander/Mediator on premises.

l Diagnostics Server Port:Enter the port number of the Diagnostics Server.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 23 of 263

The default port for the Diagnostics Server is 2006. For SSL communications with the server the port is
typically set to 8443 for a locally installed server. If the port was changed since the Diagnostics Server
was installed, specify the new port number here instead of the default.
The default port if you are installing the agent for a SaaS environment is 443 (the SaaS administrator will
provide you with details).

l Tune Diagnostics Java Agent for use in an SAP NetWeaver Application Server: Set to allow this
agent to support a SAP NetWeaver Application Server.

l Enable gzip compression:Set to compress the data between the Java Agent and themediator. This is a
tradeoff between bandwidth and probe performance overhead.
If you are usingSoftware-as-a-Service (SaaS) you typically enable gzip compression. See your SaaS
administrator for more information.

l Enable SSL:Check to instruct the agent to connect to the Diagnostics Server in SSLmode and to
attempt to download the required certificate chain from the server. As a result the server.properties
trusted certificate will then include the certificate. For more information on secure communications see
“Enabling HTTPS Between Components” in the Diagnostics Server Installation and Administration Guide.
If you are using Software-as-a-Service (SaaS) this option is required.

l Use Proxy Server to connect to Diagnostics Server: Set if a proxy server is used to communicate with
the Diagnostics Mediator Server. Enter the appropriate options.
If you are using Software-as-a-Service (SaaS), specify this option if your company requires a proxy to
communicate to outside servers.
Proxy Server Options:
l Proxy Server Name:Host name of the proxy server.

l Proxy Server Port:Port of the proxy server.

l Proxy Server Username (optional): The user used to authenticate the proxy server.

l Proxy Server Password (optional): The password used to authenticate the proxy server.

These options can be set or modified after the setup is run by modifying the dispatcher.properties file on
the agent system. For more information on proxy configuration see "Configuring Diagnostics Servers and
Agents for HTTP Proxy" in the Diagnostics Server Installation and Administration Guide.

l Local Profiler Password: This password is used to authenticate logins (username: admin) to the local
Diagnostics Profiler, which is installed along with the agent. Enter a password and provide it to the users
that will run the Diagnostics Profiler.

In consolemode interface for each option enter anX for Yes and O for No.

Select Next (in consolemodeEnter) to continue with the next step.

Step 6: Specify RUM Integration Settings
This step is skipped if theDiagnostics with RUM Client Monitor check box is not selected in "Step 3:
Specify the Agent Mode" on page 19

Enter the configuration information for the RUMClient Monitor (Browser Probe) JavaScript snippet.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 24 of 263

l RUM Client Monitor JavaScript file URL: Enter the full URL path to the source file containing the
RUM Client Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it on the
Web server, in thewebApps directory and in the same domain as the application server. The
following is an example of the path for an application called cyclos:

C:\tomcat7\webapps\cyclos\clientmon.js

l RUM Client Monitor Probe HTTP URL: Enter the URL of the RUM Browser Probe to which the
monitored client data is sent. The format for the URL is: <protocol>://<host>:<port>/clientmon/data

l RUM Client Monitor Probe HTTPS URL: Enter the URL of the RUM Browser Probe to which the
monitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/clientmon/data

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 25 of 263

Select Next or Finish. Only one of these options is enabled, depending on the selections made in "Step 3:
Specify the Agent Mode" on page 19

Note: For details on the RUMClient Monitor-Diagnostics integration, including how to configure these
settings manually, refer to the RUMClient Monitor-Diagnostics Integration Guide located on theMicro
Focus Software Support web site (https://softwaresupport.softwaregrp.com/).

Setup Process Begins
The Java Agent Setup process begins. In graphical mode a progress bar indicates how the configuration is
proceeding.

If applicable, the connectivity to the Diagnostics Server is tested. If any connectivity problems are
encountered, the Set Up Program displays the results of the connectivity check.

Continue with he next step

Step 7: Review Post Setup Summary
Review the Post Setup Summary.

If you chose to auto-deploy the agent, the summary includes the name of themodified application server
startup script:

If no errors are reported, the agent has been configured successfully. If errors are reported, check the
following:

l Whether the specified Diagnostics Server host name and port are correct. If a proxy server was specified,
verify that the proxy host name and port are correct

l Whether the Diagnostics Server is started. See "Starting and Stopping Diagnostics Servers" in the
Diagnostics Server Installation and Administration Guide.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 26 of 263

https://softwaresupport.softwaregrp.com/

l Whether network problems are affecting the general connectivity between the server host and the agent
host, or between the proxy host and the agent host. For example, use the ping utility.

l If errors are related to the auto-deployment of the agent on JBoss,Tomcat, orWebSphere, make sure the
user running the Agent Setup has permission tomodify the application startup script or xml file and write
files in that directory. Also check the following log file: <agent_install_directory>/bin/setupModule.log.

l If errors are related tomonitoring profiles, check the relevant file or property and correct as necessary.

Note: You can run themonitoring profile checking tool manually at any time from a command line,
using the command : <agent_install_directory>\bin\validator.cmd all forWindows, or
<agent_install_directory>/bin/validator.sh all for Linux and Unix.

Click OK.

Step 8: Verify Connectivity from the Agent to the Diagnostics
Server
Optionally, to verify the Java Agent configuration and connectivity with the Diagnostics Server, you can run
the following test scrip at any time:

l <agent_install_dir>\bin\runTestProbe.cmd onWindows
l <agent_install_dir>/bin/runTestProbe.sh on UNIX and Linux
This script runs a test probe that attempts to connect to the Diagnostics Server. The script displays log
messages that indicate success or why the test probe is failing to connect. The failuremessages can help
you identify why the probe for your monitored application is not connecting to the Diagnostics Server.

Press CTRL-C to stop the test script.

The next step is to instrument the JRE and configure the application startup script to run the agent with the
application server to bemonitored. The way that you do this depends on whether the agent is being auto-
deployed, as follows:

l If you specified the auto-deployment of the agent on JBoss, Tomcat, orWebSphere, the startup scripts or
xml file have beenmodified as described in "Step 4: Specify Agent Name, Group, and Auto-deployment"
on page 20. Simply restart the application server to pick up the changes.

l Otherwise, you need to instrument the JRE andmodify the application server startup scripts to configure
the application server to run with the agent. Follow the instructions in "Preparing Application Servers for
Monitoring with the Java Agent" on page 30.

For more information on client monitoring see "Preparing Application Servers for Client Monitoring with the
Java Agent" on page 78.

Silent Installation of the Java Agent
This section describes how to install the Java Agent in multiple locations using the same configuration files.

To install multiple Java Agents using a single set of configuration files:

1. Install the Java Agent temporarily, as described in "Installing and Configuring Java Agents" on page 17.
2. For each location in which you want to install the Java Agent:

a. Extract all contents of the Java Agent installation package to a directory on the target host. For
details, see "Step 1: Obtain the Installation Package" on page 17.

b. Overwrite the contents of the Java Agent etc folder with the contents of the etc folder of the

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 27 of 263

temporary installation created in step 1 above.
c. Update the id property in the etc\probe.properties file with the id of Java probe you are configuring.
d. Instrument the JRE and configure the application startup script to run the agent with the application

server to bemonitored as described in "Step 8: Verify Connectivity from the Agent to the Diagnostics
Server" on the previous page.

Setting File Permissions
This procedure is relevant for AIX, Linux, or Solaris installations only.

After installing the Java Agent, make the agent’s 'group’ the same as the application server’s ’group’. Then
assign the following permissions to files in the <probe install directory> for the group:

l Read access to the <agent_install_directory> directory and files.
l Execute access to the <agent_install_directory>/bin directory.
l Read/Write access to the <agent_install_directory>/log directory.

Determining the Version of the Java Agent
When you request support, it is useful to know the version of the Diagnostics component you have a question
about.

You can find the version of the Java Agent in one of the following ways:

l In the file <agent_install_directory>\version.txt. The file contains the version number, as well as the
build number.

l In the probe log file <agent_install_directory>/log/<probe_id>/probe.log.
l For agents in Enterprisemode, in the System Health view of the Diagnostics UI.

Configuring for Firewalls, HTTPS, and Proxies
The Java Agent requires additional configuration if it is being deployed into an Enterprise Diagnostics
environment that includes firewalls, SSL-enabled communications, and proxies. This configuration is
described in the Diagnostics Server Installation and Administration Guide. See the following sections in that
guide:

l “Configuring Diagnostics Servers and Agents for HTTP Proxy”
l "Configuring Diagnostics toWork in a Firewall Environment"
l "Enabling HTTPS Between Components"

Uninstalling the Java Agent
To uninstall the Java Agent:

1. Stop the application server that is beingmonitored by the Java probe.
2. Restore the original application server startup script or remove any modifications that weremade to the

script to enablemonitoring, for example on JBoss you would remove the following:

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 28 of 263

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install_dir>
PROBE_ID=<probe_id>
...
PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal"
JAVA_OPTS="$JAVA_OPTS $PROBE_OPTS"

If the agent was auto-deployed, restore the backup copy of the script. See "Step 4: Specify Agent Name,
Group, and Auto-deployment" on page 20.

3. Delete the entire <agent_install_directory> directory.

Java Agent Guide
Chapter 3: Installing Java Agents

Micro Focus Diagnostics (9.51) Page 29 of 263

Chapter 4: Preparing Application Servers for
Monitoring with the Java Agent
This chapter describes how to prepare your application servers to allow the Diagnostics Java Agent to monitor
your applications.

This chapter includes:

l "About Preparing Application Servers for Monitoring" below
l "Examples for Configuring Application Servers " on page 33
l "Verify the Application Server is Running the Java Agent" on page 58
l "About the JRE Instrumenter and Different Options to Invoke" on page 58
l "Other Configuration Options" on page 65

About Preparing Application Servers for Monitoring
After the Diagnostics Java Agent is installed and configured, the application server must be prepared
(instrumented) to allow the Java Agent to monitor the applications. This preparation usually involves
instrumenting the JRE used by the application servers and configuring the application server JVM
parameters to invoke the Java Agent.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of instrumented
classes under the Java Agent installation directory. Then with the proper JVM parameters these instrumented
classes will be loaded into the JVM that runs your application server. The instrumentation is done using the
Diagnostics JRE Instrumenter utility which can be invoked automatically using various options or manually.

There are two-levels of instrumentation:

l Basic instrumentation.
By adding the Java Agent to your application server start up, your application server will be instrumented
andmonitored. This is done by adding the -javaagent option to your application server JVM parameters.

l Recommended instrumentation.
In addition to the basic instrumentation, we recommend that you also instrument the JRE (Java Runtime
Environment) used by your application server using the JRE Instrumenter utility provided by the Java
Agent. This extra instrumentation will enable the Java Agent to provide advanced features such as the
patent-pending Collection Leak Pinpointing (CLP). CLP automatically detects leaking collections and
provides a stack trace of where the leak occurs. This helps identify issues early, while there is time to
mitigate the issue (such as an eventual out of memory error/server crash), as well as saves developers
time by avoiding the tedious task of analyzing heap dumps (see "Configuring Collection Leak Pinpointing"
on page 123). And this extra instrumentation also has performance benefits on certain application servers
such as WebSphere 6.1.

Note: If you chose to auto-deploy the application server during agent setup, you do not need to perform
this procedure. Restart the application server to pick up the changes.

For general instructions on using the different JRE instrumentationmodes see "About the JRE Instrumenter
and Different Options to Invoke" on page 58.

Micro Focus Diagnostics (9.51) Page 30 of 263

To continue, find your application server in the next section and follow the instructions for instrumenting and
configuring.

Specifying Probe Properties as Java System
Properties
The configuration of the Java Agent is managed by property settings in several property and configuration
files. You can view andmodify these files in <agent_install_directory>/etc/. Property settings can also be
specified as Java system properties on the startup command line for the application server, where they
configure only that instance of the probe. These system properties can be specified in the following ways:

l "Specified individually on the command line" below
l "Grouped in a file that is specified on the command line" on the next page
l "Macros for probe and host naming" on page 33
Specified individually on the command line
Except for those defined in the dynamic.properties property file, all probe properties can be specified as
Java System properties on the startup command line for the application server.

When the application starts, properties specified in the startup command line override properties with the
same name in the corresponding property file. If youmake a change to the dynamic property settings while an
application is running, these changes will override the command-line specification.

Specifying probe properties on the application startup command line is useful when there is more than one
JVM beingmonitored by a single agent installation. Each probe can specify its own configuration as a delta to
the shared agent configuration and property files.

To specify a property as a Java System property, add -D to the first part of themodule name or properties file
name, for example -Dprobe or -Ddispatcher. See the following examples.

l For the property webserver.jetty.port, from the startup command, add -D before themodule name
(probewebserver) as follows:

-Dprobewebserver.jetty.port=SomePortNumber

Note: The webserver property is different from other properties as you need to use themodule name
(probewebserver), not the property file name.

l To set the id property in probe.properties from the startup command, add -D before probe in the property
file name, and add the name of the property you are specifying (id) as follows:

-Dprobe.id=SomeId

l To set the active.products property in probe.properties from the startup command, add -D before probe
in the property file name, and add the name of the property you are specifying (active.products), as
follows:

-Dprobe.active.products=Enterprise

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 31 of 263

l To set the registrar.url property in dispatcher.properties from the startup command, add -D before
dispatcher in the property file name, and add the name of the property you are specifying (registrar.url),
as follows:

-Ddispatcher.registrar.url=http:/host.company.com:2006/registrar

l To set theminimum.sql.latency property in dispatcher.properties from the startup command, specify a
value as follows:

-Ddispatcher.minimum.sql.latency=3s

Because this property is dynamic, you can override the above specification by modify the setting in the
following file:
<agent_install_directory>/etc/dispatcher.properties

Example

If an SQL statement takes less than this amount of time, it will
not be trended, until it does exceed this time.
(This property can be dynamically changed)
minimum.sql.latency = 1s

In this case, the setting is restored to its default value of 1 second.
Grouped in a file that is specified on the command line
As an alternative to specifying individual probe properties on the startup command line for the application
server, you can group several property settings together in a file and specify the file as a Java System
property on the startup command line for the application server.

Just as with the command-line specification, any properties specified in the file override those of the same
names in the corresponding property files when the application starts. However when using the file method,
you can include properties from the dynamic.properties property file. However, unlike when specifying
individual probe properties on the command line, all properties are overridden unconditionally. Any changes to
dynamic settings that occur once the application is running do not override their specification in the file.

Using a file to specify a number of probe properties is helpful when you havemany properties to specify, or the
property settings require unusual syntax which is easier to maintain in a file.

To specify a file that contains property settings on the application server startup command line, specify
-Ddiag.config.override=<my_prop_settings>
where <my_property_settings> specifies the file with your settings that you have created and placed in
<agent_install_ directory>/etc/overrides. The file must contain the .settings suffix.

For example:

-Ddiag.config.override=WebSphereProbe24

This directs the probe to read the file: <agent_install_directory>/etc/overrides/
WebSphereProbe24.settings file. This file contains any settings that you want to override at startup, for
example:

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 32 of 263

probe.id=SomeId
probe.active.products=Enterprise
dispatcher.registrar.url=http:/host.company.com:2006/registrar
dispatcher.minimum.sql.latency=3s

dynamic.stack.trace.sampling.rate=30ms

Macros for probe and host naming
Probe name, host name and IP address can be specified by usingmacros. Themacros pull values from
system properties or environment variables and use the values to build the name or IP address at runtime.

Macros for probe and host naming are useful in cloud environments.

Where macros can
be specified

Macros can be specified for any of the following properties:

l probe.id
l dispatcher.probe.host.ip_address.override
l dispatcher.probe.host.name.override

Macro format You specify amacro in either of the following formats:

${key}

or

${key:subkey}

where:

key is a system property or environment variable. The value of the system property
or the environment variable is used as themacro value.

subkey is specific field of the key value. The key valuemust be in a JSON map
form.

Examples For example, assume <agent_install_directorydir>etc/probe.properties contains the
following entry:

id = ${PARAMETERS:username}-${PARAMETERS:port}_foo

If the PARAMETERS environment variable has a value of:

{"username":"joe","user_id":1003,"port":3003}

Then the id property a evaluates to:

id = joe-3003_foo

Examples for Configuring Application Servers
This section provides examples of how to configure various commonly used application servers for
monitoring. See the section "About the JRE Instrumenter and Different Options to Invoke" on page 58 for a
description of the different ways you can invoke the JRE Instrumenter.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 33 of 263

Note:

l Make sure that you understand the structure of the startup scripts, how the property values are set,
and the use of environment variables before youmake any application server configuration changes.
Always create a backup copy of any file that you plan to update beforemaking the changes.

l For JBoss, Tomcat, andWebSphere application servers, we recommend that you use the auto-
deploy option. For details, see "Step 4: Specify Agent Name, Group, and Auto-deployment" on page
20.

"Example 1: Configuring GlassFish Application Server for Monitoring" below

"Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring" on page 36

"Example 3: Configuring Oracle Application Server for Monitoring" on page 39

"Example 4: Configuring SAP NetWeaver Application Server for Monitoring" on page 42

"Example 5: Configuring TIBCOActiveMatrix BusinessWorks and Service Bus for Monitoring" on page 44

"Example 6: Configuring Tomcat Application Server for Monitoring" on page 46

"Example 7: ConfiguringWebLogic Application Server for Monitoring" on page 48

"Example 8: Configuring webMethods Server for Monitoring" on page 49

"Example 9: ConfiguringWebSphere Application Server for Monitoring" on page 53

"Example 10: Configuration forWebSphere Application Server Liberty " on page 56

The long lines in the script examples shown in this chapter do not have line breaks, whichmakes them hard to
read. However this allows you to copy and paste the text directly from themanual (when viewing online) and
into your editor without extraneous formatting characters.

Use quotes if there are spaces in the files paths that you specify.

Example 1: Configuring GlassFish Application Server for
Monitoring
The following are the instructions for a generic GlassFish 3.x or 4.x application server implementation. Your
site administrator should be able to use these instructions to guide you inmaking the changes that are
appropriate to your specific environment.

Note: 1.GlassFish requires additional, special settings to work properly with the agent.

Locate the property org.osgi.framework.bootdelegation in the GlassFish configuration files and
append the text ",com.mercury.opal.capture.proxy" to the end of the property value (do not include the
quotes).

In GlassFish 3.1.2 and later, this property is located in <GlassFish_install_
dir>/glassfish/config/osgi.properties.

Locate the property extra-system-packages and append the text
,com.mercury.opal.capture.proxy;version=<Java probe version>. An example version numbers is
9.50.1.153

In an earlier versions of GlassFish, these properties may reside in the following two files:

< GlassFish_install_dir >/osgi/equinox/configuration/config.ini

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 34 of 263

< GlassFish_install_dir >/osgi/felix/conf/config.properties

Youmay also need to disable theMonitoring Service onGlassFish to avoid a conflict with the
Diagnostics monitoring. Go toConfigurations > {config_name} > Monitoring and deselect the
Enabled check box of theMonitoring Service option.

1. Locate the GlassFish JVM configuration settings by logging in to the GlassFish Administration Console
and navigating to the JVM Options page.
For GlassFish 3.1.2 and later, in the left-hand tree go toConfigurations > {config_name} > JVM
Settings, where {config_name} is the name of your server configuration (such as, server-config).
If you are working with an earlier version of GlassFish, click Application Server in the left-hand tree and
then select the JVM Settings tab at the top.
Then select the JVM Options tab. See the screenshot below as a reference.

2. Using theAdd JVM Option button, add the following JVM parameters, one at a time. For <agent_
install_dir> use the full path to where you installed the agent. OnWindows, use forward slashes (/)
instead of backward slashes (\). For <probe_id> use a name you’ve chosen for the probe, such as
MyServer.

-javaagent:<agent_install_dir>/lib/probeagent.jar
-Xbootclasspath/p:<agent_install_dir>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>

Note: In case of cluster setup, remove -Dprobe.id=MyServer in JVM options tab and add different

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 35 of 263

probe ids in the probe.properties file located in <Diag_Java_Agent_Path>\etc for both servers, so
that you can see both cluster instance in Diagnostics.

3. Restart the GlassFish application server.
If the GlassFish application server does not start, you can check and change the JVM parameters in the
<GlassFish_install_dir>/glassfish/domains/<domain_name>/config/domain.xml file to resolve the
issue, where <domain_name> is the name of your domain (such as, domain1).
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future, youmust delete the <agent_
install_dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise,
your application server may not start. . For general information on the instrumentationmode used see
"Using the JRE Instrumenter in Automatic Implicit Mode" on page 61.

Example 2: Configuring JBoss Application Server and JBoss
EAP for Monitoring
The following sections provide instructions with specific examples for the JBoss Application Server and
JBoss EAP (Enterprise Application Platform) for a generic implementation. Your site administrator should be
able to use these instructions to guide you tomake these changes in your customized environment.

Note: For JBoss 6.x, add the following JVM parameter:
-Djava.util.logging.manager=org.jboss.logmanager.LogManager

For JBoss Application Server, if you chose to auto-deploy the application server during agent setup, you do
not need to perform this procedure. Restart the application server to pick up the changes.

To configure a JBoss application server:
1. Locate the startup script that is used to start JBoss for the application and locate a convenient point in

the file after all options are set but before the java command line (or code block) that starts the application
server is executed.
l On JBoss versions earlier than 7.0:
The startup script file is typically located in a path similar to the following:
<JBOSS_HOME>\bin\run.[bat|sh]
where <JBOSS_HOME> is the path to your JBoss installation directory, such as C:\ jboss-4.2.3.GA
or C:\jboss-6.0.0.Final.

l On JBoss 7.0 or higher:
The startup script file is typically located in a path similar to one of the following:
<JBOSS_HOME>\bin\domain.[bat|sh]
<JBOSS_HOME>\bin\standalone.[bat|sh]
where <JBOSS_HOME> is the path to your JBoss installation directory, such as C:\jboss-as-
7.1.0.Final.

2. Insert additional configuration lines as illustrated by the examples. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.
Below is an example showing themodified .bat file for JBoss 6.x:

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 36 of 263

rem Setup JBoss specific properties
rem Setup the java endorsed dirs
set JBOSS_ENDORSED_DIRS=%JBOSS_HOME%\lib\endorsed

rem Configuring Diagnostics Java Agent
set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
"%JAVA%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
rem Use the line below ONLY for JBoss 6
set PROBE_OPTS=%PROBE_OPTS% -
Djava.util.logging.manager=org.jboss.logmanager.LogManager
rem Use the line below ONLY for JBoss 7
rem set PROBE_OPTS=%PROBE_OPTS% -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal
set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

Below is an example showing themodified .sh file for JBoss 7.x, 8.x (Wildfly):

if $cygwin; then
JBOSS_HOME=`cygpath --path --windows "$JBOSS_HOME"`
JAVA_LOC=`cygpath --path --windows "$JAVA_LOC"`
JBOSS_CLASSPATH=`cygpath --path --windows "$JBOSS_CLASSPATH"`
JBOSS_ENDORSED_DIRS=`cygpath --path --windows "$JBOSS_ENDORSED_DIRS"`

fi

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install_dir>
PROBE_ID=<probe_id>
"$JAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"
Use the line below ONLY for JBoss 6
PROBE_OPTS="$PROBE_OPTS -
Djava.util.logging.manager=org.jboss.logmanager.LogManager"
Use the line below ONLY for JBoss 7
PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal"
JAVA_OPTS="$JAVA_OPTS $PROBE_OPTS"

Display our environment
echo "==="
echo ""
echo " JBoss Bootstrap Environment"
echo ""

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 37 of 263

echo " JBOSS_HOME: $JBOSS_HOME"

Note: If your java command line does not use the JAVA_OPTS variable to define the JVM
parameters, you need to change the variable name JAVA_OPTS shown in these examples to the
correct name.

3. Save the changes to the startup script and restart the application server using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Configuring a JBoss EAP Application
Following is an example for JBoss EAP (Enterprise Application Platform) for a generic implementation.

To Configure a JBoss EAP Application:
1. Locate and edit domain.xml for the domain.

By default, this is located in the following folder:
$JBOSS_HOME/domain/configuration/.

2. In the system-properties element, add a property named jboss.modules.system.pkgswith a value of
com.mercury.opal to the existing system properties.

Example:

<system-properties>
<property name="jboss.modules.system.pkgs"
value="org.jboss.byteman,com.mercury.opal"/>

</system-properties>

This property tells the JBoss class loader to load the Diagnostics packages. This is required for the
Java Agent to run.

3. Under the server group namewhere you want to enable the Java Agents, add the JVM options using the
required values for the agent location, JBoss application name, and tier name.

Example:

<server-group name="main-server-group" profile="full-ha">
 <jvm name="default">
 <jvm-options>
 <option value="-Xbootclasspath/p:/home/x001059a/JavaAgent/DiagnosticsAgent
 /classes/Oracle/1.7.0_40/instr.jre"/>
 <option value="-javaagent:/home/x001059a/JavaAgent/DiagnosticsAgent

/lib/probeagent.jar"/>
 <option value="-Djava.util.logging.manager=org.jboss.logmanager.

LogManager"/>
 <option value="-Dprobe.id=CARSCA_STGM_AppSrv"/>
 </jvm-options>
 </jvm>
</server-group>

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 38 of 263

4. If you are using JBoss EAP 6.x, setmercury.enable.jboss6eap=true for
detials.conditional.properties in inst.properties.

5. Restart the JBoss application server after the changes.

Example 3: Configuring Oracle Application Server for
Monitoring
This section provides instructions for configuring anOracle 10g application server.

Note: Some of theWeb Services deployed onOracle OC4J application server, due to their non-
compliance to the JAX-WS standard, may not be recognized by Diagnostics agent. To work around this
issue you can try setting annotation.inheritance.allow=true in etc/inst.properties on the agent
system.

To configure an Oracle 10g application server:
1. Locate the Oracle Application Server JVM configuration settings by opening Oracle's Application

Server Control Console, select home (or MyOC4J) System Component, and thenAdministration.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 39 of 263

On the Administration page, select Server Properties. You’ll input in JVM parameters underCommand
Line Options.

2. Run the Diagnostics JRE Instrumenter to instrument the JRE used by your Oracle application server.
See "Using the JRE Instrumenter in Manual Mode" below.
Copy the JVM parameters provided by this tool and paste them in the Command Line Options "Java
Options" text field found in the previous step and shown in the following figure.

Note: It is required to add a (^) prior to the /p switch or Oracle will change the (/) switch option to a
(\).

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 40 of 263

3. Apply the changes and restart the Oracle server.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), youmust run the JRE Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.

Using the Diagnostics JRE Instrumenter in Manual Mode
Manually invoke the JRE Instrumenter and copy the provided JVM parameters into your application server
startup settings.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), youmust run the JRE Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.

By default, the JRE Instrumenter uses a graphical user interface (UI Mode). Directions to run the JRE
Instrumenter from a console window (ConsoleMode) follow below.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 41 of 263

Running the JRE Instrumenter Utility in UI Mode
1. Start the JRE Instumenter utility.

OnWindows run the <agent_install_dir>\bin\jreinstrumenter.cmd command.
OnUNIX or Linux run the <agent_install_dir>/bin/jreinstrumenter.sh command.

2. Click theAdd JRE(s) button, navigate to a parent directory where the JRE used by your application is
stored and click Search from here. The JRE Instrumenter lists the JREs found in the Available JREs
list.

3. Select the JRE that is used by your application and then click Instrument. The JRE Instrumenter
instruments some of the classes for the selected JRE and places the instrumented classes in a folder
under the <agent_install_dir>/classes directory.

4. Click Copy Parameter to copy the JVM parameters in the box below the Available JREs list, to the
clipboard.

5. Click Exit to close the JRE Instrumenter window and continue with configuring your application server
JVM parameters.

Example 4: Configuring SAP NetWeaver Application Server
for Monitoring
The following are the instructions for a generic NetWeaver application server implementation. Your site
administrator should be able to use these instructions to guide you inmaking the changes that are appropriate
to your specific environment.

Note: SAP NetWeaver requires additional, special settings to work properly with the agent.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 42 of 263

Edit the <agent_install_dir>\etc\capture.properties file and assign the following values to these
properties:

event_buffer.size = 10000

event_buffer.flush.level = 1000

To configure a SAP NetWeaver application server:
1. Locate the NetWeaver JVM configuration settings by running the NetWeaver J2EE Engine configuration

tool. The script to run this tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\configtool directory, where CR2 is an example of the name of your SAP
system.
In the configuration tool UI, in the left-hand tree, select the server that you want to monitor. For example
in the screenshot below, select cluster-data > instance_ID39260 > server_ID3926050. Then, at the
right-hand side select theGeneral tab where you’ll find the Java parameters text window.

2. Add the following JVM options to the Java parameters text window. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

-javaagent:<agent_install_dir>\lib\probeagent.jar
-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

Note: In a clustered environment where a single startup script is used to start multiple probed
application server instances you need to add a suffix (%0) to the parameter -
Dprobe.id=<probeName>%0. This will generate a custom probe identifier for each probe. On
Windows, use%%0 (the first % is used to escape the second%).

The following is an example screen for SAP NetWeaver versions 7.1 or earlier with the JVM parameters
highlighted.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 43 of 263

The following is an example screen for SAP NetWeaver verison 7.3. You enter the JVM parameters in
the Custom parameters box and youmust enter each parameter separately (-javaagent, -Xbootclasspath
and -Dprobe.id).

3. Save your changes and exit the configuration tool and restart the application server.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), youmust delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start For general information
on the instrumentationmode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
61.

Example 5: Configuring TIBCO ActiveMatrix BusinessWorks
and Service Bus for Monitoring
The following sections describe the steps to configure TIBCOActiveMatrix BusinessWorks and Service Bus
so that the applications can bemonitored.

To configure TIBCO ActiveMatrix BusinessWorks:
Configuring a TIBCOBusinessWorks application server involves modifying its configuration files to add JVM
parameters. Below are the instructions for a generic server implementation. Your site administrator should be
able to use these instructions to guide you inmaking the changes that are appropritate to your specific
environment.

1. Locate the TIBCOBusinessWorks .tra configuration files. These files are typically located in:
<tibco_home>\tra\domain\<Domain_Name>\application\<Application_Name>\<Application_
Name>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should replace

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 44 of 263

<agent_install_dir> and <probe_id> with values for your environment.

#
Other arguments to application, JVM etc.
#
tibco.env.APP_ARGS=
tibco.env.HEAP_SIZE=256M

Configuring Diagnostics Java Agent
tibco.env.AGENT_HOME=<agent_install_dir>
tibco.env.PROBE_ID=<probe_id>
JmxEnabled=true
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre
tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/lib/probeagent.jar
tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the%PROBE_
OPTIONS% to the existing definition. Also do not use backslashes (\) for any values. Instead
replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure TIBCO ActiveMatrix Service Bus:

Note: TIBCOActiveMatrix Service Bus (AMSB) 3.1.2 requires additional, special settings to work
properly with the agent.

Locate the TIBCOActiveMatrix Service Bus 3.1.2machine.xmi file. This file is typically located in a path
such as:

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_
ServerName>\tools\machinemodel\machine.xmi

Update the runtimes section of the file for each node you want to monitor. For example:

<runtimes xsi:type="machinemodel:OSGiRuntime" name="Node1"

In the runtimes section for each node locate the frameworkProperties key
org.osgi.framework.bootdelegation and append com.mercury.* to the value of the property.

For example:

<frameworkProperties key="org.osgi.framework.bootdelegation" value="com.ibm.*,
....,sun.*,com.mercury.*"/>

1. Locate the TIBCOActiveMatrix Service Bus .tra configuration files.
On TIBCOActiveMatrix Service Bus (AMSB) 2.0 and 2.3 these files are typically located in:
<tibco_home>\amx\data\<Node>\<Application\bin
On TIBCOActiveMatrix Service Bus 3.1.2 these files are typically located in:

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 45 of 263

<tibco_amx_configuration_dir>\tibcohost\<EnterpriseName_
ServerName>\nodes\<NodeName>\bin\tibamx_<NodeName>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

NOTE:
There must be only one java.extended.properties in the .tra file. Append remote
debugging extended properties here to use remote debugging for this process.
#
Configuring Diagnostics Java Agent
tibco.env.AGENT_HOME=<agent_install_dir>
tibco.env.PROBE_ID=<probe_id>
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre
tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/lib/probeagent.jar
tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the%PROBE_
OPTIONS% to the existing definition. Also do not use backslashes (\) for any values. Instead
replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), youmust delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start. For general information
on the instrumentationmode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
61.

Example 6: Configuring Tomcat Application Server for
Monitoring
Apache Tomcat is frequently embedded into other applications or servers. As a result, the way to instrument it
may vary. The following sections provide instructions on how to configure a Tomcat server in simple
scenarios, but it is generic enough to guide you in your particular situation.

If you chose to auto-deploy the application server during agent setup, you do not need to perform this
procedure. Restart the application server to pick up the changes.

If your Tomcat server is started by script, follow the instructions in "To configure a Tomcat server with a
startup script:" on the next page.

If Tomcat is installed as aWindows service or has no scripts, follow the instructions in "To configure a
Tomcat server without a startup script:" on the next page.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 46 of 263

To configure a Tomcat server with a startup script:
1. Locate the startup script that is used to start Tomcat for the application and locate a convenient point in

the file after all options are set but before the java command line (or code block) that starts the application
server is executed.
In some scenarios, the startup script will end up calling the following script to start Tomcat:
<Tomcat_install_dir>/bin/catalina.[bat|sh]
where <Tomcat_install_dir> is the path to your Tomcat installation directory, such as C:\apache-
tomcat-7.0.8.

2. Insert additional configuration lines as illustrated by the examples below In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.
The following is an example showing amodified catalina.bat file:

:doStart

rem Configuring Diagnostics Java Agent
set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
%_RUNJAVA% -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
set CATALINA_OPTS=%CATALINA_OPTS% %PROBE_OPTS%

The following is an example showing amodified catalina.sh file:

----- Execute The Requested Command ------------------------

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install_dir>
PROBE_ID=<probe_id>
"$_RUNJAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"
CATALINA_OPTS="$CATALINA_OPTS $PROBE_OPTS"

3. Save the changes to the startup script and restart the application server using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure a Tomcat server without a startup script:
Locate the Tomcat JVM configuration settings by right-clicking on the Apache Tomcat service icon from the
Windows Task bar and then selectingConfigure. Alternatively, you can navigate from the Start menu. For
example, Programs > Apache Tomcat 7.0 > Configure Tomcat.

1. In the Apache Tomcat Properties dialog box, select the Java tab and find the JavaOptions box.
2. In the Java Options box, add the following JVM parameters, each on its own line, replacing <agent_

install_dir> and <probe_id> with the actual values.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 47 of 263

-javaagent:<agent_install_dir>\lib\probeagent.jar
-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

3. Restart the Tomcat service.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), youmust delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start. For general information
on the instrumentationmode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
61.

Example 7: Configuring WebLogic Application Server for
Monitoring
The following section provides general instructions with specific examples for theWebLogic application
server for a generic implementation. Your site administrator should be able to use these instructions to show
you how tomake these changes in your customized environment.

To configure a WebLogic application server:
1. Locate the startup script used to start WebLogic for your domain and locate a convenient point in the file

after all options are set but before the java command line (or code block) that starts the application server
is executed.
The startup script file is typically located in a path similar to the following:
<DOMAIN_HOME>\bin\startWebLogic.[cmd|sh]
where <DOMAIN_HOME> is the path to your domain directory, such as C:\bea\user_
projects\domains\<Domain_Name>; orC:\bea\wlserver_10.0\samples\domains\<Domain_Name>
where <Domain_Name> is the name of your domain.
For example, if your domain name is MedRec, the path would look like the following:
C:\bea\wlserver_10.0\samples\domains\medrec\bin\startWebLogic.cmd

2. Insert additional configuration lines as illustrated by the examples. In both examples you should replace
<agent_install_dir> and <probe_id> with values for your environment.
Below is an example showing the added lines in a .cmd file:

echo starting weblogic with Java version:

%JAVA_HOME%\bin\java %JAVA_VM% -version

set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
%JAVA_HOME%\bin\java -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 48 of 263

set JAVA_OPTIONS=%JAVA_OPTIONS% %PROBE_OPTS%

if "%WLS_REDIRECT_LOG%"=="" (
echo Starting WLS with line:
echo %JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% …%JAVA_

HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% …
) else (
echo Redirecting output from WLS window to %WLS_REDIRECT_LOG%
%JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% …

)

Below is an example showing the added lines in a .sh file:

echo "starting weblogic with Java version:"

${JAVA_HOME}/bin/java ${JAVA_VM} -version

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install_dir>
PROBE_ID=<probe_id>
${JAVA_HOME}/bin/java -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"
JAVA_OPTIONS="$JAVA_OPTIONS $PROBE_OPTS"

if ["${WLS_REDIRECT_LOG}" = ""] ; then
echo "Starting WLS with line:"
echo "${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} …
${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} …

else
echo "Redirecting output from WLS window to ${WLS_REDIRECT_LOG}"
${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} …

fi

Note: If your java command line does not use the JAVA_OPTIONS variable to define the JVM
parameters, you need to change the variable name JAVA_OPTIONS shown in these examples to
the correct name.

3. Save the changes to the startup script and restart the application server using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Example 8: Configuring webMethods Server for Monitoring
There are two types of webMethods servers discussed in this example:

l webMethods Integration Server
l My webMethods Server

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 49 of 263

The following sections provide general instructions with specific examples for webMethods Integration Server
andMy webMethods Server. Your site administrator should be able to use these instructions to show you how
tomake these changes in your customized environment.

l "To configure a webMethods Integration Server started without the configuration wrapper:" below
l "To configure a webMethods Integration Server started with the configuration wrapper:" on the next page
l "To configure theMy webMethods Server started without the configuration wrapper:" on the next page
l "To configure theMy webMethods Server started with the configuration wrapper:" on page 52
To configure a webMethods Integration Server started without the configuration wrapper:
1. Locate the startup script used to start the webMethods Integration Server and locate a convenient point

in the file after all options are set but before the java command line (or code block) that starts the
application server is executed. There are two possible scripts based on how the server is started:
<software_ag_home>\IntegrationServer\bin\server.bat
<software_ag_home>\profiles\IS\bin\runtime.bat

2. Insert additional configuration lines as illustrated by these examples. In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.
Below is an example showing themodified server.bat file:

if exist "%JAVA_DIR%\bin\jre.exe" (
set JAVA_EXEC="%JAVA_DIR%\bin\jre.exe"
set JAVA_CP="%JAVA_DIR%\lib\classes.zip;%JAVA_DIR%\lib\i18n.jar"
) else (
set JAVA_EXEC="%JAVA_DIR%\bin\java.exe"
set JAVA_CP="%JAVA_DIR%\lib\rt.jar;%JAVA_DIR%\lib\i18n.jar"
)

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
"%JAVA_EXEC%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

Below is an example showing themodified runtime.bat file:

rem Configuring Diagnostics Java Agent
set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
"%JAVA_RUN%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 50 of 263

%JAVA_RUN% -Xbootclasspath/a:"%OSGI_CLASSPATH%" %JAVA_OPTS% …

3. Save the changes to the startup script and restart the application server using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure a webMethods Integration Server started with the configuration wrapper:
Use this method if the application server is started as a service using <software_ag_
home>\profiles\IS\bin\service.bat.

1. Locate the webMethods Integration Server custom_wrapper.conf file. This file is typically located in:
<software_ag_home>\profiles\IS\configuration\custom_wrapper.conf.

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.
Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing
number 777 as needed for your configuration.
Below is an example showing themodified custom_wrapper.conf file:

Put here your custom properties.

Configuring Diagnostics Java Agent
set.AGENT_HOME=<agent_install_dir>
set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_ID%\instr.jre
set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%

3. Save the changes to the configuration wrapper and restart the application server using themodified
wrapper.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server when started with the configuration wrapper
in the future (such as applying an application server patch), youmust delete the <agent_install_
dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise, your
application server may not start. For general information on the instrumentationmode used see "Using
the JRE Instrumenter in Automatic Implicit Mode" on page 61.

To configure the My webMethods Server started without the configuration wrapper:
Use this method if you start the application server by using the run command.

1. Locate the startup script used to start theMy webMethods Server and locate a convenient point in the file
after all options are set but before the java command line (or code block) that starts the application server
is executed.
The script file is: <ag_software_home>\MWS\bin\mws.bat.

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 51 of 263

The following is an example of themodifiedmws.bat file:

rem Configuring Diagnostics Java Agent
set AGENT_HOME=<agent_install_dir>
set PROBE_ID=<probe_id>
"%JAVA%" -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
set JAVA_OPTIONS=%JAVA_OPTIONS% %PROBE_OPTS%

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dserver.name=%SERVER_NAME% ...
set PARAMS=
set MAIN_CLASS=com.webmethods.portal.system.PortalSystem
set RUN_CMD=%JAVA% -cp %CLASSPATH% %JAVA_ARGS% %JAVA_OPTIONS% ...

3. Save the changes to the startup script and restart the application server using themodified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure the My webMethods Server started with the configuration wrapper:
Use this method if you start the application server as a service or by using the start command.

Note: This method requires customizations to thewrapper.conf file, which whichmay be overridden
when the application server is upgraded or patched.

1. Locate theMy webMethods Serverwrapper.conf file. This file is typically located in:
<ag_software_home>\MWS\server\<server_name>\config\wrapper.conf.

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.
Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing
number 777 as needed for your configuration.
Below is an example showing themodifiedwrapper.conf file:

Java Additional Parameters
…
Configuring Diagnostics Java Agent
set.AGENT_HOME= <agent_install_dir>
set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_ID%\instr.jre
set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%
#NOTE: wrapper.java.additional.300 to 310 is reserved for debug configuration !

3. Save the changes to the configuration wrapper and restart the application server using themodified
wrapper.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 52 of 263

Note: If you update the JRE used by your application server when started with the configuration wrapper
in the future (such as applying an application server patch), youmust delete the <agent_install_
dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise, your
application server may not start. For general information on the instrumentationmode used see "Using
the JRE Instrumenter in Automatic Implicit Mode" on page 61.

Example 9: Configuring WebSphere Application Server for
Monitoring
Note: If you have auto-deployed the application server during the Java agent setup, further configuration
is unnecessary.

The following section provides general instructions with specific examples for theWebSphere application
server for a generic implementation. Your site administrator should be able to use these instructions to show
you how tomake these changes in your customized environment.

Procedures are provided forWebSphere 7.0 or higher.

Note: Extra steps are required to enablemetric collections inWebSphere. See "ConfiguringWebSphere
for JMX Metric Collection" on page 55.

To configure WebSphere 7.0 or higher
1. Locate the application JVM configuration settings by logging in to theWebSphere Application Server

Administrative Console. For example:

http://<App_Server_Host>:9060/ibm/console

Replace <App_Server_Host> with themachine name for the application server host and 9060 with the
correct administrative port number (such as 9060, 9061, and so on).
Navigate to the Java Virtual Machine page. For example:
Navigate to: Servers > Server Types > WebSphere Application servers
Then click the application server instance name (such as server1).

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 53 of 263

Then, underServer Infrastructure > Java and Process Management, click Process Definition.

Then, underAdditional Properties, click Java Virtual Machine.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 54 of 263

2. On the Java Virtual Machine page, in theGeneric JVM Arguments box, enter the JVM parameters.
l ForWebSphere running on IBM JRE 1.6 (WebSphere 7.0 or 8.0/ 8.5 default) enter the following JVM
parameters. In the example replace <agent_install_dir> and <probe_id> with values for your
environment.

-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-javaagent:<agent_install_dir>\lib\probeagent.jar
-Xshareclasses:none
-Dprobe.id=<probe_id>

l ForWebSphere running on IBM JRE 1.7 (configurable onWebSphere 8.0 or higher), youmust run the
Diagnostics JRE Instrumenter manually and then insert the JVM parameters returned by the JRE
instrumenter. See "Using the JRE Instrumenter in Manual Mode " on page 62.
In addition to specifying the JVM parameters returned by JRE Instrumenter, include -
Dprobe.id=<probe_id>.
If you have enabled SSL communication for the probe, also add the following line:
-Djava.security.properties=<agent_install_dir>/etc/ibm.default.java.security

Caution: Using the wrong JVM parameters for your version of WebSphere can cause extreme
performance degradation of themonitored application. There are two categories of WebSphere
application servers listed above, each with its ownmethod of required instrumentation.

3. Apply and save your changes, and restart the application server.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Configuring WebSphere for JMX Metric Collection
Youmight need to configure the PerformanceMonitoring Infrastructure (PMI) service on theWebSphere
server to start receiving JMX metrics.

Note: If Diagnostics is not able to identify your application server as aWebSphere server, youmust

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 55 of 263

enable PMI and add the Jar files to the server.policy file.

To configure WebSphere server for JMX metrics collection:
1. Open theWebSphere Administrative Console.
2. In the Console navigation tree, select Servers > Application Servers. The console displays a table of

the application servers.
3. Click the name of the application server you want to configure from the Application Servers Table. The

console displays theRuntime and theConfiguration tabs for the selected application server.
4. Click theConfiguration tab.
5. In theConfiguration tab:

l Under the Performance heading, click Performance Monitoring Infrastructure (PMI).

l Under the General Properties heading, select theEnable Performance Monitoring Infrastructure
(PMI) check box.

l Under the Currently monitored statistic set heading select Extended.

6. Click Apply orOK.
7. If Java 2 Security is enabled on the application server, open the server policy file <WebSphere

Installation Directory>/profiles/<your_profile_name>/properties/server.policy) and add the
following security permissions to enable JMX collection. Replace <agent_install_dir> with the value for
your environment.

grant codeBase "file:/<agent_install_dir>/lib/probe-jmx.jar"
{ permission java.security.AllPermission; }
grant codeBase "file:/<agent_install_dir>/lib/probe-jmx-was6.jar" {
permission java.security.AllPermission;
};

8. Restart the application server.

Example 10: Configuration for WebSphere Application Server
Liberty
If your application is based on the Liberty Profile of WebSphere Application Server, you need to configure
Diagnostic Java Agent on Linux or AIX, using one of the followingmethods:

l Automatic Implicit Mode
l Automatic Explicit Mode
We recommend Automatic Explicit Mode if you encounter any stability issues with the JVM running the
Liberty Application Server.

Note: You cannot use bothmethods simultaneously. For example, if you are using Explicit Mode, you
cannot include a jvm.options file configured for Implicit Mode.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 56 of 263

To Configure Diagnostics Java Agent in Automatic Implicit Mode on Linux or AIX:
1. In the directory <application_server>/usr/servers/<server_name> (for example, WebSphere_

8.5/Liberty/usr/servers/defaultServer) create a text file named jvm.optionswith the following content:
-javaagent:<agent_install_dir>/lib/probeagent.jar
-Xbootclasspath/p:<agent_install_dir>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>
-Xshareclasses:none
where <agent_install_dir> is the absolute path to the installation directory and <probe_id> is the value
of the probe ID.
If you have enabled SSL communication for the probe, also add the following line:
-Djava.security.properties=<agent_install_dir>/etc/ibm.default.java.security

2. In the same directory create another text file named bootstrap.propertieswith the following content:
org.osgi.framework.bootdelegation=com.mercury.opal.capture.*

Note: If either of the above files already exist, add the content above to the existing file.

