
$VVHW&HQWHU70

9HUVLRQ����

:HE.LW�8VHU�*XLGH
April 22, 1999

ITEM00449

� Copyright Peregrine Systems, Inc., 1999. All Rights Reserved.

Sybase SQL Anywhere Runtime: � Copyright Sybase, Inc. 1992-1995; Portions � Copyright
Rational Systems, Inc. 1992-1994.

Information contained in this document is proprietary to Peregrine Systems, Inc., and may be
used or disclosed only with written permission from Peregrine Systems. This manual, or any part
thereof, may not be reproduced without the prior written permission of Peregrine Systems, Inc.

This document refers to numerous products by their trade names. In most, if not all cases, these
designations are claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems, ServiceCenter, AssetCenter and Remote Management are registered
trademarks of Peregrine Systems, Inc.

The software described in this manual is supplied under license or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement.

Peregrine Systems reserves the right to modify the information contained in this document
without notice.

The software is subject to modification and it is possible that the supplied documentation is not
fully coherent with the version that you have. These modifications do not compromise proper
understanding of the software. For further information on the most recent modifications, please
refer to the "readme.txt" file.

The names of companies and individuals used in the sample database and in examples in the
manuals are fictitious and are intended to illustrate the use of the software. Any resemblance to
actual companies or individuals, whether past or present, is purely coincidental.

AssetCenter data integrity
AssetCenter is extremely rich in functionality. This richness relies on a complex database
structure: The database contains a large number of tables, fields, links and indexes; certain
intermediary tables are not displayed by the graphical interface; certain links, fields and indexes
are automatically created, deleted or modified by the software.

Only the interfaces designed for AssetCenter (graphical interface, APIs, import program, WEB
interface and gateways) are capable of modifying the database with respect to its integrity. You
must never modify the structure and/or the contents of the database by any means
other than those intended for use with the software; such modifications are highly likely to
corrupt the database and bring about symptoms such as involuntary loss or modification of data or
links, creation of "ghost" links or records, serious error messages, etc. Alterations to the database
resulting from manipulations of this type void the guarantee and technical support provided by
Peregrine Systems.

Environments supported by AssetCenter
The list of environments supported by AssetCenter can be found in the manual entitled
"Installation and Upgrade Guide". Using AssetCenter in environments other than those for which
it is intended is done at the risk of the owner. Alterations made to the database resulting from
using AssetCenter in environments other than those for which it is intended void the guarantee
and technical support provided by Peregrine Systems.

Foreword F-1

Foreword

This manual provides detailed explanations on the use of AssetCenter
WebKit.

AssetCenter WebKit is designed for enterprises who are implementing
AssetCenter Web and want to customize the user pages displayed, either
by modifying existing pages or by creating new ones.

Certain skills are required to use AssetCenter WebKit:
• an understanding of Web mechanisms and architecture,
• knowledge of HTML and a web page design tool,
• BASIC programming experience to create new pages,
• knowledge of the structure of the AssetCenter database.

This document will not allow users with no knowledge of these areas to
use AssetCenter WebKit.

This documentation is a complement to the "AssetCenter Web User's
Guide". It may itself be complemented by the "AssetCenter:
Programmer's Reference" manual.

The BASIC used in AssetCenter Web is a sub-set of BASIC developed by
CypressInc. and is similar to "Visual Basic for ApplicationsTM". Only
certain functions of "Visual Basic for ApplicationsTM" are supported.

F-2 AssetCenter WebKit 3.0 – User's Guide

Contact Peregrine Systems

World Headquarters
Peregrine Systems, Inc.
3611 Valley Centre Drive
San Diego, CA 92130
USA
Tel: +1 619 481 5000 or 800 638 5231
Fax: +1 619 481 1751
Web: http://www.peregrine.com

Customer support:
Tel: +1 619 794 7402 or 800 960 9998
Fax: +1 619 794 6028
Web: http://support.peregrine.com
E-mail: support@peregrine.com
Open Monday to Friday 5:00 AM to 5:30 PM (PST)

France
Peregrine Systems
Tour Franklin - La Défense 8
92042 Paris - La Défense Cedex
France
Tel: +33 (0)1 47 73 11 11
Fax: +33 (0)1 47 73 11 12

Customer support:
Tel: +33 (0) 800 505 100
Fax: +33 (0)1 47 73 11 61
E-mail: frsupport@peregrine.fr
Open Monday to Friday 8:00 AM to 6:00 PM (local time)

Germany
Peregrine Systems GmbH
Bürohaus ATRICOM
Lyoner Strasse 15

Foreword F-3

60528 Frankfurt
Germany
Tel: +49 (0)69 66 80 260
Fax: +49 (0)69 66 80 2626

Customer support:
Tel: +49 (0)69 66 80 260
Fax: +49 (0)69 66 80 2626
E-mail: psc@peregrine.de
Open Monday to Friday 8:00 AM to 5:00 PM (local time)

United Kingdom
Peregrine Systems, Ltd.
Ambassador House
Paradise Road
Richmond
Surrey TW9 1SQ
UK
Tel: +44 (0)181 332 9666
Fax: +44 (0)181 332 9533

Technical Support E-mail: uksupport@peregrine.com

Customer support:
Tel: +44 (0)181 334 5890
E-mail: uksupport@peregrine.com
Open Monday to Friday 8:00 AM to 6:00 PM (local time)

