
Micro Focus
Fortify Static Code Analyzer
Software Version: 18.20

Performance Guide

Document Release Date: November 2018
Software Release Date: November 2018

Legal Notices
Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

https://www.microfocus.com

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Except as specifically indicated otherwise, a valid license from Micro Focus is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notice
© Copyright 2003 - 2018 Micro Focus or one of its affiliates

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Documentation Updates
The title page of this document contains the following identifying information:

 l Software Version number

 l Document Release Date, which changes each time the document is updated

 l Software Release Date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

https://www.microfocus.com/support-and-services/documentation

Performance Guide

Micro Focus Fortify Static Code Analyzer (18.20) Page 2 of 29

https://www.microfocus.com/
https://www.microfocus.com/support-and-services/documentation

Contents

Preface 5

Contacting Micro Focus Fortify Customer Support 5

For More Information 5

About the Documentation Set 5

Change Log 6

Chapter 1: Introduction 7

Hardware Recommendations 7

Sample Scans 8

Related Documents 8
All Products 9
Micro Focus Fortify Software Security Center 9
Micro Focus Fortify Static Code Analyzer 10

Chapter 2: Performance Improvement Tips 11

Hardware Considerations 11

Tuning Options 11

Mobile Build Sessions 12

Memory Tuning 13
Java Heap Exhaustion 14
Native Heap Exhaustion 14
Stack Overflow 15

Chapter 3: Scan Quality and Performance 16

Breaking Down Codebases 16

Quick Scan 16
Limiters 17
Using Quick Scan and Full Scan 17

Limiting Analyzers and Languages 17
Disabling Analyzers 18
Disabling Languages 18

Scanning Complex Functions 18
Dataflow Analyzer Limiters 19
Control Flow and Null Pointer Analyzer Limiters 20

Chapter 4: Optimizing FPR Files 22

Performance Guide

Micro Focus Fortify Static Code Analyzer (18.20) Page 3 of 29

Filters 22
Filter Files 22
Scan-Time Filters 23

Excluding Source Code from the FPR 23

Reducing the FPR File Size 24

Opening Large FPR Files 25

Chapter 5: Monitoring Long Running Scans 27

Using the SCAState Utility 27

Using JMX Tools 27
Using JConsole 27
Using Java VisualVM 28

Send Documentation Feedback 29

Performance Guide

Micro Focus Fortify Static Code Analyzer (18.20) Page 4 of 29

Preface

Contacting Micro Focus Fortify Customer Support
If you have questions or comments about using this product, contact Micro Focus Fortify Customer
Support using one of the following options.

To Manage Your Support Cases, Acquire Licenses, and Manage Your Account

https://softwaresupport.softwaregrp.com

To Call Support

1.844.260.7219

For More Information
For more information about Fortify software products:
https://software.microfocus.com/solutions/application-security

About the Documentation Set
The Fortify Software documentation set contains installation, user, and deployment guides for all
Fortify Software products and components. In addition, you will find technical notes and release notes
that describe new features, known issues, and last-minute updates. You can access the latest versions of
these documents from the following Micro Focus Product Documentation website:

https://www.microfocus.com/support-and-services/documentation

Performance Guide
Preface

Micro Focus Fortify Static Code Analyzer (18.20) Page 5 of 29

https://softwaresupport.softwaregrp.com/
https://software.microfocus.com/solutions/application-security
https://www.microfocus.com/support-and-services/documentation

Change Log
The following table lists changes made to this document. Revisions to this document are published
between software releases only if the changes made affect product functionality.

Software Release /
Document Version Changes

18.20 Updated:

 l "Sample Scans" on page 8 - Table updated to show data for the current
release

18.10 Updated:

 l "Sample Scans" on page 8 - Table updated to show data for the current
release

17.20 Updated:

 l "Sample Scans" on page 8 - Table updated to show data for the current
release

 l "Opening Large FPR Files" on page 25 - Added a description of the
property used to increase memory for external utilities

Removed:

 l "Parallel Processing" - In this release, Parallel Analysis Mode is enabled
by default.

Performance Guide
Change Log

Micro Focus Fortify Static Code Analyzer (18.20) Page 6 of 29

Chapter 1: Introduction
This document provides guidelines and tips to optimize memory usage and performance when scanning
different types of codebases with Fortify Static Code Analyzer.

This section contains the following topics:

Hardware Recommendations 7

Sample Scans 8

Related Documents 8

Hardware Recommendations
The variety of source code makes accurate predictions of memory usage and scan times impossible. The
factors that affect memory usage and performance consists of many different factors such as:

 l Code type

 l Size of the codebase

 l Ancillary languages used (such as JSP, JavaScript, and HTML)

 l Number of vulnerabilities

 l Type of vulnerabilities (analyzer used)

 l Codebase complexity

This guide provides general guidelines as a set of “best guess” recommendations for hardware
requirements. Fortify developed these guidelines from real-world application scan results. It is important
to note that there might be cases where your codebase scan requires more than these guidelines imply.
To improve these guidelines, Fortify welcomes your feedback on how your project requirements map to
our guidelines.

The following table provides recommendations based on the complexity of the application.

Application
Complexity CPU Cores

RAM
(GB)

Average
Scan
Time Description

Simple 4 16 1 hour A standalone system that runs on a server or
desktop such as a batch job or a command-line
utility.

Medium 8 32 5 hours A standalone system that works with complex
computer models such as a tax calculation system
or a scheduling system.

Complex 16 128 4 days A three-tiered business system with transactional
data processing such as a financial system or a
commercial website.