To Configure Diagnostics Java Agent in Automatic Explicit Mode on Linux or AIX:
1. Open the file <application_server>/bin/server and locate the following lines:

##
serverEnvAndJVMOptions: Read server.env files and set environment variables.
Read jvm.options file into ${JVM_OPTIONS_QUOTED}
serverEnvAndJVMOptions()
{
serverEnv

Avoids HeadlessException on all platforms and Liberty JVMs appearing as
applications and stealing focus on Mac.
JVM_OPTIONS_QUOTED=-Djava.awt.headless=true
SERVER_JVM_OPTIONS_QUOTED=${JVM_OPTIONS_QUOTED}

Add -XX:MaxPermSize unless WLP_SKIP_MAXPERMSIZE is set.
if [-z "${WLP_SKIP_MAXPERMSIZE}"]; then
SERVER_JVM_OPTIONS_QUOTED="${SERVER_JVM_OPTIONS_QUOTED} -XX:MaxPermSize=256m"

2. Add the following lines below the lines listed above:

Configuring Micro Focus Diagnostics Java Agent
AGENT_HOME=<agent_install_dir>
PROBE_ID=<probe_id>
$JAVA_HOME -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"
PROBE_OPTS="$PROBE_OPTS -Xshareclasses:none"
SERVER_JVM_OPTIONS_QUOTED="${SERVER_JVM_OPTIONS_QUOTED} ${PROBE_OPTIONS}"

3. In the directory <application_server>/usr/servers/<server_name> create a text file named
bootstrap.propertieswith the following content:

org.osgi.framework.bootdelegation=com.mercury.opal.capture.*

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 57 of 263

4. If the directory <application_server>/usr/servers/<server_name> contains a file jvm.options, make
sure that the file does not contain the Diagnostics specific entries as described in the Automatic Implicit
Mode section above.

Verify the Application Server is Running the Java
Agent
You verify the agent is monitoring the application server after you restart the application server to pick up the
changes to the startup script.

For an agent in Diagnostics Profiler Mode:

Start the Profiler UI and view the probe. See "How to Access the Java Diagnostics Profiler" on page 227.

For an agent reporting to an on-premise Diagnostics Server:

1. In your browser, navigate to http://<diagnostics_server_host>:2006, or openAdministration from
the computer's Start menu.
Port number 2006 is the default port for the Diagnostics Commander Server. If the Diagnostics Server
was installed and configured to use an alternate port, specify that port number in the URL.

2. Log in. Obtain the login credentials from the Diagnostics Administrator. The default user/password of
admin/adminmay work.

3. In the navigation pane of the Diagnostics Applications window, double-click Entire Enterprise. The
Diagnostics views open.

4. Open the Application Servers view group, and select Java Probes.
You can also check the System Health view to find information about the Java agent deployments and the
machines that host them. See "System Views" in the Diagnostics User Guide.

For an agent reporting to a Saas-hosted Diagnostics Server:

Contact your SaaS system administrator.

Troubleshooting:
l You can also check for entries in the <agent_install_directory>\log\<probe_id>\probe.log file. If there
are no entries in the file, you did not instrument the JRE or did not enter the Java parameter such as
Xbootclasspath correctly. In the probe.log file look for errors and look for an entry that says
"Successfully downloaded first command" which indicates that the communication between the probe and
the server has been established.

l To verify that the Java Agent is connected to the Diagnostics Server, direct your browser to the host
running the application, using port 35000. For example:
http://agentsystem.mycompany.com:35000
A page showing the probe status at the bottom is displayed:

About the JRE Instrumenter and Different Options to
Invoke
The JRE Instrumenter is a utility to instrument a JRE so that the Java Agent can provide advanced features
such as the patent-pending Collection Leak Pinpointing (CLP). It does not modify the installed JRE in any

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 58 of 263

way, but rather places copies of instrumented classes somewhere under the <JavaAgent_install_
dir>/DiagnosticsAgent/classes directory. You can use the JRE Instrumenter to instrument multiple JREs if
they are installed on your system.

The JRE Instrumenter instruments some standard Java classes used by the application server JVM and
applications running on it. It also provides you with the JVM parameters that must be used when the
application server is started so that the application server uses the instrumented classes.

With different command-line options, the JRE Instrumenter can be invoked and used in three different ways,
each of which has its own advantages and limitations. You will use one of thesemethods according to the
characteristics of your application servers (see "Examples for Configuring Application Servers " on page 33
for examples).

l Automatic Explicit Mode. If your application server is or can be started by a script, it is recommended
that you use this mode. To use this mode, you add a line to your application server startup script to
explicitly and non-interactively run the JRE Instrumenter to instrument the JRE. Your script will continue
to start the application server JVM (with additional parameters) using the freshly instrumented JRE. See
"Using the JRE Instrumenter in Automatic Explicit Mode" on the next page.

l Automatic Implicit Mode.With this mode, you do not need to explicitly run the JRE Instrumenter— you
only need tomodify your application server JVM parameters to invoke the Java Agent and ask it to run the
JRE Instrumenter as needed. When the Java Agent is used for the first time, it implicitly runs the JRE
Instrumenter to instrument the JRE. However, the first time this instrumented JRE will not be used; your
application server will be using an uninstrumented JRE. The next time your application server is started, it
will use the instrumented JRE. Therefore, if you want to use the full monitoring features of the Java Agent,
you need to restart your application server twice after you enable the Java Agent. See "Using the JRE
Instrumenter in Automatic Implicit Mode" on page 61.

l Manual Mode.With this mode, you need tomanually and interactively run the JRE Instrumenter, either at
the end of the Java Agent installation or at a later time, to instrument the JRE. You thenmodify your
application server JVM parameters according to the parameters provided by the JRE Instrumenter. This
method is how the JRE Instrumenter works in earlier versions of Diagnostics. See "Using the JRE
Instrumenter in Manual Mode " on page 62.

If your JRE is updated (such as, applying an application server patch) or if you update the Java Agent, you
may need to instrument the JRE again. This issue will be discussed in eachmode.

Below is a table that summarizes the requirements of each of the four different methods of doing
instrumentation:

Recommended Instrumentation (Using the
JRE Instrumenter)

Basic
Instrumen-
tation

In Automatic
Explicit Mode

In Automatic
Implicit
Mode

In Manual
Mode

Minimum required JRE version 1.6 1.6 1.6 1.6

Requires the application server being
started by a script

No Yes No No

Requires knowing where the JRE is
installed

No No No Yes

Requires manually running the JRE
Instrumenter

No No No Yes

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 59 of 263

Requires knowing where the JVM
parameters can be configured

Yes* Yes* Yes* Yes*

Requires restarting the application
server after enabling Java Agent

Yes, once Yes, once or
twice

Yes, twice Yes, once

Requires maintenance after JRE
upgrade/patch

No No Yes Yes

* If you cannot find where the JRE invocation parameters can be defined, youmay still have the option of
using an environment variable such as JAVA_OPTIONS to do that.

Using the JRE Instrumenter in Automatic Explicit Mode
Using the JRE Instrumenter in the Automatic Explicit Mode is recommended when an application server is
started by a script, such as WebLogic and JBoss application servers. It is also recommended forWebSphere
application servers if they are, or can be, started by a script - this is the case for most platforms. It is also
recommended for Tomcat if it is not installed as aWindows service (when Tomcat as aWindows service has
been auto-deployed, the JRE Instrumenter runs in Automatic Explicit Mode by default).

To use Automatic Explicit mode, you need to accomplish two tasks:

l Modify your application server startup script to run the JRE Instrumenter using the same JRE used by
your application server. The output from the JRE Instrumenter will give you the JVM parameters you will
need in the next task.

l Configure your application server JVM parameters found in the output from the JRE Instrumenter.

Note: Make sure you understand the structure of the startup script, how the property values are set, and
how to use environment variables before youmake any configuration changes. Always create a backup
copy of any file you plan tomodify beforemaking the changes.

In modifying the application server startup script, you first need to identify the line (or lines) in which the JRE
is invoked to start the application server JVM. Then, right above this line, you add a line like the following to
invoke the JRE Instrumenter using the same JRE used by your application server:

<java_command> -jar <agent_install_directory>/lib/jreinstrumenter.jar -f <pathname>

The <java_command>must be exactly the same java command that is used to start your application server
JVM, since it is the JRE that is instrumented by the JRE Instrumenter. You can usually get this java
command by copying the beginning portion of the line that starts your application server JVM.

Below is a table showing the java command used by the original startup script of some commonly used
application servers. (Note that this table is provided as helpful tips only; your application server startup script
may use a different java command.)

Application Server Shell Scripts (.sh)
Windows Command Scripts (.bat or
.cmd)

JBoss "$JAVA" "%JAVA%"

Tomcat ${_RUNJAVA} %_RUNJAVA%.

WebLogic ${JAVA_HOME}/bin/java %JAVA_HOME%\bin\java

WebSphere ${JAVA_EXE} %JAVA_EXE%

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 60 of 263

The <agent_install_directory> indicates the directory where the Java Agent is installed.

The <pathname> must be relative. The JRE Instrumenter will put the instrumented classes in the <agent_
install_directory>/classes/<pathname>/instr.jre directory. If you runmultiple application servers with
Diagnostics, you should give each application server a unique <pathname> (such as the probe name) so that
themultiple instances of the JRE Instrumenter do not interfere each other. See also "ConfigureMonitoring of
Multiple Java Processes on an Application Server" on page 66 for details.

After you add the line as described above to the startup script, every time you start your application server
using the startup script, the JRE Instrumenter is invoked and instruments the current JRE. It also prints out
the JVM parameters that you should use in the next task. You can usually find the output of the JRE
Instrumenter among the output from running the startup script.

Below is an example output from the JRE Instrumenter that instruments a typical JRE:

-Xbootclasspath/p:<agent_install_directory>/classes/<pathname>/instr.jre

-javaagent:<agent_install_directory>/lib/probeagent.jar

The second task for using the Automatic Explicit JRE instrumentation is to modify your application server
JVM parameters according to the output of the JRE Instrumenter. In many cases, you just need tomodify the
java command-line options in the startup script to include the JVM parameters provided by the JRE
Instrumenter. However, in some scenarios (such as forWebSphere application servers), youmay need to
modify a configuration file or use an administration console to add these JVM parameters.

Note: To get the output from the JRE Instrumenter, you need tomodify the startup script as described in the
first task and restart the application server. Then, after youmake changes to the application server JVM
parameters, you need to restart the application server again (causing you to restart the application server
twice). However, for most of the JREs, the actual JVM parameters provided by the JRE Instrumenter will be
the same as or will include what is provided in the examples above. Therefore, you can safely add these
"default" JVM parameters even before you run themodified script. This approach is used in the instructions for
specific application servers. Refer to the example for your application server (JBoss, WebLogic, WebSphere,
Tomcat) to see detailed instructions for how to configure using automatic explicit mode.

Alternatively, you can redirect (or pipe) the output from the JRE Instrumenter to the java command-line
options, or get the JVM parameters from a difference source to avoid restarting twice.

Using the JRE Instrumenter in Automatic Implicit Mode
Using the JRE Instrumenter in the Automatic Implicit Mode is recommended when an application server
cannot be started by a script, such as GlassFish, NetWeaver, Tomcat installed as aWindows service (and
not auto-deployed during setup), and TIBCOActiveMatrix and BusinessWorks.

To use this mode, you do not need to explicitly invoke the JRE Instrumenter; it is implicitly invoked by the
Java Agent. You just configure your application server JVM parameters to invoke the Java Agent and, when
the Java Agent sees that the JVM boot class path contains a path pointing to a locationmatching the following
pattern, it enters the automatic instrumentationmode to create the instrumented classes and populates the
specified directories with copies of the instrumented classes:

<agent_install_directory>/classes/auto/<name>/instr.jre

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 61 of 263

For example if you add the following JVM parameters

-Xbootclasspath/p:<JavaAgent_install_
dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
-javaagent: <agent_install_directory>/lib/probeagent.jar

Then during the first execution of the application server, the directory <agent_install_
directory>/classes/auto/ServerOne/instr.jremay not even exist. The Java Agent will create and populate
the specified directory with the instrumented classes. And it will use the exact (uninstrumented) JRE that it
runs on.

The first execution of the application server will not benefit from the instrumented JRE, but all subsequent
executions will use the instrumented classes prepared in the first run.

Note: If you update the JRE used by your application server (such as applying an application server
patch) or if you update the Java Agent, before you start the application server again youmust delete the
<agent_install_directory>/classes/auto/ServerOne directory (use your directory name for ServerOne)
so that the new JRE will be instrumented. Otherwise, your application server may not start. You can also
manually delete this directory when you want the Java Agent to instrument the JRE again.

Using the JRE Instrumenter in Manual Mode
You canmanually run the JRE Instrumenter and copy the provided JVM parameters into your application
server startup settings. Using the JRE Instrumenter in theManual Mode is recommended for Oracle
application servers.

The JRE Instrumenter performs the following functions:

l Identifies JREs that are available to be instrumented.
l Searches for additional JREs in directories you specify.
l Instruments the JREs you specify and provides the parameter youmust add to the startup script for the
JRE to point to the location of the instrumented classes.

l When the Instrumenter is run using the graphical interface or consolemode in aWindows or UNIX
environment, the Instrumenter places the instrumented classes in a folder under the <agent_install_
directory>/classes/<JRE_vendor>/<JRE_version> directory.

Note: If you update the JRE used by your application server (such as applying an application server
patch) or if you update the Java Agent, youmust run the JRE Instrumenter again to instrument the new
JRE and change the JVM parameters accordingly. Otherwise, your application server may not start.

Running the JRE Instrumenter Utility in UI Mode

When the JRE Instrumenter is run without any options the Instrumenter displays the dialogs of its graphical
user interface.

To start the JRE Instrumenter utility on aWindows system run the <agent_install_
directory>\bin\jreinstrumenter.cmd command.

To start the JRE Instrumenter utility on UNIX or Linux run the <agent_install_
directory>\bin\jreinstrumenter.sh command.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 62 of 263

The Instrumenter lists the JVMs that were discovered by the Instrumenter and are available for
instrumentation. The JVMs that were instrumented are listed with a green square preceding the name of the
JVM.

If the JRE Directory is not listed on the dialog, click theAdd JRE(s) button to browse to the JRE. Navigate
to the directory location where you want to begin searching for JVMs and then select the file where you want
to begin the search and click Search from here. The Instrumenter searches and then lists the JVMs found in
the Available JREs list.

Select the JRE to be instrumented and then click Instrument.

The JRE Instrumenter instruments some of the classes for the selected JVM and places the instrumented
classes in a folder under the <agent_install_directory>/classes directory. It also displays the JVM
parameter that must be used when the application server is started in the box below the Available JREs list.

When the JRE Instrumenter instruments a JRE, it also creates the JVM parameters youmust include in the
startup script for the application server to cause your application to use the instrumented classes. When you
select an instrumented JRE from the Available JREs list, the JVM parameters are displayed in the box below
the list.

Click Copy Parameter to place the corresponding parameter on the clipboard. The JVM parameter is copied
to the clipboard so that you can use the JVM parameters in configuring your application server to activate
monitoring by the Java Agent.

Note: Youwill use the clipboard contents later in configuring you application server, so be careful to not
overwrite the clipboard contents.

Click Exit to close the JRE Instrumenter window and continue with configuring your application server JVM
parameters.

For general instructions for how to insert the JVM parameter into application server startup scripts see
"Specifying Probe Properties as Java System Properties" on page 31. For specific examples of how to insert
the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic and Tomcat
see "Examples for Configuring Application Servers " on page 33.

Running the JRE Instrumenter in ConsoleMode

Open <agent_install_directory>\bin to locate the JRE Instrumenter executable. Run the following
command:

./jreinstrumenter.sh -console

When the Instrumenter runs, it displays a list of the processing options that are available. The following table
directs you to the documentation for each of the processing options:

Instrumenter Function Description

jreinstrumenter -l Display a list of the JVMs that are known to the JRE Instrumenter.
Displays the JVM vendor, JRE version, and the location where
the JRE is located.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 63 of 263

Instrumenter Function Description

jreinstrumenter -i <jre_directory> Select a JRE in a specific directory for instrumentation. Replace
<jre_directory> with the path to the folder where the JRE you
selected from the Available JVM list is found.

This command instructs the JRE Instrumenter to instrument the
classes for the selected JVM and to place the instrumented
classes in a folder under the <agent_install_
directory>/classes/<JVM_vendor>/<JRE_version> directory.

jreinstrumenter -a <directory> Search for JVMs within a specific directory and add any JVMs
that are found to the list of the JVMs known to the JRE
Instrumenter. Replace <directory> with the path to the location
where you would like the Instrumenter to begin searching.

The Instrumenter searches the directories from the location
specified including the directories and subdirectories. When it
completes its search, it displays the updated list of Available
JVMs.

Copy the JVM parameter from the output of the JRE Instrumenter so that you can paste it into the location
that allows it to be picked up when your application server starts in order to activatemonitoring by the Java
Agent.

Exit the JRE Instrumenter and continue with configuring your application server JVM parameters.

For General instructions for how to insert the JVM parameter into application server startup scripts see
"Specifying Probe Properties as Java System Properties" on page 31. For specific examples of how to insert
the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic and Tomcat
see "Examples for Configuring Application Servers " on page 33.

Including the JVM Parameter in the Application Server’s Startup Script

When the JRE Instrumenter instruments a JVM, it also creates the JVM parameter youmust include in the
startup script for the application server in order to cause your application to use the instrumented classes.
When the Instrumenter finishes instrumenting the JVM, it displays the JVM parameter.

Copy the JVM parameter to the clipboard and paste it into the location that allows it to be picked up when your
application server starts. General instructions are provided below.

See "Examples for Configuring Application Servers " on page 33 for specific examples of how to insert the
JVM parameter for application servers such as WebLogic, WebSphere, JBoss and others.

To update the application server configuration:

1. Locate the application server startup script or the file where the JVM parameters are set.
2. Create a backup copy of the application server startup script before youmake any changes to the script.
3. Use an editor or the application server console to open the startup script.
4. Add the Java parameter from the JRE Instrumenter to the java command line that starts the application

server, for example:
-Xbootclasspath/p:<agent_install_dir>\classes\Sun\1.5.0\instr.jre;
<agent_install_directory>\classes\boot

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 64 of 263

In this instance, <agent_install_directory> is the path to the directory where the Java Agent was
installed.
This connects the probe to the application.
The following is an example of aWebLogic java command line in a startup script before adding the Java
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

The following is an example of aWebLogic java command line in a startup script after adding the Java
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m
-Xbootclasspath/p:<agent_install_directory>\classes\Sun\1.5.0_17\instr.jre;
-javaagent:<agent_install_directory>\lib\probeagent.jar
-classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

5. Save the changes to the startup script.
6. Restart the application server under test.
7. To verify that the probe was configured correctly, check for entries in the <agent_install_

directory>\log\<probe_id>\probe.log file. If there are no entries in the file, you did not instrument the
JRE used by the application server or did not configure your application server JVM parameters to invoke
the Java Agent (see the instructions in this chapter for your application server).

Other Configuration Options
The following sections give you other configuration options:

l "Probe Registration Auto-Assigment" below
l "ConfigureMonitoring of Multiple Java Processes on an Application Server" on the next page
l "Adjusting the Heap Size for the Java Agent in the Application Server" on page 69
l "Configuring the SOAP Message Handler" on page 69
l "Configuring the Discovery of a New J2EE Server for CI Population" on page 71
l "Special Considerations for Applications Based on theOSGi Framework" on page 72

Probe Registration Auto-Assigment
A typical use of probe registration auto-assignment is when you havemultiple agents sharing a single
installation. Probe auto-assignment is configured using the following properties in the <Agent host
machine>/etc/dispatcher.properties file:

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 65 of 263

l commander.registrar.url - The Commander Registrar URL for Probe toMediator Auto-Assignment.
l registrar.url - This property should be set to blank initially, and should not bemanually modified if you
want to use auto-assignment.

l always.use.commander.registrar.url - By default, the auto-assignedmediator will be recorded within
this file by overwriting the registrar.url property.

l force.auto.assign – If this property is set to True, if the probe has a previously assignedmediator and the
load on themediator is over themaximum load limit, the commander will not assign that mediator, but
instead will return a new, mostly-filledmediator.
If this property is set to False, the system does not check whether themediator is over the load limit. The
default value is False.

For further details on these properties and how they relate to auto-assignment, see "Probe Registration Auto-
Assigment for Large Deployments" in the Diagnostics Server Installation and Administration Guide.

For details on how to configure a single Java Agent to be shared by multiple JVMs, see "ConfigureMonitoring
of Multiple Java Processes on an Application Server" below.

Configure Monitoring of Multiple Java Processes on an
Application Server
When you want to collect performance data for multiple Java processes on a host, you have two options:

l You can configure a separate Java Agent installation for each process (JVM) on a host.
l You can configure a single Java Agent to be shared by all of the processes (JVMs).
This section describes how to configure a single Java Agent installation to be shared by multiple JVMs.

To configure a separate Java Agent installation for each process, simply ensure that each <agent_install_
directory> is uniquely named.

Configure a Single Java Agent to be Shared by Multiple JVMs
To allow multiple JVMs to share a single Java Agent installation, youmust configure a separate probe for
each JVM as described below. This ensures a unique name and port for each probe. Optionally each probe
can have its own points file andmediator assignment.

To configure a single Java Agent installation to be shared by multiple JVMs:
1. Determine how the JRE will be instrumented for all the Java applications that you plan tomonitor. See

"Preparing Application Servers for Monitoring with the Java Agent" on page 30.
Multiple JREs may exist. Each can have their own instrumentationmethod.

2. Specify the range of ports from which the probe can automatically select. The Java Agent communicates
using the Java Agent listening port. A separate port is assigned for communications for each JVM that a
probe is monitoring. By default, the port number range (Min/Max) is set to 35000–35100. Youmust
increase the port number range when the probe is working with more than 100 JVMs.
If a firewall separates the probe from the other Diagnostics components, configure the firewall to allow
communications using the ports in the range you specify. For more information, see the chapter
“Configuring Diagnostics toWork in a Firewall Environment" in the Diagnostics Server Installation and
Administration Guide.
If you configure the firewall to allow probe communications on a range of ports that is different than the
default, update the port range values as follows.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 66 of 263

a. Locate thewebserver.properties file in the folder <agent_install_directory>/etc.
b. Set the following properties to adjust the range of ports available for probe communications.

Theminimum port in the port number range uses the following property:

jetty.port=35000

Themaximum port in the port number range uses the following property:

jetty.max.port.offset=100

3. Assign a unique probe name using one of the followingmethods.
By default, the probe id is set to the value specified during the Java Agent Setup. This is set in
probe.properties as the id property. The probe id needs to be unique for each probe on the same host
instead of sharing the id set in probe.properties.
The command line properties must be entered on one line, without any line breaks. The probe ids defined
on the Java command line override the probe names defined in the probe.properties file using the
probe’s id property.
a. Assign a probe Id to the probe for each JVM, using the Java command line or by editing the

application startup script.

-Dprobe.id=<Unique_Probe_Name>

The following example shows aWebLogic startup script before reconfigured to run with Diagnostics:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy"
weblogic.Server

The following example shows aWebLogic startup script after adding the probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"
-Xbootclasspath/p:C:\MercuryDiagnostics\JAVAProbe\classes\Sun\1.6.0_
24\instr.jre;C:\MercuryDiagnostics\JAVAProbe\classes\boot"
-classpath "%CLASSPATH%"
-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy"
weblogic.Server

b. When a single Java parameter is specified but multiple probes are started using the same script, use
the%0 string to generate a custom probe identifier for each probe—for example, in a clustered
environment where a single startup script is used to start multiple probed application server instances.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 67 of 263

On Linux:

-Dprobe.id=<probeName>%0

OnWindows:

-Dprobe.id=<probeName>%%0

Use the first % to escape the second%.
The%0 is replaced dynamically with a number to create a unique probe name for each probe; for
example, <probeName>0, <probeName>1, and so on.

4. (Optional) Specify the points file each probe will use. By default, the points file name is auto_
detect.points. You can specify that a custom points file be used when youmust usemore than one
custom instrumentation plan, or where you have several JRE versions on the samemachine using a
single agent installation, and one or more of the JREs needs specific methods and classes included in a
layer to support custom instrumentation.

-Dprobe.points.file.name="<Custom_AutoDetect_Points_File>"

where <Custom_AutoDetect_Points_File> is the name of your custom points file such as MyProbe1_
private.points.

5. (Optional). Specify themediator to which each probe will send its collected data. You can designate a
specific mediator or enable auto-assignment to mediators. By default, themediator that was specified at
installation time is used. You can override that setting for any probe.
l To designate a specific mediator assignment for the probe, add the following to the application server
startup script or command line:

-Ddispatcher.registrar.url=http://<mediator_host>:2006/registrar/

where <mediator_host> is the host name or IP of themediator server host to which the probe sends
its metrics.

l To designate that amediator be automatically assigned to the probe, perform the following:
i. Enable auto-registration on eachmediator server that you want to make available to the probe as

an assignment option. Set the commander.max.load.count.5s,
commander.max.load.count.20s,mediator.max.load.count.5s, and
mediator.max.load.count.20s properties in server.properties file. For example:

commander.max.load.count.5s = 0
commander.max.load.count.20s = 0

mediator.max.load.count.5s = 450000
mediator.max.load.count.20s = 450000

In this case, themediator can hold up to 450000 active nodes.
When commander.max.load.count.5sand commander.max.load.count.20s are set to zero,
the server will not participate in auto-assignment. That is, the Commander Server will not get

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 68 of 263

auto-assigned to act as amediator. This is recommended in amulti-server environment--only
use themediators to process incoming agent data.

ii. On the agent host, set the following properties in etc/dispatcher.properties to allow the
commander to auto-assignmediators to the probes:disable start page

commander.registrar.url = http://<commander_host>:2006/registrar/
...
always.use.commander.registrar.url = true

The commander.registrar.url property specifies the Commander Server in the deployment.
This is the Commander Server to which themediators available for auto-assignment report.
The always.use.commander.registrar.url property set to "true" enables auto-registration for
this probe. Note that when auto-registration is enabled, the registrar.url setting in
dispatcher.properties is ignored.
For details, see the comments for these properties in the etc/dispatcher.properties file.

Adjusting the Heap Size for the Java Agent in the Application
Server
The size of the heap can impact the performance of the Java Agent and the application server. The default
value for the heap size is 64MB, but an application server usually increases it to a larger amount. When you
add the Java Agent to an application server, youmay need to increase the heap size to accommodate the
memory used by the Java Agent. For details, see "Requirements for the Diagnostics Java Agent Host in the
relevant version of theDiagnostics System Requirements and Support Matrices Guide on the Software
Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

The heap size is set in the application server JVM configuration using the following JVM argument:

-Xmx<size>

You can increase the heap size by updating the value specified in the -Xmx<size> option. See your JVM
documentation for help on setting this parameter.

Configuring the SOAPMessage Handler
The Diagnostics SOAP message handler is required for Java probes to support the following features:

l Collect payload for SOAP faults.
l Determine SOA consumer ID from SOAP header, body, or envelope.
For most application servers, the instrumentation points and code snippets are written to automatically
configure the Diagnostics handlers for web services beingmonitored.

Note: For some application servers, special instrumentation is provided in Diagnostics to automatically
load the Diagnostics SOAP message handler.

However, somemanual configuration is required forWebSphere 5.1 JAX-RPC andOracle 10g JAX-
RPC. See "Loading the Diagnostics SOAP Message Handler " on the next page.

In addition, the Diagnostics SOAP message handler is not available for all application servers, nor is

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 69 of 263

https://softwaresupport.softwaregrp.com/group/softwaresupport/
https://softwaresupport.softwaregrp.com/group/softwaresupport/

custom instrumentation available to capture SOAP faults or consumer IDs from SOAP payloads.
Therefore, this feature is not available on all versions of all application servers. For themost recent
information on Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at
Diagnostics_System_Requirements Guide.

This section includes the following:

l "Disabling the SOAP Message Handler" below
l "Loading the Diagnostics SOAP Message Handler " below
Disabling the SOAP Message Handler

By default, the SOAP message handler is enabled. You can disable the handler as follows:

In the <agent_install_dir>/etc/inst.properties file edit the details.conditional.properties property to
includemercury.enable.autoLoadSOAPHandler = false.

If the SOAP message handler is disabled, youmust manually configure where in the chain the handler gets
installed.

Loading the Diagnostics SOAP Message Handler
The SOAP message handler is loaded automatically onmost application servers but requires manual
configuration on these application servers:

WebSphere 5.1 JAX-RPC
To configure the SOAP message handler on WebSphere 5.1 JAX-RPC, follow these steps:

Note: ForWebSphere 6.1 JAX-WS web services, Diagnostics handlers are not supported. Youmust
recompile the application with the Diagnostics SOAP handler classes.

1. Locate theWeb service deployment descriptor (webservices.xml) for the application. The directory path
should look similar to the following:

<install_
root>\config\cell\<Server>\applications\<WebServiceEAR>\deployments\<WebServiceNa
me>\<WebServiceJAR|WARName>\WEB-INF

Here is an example:

C:\Program
Files\WebSphere\AppServer\config\cells\MyServer1\application\WebServicesSamples.ear\d
eployments\WebServicesSamplea\AddressBookJ2WB.war\WEB-INF

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>
...
<handler>
<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>

</handler>

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 70 of 263

...
</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to theWebSphere
lib directory.
Here is an example:

cp C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\ lib\probeSOAPHandler.jar
C:\Program Files\WebSphere\AppServer\lib

These steps were developed with IBMWebSphere 5.1.0 Application Server onWindows.
Oracle 10g JAX-RPC
To configure the SOAP message handler on Oracle 10g JAX-RPC, follow these steps.

1. Locate theWeb service deployment descriptor (webservices.xml) for the application. The directory path
should look similar to the following:

<OC4J_install_root>\j2ee\home\applications\<app name>\ <deployment name>\WEB-
INF\webservices.xml

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>
...
<handler>
<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>

</handler>
...
</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to the <OC4J_
install_root>\j2ee\home\applib directory.

These steps were developed with Oracle Containers for J2EE (OC4J) 10g Release 3 (10.1.3.3) onWindows.

Configuring the Discovery of a New J2EE Server for CI
Population
The agent provides data to populate the J2EE Application Server and J2EE Application Domain CIs in
BSM/APM.

The probe automatically populates CIs for well known J2EE servers such as JBoss andWebLogic.

You can also configure application server discovery to populate CIs for other J2EE servers. Application server
name can be directly specified or configured to be discovered by JMX or be discovered by a point/code
snippet.

You configure application server discovery in the probe etc/metrics.config file as described below.

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 71 of 263

The class AppServerDiscoveryCollector is located in the <agent_install_dir>/lib/probe-jmx.jar file and you
can write you own collector class to do both application server discovery andmetrics collection.

The following is the configuration for application server discovery for a generic application server. Note the
collector name is case sensitive and should be different from any collector name in themetrics.config file.

<user-defined-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.AppServerDiscoveryCollector
<user-defined-collector-name>.class.path = probe-jmx.jar
<user-defined-collector-name>.app_server.configure.discovery = true
<user-defined-collector-name>.app_server.type = <user-defined-type>
<user-defined-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-collector-name>.app_server.domain_name =
<user-defined-domain-name>

And then you should add the following Java system property definition in the app-server/javaprobe startup
script or java command line.

-Dapp_server.discovery.collector=<user-defined-collector-name>

Every 15minutes the probe refreshes the collectors (including the AppServerDiscoveryCollector) andmakes
the discovery based on any new configuration.

For the advanced user who knows how to use JMX to discover the new application server name and J2EE
domain name, youmay add the following configuration in the probe etc/metrics.config file.

<user-defined-jmx-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.JMXCollector
<user-defined-jmx-collector-name>.class.path = probe-jmx.jar
<user-defined-jmx-collector-name>.depends.on.class =
javax.management.MBeanServer
<user-defined-jmx-collector-name>.app_server.configure.discovery = true
<user-defined-jmx-collector-name>.app_server.type = <user-defined-type>
<user-defined-jmx-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-jmx-collector-name>.app_server.server_name.discovery.by.jmx =
<jmx-ObjectName>.<jmx-AttributeName>
<user-defined-jmx-collector-name>.app_server.domain_name =
<user-defined-domain-name>
<user-defined-jmx-collector-name>.app_server.domain_name.discovery.by.jmx =
<jmx-ObjectName-1>.<jmx-AttributeName-1>@<jmx-ObjectName-2>.<jmx-AttributeNa
me-2>

Special Considerations for Applications Based on the OSGi
Framework
If your application is based on theOSGi framework, youmay need to set some additional properties. If not
already the default value, set the osgi.java.profile.bootdelegation property to the default value "ignore".

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 72 of 263

Then append com.mercury.* to the end of the org.osgi.framework.bootdelegation property in your
osgi.java.profile. For example:

org.osgi.framework.bootdelegation= <existing packages>,com.mercury.*

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 73 of 263

Chapter 5: Configuring for Azul or Cloud
Environments
This chapter includes:

l "Java Agents on Azul" below
l "Java Agents in Cloud Environments" on the next page

Java Agents on Azul
Azul provides two highly scalable and highly performing solutions for enterprise Java users: Vega and Zing.
Vega is a special hardware appliance which connects to the user local network. Zing is a virtual equivalent of
Vega, provided in a form of a guest image for VMware or KVM. A major advantage of the Azul appliances is its
innovative pauseless garbage collector, which runs continuously and can handle heaps up to tens of
gigabytes. Both appliances are supported by Diagnostics equally, although we tested only Zing in the lab.

The Java SDK or JRE provided by Azul installs on a traditional system, such as Linux or Solaris, but when it
is invoked, it delegates the execution of any Java code to the appliance. Thus, although the Java application
seems to be running where it was invoked, it actually runs on a different system. This is done seamlessly, so
the application interacts with its environment just as if it was running on a local system. If the application
makes a JNI call, it is made across the network to be executed on the originating host.

This executionmodel creates a number of issues for Diagnostics users. The JNI calls made by the probe are
costly, but what is more important, they do not provide the results the user might expect.

l The CPU timestamps do not work correctly. They measure the CPU time used on the originating server,
and therefore are useless.

l Process metrics are useless, too, because they measure the front-end process.
l In most cases, all systemmetrics are useless as well. They measure the originating system and are
irrelevant to the application running on the appliance.

l Garbage collectionmetrics are confusing. Since Azul uses continuous garbage collector, seeing garbage
collection percentages over 100% is normal.

l Heap Breakdown and HeapWalker do not work.
l VMware special timers do not work (even if using virtual appliance on VMware)\
Configuring Diagnostics for Azul VM
Invoking Azul java command requires adding parameters that properly identify the appliance to be used for
running the application. This creates a difficulty for JREinstrumenter (unless run in Automatic Implicit mode),
which needs to run the JRE to be instrumented in order to determine its version and vendor, but is not capable
of adding the required parameters.

The solution is to edit the file azul.properties found in the Azul JRE installation and define the required
parameters. The settings are needed while the JREinstrumenter runs and can be removed for running the
application with Diagnostics.

To eliminate possible confusion and pointless overhead, we recommend to use the following settings while
using Diagnostics Agent:

Micro Focus Diagnostics (9.51) Page 74 of 263

l Inmetrics.config, comment out all metrics for "system" and "ProcessMetrics" collectors, andGarbage
Collectionmetrics for the "Java Platform" collector.

l In capture.properties set use.cpu.timestamps=false.

Java Agents in Cloud Environments
The Java Agent provides out-of-box support for monitoring Java applications in a cloud environment, such as
ActiveState's Stackato or aPaaS. However, monitoring Java applications in these environments requires a
slightly different Java Agent configuration and deployment procedure.

Cloud environments use dynamic application server instances that are scaled in and out as needed. Agents
use a naming strategy in this environment that provide a consistent name for the application server instance in
the Diagnostics Enterprise UI. A probe deployed on Stackato will have an assigned name that consists of the
application name as defined by Stackato, and a suffix of its instance identifier. For example, an application
named "OnlineBanking" with 3 instances would have the following probe names:

OnlineBanking_1
OnlineBanking_2
OnlineBanking_3

In general, the steps to configure and deploy the Java Agent in a cloud environment are as follows:

1. Add the Java Agent installed files to the directory structure that contains the application to bemonitored,
so that the agent is included when the application is pushed up to the cloud.
Copy the <agent_install_directory>/JavaAgent/Diagnostics directory to your application workspace,
and ensure that it is bundled with your resulting application assembly. Whether this is a .war file, .ear file,
or directory structure, the Java Agent bits need to be included when the application gets pushed up to
Stackato.

2. Configure the Java Agent as needed.
Run the Java Agent Setup program as described in "Installing Java Agents" on page 16.
l When prompted for the Agent Configuration, specify either "EnterpriseMode (AM License)" with
"Diagnostics" or "Diagnostics Mode for Load Runner/Performance Center (AD License)".

l When prompted to provide the Agent Name, enter any string. This placeholder value will be
overwritten in the next step.

3. Configure the Stackato stackato.yml to deploy and enable the Java Agent. For details, see one of the
sections below:
l "Deploying a Java Agent on a Stackato-provided Application Server Container" below

l "Deploying a Java Agent on a Stackato Stand-alone Application" on page 77

Deploying a Java Agent on a Stackato-provided Application
Server Container
The steps assume the Stackato system is installed, configured correctly, and accessible to you. The
examples show the steps needed tomodify your application and stackato.yml in order to enable the Java
Agent.

The below auto-deployment steps work with either the Tomcat or JBoss containers that Stackato uses.

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

Micro Focus Diagnostics (9.51) Page 75 of 263

1. Edit the stackato.yml configuration file in the Stackato workplace to add the Java Agent configuration
commands to execute upon deployment on Stackato.
The commands that you add depend on whether the application package that you deploy ends up
extracted on deploying, as they refer to the Java Agent files within this directory structure.
l Application package is automatically exploded on deploying:
This is themost common case, for example the Stackato Tomcat application server automatically
explodes the .war file upon deploying.
If your application is pushed up as a directory or as a .war file, add the following to the stackato.yml:

hooks:
post-staging:

- mv JavaAgent $STACKATO_APP_ROOT/
- java -jar $STACKATO_APP_

ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule.jar

where
$STACKATO_APP_ROOT is defined by Stackato.
The JavaAgent directory (which in this example contains the Java Agent bits) is moved up to the
$STACKATO_APP_ROOT and a command is launched to deploy it to the startup script of the
application server.

l Application package is not automatically exploded on deploying:
If the .ear file does not end up extracted when the application is pushed to Stackato, for example
deploying an .ear file on JBoss, additional commands are required to temporarily extract the Java
Agent bits from the .ear file and copy them up so that they can be deployed on the container.
Add the following to the stackato.yml

hooks:
post-staging:

- mkdir tmpdir
- unzip -q jboss-as-kitchensink-ear.ear -d tmpdir
- mv tmpdir/JavaAgent $STACKATO_APP_ROOT/
- rm -r tmpdir
- java -jar $STACKATO_APP_

ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule.jar

where
$STACKATO_APP_ROOT is defined by Stackato.
The JavaAgent directory is included as part of the .ear file.

2. Deploy the repackaged application to Stackato. For example, run the following command in the top
directory of your workplace:

stackato push -n

After staging the application, Stackato executes the post-staging steps that you specified in the stackato.yml
configuration file. The first stepmoves the Agent bits to a fixed location, and the second step invokes the

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

Micro Focus Diagnostics (9.51) Page 76 of 263

Agent command to automatically deploy itself within the application server (either Tomcat or JBoss) that
Stackato uses as a container for your application.

Note: The automatic deployment tool expects to find the Java Agent at STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent. This directory where the agent is moved to cannot be changed
elsewhere in stackato.yml.

Deploying a Java Agent on a Stackato Stand-alone
Application
When deploying the Java Agent on a Tomcat or JBoss application server, the agents can auto-deploy to those
application servers. If your application is instantiated by a script that you provide to Stackato, then you need
tomanually specify the parameters to enable the Java Agent.

To do this, add the following commands to your application startup script:

l - Ddiag.config.override=stackato
l - javaagent:${HOME}/<agent dir in your app>/lib/probeagent.jar
For example, assume a stackato.yml file as follows:

name: onlinebank
mem: 512M
framework:
type: generic
processes:
web: /app/app/myStartupScript.sh

You need to edit themyStartupScript.sh to add the following to the command that is invoking Java:

-Ddiag.config.override=stackato -javaagent:${HOME}/agent/lib/probeagent.jar

The -Ddiag.config.override argument directs the probe to read the file: <agent_install_
directory>/etc/overrides/stackato.settingswhen the application starts. The stackato.settings file contains
the necessary property settings for probes in Stackato–overriding their specified value (if any) in the standard
property and configuration files for the agent. This file contains the rules for determining the probe and host
names according to the Stackato environment. The out-of-box settings should be appropriate for most
scenarios, but if you want to customize the names created for the probes or their hosts, you can change the
settings in this file.

You can add additional property settings to the stackato.settings file or create a custom version of this file as
needed and rename it. The custom settings file must be located in the <agent_install_
directory>/etc/overrides directory and have the ".settings" suffix.

Note that any overrides in the stackato.settings file to dynamic properties are overridden unconditionally.
Changes to any dynamic properties that occur after the application starts are ignored.

Just like for non-cloud agent deployment, the jreinstrumentor must be run in order to enable collection leak
pinpointing. See "Examples for Configuring Application Servers " on page 33 for details.

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

Micro Focus Diagnostics (9.51) Page 77 of 263

Chapter 6: Preparing Application Servers for
Client Monitoring with the Java Agent
This chapter includes:

l "About Client Monitoring" below
l "Enabling Client Monitoring" on the next page
l "Configuring and Disabling Client Monitoring" on page 80
l "Manually Instrumenting HTML/JSP Pages for Client Monitoring" on page 81

About Client Monitoring
Client Monitoringmeasures web page performance as seen by the user's browser and correlates these
measurements with the back end server request.

Three important metrics aremeasured:

l The back-end time is the amount of time it takes from when a web page request is sent until the first byte
of the response is received.

l The front-end time is the amount of time it takes from when the first byte of the response is received until
the page is loaded.

l The total-time is the sum of the front and back end times.
Client Monitoring aggregates thesemeasures and presents them by URL, Location, and Browser-OS
combination.

By monitoring web page performance, application owners can quickly identify performance issues,
characterizing them by tier (front or back-end), location, and browser.

When the issue is on the back-end, client monitoring correlates the URL to the associated server request and
its call-profile.

Note: Client Monitoring is not supported in Diagnostics Profiler mode.

Micro Focus Diagnostics (9.51) Page 78 of 263

An example showing client monitoring is shown below:

Enabling Client Monitoring
Enabling client monitoring requires you to deploy a .war file on the application server and in some cases to
configure the web server. Client Monitoring views are available in the Diagnostics Enterprise UI.

For the list of browsers that can bemonitored by the Client Monitoring feature, refer to the relevant version of
theDiagnostics System Requirements and Support Matrices Guide on the Software Support site
(https://softwaresupport.softwaregrp.com/group/softwaresupport/).

To enable Client Monitoring:
When client monitoring is enabled, most JSP pages served via JBoss, Tomcat, WebSphere andWebLogic
will be automatically modified to include additional Java Script calls near the <head> tag. You can see which
pages are instrumented by opening the page in your browser and selecting view source.

Other application servers may require manual page instrumentation for client monitoring. See "Manually
Instrumenting HTML/JSP Pages for Client Monitoring" on page 81.

Client monitoring, including automatic JSP instrumentation, will remain disabled until this .war file is
deployed.

1. Deploy DiagnosticsCM.war file.
Use the application server’s Administrative Console to deploy the <agent_install_
dir>\contrib\DiagnosticsCM.war as an application.
Client monitoring will remain disabled until this .war file is deployed.
ForWebSphere application servers, be sure to set the context root to /DiagnosticsCM instead of the
default (/).

2. If you have configured a web server as the front-end of your application, then you also need to add the
following context root to yourWeb Server's configuration:
/DiagnosticsCM/*

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 79 of 263

https://softwaresupport.softwaregrp.com/group/softwaresupport/

Tip: You can verify the web server is correctly configured if your browser can access this link: (it will
return a blank page)
http://hostname:port/DiagnosticsCM/B/.

Example - Setting up an Apache HTTP Server Reverse Proxy for Client Monitoring

Note: These are very basic instructions. These configuration files are highly customized in each
customer's environment. Please consult the Apache HTTP Server documentation for more details.

In order for client monitoring JavaScript file to be successfully downloaded by browsers and for client-side
metrics to be received by the probe, it is necessary to configure the web server to correctly forward those
requests to the application server. This is typically achieved by setting up a reverse proxy or gateway.

1. Update the conf\httpd.conf file by adding the following lines, replacing <HostName> and <HostPort>
with the host name and port of the application server, and restart the web server.

ProxyPass /DiagnosticsCM http://<HostName>:<HostPort>/DiagnosticsCM
ProxyPassReverse /DiagnosticsCM http://<HostName>:<HostPort>/DiagnosticsCM

2. Check if your changes are successful by driving traffic to your web application via the web server and
checking the web server's logmessages in the log/access.log file. Error messages will have an http
response code in the 400-500 range such as "GET /DiagnosticsCM/boomerang-min.js HTTP/1.1" 404.
When successful, you should see logmessages such as "GET /DiagnosticsCM/boomerang-min.js
HTTP/1.1" 200.
If you don't see either of thesemessages, then client monitoring is not correctly set up in your
environment.

Configuring and Disabling Client Monitoring
If desired, Client Monitoring can be dynamically controlled by updating several properties in <agent_install_
directory>\etc\dynamic.properties.

The client.monitoring.enable property provides amaster switch to dynamically enable and disable the client
monitoring feature. When set to false, all client monitoring data events received are dropped, JSP page auto-
instrumentation will be disabled, and client.monitoring.sampling.percent is set to 0.0 (to disable manually
instrumented JSP pages’ client monitoring Java Script code).

You can reduce the client monitoring load on your server by adjusting the
client.monitoring.sampling.percent property in dynamic.propertes.

You can also specify that you want a strict check on the referrer by setting client.monitoring.strict.referrer
to true. This will help ensure that only events that originate from aweb page instrumented with client
monitoring are used. The default value is false but the recommended value is true if this setting works in your
environment.

You can also stop or uninstall/undeploy the DiagnosticsCM.war using your application server management
console.

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 80 of 263

Manually Instrumenting HTML/JSP Pages for Client
Monitoring
Add the following code to your HTML/JSP pages immediately after the <head> tag:

<!-- Client Monitoring -->
<script>
if (window.t_firstbyte === undefined) {

var t_firstbyte = Number(new Date());
}
</script>
<script type='text/javascript' src='/DiagnosticsCM/boomerang-min.js'>
</script>
<script>
BOOMR.init({beacon_url:"/DiagnosticsCM/B",

RT:{cookie:"X-HP-CM-RT",cookie_exp:600,expandFrames:true,hashURLs:true},
HP:{cookie:"X-HP-CM-GUID"}});

</script>

If you prefer to manually instrument HTML/JSP pages you can permanently disable auto-instrumentation by
setting the following properties in inst.properties to false. These changes require a restart of the application
server.

in <agent_install_dir>\etc\inst.properties:

details.conditional.properties= \
mercury.enable.clientmonitoring.JspWriterImpl.autoinstrumentation=false,\
mercury.enable.clientmonitoring.CoyoteWriter.autoinstrumentation=false,\
mercury.enable.clientmonitoring.BodyContentImpl.autoinstrumentation=false,\

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

Micro Focus Diagnostics (9.51) Page 81 of 263

Chapter 7: Upgrading the Diagnostics Java
Agent
This chapter presents the information that you need to upgrade the Diagnostics Java Agent.