Denmark
Peregrine Systems AS
Naverland 2, 12th fl.
2600 Glostrup
Denmark
Tel: +45 4346 7676
Fax: +45 4346 7677

Customer support:
Tel: +45 7731 7776
Fax: +45 4346 7677
E-mail: nordic@peregrine.com
Open Monday to Friday 8:30 AM to 4:00 PM (local time)

F-4 AssetCenter WebKit 3.0 – User's Guide

The Netherlands, Belgium and Luxembourg
Peregrine Systems BV
Botnische Golf 9a
Postbus 244
3440 AE Woerden
The Netherlands
Tel: +31 348 43 7070
Fax: +31 348 43 7080

Customer support:
Tel: 0800 0230 889 (The Netherlands only)
Fax: +31 348 43 7080
E-mail: benelux.support@peregrine.com
Open Monday to Friday 8:00 AM to 6:00 PM (local time)

Singapore
Peregrine Systems Pte.Ltd
#03-16
CINTECH III
77 Science Park Drive
Singapore Science Park
118256
Singapore
Tel: +65 778 5505
Fax: +65 777 3033

Italy
Peregrine Systems, S.r.l.
Via Monte di Pietà, 21
I-20121 Milano
Italy
Tel: +39 (02) 86 33 72 30
Fax: +39 (02) 86 33 77 20

Customer support:
Tel: +39 (02) 86337230
Fax: +39 (02) 86337400

Foreword F-5

Sweden
Peregrine Systems AB
Frösundaviks Allé 15, 4th floor
S-169 70 Solna
Sweden
Tel: +46 8 655 36 04
Fax: +46 8 655 26 10

Customer support:
Tel: +45 7731 7776
Fax: +45 4346 7677
E-mail: nordic@peregrine.com
Open Monday to Friday 8:30 AM to 4:30 PM (local time)

Japan
Peregrine Systems K.K.
Level 32, Shinjuku Nomura Building
1-26-2 Nishi-shinjuku, Shinjuku-ku
Tokyo 163-0532
Japan

Tel: +81 (3) 5322-1350
Fax: +81 (3) 5322-1352

Asia and Pacific
Customer support (based in USA):
Tel: +1 619 794 7402 or 800 960 9998
Fax: +1 619 794 6028
E-mail: apsupport@peregrine.com
Open Monday to Friday 5:00 AM to 5:30 PM (PST)

F-6 AssetCenter WebKit 3.0 – User's Guide

Conventions
The following notation is used for commands:

[] Square brackets denote an optional parameter. Do not type them in
your command.

Exception: In BASIC scripts, square brackets are used to denote the
data access path and must be included in the script:
[Link.Link.Field]

< > Brackets denote a parameter in plain language. Do not type them.
Substitute the text with the appropriate information.

{ } Curly brackets denote a series of parameters. Only one of these
parameters may be used. Do not type these curly brackets in your
command.

| A pipe is used to separate a series of parameters contained within
curly brackets.

* An asterisk added to the right of square brackets means that the
formula shown can be repeated several times.

The following text formats have given meanings:

Fixed width characters DOS command.

Example Example of code or command.

... Code or command omitted.

"Object name" The names of fields, tabs, menus and files
are shown within double quotes.

Note Important note.

Send us your comments
We want to deliver the most accurate documentation possible.

Any comments would be greatly appreciated.

Send any remarks to documentation@peregrine.com.

Table of contents T-1

Table of contents

Chapter 1 - Overview 1
Web technologies 1
Web architecture 1
Limitations of Web systems 4
AssetCenter Web 4

Chapter 2 - Programming 9
Template structure 9
Variable-space 11
Script language 16
HTML forms 18
Page composition 19
Links 20
Debugging 21

Chapter 3 – Sample templates 23
Login 23
Displaying variables 24
Simple reading of records 25
Navigation 26
Form processing 27
Data entry forms with choices 28
Creating records 29
Updating records 29
Error handling 29

Chapter 4 – Advanced configuration 31
Manual server startup 31
Server configuration 31
Generic login 32
Template Batch Processing 32

Chapter 1 - Overview 1

Chapter 1 - Overview

Web technologies
The Web consists of a collection of software, protocols and standards.
Hypertext links make it easy to navigate through the Web and access all
kinds of documents.

AssetCenter Web allows any user in the enterprise with a web browser to
access the data managed in AssetCenter.

Web architecture

Client/Server structure
The Web is built around a client/server architecture:

• Clients use an Internet browser such as Microsoft Internet
Explorer or Netscape Navigator to send requests for documents to
the web server.

• The server provides HTML documents, which are generally static
documents stored on the server. They may refer to other
documents. This structure allows users to access documents of
interest by simply clicking on the appropriate links.

AssetCenter WebKit 3.0 – User’s Guide2

WEB

SERVER

HTML
Documents

Client 2
Internet Browser 2

Client 1
Internet Browser 1

Typical Web architecture

Standards
Two standards are at the basis of the Web:

• HTTP ("HyperText Transport Protocol"), for data transport.
• HTML ("HyperText Markup Language"), for document

presentation.

HTTP
This is the transport layer protocol of the Web.

HTTP is a text protocol that defines a list of commands for requesting
documents from or submitting documents to a Web server. The browser
handles this protocol transparently for the user.