Micro Focus Fortify Static Code Analyzer (18.20) Page 7 of 29

Application
Complexity CPU Cores

RAM
(GB)

Average
Scan
Time Description

Very
Complex

32 256 7+ days A system that delivers content such as an
application server, database server, or content
management system.

Note: TypeScript scans increase the analysis time significantly. If the total lines of code in an
application consist of more than 20% TypeScript, use the next highest recommendation.

Sample Scans
These sample scans were performed using Fortify Static Code Analyzer version 18.20 on a dedicated
Linux virtual machine with 4 CPUs and 32 GB of RAM. These scans were run using Micro Focus Fortify
Security Content 2018 Update 3. The following table shows the scan times you can expect for several
common open-source projects.

Project Name (Language) Scan Time Total Issues LOC

Apache-HTTPd (C/C++) 08:41 1,941 32,562

WebGoat 7.0 (Java) 01:49 415 3,869

WordPress (Java) 03:28 773 10,437

CakePHP (PHP) 04:20 2,289 54,548

phpBB 3 (PHP) 03:48 1,276 39,749

SmartStoreNET (.NET) 1:08:36 5,549 209,141

Office365-cli (TypeScript) 33:35 79 38,411

Hackademic (JavaScript) 08:47 454 44,672

Swift.nV (Swift) 00:38 55 1,094

Related Documents
This topic describes documents that provide information about Micro Focus Fortify software products.

Note: You can find the Micro Focus Fortify Product Documentation at
https://www.microfocus.com/support-and-services/documentation.

Performance Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (18.20) Page 8 of 29

https://www.microfocus.com/support-and-services/documentation

All Products

The following documents provide general information for all products. Unless otherwise noted, these
documents are available on the Micro Focus Product Documentation website.

Document / File Name Description

About Micro Focus Fortify Product
Software Documentation

About_Fortify_Docs_<version>.pdf

This paper provides information about how to access Micro
Focus Fortify product documentation.

Note: This document is included only with the product
download.

Micro Focus Fortify Software System
Requirements

Fortify_Sys_Reqs_<version>.pdf

Fortify_Sys_Reqs_Help_<version>

This document provides the details about the
environments and products supported for this version of
Fortify Software.

Micro Focus Fortify Software Release
Notes

FortifySW_RN_<version>.txt

This document provides an overview of the changes made
to Fortify Software for this release and important
information not included elsewhere in the product
documentation.

What’s New in Micro Focus Fortify
Software <version>

Fortify_Whats_New_<version>.pdf

Fortify_Whats_New_Help_<version>

This document describes the new features in Fortify
Software products.

Micro Focus Fortify Open Source and
Third-Party License Agreements

Fortify_OpenSrc_<version>.pdf

Fortify_OpenSrc_<version>

This document provides open source and third-party
software license agreements for software components used
in Fortify Software.

Micro Focus Fortify Software Security Center

The following documents provide information about Fortify Software Security Center. Unless otherwise
noted, these documents are available on the Micro Focus Product Documentation website.

Document / File Name Description

Micro Focus Fortify Software Security
Center User Guide

SSC_Guide_<version>.pdf

This document provides Fortify Software Security Center
users with detailed information about how to deploy and
use Software Security Center. It provides all of the
information you need to acquire, install, configure, and use

Performance Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (18.20) Page 9 of 29

https://www.microfocus.com/support-and-services/documentation
https://www.microfocus.com/support-and-services/documentation

Document / File Name Description

SSC_Help_<version> Software Security Center.

It is intended for use by system and instance
administrators, database administrators (DBAs), enterprise
security leads, development team managers, and
developers. Software Security Center provides security
team leads with a high-level overview of the history and
current status of a project.

Micro Focus Fortify Static Code Analyzer

The following documents provide information about Fortify Static Code Analyzer. Unless otherwise
noted, these documents are available on the Micro Focus Product Documentation website.

Document / File Name Description

Micro Focus Fortify Static Code
Analyzer Installation Guide

SCA_Install_<version>.pdf

SCA_Install_Help_<version>

This document contains installation instructions for Fortify
Static Code Analyzer and Applications.

Micro Focus Fortify Static Code
Analyzer User Guide

SCA_Guide_<version>.pdf

SCA_Help_<version>

This document describes how to use Fortify Static Code
Analyzer to scan code on many of the major programming
platforms. It is intended for people responsible for security
audits and secure coding.

Micro Focus Fortify Static Code
Analyzer Performance Guide

SCA_Perf_Guide_<version>.pdf

SCA_Perf_Help_<version>

This document provides guidelines for selecting hardware
to scan different types of codebases and offers tips for
optimizing memory usage and performance.

Micro Focus Fortify Static Code
Analyzer Custom Rules Guide

SCA_Cust_Rules_Guide_<version>.zip

SCA_Cust_Rules_Help_<version>

This document provides the information that you need to
create custom rules for Fortify Static Code Analyzer. This
guide includes examples that apply rule-writing concepts to
real-world security issues.

Note: This document is included only with the product
download.

Performance Guide
Chapter 1: Introduction

Micro Focus Fortify Static Code Analyzer (18.20) Page 10 of 29

https://www.microfocus.com/support-and-services/documentation

Chapter 2: Performance Improvement Tips
This section contains different methods of tuning Fortify Static Code Analyzer to maximize its
performance.