This chapter includes:

l "Upgrade Java Agents" below
l "Upgrade Notes and Limitations" on page 84

Upgrade Java Agents
Note: As of Diagnostics 9.23, the format and process for the Java Agent installation package have
changed. For detailed instructions on installing the Java Agent, see "Installing Java Agents" on page 16.

Consider the following when planning the Diagnostics Agent upgrade:

l Youmust upgrade the Diagnostics Server before upgrading the agents that are connected to it because
Diagnostics Servers are not forward compatible.

l With each new release of Diagnostics you should re-record the Java agent silent install response files prior
to performing silent installation onmultiple machines.

Note: The new agent installation will not beginmonitoring your applications until you have updated the
startup scripts to start the new agent and restarted the applications as described in these instructions.

To upgrade a Java Agent:
1. Install the Diagnostics Agent for Java into a different directory than the current agent’s installation

directory.
During the installation, be sure to do the following. This ensures that the persisted data for your
application will match up with themetrics captured by the new agent.
l Configure the Java Agent to work with a Diagnostics Server or as a standalone Diagnostics Profiler.

l For the agent name, use the same probe name as used by the previous agent.

l For the agent group name, use the same group name as used by the previous agent.

l For themediator server name and port, use the same information as used by the previous agent.

See "Installing Java Agents" on page 16 for additional information you need for installing a Java Agent.
2. Compare the new agent’s \etc directory and the previous agent’s \etc directory so that you can determine

the differences between the two.

Micro Focus Diagnostics (9.51) Page 82 of 263

We recommend that you execute theProperty Scanner utility provided with the Java Agent which will
indicate the differences (properties and points) between two different Java Agent installations. To
execute the Property Scanner utility, change the current directory to <agent_install_
dir>/contrib/JASMUtilities/Snapins and execute the runPropertyScanner.cmd –console (.sh for
Unix) command as follows:

runPropertyScanner –console –diffOnly yes –Source1 ..\..\..\etc –Source2 OtherEtc

Sample Input:

C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\contrib\JASMUtilities\Sna
pins>runPropertyScanner -console -diffOnly yes -Source1
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\etc -Source2
C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\etc

Sample Output:

PropertyFile=dispatcher.properties
Property=stack.trace.method.calls.max
Source1=
Source2=1000

Apply any differences that were caused by the customizations that youmade to the previous agent’s \etc
directory to the new agent’s \etc directory so that they will not be lost. You should look for the following
changes:

Property File
Configuration Properties to Be Copied to the New
Diagnostics Server

auto_detect.points Copy custom points that you have created and points that you
havemodified from the auto_detect.points file in the old etc
directory to the new etc directory. Be sure to check the points for
RMI, LWMD, args_by_class when looking for points youmay
havemodified.

capture.properties Depth and latency trimming.

dispatcher.properties minimum.sql.latency
sql.parsing.mode

dynamic.properties cpu.timestamp.collection.method

metrics.config Verify that any metric that you uncommented in the previous
version is also uncommented in the new version so that you can
continue to use themetrics that you are used to.

security.properties If the system is set up for SSLmode, set all properties and copy
the certificates from the old property file to the property file.

3. Prepare your application servers to bemonitored using the JRE instrumentationmethods described in
the "Examples for Configuring Application Servers " on page 33. In particular you need to update the
application’s startup script or JVM parameters to point to the upgraded agent installation.

4. At an approved time, shut down the applications that were beingmonitored by the old agent.

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

Micro Focus Diagnostics (9.51) Page 83 of 263

5. Restart the applications to allow the new version of the agent to beginmonitoring your applications.
6. Clear your browser's cache and the Java plug-in cache. Restart the browser before you attempt to

access the Diagnostics Profiler for Java user interface. Failure to do this may result in a sizemismatch
error message.

7. You can verify that the upgraded Diagnostics Agent is running by checking the version in the System
Health view in the Diagnostics UI. The version should be the latest version if the upgrade was
successful. To access the System Health view youmust open the Diagnostics UI as the System
customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the Views pane you can
select the System Views view group.

8. When all your applications have beenmigrated over to be the latest version and everything is working
properly, you can delete the old directory. Don’t try to uninstall the old version because this will actually
uninstall the new version.

Upgrade Notes and Limitations
As of Diagnostics version 9.24, by default HTTP methods (such as PUT, GET, and POST) are used as an
identifying component for each HTTP/S Server Request and a separate HTTP Server Request is generated
for each HTTP method to the sameURL. In earlier versions of Diagnostics, the first instrumented Java
method executed by the Server Request is used for identification and one HTTP Server Request is generated
for all HTTP methods to the sameURL.

We recommend using the new method of server request identification, even though this is not backward
compatible and breaks trend lines. If youmust maintain continuity of trend lines, in the dispatcher.properties
file, change the value of the fragment.use.http.method setting to false.

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

Micro Focus Diagnostics (9.51) Page 84 of 263

Part 3: Advanced Java Agent
Configuration and Instrumentation

Micro Focus Diagnostics (9.51) Page 85 of 263

Chapter 8: Monitoring Profiles
This chapter describes monitoring profiles.

This chapter includes:

l "About Monitoring Profiles" on the next page
l "Understanding Types of Diagnostics Deployments" on the next page
l "The PredefinedMonitoring Profiles" on page 89
l "CustomMonitoring Profiles" on page 89
l "Applying a Specific Monitoring Profile to a Probe" on page 90
l "Overriding Settings in theMonitoring Profiles" on page 91
l "Mapping Instrumentation Points to aMonitoring Profile" on page 92
l "MappingMetrics to aMonitoring Profile" on page 92
l "Mapping Property Values to aMonitoring Profile" on page 92

Micro Focus Diagnostics (9.51) Page 86 of 263

About Monitoring Profiles
A monitoring profile is a collection of predefined settings that control the amount of collected data for a
particular Java Agent instance (a probe).

Java Agents are highly configurable. Monitoring profiles are a safe and easy way tomanage the impact of the
probe on themonitored system and still obtain the needed performance data.

Understanding Types of Diagnostics Deployments
Each probe has the ability to capturemany events such as method invocations, server requests, and system
usagemetrics from the Java application it is monitoring. In general, themore collected data, then themore
information is readily available to identify performance issues. However, themore collected data, then the
more overhead on themonitored system. Overhead can affect themonitored application's ability to provide its
services as well as the probe's ability to report the data in the Diagnostics Enterprise UI or Profiler UI. The
type of deployment determines how much overhead is acceptable.

Diagnostics operates in different environments, ranging from development desktops to systems deployed in
production. The following tables describes the threemain categories of Diagnostics deployments.

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 87 of 263

Diagnostics
Deployment Data Persistence Goals of This Deployment

Collected
Data/Overhead

Enterprise–Java
Agent sends data to
a Diagnostics
Server.

Optionally integrated
with BSM/APM.

Users: Operations

Diagnostics collects and
stores data from
hundreds or thousands of
probes and keeps the
data for up to 5 years.

l Designed for Production
l Alert users to
performance or
availability issues, and
diagnosememory leaks.

l Maximize availability of
business critical
applications

l ReduceMTTR of
business critical
problems

l Produce actionable data
for development

Lower amounts of
collected data

Lower overhead

Higher amounts of
collected data

Higher overhead

Performance
Center/Load Runner
Integration

Users: QA

Configurable, but the
expectation is that
Diagnostics collects and
stores data from dozens
of probes and keeps the
data for as long as the
testing cycle–typically
several months.

l Designed for load testing

l Diagnose distributed
application issues, help
users tune the
application for better
performance and
scalability.

l ReduceMTTR of
performance issues

l Provide actionable root
cause data to
development

Diagnostics Profiler

Users: Development

Diagnostics does not
persist any data.

l Designed for
development
environment

l Diagnose slow methods,
exceptions, and coding
issues

l Ready applications for
load testing

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 88 of 263

The Predefined Monitoring Profiles
Diagnostics provides three predefinedmonitoring profiles–one for each type of Diagnostics deployment
above.

By default, a probe uses one of the predefinedmonitoring profiles on startup. The Agent Mode of the probe
determines which predefinedmonitoring profile is used, as follows:

Predefined Monitoring Profile
Agent Mode (Specified During Agent
Setup)

Collected
Data/Overhead

Applicationmonitoring in
production environment

EnterpriseMode (AM License) and
Diagnostics

Lower amounts of
collected data

Lower overhead

Higher amounts of
collected data

Higher overhead

Applicationmonitoring in pre-
production environment or
extendedmonitoring in production
environment

l Diagnostics Mode for
LoadRunner/Performance Center (AD
License)

l EnterpriseMode (AM License)

Application profiling in developer
environment

Diagnostics Profiler Mode

Settings specified by the predefinedmonitoring profiles are overridden if the setting is specified elsewhere.
See "Overriding Settings in theMonitoring Profiles" on page 91.

CustomMonitoring Profiles
You can use a custommonitoring profile instead of the predefinedmonitoring profiles. To create and use a
custommonitoring profile, follow these steps:

1. Choose a numerical value to represent the profile.
Use a positive integer that is not already in use for amonitoring profile in this installation. The predefined
monitoring profiles use the following numbers:

120 Applicationmonitoring in production environment

140 Applicationmonitoring in pre-production environment or extendedmonitoring in
production environment

170 Application profiling in developer environment

To help youmanagemultiple profiles, follow these naming guidelines:
l All data collected by a numerically lower profile is also collected by the numerically higher profile.

l The higher the number, themore data is collected, with a higher overhead.

For example, if a particular production environment puts unusually strict restrictions on tool overhead,
you could define a new profile named 115 with themodified settings.

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 89 of 263

2. Customize the settings.
a. Use one of the predefined .settings files in <agent_install_directory>/etc/defaults as a starting

point; copy and rename it to the same location. For example <agent_install_
directory>/etc/defaults/115.settings.
Modify the settings to limit the amount of collected data, for example:

#
Settings for my '115' monitoring profile
#
...
dispatcher.minimum.fragment.latency = 100ms
...

For information about the format of the .settings file, see "Mapping Property Values to aMonitoring
Profile" on page 92.

b. Modify the capture points file to map any instrumentation points to the new custommonitoring
profile. See "Mapping Instrumentation Points to aMonitoring Profile" on page 92.

Note: For best practices, ensure that all .settings files in your deployment contain the exact
same set of properties. Because when a property is specified in one .settings file, it means that
the property definition in the original property file is commented out. Therefore each .settings file
must define the property.

c. Modify themetrics.config file to map any metrics to the new custommonitoring profile. See
"MappingMetrics to aMonitoring Profile" on page 92.

3. Run the probe with the new custommonitoring profile. For details on how to do this, see "Applying a
Specific Monitoring Profile to a Probe" below.

Applying a Specific Monitoring Profile to a Probe
To apply amonitoring profile to a probe, use one of the followingmethods:
l By setting the probe propertymonitoring.profile in <agent_install_
directory>/etc/probe.properties. For example:

monitoring.profile = 115

Changes to this setting are picked up dynamically–they take effect shortly after the changes are
saved to the file.

l As a system property on the application server start up command line. For example:

-Dprobe.monitoring.profile=115

If the specifiedmonitoring profile does not exist (there is no settings file in the <agent_install_
directory>/etc/defaults directory that corresponds to the number), the probe substitutes an existing
.settings file corresponding to the value closest to the specified profile but not over the value.

l In theProfiler UI, select Configuration tab > Probe Setting pane > General section >

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 90 of 263

Monitoring Profile and select the requiredmonitoring profile from the list. Click Apply Changes.

Note: In theGeneral section, you can also choose to disable monitoring data collection without
stopping the Java Agent.

Changes to this setting are picked up dynamically–they take effect shortly after the changes are
saved to the file.

Settings specified by the custommonitoring profiles are overridden if the setting is specified elsewhere.
See "Overriding Settings in theMonitoring Profiles" below.

Overriding Settings in the Monitoring Profiles
Settings specified by the predefined or custommonitoring profiles are overridden (ignored) as follows:

l Settings in <agent_install_directory>/etc/*.properties files override the settings in themonitoring profile.
By default, a settingmanaged by the predefinedmonitoring profiles is disabled in the associated property
file. For example, in capture.properties:

Latency trimming
...
The default value is defined by the current monitoring profile
#
#minimum.method.latency = 5ms

To override theminimum.method.latency setting from themonitoring profile, simple uncomment it here
and set the value.

Latency trimming
...
The default value is defined by the current monitoring profile
#
minimum.method.latency = 7ms

You can use this capability to easily customize settings that are specific to a deployment environment
without changing themonitoring profile. For example, using specific JMX/PMI metrics or instrumentation
points.

l Property settings specified as Java system properties on the application server startup command line
override the settings in themonitoring profile
For more information about specifying properties in this way, see "Specifying Probe Properties as Java
System Properties" on page 31.

l Dynamic properties, if generally accepted by the probe, override the settings in themonitoring profile.
For more information about dynamic properties, see "About Dynamic Configuration" on page 159.

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 91 of 263

Mapping Instrumentation Points to a Monitoring
Profile
The profile keyword for the instrumentation point details maps the point to amonitoring profile. The keyword
is specified in the form of profile:<number>. The number indicates that the point is enabled for all profiles at
the value of number or higher. The point is disabled for all monitoring profiles lower than the specified value.

For example:

[Servlet-all]
; ------------- extends HttpServlet ---------------------
; (See HttpCorrelation point for ignore documentation)
; In addition, ignore class we know we are not interested in

...
deep_mode = soft
layer = Web Tier/Servlet
detail = profile:140

The instrumentation point is enabled on the predefined profiles 140 and 170, and all custom profiles 141 or
higher. The point is disabled on the predefined profile 120, and on all custom profiles 139 or lower.

By default, the capture points file is located at <agent_install_dir>\etc\auto_detect.points. Your agent
installationmay be using a custom capture points file in a different location.

Instrumentation points can still be enabled and disabled dynamically, regardless of the selectedmonitoring
profile. See "Adding a Disabled Point and Enabling it at Runtime" on page 124.

Mapping Metrics to a Monitoring Profile
TheP<number>? notation in themetrics.config file maps themetric to amonitoring profile. Just as for
instrumentation points, the number indicates that themetric is enabled for all profiles at the value of number or
higher. Themetric is disabled for all monitoring profiles smaller than the specified value.

For example, in <agent_install_dir>\etc\metrics.config:

P135?system/PageOutsPerSec = PageOutsPerSec|count|System

Themetric is collected for a custom profile 135 and for any higher custom profiles. Themetric is also collected
for the predefined profiles 140 and 170 since they are higher than 135. Themetric is not collected for any
custom or predefined profiles less than 135.

Mapping Property Values to a Monitoring Profile
Themonitoring profile property settings files map property settings to amonitoring profile.

Themonitoring profile property settings files are in <agent_install_dir>\etc\defaults. Each predefined
monitoring profile has its own property settings file, for example 120.settings. Custommonitoring profiles will
also each have a settings file here–you need to create those files.

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 92 of 263

Each property files contains the property definitions for the respectivemonitoring profile. For example, the
120.settings contains:

#
Default settings for the '120' monitoring profile
#
title = Application monitoring in production environment

capture.minimum.method.latency = 51ms
capture.maximum.method.calls = 1000

dispatcher.minimum.fragment.latency = 51ms
dispatcher.minimum.sql.latency = 1s
...

In the file, property names are constructed by using themodule name (which is generally the same as the
property file root name) as the prefix for the property, and separating it from the property namewith a dot.

For example, the capture.maximum.method.calls property above is for maximum.method.calls property
from capture.properties. Themaximum.method.calls property definition in capture.properties is commented
out as follows.

Never capture more than this number of methods per instance tree.
This is regardless of latency and depth trimming.
Note that this applies all methods, including outbound calls.
The default value depends on the monitoring profile.
#maximum.method.calls=

All monitoring profile property files should contain the same property definitions–with potentially different
values, of course. At the same time, the property definition in the original property file should be commented
out.

When the probe resolves the properties, it checks <agent_install_dir>/etc/defaults last. That is, the probe
only uses the property definition from themonitoring profile properties file when there is no definition found in
the primary properties file.

This allows you to override some of the properties for all profiles with a single line change, simply by
uncommenting the property in the primary property file and providing the universal, monitoring profile
independent value. Also, for those properties that can be dynamically changed, this allows you to change the
property by modifying themodule specific property file, without even knowing whichmonitoring profile is or
will be selected.

Java Agent Guide
Chapter 8: Monitoring Profiles

Micro Focus Diagnostics (9.51) Page 93 of 263

Chapter 9: Automatically Assigning a Probe to
an Application
This chapter describes how to automatically assign a probe to an application.

This chapter includes:

l "About Automatic Probe Assignment" below
l "Configuring a Probe to Automatically Assign Applications" below
l "Configuring an Agent to Automatically Assign Applications" below
l "General Configuration" on the next page

About Automatic Probe Assignment
You can assign a probe to an application so that in the Diagnostics Commander UI, you can view the probe
data within the context of that application. You can assign a probe to an application by the followingmethods:

l Configure the Java Probe or Agent to automatically create applications in the Diagnostics Commander
and associate monitored data with the application. For details, see below.

l Manually create an application in the Diagnostics Commander and select the entities associated with it.
For details, see "Working with Applications" in the Diagnostics User Guide.

l Use scripts with Composite Application Discovery (CAM). For details, see "Automating Composite
Application Discovery in Diagnostics" in the Diagnostics Server Installation and Administration Guide.

Configuring a Probe to Automatically Assign
Applications
To automatically create an application (if it does not already exist) and assign an individual probe to it, you set
the probe property setting -Dprobe.belongsto.application as a Java system variable. For example, setting -
Dprobe.belongsto.application=MyGroupName/MyAppName creates a group calledMyGroupName and
within it, an application calledMyAppName, to which the probe is assigned. For details on setting a probe
property as a Java system variable, see "Specifying Probe Properties as Java System Properties" on page
31.

Note: Use a single slash (/) as a separator. For example, MyGroupName/MyAppName.

Configuring an Agent to Automatically Assign
Applications
To automatically create an application (if it does not already exist) and assign an agent to it, you configure the
belongsto.application parameter in the <agent_install_directorydir>etc/probe.properties file. For
example:

Setting belongsto.application=MyGroupName/MyAppName creates a group calledMyGroupName and
within it, an application calledMyAppName, to which all probes on the agent are assigned.

Micro Focus Diagnostics (9.51) Page 94 of 263

Setting belongsto.application=${MyAppGroup}/MyString/${PROBE_ID}, creates a group with the name
of the value in theMyAppGroup variable, within it a sub-group calledMyString, and within that, an
application with the name of the value in thePROBE_ID variable. Since the application name is specific to
one probe, only that probe is assigned to it as each probe on the agent creates and application with a different
name.

Note:

l Use a slash (/) as a separator. For example, MyGroupName/MyAppName.
l All the probes of an agent are assigned to the configured group, unless you use variables that create
different groups or applications to which specific probes can be assigned.

l Changing the belongsto.application parameter in the <agent_install_directorydir>etc/probe.properties
file requires you to restart the application the probe is monitoring.

l TheBelongs to Application field in the Diagnostics Commander UI is only populated when there is
at least one reported server request.

General Configuration
By default, automatically assigning a probe to an application is enabled and a task is run every 5minutes to
check for new group and application names to be created. You can disable this feature and change the
frequency of the task, by editing the following parameters in the <diag_server_install_
dir>/etc/server.properties file on the Diagnostics server:

belongsto.application.rules.disable. By default, this feature is enabled (set to false).

belongsto.application.frequency. By default, this is set to 5minutes, which is theminimum you can set.

probe.topology.discovery. Adds connected probes to the application. By default, this feature is enabled (set
to true).

Note: These parameters are dynamic and changing them does not require a system restart.

Java Agent Guide
Chapter 9: Automatically Assigning a Probe to an Application

Micro Focus Diagnostics (9.51) Page 95 of 263

Chapter 10: Custom Instrumentation for Java
Applications
This chapter explains how to control the instrumentation that Diagnostics applies to the classes andmethods
of the applications to enable the Java Agent to gather the performancemetrics.

This chapter includes:

l "About Instrumentation and Capture Points Files" below
l "Using Regular Expressions in Points Files" on the next page
l "Coding Points in the Capture Points File" on page 98
l "Defining Points With Code Snippets" on page 103
l "Controlling Class MapCapture" on page 113
l "Instrumentation Examples" on page 114
l "Understanding the Overhead of Custom Instrumentation" on page 126
l "Instrumentation Control on a Per Layer Basis" on page 126
l "Instrumented Location Throughput Throttling" on page 127
l "Advanced Instrumentation Examples" on page 128
l "Configuring Cross VM Correlations for New or CustomTechnologies" on page 137
l "Tutorial for Configuring Cross VM Correlation for Custom Technologies" on page 140
l "Maintaining Instrumentation from the Java Profiler UI" on page 147
l "Default Layers Defined for Typical Java Classes andMethods" on page 156

About Instrumentation and Capture Points Files
Instrumentation refers to bytecode that the probe inserts into the class files of the application as they are
loaded by the class loader of your virtual machine. Instrumentation enables a probe tomeasure execution
time, count invocations, retrieve arguments, catch exceptions, and correlate method calls and threads.

Instrumentation is controlled by instrumentation points. The points define whichmethods to instrument, how
they should be instrumented, and which instrumentation should be installed. Instrumentation points for each
probe instance are specified in a capture points file.

The points in the capture points file are grouped into layers. Layers organize the performancemetrics into
meaningful tiers of information that can be compared as part of a triage process. They control the collection
behavior of the instrumentation. You can customize the default layers and create new layers. For description
of the default layers see "Default Layers Defined for Typical Java Classes andMethods" on page 156.

When you install the Java Agent, a predefined capture points file is installed with a set of points for the
platform you are using. This default capture points file is located at <agent_install_directory>\etc\auto_
detect.points.

You can customize the points in the capture points files to includemethods, classes, packages, and
namespaces for areas of the application that do not fall within the default points. A common situation that
might require custom points is when a J2EE application contains business logic that is not derived from the
javax.ejb.SessionBean interface. Another situation for custom points is when you want to override a default
point to alter its layer or to track it from a specific caller method.

Micro Focus Diagnostics (9.51) Page 96 of 263

To add custom instrumentation, you can do one of the following:

l Modify the <agent_install_directory>\etc\auto_detect.points file with your instrumentation
customizations. All probes on the same host use this instrumentation. You will need to back up this file
andmerge back your changes when upgrading the Java agent.

l Copy and rename the <agent_install_directory>\etc\auto_detect.points file and then add your
instrumentation customizations. Specify the name and location of the new points file in the <agent_
install_directory>\etc\probe.properties file. For example:

Name of the instrumentation points file to be used when reporting
to AM/BAC or AD/LoadRunner/PC. The default value is "auto_detect"
which points to probeInstall/etc/auto_detect.points file.
#

points.file.name=auto_detect
points.file.name=my_custom_points

The file namemust have the ".points" suffix although the file name that you specify in <agent_install_
directory>\etc\probe.properties does not have the suffix. The file location that you specify is relative to
the <agent_install_directory>\etc directory.
All probes on the same host use this instrumentation. Using a copy of the file prevents you from needing to
back up and restore it when upgrading the Java agent.

l Copy and rename the <agent_install_directory>\etc\auto_detect.points file following the naming
guideline note below. Then add the instrumentation customizations that are needed for an individual probe.

Note: A custom capture points file namemust be different than the probe name. Custom capture
points file names that match the probe name are reserved for internal use. To help you recognize the
probe associated with a custom capture points file, use the probe namewith a suffix of prefix. For
example, for a probe named “MyProbe” you can specify a custom capture points file name of
“MyProbe_custom”.

Specify the name and location of the new points file as the "-Dprobe.points.file.name"JVM parameter
when you start the application server. How you start the application server depends on the type of
application server. For example onGlassFish the JVM parameters would be:

-javaagent:<agent_install_directory>/lib/probeagent.jar
-Xbootclasspath/p:<agent_install_directory>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>
-Dprobe.points.file.name=WL10_MedRec_ovrserver130_custom

Only this application server instance (JVM) uses the custom points file. The instrumentation in the auto_
detect.points or other custom instrumentation file on the host is ignored.

Using Regular Expressions in Points Files
Points can include regular expressions that "wildcard" the instructions so that they apply to more than one
method, class, and package or namespace specification. For more information about using regular
expressions, see “Using Regular Expressions” in the Diagnostics Server Installation and Administration
Guide.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 97 of 263

Coding Points in the Capture Points File
The following arguments can be used to define a point in the capture points file:

[Point-Name] = <unique name for the point>
;---
class = <class name or regular expression>
method = <method name or regular expression>
signature = <method signature or regular expressions>
ignore_cl = <list of class names or regular expressions>
ignore_method = <list of method names or regular expressions>
ignore_tree = <list of class names or regular expressions>
method_access_filter = <list of class names or regular expressions>
deep_mode = <soft or hard mode>
scope = <list of methods or regular expressions>
ignoreScope = <list of methods or regular expressions>
detail = <list of specifiers>
layer = <layer name>
layerType = <layer type>
rootRenameTo = <string>
keyword = <keyword>
priority = <integer number>
active = <true, false>

The following sections describe the arguments.

l "Mandatory Point Arguments" below
l "Optional Point Entries" on the next page

Mandatory Point Arguments
Every point, except for the points for CLP, LWMD, RMI and SAP RFC, HttpCorrelation, and JDBC SQL,
must contain the following arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be instrumented. The name
should include the full package/namespace name using periods between the
package levels. Any valid regular expression can be used.

method Specifies the name of themethod to be instrumented. To be successful, the
method namemust match amethod defined in the class or interface
specified by the class argument. Any valid regular expression can be used.

signature Specifies the signature (parameter and result types) of themethod using
javap symbolic encoding for method signatures (<jdk_install>/bin.javap -s).

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 98 of 263

Argument Description

layer Specifies a layer, sublayer, or tier under which the data from this point is
grouped. Layers are a part of the instrumentation collection control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a / (slash). The layer specified following the
slash is a sublayer of the layer specified before the slash. A sublayer can
have its own sublayers by coding another slash and layer name following a
sublayer name.

In the UI, the sublayers for a layer are displayed under their parent layer. For
example, the sublayers JSP and Struts would be displayed under the web
layer and a drilldownwould exist fromWeb to JSP and Struts.

The following is an example of a custom point that contains themandatory arguments:

[MyCustomEntry_1]
; comments here….
class = myPackage.myClass.MyFoo
method = myMethod
signature = !.*
layer = myCustomStuff[MyCustomEntry_1]

Note: Regular expressions can be used for most of the arguments in a point. They must be prefaced with
an exclamation point. For more information about using regular expressions, see “Using Regular
Expressions” in the Diagnostics Server Installation and Administration Guide.

Optional Point Entries
Point definitions can contain one or more of the following arguments:

Argument Description

keyword The keyword indicates an instrumentation point handled by a special instrumentation
class. The value of the keyword is looked up as a property in inst.properties, and the
value of the found property is the instrumentation class name. The special instrumentation
points can use implementation-specific arguments not documented here, refer to the
comments in the inst.properties file.

ignore_cl Specifies a comma-separated list of class names or regular expressions to ignore. Any
class matching one of the classes specified with ignore_cl is not instrumented.

ignore_method Specifies a comma-separated list of methods to ignore. Any methodmatching one of the
methods specified with ignore_method is not instrumented.

Ignore_tree A list of classes or regular expressions. Any subclass of a class matching one of the list
items is excluded from the instrumentation.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 99 of 263

Argument Description

method_
access_filter

A list of method specifiers, separated by commas. The available specifiers are static,
private, protected, package, and public. Any methodmatching this point is not
instrumented if its access specifier matches any of the listed values.

deep_mode Specifies how subclasses are handled. This argument accepts three values:

l none – A value of “none” is similar to not specifying a deep_mode argument. The
instrumentation point applies only to the specified class and has no effect on how
subclasses are handled.

l soft – A value of “soft” requests that for every class or interfacematching the class,
method, and signature entries, any subclasses or subinterfaces at any depth that also
implement thematchingmethod and signature should also be instrumented.

l hard – A value of "hard" means that the instrumentation point applies (in addition to the
specified class) to allmethods from all classes extending (or implementing) the
specified class, wherever themethodmatches the instrumentation point specification
(bothmethod name and signature). Hardmode is typically used for points for
interfaces. Caution:Hardmode can lead to extensive instrumentation and very high
probe overhead.

Note:Since deep_mode looks at the class hierarchy, it cannot be used for instrumentation
points based on annotations.

scope Constrains the context in which instrumentation is performed. If specified, the inserted
bytecode will be caller side. Any valid regular expression can be used for the value of this
argument. Scope values are a comma-separated list of package, class, andmethod
names in standard Java notation.

ignoreScope Lists method names or regular expressions and excludes certain packages, classes, and
methods from those included in the scope specified in the scope argument.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 100 of 263

Argument Description

detail Specifies more specific capture instructions. It is a comma-separated list of the following:

l caller – causes caller side instrumentation to be performed. If this keyword is not
specified, the default instrumentation, callee side instrumentation, is performed.

l args:n – calls the toString()method of the n-th argument. The string that is returned is
displayed in themethod's argument field in the Diagnostics console. The captured
string can be used as the aggregation parameter in the layer argument. The value for n
can be 1 through 256.

l args:0 – calls the toString() on the current class instance or callee object. Static
methods return the class name of the callee object.

l before:code:<code-key> – inserts the code-snippet specified in the key at the start for
the bytecode for methods that comply with the point. The final string value on the stack
when the code-snippet runs is displayed in themethod's argument field in the
Diagnostics console and can also be used as the aggregation parameter in the layer
argument. The code-key argument specifies the secure code key you generated for the
code snippet you created for the point. See "Defining Points With Code Snippets" on
page 103 for information about code snippets and "Securing Code Snippets" on page
112 for information on code keys.

l after:code:<code-key> – inserts the code-snippet specified by the key at every exit
point from the bytecode of methods that comply with the point. The after code-snippets
should not leave any values on the stack after they run.

l disabled – prevents the instrumentation inserted into the bytecode from reporting data.
A disabled point can be dynamically enabled using the Instrumentation control web
page so that it will begin reporting data. This web page can be accessed using the
Profiler URL

http://<agent_install_directory>:<probe_port>/inst/layer.

l outbound – flags themethod so it is listed on theOutbound Calls screen. Also causes
the Diagnostics argument for this instrumentation entry to be parsed to determine if
additional information about the outbound request can be displayed in the Diagnostics
dashboards.

l no-correlation – used with those “outbound” points that do not use correlation
supporting technologies.

l method-no-trim – indicates that no latency-based trimming should take place when a
method instrumented by this point is executed.

l method-trim – indicates that every invocation of themethod instrumented by this point
should be “trimmed”, that is, not reported. However, side-effects of the corresponding
code-snippets, if any, take place normally.

l lifecycle – identifies the instrumentation point as relevant for object lifecycle
monitoring.

l no-layer-recurse – prohibits recording of any methods called from themethod
instrumented by this point, unless the callee belongs to a different layer.

l is-statement –marks calls into the java.sql.Statement class.
l is-prepare-statement –marks calls returning java.sql.Statement objects to capture.
l method-cpu-time – causes the CPU inclusive time to be collected for this method in
addition to latency, unless CPU collection is completely turned off

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 101 of 263

Argument Description

(cpu.timestamp.collection.method = 0).
l condition – prohibits instrumentation by this point unless the specified condition is
met. The conditions are static and are defined by the details.conditional.properties
property in inst.properties (or on the command line).

l when-root-rename – instructs the probe to rename the server request whenever the
method instrumented by this point is the first one executed.

l add-field:<access>:<type>:<name> – causes adding the specified field to the
instrumented class.

l gen-instrument-trace – causes printing of the thread stack trace onto stdout whenever
this point is used for instrumentation.

l gen-runtime-trace – causes printing of the thread stack trace onto stdout whenever
themethods instrumented by this point are executed.

l trace – causes printing of verbose instrumentation information into probe.log on each
enter or exit from eachmethod instrumented by this point.

l sub-point:<key> – specifies additional processing during instrumentation; the key
must be present in inst.properties andmust identify a class name used for the
processing.

l store-thread – causes all special fields used in the corresponding code-snippet to be
stored in a thread-local data structure.

l store-fragment – causes all special fields used in the corresponding code-snippet to
be stored as attributes of the current server request.

l store-method – causes all special fields used in the corresponding code-snippet to be
stored as attributes of the invocation of themethod instrumented by this point.

l ws-operation – specifies that the instrumentation entry is for an inbound web services
call. Also causes the Diagnostics argument for this instrumentation entry to be parsed
to determine if additional information about the web service request can be displayed in
the Diagnostics dashboards.

rootRenameTo Identifies server requests whenever thewhen-root-rename detail is in effect.

layerType Specifies special handling for some instrumentedmethods and accepts the following
values:

l method – no special handling (default).
l trended_method – identifies methods to be displayed in the TrendedMethods view.
l Portlet – identifies portlet lifecycle methods that are used for the Portal Components
views. These are set by Diagnostics and should not bemodified.

l sql – identifies methods that are used to capture SQL for the SQL views. These are set
by Diagnostics and should not bemodified.

priority Whenever there is more than one instrumentation point that can be applied to a given
method, and the Diagnostics Agent cannot resolve the conflict on its own, the point’s
priority determines which point to use. Higher priority wins. The default is zero.

active Activates or deactivates a point. When set to true, the point is activated. When set to
false, the point is inactive and is ignored by the probe.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 102 of 263

Defining Points With Code Snippets
Custom code arguments specify a snippet of code that is to be inserted into the bytecode for a point. Code
snippets in a point are used when the value returned by calling an object’s toString()method, as specified in
the args:n argument, is not going to provide useful information for the Diagnostics console or when there is a
requirement to display more than one argument for an instrumentedmethod.

A code snippet in a point is declared using the keyword before:code:<code-key> or after:code:<code-key>
in the detail argument of the point. The before and after is used to execute the code snippet before or after the
instrumentedmethod. The code snippet is typically secured using a code-key argument to prevent
unauthorizedmodifications of the code snippet. The values for the code-key arguments can be generated
using any running probe's code-key generator page and are valid on any Java Agent installation. For more
information on the code-key see "Securing Code Snippets" on page 112.

The actual code snippets for a point are entered into the <agent_install_directory>/etc/code/custom_
code.properties file. These snippets are then associated with the point in the capture points file using the
value of the code-key. Code snippets are created using pseudo Java code that uses syntax similar to OGNL.
Using code snippets, calls can bemade from the instrumented bytecode tomethods that can be accessed by
the instrumentedmethod. Objects returned by code snippets can be cast and can have their methods
executed as well. Code snippets must end with a string or an object where toString() can be left on the stack
of statements being parsed into bytecode. This final string of the code snippet is used for the returned
argument value displayed in the Diagnostics console.

Code snippets can also be used to store values for a particular fragment directly or that could be used in a later
code snippet. These features can be used through special fields and key word details like store-fragment and
store-thread.

Note: Code snippets are a very powerful tool that should be used carefully because of the potential
impact to the overhead incurred by the probe. For this reason, Diagnostics requires that a code-key be
specified along with the code snippet before the probe will use the code snippet during instrumentation.

This section includes:

l "Using Code Snippets" below
l "Code Snippet Grammar" on the next page
l "Code Snippet Helper" on page 106
l "Securing Code Snippets" on page 112

Using Code Snippets
To use code snippets when specifying a point in <agent_install_directory>/etc/auto_detect.points, the
following detail:

class = javax.jms.TopicPublisher
method = publish
signature = !\(Ljavax/jms/Topic.*
deep_mode = soft
layer = Messaging/JMS/Producer
detail = outbound,no-correlation,before:code:6d0f3088

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 103 of 263

The before:code entry in the detail argument indicates that a code snippet was entered for the point. The code-
key value secures the code in the code snippet and ties the point with the actual code snippet.

The code snippet associated with the point must be entered in <agent_install_directory>/etc/code/custom_
code.properties as shown in the following example:

Used by [JMS-TopicPublisher2]
6d0f3088 = #topic =
@ProbeCodeSnippetHelper@.checkForTempName(#arg1.getTopicName()); \
"DIAG_ARG:type=jms&name=topic:"+ #topic + "&target=topic://" + #topic;

The code snippet is associated with the point in the capture points file using the value of the code-key.

Code Snippet Grammar
The following describes the syntax that must be used to create the code snippets.

Literals

Only the following literal types are supported in code snippets.

Literal Type Syntax Example

string "a string"

boolean true, false

integer 42

null constant null

a no-type, no-value constant void

String concatenation

Basic string concatenation is supported in code snippets.

Concatenation Type Syntax Example

Two strings "a string" + "another string"

A string and a literal "a string" + 42

Local members

Default local members provide a way for code snippets to reference the current instance or objects that were
passed to the instrumentedmethod. These local members call methods or retrieve values from those
references.

Variable Use

#callee References the callee object for an instancemethod. Equivalent to
the java “this” reference. Must not be used when referencing a static
method.

#arg1, #arg2, ..., #argN References the arguments for the calleemethod call.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 104 of 263

Variable Use

#return References the return value of themethod end for after code
snippets.

#classloader Reserved for Software internal use.

Note: Some instrumentation points support special variable references. For example, the
CLApplicationDiscoveryPoint supports a #classloader variable.

DIAG_ARG strings

Code snippets allow concatenation of a series of values building up a single DIAG_ARG value. This value
allows for instrumentation of some common types of support data likeWeb Services and JMS by returning all
the data for a particular type in one DIAG_ ARG formatted string.

Type Field (Required) Definition

ws &ws_name

&ws_op

&ws_ns

&ws_port (inbound only)

&target (outbound only)

Web Service name

Web Service Operation name

Web Service namespace

Web Service Port Name

OutboundWeb Service Target

jms &name

&target

Queue or Topic name

Target Queue or Topic name

The format of the DIAG_ARG string includes the type fields and values (local variables) concatenated into
one string as follows:

"DIAG_ARG:type=ws&ws_name="+ #servicename +"&ws_op="+ #operation +\ "&ws_ns="+ #ns +"&ws_
port="+ #port;

The DIAG_ARG stringmust not be used in combination with the store-fragment special fields for web service
inbound data (special fields starting with ##WS_inbound_*). UseONLY one for collecting web service
inbound data.

Special fields (store-fragment)

Default special fields provide an easy way for code snippets to pass fragment-related data for common
events. This mechanism supplements the existing events, but is not expected to replace them. Fragment
Local Storage has higher overhead cost than custom events. The following variables must be used with the
store-fragment detail setting.

Variable Use

##WS_consumer_id Stores the consumer Id for a particular fragment.

##WS_SOAP_fault_code Stores the SOAP fault code.

##WS_SOAP_fault_reason Stores the SOAP fault reason.

##WS_SOAP_fault_detail Stores the SOAP fault detail.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 105 of 263

Variable Use

##WS_inbound_service_name Stores the inbound web service name.

##WS_inbound_operation_name Stores the inbound web service operation name.

##WS_inbound_target_namespace Stores the inbound web service target namespace.

##WS_inbound_port_name Stores the inbound web service port name.

Special fields (store-thread)

Additionally special fields provide an easy way for code snippets to store related data for the life of the thread.
Use these thread local storage variables with caution because they have overhead associated with them. Use
them only with the store-thread detail setting.

These variables can be retrieved in later code snippets by making a call to the probe’s ThreadContextProxy
class reference with either the getThreadContextValue(“string value”) or getAndRemoveThreadContextValue
(“string value”) methods, with “string value” being the name of the variable without the leading ## signs. The
last retrieval of the value should always call getAndRemoveThreadContextValue(“string value”) to clear the
value frommemory and to remove the value for the next thread.

Variable Use

##SOAPHandler_wsname Stores the web service name for later use by the SOAP Handler.

##<any_string> Stores any value for later retrieval in a following code snippet.

Class references and static members

Static members/methods can be accessed by pre-pending the class with an @ symbol to identify it as a
Static, andmarking themethod being accessed with an @ symbol as in the examples below:

@java.lang.System@.out ("Hello World");

@com.mercury.diagnostics.capture.metrics.countingCollector@.incrementCounter();

The arguments in the code snippets support Java class syntax when the Java class is surrounded with a
marker that the parser can get hold of. The following examples show how to use the @ symbol as amarker:

@java.lang.System@

@java.lang.System@out (Static field)

Code Snippet Helper
Some functionality is very hard, or even impossible, to code using the limited syntax available within the code-
snippets. Therefore, the code-snippet environment offers two helper classes:

l ProbeCodeSnippetHelper
l ProbeCodeSnippetHelperV5.
The following shows ProbeCodeSnippetHelper functionality.

/*

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 106 of 263

* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/
package com.mercury.opal.capture.proxy;
/**
* Used to help out Code Snippets
*/
public class ProbeCodeSnippetHelper {
/**
* When a Special Field holds a reference to the string below,
* it will not be stored in the Fragment Local Storage,
* or Invocation Local Storage
*/
public static final String DO_NOT_STORE = ...
/**
* Helper to convert an int to an Integer
* @param i
* @return a new Integer object having the value of i
*/
public static Object intToInteger(int i) {
...
}
/*
* Mark the current thread, if not marked yet
* @return true, if and only if the thread had been already marked
*/
public static boolean testAndSetRecursiveFlag() {
...
}
/*
* Unmark the current thread
*/
public static void clearRecursiveFlag() {
...
}
/**
* Helper method to call ResourceBundle.getString() and catch any exceptions that
* might be thrown
* @param theBundle the ResourceBundle on which to call getString
* @param key the key to pass getString
* @return the value returned from getString, or null if an exception occurred
*/
public static String getStringFromResourceBundle(ResourceBundle theBundle, String
key) {
...
/*
* Helper methods to allow our cross-vm coloring to piggyback ride across
* the custom outbound calls in which the application passes [only] a String.
* The actual transport technology is irrelevant.
* Instead of sending the original message, a composite message ("envelope")

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 107 of 263

* will be passed. The composite message includes both the original message
* and Diagnostics Probe ENCODED cross-vm coloring.
* On the receiving end, the composite message will be received, but only
* the original message will be passed to the application, and the coloring
* will be retained by the probe.
*/
/**
* Create a composite message, given the coloring and the original message.
* @param coloring - the correlation String obtained via the ENCODED coloring,
* may be null
* @param originalMessage - the original messsage sent by the application
* @return - the composite message, null if and only if the originalMessage is null
*/
public static String createDiagEnvelope(String coloring, String originalMessage) {
...
}
/**
* Extract the coloring from the composite message (envelope).
* @param envelope - the composite message or the original message
* @return the coloring as created on the sender side, or null if not present
*/
public static String extractColoringFromDiagEnvelope(String envelope) {
...
}
/**
* Extract the original message from the composite message (envelope).
* Works properly, even if the sender side has not been instrumented, and
* there's no envelope.
* @param envelope - the composite message or the original message
* @return the original message (before coloring)
*/
public static String extractOriginalMessageFromDiagEnvelope(String envelope) {
...
}
}
}

The following shows ProbeCodeSnippetHelperV5 functionality.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/
package com.mercury.opal.capture.jdk15.agent;
/**
* Used to help out Code Snippets using Java 5 or later
*/
public class ProbeCodeSnippetHelperV5 {
/**

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 108 of 263

* Get the annotation of the specified type from the class or its superclass,
* or its implemented interfaces
* @param theClass The class to get the annotation for
* @param annClass The annotation class to look for
* @return
*/
public static Object getEndpointClassAnnotation(Class theClass, Class annClass) {
...
}
/**
* Get the method annotation of the specified type from the class
* or its superclass, or its implemented interfaces
* @param theClass the class
* @param methodName the method name
* @param argCount the argument count
* @param annClass the class annotation type
* @param methodAnnClass the method annotation type
* @return
*/
public static Object getEndpointMethodAnnotation(Class theClass, String methodName,
String argCount, Class annClass, Class methodAnnClass) {
...
}
/**
* Helper method to get an annotation element value. If the annotation
* does not have the element, return null.
* @param annClass The class of the annotation
* @param instance The annotation instance object
* @param elementName The element name
* @return The element value for the annotation instance, or null
*/
public static String getAnnotationElementValue(Class annClass, Object instance,
String elementName) {
...
}
/**
* This helper method is used to serialize a DOM document.
* This method uses APIs available in DOM Level 3 or newer, which are
* available with a 1.5 or later JVM.
* @param document
* @return The serialized form (XML) of the input DOM document
*/
public static String serializeDOMToString(Document document) {
...
}
}

Spanning multiple lines with the stack of method calls

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 109 of 263

The stack of method calls in a code snippet can spanmultiple lines. The parser that builds the bytecode
requires a “\” (backslash) before each carriage return when it must continue parsing the stack of statements.
The final line of the Code Snippet stack of statements should not contain a backslash and should simply end
with carriage return.

@java.lang.System@.out ("Hello World");\

"Callee Name="+#callee.getName().toString();

Casting

When calling amethod that returns an object, casting is typically required to call members on the returned
object. Casting is supported on object references. To cast an object to another type, place the casting
reference between the symbols “<“ and “>” following the reference to that object. The following are examples
of casting.

#arg1<com.myCompany.myFoo>.myMethod();

This is equivalent to the Java statement:

((com.myCompany.myFoo)arg1).myMethod();

@some.class.Foo@foo<com.myCompany.myFoo>.myMethod();

Would be equivalent to the java statement:

((com.MyCompany.myFoo)some.class.Foo.foo).doSomething();

#foo = #arg1<bar>.b(); #foo.toString();

Creates the following java equivalent:

String foo = ((Bar)arg1).b(); ((Object)foo).toString();

Note: Casting is not supported for special types such as #classloader.

Method calls

Method calls can be included in snippet arguments. The support of method calls includes calls with or without
arguments andmethod chaining. The following are examples of method calls that are included in code snippet
arguments:

#arg1.toString()

#arg2.getSomething().getSomethingElse()

#callee.getSomething("foo", #arg1).somethingElse()

@some.Class@.staticMethod()

The dot still needs to appear after the static reference for themethod call to be parsed properly.

@java.lang.System@out.println("Here I am!")

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 110 of 263

To speed up the generation of bytecode at runtime (by avoiding reflection), you can specify the type that is
returned from amethod as shown in the following example:

#arg1.getSomething()<some.class.Here>

This will not help if themethod takes arguments, or if a static field is used.

Multiple statements

Code snippets can includemultiple statements in a single code snippet. This is necessary for
instrumentation, such as CLApplicationDiscoveryPoint, that expect multiple objects to be left on the stack.
It can be handy in other situations as well.

@java.lang.System@out.println("Look out!");

#arg2.getSomething();

Local Member assignment

In addition to the default local member variables, you can create your own local members to hold object
references returned by calledmethods.

To create a new local member, enter the "#" symbol before the name of the local member. The parser will
create the local member. Once a local member is assigned a value it cannot be overwritten; simply create a
new variable if you need to re-assign to a local member.

#myBar = #arg2.getName();\
#myUpperBar = #myBar.toUpper();\
"Target Name=http://"+myUpperBar+"/services";

Special Field assignment (store-fragment)

You can use a pre-defined special field to store the object references returned by calledmethods. Enter the
"##" symbols before the name of the special field along with the store-fragment detail keyword on the
instrumentation point.