Note: AssetCenter Web is compatible with version 1.0 of the HTTP
protocol.

HTML
This is a presentation standard for hypertext documents. It specifies a set
of keywords for structuring a document.

HTML documents are text documents containing information and
presentation instructions. These instructions define:

• styles,

Chapter 1 - Overview 3

• links,
• forms,
• images,
• etc.

The presentation instructions are defined by markers, called “tags”. Tags
are generally used in pairs (an opening tag and a closing tag). They
delimit the area to which the presentation is applied.

The browser renders the HTML text on the screen.

Note: AssetCenter Web generates HTML text compatible with version
3.2.

Example of a simple HTML text:

<TITLE> A title </TITLE>
<H1> A level 1 chapter </H1>
 Italic text

 Click here to go to Peregrine
products

Here is the resulting page:

Warning: An exhaustive list of all HTML tags is beyond the scope of this
document. For further information on HTML, we suggest you refer to the
extensive reference materials available on this subject. You can also visit
The web site of the W3 consortium at "www.w3.org".

AssetCenter WebKit 3.0 – User’s Guide4

Limitations of Web systems
In traditional Web systems:

• Web users are anonymous.
• Web servers do not maintain status information. They cannot

retain historical records.
• Only “static” data is sent. The data is contained in HTML

documents stored in a folder on the server.
For the AssetCenter application, however:

• Users must be identified.
• Session information must be stored so that users can work in a

specific context defined by their user profile.
• Data must reflect the state of the AssetCenter database in real

time.

AssetCenter Web

Objectives
AssetCenter Web was designed to:

• Access the AssetCenter database over a network, using an ordinary
Web browser.

• Execute simple read and write operations on data in the
AssetCenter database in real time.

• Allow for Web page customization. Users can design their own
pages or modify existing ones using a simple text editor or an
HTML editor.

Technological choices
• AssetCenter Web provides an alternative interface to access the

AssetCenter database. The methods used are identical to those in
the standard AssetCenter user interface, in particular concerning
integrity and security checks.
Data manipulation follows the same security and integrity rules.

Chapter 1 - Overview 5

• Users are identified by their “Login”. Logins are identical to those
used in the AssetCenter database (SQL name of the table:
"amEmplDept", SQL name of the field: "UserLogin"). After logging
in, users are associated with their dedicated resources so they can
work in a private session, independently of other users. This
mechanism provides access control to the AssetCenter database.

• To enable the creation of dynamic documents, AssetCenter Web
uses a technique called "Server Side Scripting": all data processing
operations are performed on the server. Only the resulting HTML
pages are sent to the client. No processing is performed on the
client workstation, except for HTML text rendering. This has
several advantages: no special browser is required, information is
compact and quickly displayed.

System structure
AssetCenter Web is provided as a Web server (HTTP) or an ISAPI
module, and a set of documents called “templates” which define the pages
accessible to users.

AssetCenter

Database

AssetCenter
Web

Templates

WAN Workstation

LAN Workstation
(Intranet)

WEB Queries
(HTTP)

Database

queries

Overview of AssetCenter Web

Templates
Templates are basic documents on the AssetCenter Web server.

These documents comply with the HTML 3.2 standard.

AssetCenter WebKit 3.0 – User’s Guide6

They contain:
• Script sections: These are BASIC programs, which for example can

collect data from the AssetCenter database.
• HTML text. It may be created by a Web page design tool, provided

that the tool can preserve the script sections.
In the HTML sections, you can use a special notation to recover the value
of variables. This notation has the following format: $$(variable name).

Template processing
When a user requests the system to display an AssetCenter Web page,
the server accesses the corresponding template and processes it.

The template is analyzed sequentially: script sections are executed by a
BASIC engine, and HTML sections are sent to the client after the system
filters variables marked with the $$ characters.

Script sections are used to access the AssetCenter database and to
perform operations on data. In general, script sections instantiate
variables.

HTML sections define how the values of those variables will be presented
on the user’s screen, and how user pages will be presented in general.
Before sending a line of HTML text to the client browser, AssetCenter
Web replaces all the occurrences of $$(variable name) with the value of
the variables.

User sessions
An AssetCenter Web user’s first operation is to log on to the database by
providing a “Login” and a valid password.

If the login is successful, AssetCenter Web assigns a session key to the
user. This key is contained in all the links in the user’s environment. It is
used to control all the documents accessed.

Templates allow users to obtain the information which their AssetCenter
profiles authorize them to access. Thus, users can view the list of
purchase requests if they are allowed to view the records in the table of
purchase requests.

Chapter 1 - Overview 7

NT service or ISAPI module
AssetCenter Web is available:

• As a Windows NT service. In this case, AssetCenter Web is a stand-
alone server.
This format is designed for enterprises needing a standard product
requiring neither custom development nor set up. It is also suitable
for enterprises with no other Web servers.

• As an ISAPI ("Internet Server Application Programming Interface")
module: ISAPI technology makes it possible to integrate the
AssetCenter Web server in Microsoft servers or ISAPI-compatible
servers (Apache, etc.). In this case the AssetCenter Web server runs
within an existing server.
This form is particularly well suited for enterprises wishing to
benefit from the advantages of ISAPI servers: Security, user
authentication, real-time document encoding, additional tools, etc.
This technology also allows users to run a single Web server.