This section contains the following topics:

Hardware Considerations 11

Tuning Options 11

Mobile Build Sessions 12

Memory Tuning 13

Hardware Considerations
The Micro Focus Fortify Software System Requirements document describes the system requirements.
However, for large and complex applications, Fortify Static Code Analyzer requires more capable
hardware. This includes:

 l Disk I/O—Fortify Static Code Analyzer is I/O intensive so the faster the hard drive, the more savings
on the I/O transactions. Fortify recommends a 7,200 RPM drive, although a 10,000 RPM drive (such
as the WD Raptor) or an SSD drive is better.

 l Memory—See "Memory Tuning" on page 13 for more information about how to determine the
amount of memory required for optimal performance.

 l CPU—Fortify recommends a 2.1 GHz or faster processor.

Tuning Options
Fortify Static Code Analyzer can take a long time to process complex projects. The time is spent in
different phases:

 l Translation

 l Analysis

Fortify Static Code Analyzer can produce large analysis result files, which can cause a long time to audit
and upload to Micro Focus Fortify Software Security Center. This is referred to as the following phase:

 l Audit/upload

Micro Focus Fortify Static Code Analyzer (18.20) Page 11 of 29

The following table provides tips on how to improve performance in the different time-consuming
phases.

Phase Option Description More Information

Translation -export-build-
session
-import-build-
session

Translate and scan on
different machines

"Mobile Build Sessions" below

Analysis -Xmx<size>M | G Set maximum heap size "Memory Tuning" on the next
page

Analysis -Xss<size>M | G Set stack size for each
thread

"Memory Tuning" on the next
page

Analysis -bin Scan the files related to a
binary

"Breaking Down Codebases" on
page 16

Analysis -quick Run a quick scan "Quick Scan" on page 16

Analysis

Audit/upload

-filter <file> Apply a filter using a filter
file

"Filters" on page 22

Analysis

Audit/upload

-disable-
source-bundling

Exclude source files from
the FPR file

"Excluding Source Code from
the FPR" on page 23

Mobile Build Sessions
With a Fortify Static Code Analyzer mobile build session (MBS), you can translate a project on one
machine and analyze it on a different machine with better hardware. With an MBS, you can perform the
translation on the original computer and then move the build session to a better equipped computer to
perform the scan. The developers can run translations on their own computers and use only one
powerful computer to run large scans.

Fortify strongly recommends that you move MBS files with the Fortify Static Code Analyzer export and
import options.

sourceanalyzer -b <build_id> -export-build-session my-session.mbs
 sourceanalyzer -import-build-session my-session.mbs

Below is an example of the steps required to use an MBS. This example runs the translation on
Machine T and the scan on Machine S.

 1. Machine T: Translate the source files.

sourceanalyzer -b <build_id> <src_files>

Performance Guide
Chapter 2: Performance Improvement Tips

Micro Focus Fortify Static Code Analyzer (18.20) Page 12 of 29

 2. Machine T: Package and save an MBS to a file called build-session.mbs.

sourceanalyzer -b <build_id> -export-build-session build-session.mbs

 3. Transfer build-session.mbs from Machine T to Machine S.
 4. Machine S: Import the MBS into the Fortify Static Code Analyzer project root directory on the scan

machine.

 sourceanalyzer -import-build-session build-session.mbs

 5. Machine S: Perform a scan with the same build ID that was used in the translation.

sourceanalyzer -b <build_id> -scan -f myResults.fpr

You cannot merge multiple mobile build sessions into a single MBS file. Each exported build session
must use a unique build ID and you must import it under that unique build ID. However, after all of the
build IDs are imported on the same Fortify Static Code Analyzer installation, you can scan multiple build
IDs in one scan with the -b option.

For example, assuming all the build IDs were imported to the local machine using mobile build sessions,
you can use the following command to scan them with one command:

sourceanalyzer -b <build_id_1> -b <build_id_2> -b <build_id_3> -scan -f
myResults.fpr

Note: The resulting FPR (myResults.fpr) covers the same files as if they were all translated into
one build ID. However, there are rare instances where dataflow between the files is lost if they are
not translated together.

Memory Tuning
As discussed in "Hardware Recommendations" on page 7, the amount of physical RAM required for a
scan depends on the complexity of the code. By default, Fortify Static Code Analyzer automatically
allocates the memory it uses based on the physical memory available on the system. This is generally
sufficient.

As described in the Micro Focus Fortify Static Code Analyzer User Guide, you can adjust the Java heap
size with the -Xmx command-line option. Heap sizes between 32 GB and 48 GB are not advised due to
internal JVM implementations. Heap sizes in this range perform worse than at 32 GB. Heap sizes smaller
than 32 GB are optimized by the JVM. If your scan requires more than 32 GB, then you probably need
64 GB or more. As a guideline, assuming no other memory intensive processes are running, do not
allocate more than 2/3 of the available memory.

This section describes suggestions for what you can do if you encounter OutOfMemory errors during
the analysis.

Note: You can set the memory allocation options discussed in this section to run for all scans by

Performance Guide
Chapter 2: Performance Improvement Tips

Micro Focus Fortify Static Code Analyzer (18.20) Page 13 of 29

setting the SCA_VM_OPTS environment variable.

Java Heap Exhaustion

Java heap exhaustion is the most common memory problem that might occur during Fortify Static Code
Analyzer scans. It is caused by allocating too little heap space to the Java virtual machine that Fortify
Static Code Analyzer uses to scan the code. You can identify Java heap exhaustion from the following
symptom.

Symptom

One or more of these messages appears in the Fortify Static Code Analyzer log file and in the
command-line output:

There is not enough memory available to complete analysis. For details on
making more memory available, please consult the user manual.
 java.lang.OutOfMemoryError: Java heap space
 java.lang.OutOfMemoryError: GC overhead limit exceeded

Resolution

To resolve a Java heap exhaustion problem, allocate more heap space to the Fortify Static Code
Analyzer Java virtual machine when you start the scan. To increase the heap size, use the -Xmx
command-line option when you run the Fortify Static Code Analyzer scan. For example, -Xmx1G makes
1 GB available. Before you use this parameter, determine the maximum allowable value for Java heap
space. The maximum value depends on the available physical memory.