##WS_SOAP_fault_code = #arg2;\
##WS_SOAP_fault_reason = #arg3;\
##WS_SOAP_fault_detail = (#arg4 == null ? null : #arg4.toString());"";

Special Field assignment (store-thread)

You can use a special field to store the object references returned by calledmethods. Enter the "##" symbols
before the name of the special field along with the store-thread detail keyword on the instrumentation point.

Used by [SOA_Broker_Payload_Handler]
##SOA_Manager_Inbound_Payload=#callee.getRequestDocument();"";

In a later code snippet you can retrieve the value stored by calling getThreadContextValue with the special
field value above without the leading ## symbols.

#temp_soam_
payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("SOA_
Manager_Inbound_Payload");

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 111 of 263

In a later code snippet you can retrieve and remove the special field value stored by calling
getAndRemoveThreadContextValuemethod with the value same above without the leading ## symbols. It is
very important that you call getAndRemoveThreadContextValue to freememory and clear the way for the
next occurrence.

#temp_soam_payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.
getAndRemoveThreadContextValue(("SOA_Manager_Inbound_Payload");

Conditional Logic

Code snippet syntax allows for limited conditional logic that is equivalent to the Java if-else statement. This
syntax enables you to compare object references of the same type or integer or boolean primitives using both
the == and != operators. Literal value and other primitive comparisons are not valid using this syntax.

The following is an example of how to compare references:

(value1 == value2 ? <if_True_codeSnippet>:<if_False_codeSnippet>)

The following is an example of how to verify that an object is not null before calling amethod:

(#arg1 == null ? "Unknown" : #arg1.getSomething())

This would be equivalent to the following Java statement:

if (arg1==null) return "Unknown" else return arg1.getSomething();

Exception Handling

A limited form of exception handling is provided by the following syntax:

!{<code-snippet-code>}!

The specified code is executed and the value of the above expression is the thrown exception, or null if no
exception was thrown during the execution of the code.

Securing Code Snippets
By default, youmust specify a valid code-key along with the code snippet before the probe will use the code
snippet during instrumentation. Requiring the code-key prevents accidently introducing instrumentation that
could significantly increase the overhead of the probe.

When you generate the code-key, Diagnostics checks the syntax of the code snippet to make sure it is valid
before it generates the key. When Diagnostics instruments an application, it checks the value entered for the
code-key argument to make sure it matches the code-key it calculates for the code snippet for the point. If the
code-keys do not match, Diagnostics ignores the code snippet and does not create the instrumentation point.

Generating the Code Snippet Code-Key
The Java Agent is installed with a tool that generates the code-key from the code snippet you input.

To generate a code-key:

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 112 of 263

1. Open the page at the following URL in your browser:
http://<probe-host>:<probe-port>/inst/code-key
Diagnostics displays the page where you can validate the code snippet syntax and generate the code-
key as shown in the following example:

2. Enter the code snippet you specified in the code argument in the auto_detect.points file into the Input
your code snippet text box and click Submit.
The code snippet must include all of the text following the code = argument name.

3. Diagnostics presents the results of the code snippet validation and the code-key generation in the
Resulting point section text box.
If the code snippet is valid, Diagnostics displays the value of both the code-key and code arguments.
Enter these values into the capture points file.
If the code snippet is not valid, Diagnostics displays an error message that indicates the problem that
was detected. Correct the problem and click Submit again to validate the corrected code.

Disabling the Code-Key Security Check
By default, Diagnostics verifies that the value of the code-key argument matches the value it generates when
it is instrumenting the application. It is possible to disable this security check by inserting the
require.code.security.key property into the <agent_install_directory>/etc/code/custom_code.properties
file, under the [Default] section, with a value of false.

Note: Be very careful when using this property. If you disable this check, you could experience
unexpected processing overhead and unpredictable performancemonitoring results.

Controlling Class Map Capture
The class map allows Diagnostics to providemore details about the classes andmethods that are invoked by
a server request. This information can help you to narrow your search for the source of a performance issue

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 113 of 263

and help you instrument the application code properly. The cost for using class map comes from the additional
overhead that creating themap places upon the agent’s host system.

By default the property use.class.map=false is set in the probe.properties file. Changing this to true
provides a class map.

Instrumentation Examples
The examples in this section illustrate how you can customize the instrumentation of an application by
creating andmodifying the points in the capture points file.

This section includes the following examples:

l "Custom Layer and Sublayer" below
l "WildcardMethod" on the next page
l "Ignore SpecifiedMethods" on the next page
l "CaptureMethods for the TrendedMethods View" on the next page
l "Capture Only a Specific Method In a Class" on page 116
l "Capture a Specific Method That Returns a String" on page 117
l "Capture with a Controlled Scope" on page 117
l "Hard and Soft deep_mode" on page 117
l "Argument Capture" on page 118
l "Inbound andOutboundWeb Services" on page 119
l "Renaming Root Methods" on page 120
l "Adding a Field to a Class" on page 120
l "Passing Attributes to Instance Trees" on page 121
l "Filtering Out Methods by Their Access Flag" on page 121
l "Not Recording Direct Recursion" on page 121
l "Performing Caller Side Instrumentation" on page 121
l "Configuring Allocation Analysis" on page 122
l "Configuring Lightweight Memory Diagnostics (LWMD)" on page 122
l "Configuring Collection Leak Pinpointing" on page 123
l "Enabling Object Lifecycle Monitoring for JDBC Result Set" on page 123
l "Adding a Disabled Point and Enabling it at Runtime" on page 124
l "Specifying that aMethod Should Never be Trimmed" on page 124
l "Specifying that aMethod Should Always be Trimmed" on page 125
l "Enabling Collection of CPU Time for aMethod" on page 125
l "Changing SAP RFC Instrumentation Based on SAP JCO Library Version" on page 125
l "Printing Instrumentation and Runtime Information for a Point (Debugging Only)" on page 125

Custom Layer and Sublayer
The following point creates a custom sublayer called “BAR” within the layer called “FOO” for themethod
myMethod inmyCompany.myFoo class:

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 114 of 263

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
signature = !.*
layer = FOO/BAR

Wildcard Method
The following point captures all methods in theMyCompany.MyFoo class:

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*
signature = !.*
layer = FOO/BAR

Ignore Specified Methods
The following point captures all methods in theMyCompany.MyFoo class except for themethods
setHomeInterface and getHomeInterface:

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo
method = !.*
ignoreMethod = !setHomeInterface.*, !getHomeInterface.*
signature = !.*
layer = FOO/BAR

The following point captures all methods in theMyCompany package/namespace except for those contained
in theMyCompany.logging class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
ignore_cl = MyCompany.logging
signature = !.*
layer = FOO/BAR

Capture Methods for the Trended Methods View
The following point captures the required data to populate the TrendedMethods View for themyMethod
method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 115 of 263

method = myMethod
signature = !.*
layer = FOO/BAR
layertype = trended_method

Capture Only a Specific Method In a Class
The following point captures all methods in the constructor for theMyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = <init>
signature = !.*
layer = FOO/BAR

The following point captures all methods in the singleton constructor for theMyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = <clinit>
signature = !.*
layer = FOO/BAR

The following point captures the setFoomethod in theMyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
signature = !.*
layer = FOO/BAR

The following point captures all "set" methods in theMyCompany.MyFoo class:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !set.*
signature = !.*
layer = FOO/BAR

The following point captures all methods in theMyCompany package/namespace:

[myCompany_All_Methods]
class = !myCompany\..*
method = !.*
signature = !.*
layer = FOO/BAR

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 116 of 263

Capture a Specific Method That Returns a String
The following point captures the getFoomethod with no arguments that returns a java.lang.String in the
MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo
method = getFoo
signature = ()Ljava\lang\String
layer = FOO/BAR

Capture with a Controlled Scope
The following point captures all methods in theMyCompany package/namespace that are called from the
MyCompany.logging class. For more details see "Using Caller Side Instrumentation" on page 128.

[myCompany_All_Methods_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
signature = !.*
scope = MyCompany.logging
layer = FOO/BAR

The ignoreScope argument is used to exclude certain packages, classes, andmethods from those included in
the scope specified in scope argument. The following point captures all methods in theMyCompany
package/namespace that are called from theMyCompany.logging class except for those called from the
myMethodmethod. For more details see "Using Caller Side Instrumentation" on page 128.

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
signature = !.*
scope = MyCompany.logging
ignoreScope = MyCompany.logging\myMethod
layer = FOO/BAR

Hard and Soft deep_mode
The following interface definition is used for both soft and hard deep_mode examples:

public interface Interface1 {

public void callerMethod();
}

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 117 of 263

The following class is used for both soft and hard deep_mode examples:

public class Class1 implements Interface1 {
public void callerMethod(){

calleeMethod();
calleeMethod2();

}
public void calleeMethod(){
System.out.println("hello world");
//more code lines here…
}

public void calleeMethod2(){
System.out.println("hello world 2");

}
}

The following point captures the "callerMethod" in the Class1 class:

[Training-1]
class = Interface1
method = !.*
signature = !.*
deep_mode = soft
layer = Training

The following point captures all methods in Class 1 (for example, "callerMethod", "calleeMethod1" and
"calleeMethod2):

[Training-1]
class = Interface1
method = !.*
signature = !.*
deep_mode = hard
layer = Training

Argument Capture
The argument displayed in Diagnostics is the final string left on the stack by the code snippet. Code snippets
must end with a string or an object where toString() can be left on the stack of statements to be parsed to the
bytecode.

Caution: Extreme caution has to be exercised when using argument capture. Unless the set of all
possible values of the captured argument is finite, the agent will run out of Java heap space.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 118 of 263

Suppose that you instrument amethod calledmyCompany.myFoo.myMethod(), andmyFoo has another
method called getComponentName() that returns a String. The following example shows the result of
getComponentName() as the argument in Diagnostics (#callee refers to the callee object for an instance
method, in this case).

[myCompany_componentName_as_argument]
class = myCompany.myFoo
method = myMethod
signature = !.*
detail = before:code: 8d2509eb
layer = FOO/BAR

The code snippet in the custom_code.properties file is entered as follows:

8d2509eb = #callee.getComponentName()

The following point captures the first argument to myMethod and shows it as the captured argument in
Diagnostics. It also uses it as the sublayer name. This is achieved by including ${ARG} in the layer. In this
example, if the captured argument—in this case, the first argument of myMethod—has the valuemyArg, the
layer is FOO/myArg.

[myCompany_capture_firstArg_and_also_show_as_layer]
class = myCompany.myFoo
method = myMethod
signature = !.*
detail = before:code: 358f05d6
layer = FOO/${ARG}

The code snippet in the custom_code.properties file is entered as follows. If you use #arg2, you would
capture the second argument instead.

358f05d6 = #arg1.toString()

Inbound and Outbound Web Services
When the detail argument in a point contains the "outbound" or "ws-operation" keyword, Diagnostics attempts
to parse the final string on the Code Snippet stack for additional information to display about themethod call.

For inboundWeb Services (“ws-operation” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name=”+<WebServiceName>+"&ws_op=”+
<OperationName>+”&ws_ns=”+<TargetNameSpace>+”&wsOport=”+<wsPort>

For outboundWeb Services (“outbound” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name=”+<WebServiceName>+"&ws_op=”+
<OperationName>+”&target=”+<TargetName>

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 119 of 263

Here is an example:

class = weblogic.wsee.ws.WsStub
method = invoke
signature = (Ljava/lang/String;Ljava/lang/String;Ljava/util/Map;Ljava/util/Map;)
Ljava/
lang/Object;
layer = Web Services
detail = outbound,before:code:edd75e36

The code snippet in the custom_code.properties file is entered as follows:

edd75e36 = #service = #callee.getService().getWsdlService();\
#qname = #service.getName();\
"DIAG_ARG:type=ws&ws_name="+ #qname.getLocalPart() +"&ws_op="+ \
#callee.getMethod(#arg1).getOperationName().getLocalPart() +"&target="+ \
#callee.getProperty("javax.xml.rpc.service.endpoint.address");

Renaming Root Methods
Consider the following point:

class = Statement
method = execute
layer = Database/JDBC/Execute
detail = when-root-rename
rootRenameTo = mySuffix

If such amethod ends up being the root method, the name of such a server request is Background-mySuffix,
and the type of the server request is RootRename.

Consider the following point instead:

class = Statement
method = execute
layer = Database/JDBC/Execute
detail = when-root-rename

Notice that the rootRenameTo property is skipped. The name of such a server request is Background–
Database (because Database is the first sublayer) and the server request type is RootRename again.

Adding a Field to a Class
Consider the following point:

class = com.corp.Foo
method = bar
detail = add-field:protected:Object:serviceName

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 120 of 263

The detail causes the following one field and two public setter/getter methods to be added to the class
com.corp.Foo:

protected transient Object serviceName
public void _diag_set_serviceName(Object arg)
public Object _diag_get_serviceName()

Passing Attributes to Instance Trees
The following example attaches my_attribute name to every captured instance of com.corp.Foo.bar().

The name prefixed with display_ and its corresponding value is shown in the call profile.

class = com.corp.Foo
method = bar
detail = add-field:protected:Object:serviceName

Code snippet:

f59f0c5c = ##my_attribute="value-of-my-attribute";"";

Filtering Out Methods by Their Access Flag
The following example instruments all methods in class com.corp.Foo (but not static methods).

class = com.corp.Foo
method = !.*
signature = !.*
method_access_filter = static

Not Recording Direct Recursion
In the following example, if method com.corp.Foo.bar calls itself (or anything in the same layer), the second
call is not recorded. This is caused by the detail = no-layer-recurse.

This, however, is only for direct recursion. If com.corp.Foo.bar calls an instrumentedmethod from another
layer that calls this method again, all methods are recorded.

class = com.corp.Foo
method = bar
layer = Example/MyBar
detail = no-layer-recurse

Performing Caller Side Instrumentation
The following point causes caller side instrumentation to be performed (as opposed to the default callee
instrumentation). This is caused by the detail = caller.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 121 of 263

Another way to do caller side instrumentation is to use the “scope” property as described in "Using Caller Side
Instrumentation" on page 128.

class = com.corp.Foo
method = bar
detail = caller

Configuring Allocation Analysis
Both of the following examples track allocations of java.lang.Integer in the package
com.mycompany.mycomponent. There are, however, two differences:

l In the first example (detail = leak), tracking is managed. It starts when the user clicks start in the profiler
and stops when the user clicks stop. In the second example (detail = deallocation), tracking starts with
application startup.

l In the first example, the point is disabled when it comes to regular instrumentation. This means you will not
see “new Integer” show up on an instance tree. In the second example, you will.

Example 1 – Managed. Tracking starts when the user clicks start and stops when the user clicks stop in the
profiler:

[Leak]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer
keyword = allocation
detail = leak
active = true

Example 2 – Unmanaged. Tracking starts with application startup:

[Leak]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer
keyword = allocation
detail = deallocation
active = true

Neither of these points captures reflected allocation. To enable reflected allocation capture, simply append the
detail “reflection” to the point (detail = leak,reflection).

Configuring Lightweight Memory Diagnostics (LWMD)
The following example turns on collection diagnostics for collections that happened inside of the
com.mercury.mycomponent package. You can find this example in the auto_detect.points file. It is set to
active = false by default.

[Light-Weight Memory Diagnostics]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 122 of 263

keyword = lwmd
active = true

You also need to set the property lwm.diagnostics.capture=true in the dynamic.properties file. For more
information, see the Diagnostics User Guide chapter on the "Collections and Resources View."

Configuring Collection Leak Pinpointing
Regardless of JRE version, youmust run the JRE Instrumenter using the appropriate mode for your
application server if you want to use the collection leak pinpointing (CLP) feature in the Java Agent. "Preparing
Application Servers for Monitoring with the Java Agent" on page 30 for details on instrumenting the JRE.

In the dynamic.properties file you can set the following properties to configure collection leak reporting.
These same values can also be set in the Java Profiler Configuration tab UI (see "Enabling and Configuring
Collection Leak Reporting" on page 189).

clp.diagnostics.reporting=true

Enable reporting in the Diagnostics UI. You can disable reporting in the UI for this feature by unchecking the
checkbox.

clp.diagnostics.growth.time.threshold.flag = 60m

The threshold of time duration in which the collection has size growth. If a collection's size growth period
exceeds this threshold, it will be flagged as amemory leak by the probe. To avoid false positives, this value
should be larger than the time required by your application to fully initialize all its caches.

clp.diagnostics.nongrowth.time.threshold.unflag = 60m

For an already flagged leaking collection, if its size stops growing continually for this threshold time period, the
probe will unflag it as a leak.

Enabling Object Lifecycle Monitoring for JDBCResult Set
A few preconfigured instrumentation points allow object lifecycle monitoring but are disabled by default. Two
of them are shown in the following example.

The example shows how to enable object lifecycle monitoring for JDBC Result Sets. For amore detailed
discussion on object lifecycle monitoring, see "Object Lifecycle Monitoring" in the Diagnostics User Guide.

For this example, two actions are required:

1. Go to inst.properties and find details.conditional.properties. Set
mercury.enable.resourcemonitor.jdbcResultSet=true

2. Specify the scope in the corresponding open instrumentation points (shown below).
In the following, the probe performs object lifecycle monitoring for JDBC Result Sets inside package
com.mycompany.mycomponent.

[Lifecycle-JDBC-ResultSet-Open]
scope = !com\.mycompany\.mycomponent\..*
class = java.sql.Statement
method = !(getResultSet.*)|(executeQuery.*)
signature = !.*\)Ljava/sql/.*ResultSet;

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 123 of 263

detail = condition:mercury.enable.resourcemonitor.jdbcResultSet,lifecycle,caller

[Lifecycle-JDBC-ResultSet-Close]
class =
!(java\.sql\.ResultSet)|(weblogic\.jdbc\.wrapper\.ResultSet)|
(com\.ibm\.ws\.rsadapter\.jd
bc\.WSJdbcResultSet)
method = !(close)|(closeWrapper)
signature = !.*
deep_mode = soft
detail =
condition:mercury.enable.resourcemonitor.jdbcResultSet,before:code:513a2b36,metho
d-trim

Adding a Disabled Point and Enabling it at Runtime
In the following example, the point is disabled. This does not mean that instrumentation does not happen.
Instrumentation happened but did collect any data. This significantly lowers the runtime overhead of such a
point.

To enable data collection while the application is running, go to the Layer page in the (http://<probe-
host>:<probe-port>/inst/layer or from the Profiler select the Configuration tab and then select View
instrumentation), look for layermyLayer, and click Enable.

[My Example]
class = Example
method = !.*
layer = myLayer
detail = disabled

If you do not want instrumentation to happen at all, use active=false. However, such a point cannot be
enabled at runtime.

Specifying that a Method Should Never be Trimmed
In the following example, latency trimming does not apply to Example.myMethod().

My Example]
class = Example
method = myMethod
detail = method-no-trim

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 124 of 263

Specifying that a Method Should Always be Trimmed
In the following example, themethod Example.myMethod() is not reported. However, any code snippets
associated with the point will always be executed.

[My Example]
class = Example
method = myMethod
detail = method-trim, before:code:...

Enabling Collection of CPU Time for a Method
In the following example, the detail “method-cpu-time” causes the CPU time to be collected for method
Example.myMethod().

[My Example]
class = Example
method = myMethod
detail = method-cpu-time

Changing SAP RFC Instrumentation Based on SAP JCO
Library Version
In the <agent_install_directory>/etc/inst.properties file there are two points defined depending on the
version of SAP JCO used. Comment out the version you are not using. Starting with version 2.1.10 or later
use com.mercury.opal.capture.inst.SapRfcinstrumentationPoint2_1_10. Otherwise the default setting will
work for version 2.1.9 and earlier.

Printing Instrumentation and Runtime Information for a Point
(Debugging Only)
The following example prints several pieces of debug information in standard out and probe.log.

l The gen-instrument-trace detail causes printing to stdout the thread stack trace whenever this point is
used to instrument amethod.

l The gen-runtime-trace causes printing to stdout the thread stack trace whenever Example.myMethod() is
run.

l The trace detail causes printing in the probe.log verbose instrumentation information whenever
Example.myMethod() is run.

[My Example]
class = Example
method = myMethod
detail = gen-instrument-trace, gen-runtime-trace, trace

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 125 of 263

Understanding the Overhead of Custom
Instrumentation
When you are creating custom instrumentation, beware of over-instrumenting the application because it can
introduce excessive latency into the probed application. Excessive latency arises from an increase in the
classloader latency as more andmore classes are instrumented. The custom instrumentation does not have
the same impact on themethod latency or the CPU overhead because the overhead of instrumentation is
nearly fixed for every method because the amount of bytecode is almost always the same. This means that
the physical percentages of the CPU and latency overhead will vary in direct proportion to the length of time
themethod takes to run.

For example, if a method takes 100ms, and instrumentationmakes it run in 101ms, overhead is 1%. If a
method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%. If this method is not
called very often, its overall latency effect on the application is minimal. However, the overall latency effect of
an instrumentedmethod that is calledmore frequently can affect the latency of the application’s response
even though its overhead percentage is much smaller.

Unlike a traditional profiler, Diagnostics uses bytecode instrumentation. This allows the default
instrumentation to be selective tominimize the overhead caused by instrumentation to an average of 3-5%.
Methods with higher latency overhead introduced by instrumentation are only instrumented when they are
called infrequently in relation to other components in the application and when the instrumentation provides
specific information needed for triage activities (for example, JNDI lookups).

You should also consider Diagnostics data overhead when you are customizing the instrumentation for an
application. Themoremethods you instrument, themore data the probemust serialize and pass over the
network to the Diagnostics Server. You can tune the Java probe’s default configuration so that it can adjust
the volume of Diagnostics data to avoid any unnecessary effect on the performance of the system being
monitored. Improper tuning of a probe can cause CPU, Memory and Network overhead on the physical
machine where the Java Agent is installed. For more information about managing Latency, CPU, Memory and
Network overhead, see "Advanced Java Agent and Application Server Configuration" on page 158

Instrumentation Control on a Per Layer Basis
By default, the layers defined in the capture points file are enabled. If you include the details=disabled
argument in a point, the layer is disabled when the probe is started.

The classmap provides the capability to dynamically instrument methods and classes using the JVMTI
interface without restarting the JVM instance. All other virtual machines require that the JVM instance be
restarted to apply changes youmake to the capture points files.

Once instrumentation is placed within amethod, its data collection and running CPU andmethod latency
overhead can be controlled on a per layer basis (see the Instrumented Layers page below).

You can access the Instrumented Layers page from the URL:

http://<probe-host>:<probe-port>/inst/layer.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 126 of 263

To disable a layer from the Instrumented Layers page, click theDisable link associated with the layer on the
page. The layer is disabled and the link toggles to Enabled so that you can enable the layer again when
necessary.

Instrumented Location Throughput Throttling
In some cases, an instrumentation point instruments amethod which is executed very frequently. This may
significantly increase the probe overhead for the application thread and can also overload the probe by
generating large amounts of data to process.

You can limit the number of events (instrumentedmethod calls) per second that the probemonitors. The
threshold, in events per second, is configurable, but when set applies to all instrumented points. The event
counters are shared by all threads.

For instrumented points that reach the configured threshold, the probe attempts to provide the real throughput,
in events/second, by recording this number in the probe.log. In the Diagnostics Enterprise or Profiler UI, the
displayedmetrics are for the number of method calls up to, but no higher than, the configured threshold.

To set the threshold:

1. Configure the required number (whichmust be a non-negative value) in the
location.maximum.throughput parameter in the <agent_install_directory>/etc/capture.properties
file.

2. Ensure that the settings.override.authorization parameter in the <agent_install_
directory>/etc/probe.properties file is set to true.

For example, if the location.maximum.throughput parameter is set at 1000, when an instrumentedmethod
has been called 1000 times in a second, the probe stops collectingmetrics for this method, although it does

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 127 of 263

keep counting the number of method calls in that second. The UI displays metrics for the first 1000 calls only
and an entry may be written to the probe.log with the actual number of themethod calls for that second.

Advanced Instrumentation Examples
This section includes:

l "Using Caller Side Instrumentation" below
l "Capturing HTTP Server Requests Based onQuery Parameters" on the next page
l "CORBA Cross VM Instrumentation" on page 130
l "Using RMI Instrumentation" on page 131
l "Using Thread Local Storage to Store the SOAP Payload" on page 131
l "Performing Correlation Across Multiple Threads" on page 132
l "Using Fragment Local Storage to StoreWeb Service Field" on page 133
l "Using Annotations for Custom Instrumentation" on page 136

Using Caller Side Instrumentation
By default, all instrumentation in Diagnostics is called side instrumentation where the bytecode is placed
within themethod call. Caller side instrumentation refers to the process of placing the bytecode for
measurement around the call to themethod to be instrumented instead of within.

Caller side instrumentation allows finer control of instrumentation placement, but can increase application
classloader time because each class specified in the scopemust be checked for references to the
class/method specified in the points.

A common use for caller side instrumentation is to instrument calls to methods in rt.jar. Classes loaded into
the virtual machine using the bootclassloader and not from a conventional class loader cannot be directly
instrumented. To instrument calls to thesemethods, youmust use caller side instrumentation.

In the following example, the parsemethods for the javax.xml.parsers.SAXParser and
javax.xml.parsers.DocumentBuilder are instrumented by placing bytecode around the calls to parse in any
(!.*) method from any class. Caller side instrumentation is required because both the
javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder classes are contained in the rt.jar
and loaded into the virtual machine by the bootclassloader.

[XML-DOM-JDK14]
;---------- Interface --------------
Class = !javax\.xml\.parsers\.(SAXParser|DocumentBuilder)
method = parse
signature = !.*
scope = !.*
layer = XML

In the following example, instruments calls to javax.naming.Context's "lookup" method that are called from
the com.myCompany.myFoo classes and places them in the JNDI sublayer in the FOO layer.

[JNDI-lookup-FOO]

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 128 of 263

;------------- Server side JNDI hook --------------
class = javax.naming.Context
method = lookup
signature = (Ljava/lang/String;)Ljava/lang/Object;
scope = !com\.myCompany\.myFoo\..*
deep_mode = soft
layer = FOO/JNDI

Note: To verify that the point has caused the bytecode to be properly placed, check the <agent_Install_
dir>/log/<probeName>/detailReport.txt file for the entries Unique Header Name (that is, [JNDI-lookup-
FOO]).

During final triage steps for a performance issue, it can be impractical to use the classmap and individual
build points for every method called by a suspect area of the application. It is very common to use one or
more levels of caller side instrumentation to identify the time spent within an individual method or
methods that have a suspected bottleneck. This is a useful way to fill in the next level to a Call Profile in
Diagnostics.

The following example instruments any call to amethod that is performed within the
com.myCompany.myFoo class by the "myMethod" method:

[MethodsCalledByFoo.myMethod]
class = !.*
method = !.*
scope = !com\.myCompany\.myFoo\.myMethod.*
layer = FOO/other

The following example also captures the arguments to any "set" method called in com.myCompany.myFoo
class by the "myMethod" method:

[SetMethodsCalledByFoo.myMethod]
class = !.*
method = !set.*
scope = !com\.myCompany\.myFoo\.myMethod.*
detail = args:1
layer = FOO/other

Capturing HTTP Server Requests Based on Query
Parameters
Applications typically use the sameURL to access different workflow. If the application uses a URI argument
(for example, http://<myserver>/myApplication/Browse?Genre=metal) to differentiate between the
workflow, Diagnostics can be configured to parse and treat the different URIs as different server requests.

URI aggregation is controlled from the [HttpCorrelation] point. A valid regular expression entry for args_by_
class should be created for each URI pattern.

For example, setting args_by_class as follows:

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 129 of 263

[HttpCorrelation]
args_by_class=!.*&Genre

results in the following ServerRequests appearing uniquely in the Diagnostics console:

http://<myserver>/myApplication/Browse?Genre=Metal
http://<myserver>/myApplication/Browse?Genre=Pop
http://<myserver>/myApplication/Browse?Genre=Reggae
http://<myserver>/myApplication/Browse?Genre=Rock

You can configuremore than one URI parameter to be used for URI parsing in the args_by_class setting. For
example:

args_by_class=!.*&Genre&Category

Note: Avoid using a session parameter or highly unique URI value because of the impact to overhead
and data storage.

In aWebLogic environment, set the use.weblogic.get.parameter=true in <agent_install_
directory>/etc/inst.propertieswhen using URI aggregation to prevent URI aggregation from consuming the
ServletRequest's inputstream.

CORBA Cross VM Instrumentation
The CommonObject Requesting Broker Architecture (CORBA) standard enables components written in
different computer languages and running on different systems to work together.

Instrumentation for correlating CORBA cross VM instance trees is provided in the <agent_install_
directory>\etc\auto_detect.points file.
Follow these steps in to enable cross-VM instance trees for CORBA:
1. Uncomment the Corba cross-VM points in the auto_detect.points file.
2. Specify the following JVM argument at Application Server startup:

-

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 130 of 263

Dorg.omg.PortableInterceptor.ORBInitializerClass=com.mercury.opal.javaprobe.handl
er.corba.CorbaORBInitializer

3. Put the following jar file in the classpath:

<java-agent-install-dir>/lib/probeCorbaInterceptors.jar

Using RMI Instrumentation
The RMI (Cross-VM) point in the capture points file is inactive by default. Youmust activate this point to
capture the cross-vm processing in the application. If you have Java probes with this point activated on both
sides of an RMI call, Diagnostics can correlate the call tree data from both virtual machines.

[RMI]
keyword = rmi
layer = CrossVM
active = false

RMI Instrumentation In a Clustered Environment

Theweblogic.t3.rmi property in the <agent_install_directory>/etc/inst.properties file controls how the
RMI instrumentation captures Cross-VM RMI performancemetrics. By default, weblogic.t3.rmi is set to
false,which causes the performancemetrics to be gathered using the generic RMI instrumentation. In a
clustered environment, all servers in a cluster must have RMI instrumentation turned on to avoid application
failure whenweblogic.t3.rmi is set to false.

Whenweblogic.t3.rmi is set to true, the generic RMI instrumentation is disabled, and the RMI Cross VM is
captured using only WebLogic’s T3 protocol. This allows the Java probe to function with only some of the
servers in a cluster probed with RMI instrumentation enabled.

Using Thread Local Storage to Store the SOAP Payload
The following example demonstrates usage of thread local storage. In particular, it shows how to store (and
clean) the SOAP payload from thread local storage. SOAP payload is captured by default only for certain
application servers. For more information on the support matrix, see "Configuring SOAP Fault Payload Data"
on page 182.

The following example is applicable only for application servers where Diagnostics does not capture payload
out of the box.

First, it is necessary to identify where to access the payload from. Assume that the payload is the second
argument of amethod called DispatchController.dispatch().

The keyword store-thread causes the Java probe to store the special fields in the corresponding code snippet
(in this case, My_Inbound_Payload) into thread local storage. This can be referenced from a different code
snippet provided both points are hit on the same thread. Looking up the payload is demonstrated in the next
example ("Using Fragment Local Storage to StoreWeb Service Field" on page 133).

[MyAppServer-SoapPayload-Capture]

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 131 of 263

class = com.myCompany.DispatchController
method = dispatch
signature = !\(Ljava/lang/Object;Ljava/lang/Object;\).*
layer = Web Services
detail = before:code: ae7f0a58,store-thread

Used by [MyAppServer-SoapPayload-Capture]
ae7f0a58 = ##My_Inbound_Payload=#arg2;"";

Performing Correlation Across Multiple Threads
Asynchronous Server Requests are server requests that switch threads between server request start and end
events. In themost simple case, one thread receives the request, partially processes it, and then hands it off
to another thread to complete processing and to send the response back to the requesting party.

Diagnostics offers two operations, available through code snippets, to allow the Java agent to perform
correlation across multiple threads:

l parkFragment(Object anchor)
This operation is executed to indicate that the current thread will no longer run the current server request.
All method invocations, as recorded by the Java Agent, are artificially terminated at this point. This is to
indicate that even though some of thesemethods will continue execution, their activity will have nothing to
do with the current server request. Furthermore, even if the current thread will invoke some instrumented
methods after calling parkFragment, these calls will not be reported. The server request is no longer
considered running, and the specified object (anchor) is used by the application as a unique identification
of the server request to be resumed later (presumably, by another thread).

l resumeFragment(Object anchor)
This operation is executed to indicate that the current thread resumes execution of previously parked
server request. The argument (anchor) is used to identify the server request. All activemethod invocations
will have their start time artificially reset to the current time. This is to indicate that even though some time
may have elapsed while thesemethod were executing, their execution had nothing to do with the server
request being resumed. If the current thread was already running a server request, it will be ignored
(dropped).

When using these operations, it is essential that the correct anchor object, as well as the correct thread
switching points are identified by the application specialist.

Beware of race conditions: if the fragment is reported "parked" too late, after the corresponding resume
operation is performed, the fragment will get lost (and a warning will appear in probe.log). Two useful
techniques to avoid the race condition are: first, calling parkFragment slightly before the current thread really
abandons the server request, and second, try to piggyback the application built-in synchronization which is
often used to hand off an object from one thread to another.

A "parked" fragment can be seen using the pending-fragment servlet, as "PARKED SERVER REQUEST"
displayed in place of the currently runningmethod.

The feature usually requires you to identify the thread switching points in themonitored application, and to
provide the corresponding instrumentation points with code snippets. Out of the box support is provided for
BEA AquaLogic.

Examples of two instrumentation points with the corresponding code snippets are presented below. They are
a part of the AquaLogic support.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 132 of 263

The first point presented below is executed whenever AquaLogic sends a sub-request to another server. The
instrumentedmethod, PipelineContextImpl.dispatch(...) returns true if the sub-request was successfully sent.
The thread sending the sub-request does not wait for a response, but proceeds to pick up the next server
request from a pipeline.

Therefore, the code snippet examines the return value, and if it is true, signals to the probe that the current
server request will be suspended. The server request is identified by aMessageContext object, which
AquaLogic creates for every incoming server request.

[BEA_ALSB_AsyncDispatch]
; instrumentation point for AquaLogic Service Bus asynchronous dispatch
class = com.bea.wli.sb.pipeline.PipelineContextImpl
method = dispatch
signature = !\(Lcom/bea/wli/sb/context/MessageContext;.*
detail = after:code:549b1b59
layer = Service Bus/AquaLogic

Used by [BEA_ALSB_AsyncDispatch]
Asynchronously dispatches a subrequest for a service, the response will be
processed on another thread
549b1b59 = (#return == true ?
@ThreadContextProxy@.parkFragment(#location,#arg1) : void);

Upon receiving a response from the sub-request, AquaLogic executes RouterCallback.onReceiveResponse
(...), possibly on another thread. The processing of the original server request resumes, and this is signaled to
the probe by the code snippet.

In this case, theMessageContext object representing the server request is not available as an argument of
the instrumentedmethod and needs to be extracted from the RouterCallback object.

[BEA_ALSB_ProxyService_Callback_Response]
; instrumentation point for AquaLogic Service Bus callback function
class = com.bea.wli.sb.pipeline.RouterCallback
method = !(onError)|(onReceiveResponse)
signature = !.*
layer = Service Bus/AquaLogic
detail = before:code:dba72078

Used by [BEA_ALSB_ProxyService_Callback_Response]
Resume processing of a server request when the reply for a subservice comes back
(or when the server request was moved to the response pipeline internally)
dba72078 =
@ThreadContextProxy@.resumeFragment(#location,#callee._context.getMessageCon
text());"";

Using Fragment Local Storage to Store Web Service Field
The following example demonstrates several features of points and code snippets:

l How to use fragment local storage to store web service-specific fields (ws_name, ws_op, and so on). This
is an alternative to specifying the “DIAG_ARG” string.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 133 of 263

l How to retrieve (and remove) the stored payload from thread local storage (which was stored in the
previous example).

l How to extract the consumer ID out of the SOAP payload.
l How to use fragment local storage to store the consumer ID.
Because web services are treated in a special way, several fields must be captured. These fields are
described in "Code Snippet Grammar" on page 104.

The first step is to find the instrumentation points that will give access to the required fields (Web Service
name, operation, namespace, port name). Suppose that there is a single class in the instrumented application
that has access to all these fields. Assume that this class is called com.myCompany.MyWSContext. We
need to access an instance of this class when all the above fields are set. There can bemany options.
Suppose that one such option is whenMyWSContext is passed as the first argument of amethod
MyWSFactory.create(). This is themethod wewant to instrument.

Here is our instrumentation point (each line is explained below):

class = com.myCompany.MyWSFactory
method = create
signature = !\(Lcom/myCompany/MyWSContext;.*
layer = Web Services
detail = ws-operation, before:code: f334f0b4,store-fragment

The first three lines of the point shown above cause the probe to instrument anything that matches
com.myCompany.MyWSFactory.create(MyWSContext, *).

The fourth line specifies the layer for this point.

The fifth line provides the probe with additional information about this point (details):

l The first detail (ws-operation) is important because it causes the probe to treat this as an inboundWeb
Service.

l The second detail (before:code: f334f0b4) causes the probe to insert the corresponding code snippet at the
start of themethods that comply with this point. The actual code snippet is shown below. The number
f334f0b4 was generated by going to
http://<probe-host>:<probe-port>/inst/code-key and pasting the code snippet in the text box.

l The third detail (store-fragment) causes the probe to store all special fields (##) found in the corresponding
code snippet as attributes of the server request.

Here is the corresponding code snippet (each line of the below code snippet is explained below).

f334f0b4 = #wsContext=#arg1;\
##WS_inbound_service_name=#wsContext.getServiceName();\
##WS_inbound_operation_name=#wsContext.getOperationName();\
##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\
##WS_inbound_port_name=#wsContext.getEndpoint();\
#soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("My
_Inbound_Payload");\
#consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDo
cument(##WS_inbound_service_name<java.lang.String>,#soap_payload<org.w3c.do

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 134 of 263

m.Document>));\
##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

First line: f334f0b4 = #wsContext=#arg1;\

As mentioned previously, the number f334f0b4was generated by going to http://<probe-host>:<probe-
port>/inst/code-key and pasting the code snippet in the text box. The actual code snippet starts after
f334f0b4 =. The first expression is #wsContext=#arg1. It simply assigns the first argument of the
method—in this case, aMyWSContext object—to a local variable (wsContext).

Second line: ##WS_inbound_service_name=#wsContext.getServiceName();\

This expression uses fragment local storage to store the service name. It is important to use the exact
variable name (WS_inbound_service_name). These variable names are documented in the “Special Fields”
section of "Code Snippet Grammar" on page 104.

Third line: ##WS_inbound_operation_name=#wsContext.getOperationName();/

This expression uses fragment local storage to store the ws operation. It is important to use the exact variable
name (WS_inbound_operation_name). These variable names are documented in the “Special Fields” section
of "Code Snippet Grammar" on page 104.

Fourth line: ##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\

This expression uses fragment local storage to store the ws namespace. It is important to use the exact
variable name (WS_inbound_target_namespace). These variable names are documented in the “Special
Fields” section of "Code Snippet Grammar" on page 104.

Fifth line: ##WS_inbound_port_name=#wsContext.getEndpoint();\

This expression uses fragment local storage to store the ws port name. It is important to use the exact
variable name (WS_inbound_port_name). These variable names are documented in the “Special Fields”
section of "Code Snippet Grammar" on page 104.

The above first five lines are sufficient to successfully capture the inboundWeb Service. The remaining of the
code snippet deals with capturing the consumer ID out of the SOAP payload. This is optional and only if the
instrumented application server is not one of the application servers supported for capturing SOAP payload
out of the box. See the previous example for details. In the followings example, we refer to the SOAP payload
that was captured in the previous example.

Sixth line: #soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getAndRemoveThreadContextValue("My_
Inbound_Payload");\

This expression retrieves and removes the stored payload from thread local storage (see the previous
example on how this was stored) and stores it on a local variable (soap_payload).

Seventh line: #consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDocument(##WS_
inbound_service_name<java.lang.String>,#soap_payload<org.w3c.dom.Document>));\

This expression sets a consumer_id local variable. If the payload is null, the consumer_id is set to null.
Otherwise, we use the service name to perform consumer ID matching based on the consumer.properties
entries. For more information on consumer ID matching, see "Configuring Consumer IDs" on page 175.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 135 of 263

Eighth line: ##WS_consumer_id = (#consumer_id == null ? @ProbeCodeSnippetHelper@DO_NOT_
STORE : #consumer_id);"";

In this final line, this consumer ID local variable becomes the consumer id for this server request. It is
important to use the exact variable name (WS_consumer_id). These variable names are documented in the
“Special Fields” section of "Code Snippet Grammar" on page 104.

Using Annotations for Custom Instrumentation
Applications can “force” the instrumentation of methods by simply using a custom annotation
(InstrumentationPoint) that is contained in the annotation.jar file in the Diagnostics Java Agent lib directory.
Put a copy of this file in your classpath when compiling your classes using the InstrumentationPoint
annotation. The annotation is defined as follows (InstrumentationPoint.java):

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
* --
*/
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = ElementType.METHOD)
public @interface InstrumentationPoint {
String layer();
String keyword() default “”;
String layerType() default “method”;
String detail() default “”;
String code() default “”;
Boolean active() default true;
}

This feature requires that the look.for.annotations property in inst.properties is set to true (default).

Development

1. Add the path to the annotation.jar (or copy the jar into your application) file found in the Diagnostics Java
Agent lib directory to your application build classpath.

2. Import the classes for any methods that need to bemonitored:

import com.mercury.diagnostics.common.api.InstrumentationPoint;

3. Identify methods to bemonitored and add the annotation:

@InstrumentationPoint(ARGS)

public void launchTest4()

In this instance, ARGS includes the following (refer to points file documentation for more information about
what these arguments mean):

l layer="layer name"
l keyword= "keyword"
l layerType="type"

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 136 of 263

l detail="details"
l active="true/false"
Example

The following example shows code that uses the InstrumentationPoint annotation.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
--
*/
import com.mercury.diagnostics.common.api.InstrumentationPoint;

…
@InstrumentationPoint(layer=”my_app”,detail=”diag,method-no-trim,method-cpu-tim

e”)
public void myMethod1(Object x, String y) {

…
}

In the example, myMethod1 will get instrumented and be visible as a node in all instance trees. It will not get
trimmed, even if its latency goes below theminimummethod latency threshold (51ms by default). The
inclusive (including children) CPU consumption by this method will bemeasured and reported.

Configuring Cross VM Correlations for New or
Custom
Technologies
Diagnostics can show call profiles that spanmultiple Java virtual machines (JVM). These Cross VM call
profiles and topologies are very useful when a performance issue involves a client and a server. You want to
know which application is the source of the problem but looking at the call profile for the client or server
individually may not help with intermittent issues since they would not be correlated. The Cross VM call profile
will show the client and the server correlated together in a single call tree.

Out-of-the-box the Java Agent provides support for this feature for many different technologies: for example,
JMS, HTTP/S (Web Services only), RMI, SAP, TIBCO and Corba. With the latest version of Diagnostics,
additional support was added to help you configure cross VM correlation for new or custom technologies.

The Cross VM correlation technique is exposed in code snippets, allowing you to prepare instrumentation
points and code snippets to correlate almost any inter-process communication, including home-grown and
legacy communication techniques. The only requirement for the communication technique is that its
messages be able to carry an additional string, which is referred to as coloring.

The coloring string is created on the client side by the Java Agent, and attached to the outgoingmessage by a
user-written code snippet. After themessage is received, a user-written code snippet on the server side
extracts the coloring from themessage and passes it to the server side agent for parsing and processing.

Thus, your responsibility related to the cross-vm communication technique is primarily limited to embedding
the coloring into the outgoingmessages, and extracting the coloring from the receivedmessages. This, of
course, includes identifying the code locations (instrumentation points) for the client side (the outbound point),
and for the server side (the inbound point). Refer to "Tutorial for Configuring Cross VM Correlation for Custom
Technologies" on page 140 for a detailed example. And refer to "APIs Used to Facilitate Custom Transport

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 137 of 263

Cross-VM Correlations" on page 139 for information on the three APIs provided to help you configure custom
cross-vm correlation.

Client Side
For the outbound calls (the client side), use the new outbound:<coloring-type> detail.

The available coloring types are:

l default
l sap
l none
l snippet
For all coloring types except none, there should be an associated code snippet, which will provide a special
argument containing the technology type, the call target name and identification.

The argument has the following form:

DIAG_ARG:type=<type>&name=<name>&target=<target>

where <type> is the technology type used for the remote call, and <name> and <target> are technology
dependent values. The technology type should be the same as the one used for the inbound instrumentation
point (see "Server Side" on the next page).

For all coloring types except snippet, the probe will generate the appropriate coloring and it will report the
coloring to the Diagnostics Server for future correlation. However, the outgoingmessage remains unmarked
at this time.

For all coloring types except none, a code snippet for another instrumentation point (which is hit after the
outbound point, preferably during the outboundmethod execution) must attach the generated coloring to the
outgoingmessage.

Themost recently generated coloring can be obtained by calling ICorrelationColor
RemoteCaptureProxy.getCurrentColor(#location).

In developing support for your own cross-vm communication, youmay use snippet, whichmeans that the
coloring will be explicitly created by a direct call from a code snippet. For the snippet coloring the above order
is reversed, whichmeans the coloring is generated (and, most often, immediately attached to themessage)
before the outbound point is hit. Please note that this includes a case where the before code snippet for the
outbound point creates the coloring, because the code snippet will be executed before the agent is called.

To create the coloring from code snippets:

1. Make a call to
ICorrelationColor RemoteCaptureProxy.createColoring(#location, <type>, <diag-arg>)
For type, use
l RemoteCaptureProxy.ENCODED_COLORING for default

l RemoteCaptureProxy.SAP_R3_COLORING for sap

If in doubt which type to use, use the default.
2. Make a call to grabCorrelationString() on the object returned in step 1, and insert the returned string into

the outgoingmessage (using a technology-dependent technique). This is where you can use your
creativity.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 138 of 263

Tip: If using Stringmessages, use the following helper API to accomplish this step:

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

3. Hit an instrumented point with the outbound:snippet detail. This will automatically use themost
recently created coloring instead of creating a new one. Executing the outbound point informs the probe
that the coloring was actually used, and identifies themethod which will be considered the connection
point for cross-vm call profiles. For synchronous cross-vm communication it is recommended to use
outbound detail for amethod that is used to both send themessage and receive an acknowledgment, so
the latency of the outbound call can be properly captured.

Server Side
For the inbound calls (the server side), use the inbound:<technology-type> detail. Use your own technology
type names when supporting new cross-vm technologies. Check to avoid conflicts with existing technology
names (server request types). Examples of server request types include: ADO, CICS, Corba, HTTP, JDBC,
JMS, MSMQ, RMI, Remoting (.NET), SAP ABAP types, Web Services. In addition, youmay see server
request types named Pseudo and RootRename.

The before code snippet has to perform the following steps:

1. Extract the correlation string from the incomingmessage, using the technology-dependent technique,
corresponding to the one used for the outbound calls.
Tip: If the ProbeCodeSnippetHelper.createDiagEnvelope() was used previously, use
ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope) to get the correlation
string.
And use ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope) to get
the original message.

2. Leave TWOStrings on the stack: the capture argument (as any before code snippet should), and the
extracted correlation string.