Chapter 2 - Programming 9

Chapter 2 - Programming

Template structure
Templates comply with the HTML 3.2 standard. They consist of:

• BASIC script sections,
• pure HTML text.

Script sections
Script sections are delimited by the following tags:

<SCRIPT LANGUAGE="AmScript1.0">
…
</SCRIPT>

They are executed by the BASIC engine built into the AssetCenter Web
server whenever a document is requested.

These sections contain all the code required to recover information in the
database: Database queries, reading or writing records, etc. They also
declare variables.

If the script writes to the standard output ("print"), data sent appears in
the resulting HTML document. This makes it possible to dynamically
build HTML from a script section.

AssetCenter WebKit 3.0 – User’s Guide10

Example of a simple script
The following example contains a simple script to logs in to the
AssetCenter database:

<script language="Amscript1.0">
if AmwCurrentCnx() = 0 then

iRc = AmwLogin(DbName, User, Password)
if AmwCurrentCnx() <> 0 then

print "Login OK"
else

print "Login failed"
end if

end if
</script>

The program checks that no other logins are active ("AmwCurrentCnx() =
0"), then attempts to log in to the database.

The "DbName", "User", and "Password" variables must be instantiated
with values representing a valid login profile. For example, these values
may come from a login form where the user selects a database name, then
enters a “Login” and password.

Note: The page following the identification request (entering the “Login”
and password) must set up a valid connection to an AssetCenter
database. Otherwise, the user session is rejected and the user is returned
to the home page. When the login is completed, the user can continue the
session and access the AssetCenter data.

Suggestions
You can create as many script sections as you like, and place them
anywhere in the template.

It is preferable to use a single script section, however, and to put it at the
start of the document, for performance and code legibility reasons.

If you are using an HTML editor, place the script section outside the body
of the HTML document in order to avoid interpretation problems.

HTML
Templates are processed line by line, from top to bottom. Script sections
are isolated and executed in a BASIC engine. HTML sections are sent
line by line, after replacing variables by the values available at the time
of processing.

Chapter 2 - Programming 11

Variables are identified by a special notation: $$(variable name). In
general, values are set by the script section located at the start of the
document.

Users receive the resulting HTML document. This document is
compatible with the HTML 3.2 standard.

Sample template:

<script language="Amscript1.0">
iRc = AmwFetchQuery("select Name from amEmplDept",0,2)

</script>

Employee: $$(name0)
Employee: $$(name1)

This example demonstrates the use of two variables containing the names
of the first two employees in the employees and departments table. The
rest of this manual describes the use of the script language in greater
detail.

Variable-space

Principles
Each template includes a variable-space.

The variable-space is a storage area where you can store values identified
by a name.

There are two types of variables with different scopes:
• Variables whose scope covers the entire session.
• Variables whose scope is limited to the template.

Session variables
These are global variables for the user session.

The information they contain is accessible throughout the session. They
are visible to all templates.

Session variables may be used for example to store information
concerning the user, security information, etc.

AssetCenter WebKit 3.0 – User’s Guide12

As with programming, it is best to limit the amount of global information.
We recommend against defining too many session variables.

Template variables
These are local variables that are valid while processing the template
only. These variables are instantiated in the script sections.

For example, a script section can execute queries on the AssetCenter
database and obtain the results in the form of a list of indexed variables.
This method is used to build tables presenting data extracted from an
AssetCenter database table.

The following example extracts the first five employees from the
employees and departments table, in alphabetical order:

<script language="Amscript1.0">
iRc = AmwFetchQuery("select Name,FirstName from amEmplDept where

lEmplDeptId <> 0 order by Name",0,5)
</script>

<TABLE>

<TH> <TD> Name </TD> <TD> First name </TD> </TH>

<TR> <TD> $$(Name0) </TD> <TD> $$(FirstName0) </TD> </TR>
<TR> <TD> $$(Name1) </TD> <TD> $$(FirstName1) </TD> </TR>
<TR> <TD> $$(Name2) </TD> <TD> $$(FirstName2) </TD> </TR>
<TR> <TD> $$(Name3) </TD> <TD> $$(FirstName3) </TD> </TR>
<TR> <TD> $$(Name4) </TD> <TD> $$(FirstName4) </TD> </TR>
</TABLE>

The variables "Name0",...,"Name4" and "FirstName0",...,"FirstName4"
are instantiated in the script section; they are local template variables.

Precedence rule
As with BASIC, local variables have precedence over global variables, and
template variables have precedence over session variables.

Therefore the system first looks for a variable among the template
variables; if not found, it looks in the global variables.

If a variable does not exist, the result is an empty string.

Chapter 2 - Programming 13

Note on variables in script areas
Script areas may also contain variables that behave in the same way as
variables in a BASIC program:

• A local variable in a procedure is visible in the procedure only.
• A variable defined in a section is valid throughout the section.

By default, a variable defined in a script section is not visible outside that
section. Functions are available to extend the scope of variables defined
in script sections.

Defining the value of a variable
You can expose variables in the template or the user session using two
functions:

• AmwSetTpl(<variable name>, <variable value>) : This
function takes two parameters. The first is the name of the
template variable whose variable you want to define. The second is
the text value to assign to that variable.

• AmwSetEnv(<variable name>, <variable value>) : This
function takes two parameters. The first is the name of the session
variable whose variable you want to define. The second is the text
value to assign to that variable.