Fortify recommends that you do not specify a value for the -Xmx option that exceeds either 90% of the
total physical memory or the total physical memory minus 1.5 GB to allow for the operating system. If
the system is dedicated to running Fortify Static Code Analyzer, you do not need to change it. However,
if the system resources are shared with other memory-intensive processes, subtract an allowance for
those other processes.

Note: You do not need to account for other resident but not active processes (while Fortify Static
Code Analyzer is running) that the operating system might swap to disk. Allocating more physical
memory to Fortify Static Code Analyzer than is available in the environment might cause
“thrashing,” which typically slows down the scan along with everything else on the system.

Native Heap Exhaustion

Native heap exhaustion is a rare scenario where the Java virtual machine can allocate the Java memory
regions on startup, but is left with so few resources for its native operations (such as garbage collection)
that it eventually encounters a fatal memory allocation failure that immediately terminates the process.

Performance Guide
Chapter 2: Performance Improvement Tips

Micro Focus Fortify Static Code Analyzer (18.20) Page 14 of 29

Symptom

You can identify native heap exhaustion by abnormal termination of the Fortify Static Code Analyzer
process and the following output on the command line:

A fatal error has been detected by the Java Runtime Environment:
 #
 # java.lang.OutOfMemoryError: requested ... bytes for GrET ...

Because this is a fatal Java virtual machine error, it is usually accompanied by an error log created in the
working directory with the file name hs_err_pidNNN.log.

Resolution

Because the problem is a result of overcrowding within the process, the resolution is to reduce the
amount of memory used for the Java memory regions (Java heap). Reducing this value should reduce
the crowding problem and allow the scan to complete successfully.

Stack Overflow

Each thread in a Java application has its own stack. The stack holds return addresses, function/method
call arguments, and so on. If a thread tends to process large structures with recursive algorithms, it
might need a large stack for all those return addresses. With the JVM, you can set that size with the
-Xss option.

Symptoms

This message typically appears in the Fortify Static Code Analyzer log file, but might also appear in the
command-line output:

java.lang.StackOverflowError

Resolution

The default stack size is 16 MB. To increase the stack size, pass the -Xss option to the
sourceanalyzer command. For example, -Xss32M increases the stack to 32 MB.

Performance Guide
Chapter 2: Performance Improvement Tips

Micro Focus Fortify Static Code Analyzer (18.20) Page 15 of 29

Chapter 3: Scan Quality and Performance
This section contains the following topics:

Breaking Down Codebases 16

Quick Scan 16

Limiting Analyzers and Languages 17

Scanning Complex Functions 18

Breaking Down Codebases
It is more efficient to break down large projects into independent modules. For example, if you have a
portal application that consists of several modules that are independent of each other or have very little
interactions, you can translate and scan the modules separately. The caveat to this is that you might lose
dataflow issue detection if some interactions exist.

For C/C++, you might reduce the scan time by using the –bin option with the –scan option. You need
to pass the binary file as the parameter (such as -bin <filename>.exe -scan or -bin
<filename>.dll -scan). Fortify Static Code Analyzer finds the related files associated with the
binary and scans them. This is useful if you have several binaries in a makefile.

The following table lists some useful Fortify Static Code Analyzer command-line options to break down
codebases.

Option Description

-bin <binary> Specifies a subset of source files to scan. Only the source files that were
linked in the named binary at build time are included in the scan. You can use
this option multiple times to specify the inclusion of multiple binaries in the
scan.

-show-binaries Displays all objects that were created but not used in the production of any
other binaries. If fully integrated into the build, it lists all of the binaries
produced.

-show-build-tree When used with the -bin option, displays all files used to create the binary
and all files used to create those files in a tree layout. If the -bin option is not
present, Fortify Static Code Analyzer displays the tree for each binary.

Quick Scan
Quick Scan mode provides a way to quickly scan your projects for major defects. By default, Quick Scan
searches for high‐confidence, high‐severity issues. Although the Quick Scan is significantly faster, it
does not provide a robust result set.

Micro Focus Fortify Static Code Analyzer (18.20) Page 16 of 29

Limiters

The depth of the Fortify Static Code Analyzer analysis sometimes depends on the available resources.
Fortify Static Code Analyzer uses a complexity metric to trade off these resources with the number of
vulnerabilities that it can find. Sometimes, this means giving up on a particular function when it does not
look like Fortify Static Code Analyzer has enough resources available.

Fortify Static Code Analyzer enables the user to control the “cutoff” point by using Fortify Static Code
Analyzer limiter properties. The different analyzers have different limiters. You can run a predefined set
of these limiters using a Quick Scan. See the quick scan properties in the Micro Focus Fortify Static
Code Analyzer User Guide for descriptions of the limiters.

To enable Quick Scan, use -quick option with -scan option. With Quick Scan enabled, Fortify Static
Code Analyzer applies the properties from the <sca_install_dir>/Core/config/fortify-sca-
quickscan.properties file, in addition to the standard <sca_install_
dir>/Core/config/fortify-sca.properties file. You can adjust the limiters that Fortify Static
Code Analyzer uses by editing the fortify-sca-quickscan.properties file. If you modify
fortify-sca.properties, it also affects quick scan behavior. Fortify recommends that you do
performance tuning in quick scan mode, and leave the full scan in the default settings to produce a
highly accurate scan.