APIs Used to Facilitate Custom Transport Cross-VM
Correlations
Three helper APIs were added to facilitate custom transport cross-VM correlations (see the tips in the
sections above and see "Code Snippet Helper" on page 106 for information on their use. There is also a
"Tutorial for Configuring Cross VM Correlation for Custom Technologies" on the next page to walk you
through an example.

l ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String originalMessage)

l ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope)

l ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope)

HTTP/S Support
The support for the server side HTTP/S is built in and is enabled by default. The Java Agent automatically
recognizes standard J2EE implementation of HttpServlet, as well as Jetty and Apache Catalina
implementations. No user action is required on the server side, if one of these technologies is used.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 139 of 263

For the client side, the Java Agent automatically instruments the openConnectionmethod from the
java.net.URL class, to embed themost recently generated coloring (if it exists) into the outgoing HTTP
request. One of the HTTP request headers is used to carry the coloring. The header will be recognized by the
server side agent.

Therefore, HTTP support on the client side is an exception to the above rules. You still have to provide the
outbound point and the corresponding DIAG_ARG, but you do not have to worry about embedding the coloring
into the outgoingmessages.

For example, Diagnostics mediators use the following point:

[RemoteHttpComponent-Outbound-1]
class = com.mercury.diagnostics.common.net.registrar.RemoteHttpComponent
method = getConnection
signature = (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;Ljava/lang/String;)Ljava/net/HttpURLConnection;
priority = 1
detail = method-no-trim,outbound:default,before:code:7b1125e2
layer = Network.RemoteHttpComponent

The first argument for the getConnectionmethod is a String representing the connection URL. The referred
code snippet extracts from it the hostname and port and uses them for the target identification. A special utility
method is provided by RemoteCaptureProxy to facilitate this conversion in a way consistent with the built-in
part of the HTTP/S support.

7b1125e2 = #target=@RemoteCaptureProxy@.getTargetFromUri(#arg1); \
"DIAG_ARG:type=http&name="+#target+"&target="+#target;

Tutorial for Configuring Cross VM Correlation for
Custom Technologies
This tutorial takes a simplified client-server application that uses a shared blocking queue as its custom
transport solution. The client sends a "String" message by adding it to the queue. The server receives a
"String" message by removing it from the queue.

Although this example runs in a single JVM (to keep it simple), it uses two threads to simulate an application
running in two JVMs. (If your intention is to correlate threads running in a single JVM, there is a simpler
solution that will help you do this. See"Performing Correlation Across Multiple Threads" on page 132 for more
details).

The sample code is shown below:

public class SimulatedCrossVM {

private static int INTERVAL = 5 * 1000; // 5 seconds
private static BlockingQueue<String> queue = new LinkedBlockingQueue<String>();
private static class ReceiverSide extends Thread {

public ReceiverSide() {

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 140 of 263

super("Receiver");
}
public void execute(String receivedString) throws InterruptedException {
System.out.println("Executing message: " + receivedString);
sleep(2 * INTERVAL);

}
private void receiveAndHandleMessage() throws InterruptedException {
String message = null;
message = queue.take();
// Handle it
execute(message);

}

public void run() {
try {
while (true) {
receiveAndHandleMessage();
}

}
catch (Throwable t) {
// oops
t.printStackTrace();

}
}

}
private static class SenderSide extends Thread {

// For simulated TCP connection
private String destHost;
private int destPort;
public SenderSide(String host, int port) {
super(host + ":" + port);
destHost = host;
destPort = port;

}
public void sendMessage(String origMessage) throws InterruptedException {
queue.put(origMessage);

}
private String generateMessage() {
String message = "T" + System.currentTimeMillis();
return message;

}
private void generateAndSendMessage() throws InterruptedException {
sleep(2 * INTERVAL);
// generate message
String message = generateMessage();System.out.println("Sender's original message: "

+ message);
// And send it (outbound call)
sendMessage(message);

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 141 of 263

sleep(INTERVAL);
}

public void run() {
try {
while (true) {
generateAndSendMessage();

}
}
catch (Throwable t) {
// oops
t.printStackTrace();

}
}

}

public static void main(String[] args) {
SenderSide sender = new SenderSide("fake-host", 12345);
ReceiverSide receiver = new ReceiverSide();

sender.start();
receiver.start();

}
}

Executing this code will have the following output:

Sender's original message: T1313785958127

Executing message: T1313785958127

Step 1: Instrument Your Methods
By instrumenting your methods, you let Diagnostics know whichmethods are important. Since these
methods are custom, the out-of-the-box instrumentation points won't do anything. Edit the
etc/autodetect.points file by adding the following instrumentation points. See "Maintaining Instrumentation
from the Java Profiler UI" on page 147 for guidance on defining instrumentation points.

[SimCrossVM-Sender]
class = SimulatedCrossVM$SenderSide
method = generateAndSendMessage
signature = !.*
layer = Sending

[SimCrossVM-Outbound]
class = SimulatedCrossVM$SenderSide
method = sendMessage

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 142 of 263

signature = !.*
layer = Sending

[SimCrossVM-Receiver]
class = SimulatedCrossVM$ReceiverSide
method = receiveAndHandleMessage
signature = !.*
layer = Receiving

[SimCrossVM-Inbound]
class = SimulatedCrossVM$ReceiverSide
method = execute
signature = !.*
layer = Receiving

Result: Running this instrumented test program, you see the following Server Requests:

Here are the call profiles shown for the sender and receiver.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 143 of 263

Step 2: Add “Coloring” to the Sender Logic
In this step, we add "coloring" to themessages sent by the client. When the instrumented server receives this
coloredmessage, Diagnostics will correlate them. You add code snippets for a point in the <agent_install_
directory>/etc/code/custom_code.properties file, This part is trickier, if you're not familiar with the code
snippet syntax, it is described in "Defining Points With Code Snippets" on page 103.

First, wemark themethod as an outbound point that uses a code snippet (outbound:snippet), and identify the
code snippet to execute before invoking themethod (before:code:5ea4753f). Since we're going to use the first
argument, it's a good idea to provide amore specific signature (!\(Ljava/lang/String;.*).

[SimCrossVM-Outbound]
class = SimulatedCrossVM$SenderSide
method = sendMessage
signature = !\(Ljava/lang/String;.*
layer = Sending
detail = outbound:snippet,before:code:eb2d751f

The corresponding code snippet is shown below. Line 1 creates a string (#target) that includes the hostname
and destination port of the server. Line 2 defines a new string (#diagArg) that follows a special syntax (DIAG_
ARG:type=<type>&name=<name>&target=<target>). The "type" is the technology type and can be any
name you choose; it will be used in the next step. The "name" and "target" are technology dependent values
that will be shown in the UI; they can also be anything you choose. Line 3 defines a third string (#color) which
will be used to identify this specific invocation of themethod call from any other. Line 4 updates themethod's
1st argument with the colored String, which will cause sendMessage to send amodified String. Finally, line 5,
places the coloring on the stack for usage by Diagnostics.

1. eb2d751f = #target=#callee.destHost+":"+#callee.destPort; \

2. #diagArg = "DIAG_ARG:type=CB-TCP&name=Senders.sendMessage&target="+#target; \

3. #color = (null == #arg1 ? null : @RemoteCaptureProxy@.createAndGrabColor(#location,
@RemoteCaptureProxy@ENCODED_COLORING, #diagArg.toString())); \

4. #arg1 = @ProbeCodeSnippetHelper@.createDiagEnvelope(#color, #arg1);\

5. #diagArg;

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 144 of 263

Running the example updates the output as follows. Notice the receiving side did not get the same string
message that was sent. This is a result of the code snippet's Line 4. In many cases, the receiving sidemay
not handle this well. It's a good idea to note the receiver's behavior as this can happen "accidentally" if the
client and server are not both using the same instrumentation, and in particular, not both instrumented.

Sender's original message: T1313786970403
Executing message: MF_DIAG1_!Dhf/
ABAABKrh3Qf0cy7yaLsAAAAAAA9mYWtlLWhvc3Q6MTIzNDUAYTEzMTM3ODY5N
jAzODgmU2ltdWxhdGVDcm9zc1ZNJlNpbXVsYXRlZENyb3NzVk0kU2VuZGVyU2lk
ZS52b2lkIGdlbmVyYXRlQW5kU2VuZE1lc3NhZ2UoKSZcMCZcMCZcMCY=:T131378
6970403

At this point, the only change you'll see in the UI is some "Outbound Calls". Notice the values in the columns
"Outbound Call" and "Remote Target", these are the values you provided in the code snippet "name" and
"target".

Step 3: Remove Coloring from the Receiver Side
The last step is to remove the coloring on the receive side so that the receiver can get the original "uncolored"
message from the sender. First wemark the point as an inbound point with the technology type used in the
code snippet defined in step 2, and assign a code snippet to run before this method is called. Again, we also
specify amore specify signature since that argument will be used in the code snippet.

[SimCrossVM-Inbound]
class = SimulatedCrossVM$ReceiverSide
method = execute
signature = !\(Ljava/lang/String;.*
detail = before:code:d2c83d3c,inbound:CB-TCP
layer = Receiving

The corresponding code snippet is shown below. Line 1 extracts the coloring from the incomingmessage.
Line 2 updates themethod's 1st argument, restoring it to the original message sent by the client. Line 3 puts
the coloring on the stack (and an empty String) for use by Diagnostics.

1. d2c83d3c = #coloring=@ProbeCodeSnippetHelper@.extractColoringFromDiagEnvelope(#arg1); \
2. #arg1=@ProbeCodeSnippetHelper@.extractOriginalMessageFromDiagEnvelope(#arg1); \
3. "";#coloring;

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 145 of 263

The program's output is now restored to the original:

Sender's original message: T1313789287234

Executing message: T1313789287234

The Server Request view now shows a Cross-VM call profile is available for the Sender's
"generateAndSendMessage". Open this call profile and observe the client and server call profiles are now
stitched together! They're not doingmuch in this sample application, but in a real application, you would be
able to see if performance issues occur in the client, server, or both.

This call profile looks a bit strange but is typical for asynchronous applications. The client does not wait for a
response, but does continue to do some processing (err sleeping for 5 seconds). During that time the server is
processing the request and completes a few seconds afterwards. You will see the time durations for the
methods in the tree as shown below. Notice also the diamonds with the number 2 inside, which represent the
JVM depth. If your server made yet another outbound call, you could have 3 or more! In those cases, cross
VM correlation because especially useful. Imagine trying to find the source of a performance issue across that
many JVMs!

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 146 of 263

Maintaining Instrumentation from the Java Profiler UI
You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation points and
edit the probe configuration without having tomanually edit the Java Agent capture points file or property files.
You can access the Configuration tab from the Java Diagnostics Profiler whether profiling has been started or
not.

The Instrumentation section of the Java Diagnostics Profiler gives you access to view and update the
instrumentation for the application the probe is monitoring. The edit dialogs enable you to view and edit the
instrumentation points as defined in the capture points file that Diagnostics uses to instrument your
applications.

When you click Edit... for Shared Instrumentation, you are editing and changing the capture points files
shared among all probes on the hosts. By default this is <agent_install_directory>\etc\auto_detect.points,
however the probemay be using a custom capture points file. In that case you are editing the shared custom
capture points file. For more information about custom capture points files, see "About Instrumentation and
Capture Points Files" on page 96.

When you click Edit... for Instance Instrumentation, you are editing and changing the capture points file for
this session of the profiler on this probe only.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 147 of 263

Reviewing the Current Instrumentation
To review the layers, classes, andmethods that were instrumented as a result of the points in the current
capture points file, click View Currently Used Instrumentation in the Instrumentation section of the
Configuration tab. The Profiler displays the Instrumented Layers page:

The Instrumented Layers page lists the layers that were instrumented, the number of times the
instrumentation points in the layer were triggered, and the number of points currently active in the layer. The
following columns are provided:

Column Description

Layer Lists the layers that were instrumented. The layer names in this
column are links to a page that provides details about the processing
in the layer that was monitored by the probe. Note:Only the layers
defined in points that were actually instrumented are listed.

Hits Contains a count of the number of times that the classes and
methods that aremonitored by the points in the listed layer were
invoked. You can reset the count using theClear # of Hits link in the
Actions column.

Active Points Contains the count of the number of points that are currently active
as well as the total number of points that were defined for the
particular layer.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 148 of 263

Column Description

Actions Contains links that enable you tomanipulate the information for the
listed layers. The available action are:
Disable:Disables all of the points in the selected layer so that they
no longer capture data. The instrumentation stays in place and can
be enabled again. Enabling or disabling points here is effective only
until the next restart of your application. To change the default
enabled state for a point, see "Coding Points in the Capture Points
File" on page 98.

Clear # Hits: Resets the hit count displayed in the # Hits column for
the selected layer.

Maintaining the Instrumentation Points
Tomaintain the points that provide the instrumentation instructions that tell the probe what to monitor in your
application, navigate to the Configuration tab in the Java Diagnostics Profiler and click Edit... for either the
Shared Instrumentation or the Instance Instrumentation. The Instrumentation Points dialog opens:

You can edit the instrumentation in two ways: visually, using a list or tree of points on the Instrumentation
Points tab; or via the source of the capture points file on theSource tab.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 149 of 263

Selecting and Viewing an Existing Point
The navigation bar in the Instrumentation Points dialog helps locate the points in the capture points file that
you would like tomaintain. By making a selection from theView as dropdown, you can choose the format in
which the points are listed.

When you select Layers Tree from the dropdown, you see a list of the points in the capture points file in a tree
structure according to the layers and sublayers you assigned to the point:

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 150 of 263

When you select Points List from the dropdown, you see a list of the points in the capture points file in
ascending alphabetical order:

When you locate the point you want to view ormaintain, select the point in the navigation bar. Then you see
the details of the selected point in the view/edit panel where you canmaintain the point.

Updating an Existing Point
When you select a layer or sublayer from the navigation bar, the view/edit panel contains only a prompt to
remind you to select a point.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 151 of 263

To update an existing point, select the point from the navigation bar so that the Profiler displays the details for
the point in the Instrumentation Points tab of the view/edit panel:

The arguments that are commonly used when defining a point in the capture points file are displayed as
separate data fields tomake it easier for you tomake any necessary updates. More advanced arguments are
displayed in theAdvanced Attributes tab at the bottom of the display. Comments for the point are displayed
in theComment tab. After making changes click OK. And remember to apply all of the changes made using
the Configuration tab by clicking Apply Changes.

The arguments that can be used to define a point in the capture points file are documented in "Coding Points in
the Capture Points File" on page 98.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 152 of 263

The following is an example of the Source tab:

Deleting an Existing Point or Layer
You could delete a point or layer listed in the navigation bar.

To delete a point or layer:
1. Select the point or layer from the Navigation bar on the Instrumentation Points tab.

2. Click Delete Point (). The Profiler deletes the selected entity from the list in the navigation bar.

The selected entity is not actually deleted from the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

3. Close the Instrumentation Points dialog by clickingOK.
4. Apply all of the changes made using the Configuration tab by clickingApply Changes.
Adding a New Point
You could add a point to the instrumentation.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 153 of 263

To add a point:

1. Click New Point (). The Profiler displays the Select New Point Type dialog box:

2. Select the appropriate point type from the dropdown and click OK.
The Profiler displays the Instrumentation Points tab with the view/edit section initialized for creating a
new point for the selected point type.

3. Enter the arguments and comments for the new point into the appropriate locations on the tab.
When you enter the Layer information, the entry for the new point in the navigation bar is updated to show
the point in the correct existing layer or, if the layer that you specified does not already exist, with a brand
new layer.
The new point is not actually added to the capture points file until you apply all of your instrumentation
points updates from the Configuration tab in the Profiler.

4. Close the Instrumentation Points dialog by clickingOK.
5. Apply all of the changes made using the Configuration tab by clickingApply Changes.
Activating OVTA-like Points
Points are included in the Java probe instrumentation for Servlet Filters and EJB local homemethods. These
instrumentation points provide additional functionality similar to the OVTA (OpenView Transaction Analyzer)
JavaMonitor.

The ServletFilter point requires that the HttpCorrelation2 point also be activated for server filters to be
monitored correctly. This is because servlet filters sometimes are the first time Diagnostics sees an HTTP
server request.

The EJBLocalHome, ServletFilter, and related HttpCorrelation2 instrumentation points are not active by
default. Inactive points are indicated by a red symbol on the icon next to the instrumentation point, as shown
below. To use these points, set active=true in the auto_detect.points file through the UI or by directly editing
the file.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 154 of 263

Locate these points in the Profiler UI as described in "Selecting and Viewing an Existing Point" on page 150
and navigate to theBusiness Tier>EJB>LocalHome>EJBLocalHome point or theWeb
Tier>Servlet>ServletFilter point andHttpCorrelation2 point.

To set these points to active:
1. Select the point from the Instrumentation Points navigation bar so that the Profiler displays the details for

the point. Check the active check box.
2. Close the Instrumentation Points dialog by clickingOK.
3. Apply all the changes made using the Configuration tab by clickingApply Changes. Restart your

application server (which restarts the probe) for the newly activated points to take effect.
Restoring Default Points
When you finish diagnosing a problem using the Profiler or Diagnostics Enterprise User Interface, you can
restore the default instrumentation to avoid incurring the overhead from amore robust instrumentation.

To restore the default settings to the instrumentation:
1. Click Restore Defaults.

The instrumentation points are not actually added to the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

2. Close the Instrumentation Points dialog by clickingOK.
3. Apply all of the changes made using the Configuration tab by clickingApply Changes.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 155 of 263

Default Layers Defined for Typical Java Classes and
Methods
Diagnostics Enterprise User Interface groups the performancemetrics for classes andmethods into layers
and sublayers according to the instructions provided in the capture points file. The default layers were defined
so that the performancemetrics for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify the areas of the system that could
be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for typical Java classes and
methods.

Platform-specific layers are also defined in the capture points file. These layers are, for themost part,
sublayers of the top-level parent layers defined in the following tables. You can see performance data for
layers in the Load View in the Diagnostics UI.

Java EE Layers
Layer sublayers Parent Layer

Web Tier JSP

Servlets

Struts

Session

Spring

Struts2

Business Tier EJB

Corba

Web Services

EJB Entity Bean

Session Bean

Local Home

Stateless Session Bean

Stateful Session Bean

MessageDriven Bean

Business Tier

Directory Service JNDI

Database JDBC

JDBC Execute

Connection

Database

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 156 of 263

Layer sublayers Parent Layer

Messaging JMS

Spring

JMS Producer

Listener

Consumer

Messaging

Spring Producer

Consumer

Messaging

Hibernate

Portal Layers
Diagnostics groups the performancemetrics for the classes andmethod calls associated with processing for
portals into Portal Component layers. Each Portal Component layer is broken down into layers for the portal
lifecycle methods. For more information about portal layers, see the Diagnostics User Guide.

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.51) Page 157 of 263

Chapter 11: Advanced Java Agent and
Application Server Configuration
This chapter discusses advanced configuration of the Diagnostics Java Agent and the application server
environment. Advanced configuration is for experienced users with in-depth knowledge of this product. Use
caution whenmodifying any of the component properties.

This chapter includes:

l "Advanced Configuration Overview" below
l "About Dynamic Configuration" on the next page
l "Disabling the Java Diagnostics Profiler" on page 160
l "Controlling Probe Logging" on page 160
l "Setting the Probe’s Host Machine Name" on page 161
l "Specifying a Different Probe IP Address" on page 161
l "Setting the Active Products Mode" on page 162
l "Controlling Automatic Method Trimming on the Agent" on page 163
l "Configuring URI and Parameter Capture" on page 164
l "Capturing Non-Sequential Server Requests" on page 167
l "Configuring an Agent for a Proxy Server" on page 167
l "Time Synchronization for Probes Running on VMware" on page 168
l "Limiting Exception Tree Data" on page 168
l "Diagnostics Probe Administration Page" on page 170
l "Authentication and Authorization for Diagnostics Java Profilers" on page 172
l "Configuring Collection of CPU TimeMetrics" on page 174
l "Configuring Consumer IDs" on page 175
l "Configuring SOAP Fault Payload Data" on page 182
l "Configuring REST Services" on page 183
l "Customizing Grouping JMS Temporary Queue/Topics" on page 183
l "Configuring SQLQuery Parsing" on page 183
l "Configuring Display of Application Name for Server Requests" on page 185
l "Maintaining Probe Settings from the Java Profiler UI" on page 186
l "Generating Performance Reports for JUnit Tests" on page 189

Advanced Configuration Overview
The following bullet points list the probe configuration sources of information to consult to configure your
environment.

l If you have a probe that you want to prevent others from using in Profiler mode, see "Disabling the Java
Diagnostics Profiler" on page 160.

Micro Focus Diagnostics (9.51) Page 158 of 263

l To have logmessages posted to the probe logs for lower level messages, adjust the log level as described
in "Controlling Probe Logging" on the next page.

l If you havemore than one agent installed on the same host, make sure the logmessages for each agent
are stored in a different file, as explained in "Changing the Log Directory for a Probe" on the next page.

l To examine the performance of processing that would normally be trimmed from themetrics reported in
Diagnostics, you can reduce the level of trimming or turn off trimming completely as described in
"Controlling Automatic Method Trimming on the Agent" on page 163.

l If there is a proxy between the agent and the Diagnostics Server Commander, youmust set the correct
property to tell the agent the URL of the Diagnostics Server Commander, see "Configuring an Agent for a
Proxy Server" on page 167.

l If you installed a Java Agent in an Software as a Service (SaaS) environment, disable the reverse http
(rhttp) communication between the agent and the Diagnostics Server Mediator, see "Time
Synchronization for Probes Running on VMware" on page 168.

l If you are running in a virtual environment, see "Time Synchronization for Probes Running on VMware" on
page 168.

l If you need to limit the amount of exception data, see "Limiting Exception Tree Data" on page 168.
l If you want to use some of the collection options that require property file changes, see the other topics in
this section such as "Configuring Consumer IDs" on page 175.

About Dynamic Configuration
The advanced configuration of the Java Agent is managed by property settings in several property and
configuration files. You can view andmodify these files in <agent_install_directory>/etc/.

Some property settings are picked up dynamically–they take effect a few minutes after the changes are saved
to the file. The dynamic properties are as follows:

l Any property in the dynamic.properties file.
l Any property (or metric definition) in themetrics.config file.
l Any property in another property or configuration file that has a comment indicating its changes are picked
up dynamically. For example, in <agent_install_directory>/etc/dispatcher.properties:

Any property that is not in the categories above is non-dynamic. Changes to non-dynamic properties require
an application server restart for the new settings to take effect. For example, all of the settings in <agent_
install_directory>/etc/auto_detect.points are non-dynamic.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 159 of 263

Disabling the Java Diagnostics Profiler
You can disable the Diagnostics Profiler for Java on a Java Agent so that it cannot be accessed accidently.
When the Java Diagnostics Profiler is disabled, the user interface cannot be accessed from the Java
Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler.

To disable the Java Diagnostics Profiler, set the disable.profiler property in <agent_install_
directory>/etc/probe.properties to true.

The default value for disable.profiler is false. To enable the Java Diagnostics Profiler once it is disabled,
change the value of the disable.profiler property from true to false.

Controlling Probe Logging
You can control the level of themessages the probe logs and change the location where the logmessages are
posted using the probe properties.

Controlling the Log Message Level
The level of messages from the probe that are logged to the standard output is controlled by the lowest_
printing_level property in the property file <agent_install_directory>/etc/logging.properties. The default
setting for this property is OFF. This prevents almost all agent messages from being logged to the console.

You can adjust the logging level dynamically by changing the value assigned to the lowest_printing_level
property. The level of messages logged changes as soon as you save the property file.

The valid values for the lowest_printing_level property are:

Property Value Description

OFF Nomessages are logged.

DEBUG All messages are logged.

INFO Info, Severe, andWarningmessages are logged.

WARN Warning and Severemessages are logged.

SEVERE Severemessages are logged.

Changing the Log Directory for a Probe
The default location for the log directory for a probe is <agent_install_directory>/log. When you havemore
than one probe on the same host, you can change the location of the log directory for each probe using the
log.dir property. This property can be set in two ways:

l The value of the log.dir property can be set in the property file <agent_install_
directory>/etc/probe.property.

l The value of the log.dir property can be specified on the startup command line for the application server
as a JAVA system property as in the following example:

-Dprobe.log.dir=/path/to/log

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 160 of 263

Formore information on specifying the log.dir property on the startup command line, see "Configuring an
Agent for a Proxy Server" on page 167.

Setting the Probe’s Host Machine Name
The probe’s host name registers the probe with the Diagnostics commander server. The Diagnostics
commander server uses the probe’s host name to communicate with the probe and displays it along with the
systemmetrics for the server that the probe is monitoring in the Diagnostics views.

The probe normally can detect the host name of themachine that is its host. In some situations, the server
configuration is faulty and the probe cannot detect the correct host name. In situations where a firewall or NAT
is in place or where your agent host machine was configured as amulti-homed device, it might not be possible
for the agent to properly detect its host.

If the probe cannot detect its host name, you can instruct the probe to get the host name via a reverse DNS
lookup based on the socket connection, or you can specify the host name using a probe property.

Instructing the Probe to Use Reverse DNS Lookup
If the configuration of the probe’s host prevents the probe from detecting the host name, you can instruct the
probe to detect the host name using a reverse-DNS lookup by setting the server.host.name.lookup
property. This property is located in the <agent_install_directory>/etc/dispatcher.properties file.

The default value for the server.host.name.lookup property is 'false'. This tells the probe to do the lookup
without using reverse-DNS. Set this property to 'true' instruct the probe to use reverse-DNS lookup.

Manually Specifying the Probe Host Name
The probe.host.name.override property enables you tomanually set a host machine name for the probe and
stop the probe from doing the automatic lookup.

To set a default host machine name for a probe, set the probe.host.name.override property (located in the
property file <agent_install_directory>/etc/dispatcher.properties) to amachine name or IP address.

When you set the probe.host.name.override property, automatic lookup of the host name is disabled.

Note: Setting the probe.host.name.override property because of a NAT or firewall is only an issue for a
test environment where you are using LoadRunner, Performance Center, or Diagnostics Standalone.

When you set the probe.host.name.override in a production environment where you are using
BSM/APM or Diagnostics Standalone, the name you specify is shown as the host name in System
Health.

Specifying a Different Probe IP Address
The probe.host.ip.address.override property (located in the property file <agent_install_
directory>/etc/dispatcher.properties) enables you to override the Probe’s IP address. You can use this
property when you want the probe to provide the server with a different IP address, for example, a Virtual IP
that would allow the server to communicate to the probe through a tunnel.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 161 of 263

Setting the Active Products Mode
The Java Agent mode is typically set for you based on the options you enter in the setup program. But you can
set themodemanually as described in this section.

The Java Agent can be set in different modes to do the following:

l Monitor applications from development through pre-production testing and into production
l Work with other Software products
l Be used as a standalone Diagnostics Java Profiler not reporting to a server or to other Software products
Themode the Java Agent works in is determined by themodes value of the active.products property located
in the property file <agent_install_directory>/etc/probe.properties.

Themodes value in the active.products property is also used in determining usage against the license
capacity (see the chapter on Licensing in the Diagnostics Server Installation and Administration Guide). For
Diagnostics there are two types of LTUs (License to use):

l AM -When using of the product in an enterprisemode, typically in a production environment.
l AD -When using the product in a pre-production load testing environment with probes in LoadRunner or
Performance Center runs.

The value of the active.products property is initially set at the time you install the Java Agent.

l If you select Diagnostics Profiler Mode the value of the active.products property in the
etc/probe.properties file is set toPROmode at the time you install the Java Agent.

l With the ApplicationManagement/EnterpriseMode (AM License) option, the value of the active.products
property in the etc/probe.properties file is set toEnterprisemode if you select the Diagnostics Server.

l If you select this AD License option, the value of the active.products property in the
etc/probe.properties file is set toAD mode at the time you install the Java Agent.

To change the value of the active.products property you can edit the property file and restart the application
server. Or you can re-run the Java Agent Setup and use the Change option to set themode to Diagnostics
Profiler Mode (PRO), ApplicationManagement/EnterpriseMode for Diagnostics (Enterprise) or Diagnostics
Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for Java trial copy in enterprisemode or integrated with
other Software products, contact Software Customer Support to purchase Diagnostics.

To see Diagnostics data in the user interface of the interfacing Software products, youmust perform
additional configuration steps. See the APM-Diagnostics Integration Guide or LoadRunner/Peformance
Center-Diagnostics Integration Guide for details.

The sections that follow provide instructions for configuring each product mode of the active.products
property.

PRO Product Mode – Diagnostics Profiler for Java
When PROmode is set, the agent gathers performancemetrics and presents them in the standalone
Diagnostics Java Profiler user interface which is made available through a URL on the agent host.

If you are running the Java Agent as part of the Java Diagnostics Profiler trial copy, restrictions are placed on
the agent to limit the load it can handle.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 162 of 263

If you are running the Java Agent as part of the full Diagnostics enterprise product, or along with another
Software product, the Profiler is enabled without the load restrictions.

PROmode is not used in determine usage against license capacity.

Enterprise Product Mode
When configured in Enterprisemode, the agent works with Software products such as BSM/APM,
LoadRunner, Performance Center, and as the full Diagnostics enterprise product. Although youmust also do
additional configure to enable these integrations (see theAPM-Diagnostics Integration Guide or
LoadRunner/Peformance Center-Diagnostics Integration Guide for details).

In Enterprisemode data will also be sent to the Diagnostics Java Profiler.

Enterprisemode is the default for Java Agents (if you don’t specify AD or AMmode). In Enterprisemode the
agents are counted against the AM license capacity.

AM Product Mode
In AMmode the Java agent will capture all instrumentation data. You can set AM mode to protect an agent in
a production BSM/APM deployment from accidentally being included in a LoadRunner or Performance Center
run. In AMmode, the agent is not listed as an available agent in LoadRunner or Performance Center.

Agents in AMmodewill always be counted against the AM license capacity.

AMmode supersedes all other modes except for AD.

AD Product Mode
In ADmode the Java agent will only capture data during a LoadRunner or Performance Center run and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.

When the agent is in AD mode it will not use resources or send any data to the server unless the probe is part
of a LoadRunner/Performance Center run.

Use this mode to prevent an agent in a QA environment from using additional resources and continually report
data to the Diagnostics server when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD mode are only counted against the AD
license capacity when in a LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 are in a run, then only 5 are counted against
AD license capacity.

See the LoadRunner/Peformance Center-Diagnostics Integration Guide for more information.

Controlling Automatic Method Trimming on the Agent
Default configuration for the agent includes settings that control the trimming of methods. Trimming can be
controlled according to how long themethod takes to execute, which is known as latency, and by the stack
depth of themethod call. The default configuration instructs the probe to trim both by latency and depth.

You could reduce the level of trimming, or turn off trimming completely. You can control trimming using the
minimum.method.latency andmaximum.stack.depth properties in <agent_install_
directory>/etc/capture.properties.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 163 of 263

Controlling Latency Trimming
Methods that complete with latency greater than or equal to the value of theminimum.method.latency
property are captured, and those that complete with latency less than this limit are trimmed to avoid incurring
the overhead for less interestingmethods.

Note: In the following situations, latency is not trimmedwhen its latency is less than the trimming
property:

l Methods that are the root for a call tree.
l Methods that threw an exception.

If the information for all methods must be captured, lower the value of theminimum.method.latency
property or set it to zero.

Consider the following when setting theminimum.method.latency property:

l The lower the value of theminimum.method.latency property, the greater the chance that the
performance of your application will be adversely impacted.

l Depending on your platform, and whether native timestamps are being used (use.native.timestamps =
false), it might not be useful to specify this value in increments of less than 10ms.

Controlling Depth Trimming
Methods that are called at a stack depth less than or equal to the value of themaximum.stack.depth
property are captured. Those called at a stack depth greater than this limit are trimmed to avoid incurring
overhead for less interestingmethods.

Here is an example:

Ifmaximum.stack.depth is 3 and /login.do calls a() calls b() calls c() then only /login.do,
a, and b are captured.

Note that setting a lowmaximum.stack.depth can significantly reduce the overhead of capture.

Configuring URI and Parameter Capture
Any HTTP/S server request URI, or HTTP parameter, can be transformed before being reported by the probe.
Some of the transformations are based on regular expressionmatching and replacement and are controlled by
properties in the <agent_install_directory>\etc\dynamic.properties file. The values of the properties
controlling such replacement must use the s/pattern/replace/ syntax. To perform multiple operations, use a
comma-separated list. The operations are performed in order.

The URI or HTTP parameter transformations can be used when you are seeing toomany server requests and
you want to replacemany server request URIs with one simplified server request URI that aggregates them.

For example, the following URIs may be accepted by a particular banking application:

/banking/account/00283117/status

/banking/account/02089003/check_balance

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 164 of 263

/banking/account/00082453/transfer/amount/250000/to/account/02089003

...

If the server requests are identified by the URIs as shown above, the number of different server requests can
be very large. This can create storage problems on the Diagnostics server, but more importantly, it canmake
reported data very poorly suited for performance analysis. The reported server requests must bemapped to a
manageable set, using the options below.

URI Truncation and Mapping
The regular expressionmatching and replacement for any HTTP/S server request URI is controlled by the
uri.pattern.replace property in the dynamic.properties file.

In the banking application example shown above, youmay want to eliminate the numbers following the
"account/" and "amount/" parts in the URI. To do this, you set the uri.pattern.replace value as follows:

uri.pattern.replace=s'account/\\d*'account/*',s'amount/\\d*'amount/\\$'

This results in the server requests being reported as follows:

/banking/account/*/status

/banking/account/*/check_balance

/banking/account/*/transfer/amount/$/to/account/*

...

Caution: Overuse of this feature can impact performance.

You can see details andmore examples as comments in the dynamic.properties file under URI Truncation
andMapping.

Automatic Detection and Trimming of REST-ful Server Requests
By default, the probe attempts to automatically detect the URI path elements that demonstrate high
variability, as shown in the banking application example above. This behavior is controlled by the
automatic.uri.collapsing property in the <agent_install_directory>/etc/capture.properties file. The value
of the property is an expression indicating themaximum number of path segments allowed for each segment
position, provided all the preceding path segments are the same. Whenever the number of the different values
for the path segment exceeds the configured threshold, this path segment (in the given context) is replaced by
an asterisk (*). For example, in the banking application example shown above, after seeing a sufficiently large
number of different account numbers and transfer amounts (equal to or greater than the value configured in the
automatic.uri.collapsing property), the probe reports the server requests as:

/banking/account/*/status

/banking/account/*/check_balance

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 165 of 263

/banking/account/*/transfer/amount/*/to/account/*

...

Automatic detectionmakes manual configuration as described in the previous section unnecessary, but it
may require a relatively large set of different URIs to be seen by the probe before it is activated.

Tip: The probe stores its internal data related to this feature in the log/<probe-id>/<probe-id>_
sr.templates text file. You can "train" the Diagnostics probe in a test environment to determine the
correct set of server requests to report, and then copy this file to a production environment before starting
the production probe.

URI Trimming
If you have toomany server requests, you can also use themaximum.uri.pathsegments property in the
capture.properties file to trim server requests to a configured number of path segments.

The default for this setting is -1, which disables the property. For probes reporting in a SaaS environment
(SaaS selected in the Java Agent setup)maximum.uri.pathsegments is automatically set to 2 to ensure the
volume of server request data sent to Micro Focushosted servers is not too large.

For example, a setting of 2 results in nomore than two path segments, so the URI
/banking/account/00082453/transfer/amount/250000/to/account/02089003 is trimmed to
/banking/account.

The probe applies the URI transformations in the following order:

1. URI mapping (configured by the uri.pattern.replace property).
2. Static content replacement (configured by the uri.static_content.suffixes property).
3. URI trimming (configured by themaximum.uri.pathsegments property).
4. Automatic URI transformation (configured by the automatic.uri.collapsing property).

Caution:While each of the above transformation steps can be disabled, we do not recommend disabling
all of them.

HTTP Parameter Truncation and Mapping
You can transform any captured HTTP parameter. This can be useful when a parameter value is too complex
to be used in server request classification without causing symbol table explosion.

The regular expressionmatching and replacement works in the samemanner as for URI Truncation and
Mapping explained above, and it is controlled by the parameter.pattern.replace.<property-key> property in
the dynamic.properties file, where <property-key> is the HTTP parameter name (key).

Youmust enable HTTP parameter capture in the [HttpCorrelation] point in the auto_detect.points file using
the args_by_class keyword. Also, if your HTTP requests use the POSTmethod, youmust specify
ignore.post.parameters=false in the inst.properties file.

For example, if you want to capture the HTTP parameter eventSource, which takes values like

FNOLVehicleIncidentPopup:FNOLVehicleIncidentScreen:VIPS:VehicleDamageDescription

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 166 of 263

and you only want to keep the part up to the first colon (:), you can add the following line to the
[HttpCorrelation] point definition in the auto_detect.points file:

args_by_class = !.*&eventSource

and add the following line to the dynamic.properties file:

parameter.pattern.replace.eventSource=s':.*''

Caution: Overuse of this feature can impact performance.

You can see details andmore examples as comments in the dynamic.properties file under HTTP Parameter
Truncation andMapping.

Capturing Non-Sequential Server Requests
Some non-J2EE applications split the work to be performed by a single server request into components that
are executed by multiple threads. Server requests such as these are termed as non-sequential because the
components can be run concurrently. There are a number of frameworks that applications can use to organize
concurrent execution of the code. Some of the frameworks are limited to concurrent I/O, while others, like the
standard J2SE package java.util.concurrent, can be used for almost any purpose.

By default, support for non-sequential server requests is disabled. To enable non-sequential server requests,
set the parameter mercury.enable.non_sequential.fragments = true for the property
details.conditional.properties in etc/inst.properties. Support for non-sequential server requests
causes slight increase in the probe overhead. Therefore, it is recommended to leave it disabled for
applications that do not need it.

Similar to the traditional frameworks, Java Agent offers out-of-box support for a limited number of concurrent
frameworks. Additional support can be added by enhancing the Java Agent configuration in
auto_detect.points.

Configuring an Agent for a Proxy Server
Note: This section only applies if you are using the Java Agent with a Diagnostics Server.

Two properties are used to specify for the Java Agent, the URL of the Diagnostics Commander Server. The
property you set depends on whether or not there is a proxy.

l registrar.url in dispatcher.properties
The registrar.url property in <agent_install_directory>\etc\dispatcher.properties is set when you
install the agent. When there is a direct connection between the agent and the URL of the Diagnostics
Commander Server, the agent uses the value of this property.

l registrar.url inwebserver.properties
In the presence of a proxy, youmust set the registrar.url property in the <agent_install_
directory>\etc\webserver.properties file to indicate the URL of the Diagnostics Commander Server.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 167 of 263

Time Synchronization for Probes Running on
VMware
For probes running in a VMware guest, timemust be synchronized between the VMware guest and the
underlying VMware host. If time is not synchronized properly, the Diagnostics UI could display inaccurate
metrics or nometrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper on
timekeeping
(http://www.vmware.com/pdf/vmware_timekeeping.pdf) in a section on "Synchronizing Hosts and Virtual
Machines with Real Time." VMware Tools must be installed in each VMware guest operating system that
hosts a Diagnostics probe. The time synchronization option in VMWare Tools must be turned on.

This option in VMware Tools works only if the guest operating system time is initially set earlier than that of
the VMware host. For instructions on how to install VMware Tools, see the "Basic System Administration"
document for VMware ESX Server. If any non-VMware time synchronization software (such as Network Time
Protocol) is used, it should be run in the VMware ESX server service console.

If you encounter negative latency issues when running the probe on VMware guest with the probe property
attempt.vmware.timestamp.adjustments set to true, you should set the following property in the probe
etc/capture.properties file:

use.vmware.timestamp.workaround=true

When use.vmware.timestamp.workaround is set to true, the probe will use the alternative call to get the
VMware host timestamps, so as to workaround the negative latency issue.

Limiting Exception Tree Data
The agent collects exception information and uses it to build exception instance trees. Exception instance
trees provide the data for the exception information that appears in the Diagnostics UI such as a stack trace.

By default, every exception that occurs in themonitored application is a candidate for the exception instance
trees. Collecting all exception information is usually undesirable, however, because exceptions that are not of
interest overload the display as well as the data collection and transfer operations. You can, therefore, limit
the exception types for which data is collected. For example, filtering application server-based errors such as
javax.naming.AuthenticationException allow the exception trees to contain more application-specific
errors.

The exception tree data collected is controlled by limiting specific exception types or limiting the number of
exception types.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 168 of 263

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Limit Specific Exception Types
You can control which specific exception types are excluded and included from collection by setting the
exception.types.to.exclude and exception.types.to.include properties in the <agent_install_
directory>\etc\dispatcher.properties file as follows:

l exception.types.to.exclude
Set this property to ignore exceptions of one or more specified types. All subtypes of each specified type
are also ignored unless the subtype is specified by the exception.types.to.include property.

l exception.types.to.include
Set this property to specify which, if any, of the specified excluded exceptions (or their subtypes) are to be
included. Subtypes of any exception type specified to be included are also included.

Both properties take lists of fully-qualified exception type names, separated by commas. Changes to the
dispatcher.properties file take effect immediately. It is not necessary to restart the application.

Limit the Number of Exception Types
You can limit the exception tree data collected by specifying the number of different types of exceptions by
setting the exception.instance.tree.count property in server.properties. By default, this property is set to 4,
which indicates that only the first four exceptions types encountered during the probe’s data collection cycle
are used in building the exception trees. You can raise or lower this setting.

Examples
The following example causes exceptions of type ClassNotFoundException and all its subtypes to be
ignored.

...
exception.types.to.exclude=javax.naming.AuthenticationException

The following example causes some subtypes of the java.lang.IOException class to be excluded, as
indicated by the diagram that follows:

...
exception.types.to.exclude=java.io.IOException,java.io.InvalidClassException
exception.types.to.include=java.io.ObjectStreamException

The following diagram shows the excluded and included exception types on the java.io class hierarchy:

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 169 of 263

Diagnostics Probe Administration Page
You can use the Diagnostics Probe Administration page to configure Java Agent and Profiler settings. Access
the Diagnostics Probe Administration page directly from your browser.

Accessing the Diagnostics Probe Administration Page
Open the Diagnostics Probe Administration page inside your browser.

To access the Diagnostics Probe Administration page:
1. In your browser, navigate to http://<probe_host>:<probeport>.

A probe is assigned to the first available port, beginning at 35000.
The Administration page opens.

2. Select themenu option for the activity you want to perform.
l Open Diagnostics Profiler:Opens the Java Diagnostics Profiler.

l Advanced Options:Opens the Components pages. For more information, see "Diagnostics Probe
Components Page" on the next page.
o If your probe is configured to work with a Diagnostics Server, the probe (Profiler) authorization and

authentication settings aremanaged from the Diagnostics Commander Server to which this probe
is connected. When you click this option, you are redirected to that Diagnostics Commander
Server. For more information, see “User Authentication and Authorization” in theDiagnostics
Server Installation and Administration Guide

o If your probe is configured to work as a Profiler only and is not connected to any Diagnostics
Server, this option opens the User Administration page, where you can create, edit and delete
users and change their privileges. For more information, see"Authentication and Authorization for
Diagnostics Java Profilers" on page 172.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 170 of 263

Diagnostics Probe Components Page
From the Components page you can open the Java Diagnostics Profiler, and access the User Administration
page.

To access the Components page:
1. Open the Diagnostics Probe Administration page as described in "Accessing the Diagnostics Probe

Administration Page" on the previous page.
2. Click Advanced Options.
3. If prompted, enter your user name and password.

The Components page opens.

4. Click one of the following options:
l query. For internal use by developers.

l inst. Includes various instrumentation options. For more information about probe instrumentation, see
"Custom Instrumentation for Java Applications" on page 96.

l security. Depending on how your probe is configured, you access a different page from this option.
o If your probe is configured to work with a Diagnostics Server, the probe (Profiler) authorization and

authentication settings aremanaged from the Diagnostics commander server to which this probe
is connected. When you click this option, you are redirected to that Diagnostics commander
server . For more information, see “User Authentication and Authorization” in the Diagnostics
Server Installation and Administration Guide.

o If your probe is configured to work as a Profiler only and is not connected to any Diagnostics
Server, this option opens the User Administration page, where you can create, edit, and delete
users and change their privileges. For more information, see "Authentication and Authorization for
Diagnostics Java Profilers" on the next page.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 171 of 263

l scheduler. Enables you to see and control regularly scheduled background tasks. For the
ServerCommunication scheduler or the sharedInfrequentEventScheduler, you can see the state and
the number of tasks inside each. For each task, you can select an action such as RUN NOW or
DELETE.

l infrequentLogger. See the current status of entries in the infrequent logging table.

l files. Installation directory browser – upload and download property files, log files, etc.

Note: By default, the upload button on this page is disabled. To enable it, in the <agent_install_
directory>/etc/common.properties file, change the value of the enable.file.uploadFromUI
parameter to true (enable.file.uploadFromUI=true).

Caution:Enabling this featuremay lead to security issues.

Authentication and Authorization for Diagnostics Java
Profilers
When you install the Java Agent as a Profiler only (not connected to any Diagnostics Server), you can
manage the authentication and authorization of users of the Profiler from the Diagnostics Probe User
Administration page.

Note: If the Java Agent is configured to work with a Diagnostics Server, the probe (Profiler) authorization
and authentication settings aremanaged from the Diagnostics Commander Server to which this probe is
connected. For more information, see “User Authentication and Authorization” on page 787 in the
Diagnostics Server Installation and Administration Guide.

To manage authentication and authorization for users of the standalone Java Diagnostics Profiler:
1. Access the Diagnostics Probe Administration page

In your browser, navigate to http://<probe_host>:<probeport>. A probe is assigned to the first available
port, beginning at 35000.
The Diagnostics Probe administration page opens.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 172 of 263

2. Select Advanced Options > Security to open the User Administration page.

On the User Administration page, you can create new users, assign privileges to users, change
passwords of existing users, and delete users.

To create a new user:
1. Click Create User, enter a user name in theNew User Name box, and click OK. The new user appears

in the list of user names.
2. In the row representing the new user, type a password in thePassword box and confirm it by retyping it

in theConfirm Password box.
3. Type the password of the user currently logged on, in thePassword for <current user> box and click

Save Changes.
To assign privileges to a user:
1. Go to the row representing the relevant user and select the appropriate check boxes representing the

different privileges.
The following privilege levels can be assigned to Java Diagnostics Profiler users:

Privilege Description

View The user can view Profiler data from the UI.

Execute The user can perform garbage collection and clear the performance data held by
the Profiler.

Change The user can run potentially risky operations, such as taking a heap-dump or
changing instrumentation.

The privilege levels, rhttpout and system are for internal purposes only.
Each privilege level stands alone. There is no inheritance of privileges from one level to the next. You
must grant a user all of the privilege levels that are necessary to perform the functions they need to
perform.
a. Type the password of the user currently logged on, in thePassword for <current user> box and

click Save Changes.

Note: If login fails, the user profiler is checked for authentication in the Command Server

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 173 of 263

etc/.htaccess authentication

If login is successful, the user profiler is checked for authentication in the Local etc/.htaccess
authentication

enable.local.htaccess.authentication=false

Reference Path: <java_agent_home>/etc/probe.properties file

To change the password of an existing user:
1. Go to the row representing the relevant user, type a password in thePassword box, and confirm it by

retyping it in theConfirm Password box.
2. Type the password of the user currently logged on, in thePassword for <current user> box and click

Save Changes.
To delete a user:
1. Type the password of the user currently logged on, in thePassword for <current user> box.
2. Click Delete user () corresponding to the user you want to delete.

A message box opens asking if you want to delete the selected user.
3. Click OK to delete the user.