Note: To make AssetCenter more easily accessible, most functions
automatically instantiate template variables containing the result of
operations. For example, the "AmwFetchQuery" function performs a
query on the AssetCenter database and stores the query result in the
template variables. Please refer to the manuel entitled "AssetCenter:
Programmer's Reference" for more details on these functions.

Accessing variables
You can access a template or a session variable in two ways:

• for HTML text, simply call the variable using the following format:
$$(variable name). The variable is replaced by its value when the
template is processed.
If the variable does not exist, it is replaced by an empty string.

• for script sections, two AssetCenter Web-specific functions are
provided to obtain the text value of variables:
❖ AmwGetEnv(variable name) : Returns the value of the session

variable whose name is given as a parameter to the function.

AssetCenter WebKit 3.0 – User’s Guide14

❖ AmwGetTpl(variable name) : Returns the value of the
template variable whose name is given as a parameter to the
function.

Note: To avoid naming conflicts between script section variables and
variables created automatically by certain APIs, template variables are
not visible by default as BASIC variables. Therefore you must use the
"AmwGetTpl" function to access the results of those functions.

Examples
The example below manually creates four variables in the local template
space:

<script Language="Amscript1.0">

for i = 0 to 3
varName = "Variable"&str(i)
varValue = "Value"&str(i)
AmwSetTpl varName,varValue

next i

</script>

 Variable0: $$(Variable0)
 Variable1: $$(Variable1)
 Variable2: $$(Variable2)
 Variable3: $$(Variable3)

The user sees the following document:

Variable0: Value0
Variable1: Value1
Variable2: Value2
Variable3: Value3

Each occurrence of the $$(variable name) notation has been replaced by
the value defined in the script section.

In the following example, the script section accesses variables resulting
from an API call, and creates new values from those variables to enhance
the presentation of data on the user’s screen.

<script language="Amscript1.0">
iRc = AmwFetchQuery("select Name from amEmplDept where lEmplDeptId <>

0 order by Name",0,4)

for i = 0 to 3
varName = "Name"+str(i)
varValue = AmwGetTpl(varName)

Chapter 2 - Programming 15

newVarName = "Item"+str(i)
AmwSetTpl newVarName," "+varName+": "+varValue

next i
</script>

$$(Item0)
$$(Item1)
$$(Item2)
$$(Item3)

In this case, the variables "Item0"…"Item3" contain both the information
from the database and () HTML tags.

To simplify templates and avoid redundancy in the HTML part of the
document, you can create HTML in the script sections and place it in
variables. This makes it easier to create tables and links. Ultimately, the
HTML section could contain a single variable containing all the HTML
code.

Note: We advise not using extremely large variables to avoid peaks in
memory usage.

Here is what the user sees:

. Name0: Admin

. Name1: Los Angeles Agency

. Name2: Alex

. Name3: Helpdesk

Default System Variables
To make certain information permanently available, the AssetCenter
Web server automatically creates a set of variables in the template space
before the template is processed.

These variables provide information on the execution context. For
example, they contain security keys, user identification, the name of the
current document, etc.

They allow you to:
• display accurate information in case of errors.
• view the session key before creating links.

They may be used:
• in template script areas via the "AmwGetTpl" function.
• in HTML text. Simply call them in the following format:

$$(variable name).

AssetCenter WebKit 3.0 – User’s Guide16

The following system variables are available:
• T_webport : port on the AssetCenter Web server.

• Sid : user session key.

• T_Query : current "query string".

• T_Referer : link in the source document used to access the current
document.

• T_TemplateDoc : Name of the current document.

• T_TemplatePath : Full name of the current document (current
document name and pathname).

Script language
The script language is a subset of BASIC:

• All BASIC operators and control structures are available.
• AssetCenter data is accessed via a programming interface (API).

This interface is a list of functions directly accessible from BASIC.
The remainder of this section presents:

• The APIs.
• The script modules.

The APIs
To access the information contained in the AssetCenter database from
template script sections, two functions are available:

• The first includes all the AssetCenter Web-specific functions.
• The second includes functions from the generic AssetCenter API.

AssetCenter Web–specific functions
These functions are prefixed by "Amw". They belong to one of two
categories:

• data processing functions, independent of the database. Example:
String concatenation functions.

• database management functions. Example: "AmwFetchQuery".
Some of these functions automatically instantiate variables in the
template space. These variables are easy to use in HTML text or in code.

Example:

Chapter 2 - Programming 17

An AssetCenter Web-specific function runs a database query and recovers
the results, e.g. a list of 10 assets identified by their asset tag.

The values of these items are defined as variables numbered
automatically in the document space. The following variables are created:
$$AssetTag0, $$AssetTag1, $$AssetTag2, …$$AssetTag9. They may be
used in HTML text.

For details on these functions, please refer to the manual entitled
"AssetCenter: Programmer's Reference".

AssetCenter API functions
These functions are prefixed by "Am".

They allow you to work with the database: create or modify fields or links,
execute queries, transactions, etc.

For more details on these functions, please refer to the manual entitled
"AssetCenter: Programmer's Reference".

Script modules
A script module is a BASIC file with the ".bas" extension that contains
functions you wish to use in several templates.

These functions are then imported in the script sections via the "import"
command.