Using Quick Scan and Full Scan

 l Run periodic full scans—A periodic full scan is important as it might find issues that Quick Scan
does not detect. Run a full scan at least once per software iteration. If possible, run a full scan
periodically when it will not interrupt the development workflow, such as on a weekend.

 l Compare Quick Scan With a Full Scan—To evaluate the accuracy impact of a Quick Scan, perform
a Quick Scan and a full scan on the same code base, then load the Quick Scan results in Micro Focus
Fortify Audit Workbench and merge it into the full scan. Group the issues by New Issue to produce a
list of issues found in the full scan but not found in the Quick Scan.

 l Quick Scans and Micro Focus Fortify Software Security Center Server—To avoid overwriting
the results of a full scan, by default Fortify Software Security Center does not accept FPR files
scanned using Quick Scan. However, you can configure Fortify Software Security Center so that
FPR files scanned with Quick Scan are not blocked for an application version. For more information,
see the Micro Focus Fortify Software Security Center User Guide.

Limiting Analyzers and Languages
Occasionally, you might find that a significant amount of the scan time is spent either running one
particular analyzer or analyzing a particular language. It is possible that this particular analyzer or
language is not important to your security requirements. You can limit the specific analyzers that run
and the specific languages that Fortify Static Code Analyzer translates.

Performance Guide
Chapter 3: Scan Quality and Performance

Micro Focus Fortify Static Code Analyzer (18.20) Page 17 of 29

Disabling Analyzers

To disable specific analyzers, include the -analyzers option to Fortify Static Code Analyzer at scan
time with a colon- or comma-separated list of analyzers you want to enable. The full list of analyzers is:
buffer, content, configuration, controlflow, dataflow, findbugs, nullptr, semantic, and
structural.

For example, to run a scan that only includes the Dataflow, Control Flow, and Buffer analyzers, use the
following scan command:

sourceanalyzer -b <build_id> -analyzers dataflow:controlflow:buffer -scan
-f myResults.fpr

You can also do the same thing by setting com.fortify.sca.DefaultAnalyzers in the Fortify
Static Code Analyzer property file <sca_install_dir>/Core/config/fortify-
sca.properties. For example, to achieve the equivalent of the previous scan command, set the
following in the properties file:

com.fortify.sca.DefaultAnalyzers=dataflow:controlflow:buffer

Disabling Languages

To disable specific languages, include the -disable-language option in the translation phase, which
specifies a list of languages that you want to exclude. The full list of valid language parameters is:

abap, actionscript, apex, cfml, cpp, cobol, configuration, dotnet, java,
javascript, jsp, objc, php, plsql, python, ruby, scala, sql, swift, tsql,
typescript, vb

For example, to perform a translation that excludes SQL and PHP files, use the following command:

sourceanalyzer -b <build_id> <src_files> -disable-language sql:php

You can also disable languages by setting the com.fortify.sca.DISabledLanguages property in
the Fortify Static Code Analyzer properties file <sca_install_
dir>/Core/config/fortify-sca.properties. For example, to achieve the equivalent of the
previous translation command, set the following in the properties file:

com.fortify.sca.DISabledLanguages=sql:php

Scanning Complex Functions
During a Fortify Static Code Analyzer scan, the Dataflow Analyzer might encounter a function for
which it cannot complete the analysis and reports the following message:

Performance Guide
Chapter 3: Scan Quality and Performance

Micro Focus Fortify Static Code Analyzer (18.20) Page 18 of 29

Function <name> is too complex for <analyzer> analysis and will be skipped
(<identifier>)

where:

 l <name> is the name of the source code function

 l <analyzer> is the name of the analyzer

 l <identifier> is the type of complexity, which is one of the following:

 l l: Too many distinct locations

 l m: Out of memory

 l s: Stack size too small

 l t: Analysis taking too much time

The depth of analysis Fortify Static Code Analyzer performs sometimes depends on the available
resources. Fortify Static Code Analyzer uses a complexity metric to tradeoff these resources against the
number of vulnerabilities that it can find. Sometimes, this means giving up on a particular function when
Fortify Static Code Analyzer does not have enough resources available. This is normally when you see
the "Function too complex" messages.

When you see this message, it does not necessarily mean that Fortify Static Code Analyzer completely
ignored the function in the program. For example, the Dataflow Analyzer typically visits a function
many times before completing the analysis, and might not have run into this complexity limit in the
previous visits. In this case, the results include anything learned from the previous visits.

You can control the "give up" point using Fortify Static Code Analyzer properties called limiters.
Different analyzers have different limiters.

The following sections provide a discussion of a resolution for this issue.

Dataflow Analyzer Limiters

There are three types of complexity identifiers for the Dataflow Analyzer:

 l l: Too many distinct locations

 l m: Out of memory

 l s: Stack size too small

To resolve the issue identified by s, increase the stack size for by setting -Xss to a value greater than
16 MB.

To resolve the complexity identifier of m, increase the physical memory for Fortify Static Code Analyzer.

Performance Guide
Chapter 3: Scan Quality and Performance

Micro Focus Fortify Static Code Analyzer (18.20) Page 19 of 29

To resolve the complexity identifier of l, you can adjust the following limiters in the Fortify Static Code
Analyzer property file <sca_install_dir>/Core/config/fortify-sca.properties or on the
command line.

