

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

EnableResponseStatePatterns

Introduction

EnableResponseStatePatterns is a hidden feature in WebInspect which can be used to handle a specific type of state

management scheme, examples of which have been encountered in web applications and RESTful web services.

The original example that led to this feature being added was a case where an application had a state value that shows up on

a redirect in the query part of a URL: example: f?p=7700:LOGIN:999999999:::::, the 999999999 is some kind of identifier that

appears to be some kind of state.

That state value is used later in a post parameter called p_instance.

Configuration

The first thing is to set the EnableResponseStatePatterns to true (default is false). You will find that setting in the scan

settings XML files (normally in C:\ProgramData\HP\HP WebInspect\Settings).

Then add a ReponseStateElement for each variable being tracked.

Each response state element (under ResponseStatePatterns) represents a single state value. Search regexes allow us to

determine where we collect state from in HTTP Responses. The Named Group is important as it tells us which part of the

match in the regex is the actual state value. Replace regexes tell WebInspect where to apply that state on HTTP Requests.

Again, the Named Group (name must match the name of the response state element, in this case “Oracle”) is required to tell

us where in the match the actual state value goes.

<EnableResponseStatePatterns>true</EnableResponseStatePatterns>

<ResponseStatePatterns>

 <ResponseStateElement>

 <name>Oracle</name>

 <SearchRegexes>

 <string> Location:.*f\?p=[0-9]+:[A-Za-z]+:(?<Oracle>[0-

9]+):::</string>

 </SearchRegexes>

 <ReplaceRegexes>

 <string>>&p_instance=(?<Oracle>[0-9]+)&</string>

 </ReplaceRegexes>

 </ResponseStateElement>

</ResponseStatePatterns>

You will find a self-closed element that looks like <ResponseStatePatterns />.

Expand this element and fill it in as needed to look as follows:

<EnableResponseStatePatterns>true</EnableResponseStatePatterns>

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

<ResponseStatePatterns>

 <ResponseStateElement>

 <name>CaptureGroupName</name>

 <ReplaceRegexes>

 <string>RegexWithCaptureGroupToApplyStateToRequest</string>

 </ReplaceRegexes>

 <SearchRegexes>

 <string>RegexWithCaptureGroupToCollectStateFromResponse</string>

 </SearchRegexes>

 </ResponseStateElement>

</ResponseStatePatterns>

The SearchRegexes are applied on the entire HTTP Response and the ReplaceRegexes are applied on the entire request.

The capture group would represent the exact token that needs to be transferred from the HTTP Response to the following

HTTP Request. So, there is no need to worry about a parameter name in this technique. All that matters is the exact value that

represents the state.

Example 1

Given that the HTTP Response Body returns something like this:

... {"Token":"2bfcf7e0-5b31-46e8-aabf-007e26a36177","Overlayreqd":1,"Disabled":0,"Downloadpriv ...

And that subsequent HTTP Requests must contain this header:

Authorization-Token: 2bfcf7e0-5b31-46e8-aabf-007e26a36177

Then a response state pattern like this would be required:

<EnableResponseStatePatterns>true</EnableResponseStatePatterns>

<ResponseStatePatterns>

 <ResponseStateElement>

 <name>Token</name>

 <ReplaceRegexes>

 <string> Authorization-Token:\s(?'Token'[a-fA-F0-9]{8}-[a-fA-F0-

9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})</string>

 </ReplaceRegexes>

 <SearchRegexes>

 <string>"Token":"(?'Token'[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-

9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})"</string>

 </SearchRegexes>

 </ResponseStateElement>

</ResponseStatePatterns>

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

Example 2

This example is from the native Android web application “Fourgoats”. After authenticating (POSTing the credentials), the

backend web service returns a response like this:

Notice the sessionToken included in the json response body.

The client application contains logic that understands that each subsequent request should set the cookie “SESS” to that

value, like this:

But at scan time WebInspect doesn’t recognize that need so sessions are mostly invalid. This is from a scan. Notice there is

no SESS cookie because WebInspect does not by default have any knowledge of the logic that is needed to maintain state

with this particular application:

To address this, add a custom cookie into the scan settings like this:

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

And enable response state patterns in the scan settings file, configured in such a way to assign to the capture group “Token”

the value of sessToken seen in the initial authentication response, and then use that to replace the “replaceme” portion of the

cookie header with that value.