Configuring Collection of CPU Time Metrics
The CPU Timemetrics appear in the Details pane for the Transaction view, the Probes view, the Call Profile
view, and the Portal Components view. You can enable, disable, and configure the collection of CPU time
metrics. The CPU timemetrics areCPU (Avg) andCPU (Total). If collection of CPU timemetrics is disabled
or not configured for methods, you will see N/A for thesemetrics.

The CPU Timemetrics rely on CPU timestamping which is generally supported on the following platforms:
Windows, Solaris, AIX, and Linux kernels 2.6.10 or later (for example RedHat 5.x, SUSE 10.x).

Note: Support for CPU timestamping can vary, however, not only by operating system, but also by
platform architecture (for example SPARC versus x86).
For themost recent information on support for CPU Time on specific platform versions and architecture,
see the Diagnostics Support Matrix at Diagnostics_System_Requirements Guide.

Note: In VMware, the CPU timemetric is from the perspective of the guest operating system and is
affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes Running
on VMware" on page 168.

By default, collection of CPU timemetrics is enabled for server requests. You can disable CPU timemetric
collection and configure collection of CPU timemetrics in property files or using the Java Diagnostics Profiler
UI. You can configure collection of the following CPU Timemetrics:

l Server Requests only
l Server Requests and Portlet Methods
l Server Requests and All Methods
For a Java Agent, the collection of CPU Timemetrics is controlled by two properties:

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 174 of 263

http://www.vmware.com/pdf/vmware_timekeeping.pdf

l use.cpu.timestamps property in <agent_install_directory>\etc\capture.properties.
This property is set to true by default, which enables collection of CPU timemetrics. Collection of any
CPU timestamps is controlled by a second property listed below. If you set the use.cpu.timestamps
property to false, the CPU timemetrics are not collected for any server request or method reported by the
probe

l cpu.timestamp.collection.method property in <agent_install_directory>\etc\dynamic.properties.

Caution: Use caution when configuring the collection of CPU timestamps because of the increase in
Diagnostics overhead. The increased overhead is caused by an additional call for eachmethod that is
needed to collect the timestamp.

Cpu.timestamp.collection.method can be set to one of the following:

l 0 – NoCPU timestamping.
l 1 –CPU timestamps collected only for server requests.
The default value is 1, whichmeans CPU times can be reported at the server request level but not the
transaction level. However, if the setting is removed or commented out of the properties file, the default is
0.

l 2 –CPU timestamps collected for All server requests and ALLmethods.
l 3 – CPU timestamps collected for ALL server requests and the lifecycle methods instrumented for Portal
Components.

Another way to set the cpu.timestamp.collection.method property is using the Configuration tab in the Java
Diagnostics Profiler as follows:

1. In theProfilerUI, select theConfiguration tab. The profiler does not need to be started tomake this
probe configuration change.

2. In the Configuration screen, select aCollect CPU Timestamps option from the dropdown list.

CPU Timestamp Collection
Method Description

None NoCPU Timestamps.

For Server Requests Only CPU timestamps are only collected for server requests.

For Server Requests and Portlet
Methods

CPU timestamps are collected for ALL server requests and the
lifecycle methods instrumented for portal components.

For Server Requests and All
Methods

CPU timestamps are collected for ALL server requests and ALL
methods.

3. When you complete your changes, click Apply Changes.

Note: Your changes take effect immediately. You do not need to restart the application (or probe).

Configuring Consumer IDs
Web servicemetrics can be grouped by particular consumers of theWeb service. Themetrics are then
aggregated for that consumer and displayed in SOA Services views such Services by Consumer ID or
Operations by Consumer ID. There are several ways of defining the consumer ID:

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 175 of 263

l "A Value in a SOAP Header"
l "A Value in a SOAP Envelope"
l "A Value in the SOAP Body"
l "A Value in an HTTP Header"
l "A JMS Queue Name" (or topic name) for SOAP over JMS web services
l "A JMS Message Property" for SOAP over JMS web services
l "A JMS Message Header" for SOAP over JMS web services
l "A specific IP Address "
l "A Range of IP Addresses"

Note: Defining consumer ID based on SOAP header, envelope, or body requires the Diagnostics SOAP
message handler for Java probes. For some application servers, special instrumentation is provided in
Diagnostics to automatically load the Diagnostics SOAP message handler.

However, somemanual configuration is required forWebSphere 5.1 JAX-RPC andOracle 10g JAX-
RPC, see "Loading the Diagnostics SOAP Message Handler " on page 70 for details.

The Diagnostics SOAP message handler is not available for all application servers. Custom
instrumentation is not available to capture SOAP faults or consumer IDs from SOAP payloads.
Therefore, this feature is not available on all versions of all application servers. For themost recent
information on Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at
Diagnostics_System_Requirements Guide.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular service and
how frequently they are using it. Consumer IDs are also useful for BSM/APM. BSM/APM users can look at
the performance of the same application based on consumers to compare their performance characteristics.

Configuring Consumer IDs is optional. By default, IP address is used as consumer ID for SOAP over HTTP/S
web services and inbound queue name (or topic name) is used by default as consumer ID for SOAP over JMS
web services.

This section includes:

l "Basic Procedure for Consumer ID Configuration" below
l "About Consumer ID Rules" on the next page
l "Consumer ID Rules Syntax and Examples for Java Agents" on page 178

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:
1. (Optional). Specify *dump-payload in the consumer.properties file to print the entire SOAP payload

out to the consumer.log file. Use this output to plan how to create the specific rules to configure
consumer IDs for SOAP payload capture.
Before you configure consumer IDs, familiarize yourself with the SOAP payload data to determine how
best to create the specific rules Diagnostics will use to find the value for consumer IDs.
The dump-payload option should only be used when help is required to locate the element that contains
the Consumer Id.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 176 of 263

This option should be the only value on the right side of the equal(=)sign when used: DumpTest;HTTP_
WS;TraderService = *dump-payload

Note: Do not try to use the same service name to extract a value AND dump the payload at the
same time.

For example, to use this feature, enter:

SoapTest1;HTTP_WS;TraderService = *dump-payload

This results in printing the SOAP Payload for a rule that matches TraderService. The content of the
consumer.log file is:

2009-01-15 14:42:13,653 INFO consumer [[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)'] [PAYLOAD:] <?xml version="1.0"
encoding="UTF-8"
standalone="yes"?><soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:trad="http://
www.bea.com/examples/Trader" xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Header>
<CallerA>customerA</CallerA>

</soapenv:Header>
<soapenv:Body>
<trad:buy soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<string xsi:type="xsd:string">hpq</string>
<intVal xsi:type="xsd:int">11</intVal>

</trad:buy>
</soapenv:Body>

</soapenv:Envelope>

2. For each Java Agent you want metrics grouped by consumer, update the consumer.properties file as
described in "Consumer ID Rules Syntax and Examples for Java Agents" on the next page.

3. To track more than five consumer types, update themax.tracked.ids.per.probe setting in the
dispatcher.properties file.

4. Review the <probe_name>_id.properties file located in the probe/files/log directory. The <probe_
name>_id.properties file might need to be completely deleted or modified tomatch the
consumer.properties changes made in the previous steps. The file goes together with the
max.tracked.ids.per.probe (dispatcher.properties) setting, once the limit is reached, per probe, all other
consumers are classified as "Other".

About Consumer ID Rules
The assignment of consumer IDs is controlled by consumer ID rules in a configuration file,
consumer.properties.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, JMS web service rules,
and IP rules. The rules are not applied according to how the rules are defined. The SOAP header rules are

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 177 of 263

applied first; the HTTP headers rules are applied next; then the JMS rules are applied; and lastly the IP rules
are applied.

Note: ALL configuration items in the rules are case sensitive. For example, if you enter a <pattern-name>
of TraderService, theWeb service namemust have a capital T and a capital S for the pattern tomatch.

All rule types do not need to be used. Theremight be SOAP rules, no HTTP rules, and IP rules. If there is no
match on any of these rules, the original IP address or queue name for JMS is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header, SOAP
envelope, or body as well. The rule specifies a regular expression that is used tomatch against the web
service name being called by the consumer.

If there is amatch, the probe attempts to find the text element also specified in the rule. If the text element is
not found in the SOAP header, this rule is skipped and the probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of HTTP
headers in a HTTP request.

The JMS web service rules allow for the consumer ID to be JMS queue/topic name, and JMS Message
properties or Message Header (JMSReplyTo only).

The IP rules allow for the consumer ID to be obtained from themapping of IP addresses to a consumer ID.
The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for Java Agents
The assignment of consumer IDs is controlled by specifying rules in the consumer.properties file.

Note: ALL configuration items are case sensitive. For example, if you enter a <pattern-name> of
TraderService, theWeb service namemust have a capital T and a capital S for the pattern tomatch.

A Value in a SOAP Header
To assign a consumer ID based on a value in a SOAP header, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-header;<element-value>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<pattern-name> is a regular expression tomatch on theWeb service name or you can use the exact Web
service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

For example, the following rule matches on aWeb service with service name TraderService and uses the
CallerA element’s value as the consumer IDs:

SoapRule1;HTTP_WS;TraderService = soap-header;CallerA

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 178 of 263

When the callers of the TraderServiceWeb service have a value defined for CallerA, themetrics are grouped
by the different values for CallerA. The following excerpt from the soap header maps to a consumer ID of
"Customer2" for this caller of the TraderService:

SoapTest1;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<env:Header>
<CallerA>Customer2</CallerA> <---- The consumer id returned would be

"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>

</m:sell>
</env:Body>

</env:Envelope>

By default, Diagnostics looks for CallerA in the first-level element (the element directly under the SOAP
env:Header). You can configure Diagnostics to look into a deeper-level xml element for consumer ID. The
dynamic propertymax.search.level.depth in the consumer.properties file controls the depth at which to
search for consumer ID (default value is 1 level deep). For example, max.search.level.depth = 2 would find
consumer ID:

<env:Header>
<test:id>
<test:CallerA>consumerA</test:CallerA>

</test:id>
</env:Header>

A Value in a SOAP Envelope
To assign a consumer ID based on a value in a SOAP envelope, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-envelope;<element-value>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<pattern-name> is a regular expression tomatch on theWeb service name or you can use the exact Web
service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

A Value in the SOAP Body
To assign a consumer ID based on a value in the SOAP body, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-body;<element-value>

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 179 of 263

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<pattern-name> is a regular expression tomatch in theWeb service name or you can use the exact Web
service name.

<element-value> the element in the SOAP body whose value you want to use as the Consumer ID.

A Value in an HTTP Header
To assign a consumer ID based on a value in an HTTP header, use the following format:

<rule-name>;HTTP_WS;<pattern-name> = attribute;<header-value>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<pattern-name> is a regular expression tomatch on, in the URI.

<header-value> is the HTTP header whose value you want to use as the Consumer ID.

For example, the following rule matches on a web service with a URI of "/webservice/.*" and uses the "User-
Agent" header’s value as the consumer ID:

WsRule1;HTTP_WS;/webservice/.* = attribute;User-Agent

When the callers of theWeb service have a value defined for User-Agent, themetrics are grouped by the
different values for User-Agent. The following excerpt from the HTTP header maps to a consumer ID in the
heading:

GET /service/call HTTP/1.1
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000)
Host: ovrntt1
Caller: ovrntt1
Connection: Keep-Alive

A JMSQueue Name
To assign a consumer ID based on thematching the JMS queue/topic name, use the following format:

<rule-name>;JMS_WS;<queue-name>=<consumerID-string>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<queue-name> is a regular expression tomatch on, in the JMS queue/topic name.

<consumerID-string> is a literal string to use as the Consumer ID.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 180 of 263

For example, the following rule matches on a JMS queue name that starts with queue://sca_soapjms.* and
uses the string "myJMSConsumer" as the consumer ID:

JMSTest3;JMS_WS;queue\://sca_soapjms.*=myJMSConsumer

Youmust use a backslash "\:" to escape the ":" after queue or topic.

The priority used inmatching is determined by the order specified in the consumer.properties file. JMS_WS
queuematching takes priority over IP matching; JMS_WS property matching takes priority over JMS_WS
Header matching; and JMS_WS Header matching takes priority over JMS_WS queue namematching.

A JMSMessage Property
To assign a consumer ID based onmatching a JMS queue/topic name and use the value from the JMS
message property as the consumer ID, use the following format:

<rule-name>;JMS_WS;<queue-name>=jms-property;<property-value>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<queue-name> is a regular expression tomatch on in the JMS queue/topic name.

<property-value> is the JMS property whose value you want to use as the Consumer ID.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and uses
the value from the JMSXDeliveryCount property as the consumer ID:

JMSTest1;JMS_WS;queue\://MedRec.*=jms-property;JMSXDeliveryCount

Youmust use a backslash "\:" to escape the ":" after queue or topic.

A JMSMessage Header
To assign a consumer ID based onmatching the JMS queue/topic name and JMS message header, use the
following format:

<rule-name>;JMS_WS;<queue-name>=jms-header;<header-value>

Where:

<rule-name> is a String that identifies the rule. The namemust be unique to the consumer.properties file.

<queue-name> is a regular expression tomatch in the JMS queue/topic name.

<header-value> must be JMSReplyTo.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and uses
the value from the JMSReplyTo header as the consumer ID:

JMSTest1;JMS_WS;queue\://MedRec.*=jms-header;JMSReplyTo

Youmust use a backslash "\:" to escape the ":" after queue or topic.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 181 of 263

A specific IP Address
To assign a consumer ID based on an IP Address, use the following format:

<rule-name>; IP; <IP-address> = <consumerID-string>

For example, the following rule matches on IP address 123.456.567.8 and uses the name "CustomerA_IP" as
the consumer ID:

IPRule1;IP;123.456.567.8 = CustomerA_IP

A Range of IP Addresses
To assign a consumer ID based on a range of IP addresses, use the following format:

<rule-name>; IP; <IP address range> = <consumerID-string>

where <IP address range> can be defined with integers, wildcards specified with *, integer range specified
with -.

For example, the following rule matches all IP addresses whose first octet is 15 and uses the name
"mySuperCluster" as the consumer ID:

IPRule2;IP;15.*.*.* = mySuperCluster

The following rule matches all IP addresses whose first octet is 15 and whose second octet is between 200
and 300; it uses the name "Customer_IP" as the consumer ID:

IPRule3;IP;15.200-300.*.* = Customer_IP

Configuring SOAP Fault Payload Data
If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP payload is
only captured when there is a SOAP fault.

In the Diagnostics UI, you can view the payload information as part of the instance tree. Both JAX-WS and
JAX-RPC web services are supported.

Because payloads can contain sensitive information such as credit card numbers, payload capture on SOAP
faults is disabled by default.

To enable payload capture on SOAP fault setmax.soap.payload.bytes to a value greater than zero , 5000 is
recommended, in the dispatcher.properties file on the Java agent.This is the number of bytes captured, so if
the payload you see in the UI indicates it is too small you can increase this number. By default the value is set
to zero to disable payload capture.

Capturing SOAP payload requires the Diagnostics SOAP message handler for Java probes. For some
application servers, special instrumentation is provided in Diagnostics to automatically load the Diagnostics
SOAP message handler. Manual configuration is required forWebSphere 5.1 JAX-RPC andOracle 10g JAX-
RPC. See "Loading the Diagnostics SOAP Message Handler " on page 70 for details.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 182 of 263

The Diagnostics SOAP message handler is not available for all application servers, nor is custom
instrumentation available to capture SOAP faults or consumer IDs from SOAP payloads. Therefore, this
feature is not available on all versions of all application servers. For themost recent information on
Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at Diagnostics_System_
Requirements Guide.

For a Java Agent, define the limit for the payload size by modifying the <agent_install_
directory>\etc\dispatcher.properties file. Payloads larger than the specified size are truncated.

For example, the following entry increases the SOAP payload length to 10000 from its default of 5000:

max.soap.payload.bytes = 10000

Set this property to 0 to disable this feature.

Configuring REST Services
You can configure REST styleWeb services to show up as regularWeb Services in the Diagnostics UI. See
the comments in the following file for configuration details: <agent_install_directory>\etc\rest.properties.

Currently, only HTTP is supported (no JMS).

Customizing Grouping JMS Temporary
Queue/Topics
For reporting in Diagnostics, SOAP over JMS temporary queues are grouped into a single node. Diagnostics
matches the queue/topic name to a list of regular expressions to find the temporary queue/topic names. The
ones that match are replaced with either queue:<probe-id>\TEMPORARY or topic:<probe-
id>\TEMPORARY according to the type.

The list of regular expressions used for this matching is in the <agent_install_
directory>/etc/capture.properties file. You can customize the list of regular expressions under the property
grouped.temporary.jms.names.

Configuring SQL Query Parsing
If there are a large number of SQL queries using literals it can overwhelm the server symbol table. In these
situations you can configure the sql.parsing.mode property in the dispatcher.properties file on the Java
Agent. The possible mode settings are as follows:

1 - just methods, no SQL queries.

2 - main categories for SQL queries (select/update/insert/delete/...).

3 - (default) a measurement per whole SQL query aggregating similar statements into a single measurement
(ignore literals, keyword case...).

4 - ameasurement per whole SQL query aggregating only identical statements.

sql.parsing.mode = 3

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 183 of 263

Another property in the dispatcher.properties file can be used to limit the number of different SQL
statements collected in case of temporary database tables, allowing you to fold down the table names using
an SQL statement regular expression substitution. The property is sql.pattern.replace (see the comments in
the dispatcher.properties file for more information).

Capturing SQL Parameters
For increased efficiency, applications use prepared statements when repeatedly issuing the same query to a
database. Such prepared statements can contain parameters, the value of which are set by the application
before the query is actually executed. By default, for the predefinedmonitoring profile 120, these parameter
values are not captured and cannot be viewed by Diagnostics.

You can change the default setting so that parameter values in an SQL query are captured and displayed in
the Call Profile view. To change the default setting, edit the /etc/capture.properties file and set the value of
the sql.parameters.capture.enabled property to true. Note that this is a dynamic property that you can
change at any time.

Note:

l By default, this property is set to false for the predefinedmonitoring profile 120 and true for other
predefinedmonitoring profiles.

l You can also enable SQL parameter capturing in the UI. To do this:
a. Click View Probe Configuration in New Window.
b. Select theEnable SQL Parameter Capture check box.
c. Click Apply Changes.

When captured, you can view the parameter values in the Call Profile view. The parameters values are
displayed in theSQL Parameters row (part of theMethod Data section in the Details pane). For example:

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 184 of 263

Troubleshooting
l Only the first 32 parameters for each prepared statement are captured,
l If setting sql.parameters.capture.enabled to true does not capture or display parameter values, check
that:
l the prepared statement uses parameters.

l SQL parameter capture has not been disabled (by setting themercury.enable.prepared_
statement.parameter.capture setting in the etc/inst.properties file to false).

l the current monitoring profile for the probe is at least 120.

l the type of the argument has a natural String representation (binary data cannot be captured).

Configuring Display of Application Name for Server
Requests
TheDeployed Into value displayed in the Diagnostics UI in the Server Requests details pane can show the
application name of the server request for most application servers. Prior to Diagnostics 9.0 this information
was only available forWebLogic application servers so only aWebLogic probe could fill in the application
name identifier on a server request.

To ensure backward compatibility with the server request trend lines, by default the application name is not
filled in for the server request, except inWebLogic server requests.

This is configurable using the fragment.use.application.name property in the capture.properties file and
you can set the following values for this property:

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 185 of 263

l none. The discovered application name is never used for identification purposes.
l default. Only WebLogic application server probes use the discovered application name.
l all. All application server probes use the discovered application name.

Note: Regardless of the value of this property, if a server request's J2EE application name is discovered,
it will be used to populate the non-identifying property Topology Information.

Maintaining Probe Settings from the Java Profiler UI
You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation points and
edit the probe configuration without having tomanually edit the Java Agent capture points file or property files.
You can access the Configuration tab from the Java Diagnostics Profiler whether profiling has been started or
not. For details, see "Configuration Tab Description" on page 260.

The Probe Settings section of the Java Diagnostics Profiler Configuration tab enables you to configure probe
settings for thread stack trace sampling, collection of CPU timemetrics (using timestamping) and reporting
collection leaks.

When you click Apply Changes on the Java Diagnostics Profiler Configuration tab, all the updates youmade
in the Probe Settings sections of the Configuration tab are applied to the capture points file and the property
files.

Note: Your changes take effect immediately. There is no need to restart the application (or probe).

The following sections describe each of the Probe Settings sections:

"Configuring Thread Stack Trace Sampling" below

"Controlling CPU TimestampCollection" on page 188

"Enabling and Configuring Collection Leak Reporting" on page 189

Configuring Thread Stack Trace Sampling
When asynchronous thread sampling is enabled, you can see, in the Call Profile view, whichmethods were
executed during long running fragments even if no instrumentedmethods were hit during this time. See the
Diagnostics User Guide chapter on Call Profiles for a screen shot showing the additional nodes added based
on thread sampling.

Several properties enable and configure thread stack trace sampling.

The following properties are in dynamic.properties:

l enable.stack.trace.sampling – enables asynchronous thread stack trace sampling; possible values are
false, auto (the default), and true.
When the dynamic property enable.stack.trace.sampling is set to auto, stack trace sampling is enabled IF
the probe is running on selected (certified) platforms and JVMs. For other JVMs, the settingmust be set to
true explicitly. Use caution because the JVM could generate errors or abort. See the Diagnostics Release
Notes.

l tardy.method.latency.threshold – theminimum time that an instrumentedmethodmust run without
hitting any instrumentation points before stack trace sampling is attempted for this method. The purpose of
this property is mainly to control the overhead of sampling by limiting the stack trace collection to only the
most interesting cases.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 186 of 263

l stack.trace.sampling.rate – the time that must elapse before the next consecutive sampling attempt is
made.
Small values for stack.trace.sampling.rate cause frequent sampling and provide rich data but at the cost
of increased overhead.
The overhead caused by frequent sampling affects primarily the latency of server requests. The overall
CPU usage by the probe can go up as well, but this effect is not as profound as the latency increase. For
systems with many CPUs, the process CPU consumption can actually go down (not a good thing).

l stack.trace.depth.max – the limit for the depth of stack traces obtained from the JVM. You will most likely
not need to adjust this value.

The following properties are in dispatcher.properties:

l enable.stack.trace.aggregation – a boolean property allowing the correlation thread tomerge together
nodes observed onmore than one consecutive stack trace collected, unless there is proof that the nodes
must not represent a single method invocation. When set to true, it could decrease the number of
additional call tree nodes created, but could create a false impression that the number of calls to the
additional nodes is known and is small. When set to false, it creates a node for eachmethod and each
stack trace it was visible on, creating a false impression that the number of calls to the nodes is known
and is large. In fact, stack trace sampling cannot reveal the number of calls at all.

l aggregated.stack.trace.validity.threshold – if the enable.stack.trace.aggregation property is set to true,
only the call tree nodes that stem frommore than the aggregated.stack.trace.validity.threshold number
of individual stack traces are reported. This setting controls noise elimination andmemory footprint,
especially on the server side.
All of the properties can be dynamically changed so no restart of the application is required.
You can change the first four properties (from dynamic.properties) remotely, using the Configuration tab in
the Diagnostics Java Profiler. After making changes remember to apply all of the changes made using the
Configuration tab by clickingApply Changes. For details, see "Configuration Tab Description" on page
260.

Example Thread Sampling Configurations
Use Case 1:A particular method has average latency of about 170milliseconds, but from time to time it takes
1.4 seconds for this method to complete. Most of themethods visible in Call Profiles for any fragment execute
in 550milliseconds or less. Because themethod in questionmakes multiple calls to its callees, you do not
want to instrument them.

Instead you enable stack trace sampling to find out what the cause for long execution times. Tominimize
overhead, set tardy.method.latency.threshold to 600milliseconds. This ensures that most of themethods will
not get sampled at all because they are likely to complete before this time elapses. However, any method
running longer than this value, including our long runningmethod, will get sampled, once themethod runs for
600milliseconds (or longer) without making any calls to any of the instrumentedmethods.

If you also set the value of stack.trace.sampling.rate to 100milliseconds, this should theoretically give up to
eight samples for eachmethod invocation that lasts 1.4 seconds ((1400–600) / 100). Because you know that
themethodmakes many calls to its callees, you could also set aggregated.stack.trace.validity.threshold to
zero. This ensures that even if each collected stack trace is completely different, they will all be reported.

If you examine the Call Profile for long running instances of the server request, you would see additional
nodes revealed by stack trace sampling.

Use Case 2: You prepare a custom application for deployment and see that the default instrumentation
provided with the Diagnostics agent does not work very well becausemany Call Profiles contain very few
methods, which does not give any insight about the application specific behavior. You are reluctant to add

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 187 of 263

additional instrumentation for all classes andmethods belonging to the custom application because of the
performance andmemory consumption concerns.

You enable stack trace sampling. Assuming that a typical server request that does not have sufficiently
detailed call tree information runs in about 2 seconds, you select a stack.trace.sampling.rate of 200
milliseconds. This can give up to 10 stack traces per typical server request. However, you do not want all the
stack traces to be reported because some of themethods visible in the stack traces can be very fast, and
they do not substantially contribute to the server request’s overall latency. Therefore, you set
aggregated.stack.trace.validity.threshold to 2. This ensures that only methods visible in three or more
consecutive stack traces, or methods with estimated latency of 600milliseconds or more, will be reported.

After viewing the Call Profiles with the additional nodes obtained from sampling, you canmake informed
decision about adding additional instrumentation points to the probe configuration in deployment.

Troubleshooting Stack Trace Thread Sampling
Why do I not see any new nodes in my Call Profile after I enabled stack trace sampling?
See if any of the following applies to your case:

l Was the last method visible in the Call Profile an outbound call? Methods marked as outbound do not get
sampled. (To reliably check if a method is marked as outbound, find this method in detailReport.txt file and
check its corresponding instrumentation point detail for the “outbound” keyword).

l Was the last method visible in the Call Profile marked as no-layer-recurse Suchmethods do not get
sampled. (Use the same procedure as in the previous point to check if a method is no-layer-recurse.)

l Did you try reducing tardy.method.latency.threshold or minimum.method.latency? It is possible that the
last method visible in Call Profile makes calls that get trimmed, but they prohibit the sampling to kick in
because there is never an inactive period of tardy.method.latency.threshold for the caller.

l Did you try reducing aggregated.stack.trace.validity.threshold or check if there are warnings in the
probe.log file about the stack depth being too shallow? Possibly, the observed stack traces changed too
quickly to get reported.

l Did you try reducing the stack.trace.sampling.rate? Perhaps your methods simply miss the opportunities
to get sampled.

l Did you verify that the latency of the last visible method in Call Profile is not caused by having run garbage
collector? Java code, including the stack trace sampling code, does not run during garbage collection.

What is the minimum value of stack.trace.sampling.rate that can be used?
You can use any positive value, but remember that each platform will refuse to samplemore frequently that it
possibly can. The three determining factors are theminimum granularity of sleep() available, the timer
resolution, and the time it actually takes to collect one set of samples.

What is the maximum value of stack.trace.sampling.rate that can be used?
There is no limit. The usefulness of a high setting depends entirely on the latency of the server requests for the
application. To get any results, plan for at least a few samples for each server request you are concerned with.
Even that could require tuning other sampling parameters as well.

Controlling CPU Timestamp Collection
The CPU timestamps calculate the amount of exclusive CPU time that amethod uses. You can view this
information on theHotspots tab in the Java Diagnostics Profiler.

Note: In VMware, the CPU timemetric is from the perspective of the guest operating system and is

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 188 of 263

affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes Running
on VMware" on page 168.

By default, collection of CPU timemetrics is enabled for server requests.

Collection of CPU timemetrics can be configured in property files (see "Configuring Collection of CPU Time
Metrics" on page 174) or using the Java Diagnostics Profiler UI (see "Configuration Tab Description" on page
260).

Enabling and Configuring Collection Leak Reporting
Note: Youmust run the JRE Instrumenter using the appropriate mode for your application server if you
want to use the collection leaks pinpointing (CLP) feature in the Java Agent.

You can set the following configuration items for collection leak reporting using the Collection Leaks section in
the Java Profiler Configuration tab (for details, see "Configuration Tab Description" on page 260).

These same values can also be set in the dynamic.properties file for the probe: clp.diagnostics.reporting,
clp.diagnostics.growth.time and clp.diagnostics.nongrowth.time.

Generating Performance Reports for JUnit Tests
When you run JUnit tests, you can enable and configure the Java Agent so that it generates a performance
report for all of your unit tests. This is useful for finding out if the performance (latency/CPU) of a particular
test has changed over time.

When the unit test finishes, the Java Agent creates a CSV file for each test method (represented as a server
request). This CSV file contains a complete listing of all test methods that were executed in each JVM
instance, usually per test class. The CSV file can be opened in a spreadsheet program to analyze and
visualize performance characteristics (the Filter function in Excel is very helpful for selecting specific
methods).

Following is an example of a CSV file:

Date,Server Request,Avg Latency,Count,Min Latency,Max Latency,Cpu
Time,Exceptions
Fri Sep 23 12:55:22 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1068.81,1,1068.81,1068.81,374.403,0
Fri Sep 23 12:55:40 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1064.845,1,1064.845,1064.845,405.60
2,0
Fri Sep 23 12:55:57 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1141.689,1,1141.689,1141.689,358.80
2,0
Fri Sep 23 12:56:27 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1474.81,1,1474.81,1474.81,468.003,0

The latency times are in milliseconds (ms).

By default the data for each test execution is appended to the CSV files. This is especially useful when tests
are run as part of a Continuous Integration cycle which allows you to capture results over time.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 189 of 263

http://www.vmware.com/pdf/vmware_timekeeping.pdf

To use this functionality, enable the Java Agent in the JUnit test execution by specifying the following JVM
parameters:

JVM Parameter Description

-javaagent:<Java_Agent_
Home>/DiagnosticsAgent/lib/probeagent.jar
(UNIX)

or

-javaagent:<Java_Agent_
Home>\DiagnosticsAgent\lib\probeagent.jar
(Windows)

Enables the agent by specifying the path to the agent
JAR file.

-Ddispatcher.ac.autostart=true Tells the agent to start profiling immediately.

-Dcapture.exit_report=dir=perftest:append Instructs the agent to produce a performance report to
the specified directory and to append the results. (To
override the file, replace appendwith override.)

-Ddispatcher.minimum.fragment.latency=1ms Collects only server requests (such as execution of
JUnit test methods) that have latency above 1ms.

The following example shows an integration into ANT:

<junit dir="${build}" fork="yes" forkmode="perTest" printsummary="yes"
jvm="${env.JAVA_HOME}/bin/java">
...
<jvmarg value="-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/

probeagent.jar"/>
<jvmarg value="-Ddispatcher.ac.autostart=true"/>
<jvmarg value="-Dcapture.exit_report=dir=<dir_name>:append"/>
<jvmarg value="-Ddispatcher.minimum.fragment.latency=1ms"/>
...

</junit>

In addition to the above settings, the JUnit point needs to be activated (set active=true) in <Java_Agent_
Home>/DiagnosticsAgent/etc/auto_detect.points:

[JUnit]
class = junit.framework.TestCase
method = !test.*
signature = !.*
deep_mode = hard
layer = JUnit
active = true

Note: If you use JUnit 4.x and your unit test classes are not a subclass of junit.framework.TestCase,
you need to change the class definition in the above JUnit point to match your unit test classes.

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Micro Focus Diagnostics (9.51) Page 190 of 263

Chapter 12: Java Agent Metrics Collectors
This chapter describes Java Agent metrics capture and how to configure themetric collectors.

This chapter includes:

l "About Metrics Capture" below
l "What Metrics are Being Collected by the Java Agent" on the next page
l "UnderstandingMetric Collector Entries" on the next page
l "About Collecting Additional ProbeMetrics" on page 194
l "Modifying ProbeMetrics Already Being Captured" on page 194
l "Stopping Capture of aMetric" on page 194
l "Using Customizedmetrics.config Files for Multiple JVM Applications on a System" on page 194

About Metrics Capture
With the Java Agent you can configuremetrics collectors by modifying the entries in themetrics configuration
file, <agent_install_directory>/etc/metrics.config.

Note: There is a different metrics.config file included with the .NET Agent .

The system and JMX metric collectors for your agent installation are defined in themetrics configuration file.
The properties and entries in themetrics configuration file, <agent_install_directory>/etc/metrics.config,
enable you to control themetric collectors.

Note: If you update themetrics configuration file, themetric collectors automatically restarts so that your
changes can take effect.

Micro Focus Diagnostics (9.51) Page 191 of 263

What Metrics are Being Collected by the Java Agent
In themetrics.config file you can see what metrics are being collected by the Java Agent.

Listing Available Metrics
The Java Agent metrics.config file has a feature to write a list of all the available metrics for each JMX
collector into a file. When the default.dump.available.metrics property in themetrics.config file is set to
true, the probe will write this list of available metrics to text files in the probe log directory. The files are named
as follows: <agent_install_directory>/log/<probe-id>/jmx_metrics_<collector-name>.txt. See "Getting a
List of Available JMX orWebSphere PMI Metrics" on page 204 for details and examples of how to use this
information as a template for configuring additional metrics capture.

Understanding Metric Collector Entries
Metric Collector entries instruct the Java Agent metric collectors to gather specific metrics. The parameters
on the left hand side of the entry control how the probe gathers themetric from the host or the JVM, and the
parameters on the right hand side of the entry define how the collectedmetrics are processed in Diagnostics
and displayed in the user interface.

The entries can have one of the following layouts:

<collector_name>/<metric_config>=<metric_id>|<metric_units>|<category_id>

or

<collector_name>/<metric_config>=
RATE<rate_multiplier>(<metric_id>|<metric_units>|<category_id>)

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Micro Focus Diagnostics (9.51) Page 192 of 263

where:

l <collector_name> indicates the name of the Diagnostics metric collector. The collectors are defined in
metrics.config.
For systemmetrics the value of this parameter is system. For JMX metrics the value of this parameter is
usually defined as the name of the application server type and the version, such as WebSphere5.
The collector-name along with metric names can also be found on the AdvancedQuery page in the
Diagnostics UI (http://<diagnostics_sever>:2006/query).

l <metric_config> identifies themetric that is to bemonitored on the host system or on the JVM for the
application server. The format of this parameter varies depending on whether you are creating an entry for
a systemmetric or a JMX metric. For information on formatting themetric_config property for the system
metric collector, see "Capturing Additional Custom SystemMetrics" on page 198. For information on
formatting themetric_config property for JMX metrics, see "Creating New JMX orWebSphere PMI
Metrics Entries" on page 206.

l RATE(...) indicates that metric values are converted to a rate (units per second) during sampling.
For example, when theRate parameter is used with themetric total servlet requests since startup, the
value of the collectedmetric is converted from a count of servlet requests to the number of servlet
requests per second.
WhenRate is not used, omit the parenthesis as shown in the first example above.

Note: This parameter should only be used for metrics with non-decreasing values.

l <rate_multiplier> is an optional parameter that indicates that the rate is to be adjusted by multiplying it by
the <rate_multiplier>.
For example, when theRate parameter and the rate_multiplier are used with themetric total gc time (in
ms), the value of themetric collected is converted from the total time for gc to the percent time spent in gc.

l <metric_id> indicates the name that represents themetric in the UI. Themetric_id must be unique in the
metrics.config file. If the value of themetric_id is the same as one of the default metrics, Diagnostics
replaces themetric_id in the entry with a standard name to be used to reference themetric in the UI. If the
value of themetric_id is not the same as one of the default metrics, themetric_id is used as the name of
themetric in the UI exactly as shown in the entry.

l <metric_units> indicates the units of measure in which themetric is reported. This is a required
parameter and it must contain one of the following units of measure:
l microseconds, milliseconds, seconds, minutes, hours, days

l bytes, kilobytes, megabytes, gigabytes

l percent, fraction_percent

l count

l load

l <category_id> groups a set of metrics together under the same heading in the tree in the side bar of the
Metrics tab in the Java Diagnostics Profiler. This parameter has no impact on the data displayed in the
Details pane in the Diagnostics UI views.

Note: After you create themetric collector entry, add the escape character "\" before each occurrence of
a back-slash '\', space ' ', or colon ':'. This is a requirement for Java properties loaded from a file.

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Micro Focus Diagnostics (9.51) Page 193 of 263

About Collecting Additional Probe Metrics
To gather information for an additional metric, add an entry for themetric to the appropriate metric collector in
themetrics.config file using the syntax described in "UnderstandingMetric Collector Entries" on page 192.

See "Capturing Additional Custom SystemMetrics" on page 198 for details on capturing additional system
metrics.

See "Additional Custom JMX Metrics" on page 204 for details on capture addition JMX metrics.

Modifying Probe Metrics Already Being Captured
You can update both the default and the custommetric entries in themetric collectors in themetrics.config
file.

Stopping Capture of a Metric
To stop ametric collector from collecting ametric listed inmetrics.config, you can either delete themetric
entry or make themetric entry a comment line by adding a '#' to the beginning.

Using Customized metrics.config Files for Multiple
JVM Applications on a System
Theremay be times when you only need to collect certain metrics, or customize themetric collector
properties for select JVM applications running on a system with multiple JVMs, and such changes would
negatively impact the other instrumented JVMs running on the system. In these cases, you can create and
customize differentmetrics.config configuration files and configure those JVM applications to use the
customized settings by following these steps:

Note: You only need to configure the JVM applications that need customizedmetrics.config files. The
other JVM applications can use the out-of-the-boxmetrics.config configuration.

1. Copy the etc/metrics.config file for each JVM application requiring special customization and name the
file, such asmetrics_<app_name>.config. This file must be in the same <agent_install_
directory>/etc folder as the originalmetrics.config file. Customize this file as needed.

2. Create a copy of the lib/modules.properties file for eachmetrics_<app_name>.config file created,
and name the file, such asmodules_<app_name>.properties. This file must be in the same <agent_
install_directory>/lib folder as the originalmodules.properties file.
Change themetrics.properties property of this new file to point to the newmetrics_<app_
name>.config file as shown in the following example:

##
Metrics capture module
##
metrics.class.name=com.mercury.diagnostics.capture.metrics.MetricsModule
metrics.class.loader=probeLoader

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Micro Focus Diagnostics (9.51) Page 194 of 263

metrics.properties=metrics_<app_name>.config

3. Update each JVM start script that needs customizedmetrics collection to use the new corresponding
lib/modules_<app_name>.properties file by adding the following to the JVM property definition:
-Dmodules.properties.file=module_<app_name>.properties

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Micro Focus Diagnostics (9.51) Page 195 of 263

Chapter 13: Java Agent - System Metrics
Capture
Information is provided on the process for capturing systemmetrics and how to configure the Java Agent
systemmetric collector to capture them.

This chapter includes:

l "About SystemMetrics" below
l "SystemMetrics Captured by Default" below
l "Configuring the SystemMetrics Collector" on the next page
l "Capturing Additional Custom SystemMetrics" on page 198

About SystemMetrics
The systemmetric collector is installed with the Java Agent. The systemmetric collector gathers system
level metrics, such as CPU usage andmemory usage, from the agent’s host. The systemmetric collector is
configurable so you can control which systemmetrics are collected.

Only one instance of the systemmetric collector is run on a given host, nomatter how many instances of the
probe were started on the host. When an instance of the probe is started, it attempts to connect to the UDP
port specified in themetrics properties. If a connection is established, the systemmetric collector instance is
started. If a connection cannot bemade, a systemmetric collector instance has already been started on the
host by another instance of the probe and a new instance cannot be started.

Each probe periodically attempts to connect to the port to make sure that a systemmetric collector is always
running. If the probe that started the systems metric collector is stopped, one of the other instances of the
probe will start a new instance of the systems metric collector when it finds that the port is available.

SystemMetrics Captured by Default
The following are the systemmetrics that themetric collector collects by default for all supported platforms:

l CPU
l MemoryUsage
l VirtualMemoryUsage
l ContextSwitchesPerSec
l DiskBytesPerSec
l DiskIOPerSec
l NetworkBytesPerSec
l NetworkIOPerSec
l PageInsPerSec
l PageOutsPerSec
You can control which of the default systemmetrics the systemmetric collector gathers and you can add
other platform specific metrics so that the collector gathers the information for them as well. See "Configuring

Micro Focus Diagnostics (9.51) Page 196 of 263

the SystemMetrics Collector" on the next page for more information. For certain platforms, such as Windows,
Solaris, and Linux, you can create custom systemmetrics that can be gathered by the systemmetric
collector. For details, see "Capturing Additional Custom SystemMetrics" on the next page.

Configuring the SystemMetrics Collector
You can configure the systemmetrics capture process to run in your environment, and to collect and report
the systemmetrics that are of interest to you, by modifying the entries in themetrics configuration file,
<agent_install_directory>/etc/metrics.config. See "Java Agent Metrics Collectors" on page 191 for general
information on themetrics collector and see "UnderstandingMetric Collector Entries" on page 192 for an
explanation of themetrics collector entries and syntax.

Note: If you update themetrics configuration file, the systems metric collector automatically restarts so
that your changes can take effect.

Example System Metrics Collector Entry
The following example shows how to create themetric collector entry for a systemmetric. To create an entry
for a systemmetric called CPU on a host platform, you would enter the following:

system/CPU = CPU|percent

where:

l system indicates that themetric is to be collected by the systemmetric collector
l the first CPU indicates that themetric known as CPU on the platform, is beingmonitored
l the secondCPU is the name that is to be used in the UI to label themetric
l percent indicates the units in which themetric is measured on the host, and reported in the UI

Modifying the Default Port
The default port for themetric collector is 35000. This value can bemodified using the system.udp.port
property if the configuration for your agent host requires that another port be used.

To modify the default port:
1. Locate the system.udp.port property inmetrics.config.
2. Change the value of the system.udp.port property to the number of the port that you want to be used by

the systemmetric collector. The default port is 35000.

Note: The port assigned to the systemmetric collector is not related to the port for the agent's Web
server.

Disabling System Metrics Collection
To disable the collection of systemmetrics so that they will not be collected or displayed in the UI, set the
value of the system.udp.port property to -1.

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 197 of 263

Capturing Additional Custom SystemMetrics
You can capture custom systemmetrics onWindows, Solaris, and Linux platforms using the Java Agent
systemmetric collector.

The following sections provide instructions for capturing themetrics and updating the entries in the system
metric collector so that the custommetrics can bemonitored.

This section includes:

"Capturing Custom SystemMetrics onWindows Hosts" below

"Capturing Custom SystemMetrics on Solaris Hosts" on page 200

"Capturing Custom SystemMetrics on Linux Hosts" on page 200

Capturing Custom System Metrics on Windows Hosts
Using the features of Windows SystemMonitor, you can add counters to represent the performance of
specific aspects of a system or service. The counters are tracked and reported in theWindows System
Monitor, and can bemonitored by the Java Agent systemmetric collector.

To add counters using theWindows SystemMonitor:

1. Start theWindows PerformanceMonitor:
a. ExecuteRun from the Start menu.
b. In theOpen box on theRun dialog box type perfmon.

ThePerformance dialog box opens showing theSystem Monitor graph with a table of the current
counters beneath the graph.

2. Display the Add Counters dialog box:
Right-click theSystem Monitor graph and select Add Counters... from the pop-upmenu.
Windows displays theAdd Counters dialog box:

3. Make sure that the host computer is selected from Select counters from computer list.

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 198 of 263

4. In thePerformance object list, select the object that the counter belongs to.
5. ChooseSelect counters from list, and select a counter from the list of counters that follows.
6. ChooseSelect instances from list, and select an instance from the list of instances that follows.
7. Click Add.
Once a counter has been added to the Systems Monitor, the systemmetric collector can be configured to
gather themetrics for the counter. The following instructions will guide you through the steps to create an
entry for themetrics.config based on the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "UnderstandingMetric Collector Entries" on page 192.

To collect metrics for a Windows System Monitor Counter:
1. Open <agent_install_directory>/etc/metrics.config.
2. Create the <metric_config> part of the entry using the following template, type the entry for the counter:

\<performance_object>(<instance>)\<counter>

In the example shown in the preceding screen image:
l the selected PerformanceObject is %Processor

l the selected Instance is _Total

l the selected Counter is Processor Time

The <metric_config> portion of the entry that would be created for this example would be:

\Processor(_Total)\% Processor Time

3. Fill in the rest of the systemmetric entry template as shown in the following example:

system/\Processor(_Total)\% Processor Time = ProcessorTime|percent

4. Format the initial entry by prepending a back-slash '\' before each occurrence of back-slash '\', space ' ',
or colon ':' in the initial entry.
Following this step, the initial entry in the previous step becomes:

system/\\Processor(_Total)\\%\ Processor\ Time = ProcessorTime|percent

This is the correctly formatted entry formetrics.config to enable the systemmetric collector to gather
themetrics for aWindows SystemMonitor counter.

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=
Processor\ Time(Remote Machine)|percent

Note: Assuming perfmon is setup properly on a remotemachine, you can use it to get metrics from
remotemachines by adding \\MachineName before the Performance object name as shown in the
following example:

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 199 of 263

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=Processor\ Time
(Remote Machine)|percent

Capturing Custom System Metrics on Solaris Hosts
The Solaris systemmetrics that can bemonitored by the systemmetric collector are found using the kstat
command. Only a subset of themetrics found using the kstat command can bemonitored by the system
metric collector.

To collect metrics for a Solaris system metric:
1. Execute the kstat command and identify themetric that you want to monitor.

A Solaris systemmetric has the following format:

module:instance:name:statistic

Here is an example:

vmem:35:ptms_minor:free

2. To cause themetric collector to gather themetrics for an additional systemmetric, add an entry for the
metric to the systemmetric collector in themetrics.config file using the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "UnderstandingMetric Collector Entries" on page 192.
Using this template, the example from the previous step would initially appear as follows:
system/vmem:35:ptms_minor:free = Virtual Memory (35) Free | count

3. Format the initial entry by prepending a back-slash '\' before every back-slash '\', space ' ', or colon ':'.
Following this step the initial entry in the previous step becomes:

system/vmem\:35\:ptms_minor\:free = Virtual\ Memory\ (35)\ Free | count

This is the correctly formatted entry formetrics.config to enable the systemmetric collector to gather
themetrics for a Solaris systems metric.

Capturing Custom System Metrics on Linux Hosts
The Linux systemmetrics that can bemonitored by the systemmetric collector are found in the /proc file
system. To configure the systemmetric collector to gather custom Linux metrics, scan the/proc file system
to locate the desiredmetric, and then create the systemmetric collector entry for themetric inmetrics.config
according to the location of themetric information.

To collect metrics for a Linux system metric:
1. Scan the /proc file system to locate themetric that you would like the Diagnostics systemmetric

collector to monitor.
To create the systemmetrics configuration entry inmetrics.config for the Linux metric, youmust
explicitly specify where the value for the systemmetric is located. The location is specified using the
following values:
l File name. The name of the file where themetric information is located, including the path from the
/proc directory.

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 200 of 263

l Line offset. A count of the number of lines in the file to the line where the systemmetric is located.
The first line is counted as line 0.

l Word offset. A count of the number of words that themetric value is offset into the line in the file. The
first word in the line is counted as line 0. The value at the specified offset must be an unsigned integer.