Property Name Default Value

com.fortify.sca.
limiters.MaxTaintDefForVar

1000

com.fortify.sca.
limiters.MaxTaintDefForVarAbort

4000

com.fortify.sca.
limiters.MaxFieldDepth

4

The MaxTaintDefForVar limiter is a dimensionless value expressing the complexity of a function,
while MaxTaintDefForVarAbort is the upper bound for it. Use the MaxFieldDepth limiter to
measure the precision when the Dataflow Analyzer analyzes any given object. Fortify Static Code
Analyzer always tries to analyze objects at the highest precision possible.

If a given function exceeds the MaxTaintDefForVar limit at a given level of precision, the Dataflow
Analyzer analyzes that function with a lower level of precision (by reducing the MaxFieldDepth
limiter). When you reduce the precision, it reduces the complexity of the analysis. When the precision
cannot be reduced any further, Fortify Static Code Analyzer then proceeds with analysis at the lowest
precision level until either it finishes or the complexity exceeds the MaxTaintDefForVarAbort limiter.
In other words, Fortify Static Code Analyzer tries harder at the lowest precision level than at higher
precision levels, to get at least some results from the function. If Fortify Static Code Analyzer reaches
the MaxTaintDefForVarAbort limiter, it gives up on the function entirely and you get the "Function
too complex" warning.

Control Flow and Null Pointer Analyzer Limiters

There are two types of complexity identifiers for both Control Flow and Null Pointer analyzers:

 l m: Out of memory

 l t: Analysis taking too much time
Due to the way that the Dataflow Analyzer handles function complexity, it does not take an indefinite
amount of time. Control Flow and Null Pointer analyzers, however, can take a very long time when
analyzing very complex functions. Therefore, Fortify Static Code Analyzer provides a way to abort the
analysis when this happens, and then you get the "Function too complex" message with a complexity
identifier of t.

Performance Guide
Chapter 3: Scan Quality and Performance

Micro Focus Fortify Static Code Analyzer (18.20) Page 20 of 29

To change the maximum amount of time these analyzers spend analyzing functions, you can adjust the
following property values in the Fortify Static Code Analyzer property file <sca_install_
dir>/Core/config/fortify-sca.properties or on the command line.

Property Name Description
Default
Value

com.fortify.sca.
CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for Control Flow
analysis on a single function.

600000
(10 minutes)

com.fortify.sca.
NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for Null Pointer
analysis on a single function.

300000
(5 minutes)

To resolve the complexity identifier of m, increase the physical memory for Fortify Static Code Analyzer.

Note: If you increase these limiters or time settings, it makes the analysis of complex functions take
longer. It is difficult to characterize the exact performance implications of a particular value for the
limiters/time, because it depends on the specific function in question. If you never want see the
"Function too complex" warning, you can set the limiters/time to an extremely high value, however it
can cause unacceptable scan time.

Performance Guide
Chapter 3: Scan Quality and Performance

Micro Focus Fortify Static Code Analyzer (18.20) Page 21 of 29

Chapter 4: Optimizing FPR Files
This chapter describes how to handle performance issues related to the audit results (FPR) file. This
includes reducing the scan time, reducing FPR file size, and tips for opening large FPR files.

This section contains the following topics:

Filters 22

Excluding Source Code from the FPR 23

Reducing the FPR File Size 24

Opening Large FPR Files 25

Filters
Filters are usually included in the issue template and determine how the results from Fortify Static Code
Analyzer are shown. For example, you can have a filter to put any detected SQL Injection issues into a
separate folder called SQL Injections, or you might have a filter that hides issues with a confidence
below a certain threshold. In addition to filters, filter sets enable you to have a selection of filters used at
any one time. This enables you to customize views so that you can define a different view for
developers, auditors, and managers. This makes it easy for each group to see the most important or
relevant information for them.

Each FPR has an issue template associated with it, and in Micro Focus Fortify Software Security Center
these are specified on an application version basis. For further information about issue templates and
customizing them, see the Micro Focus Fortify Audit Workbench User Guide.

Filter Files

Filter files are flat files that you can specify along with a scan using -filter option. Use a filter file to
blacklist specified categories, instance IDs, and rule IDs. If you determine that a certain category of
issues or rules are not relevant for a particular scan, you can stop Fortify Static Code Analyzer from
flagging these types of issues and adding them to FPR. You can use a filter file to reduce both the scan
time and the size of the results file.

For example, if you are scanning a simple program that just reads a specified file, you might not want to
see path manipulation issues, since these are likely planned as part of the functionality. To do filter out
path manipulation issues, a file that contains a single line:

Path Manipulation

Save this file as filter.txt. Use the -filter option for the scan as shown in the following example:

sourceanalyzer -b <build_id> -scan -f myResults.fpr -filter filter.txt

The myResults.fpr does not include any issues with the category Path Manipulation.

For more information about filter files, see the Micro Focus Fortify Static Code Analyzer User Guide.

Micro Focus Fortify Static Code Analyzer (18.20) Page 22 of 29

Scan-Time Filters

An alternate way to filter at scan-time is to use filter sets to reduce the number of issues based on
conditions you specify with filters in an issue template. A scan-time filter can dramatically reduce the size
of an FPR.

To do this, use Micro Focus Fortify Audit Workbench to create a filter and a filter set and then run the
Fortify Static Code Analyzer scan with the filter set. For more detailed instructions about how to create
filters and filter sets in Audit Workbench, see the Micro Focus Fortify Audit Workbench User Guide. The
following example describes the basic steps for how to create and use a scan-time filter:

 1. In this example, suppose you use OWASP Top 10 2017 and you only want to see issues
categorized within this standard. Create a filter in Audit Workbench such as:

If [OWASP Top 10 2017] does not contain A Then hide issue

This filter looks through the issues and if an issue does not map to an OWASP Top 10 2017
category with ‘A’ in the name, then it hides it. Because all OWASP Top 10 2017 categories start
with ‘A’ (A1, A2, …, A10), then any category without the letter ‘A’ is not in the OWASP Top 10
2017. The filter hides the issues from view in Audit Workbench, but they are still in the FPR.