The settings look like this:

 <EnableResponseStatePatterns>true</EnableResponseStatePatterns>

 <ResponseStatePatterns>

 <ResponseStateElement>

 <name>Token</name>

 <ReplaceRegexes>

 <string>Cookie:\sSESS=(?'Token'replaceme)</string>

 </ReplaceRegexes>

 <SearchRegexes>

 <string>"sessionToken":"(?'Token'[a-f0-9]{1,128})"</string>

 </SearchRegexes>

 </ResponseStateElement>

 </ResponseStatePatterns>

So what you see now in the initial requests is that the headers have the raw (un-replaced) cookie header:

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

But once a match is made in the response containing the token, subsequent requests look like this:

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

Example 3

A token is generated by POST request:

Then the token from the above step is sent and a new token (X-refresh token) is generated.

The token from the previous response is used as “Authorization: Bearer” header in the next request. Another refresh token

is generated. And so on.

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

To handle this state management scheme the following response state pattern is used:

<ResponseStatePatterns>

 <ResponseStateElement>

 <name>myToken</name>

 <ReplaceRegexes>

 <string>Authorization:\sBearer\s(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-

zA-Z0-9]{1,140})\.([a-zA-Z0-9_-]{1,45}))</string>

 </ReplaceRegexes>

 <SearchRegexes>

 <string>token":"(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-zA-Z0-

9]{1,140})\.([a-zA-Z0-9_-]{1,45}))</string>

 <string>X-refresh-token:\s(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-zA-Z0-

9]{1,140})\.([a-zA-Z0-9_-]{1,45}))</string>

 </SearchRegexes>

 </ResponseStateElement>

</ResponseStatePatterns>

An explanation of the above is as follows:

There are 2 patterns we need to parse in the HTTP Response, a “token” value in a json response body:

{"token":"eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJQVDEuSU5XTSIsImFjY291bnQiOiJQVDEuSU5XTSIsInR4SWQiOiIyYzI

zNzg1Yy0zZWRkLTQzYTMtYjg2NC1iMzEzMmRkNjgxYzkiLCJpYXQiOjE0NzYzNDYzNjB9.p_U-

EavAS8unQewF5Q7i0Bb5iBfzJLvGlKVJWJrplIA","passwordChangedDays":null,"shouldNoticeChangePassword":null,

"racfLoginSuccess":false,"racfLoginCode":null,"racfLoginMessage":null}

And an “X-Refresh-Token” in a response header:

X-refresh-token:

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJQVDEuSU5XTSIsImFjY291bnQiOiJQVDEuSU5XTSIsInR4SWQiOiIzODY5MTYy

ZC1jZDgzLTRhOTgtYTY5ZS04M2E5ZjFhODk4MDYiLCJpYXQiOjE0NzYzNDYzNjB9.zn-tDPMrrp0ep-

7qFpYYqGQleMrk7hjhBgxUIszQirs

The following two Search Regexes will look for these patterns in every response and assign the matched string to the

“myToken” capture group.

<SearchRegexes>

 <string>token":"(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-zA-Z0-9]{1,140})\.([a-zA-Z0-9_-]{1,45}))</string>

 <string>X-refresh-token:\s(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-zA-Z0-9]{1,140})\.([a-zA-Z0-9_-

]{1,45}))</string>

 </SearchRegexes>

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

In each request, we want to replace the following header, for example, with one containing the string we matched in the

responses:

Authorization: Bearer

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJQVDEuSU5XTSIsImFjY291bnQiOiJQVDEuSU5XTSIsInR4SWQiOiIyYzIzNzg1Yy

0zZWRkLTQzYTMtYjg2NC1iMzEzMmRkNjgxYzkiLCJpYXQiOjE0NzYzNDYzNjB9.p_U-

EavAS8unQewF5Q7i0Bb5iBfzJLvGlKVJWJrplIA

To accomplish that we use the following Replace Regex:

<ReplaceRegexes>

<string>Authorization:\sBearer\s(?'myToken'eyJhbGciOiJIUzI1NiJ9\.([a-zA-Z0-9]{1,140})\.([a-zA-Z0-9_-

]{1,45}))</string>

</ReplaceRegexes>

And since it’s non-standard, we also need to add a custom header “Authorization: Bearer” to every request:

The resulting traffic looks like this:

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

Document Title

4AA3-xxxxENW, Month 20XX Private, Confidential or Internal Use Only