For example, if you wanted the systemmetric collector to monitor the SwapFree systemmetric so that
you can see it displayed in the Diagnostics views, you would scan the /proc directory to locate the
metric, and you would discover that themetric is located in thememinfo file. The layout of this file is as
follows:

MemTotal: 515548 kB
MemFree: 1552 kB
Buffers: 41616 kB
Cached: 152084 kB
SwapCached: 46064 kB
Active: 402720 kB
Inactive: 75328 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 515548 kB
LowFree: 1552 kB
SwapTotal: 1048568 kB
SwapFree: 779192 kB
Dirty: 4544 kB
Writeback: 0 kB
Mapped: 300056 kB
Slab: 28764 kB
Committed_AS: 801364 kB
PageTables: 3184 kB
VmallocTotal: 499704 kB
VmallocUsed: 2184 kB
VmallocChunk: 497324 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 4096 kB

The location of the SwapFreemetric in this file would lead to the following values:
l File name: meminfo

l Line offset: 12

l Word offset: 1

2. To gather themetrics for an additional systemmetric, add an entry for themetric to the systemmetric
collector in themetrics.config file using the following template:

<collector_name>/<line>:<word>:<file>= <metric_id>|<metric_units>

This template is a version of the template described in "UnderstandingMetric Collector Entries" on page
192. The <metric_config> property has been replaced with the properties <line>:<word>:<file>.
Using this template, the example from the previous step would initially appear as follows:

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 201 of 263

system/12:1:meminfo = Swap Free | kilobytes

3. Format the initial entry by prepending a back-slash '\' before every back-slash '\', space ' ', or colon ':'.
Following this step the initial entry in the previous step becomes:

system/12\:1\:meminfo = Swap\ Free | kilobytes

This is the correctly formatted entry formetrics.config to enable the systemmetric collector to gather
themetrics for a Solaris systems metric.

Java Agent Guide
Chapter 13: Java Agent - SystemMetrics Capture

Micro Focus Diagnostics (9.51) Page 202 of 263

Chapter 14: Java Agent - JMXMetrics Capture
Information is provided on the process for capturing JMX metrics and how to configure Java Agent metric
collectors to capture them.

This chapter includes:

l "About JMX Metrics" below
l "About Configuring JMX Metric Collectors" on the next page
l "Additional Custom JMX Metrics" on the next page
l "Getting a List of Available JMX orWebSphere PMI Metrics" on the next page
l "Creating New JMX orWebSphere PMI Metrics Entries" on page 206

About JMX Metrics
The Java Agent comes with pre-defined JMX metric collectors that access the JMX metrics from the
following application servers:

l IBMWebSphere
l BEAWebLogic
l SAP NetWeaver
l Oracle AS
l Apache Tomcat
l JBoss J2EE Server
l TIBCOBusiness Works
The Java Agent can also collect JMX data from any J2EE server that supports the JMX standard.

The Java Agent runs the JMX metric collectors periodically to collect themetrics from the application server.
The collectedmetrics are displayed on the user interfaces in both Diagnostics Enterprise User Interface and
the Diagnostics Java Profiler.

Configuring WebSphere for JMXMetric Collection
ForWebSphere JMX metric collection, youmight need to configure the PerformanceMonitoring Infrastructure
(PMI) service on theWebSphere server to start receiving JMX metrics.

See "ConfiguringWebSphere for JMX Metric Collection" on page 55 for information on how to configure
WebSphere 5.x, 6.x and 7.0 servers for JMX metrics collection.

Configuring TIBCO for JMXMetric Collection
For TIBCO JMX metric collection you need to enable JMX metric collection; see "Example 5: Configuring
TIBCOActiveMatrix BusinessWorks and Service Bus for Monitoring" on page 44 for instructions.

Micro Focus Diagnostics (9.51) Page 203 of 263

About Configuring JMX Metric Collectors
The JMX metric collectors are configurable so that you can control which JMX metrics are collected. The JMX
metric collectors are defined in the <agent_install_directory>/etc/metrics.config file.

Typically a separate collector is defined for eachmajor version of each application server.

See "Java Agent Metrics Collectors" on page 191 for general information on themetrics collector and see
"UnderstandingMetric Collector Entries" on page 192 for an explanation of themetrics collector entries and
syntax.

Additional Custom JMX Metrics
The Java Agent is installed with a number of predefined JMX metric collectors for the application servers
listed in "About JMX Metrics" on the previous page. You configure these collectors by defining entries in the
metrics.config file, see "UnderstandingMetric Collector Entries" on page 192. You could also create entries in
the existingmetric collectors and even create new collectors if there are additional JMX metrics that you
would like Diagnostics to monitor.

In order to create new entries in the JMX metric collectors you can get a list of the available JMX metrics and
WebSphere PerformanceMonitoring Infrastructure (PMI) metrics. Then you can create new metrics entries in
themetrics.config file. The following sections provide instructions for creating new entries in the JMX metric
collectors so that additional JMX metrics and PMI metrics can bemonitored.

Getting a List of Available JMX or WebSphere PMI
Metrics
Themetric collectors installed with the Java Agent include entries for many of the JMX metrics that are
available for each application server. However, there could be other JMX metrics orWebSphere PMI metrics
that you couldmonitor, or new metrics could be exposed by the application server vendor.

In order to make it easier to configure new/additional JMX/PMI metrics for collection themetrics.config file
has a feature to write a list of all the available metrics for each JMX collector into a file. When the
default.dump.available.metrics property in themetrics.config file is set to true, the probe will write this list
of available metrics to text files in the probe log directory. The files are named as follows: <agent_install_
directory>/log/<probe-id>/jmx_metrics_<collector-name>.txt.

The default.dump.available.metrics property in the probemetrics.config file can be changed at runtime. It
is recommended that the property is only set to true temporarily to write the list of available JMX/PMI metrics.
After themetrics list is written to the file, the property should be set back to false (or commented out) to avoid
the overhead of the probe periodically writing themetrics list to file.

Some examples of themetrics list file are shown below. You can use this type of information to configure
additional JMX or PMI metrics in the probes’ etc/metrics.config file.

The following example shows the available MBeanObjectNames and their collectable attributes:

======= MBean ObjectNames and Available Attributes =======
MBean ObjectName:
WebSphere:J2EEServer=server1,JDBCProvider=Derby JDBC

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 204 of 263

Provider,JDBCResource=Derby JDBC
Provider,Server=server1,cell=yli87Node01Cell,diagnosticProvider=true,j2eeType=JDB
CDataSource,mbe
anIdentifier=cells/yli87Node01Cell/nodes/yli87Node01/servers/server1/
resources.xml#DataSource_12442
31364323,name=WST_PriceGen,node=yli87Node01,platform=dynamicproxy,process=
server1,spec=1.0,
type=DataSource,version=6.1.0.0
Available Attributes:
name: loginTimeout, type: int
name: statementCacheSize, type: int
name: testConnectionInterval, type: java.lang.Integer
........................

The following example shows the available MBeanObjectNames and their collectable attributes and fields:

======= MBean ObjectNames and Available Attributes and Fields =======
MBean ObjectName:
java.lang:name=PS Old Gen,type=MemoryPool
Available Metrics:
Attribute: CollectionUsage type: javax.management.openmbean.CompositeData
Field: committed, type: java.lang.Long
Field: init, type: java.lang.Long
Field: max, type: java.lang.Long
Field: used, type: java.lang.Long

The following example shows the available MBeanObjectNames and their collectable operations and fields:

======= MBean ObjectNames and Available Operations and Fields =======
MBean ObjectName:
com.tibco.bw:key=engine,name="MortgageBroker-BrokerService"
Available Metrics:
Operation: java.lang.Integer GetActiveProcessCount()
Operation: javax.management.openmbean.CompositeData GetExecInfo()
Field: Threads, type: java.lang.Integer
Field: Uptime, type: java.lang.Long
Operation: javax.management.openmbean.CompositeData GetMemoryUsage()
Field: FreeBytes, type: java.lang.Long
Field: PercentUsed, type: java.lang.Long
Field: TotalBytes, type: java.lang.Long
Field: UsedBytes, type: java.lang.Long

ForWebSphere JMX collectors, besides the generic MBean JMX metrics, the availableWebSphere specific
PMI metrics are also dumped to theWebSphere collector's dump file. This includes the PMI tree instance
paths and their available statistics, and the PMI module configuration information as shown in the example
below:

======= PMI Tree and Available PMI Statistics =======

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 205 of 263

connectionPoolModule
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime
connectionPoolModule->Derby JDBC Provider
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime
connectionPoolModule->Derby JDBC Provider->jdbc/ALBUM
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

Creating New JMX or WebSphere PMI Metrics
Entries
The following instructions guide you through the process of creating the JMX or PMI metric entries according
to the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "UnderstandingMetric Collector Entries" on page 192.

To capture JMX or WebSphere PMI metrics:
1. Open <agent_install_directory>/etc/metrics.config. and locate the JMX metric collector that is

appropriate for the application that is beingmonitored by the Java Agent.
2. The <collector_name> parameter is the same as the rest of the entries in the collector. If you were

creating an entry forWebLogic, the value of this parameter would beWebLogic.
3. Create the <metric_config> parameter.

a. For JMX metrics the <metric_config> parameter is a pattern that the collector uses to find a
matchingMBean. The pattern consists of two components, separated by the '.' character. See
syntax below.
MBean object and attributes:

<MBean object name pattern>.<attribute name>

MBeanObject, attribute and fields:

<MBean object name pattern>.<attribute name>#<field name>

MBean object and operations:

<MBean object name pattern>.(<operationname>())

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 206 of 263

MBean object, operations and fields:

<MBean object name pattern>.(<operationname>()#<field name>)

Where
<MBean object name pattern> is the string representation of the object name of anMBean. For an
explanation of metric patterns see "UnderstandingMetric Patterns" on the next page. For an
explanation of how to group JMX metrics see "JMX GROUPBY and EXPAND_PMI Modifiers" on
page 209.
<attribute name> is the name of theMBean attribute that represents themetric. If <attribute name>
has any '.' in it, it should be surrounded by parenthesis: <MBean object name pattern>.
(<attribute name>)
As an example, for aWebLogic application server, the <metric_config> parameter for the throughput
of all Execute Queues is configured as:

:Type=ExecuteQueueRuntime,.ServicedRequestTotalCount

See "Getting a List of Available JMX orWebSphere PMI Metrics" on page 204 for an example of a
metrics dump showing available attributes.
<attribute name>#<field name> JMX Attributes that return Composite Data can have their numeric
fields used as metrics. Simply append the symbol # followed by the name of the field after the
MBean name.
For example:

Java\ Platform/java.lang\:type\=MemoryPool,name\=Perm\ Gen.Usage#used

will track the <used> field of the <Perm Gen> MBean's <Usage> composite data attribute.
(<operationname>())where the operation name is followed by open and close parentheses. And the
entire operation name is enclosed in parentheses.If the operation returns a composite attribute, suffix
the composite attribute field after the () as for attributes.
For example:

Tibco/com.tibco.bw\:key\=engine,name\=*.(GetActiveProcessCount()) = Active
Process Count|count|Tibco

Note that only operations that don’t take arguments are supported.
(<operation name>()#<field name>) JMX Operations that return Composite Data can have their
numeric fields used as metrics. Simply append the symbol # followed by the name of the field after
theMBean name.
For example:

Tibco/com.tibco.bw\:key\=engine,name\=*.(getStatus()#Total\ Errors) = Total
Errors|count|Tibco

will track the "Total Errors" field of the Composite data object returned by the getStatus() operation.
b. ForWebSphere PMI metrics, the <metric_config> parameter is a pattern that the collector uses to

find thematching PMI statistics. The pattern consists of two components separated by the '.'
character.

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 207 of 263

<PMI StatDescriptor>.<statistics name>

Where
<PMI StatDescriptor> is used to locate and access particular Stats in theWebSphere PMI tree. It
can be either a PMI module name (for example, webAppModule), or a PMI module branch (for
example, [webAppModule][AccountManagement#AccountManagementWar.war]
<statistics name> is the name of the PMI statistics that represent themetric. If statistics name has
any '.' in it, it should be surrounded by parenthesis: [webAppModule]
[AccountManagement#AccountManagementWar.war].(webAppModule.numLoadedServlets)

See "Getting a List of Available JMX orWebSphere PMI Metrics" on page 204 for an example of the PMI
module and PMI module branches and their available statistics names.
See "JMX GROUPBY and EXPAND_PMI Modifiers" on the next page for an example of how to group
PMI metrics.

4. Fill in the rest of the JMX metric entry template as shown in the following example:

WebLogic/*:Type=ExecuteQueueRuntime,*.ServicedRequestTotalCount = RATE(Execute
Queues Requests / sec|count|Execute Queues)

5. Format the initial entry by prepending a back-slash '\' before every back-slash '\', space ' ', equals (=), or
colon ':'.
Following this step the initial entry in the previous step becomes:

WebLogic/*\:Type\=ExecuteQueueRuntime,*.ServicedRequestTotalCount = RATE(Execute
Queues Requests / sec|count|Execute Queues)

This is the correctly formatted entry for a JMX metric collector to enable the collector to gatherWebLogic
JMX metrics.

Understanding Metric Patterns
For JMX metrics the <metric_config> parameter is a pattern that the collector uses to find amatchingMBean;
for example:

:Type=ExecuteQueueRuntime,.ServicedRequestTotalCount

In the example above, the object name is *:Type=ExecuteQueueRuntime,*, which could actually resolves to
many MBeans whose names have the Type component equal toExecuteQueueRuntime.
ServicedRequestTotalCount is an attribute name for whichmetric values will be collected by the JMX
metric collector.

Note: Current implementation of the JMX collector only supports attributes that are numeric in type (for
example, long, integer, etc.).

The JMX metric collector first uses MBeanServer's query mechanism to find thematchingMBeans for each
object name provided in the configuration. For JMX metrics the object names are a pattern that the collector
uses to find amatchingMBean. For more details around the object names, see
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html.

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 208 of 263

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

SinceMBean object names are patterns that can resolve into multiple MBeans, the JMX collector will validate
all of the attribute names in the entry against all MBeans that match the pattern, and will aggregate the
attribute values over the set of thosematchingMBeans. Of course, it is not always the case that the object
name resolves into multiple MBeans. For example, the following object name resolves to a single MBean (on
aWebLogic application server):

*\:Name\=weblogic.kernel.Default,Type\=ExecuteQueueRuntime,
*.ServicedRequestTotalCount

JMXGROUPBY and EXPAND_PMI Modifiers
You can use the optional GROUPBY modifier to create a separatemetric for eachmatched group of MBean
ObjectNames with the same value of the key specified by GROUPBY. In the probe's etc/metrics.config file,
for JMX metrics that describe anMBean object name pattern there is an optional modifier GROUPBY that can
be added, which tells a JMX-based collector to treat themetric_config as multi-instance expression:

collector_name/GROUPBY[oname_key]/metric_config = ...

The collector will find all MBeans matching themetric_config and create a correspondingmetric for each of
them using the object name key oname_key to provide unique naming by appending it to category_id.

WebSphere6/GROUPBY[name]/WebSphere\:type\=DataSource,*.statementCacheSize = JDBC
Statement Cache Size|bytes|JDBC DataSource

For example:

WebSphere6/connectionPoolModule.CreateCount = JDBC Connection Creates|count|JDBC
ConnectionPools

WebSphere6/[connectionPoolModule][Derby\ JDBC\ Provider][jdbc/ALBUM].AllocateCount =
JDBCConnection Allocates|count|JDBC ConnectionPools

Or, youmay use the optional EXPAND_PMI modifier to group PMI metrics similar to how you group JMX
metrics.

For PMI, the EXPAND_PMI modifier is specified to expand the PMI tree from the givenmodule or
StatDescriptor branch by the specified level. The expansion level "n" can be 1, 2, ..., or *, with the default level
of 1 and * means expand all:

collector_name/EXPAND_PMI[n]/metric_config = ...

For example:

WebSphere6/EXPAND_PMI[*]/connectionPoolModule.AllocateCount = JDBC Connection
Allocates|count|JDBC ConnectionPools

creates "JDBC Connection Allocates" metric for each JDBC connection pool provider and for each
DataSource of the provider.

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

Micro Focus Diagnostics (9.51) Page 209 of 263

Part 4: Using the Diagnostics Profiler for
Java

Micro Focus Diagnostics (9.51) Page 210 of 263

Chapter 15: Diagnostics Profiler for Java
This chapter describes how to use the Diagnostics Profiler for Java:

l "About the Java Diagnostics Profiler" below
l "How the Java Agent Provides Data for the Java Profiler" on the next page
l "Java Diagnostics Profiler UI Navigation and Display Controls" on page 213
l "Analyzing Performance Using the Call ProfileWindow" on page 215
l "Thread Call Stack Trace Sampling" on page 219
l "Comparison of Collection Leak Pinpointing and LWMD" on page 221
l "Object Lifecycle Monitoring" on page 222
l "HeapWalker Memory Analysis Execution Steps" on page 224
l "HeapWalker Performance Characteristics" on page 227
l "How to Access the Java Diagnostics Profiler" on page 227
l "How to Enable LWMD for Collections Displays" on page 228
l "How to Enable Allocation Capture" on page 228
l "How to Enable Object Lifecycle Monitoring" on page 229
l "How to Analyze Object Allocation" on page 230
l "How to EnableMemory Analysis" on page 230
Diagnostics Profiler for Java UI Description:

l "Summary Tab Description" on page 232
l "Hotspots Tab Description" on page 234
l "Metrics Tab Description" on page 236
l "Threads Tab Description" on page 238
l "All Methods Tab Description" on page 242
l "All SQL Tab Description" on page 244
l "Collection Leaks Tab Description" on page 245
l "Collections Tab Description" on page 247
l "Exceptions Tab Description" on page 250
l "Server Requests Tab Description" on page 252
l "Web Services Tab Description" on page 254
l "Allocation/LifeCycle Analysis Tab Description" on page 256
l "Memory Analysis Tab Description" on page 258
l "Configuration Tab Description" on page 260

About the Java Diagnostics Profiler
The Diagnostics Profiler for Java is installed with the Java Agent. The Profiler runs in a separate UI and
provides near real-time data, enabling you to pinpoint application performance bottlenecks.

Micro Focus Diagnostics (9.51) Page 211 of 263

You can use the different tabs in the Java Profiler to analyzemethod latency for the selected application. And
you can analyzememory problems for the selected application using thememory diagnostics metrics
displayed in the Java Profiler.

Special Features Available in the Profiler
Some of the information presented in the Java Profiler is also available in the Diagnostics enterprise UI.
However the following features are only available in the Java Profiler. Many of these features are real time and
so are enabled and viewed only in the Java Profiler.

l Dynamic instrumentation of a sampledmethod from the Java Profiler Call Profile (accessible from the
Server Requests tab)

l Threads tab
l Allocation/Lifecycle Analysis tab
l Heap Breakdown tab (including the heap walker)
l Probe Configuration tab

How the Java Agent Provides Data for the Java
Profiler
This section describes the way in which the Java Agent runs probes tomonitor your application and how this
data is displayed in the Java Diagnostics Profiler.

Monitoring Method Latency and Call Stacks
The Diagnostics Agent for Java (Java Agent) runs probes tomonitor your application and keep track of the
metrics for all of the instrumentedmethods that your application calls. As probes aremonitoring, they capture
the call stack for the three slowest instances of each server request. The probe also captures a call stack
representing all call instances for a type of service request and calculates the aggregated latency

When a server request instance is encountered that is slower than one of the captured instances for the server
request, the slower instance replaces one of the previously captured instances.

The Java Diagnostics Profiler displays metrics for all of the instrumentedmethods. You can drill down to the
method instances that are included in the captured call stacks.

While you are analyzing the information displayed on the various tabs of the Java Diagnostics Profiler, you are
working with themethods and call stacks captured from the time that the user interface was started. In the
meantime, to minimize performance impacts, the probe continues tomonitor your application, capturemethod
metrics, and capture call stacks.

Monitoring Application Memory Use
The Java Diagnostics Profiler allows you tomonitor your application's memory usage using one of the
followingmethods:

l Collection Leak Pinpointing
l Lightweight Memory Diagnostics
l Heap Breakdown/Heapwalker
Collection Leak Pinpointing allows you to pinpoint Java collection relatedmemory leak locations in Java
applications. The data collection for this feature has very low overhead and so it can be used in a production
environment.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 212 of 263

Lightweight Memory Diagnostics allows you tomonitor the collections that your application has created, and
to identify the largest collections and the fastest growing collections.

With Heap Breakdown you canmonitor the heap generation breakdown and the objects that are stored in
heap. This helps you to identify objects that may be leaking. By default, Lightweight Memory Diagnostics and
Heap Breakdown are disabled.

For more information see "Comparison of Collection Leak Pinpointing and LWMD" on page 221. Also see
"How to Enable LWMD for Collections Displays" on page 228.

For more information on Heap Breakdown/Heapwalker, see "How to EnableMemory Analysis" on page 230.

Java Diagnostics Profiler UI Navigation and Display
Controls
This section describes the features and controls that are commonwithin the different tabs of the Java
Diagnostics Profiler:

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 213 of 263

Graph Menu Options (right-click in a graph to access menu)
Right click in a graph to access the graphmenu and select an option:

Copy. From a graph, right-click and select Copy to copy the graph and paste it into a document. You can
paste into any type of file that allows you to paste an image, such as aMicrosoft Word file.

l Save as. From a graph, right-click and select Save as... to save the graph as an image (.png file type).
Enter a file name in the dialog box displayed. By default the file is saved inMy Documents but you can
browse to the directory where you want to save the file.

l Print. From a graph, right-click and select Print to print the graph.
l Zoom In. From a graph, right-click and select Zoom In to zoom in for a closer look. Each time you select
zoom in, it uses amultiplier of .5 to give you amagnified view of the data. Note that additional data is not
retrieved and the resolution of the data is not changed.
You can also select portion of the graph for zooming in. Using themouse, click the graph where you want
to begin the zoom and hold the left mouse button. Then drag themouse to the right to select the zoom
range. When you release themouse the selected portion of the graph is zoomed.
When zooming in you can select the following:
Domain Axis - Select this option to zoom in andmagnify the domain axis. Typically the domain axis is the
time or X-axis.
Range Axis - Select this option to zoom in andmagnify the range axis. Typically the range axis is the axis
with the data values or the Y-axis. For horizontal bar charts you only have the Range Axis selection and
this zooms the axis with the data values, which in this case is the X-axis.
Both Areas - Select this option to zoom in on both axes of the graph.

l Zoom Out. From a graph, right-click and select ZoomOut to zoom out for a less magnified view. Each
time you select zoom out, it uses amultiplier of 2 to give you a less magnified view of the data. Note that
the resolution of the data is not changed. The samemenu options are available as for Zoom In (described
above).

l Auto Range. From a graph, right-click and select Auto Range to go back to the original display after
zooming in or out. You can select to restore the Domain Axis, Range Axis or Both Axes to the original
magnification.

Refresh Metrics
When you are ready to view more current performancemetrics, click Refresh on the top right corner of the

screen to refresh the information displayed. The Profiler is refreshed with the latest metrics and call stacks.
The system does not refresh itself automatically.

Reset Metrics
You can force the Java Diagnostics Profiler to use new baselines for the calculation of instance counts,

average latency, and slowest latency, and to force-drop all captured call stacks, by clickingReset the Count
and Time Information.

Note: Youmay want to reset metrics after your system has warmed up so that themetrics represent
processing that takes place when your application is running in amore steady state.

Garbage Collection
When you want to deallocate usedmemory, you can forcibly perform garbage collection inside the JVM of

the probed application by clicking Force Garbage Collection on the top right corner of the screen.

Export to PDF
When you want to export the page displayed, you can click theExport this view to PDF (Acrobat) icon

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 214 of 263

on the top right corner of the screen. See "Exporting Data" in the Diagnostics Server Installation and
Administration Guide for details.

Diagnostics Home Page
The Diagnostics Home Page link displays the Diagnostics web site with information on products, solutions,
demos, webinars and contact information for Micro Focus.

Accessing Help
When you click Help, on the top right hand corner of the screen, you access the Diagnostics Java Agent
Guide.

Analyzing Performance Using the Call Profile
Window
The Call Profile window (accessed from the Server Requests tab) displays a graphical representation of the
method call stack for a selected server request. The depicted server request can be an aggregation of all of
the calls made to the selected server request or a single instance of the server request depending on the
server request on which you drilled down to open the call profile window. Themetrics depicted in the graphical
representation of the call stack are also depicted in the Call Tree Table on the same tab.

There are two types of call profile windows that are displayed depending on the how you navigated to the tab:

l The Instance Call Profile window displays themethod calls that weremade during the processing of
the server request on which you drilled down.

l TheAggregate Profile window displays an aggregation of all of themethod calls that weremade during
the processing of all of the server requests that were the same as the one on which you drilled down.

The Call ProfileWindow is made up of three areas:

l Call Profile Graph
l Call Tree Table
l Details Pane

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 215 of 263

An example of the Call Profile view showing all three of these areas:

When you click a call box in the Call Profile graph, the corresponding row is selected in the Call Tree table and
themetrics for the selected call are displayed in the Details pane. When you click a row in the Call Tree table
the corresponding call box in the Call Profile graph is selected and themetrics for the selected call are
displayed in the Details pane.

Note: There are differences in the layout and themetrics that are displayed in the Call ProfileWindow
depending on the type of call profile that Diagnostics is displaying. These differences will be noted as
each of the areas of the window are described.

Call Profile Graph
The horizontal axis of the Call Profile represents elapsed time, where time progresses from left to right.

For aggregated call profiles, the scale across the top of the profile denotes the total time.

For instance call profiles, the calls are distributed across the horizontal axis based upon the actual time when
they occurred and so their positions help to show the sequence of each call relative to each other. The scale
across the top of the instance call profile denotes the elapsed time since the server request was started.

The vertical axis of the call profile depicts the call stack depth or nesting level. Calls that aremade at the
higher levels of the call stack are shown at the top of the call profile and thosemade at deeper levels of the call
stack are shown at the lower levels of the profile.

Each call box or node in the instance call profile represents amethod call. The left edge of the box is the start
time of themethod call and the right edge is the return time from the call. The duration of the call is therefore
represented by the length of the box. The position of the call box along the horizontal axis indicates the actual
time when the call started and ended. The call boxes that appear directly beneath a call box are the child calls
that are invoked by the parent call above them.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 216 of 263

The gaps between the call boxes on a layer of the instance profile indicate one of the following processing
conditions:

l The processing that took place during the gap occurred in code that is local to the parent at the previous
higher level in the call profile and not in child calls in a lower layer.

l The call was waiting to acquire a lock or mutex.
l The processing that took place during the gap occurred in a child call that was not instrumented or included
in a capture plan for the run.

The call boxes are colored to emphasize the different path calls.

l The calls that are part of a path through the profile that has the highest latency are colored red.
l Call path components that are not part of a critical high-latency path are colored grey.
l For a call profile showing a cross-VM call tree, each "hop" will be colored differently to help visually
distinguish the calls that occurred on each tier.

l When asynchronous thread sampling is enabled you can see additional nodes added into the call profile
view by sampling. These nodes are distinguished by their different (fuzzy) shading to emphasize lack of
data about the representedmethod start and end times. The sampling nodes are transparent so you can
see the instrumentedmethods, if any, behind the sampling nodes.

l Yellow dotted lines around a box indicates an exception was thrown.
If the duration of a call is very short or if the call appears further down in the call stack, the size of the call box
can cause the name of themethod that the call box represents to become too small to read. You can view the
name of themethod along with other details for a selectedmethod by holding your pointer over the call box to
cause the tooltip to be displayed. You can also see the details for amethod selected from the call profile in the
Details pane.

The call profile graphmay have tabs across the top if data for exception instances and SOAP faults or payload
was captured.

The tooltip contains the following details for the selected call box:

Method
Detail Description

Window
Type

Method
Name

Name of themethod represented by the call box. Aggregate

Instance

Layer Name The name of the Diagnostics layer where the call occurred. Aggregate

Instance

Total
Contribution

The percentage contribution to the total latency of the server request that the
methods processing contributed.

Aggregate

Instance

Call Count The total number of times that themethod was called during the execution of the
aggregated server requests instances.

Aggregate

Total
Latency

The cumulative latency attributed to the processing of themethod. Aggregate

Instance

Average
Latency

The average latency that can be attributed to each of themethod executions for
the aggregated server request instances.

Aggregate

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 217 of 263

Call Tree Table
TheCall Tree table appears directly below theCall Profile. This table shows the same information that is
represented in theCall Profile.

The first row in the table contains the root of the call stack, which is the server request you selected when you
requested that the Call Profile view be displayed. The rest of the rows in the tree are themethod calls that
weremade at successive levels of depth in the call tree. You can use the expand/collapse controls in front of
method calls so that you can display depth levels in the call tree as required.

In the call tree table theX icon indicates the cross VM outbound call. The number inside the X icon specifies
the depth in the call tree. The diamond icon indicates the next depth level (for example 2 for second level).

Selecting an outbound call row in the table brings to the front, in the call profile graph, all boxes at the next VM
depth level. Selecting any row in the table brings to the front, in the call profile graph, all boxes up to root.

When you select a row call in the table, the corresponding box is selected in the Call Profile graph, and the
metrics for the selected call are displayed in the Details pane.

The Call Tree Table contains the following columns:

Column
Label Description

Window
Type

Call The name of the Server Request or Method Name. The percentage contribution of
themethod call to the total latency of the service request precedes the name. The
percentage is colored red for those calls which are on the call tree's critical path.

Aggregate

Instance

Average
Latency

The average latency that can be attributed to each of themethod executions for the
aggregated server request instances.

Aggregate

Count The total number of times that themethod was called during the execution of the
aggregated server requests instances.

Aggregate

Total
Latency

The cumulative latency attributed to the processing of themethod. Instance

Total
CPU

The total amount of CPU time used by the processing for the selectedmethod or
server request.

Aggregate

Instance

Average
CPU

The average amount of CPU time used by each of the aggregatedmethod calls
included in the selectedmethod or server request.

Aggregate

The Total Latency for a parent call includes not only the sum of the latency of each of its children but also the
latency for the processing that themethod did on its own.

Call Profile Details Pane
TheDetails pane lists themetrics related to the server request or method selected in the Call Profile Graph or
in the Call Tree Table.

To view the details of a particular call in the Details pane, select the call from the Call Tree Table or in the Call
Profile Graph.

Themetrics that are included in ametric category can be hidden or displayed by expanding or collapsing the
list of metrics using the plus sign (+) andminus sign (-) next to the category name. Alternatively, you can
double-click the category name to expand or collapse the list of metrics.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 218 of 263

Thread Call Stack Trace Sampling
When asynchronous thread sampling is enabled you can see additional boxes added into the call profile graph
by sampling. These boxes are distinguished by their different (fuzzy) shading to emphasize lack of data about
the representedmethod start and end times. See "Configuration Tab Description" on page 260 for how to
configure this sampling using the Java Diagnostics Profiler Configuration Tab.

See "Configuring Thread Stack Trace Sampling" on page 186 for configuration and troubleshooting information
if you don't see any sampling nodes after enabling stack trace sampling.

Instrumenting a Sampled Method Dynamically
Samplingmethods displayed in the Call Profile when Thread Stack Trace Sampling is enabled give you an
insight into the call hierarchy and latencies of thesemethods. But youmay want to identify one of these
samplingmethods to actually instrument in order to get additional detail information.

Dynamic instrumentation is Java bytecode instrumentation performed during the application execution after
the respective class has been first loaded by the Java Virtual Machine. Instrumentation is temporary, for the
current Java process. If you want to permanently instrument this method youmust add the point you created
to the instrumentation points file.

Note: Dynamic instrumentation (the Instrumentmenu item) is ONLY available when you access the
Call Profile from the Diagnostics Profiler for Java. It is NOT available when accessing the Call Profile
from an instance tree icon in themain Diagnostics UI.

From the Diagnostics Java Profiler UI, select theServer Requests tab and open the Call Profile window.
Select the sampling (fuzzy) node in the Call Profile window and right-click to select Instrument.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 219 of 263

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 220 of 263

The Dynamic Instrumentation dialog box is displayed with values corresponding to the selectedmethod.

You can change the package, class, andmethod name, and provide amethod signature, if known, to narrow
down the scope of the instrumentation. Since sampling does not reveal method signatures, by default all
methods with matching names will be instrumented.

Note: The classes belonging to the Diagnostics Java probe or the Java runtime cannot be instrumented.

Click Apply after making the changes you want and the Java probe automatically creates a new point
definition and tries to apply the instrumentation dynamically. The bottom part of the dialog window contains
the result of this operation: the new instrumentation point definition is placed on the left side, while the result of
instrumentation is located on the right.

Once the instrumentation is successful, you should copy and paste the instrumentation point to save it
because when you refresh the Call Profile, the Dynamic Instrumentation window with the details on the
instrumentation point you created is no longer available.

When you refresh the Call Profile view, the dynamically instrumentedmethod will be displayed as a solid node
because it is now instrumented. Instrumentation is temporary for the current Java process.

If you want to permanently instrument this method youmust add the point you created to the instrumentation
points file.

Comparison of Collection Leak Pinpointing and
LWMD
Collection Leak Pinpointing (CLP) allows you to pinpoint Java collection relatedmemory leak locations in
Java applications. Enabling the feature in the probe is optional. Once enabled, the probe will automatically
detect and report the leaking Java collection objects and their leak locations (stack traces), without any user
interaction. CLP captures the stack trace when a collection is marked as a leak for the first time. The data
collection for this feature has very low overhead and so it can be used in a production environment. See

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 221 of 263

"Custom Instrumentation for Java Applications" on page 96 for more information on configuring collection leak
pinpointing.

Lightweight Memory Diagnostics (LWMD) can also be used to help you locatememory leaks. Enabling
LWMD in the probe is optional. User interaction is required to enable LWMD. The data collection overhead for
this feature is relatively high and it is not recommended for use in a production environment.

A comparison of CLP and LWMD is shown in the table below. Both are optional features and are used to help
detect and locate the Java collection relatedmemory leaks.

CLP LWMD

User
interaction

Does not need user interaction at all. The probe will
automatically detect and report the leaking Java
collection objects and their leak locations.

Needs user interaction and
manual steps.

Data collection
overhead

Very low overhead, can be used in production
environment.

Relatively high overhead,
depends on the user specified
scope. Not recommended to
use in production
environment.

Out-of-the-box
status

Enabled by default Disabled by default.

Instrumentation
approach

To use this feature, you need to run the JRE
instrumenter to pre-instrument the Java collection
classes in the JRE jar file, and add the instrumented
JRE classpath to the -Xbootclasspath/p java option to
run the probe.

Once the feature is enabled,
the application classes within
the specified scope will be
instrumented at runtime.

Instrumented
classes

The Java collection classes (in java.util package and
subpackages) in the JRE jar file.

The application classes
within the specified scope
that have Java collection
object allocation.

Common data
collected

Both collect full classname of the collection and size of
the collection.

Differences in
data collected

Leak location: stack trace when called to add new
elements to the leaking collection

The collection object
allocation site: class, method,
line number.

Object Lifecycle Monitoring
Every object has a lifespan. The lifespan begins with object construction and ends with its garbage collection.
You can use the Allocation/LifeCycle Analysis tab in the Java Diagnostics Profiler to monitor and analyze
object lifespan (see "How to Analyze Object Allocation" on page 230).

However, some objects follow a lifecycle during their lifespan. For example, the objects representing
database resources (like database connection or cursors) go through such a lifecycle during their lifespan.
See the diagram below:

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 222 of 263

These objects are brought into an open state by some resource acquisition operation and then closed after
their usage. They usually acquire their resources before entering an open state and relinquish their resources
after reaching a close state. Some of these objects are designed for re-use (for example, objects based on
connection pool). So these objects might be re-opened and closedmultiple times during their lifespan.

You can enable object lifecycle monitoring in Diagnostics and view lifecycle information for these objects in
the Allocation/Lifecycle Analysis tab.

Two Examples of These Types of Objects
l Database connection:An object of type java.sql.Connection represents a database connection. The
connection is opened by invoking javax.sql.DataSource.getConnection() method and it is closed by
invoking java.sql.Connection.close() method.

l Database cursors:An object of type java.sql.ResultSet represents a database cursor. The cursor is
opened by invoking java.sql.Statement.executeQuery() method and is closed by invoking
java.sql.ResultSet.close() method.

Types of Performance Problems with These Objects
Diagnostics allows you tomonitor the object's lifecycle between its open and close states to identify the
following types of performance problems.

l Resources are not released: This problem arises when the object is not brought into a close state. This
causes the resources attached to the object to be wasted for the lifetime of the object.

l Resources are not released in a timely manner: This problem arises when the resources are released

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 223 of 263

after unnecessarily keeping them around for quite long period of time. This can also happen if the object is
not closed but the garbage collector automatically closes it during object finalization.

Viewing Object Lifecycle Information
Object lifecycle information is available in the details pane in the Profiler Allocation/Lifecycle Analysis tab for
objects enabled for monitoring.

Tips for performance analysis:

Themetric Objects 'Opened' (Total) shows the number of objects opened during the application's lifetime.

Please note that, if an object is re-opened at multiple location (a common case for pooling), the 'opened'
metrics shows the number of times the object was opened. However, the location information refers to the
location of the first 'opening' of the object.

Also an object is re-opened without being 'closed' then it is assumed that the object kept itself in the 'open'
state. The 'opened' counter is not incremented.

Themetric Objects 'Closed' (Total) shows the number of objects closed during the application's lifetime. If
an object is re-closed without being 'opened' again, then it is assumed that the object kept itself in the 'close'
state. The 'closed' counter is not incremented.

Themetric Objects Deallocated without Closewill have a value greater than zero if the resources are not
properly released.

Themetric Object Active Lifespanwill have a higher average latency if the resources are not released in
timely manner. Note that this metric shows the active lifespan for only those objects that have been closed.

Differences Between Object Lifecycle and Allocation Analysis
Unlike allocation analysis, the object lifecycle feature is not managed. This means that while allocation
analysis can be performed by specifically selecting theStart tracking allocations andStop tracking
allocations links in the Allocation/Lifecycle Analysis tab. Object lifecycle monitoring, if enabled, will show
data since the application start-up and the data will not be cleared by theClear allocation information link.

Also, unlike allocation analysis, the object lifecycle feature does not support sampling. This means that all the
method calls are captured for the object's lifecycle monitoring.

Heap Walker Memory Analysis Execution Steps
HeapWalker is amemory analysis process accessible from theMemory Analysis tab. You can use it to
troubleshoot Java lingering object problems that are difficult to debug or reproduce. Using object tagging and
heap snapshots, HeapWalker enables you to inspect individual objects suspected of having "leaked," and to
determine why they are kept alive in the Java heap. This feature targets testing (pre-deployment)
environments. You can also use it in production environments.

The steps for using the HeapWalker are described below. The HeapWalker also contains a wizard that
guides you through the process of diagnosing amemory leak.

Step 1 - Establishing a Baseline
A typical large Java application allocates many objects during its initialization and warm-up. Classes are
loaded, thread and database connection pools are populated, and numerous caches in all components are
filled. These objects typically stay alive throughout the application execution. To avoid identifying these
objects as potential leaks (that is, to avoid false positives), you should let the application run under load for
some time to arrive at a stable state.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 224 of 263

The application can be placed under memory leak test after initialization has completed, and object allocation
has stabilized. ClickingStart Tracking New Objects initiates the test operation. After that, any objects
allocated by the operation will be tracked as potential leaks.

The assumption here is that the deployed Java application, if allowed to fully initialize, allocates only
temporary objects for all of its operations. All temporary objects should eventually be garbage collected. While
most server applications comply with this design principle, there are known exceptions to this rule. Database
connections, or threads in dynamically sized thread pools, can be created at any time during the application
execution without time constraints on when they should be terminated.

The HeapWalker operations may also leave a footprint on the heap. (For example, some probe classes are
loaded and initialized only when you start using HeapWalker.) Footprints should not be a problem if you are
aware of them. However, if you need a clear picture, it is recommended that you perform the execution of all
HeapWalker steps twice, treating the first pass as a warm-up only. You can ignore results from the first pass.

Step 2 - Exercising the Operation
The details of this stepmay differ, depending on whether the application is running in a production
environment or in a test environment. In a test environment, the application owner can carefully stage the test
load to contain only the desired operations. For example, testing can focus on newly developed code, or
objects that are suspected of leakingmemory based on the analysis of the logs or feedback from the IT center
where the application is deployed.

It is often useful to use such an operation under test in some kind of a context. For example, if the application
requires a user logon, it might be practical to wrap the tested operation by a logon and logout. It is typical for
the application to hold the active session information in the heap. In this case, you can dismiss the session
information only after a logout. Alternatively, you can perform the logon before new object tracking is started.
In any case, you should arrange the tested operation in such a way that it leaves no permanent footprint in
Javamemory (adding records to a database is fine). The tested operation can be repeated several times. In
the case of simple leaks, a single execution is usually enough. In a production environment, it is impossible to
control the load, or to time the new object tracking by starting and stopping to catch only the desired portion of
the load. You need to take this into account when analyzing the results.

HeapWalker can display the number and size of the currently tracked objects. These numbers are updated by
taking a heap snapshot. You observe the numbers as they change over time. Measurements increase as the
application allocates new objects. They decrease as the objects are garbage collected. After the tested
operation is complete (or, in the case of a production environment, sufficient time has elapsed), you can click
Stop Tracking New Objects. At this point, the set of tracked objects is closed. It can no longer grow.

It is normal, however, for several tracked objects to still be alive at this point. They can be present in
numerous caches in the application, including the components that you do not own. It is also possible that
some tracked objects require finalization. The finalizers are run periodically by the JVM, typically
asynchronously to the activities controlled by the application. Objects pending finalization are considered
alive, even though the applicationmay hold no references to them.

Step 3 - Flushing Application Caches
Under normal circumstances, if the application remains under load, the caches clear of all the tracked objects
eventually, and the pending finalizers run eventually. The JVM also runs garbage collection periodically. This
garbage collection removes the tracked object from the heap, provided they are not leaks.

You can sometimes speed up this cleaning process by forcing garbage collection. ClickingRun Garbage
Collectionmakes the JVM not only run the full GC cycle, but also run the pending finalizations.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 225 of 263

Taking heap snapshots is especially useful at this point. The observed number and the total size of tracked
objects should go down over time, as the cache flushing process progresses. Ideally, these numbers should
eventually reach zero, meaning that all tracked objects have been garbage collected.

However, if there is a Javamemory leak in the tested operation, the numbers stabilize at some non-zero
values, and no longer decrease, despite repeated garbage collections and continuous load on the application.
When you decide that the tracked objects remaining on the heap should be considered a leak, it is time to
capture the object reference graph. This action dumps all references present in the heap to a file, and starts
an additional (external) process, which sorts the file. The file is used in the next steps.

Step 4 - Analyzing Potential Leaks
After you capture the object reference graph, you can retrieve the list of tracked objects. In most cases, you
select just one class of objects to retrieve. This can be accomplished by double-clicking the row with the
selected class. It is also possible to retrieve objects for multiple classes. Simply select multiple rows (by
holding down the Ctrl key), and then right-click to select Inspect Selected Tracked Objects.

For efficiency of operation, there is a limit on the total number of objects that can be retrieved. You can change
the limit, using the selector located on the left side of the window. Retrieving a large number of objects rarely
makes sense, as it is costly, and it does not necessarily increase your capability to solve the leak problem.

Step 5 - Walking the Heap
You can determine why any of the retrieved objects is alive by clicking the table row describing the object.
This action displays anObject Reference Diagram. This diagram shows the selected object with a chain of
references that are keeping the object alive, and indicates which object is a heap root.

For any object already displayed, it is possible to show all objects directly referencing it by double-clicking the
object.

As above, to keep a limit on the overhead, there is a limit selector on the left side of the screen controlling the
maximum number of objects to be retrieved and displayed.

An example of the Object Reference Diagram:

All displayed references (links between objects) are based on the captured object reference graph. Additional
information, such as object type, size, or reference names are retrieved directly from the heap. Under some
circumstances, the additional information cannot be retrieved because some of the objects keeping the
specific object alive can cycle over time and be garbage collected. A continuously growing java.util.Vector
object is a good illustration of this point, as the underlying array is replaced over time.

The objects are color-coded according to their age. There are three distinct object ages:

l Baseline. Objects allocated before new object tracking was started.
l Tracked. Objects allocated between new object tracking start and new object tracking stop, ostensibly by
the tested operation.

l Fresh. Objects allocated after new object tracking was stopped.
The toolbar selections in the Object Reference Diagram are similar to the toolbar in topology views, so for
toolbar details see "Working with Topologies" in the Diagnostics User Guide.

Youmay elect to capture a new Object Reference Diagram to obtain a fresh view of the object, and repeat
"Step 4 - Analyzing Potential Leaks" above.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 226 of 263

Heap Walker Performance Characteristics
Technically, starting or stopping new object tracking, and capturing the object reference graph, uses the JVM
heap tagging operations. It may require substantial execution time, which can be up to several minutes for
very large heaps. The application is practically paused during this time. Do not use HeapWalker if the nature
of the deployed application cannot tolerate such long pauses. If in doubt, always test HeapWalker first in a
test environment.

The above steps, and in particular starting new object tracking, alsomake the JVM allocate extra memory
generally proportional to the current heap size. This memory is allocated outside of the Java heap, but within
the JVM process. You need to take special care to ensure that suchmemory can be allocated. Keep inmind
that the JVM itself, the application code, the JIT-compiled code, and any native libraries used by the
applicationmust fit into this space as well. For 32-bit processes, there is an operating system-dependent limit
on the size of the process address space (for example, 2GB forWindows on Intel x86). If almost half (or more)
of the available address space is already reserved by the Java heap, the tagging operation can crash the JVM.

HeapWalker gives you the total memory usage estimate when the Start New Object Tracking operation is
activated for the first time. The estimate is for total systemmemory. It is based on additional memory needed
by the JVM and onmemory for the object references sorting program. At this point, you have a chance to quit
HeapWalker without affecting the deployed application negatively (no additional memory is allocated).
Obviously, in a production environment (deployed application), it is recommended that you use HeapWalker
only if the system capacity is large enough to handle the additional memory pressure. The decision whether to
continue with tagging depends not only on the total amount of memory available on the system running the
application, but on the impact of a possible JVM crash on the business process as well.

When using HeapWalker in a test environment, it is usually possible to scale down the load and the
maximum heap size tomatch the system capacity. There is no direct CPU overhead on the Java application,
other than actually running a HeapWalker command (indicated by the progress bar). This also includes the
tracking period. That is, even though tracking start and tracking stop consume large amounts of CPU time,
there is no overhead while actually tracking new objects.

However, the increasedmemory footprint of the JVMmay cause serious sluggishness if the JVM no longer
fits into mainmemory, andmakes excessive use of the swap area. If, after having tagged the heap, you
notice severe application performance degradation while none of the HeapWalker operations are running, you
most likely have a swap file thrashing problem.

How to Access the Java Diagnostics Profiler
Once you have installed the Java Agent, configured a probe to collect performance data and started the
application that is beingmonitored, you can access the Java Diagnostics Profiler from your browser and view
Diagnostics data. You can also access the Java Diagnostics Profiler by drilling down from the views of the
Diagnostics Enterprise user interface.

To open the Java Diagnostics Profiler directly (standalone):
1. In your browser, go to the Java Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler.

The probes are assigned to the first available port beginning at 35000.