 2. In Audit Workbench, create a new filter set called OWASP_Filter_Set that contains the previous
filter, and then export the issue template to a file called IssueTemplate.xml.

 3. You can then specify this filter at scan-time with the following command:

sourceanalyzer -b <build_id> -scan -f myScanTimeFilterResults.fpr
 -project-template IssueTemplate.xml -Dcom.fortify.sca.FilterSet=OWASP_
Filter_set

In the previous example, the inclusion of the -Dcom.fortify.sca.FilterSet property tells Fortify
Static Code Analyzer to use the OWASP_Filter_Set filter set from the issue template
IssueTemplate.xml. Any filters that hide issues from view are removed and are not written to the
FPR. Therefore, you can reduce the visible number of issues, make the scan very targeted, and reduce
the size of the resulting FPR file.

Note: Although scan-time filters can reduce the size of the FPR, they do not usually reduce the
scan time. Fortify Static Code Analyzer examines scan-time filters after it calculates the issues to
determine whether or not to write them to the FPR file. The filters in a filter file determine the rule
types that Fortify Static Code Analyzer loads.

Excluding Source Code from the FPR
You can reduce the scan time and the size of the FPR file by excluding the source code information
from the FPR. This is especially valuable for large source files or codebases. You do not generally get a
scan time reduction for small source files.

Performance Guide
Chapter 4: Optimizing FPR Files

Micro Focus Fortify Static Code Analyzer (18.20) Page 23 of 29

There are two ways to prevent Fortify Static Code Analyzer from including source code in the FPR. You
can set the property in the <sca_install_dir>/Core/config/fortify-sca.properties file or
specify an option on the command line. The following table describes these settings.

Property Name Description

com.fortify.sca.
FPRDisableSourceBundling=true

Command-line Option:
-disable-source-bundling

This excludes source code from the FPR.

com.fortify.sca.
FVDLDisableSnippets=true

Command-line Option:
–fvdl-no-snippets

This excludes code snippets from the FPR.

The following command-line example uses both options:

sourceanalyzer -b <build_id> -disable-source-bundling
 -fvdl-no-snippets -scan -f mySourcelessResults.fpr

Reducing the FPR File Size
There are a few ways to reduce the size of FPR files. The quickest way to do this without affecting
results is to exclude the source code from the FPR as described in "Excluding Source Code from the
FPR" on the previous page.

There are a few other options and properties that you can use to select what is excluded from the FPR.
You can set these properties in the Fortify Static Code Analyzer properties file: <sca_install_
dir>/Core/config/fortify-sca.properties or specify them during the scan phase with
-D<property_name>=true. Most of these options have an equivalent command-line option.

Property Name Description

com.fortify.sca.
FPRDisableMetatable
=true

Command-line Option:
-disable-metatable

This disables the metatable inside the FPR. Micro
Focus Fortify Audit Workbench uses the metatable to
map information in Functions view.

com.fortify.sca.
FVDLDisableDescriptions
=true

Command-line Option:
-fvdl-no-description

This excludes descriptions from the FPR. If you do
not use custom descriptions, the descriptions in the
Fortify Taxonomy (https://vulncat.fortify.com) are
used.

Performance Guide
Chapter 4: Optimizing FPR Files

Micro Focus Fortify Static Code Analyzer (18.20) Page 24 of 29

https://vulncat.fortify.com/

Property Name Description

com.fortify.sca.
FVDLDisableEngineData
=true

Command-line Option:
-fvdl-no-enginedata

This excludes engine data from the FPR. This is
useful if your FPR contains a large number of
warnings when you open the file in Audit Workbench.
The caveat of this option is that you need to merge
the FPR with the current audit project locally before
you upload it to Micro Focus Fortify Software
Security Center. Because the FPR does not contain
the Fortify Static Code Analyzer version, Fortify
Software Security Center is unable to merge it on the
server.

com.fortify.sca.
FVDLDisableProgramData
=true

Command-line Option:
-fvdl-no-progdata

This excludes the program data section from the
FPR. This removes the Taint Sources information
from the Functions view in Audit Workbench. This
property typically only has a minimal effect on the
overall size of the FPR file.

Opening Large FPR Files
To reduce the time required to open a large FPR file, there are some properties that you can set in the
<sca_install_dir>/Core/config/fortify.properties configuration file. For more
information about these properties, see the Micro Focus Fortify Static Code Analyzer Tools Properties
Reference Guide. The following table describes these properties.

Property Name Description

com.fortify.
model.DisableProgramInfo=true

This disables use of the code navigation
features in Micro Focus Fortify Audit
Workbench.

com.fortify.
model.IssueCutOffStartIndex
=<num> (inclusive)

com.fortify.
model.IssueCutOffEndIndex
=<num> (exclusive)

The IssueCutOffStartIndex property is
inclusive and IssueCutOffEndIndex is
exclusive so that you can specify a subset of
issues you want to see. For example, to see the
first 100 issues, specify the following:

com.fortify.model.
 IssueCutOffStartIndex=0

com.fortify.model.
 IssueCutOffEndIndex=101

Because the IssueCutOffStartIndex is 0 by
default, you do not need to specify this
property.