In the following example, the "Import errors.bas" command includes the
"errors.bas" file in the script section. All the functions contained in this
file are accessible in the section, including the "AmwErrorMsg()" function.

<script language="Amscript1.0">

' ==========================
' Utility functions
' ==========================

import errors.bas

' ==========================
' Login
' ==========================

If AmwCurrentCnx() = 0 Then
iRc = AmwLogin(DbName, User, Password)

' Display errors
If (iRc <> 0) Or (AmwCurrentCnx() = 0) Then print "<H1>";

AmwErrorMsg();"</H1>"
End If

</script>

AssetCenter WebKit 3.0 – User’s Guide18

You can use these script modules as examples for your own programs.
They are copied in in the "websrv\htdocs\tpl\" subfolder of the
AssetCenter installation folder.

HTML forms

Definition
A form is a document used to hold information entered by a user on a
client workstation: text entry box, selection box, check box, buttons to
trigger operations, etc.

Forms are defined in the HTML 3.2 standard.

Forms are defined by:
• the list of data entry fields they contain (text entry fields, check

boxes, etc.).
• an “action” field that designates a document on the server. This

document receives all the information entered by the user if the
user submits the document.

Sample form:

<form method =get action="gendata.htm" >
<input type=text name=user >
<input type=checkbox name=user >

<select name=choice>

<option value="Choice1"> Choice1 </option>
<option value="Choice2"> Choice2</option>

</select>
<input type=submit name=go value="Send">
</form>

Here is how the user sees the form:

Window resulting from a form

Chapter 2 - Programming 19

AssetCenter Web form processing
AssetCenter Web uses forms as the basic mechanism for obtaining user
information.

Examples: Entering a purchase order.

In general, forms are processed by calling a CGI ("Common Gateway
Interface") program. When the form is submitted, this program receives
the user information, decodes it, and generates the resulting document.

AssetCenter Web processes forms in a similar way:
• The "Action" field in each form designates a template.
• When processing the form, the template script area inherits all the

variables that were defined in the form.
This method avoids:

• The need for an external application (CGI).
• Manual processing of information entered in forms.

You will find a sample form processing program for AssetCenter Web in
the section entitled "Form processing" on page 27 in this manual.

Page composition
AssetCenter Web respects the HTML 3.2 standard. You can use any
HTML editor to create your Web server pages.

These editors have the following advantages:
• They allow you to design pages graphically in WYSIWIG mode

("What You See Is What You Get").
• They also provide an HTML editor for working on areas that are

not visible in preview mode (script areas, etc.).

Warning: Make sure you use an HTML editor that preserves script
sections. The editor should not modify script sections.

AssetCenter WebKit 3.0 – User’s Guide20

Links

Links in AssetCenter Web
Links create connections between HTML documents.

With AssetCenter Web, users work in a private environment where
document paths are prefixed by the session key.

For example, the URL ("Uniform Resource Locator") for the main menu
is: "http://www.company.com/IDK-5454_52397424_8569/tpl/menu.htm".

The general structure for a document reference on the server is as
follows:

<Session key>/<Document path>

The session key is used to control user access and guarantee security. It
remains valid until the user logs out of the database, or until the defined
timeout value is reached.

Everything runs as if the user was accessing a private document tree
structure.

Creating links
All links in user pages must remain in the session context. There are two
types of links:

• Relative links.
• Absolute links.

Relative links
Relative links specify a position in reference to the current document.
This is the simplest case, because you do not need to specify the security
key.

Examples:

"../ people.htm" points to a document called “people.htm” stored in the
folder above the current document.

"home.htm" points to a document called "home.htm" stored in the same
folder as the current document.

Chapter 2 - Programming 21

Absolute links
In this case, the link specifies the path starting from the root of the
server. You must always create the link using the security key. This
security key is stored in a SID system variable. In this case, you indicate
the link as follows:

/$$(SID)/Full pathname for the document on the server.

When processing the template, the SID variable is replaced by the user
session security key. The link displayed on the user screen is valid in the
session context.

Warning: Absolute links that do not contain the session key are
considered as an anonymous document request. This generally causes an
error message, where AssetCenter Web indicates that it cannot send the
document.

Suggestion
It is strongly recommended to use relative links only. This makes it easier
to use standard HTML editors.

Debugging
To test the templates you have created, you must use a browser and
request the documents via the AssetCenter Web server.

This allows you to view the results of the pages you have created and to
locate any possible errors.

To determine the cause of a problem, you can have the system display the
variables available in the template context, via the "AmwVars" function.

"AmwVars" displays the values of known variables in the document (both
global and local variables) at the time when you call it. You can thus view
the list of variables defined by an API function.

This function is useful for detecting syntax errors in $$(variable name)
notations. This is especially useful because, by default, if a variable that
does not exist is called using the $$(variable) format, it is replaced by an
empty string.

Chapter 3 – Sample templates 23

Chapter 3 – Sample templates

Login
Here is a sample login script to an AssetCenter database:

<script language="Amscript1.0">

' ==========================
' Login
' ==========================
If AmwCurrentCnx()=0 Then iRc = AmwLogin(DbName, User, Password)

' Display errors if any
If (iRc <> 0) Or (AmwCurrentCnx() = 0) Then

print "<H1> Login error:"; AmwErrorMsg();"</H1>"
Else

print "<H1> Login successful";AmwCurrentCnx();" </H1>"
End If

End If
</script>

The page displayed on the user screen may appear as follows:

Login successful cnx=20876816

This example:
• logs on to the database if no one else is logged on.
• displays a user message depending on whether or not a valid login

identifier exists ("AmwCurrentCnx()") and depending on the return
code from the login function. "AmwErrorMsg()" accesses the last
error message in case of failure.