Note: You can find the port that a particular probe is using in the probe's probe.log file located in
<agent_install_directory>/log/<probe_id> directory. In the probe.log file, find the line that begins
with the words webserver listening on, for example: webserver listening on 0.0.0.0:35003
The port is the number after the colon, in this example 35003.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 227 of 263

2. Type your username and password.
You are prompted to enter a username and password. The default username is admin. The default
password is admin. Youmay be prompted again to enter a username and password. Re-enter the same
details.
For more information about authentication and usernames and passwords when you have the full
Diagnostics product, refer to the Diagnostics Server Installation and Administration Guide section on
Authentication and Authorization.

To drill down to the Diagnostics Java Profiler from the main Diagnostics UI:
1. From any view in Diagnostics Enterprise UI that shows probe entities, right-click the probe in the table

and select View Profiler for <probe name> from themenu.
2. If the Profiler fails to open when performing the drill down from the Diagnostics UI, ensure that you have

set a default browser within your operating system.

How to Enable LWMD for Collections Displays
This task describes how to enable Lightweight Memory Diagnostics (LWMD) for use in analyzingmemory
leaks.

By default, LWMD is disabled, so the Java Agent does not impose the additional overhead on its host when
you are not going to usememory diagnostics metrics. When you detect amemory leak using theMemory
Analysis tab, you can enable LWMD. When you have completed your investigation, you can disable LWMD
oncemore.

Note: LWMD must be enabled in order for you to see any data in the Collections tab of the Java
Diagnostics Profiler.

To enable LWMD:
1. Turn on the LWMD capture in the dynamic.properties file by setting the lwm.diagnostics.capture

property equal to true.

lwm.diagnostics.capture=true

2. Activate the LWMD point in the auto_detect.points file by setting active equal to true and indicate the
scope of the LWMD instrumentation:

[Light-Weight Memory Diagnostics]
keyword = lwmd
scope = !only\.in\.this\.Class\..*,!or\.in\.this\.Class\..*
active=true

It is very important to limit the scope of the LWMD instrumentation to a particular package to reduce
overhead. The syntax for the scope starts with an exclamation point (!) to indicate that a regular expression
follows.

How to Enable Allocation Capture
This task describes how to enable allocation capture for the probe.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 228 of 263

The Allocation/Lifecycle Analysis tab cannot display allocation objects or their metrics until allocation capture
has been enabled for the probe. By default, allocation capture is disabled, so the Java Agent does not impose
the additional overhead on its host when you are not going to usememory diagnostics metrics. If you suspect
that youmay have amemory issue with the way your applicationmanages its object allocations, you can
enable allocation capture. When you have completed your investigation, you can disable the allocation
capture again.

To enable allocation capture to view data in the Allocation/LifeCycle Analysis Tab:
1. In the auto_detect.points file located in <agent_install_directory>\etc, modify the default settings to

match the following:

[Allocation]
keyword = allocation
detail = leak
scope = !com\.mycompany\.mycomponent\..*
active = true

If you want to have reflective allocation tracked, you can add the reflection attribute to the detail
argument in the Allocation point.

[Allocation]
keyword = allocation
detail = leak,reflection
scope = !com\.mycompany\.mycomponent\..*
active = true

This instruments the Class.newInstance, Constructor.newInstance, andObject.clonemethods. The
reflection instrumentation tracks all classes that are created.

2. Restart themonitored application, so the probe restarts and can apply the updated instrumentation.

How to Enable Object Lifecycle Monitoring
This task describes how to enable themonitoring of certain types of objects.

To enable object lifecycle monitoring to monitor object lifecycle data in the Allocation/LifeCycle
Analysis tab:
1. Object lifecycle monitoring in Diagnostics is not enabled by default. The resourcemonitoring of certain

types of objects can be individually enabled in the etc/inst.properties file.
For example, to enable the database cursor monitoring set
mercury.enable.resourcemonitor.jdbcResultSet=true for details.conditional.properties property in the
inst.properties file. This enables object lifecycle monitoring for all resources of this type for a single
probe.

2. You will need to restart the probe after making changes to the etc/inst.properties file.
3. Due to higher overhead of caller side instrumentation and possibly large number of objects (resources) to

be tracked, it is recommended that this feature is only enabled during development stage. It should be
enabled in production environment with great caution and with a very limited 'scope'.

You specify the scope in the object lifecycle monitoring section in the auto_detect.points file.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 229 of 263

How to Analyze Object Allocation
This task describes how to analyze the object allocations your application is performing.

After you have identified amemory problem using the Heap Breakdown tab, you can analyze the object
allocations that your application is performing by examining the allocations while the suspected application
functionality is being executed. The following procedure describes how to run an experiment and study the
resulting application performance.

To analyze object allocations:
1. If you have not already enabled allocation capture for the probe, do so as instructed in "How to Enable

Allocation Capture" on page 228.
2. Begin tracking allocations by selectingStart Tracking Allocations from the Common Tasks menu.

The probe starts collecting themetrics for the objects that are being allocated and de-allocated. No
collectionmetrics are displayed in the tab until you select theRefresh Allocation Information orStop
Tracking Allocations menu options.

3. Execute the application functions that you suspect may be causing a leak, so any objects that are
allocated while performing the function can be tracked.

4. Select theStop Tracking Allocations menu option to limit the tracked objects to those that were
captured while the suspect application functions were being performed.
No additional instances are tracked after you stop tracking. The instances of the objects that were
already allocated continue to be tracked as they are de-allocated, so themetrics on the tab can be
refreshed with accurate counts of the objects that are alive or de-allocated, as well as with accurate
object lifespans.

5. Select theRefresh Allocation Information menu option to update the tab with the current metrics for
the allocated objects.
Each time you select this menu option, the Profiler updates themetrics for the tracked objects in the
allocations analysis table with the current counts and lifespans. The trend lines for themetrics in the
graph are updated to chart the data points for themetrics at the refresh time.
You should repeat this step as your application continues to run, so you can see what happens to the
allocated objects over time.

6. If you want to run your experiment again, select theClear Allocation Information menu option to clear
the table and graph of all of the objects andmetrics currently displayed, and begin this process again
from the second step.

How to Enable Memory Analysis
This task describes how to enablememory analysis. By default, theMemory Analysis tab is disabled.

To enable advance memory analysis and display the Heap Walker views:
1. Use the

-agentpath:<agent_install_directory>/lib/<platform_dir>/jvmti.dll parameter in the application
startup script. Replace jvmti.dll with the appropriate library name if you run the probe on a non-Windows
system.

2. Open the Java Diagnostics Profiler for the application, and click theMemory Analysis tab.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 230 of 263

3. Click the icon to take a heap snapshot and open the first HeapWalker view.

Note: You cannot use HeapWalker when running your application with HotSpot 5.0 JVM with CMS
enabled (the -XX:+UseConcMarkSweepGC option). Remove this option from the Java command if
you plan to use HeapWalker.

When both the -server and the -Xgc:parallel options are selected, some versions of JRockit 5.0 JVM
demonstrate instability. In some configurations, both options are selected by default. In such cases, specify
the -client or the -Xgc:gencon option to override the default. This is a known BEA issue (CR334327) and
should be resolved in future of releases of JRockit.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 231 of 263

Summary Tab Description
The Summary tab consists of graphs that display information about thememory in use and reserved by your
application, the load for each layer of your application and the slowest requests made to your application
server.

The following is an example of the Java Profiler Summary Tab display.

To access In the Java Diagnostics Profiler, select the Summary tab.

Important
information

If themessage 'Profiling not in progress' is displayed, select the Begin Profiling link in
the upper left corner.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 232 of 263

The following user interface elements are included:

UI Element Description

Memory
Graph

TheMemory graph shows the amount of memory allocated in your application and the
amount of memory (JVM heap size) reserved by your application.

You can seemore details about the exact amount of allocatedmemory or reservedmemory
in your application, by holding your pointer over various points on the graph to view the
tooltip.

Load
Graph

The Load graph shows the breakdown of the load for each layer of your application.

The performancemetrics for classes andmethods are grouped into layers based upon the
resources that the application invokes to perform the processing. The Java Diagnostics
Profiler displays the layers on one level and does not split them into sublayers.

You can see the name of each layer by holding your pointer over various points on the graph
to view the tooltip.

To view a legend of the graph that displays the names of all the layers, click Show Legend.

Slowest
Requests
Graph

The Slowest Request graph shows the server requests that are taking the longest time to
complete.

To view the aggregated call profile for a server request in the Slowest Request graph, click
the bar for the server request. For more information about the call profile window, see
"Analyzing Performance Using the Call ProfileWindow" on page 215.

Information
Pane

The information pane at the bottom of the window displays the following information:

l The date and time of the last time you refreshed the Profiler data.
l The probe ID.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 233 of 263

Hotspots Tab Description
The Hotspots tab displays bar charts of the significant metrics that have been captured during themonitoring
of your application.

The following is an example of the Java Profiler Hotspots Tab display.

To access In the Java Diagnostics Profiler, select the Hotspots tab.

Important
information

You can view the details for a graphedmetric by holding your pointer over the bar for the
metric and viewing the tooltip.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

The following user interface elements are included:

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 234 of 263

UI
Element Description

Slowest
Methods
Graph

This chart shows themethod calls that are taking themost time exclusively in that method. To
view the call profile for a selectedmethod call in the Slowest Methods graph, click the bar for
themethod. For more information about the call profile window, see "Analyzing Performance
Using the Call ProfileWindow" on page 215.

If themethod is part of more than one server request, when you double-click themethod, the
following dialog box opens and asks you to select the particular server request for which you
want to see the call profile.

Double-click the appropriate server request row to view the call profile.

CPU
Hotspots
Graph

This chart shows themethods that are using themost CPU.

To view the call profile for a particular method, click the bar for themethod. For more
information about the call profile window, see "Analyzing Performance Using the Call Profile
Window" on page 215

Slowest
SQL
Graph

This chart shows the SQL statements that are taking themost time.

To view the SQL statement details for a particular statement in the Slowest SQL graph, click
the bar for the SQL statement to select it. For more information about SQL statement details,
see "Analyzing Performance Using the Call ProfileWindow" on page 215.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 235 of 263

Metrics Tab Description
TheMetrics tab displays information about the Operating System, the JVM and the application server.

The following is an example of the Java Profiler Metrics Tab display.

To access In the Java Diagnostics Profiler, select theMetrics tab.

Important
information

Whenmore than one probe is running on the same host, the Systemmetrics only appear for
the probe for which you opened the profiler.

If you are using the Profiler without the Diagnostics product, then to preservememory in the
application server, metrics are only measured from the time you access the graph. However,
if the probe is connected to a Diagnostics Server, themetrics aremeasured continuously,
regardless of whether you have accessed the graph.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 227

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 236 of 263

The following user interface elements are included:

UI
Element Description

Tree
Pane

Displays themetrics in an expandable tree.

The top three levels displayed in the tree are:

System.Metrics about the Operating System

JVM.Metrics about the JVM

<application server>.Metrics about the application server. Depending on the environment, the
application servers that will be displayed areWebLogic, WebSphere, or SAP.

When you expand each of the top levels, the tree displays the associatedmetrics for each top
level. As you further expand eachmetric, you arrive at aminimum, amaximum and an average
numerical value for eachmetric.

Graph
Pane

Displays a graph of themetrics selected from the tree pane.

When you click a specific metric in the tree, the graph pane displays a graph representing the
selectedmetric. You can select more than onemetric to display in the graph pane using the
Control orShift keys.

The x-axis in the graph represents time. The y-axis in the graph represents the numerical value
of themetric. Metrics are displayed for the last fiveminutes unless the probe is working with
another Software product, in which case they are displayed for three hours.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 237 of 263

Threads Tab Description
The Threads tab displays thread performancemetrics for the Java threads that are captured by the probe and
provides a way for you to capture stack traces for the captured threads. There is also a thread state analyzer
that displays approximate thread state distribution percentage for each thread.

This page can be useful for helping to diagnose the following situations:

l Incorrect thread pooling or attempting to do toomuch in a single thread.
l Performance problems caused by deadlocks or concurrency-related issues.
l Problems that go deep into the interactions with the OS kernel where you need to see the CPU time
broken into user and kernel times.

The following is an example of the Java Profiler Threads Tab display.

To access In the Java Diagnostics Profiler, select the Threads tab.

Important
information

The Threads tab is automatically disabled by Diagnostics when it detects that the JRE
used to run the application has stability issues.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 227

The following user interface elements are included:
UI
Element Description

Controls Used to control how often the threadmetrics are updated, maximum stack trace depth for each
thread, and what kind of data is displayed for the thread processing in your application.

When the Threads tab is updated, the information displayed on the tab is refreshed with the
latest threadmetrics. You control how often the Profiler updates the threadmetrics on the
Threads tab.

Update button. Select the Update button and the Profiler refreshes the information in the graph
and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to turn automatic
updates on. Select the update interval from the spinner. The Profiler immediately begins
refreshing the threadmetrics displayed in this tab based on the update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for each of
the threads listed in the thread table. You can control how many stack traces for each thread
are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select themaximum stack trace depth collected for each sample for each
thread.

Export to PDF. You can export data in the Threads tab using the PDF icon on the Profiler
toolbar in the right corner near the Help link.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 238 of 263

UI
Element Description

Chart
Tab

Charts themetric for the selected threads. Youmay chart themetrics for one or more of the
threads listed in the threads table and you can select themetric that is to be charted for each
thread.

Select a thread in the thread table to have it's metric graphed in the chart. Diagnostics removes
themetrics for any previously charted threads from the graph and charts themetric for the
selected thread. The graph legend is updated to indicate the color with which the selected
thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted, select
additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table usingCtrl-
Click. To select a range of threads, select the row in the thread table usingShift-Click.
Diagnostics charts themetrics for the selected thread along with themetrics for all of the
threads in the thread table that are between the selected threads and the newly selected thread.
The graph legend is updated to indicate the colors with which the selected threads metrics were
charted.

To remove themetrics from the chart for selected threads, useCtrl-Click to select the row in
the thread table that contains the thread whosemetrics you'd like to remove from the chart.

Chart difference in. To select ametric to be charted for each thread, select themetric from the
drop downmenu. Diagnostics updates the graph to chart the indicatedmetric for each of the
threads selected in the thread table.

Thread
Table

The table shown below the chart lists themetrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last threadmetric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was executing in
kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing in user
mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock Owner Id.

The table can also include columns forWaited Time andBlocked Timemetrics if you enable
them. To enable thesemetrics, set the threads.contention.monitoring.enabled property to
true in the <agent_install_directory>/etc/probe.properties file. This settingmay cause
instability for some older JVMs.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 239 of 263

UI
Element Description

Stack
Traces
Tab

Stack traces for the threads selected in the threads table are displayed when you have
indicated that you want thread stack traces captured.

The Stack Traces tab display is divided into two areas:

Captured Stack Traces. List contains a list of the times when stack trace captures occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your selections
from the stack trace capture list, the scope selection drop down, and the thread table.

TheStack Trace Details for drop down allows you to control which thread's stack traces the
Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the stack trace
details area. The selections made in the threads table do not impact the stack traces that are
displayed in the stack trace details area whenAll Threads is selected.

When you select Selected Threads, the stack traces displayed in the stack trace details area
are limited to those for the threads that you select in the threads table in the Chart tab.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 240 of 263

UI
Element Description

State
Analyzer

The State Analyzer displays approximate thread state distribution percentage for each thread,
over the specified time period. Each thread is represented by a single row.

The left panel provides the thread name. The center panel provides the thread state data. The
total height of the colored bar represents 100%. If a thread has been inmore than one state
during the observation period, multiple colors are used to display the corresponding states,
proportional to the time spent in those states. For automatic updates, the observation period is
the same as the configured refresh period.

The right panel displays the current method name, with line number, if available. If the stack
traces collected for the thread over the observation period are all the same, themethod name is
displayed using a bold font. If different stack traces were observed, the displayedmethod is the
topmost commonmethod for the collected stack traces, and its display uses a regular font. If
no such commonmethod could be found, nothing is displayed.

The following thread states are presented by the Thread State Analyzer:

Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Javamonitor. This can
happen when the thread tries to invoke a synchronizedmethod, enter a synchronized block, or
re-enter the Javamonitor after being awaken from the waiting state, while another thread has
not left the Javamonitor yet.

Running. The thread is actively consuming CPU time.

I/O. The thread is performing an I/O operation. It does not use any CPU time. The notion of I/O
covers not only the traditional operations on files or sockets, but also covers any multimedia or
graphics operations. In general, the thread is waiting for an external (out-of-process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However, threads can
get into this state by other means. In general, the thread is waiting for an internal (in-process)
event.

Starving. The thread is runnable, it is not suspended by any I/O, wait(), sleep() or Javamonitor
operation, but is not running. This can be caused by insufficient number of CPUs available,
Garbage Collection pauses, excessive paging, or by a virtual machine guest OS experiencing a
shortage of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread. The threads
that do not run Java code at all (GC, JIT) will always be in this state.

If your application uses native (JNI) methods for some of the I/O operations, you should add
them to the known.native.methods.io property in probe.properties so the Thread State
Analyzer can correctly assign the I/O state to them. Otherwise the time spent in suchmethods
will be identified as starvation.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 241 of 263

All Methods Tab Description
The All Methods tab lists themethod calls that your applicationmakes according to the instrumentation in the
auto_detect points file.

The following is an example of the Java Profiler All Methods Tab display.

To access In the Java Diagnostics Profiler, select the All Methods tab.

Important
information

All CPU times shown are exclusive (not including time spent in profiled children).

All of themetrics in the All Methods tab are counted from the time you enter the system or
click theReset button in the toolbar of the profiler.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 227

The following user interface elements are included:
UI
Element Description

Grouping TheGroupMethod calls by drop downmenu allows you to view methods in the table grouped by
their package (as in the example), layer or outbound call type. Or no grouping at all.

Filtering The quick filter box has many options for filtering the table contents, for example onMethod
Name.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 242 of 263

UI
Element Description

Table The table displays information about themethods.

The table is highly customizable. Right-click any column to show or hide columns and auto-
resize the columns. You can also drag and drop columns to display them in a different order.

The All Methods tab displays a table that contains the following columns, displayed by default:

Method name. The names of themethods that were called. TheMethod name has the
following syntax: <package name>.<class name>.<method name>.

Total Time. The aggregate latency for all of the calls to themethod. The total latency is shown
inmilliseconds.

Avg Time. The average latency for all of the calls to themethod. The average latency is shown
inmilliseconds.

Count. The number of times that themethod was invoked.

Exceptions. The number of times that themethod generated an exception.

Total CPU. The total amount of CPU time that all invocations of the listedmethod used.

Avg CPU. The CPU time that themethod used during an average invocation.

If CPU timemetrics are not being displayed, CPU Timestamp collection for methods can be
configured. See "Configuring Collection of CPU TimeMetrics" on page 174.

Layer. The Layer associated with this method according to the instrumentation in the auto_
detect points file. The layers are displayed on one level and there is no distinctionmade
between layers and sub-layers.

To view the call profile for amethod call, double-click the appropriate row. For more information
about the call profile see "Analyzing Performance Using the Call ProfileWindow" on page 215.

If themethod is part of more than one server request, when you double-click themethod, a
dialog box opens for you to select the relevant server request.

To create call profiles frommore than one server requests select the first server request with a
single click and select subsequent server request using control click. When you have finished
making your selections, click OK to instruct the Profiler to create the call profiles. The call
profile for each selected server request is displayed in a separate window.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 243 of 263

All SQL Tab Description
The All SQL tab displays the SQL statements in a table.

The following is an example of the Java Profiler All SQL Tab display.

To access In the Java Diagnostics Profiler, select the All SQL tab.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

The following user interface elements are included:

UI
Element Description

Table The All SQL tab displays the SQL Statement table, which contains the following columns.

SQL. The name of the SQL statement that was invoked by the application server.

Total Time. The total latency of all invocations of the SQL statement.

Avg Time. The average latency of all invocations of the SQL statement.

Count. The number of times the SQL statement was invoked by the application server.

Exceptions. The number of times that the statement generated an exception.

To view the SQL statement details, double-click the relevant statement. The SQL statement
details dialog box opens, displaying all the information shown in the SQL table for each
statement.

The SQL statement details dialog box enables you to view the full string of the SQL statement
and to copy the text.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 244 of 263

Collection Leaks Tab Description
The Collection Leaks tab displays information on the probe's currently leaking collection objects in a table and
a chart of collection size or collection size growth.

The following is an example of the Java Profiler Collection Leaks Tab display.

To access In the Java Diagnostics Profiler, select the Collection Leaks tab.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 227

Important
Information

For this feature you need to enable Collection Leak Pinpointing (CLP) instrumentation by
running the JRE instrumenter to pre-instrument the Java Collection classes in the JRE your
application/application server will run with; and copy the java parameter to include them in
your java options.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 245 of 263

See also See "Custom Instrumentation for Java Applications" on page 96 and "Advanced Java Agent
and Application Server Configuration" on page 158 for more information on configuring
collection leak pinpointing and for how to enable/disable and configure CLP reporting.

The following user interface elements are included:
UI
Element Description

Collection
Leak
graph

When you click the row in the collections table, the graph is updated to show a trend line for
the collection leak. The trend line shows either the Collection Size Growth, or the Collection
Size, depending on the selection youmake from theShow Chart By drop down list.

Collection
Leaks
Table

The collection table lists the probe's currently flagged leak collection objects. The collections
can be sorted by various columns in the table.

Check the Auto Update Leaks Data checkbox to automatically update the data display. Click
the Update Leaks Data button to update the data.

To view the collection leak details, double-click the relevant collection and a dialog box opens
with the collection leak details including stack trace information.

The Collections Table contains the following columns:

Collection. The collection type.

Classes Contained. The type of the objects contained within the collection. If there are
multiple types of objects found within the collections, the value in the table appears as
Unknown.

Stack Trace. Leak location stack trace.

Allocation Timestamp. The time at which the collection was allocated.

Maximum Size Timestamp. The time when themaximum size was captured.

Maximum Size. Themaximum size of the collection ever observed by the Java agent (in
number of elements).

Size. The average size of the collection (in number of elements).

Size Growth Rate (per hour). The average growth rate for the collection, measured over the
period of time since the collection creation until now (in number of elements per hour).

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 246 of 263

Collections Tab Description
The Java Diagnostics Profiler monitors your applications' memory usage with Lightweight Memory
Diagnostics (LWMD). LWMD monitors thememory used by your applications by tracking collection objects.

The Collections tab shows themetrics for the collections in your application in a graph and corresponding
table. The table lists the collections, information about the allocation of the collections, and themetrics for
their growth rate and size. The graph contains themetrics charted for the collections that you selected. The
growth rate of the collections are calculated from a baseline. The Profiler updates the baseline periodically. If
you want, you can update it manually.

The following is an example of the Java Profiler Collections Tab display.

To access In the Java Diagnostics Profiler, select the Collections tab.

Important
information

LWMD must be enabled to view data in the Collections tab and doMemory Analysis
using the Heap Breakdown.

Relevant tasks "How to Enable LWMD for Collections Displays" on page 228

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 247 of 263

The following user interface elements are included:
UI Element Description

Collections
Table

The collection table lists the collections. The collections are sorted by either the amount of
growth since the last baseline, or by the size of the collection, depending on the selection
youmake from theShow Top N box to the right of the graph.

Your selection from theShow Top N box controls themetrics that are charted in the
collections graph as well as the sort order of the rows in the collections tables.

When you chooseBy Size, the collection table is sorted in descending order by collection
size. The sizemetrics for the selected collections are charted in the collections graph.

When you choseBy Growth in Last Baseline, the collection table is sorted in descending
order by the amount of growth in the collection since the last baseline. The growthmetrics
for the selected collections are charted in the collections graph.

The Collections Table contains the following columns:

Collection. The collection type.

Classes Contained. Thetype of the objects contained within the collection. If there are
multiple types of objects found within the collections, the value in the table appears as
Unknown.

Allocation Point. The location where the collection is allocated in the code.

Allocation Timestamp. The time at which the collection was allocated.

Last Size Increase Timestamp. The last time that a size increase was captured.

Growth Since Last Baseline. The increase or decrease in the number of objects within the
collection since the last baseline.

Size. The number of objects in the collection.

Collections
Graph

When you click the row for a collection in the collections table, the collections graph is
updated to chart either the size or the growth of the collection since the last baseline,
depending on the selection youmake from theShow Top N box to the right of the graph.
Youmay chart themetrics for more than one of the collections by selecting subsequent rows
with aCTRL-click.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 248 of 263

UI Element Description

Baseline
Information

The baseline determines the time from which the growth in the size of the collections is
measured. You can view the time that the last baseline was set at the bottom of the
Collections display.

The Profiler automatically sets a new baseline at preset periodic intervals. You can also set
a new baselinemanually.

To set a new baselinemanually, click Manual Baseline. The Profiler resets the Growth
Since Last Baselinemetric for each collection, and refreshes the chartedmetrics in the
graph.

By default, a new baseline is set automatically every hour. You can change the automatic
baselining interval in the dynamic.properties file.

You do not need to stop the application server when you change the automatic baselining
interval.

You can change the automatic baselining interval in the <agent_install_
directory>\etc\dynamic.properties file. Locate the line:
lwm.diagnostics.auto.baseline.interval=60m.

Change the time interval according to your needs as explained in the comments of the file.

If you want to stop automatic baselining, enter 0 for the time interval.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 249 of 263

Exceptions Tab Description
The Exceptions tab displays all the exceptions that were generated in the application server for methods that
have been instrumented.

The following is an example of the Java Profiler Exceptions Tab display.

To access In the Java Diagnostics Profiler, select the Exceptions tab.

Important
information

If a non-instrumentedmethod throws an exception which was caught and handled, that
exception will not be reported.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

The following user interface elements are included:

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 250 of 263

UI
Element Description

Table The Exceptions tab displays the Exceptions table which contains the following columns:

Stack. Shows the first three lines of the exception stack trace.

Count. The number of times the exception was generated.

To see the full stack trace of the exception, double-click the row containing the exception to
open the Exception dialog box.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 251 of 263

Server Requests Tab Description
The Server Requests tab displays information about the server requests made to the application server.

The following is an example of the Java Profiler Server Requests Tab display.

To access In the Java Diagnostics Profiler, select the Server Requests tab.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 252 of 263

The following user interface elements are included:
UI
Element Description

Table
(Server
Requests)

The server request table at the top of the display lists the aggregated performance information
for all instances of the server requests.

When you select a server request in this table by clicking the row, a table at the bottom of the
tab is populated with the three server request instances that have the worst total time.

When you double-click a server request in this table, the Profiler displays the call profile for the
selected aggregated server request in a new window. For more information about the call
profile window, see "Analyzing Performance Using the Call ProfileWindow" on page 215.

The aggregated Server Requests table contains the following columns:

Server Request. The URI or the root method for the server request. The URI parameters are
trimmed. To break down server requests according to URI parameters, contact support.

Total Time. The total latency of all invocations of the server request.

Average Time. The Average latency of all invocations of the server request.

Count. The number of times this server request was invoked.

Avg CPU. The CPU time that themethod used during an average invocation.

If CPU timemetrics are not being displayed, CPU Timestamp collection for methods can be
configured. See "Configuring Collection of CPU TimeMetrics" on page 174 for details.

Layer. Displays thelayer for server requests that were invoked by root methods that are not
part of an HTTP request. HTTP server requests do not have a layer.

Table
(Slowest
Instances)

When you click a server request, the bottom section of the window displays a table containing
the three slowest instances of the server request.

The table contains the following columns:

Server Request. The name of the server request.

Start Timestamp. Point in time when the server request instance was invoked.

End Timestamp. Point in time when the server request ended.

Total Time. Total amount of time the server request took to execute.

Threw Exception. Indicates whether or not an exception was thrown during the processing of
this server request instance.

To view the instance call profile for an instance of a server request, double-click a server
request instance. For more information about the call profile see "Analyzing Performance
Using the Call ProfileWindow" on page 215.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 253 of 263

Web Services Tab Description
TheWeb Services tab contains graphs displaying the slowest Web service operations (inboundWeb service
calls) received and processed in your monitored environment and the slowest outboundWeb service calls
made from within your monitored environment.

The following is an example of the Java ProfilerWeb Services Tab display.

To access In the Java Diagnostics Profiler, select theWeb Services tab.

Important
information

Web service operations and calls are displayed in the graphs, in the following
format:
<Web-service-name>::<operation-name>.
For example,MedRecWebServices::getRecordsSummary.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 227

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 254 of 263

The following user interface elements are included:
UI Element Description

Slowest Web Service
Operations Graph

The Slowest Web Service Operations graph displays the slowest Web service
operations (inboundWeb service calls) received and processed in your monitored
environment.

The Java Diagnostics Profiler displays Web service operations as a type of
server request.

You can view the call profile for aWeb service operation displayed in the graph,
by clicking the bar representing the relevant Web service operation. For more
information about the call profile window, see "Analyzing Performance Using the
Call ProfileWindow" on page 215.

You can view a list of all theWeb service operations in the Server Requests tab,
by clicking the view all web service requests link to the right of the graph. For
more information about the Server Requests tab, see "Server Requests Tab
Description" on page 252.

Slowest
Outbound/Consumer
Web Service Calls
Graph

The Slowest Outbound/ConsumerWeb Service Calls graph displays the slowest
outbound/consumerWeb service calls made from within your monitored
environment.

The Java Diagnostics Profiler displays outboundWeb service calls as remote
calls within a server request.

You can view the call profile for the server request containing a particular
outboundWeb service call displayed in the graph. To view the call profile, click
the bar representing the relevant Web service call. For more information about the
call profile window, see "Analyzing Performance Using the Call ProfileWindow"
on page 215.

If the remote call is part of more than one server request, when you double-click
themethod, a dialog box opens and asks you to select the relevant server
request. Double-click the appropriate server request row to view the call profile.

You can view all the outboundWeb service calls in the All Methods tab, by
clicking the view all outbound Web service calls link to the right of the graph.
For more information about the All Methods tab, see "All Methods Tab
Description" on page 242.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 255 of 263

Allocation/LifeCycle Analysis Tab Description
The Allocation/Lifecycle Analysis tab shows themetrics for the objects that have been allocated by your
application in a graph and a corresponding table. The table lists the allocated objects, along with the number of
allocated instances and their lifespan. The graph contains the chartedmetrics for the selected allocated
objects.

The Allocation/Lifecycle Analysis tab can be used for:

l Allocation Analysis. Use the information displayed to investigate amemory leak that you have observed
in the Heap Breakdown tab by examining the allocation and de-allocation of objects while the leak is
happening.

l Lifecycle Analysis. Use the information displayed tomonitor object lifecycles. This feature can be used
for resourcemonitoring of certain database resources.

To analyze allocations, youmust use the controls in the Common Tasks menu to track allocations and refresh
the displayedmetrics as you exercise the application functionality that you believemay be experiencing
leaks.

The following is an example of the Java Profiler Allocation/LifeCycle Analysis Tab display.

To access In the Java Diagnostics Profiler, select the Allocation/LifeCycle Analysis tab.

Important
information

The Allocation/Lifecycle Analysis tab is similar to the views with a detail layout in the
Diagnostics views. Instead of appearing in the view title, the view filters appear in view filter
menus, along the side of the graph. The Common Tasks menu controls the tracking of the
allocations as well as the refreshing of the information that is displayed for the entire view.

Relevant
tasks

Allocation capturemust be enabled to view allocation data. See "How to Enable Allocation
Capture" on page 228.

Object lifecycle monitoringmust be enabled to view object lifecycle data. See "How to
Enable Object Lifecycle Monitoring" on page 229.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 256 of 263

The following user interface elements are included:
UI
Element Description

Object
Table

The object table lists the objects that have been allocated since you started tracking allocations.
You can customize this table to adjust the sort order and the columns that appear in the table,
just like the graph-entity tables in other views with the detail layout. By default, the table is
sorted in order by Objects Currently Alive. It displays the following columns:

Chart. Allows you to indicate if themetrics for the allocated object are to be charted in the
graph. You can select objects to be charted by clicking on the box in this columnmanually. Or
you can let the Profiler select the objects to chart dynamically, using the criteria that you specify
in the Graph filter.

Color. Indicates the color that the Profiler uses to chart themetrics for the allocated object. No
color is shown for metrics that are not charted.

Objects Currently Alive. A count of the total number of allocated objects that have not yet
been garbage collected.

Objects Allocated. A count of the total number of objects that have been allocated whether
they have been garbage collected or not.

Objects Deallocated. A count of the total number of objects that have been garbage collected.

Object Lifespan. The average duration of the life of all de-allocated objects. If no objects have
been de-allocated, this column is blank.

In the Details pane, metrics forObjects Lifecycle andObject Active Lifespan are also
available. See "Object Lifecycle Monitoring" on page 222 for more information.

Graph The graph charts themetrics that you selected from the details table for each of the objects
selected in the allocation/lifecycle analysis table.

Using the controls in the views with a detail layout, you control whichmetrics are charted and
which entities have their metrics charted.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 257 of 263

Memory Analysis Tab Description
Data displayed in theMemory Analysis Tab helps you to findmemory leaks. TheMemory Analysis Tab
includes a wizard that guides you through the process of diagnosing amemory leak. See "HeapWalker
Memory Analysis Execution Steps" on page 224 for details about the heap walker process you can use to
diagnosememory leaks.

The following is an example of the Java Profiler Memory Analysis Tab display.

To access In the Java Diagnostics Profiler, select theMemory Analysis tab.

Important
information

HeapWalker has JVM andmemory requirements as described in this topic.

Also See "HeapWalker Performance Characteristics" on page 227.

Relevant
tasks

By default, theMemory Analysis tab is disabled. Youmust enablememory analysis (see
"How to EnableMemory Analysis" on page 230).

See "HeapWalker Memory Analysis Execution Steps" on page 224 for a description of
how to use the heap walker wizard.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 258 of 263

The following user interface elements are included:

UI Element Description

Heap
Metrics
Table

The HeapMetrics table contains the following columns:

Class. The name of the class.

Bytes. Actual amount of memory, in bytes, that has been allocated by objects of this class.
By design the heap dump does not report classes with less than 1000 bytes of total footprint
but this is configurable in dynamic.properties using the heapdump.class.bytes.min
property.

Count. The number of object instances of this class that are allocated in the JVM.

+/-Last. The count change since themost recent time a heap snapshot was taken.

+/-First. The count change since the initial heap snapshot was taken

Heap
Breakdown
Graph

When you select a class name in the Heap Breakdown table, the Heap Breakdown graph
shows the count over time of objects belonging to that class. You can select more than one
class to display on the graph by selecting subsequent rows with aCTRL-click. The graph
legend will display up to three rows and then a scroll bar will be added so you can scroll to
see additional items.

Heap
Walker

TheMemory Analysis Tab includes a wizard that guides you through the process of
diagnosing amemory leak.

See also "HeapWalker Memory Analysis Execution Steps" on page 224 for how to use the
heap walker wizard.

HeapWalker requires the following:

JVM Requirements:HeapWalker uses the JVM Tool Interface (JVM TI). As a result, the
profiled applicationmust run on a Java VM that implements JVM TI, including the optional
JVM TI capability can_tag_objects.

Sun HotSpot JVM, version 5.0, for Linux andWindows on Intel x86, are examples of
compatible JVMs.

Memory Requirements. Tagging the heap, and processing the object reference graph,
requires large amounts of memory (total physical memory available for the JVM, not Java
heapmemory). The amount of memory required depends on the size of the heap used by the
application. You will see an error message if there isn't enoughmemory on the system based
on the heap size.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 259 of 263

Configuration Tab Description
The Configuration tab in the Java Diagnostics Profiler provides a way for you tomaintain the instrumentation
points and some of the probe configuration without having tomanually edit the capture points file or property
files.

The following is an example of the Java Profiler Configuration Tab display.

To access In the Java Diagnostics Profiler, select the Configuration tab. You can use this page whether
profiling has been started for the probe or not.

Important
information

See "Custom Instrumentation for Java Applications" on page 96 and "Advanced Java Agent
and Application Server Configuration" on page 158 for more information on the properties
configured in this page.

In VMware, the CPU timemetric is from the perspective of the guest operating system and
is affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf. and see "Time
Synchronization for Probes Running in VMware in the Diagnostics Server Installation and
Administration Guide.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 227

Probe Settings
The following user interface elements are included:

UI
Element Description

General Enable Monitoring Data Collection. You can enable and disable monitoring data collection
by checking or unchecking this box. By unchecking this box, you can disable monitoring data
collection without stopping the Java Agent.

Monitoring Profile. You can select themonitoring profile by choosing an option from the
drop-downmenu. For details onmonitoring profiles, see "Monitoring Profiles" on page 86.

Collect CPU Timestamps. You can enable and disable CPU Timestamp collection by
choosing an option from the drop-downmenu.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 260 of 263

http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

UI
Element Description

Trimming Properties that reduce the amount of data pulled from the probe.

Server Request Minimum Latency. Only server requests that takemore than this amount
of time will be captured, unless a threshold has been set on that server request.

Method Minimum Latency. Only regular methods that execute slower than this number of
milliseconds will be captured.

SQL Statement Minimum Latency. If an SQL statement takes less than this amount of
time, it will not be trended, until it does exceed this time.

URI Replacement Pattern. Specifies the URIs substitutions which will be used by the
agent when reporting the HTTP server requests. Pattern applies after all other URI
adjustments.

Stack
Tracing

When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which
methods were executed during long running fragments even if no instrumentedmethods were
hit during this time.

You can enable and configure the following properties.

Thread Stack Trace Sampling. Enables or disables asynchronous thread stack trace
sampling; possible values are false, auto (the default), and true.

When set to auto, stack trace sampling is enabled IF the probe is running on selected
(certified) platforms and JVMs. For other JVMs, the settingmust be set to Enable explicitly.
Use caution because the JVM could generate errors or abort. See Diagnostics Release
Notes for limitations.

Sampling Interval. The time that must elapse before the next consecutive sampling attempt
is made. Small values cause frequent sampling and provide rich data but at the cost of
increased overhead.

The overhead caused by frequent sampling affects primarily the latency of server requests.
The overall CPU usage by the probe can go up as well, but this effect is not as profound as
the latency increase. For systems with many CPUs, the process CPU consumption can
actually go down (not a good thing).

Tardy Method Latency Threshold. Theminimum time an instrumentedmethodmust run
without hitting any instrumentation points before stack trace sampling is attempted for this
method. The purpose of this property is to control the overhead of sampling by limiting the
stack trace collection to only themost interesting cases.

Maximum Stack Trace Depth. The limit for the depth of stack traces obtained from the
JVM. You will most likely not need to adjust this value.

These properties can also be set in the dynamic.properties file. And additional configuration
can be done in dispatcher.properties for enable.stack.trace.aggregation,
aggregated.stack.trace.validity.threshold.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 261 of 263

UI
Element Description

Collection
Leaks

Youmust run the JRE instrumenter if you want to use the collection leaks pinpointing (CLP)
feature in the Java Agent.

Report Collection Leaks. You can enable and disable reporting by checking or unchecking
this box.

Collection Leaks Flag Threshold. The threshold of time duration in which the collection
has size growth. If a collection's size growth period exceeds this threshold, it will be flagged
as amemory leak by the probe.

Collection Leaks Unflag Threshold. For an already flagged leaking collection, if its size
stops growing continually for this threshold time period, that probe will unflag it as a leak.

These same values can also be set in the dynamic.properties file for the probe:
clp.diagnostics.reporting, clp.diagnostics.growth.time and
clp.diagnostics.nongrowth.time.

Client
Monitoring

Enable Client Monitoring Instrumentation. You can enable and disable client monitoring
by checking or unchecking this box. Client monitoring is set to false by default.

Client Monitoring Sampling Percentage. The percentage of instances for which Client
Monitoring instrumentation will be in effect, if it is enabled.

Instrumentation
The following user interface elements are included:

UI Element Description

View Currently
Used
Instrumentation

Click the link to view the instrumentation for the application that the probe is monitoring.

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UI" on page 147 for more information.

Shared
Instrumentation

Click Edit to modify the currently-used shared instrumentation.

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UI" on page 147 for more information.

Instance
Instrumentation

Click Edit to modify the currently-used instance instrumentation.

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UI" on page 147 for more information.

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Micro Focus Diagnostics (9.51) Page 262 of 263

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Java Agent Guide (Diagnostics 9.51)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to docs.feedback@microfocus.com.

We appreciate your feedback!

Micro Focus Diagnostics (9.51) Page 263 of 263

mailto:docs.feedback@microfocus.com?subject=Feedback on Java Agent Guide (Diagnostics 9.51)

	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics Java Agent Overview
	About the Diagnostics Java Agent
	Introducing the Diagnostics Profiler for Java
	Features and Benefits of the Diagnostics Profiler for Java

	Part 2: Installation and Configuration of the Java Agent
	Chapter 2: Preparing to Install the Diagnostics Java Agent
	Java Agent Installation Overview
	System Requirements for the Diagnostics Java Agent

	Chapter 3: Installing Java Agents
	Pre-installation Checklist for the Java Agent
	Installing and Configuring Java Agents
	Silent Installation of the Java Agent
	Setting File Permissions
	Determining the Version of the Java Agent
	Configuring for Firewalls, HTTPS, and Proxies
	Uninstalling the Java Agent

	Chapter 4: Preparing Application Servers for Monitoring with the Java Agent
	About Preparing Application Servers for Monitoring
	Examples for Configuring Application Servers
	Example 1: Configuring GlassFish Application Server for Monitoring
	Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring
	Configuring a JBoss EAP Application

	Example 3: Configuring Oracle Application Server for Monitoring
	Using the Diagnostics JRE Instrumenter in Manual Mode

	Example 4: Configuring SAP NetWeaver Application Server for Monitoring
	Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for M...
	Example 6: Configuring Tomcat Application Server for Monitoring
	Example 7: Configuring WebLogic Application Server for Monitoring
	Example 8: Configuring webMethods Server for Monitoring
	Example 9: Configuring WebSphere Application Server for Monitoring
	Example 10: Configuration for WebSphere Application Server Liberty

	Verify the Application Server is Running the Java Agent
	About the JRE Instrumenter and Different Options to Invoke
	Other Configuration Options
	Probe Registration Auto-Assigment
	Configure Monitoring of Multiple Java Processes on an Application Server
	Adjusting the Heap Size for the Java Agent in the Application Server
	Configuring the SOAP Message Handler
	Configuring the Discovery of a New J2EE Server for CI Population
	Special Considerations for Applications Based on the OSGi Framework

	Chapter 5: Configuring for Azul or Cloud Environments
	Java Agents on Azul
	Java Agents in Cloud Environments

	Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent
	About Client Monitoring
	Enabling Client Monitoring
	Configuring and Disabling Client Monitoring
	Manually Instrumenting HTML/JSP Pages for Client Monitoring

	Chapter 7: Upgrading the Diagnostics Java Agent
	Upgrade Java Agents
	Upgrade Notes and Limitations

	Part 3: Advanced Java Agent Configuration and Instrumentation
	Chapter 8: Monitoring Profiles
	About Monitoring Profiles
	Understanding Types of Diagnostics Deployments
	The Predefined Monitoring Profiles
	Custom Monitoring Profiles
	Applying a Specific Monitoring Profile to a Probe
	Overriding Settings in the Monitoring Profiles
	Mapping Instrumentation Points to a Monitoring Profile
	Mapping Metrics to a Monitoring Profile
	Mapping Property Values to a Monitoring Profile

	Chapter 9: Automatically Assigning a Probe to an Application
	About Automatic Probe Assignment
	Configuring a Probe to Automatically Assign Applications
	Configuring an Agent to Automatically Assign Applications
	General Configuration

	Chapter 10: Custom Instrumentation for Java Applications
	About Instrumentation and Capture Points Files
	Using Regular Expressions in Points Files
	Coding Points in the Capture Points File
	Defining Points With Code Snippets
	Controlling Class Map Capture
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Instrumentation Control on a Per Layer Basis
	Instrumented Location Throughput Throttling
	Advanced Instrumentation Examples
	Capturing HTTP Server Requests Based on Query Parameters

	Configuring Cross VM Correlations for New or CustomTechnologies
	Tutorial for Configuring Cross VM Correlation for Custom Technologies
	Maintaining Instrumentation from the Java Profiler UI
	Default Layers Defined for Typical Java Classes and Methods

	Chapter 11: Advanced Java Agent and Application Server Configuration
	Advanced Configuration Overview
	About Dynamic Configuration
	Disabling the Java Diagnostics Profiler
	Controlling Probe Logging
	Setting the Probe’s Host Machine Name
	Specifying a Different Probe IP Address
	Setting the Active Products Mode
	Controlling Automatic Method Trimming on the Agent
	Configuring URI and Parameter Capture
	Capturing Non-Sequential Server Requests
	Configuring an Agent for a Proxy Server
	Time Synchronization for Probes Running on VMware
	Limiting Exception Tree Data
	Diagnostics Probe Administration Page
	Authentication and Authorization for Diagnostics Java Profilers
	Configuring Collection of CPU Time Metrics
	Configuring Consumer IDs
	A Value in the SOAP Body

	Configuring SOAP Fault Payload Data
	Configuring REST Services
	Customizing Grouping JMS Temporary Queue/Topics
	Configuring SQL Query Parsing
	Capturing SQL Parameters
	Configuring Display of Application Name for Server Requests
	Maintaining Probe Settings from the Java Profiler UI
	Generating Performance Reports for JUnit Tests

	Chapter 12: Java Agent Metrics Collectors
	About Metrics Capture
	What Metrics are Being Collected by the Java Agent
	Understanding Metric Collector Entries
	About Collecting Additional Probe Metrics
	Modifying Probe Metrics Already Being Captured
	Stopping Capture of a Metric
	Using Customized metrics.config Files for Multiple JVM Applications on a System

	Chapter 13: Java Agent - System Metrics Capture
	About System Metrics
	System Metrics Captured by Default
	Configuring the System Metrics Collector
	Capturing Additional Custom System Metrics
	Capturing Custom System Metrics on Windows Hosts
	Capturing Custom System Metrics on Solaris Hosts
	Capturing Custom System Metrics on Linux Hosts

	Chapter 14: Java Agent - JMX Metrics Capture
	About JMX Metrics
	About Configuring JMX Metric Collectors
	Additional Custom JMX Metrics
	Getting a List of Available JMX or WebSphere PMI Metrics
	Creating New JMX or WebSphere PMI Metrics Entries

	Part 4: Using the Diagnostics Profiler for Java
	Chapter 15: Diagnostics Profiler for Java
	About the Java Diagnostics Profiler
	How the Java Agent Provides Data for the Java Profiler
	Java Diagnostics Profiler UI Navigation and Display Controls
	Analyzing Performance Using the Call Profile Window
	Thread Call Stack Trace Sampling
	Comparison of Collection Leak Pinpointing and LWMD
	Object Lifecycle Monitoring
	Heap Walker Memory Analysis Execution Steps
	Heap Walker Performance Characteristics
	How to Access the Java Diagnostics Profiler
	How to Enable LWMD for Collections Displays
	How to Enable Allocation Capture
	How to Enable Object Lifecycle Monitoring
	How to Analyze Object Allocation
	How to Enable Memory Analysis
	Summary Tab Description
	Hotspots Tab Description
	Metrics Tab Description
	Threads Tab Description
	All Methods Tab Description
	All SQL Tab Description
	Collection Leaks Tab Description
	Collections Tab Description
	Exceptions Tab Description
	Server Requests Tab Description
	Web Services Tab Description
	Allocation/LifeCycle Analysis Tab Description
	Memory Analysis Tab Description
	Configuration Tab Description

	Send Documentation Feedback