Performance Guide
Chapter 4: Optimizing FPR Files

Micro Focus Fortify Static Code Analyzer (18.20) Page 25 of 29

Property Name Description

com.fortify.
model.IssueCutOffByCategoryStartIndex=
<num> (inclusive)

com.fortify.
model.IssueCutOffByCategoryEndIndex=
<num> (exclusive)

These two properties are similar to the previous
cutoff properties except these are specified for
each category. For example, to see the first five
issues for every category, specify the following:

com.fortify.model.
 IssueCutOffByCategoryEndIndex=6

com.fortify.
model.MinimalLoad=true

This minimizes the data loaded in the FPR. This
also restricts usage of the Functions view and
might prevent Audit Workbench from loading
the source from the FPR.

com.fortify.
model.MaxEngineErrorCount=
<num>

This property specifies the number of Fortify
Static Code Analyzer reported warnings that
are loaded with the FPR. For projects with a
large number of scan warnings, this can reduce
both load time in Audit Workbench and the
amount of memory required to open the FPR.

com.fortify.
model.ExecMemorySetting

Specifies the JVM heap memory size for Audit
Workbench to launch external utilities such as
iidmigrator and fortifyupdate.

Performance Guide
Chapter 4: Optimizing FPR Files

Micro Focus Fortify Static Code Analyzer (18.20) Page 26 of 29

Chapter 5: Monitoring Long Running Scans
When you run Fortify Static Code Analyzer, large and complex scans can often take a long time to
complete. During the scan it is not always clear what is happening. While Fortify recommends that you
provide your debug logs to the Micro Focus Fortify Customer Support team, there are a couple of ways
to see what Fortify Static Code Analyzer is doing and how it is performing in real-time.

This section contains the following topics:

Using the SCAState Utility 27

Using JMX Tools 27

Using the SCAState Utility
The SCAState command-line utility enables you to see up-to-date state analysis information during the
analysis phase. The SCAState utility is located in the <sca_install_dir>/bin directory. In addition
to a live view of the analysis, it also provides a set of timers and counters that show where Fortify Static
Code Analyzer spends its time during the scan. For more information about how to use the SCAState
utility, see the Micro Focus Fortify Static Code Analyzer User Guide.

Using JMX Tools
You can use tools to monitor Fortify Static Code Analyzer with JMX technology. These tools can
provide a way to track Fortify Static Code Analyzer performance over time. For more information about
these tools, see the full Oracle documentation available at: http://docs.oracle.com.

Note: These are third-party tools and Micro Focus does not provide or support them.

Using JConsole

JConsole is an interactive monitoring tool that complies with the JMX specification. The disadvantage of
JConsole is that you cannot save the output.

To use JConsole, you must first set some additional JVM parameters. Set the following environment
variable:

export SCA_VM_OPTS="-Dcom.sun.management.jmxremote
 -Dcom.sun.management.jmxremote.port=9090
 -Dcom.sun.management.jmxremote.ssl=false
 -Dcom.sun.management.jmxremote.authenticate=false"

Micro Focus Fortify Static Code Analyzer (18.20) Page 27 of 29

http://docs.oracle.com/

After the JMX parameters are set, start a Fortify Static Code Analyzer scan. During the scan, start
JConsole to monitor Fortify Static Code Analyzer locally or remotely with the following command:

jconsole <host_name>:9090

Using Java VisualVM

Java VisualVM offers the same capabilities as JConsole. It also provides more detailed information on
the JVM and enables you to save the monitor information to an application snapshot file. You can store
these files and open them later with Java VisualVM.

Similar to JConsole, before you can use Java VisualVM, you must set the same JVM parameters
described in "Using JConsole" on the previous page.

After the JVM parameters are set, start the scan. You can then start Java VisualVM to monitor the scan
either locally or remotely with the following command:

jvisualvm <host_name>:9090

Performance Guide
Chapter 5: Monitoring Long Running Scans

Micro Focus Fortify Static Code Analyzer (18.20) Page 28 of 29

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this computer, click the link above and an email window opens with the
following information in the subject line:

Feedback on Performance Guide (Fortify Static Code Analyzer 18.20)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to FortifyDocTeam@microfocus.com.

We appreciate your feedback!

Micro Focus Fortify Static Code Analyzer (18.20) Page 29 of 29

mailto:FortifyDocTeam@microfocus.com?subject=Feedback on Fortify Static Code Analyzer Performance Guide (18.20)

	Title Page
	Contents
	Preface
	Contacting Micro Focus Fortify Customer Support
	For More Information
	About the Documentation Set

	Change Log
	Chapter 1: Introduction
	Hardware Recommendations
	Sample Scans
	Related Documents
	All Products
	Micro Focus Fortify Software Security Center
	Micro Focus Fortify Static Code Analyzer

	Chapter 2: Performance Improvement Tips
	Hardware Considerations
	Tuning Options
	Mobile Build Sessions
	Memory Tuning
	Java Heap Exhaustion
	Native Heap Exhaustion
	Stack Overflow

	Chapter 3: Scan Quality and Performance
	Breaking Down Codebases
	Quick Scan
	Limiters
	Using Quick Scan and Full Scan

	Limiting Analyzers and Languages
	Disabling Analyzers
	Disabling Languages

	Scanning Complex Functions
	Dataflow Analyzer Limiters
	Control Flow and Null Pointer Analyzer Limiters

	Chapter 4: Optimizing FPR Files
	Filters
	Filter Files
	Scan‑Time Filters

	Excluding Source Code from the FPR
	Reducing the FPR File Size
	Opening Large FPR Files

	Chapter 5: Monitoring Long Running Scans
	Using the SCAState Utility
	Using JMX Tools
	Using JConsole
	Using Java VisualVM

	Send Documentation Feedback