• automatically instantiates the AssetCenter Web "User" and
"Password" variables using the data entered by the user in the
login dialog box.

AssetCenter WebKit 3.0 – User’s Guide24

• The "DbName" variable containing the AssetCenter login name
may come from a form.
Here is a sample form used to select the AssetCenter login name:

<form method=get action="tpl/login.htm" >
<PRE>

Database: <input type=text name=DbName > <input type=submit
value=Login name=Action>
</PRE>
</form>

In this form, in order for AssetCenter Web to accept to process the
target template ("login.htm") as a login template (able to set up a
user session), you must provide an “Action” parameter containing
the “Login” value. Use the submit button to provide these values.
To use another submission method (a different button name, an
icon to be clicked, etc.), you can place the “Action” parameter
containing the "Login" value in a hidden field.
In this case, the form for selecting the AssetCenter login name may
be as follows:

<form method=get action="tpl/login.htm" >
<PRE>

Database: <input type=text name=DbName > <input type=submit
value=Go name=Button>
<input type=hidden value=Login name=Action>

</PRE>
</form>

Displaying variables
The example below shows how to create a template variable and a session
variable:

<script language=”AmScript1.0”>
AmwSetEnv “AGlobalVar”,”AGlobalValue”
AmwSetTpl “MyVar”,”MyValue”

</script>
$$(AmwVars())

Chapter 3 – Sample templates 25

The $$(AmwVars()) command displays the list of global and local
variables in the resulting document:

Resulting page

Simple reading of records
The following example shows how to access a data set using an AQL
query (AQL is the AssetCenter Query Language). For further information
on AQL, please refer to "Reference guide: Administration and advanced
use" chapter "Writing queries in AQL":

<script language="Amscript1.0">
if AmwCurrentCnx() = 0 then iRc = AmwLogin(DbName, User, Password)
iRc=AmwFetchQuery("select name,firstname,fax from amempldept where

lEmplDeptid>0 and bdepartment=0 order by name",0,4)
</script>

<TABLE Border=1>
<TR> <TH> Name <TH> FirstName <TH> Fax <TH> </TR>
<TR> <TD> $$(Name0) <TD> $$(FirstName0) <TD> $$(Fax0) <TD> </TR>
<TR> <TD> $$(Name1) <TD> $$(FirstName1) <TD> $$(Fax1) <TD> </TR>
<TR> <TD> $$(Name2) <TD> $$(FirstName2) <TD> $$(Fax2) <TD> </TR>
<TR> <TD> $$(Name3) <TD> $$(FirstName3) <TD> $$(Fax3) <TD> </TR>
</TABLE>

This example requests the first four records in the Departments and
Employees table. The result is stored in the "Name0" … "Name4",
"FirstName0" … "FirstName4", "Fax0" … "Fax4" variables.

The variable names correspond to the field names used in the AQL query.
Please refer to the manual entitled "AssetCenter: Programmer's
Reference" for further details on the "amwFetchQuery" function.

AssetCenter WebKit 3.0 – User’s Guide26

The variable names can be complex if the AQL query returns links or
calculated fields. In this case, use the "AmwVars()" function after
executing the query to obtain the field names.

Here is the page resulting from this template:

Resulting page

Navigation
The example below adds another feature to the previous template:
navigation. The page contains two links where the user can click: "Prev"
and "Next" to display the previous or next results page.

This is performed using a template variable: “Pos”. This variable defines
the position of the first record recovered by "AmwFetchQuery()".

<script language="AmScript1.0">

iPos = val(AmwGetTpl("Pos"))
iRc = AmwFetchQuery("select name,FirstName from amEmplDept where

lEmplDeptid>0 and bdepartment=0 order by name",iPos,4)
iNextPos = iPos+4
iPrevPos = iPos-4
AmwSetTpl "NextPos",iNextPos
AmwSetTpl "PrevPos",iPrevPos

</script>

<TABLE Border=1>
<TR> <TH> Name <TH> FirstName <TH> Fax <TH> </TR>
<TR> <TD> $$(Name0) <TD> $$(FirstName0) <TD> $$(Fax0) <TD> </TR>
<TR> <TD> $$(Name1) <TD> $$(FirstName1) <TD> $$(Fax1) <TD> </TR>
<TR> <TD> $$(Name0) <TD> $$(FirstName2) <TD> $$(Fax2) <TD> </TR>
<TR> <TD> $$(Name0) <TD> $$(FirstName3) <TD> $$(Fax3) <TD> </TR>
</TABLE>

 Prev

 Next

Chapter 3 – Sample templates 27

During the first call, the "Pos" variable does not exist; the position is
therefore null.

The HTML section creates two links, "Prev" and "Next", containing a
parameter ("?pos=") defined by the current position. This gives access to
the next or previous four records.

Form processing
Here is a sample form:

<form method =get action="showdata.htm" >
<input type=text name=user >
<input type=checkbox name=check1 >

<select name=choice>
<option value="Choice1"> Choice1 </option>

<option value="Choice2"> Choice2 </option>
</select>
<input type=submit name=go value="Send">
</form>

The form causes the system to process the "showdata.htm" template
shown below:

<script language="AmScript1.0">

print "User=";user;"
"
print "Check=";Check1;"
"
print "Choice=";Choice;"
"

</script>

$$(AmwVars())

AssetCenter WebKit 3.0 – User’s Guide28

The resulting user page:

Resulting page

Data entry forms with choices
When using forms, you sometimes need to indicate several document in
order to be able to process a request according to an item the user selects
with the mouse.

The HTML standard only defines the use of a single document. Its name
is defined in the “action” field of the “FORM” tag.

AssetCenter Web allows you to associate an item in a form with a
document other than the “action” document. To do that, you must give a
special name to the item, using the following syntax:

Sub#<doc-name>#<indication>

The server attempts to load the document called "<doc-name>.htm" and
assigns the value "indication" to the "T_Hint" variable.

This method is very practical when the values from a template need to be
used in several documents

For an example of this technique, refer to the purchase request creation
template "newrq_f.htm" (located in in the "websrv\htdocs\tpl\" subfolder
of the AssetCenter installation folder). The "Requester", "Budget", "Cost

Chapter 3 – Sample templates 29

center" and "Project" fields are associated with the buttons labeled
"Sub#user_l#Select:lRequesterId,Requester",
"Sub#budget_l#Select:lBudgId,Budget",
"Sub#costc_l#Select:lCostId,CostCenter" and
"Sub#proj_l#Select:lProjId,Project". They allow you to access the
"user_l.htm", "budget_l.htm", "costc_l.htm" and "proj_l.htm" documents
and select an item.

The programmer is responsible for keeping the user information already
entered in the form by systematically sending the "Query String" string.

Creating records
The following sample script creates a record in the table of purchase
requests.

iRc = AmwNewRecord("amRequest",
"ReqPurpose(PurposeId);Requester(RequesterId);Comment(CommentId)")

Updating records
The sample script below modifies the location of a record in the Assets
table.

' try to update location
iRc = AmwUpdateRecord("amAsset","lLocaId(LocaId)",AssetId)

Error handling
If an error occurs, you can access a detailed message describing the
reasons why the operation failed. Use the Web API function
"AmwErrorMsg()" to access the message text.

This message corresponds to the last operation executed, and is erased
whenever another API call is made.

Chapter 4 – Advanced configuration 31

Chapter 4 – Advanced
configuration

Manual server startup
The server is provided as an executable file called "amw3.exe".

This executable can be run as a service under Windows NT, or can be
launched manually as a standard executable. Launching the program
manually allows you to recover server error messages in a console
window.

In service mode, the server is started and stopped via the Windows NT
Control Panel.

For further information, please refer to the manual entitled "AssetCenter
Web User's Guide", chapter "Implementing AssetCenter Web", section
"Launching AssetCenter Web".

Server configuration
All the server configuration data is stored in the "amw3.ini" file.

For further information, please refer to "AssetCenter Web User's Guide",
chapter "Administrating AssetCenter Web", section "Configuring
AssetCenter Web via "amw3.ini".

AssetCenter WebKit 3.0 – User’s Guide32

Generic login
When operating normally, AssetCenter Web uses the HTTP
authentication protocol to obtain the user ID and password. This method
displays the login window where users enter their “Login” and password.

If you want to provide access to the AssetCenter Web server without
requiring the user to enter the login information, you can disable this
mechanism.

To do this, insert the "AllowNoAuth = 1 " option in the [GLOBAL] section
of the "amw3.ini" file. This file is described in detail in "AssetCenter Web
User's Guide", chapter "Administrating AssetCenter Web", section
"Configuring AssetCenter Web via "amw3.ini".

In this case, users can access the first template without providing login
information. However, the programmer is responsible for setting up a
valid database login based on external information.

For example, you can use a generic "Login" name:

<script language="Amscript1.0">

' ==========================
' Generic login using Guest account
' ==========================
If AmwCurrentCnx()=0 Then iRc = AmwLogin(“MyDb”,”Guest”,””)

' Display errors if any
If (iRc <> 0) Or (AmwCurrentCnx() = 0) Then

print "<H1> Login error:"; AmwErrorMsg();"</H1>"
Else

print "<H1> Login successful";AmwCurrentCnx();" </H1>"
End If

End If
</script>

In the example above, a guest account with no password allows users to
connect to the "MyDb" database.

Template Batch Processing
In some cases, template processing time may not be compatible with real-
time usage.

Chapter 4 – Advanced configuration 33

This is true for documents that perform numerous database accesses to
create complex pages.

In this case, you can prepare these documents off-line from corresponding
templates.

Launch the server manually and specify the document to process along
with additional information, using the following syntax:

amw3 -template:<template file> [-qstr:<query string>]

• the "template" argument defines the name of the template to
process.

• the optional "qstr" argument defines the additional parameters as a
query string; use the same format as when submitting forms via
CGI.

Example:

Amw3 –template:huge.htm qstr:”DbName=MyDb&Usr=Guest&Pwd=” > res.htm

In this example, the "huge.htm" template is processed and the resulting
document is directed to the "res.htm" file.

The additional query string provides the following information:
• DbName = "MyDb"
• Usr = "Guest"
• Pwd = ""

This information is provided through variables in the template data
space.

