
Real User Monitor
Version 9.50, Released May 2018

Real User Monitor Hardening Guide
Published May 2018

Legal Notices

Disclaimer
Certain versions of software and/or documents (“Material”) accessible here may contain branding from Hewlett-
Packard Company (now HP Inc.) and Hewlett Packard Enterprise Company. As of September 1, 2017, the Material
is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPE marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are
the property of their respective owners.

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2018 Micro Focus or one of its affiliates

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and other countries.

iPod is a trademark of Apple Computer, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S. registered trademarks of
Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Real User Monitor Hardening Guide

Real User Monitor (9.50) Page 2 of 53

Contents
Chapter 1: Introduction 5

How This Guide is Organized 5

Chapter 2: Hardening the RUM Sniffer Probe 7
Cipher Suite Hardening 7
General RUM Sniffer ProbeMachine Hardening for Linux 7
General RUM Sniffer ProbeMachine Hardening forWindows 8
Changing the Default RUM Sniffer Probe Internal Private and Public Keys 8

Chapter 3: Limiting Communication to MySQL 10
Local MySQL Installation 10
RemoteMySQL Installation 10

Chapter 4: Encrypting Session Snapshots 12

Chapter 5: Securing Connections to the RUM Sniffer Probe 13
Replacing the Default Server Certificate 13
Replacing the Default Client Certificate 15

Chapter 6: Securing Connections to the RUM Docker Host 18

Chapter 7: Configuring a Connection to the APM Environment 20
Basic Authentication 20
HTTPS Connection to APM 21

Chapter 8: Securing Connections to the RUM Engine 25
Authentication 25
HTTPS 27
Securing Remote Connections to JMX Console andMBean Server 35

Unblocking JMX Services for Remote Users 35
Supporting Smart Card Authentication 36
Troubleshooting 37

Chapter 9: Hardening the RUM Client Monitor Probe 38
Machine Security Policy and Privileges 38
Internet Communication 38

Chapter 10: Hardening Connections from RUM Engine to RUM Client Monitor
Probe 42

Replacing the Default Server Certificate 42
Replacing the Default Client Certificate 44

Chapter 11: Hardening Instrumented Mobile Applications 46

Real User Monitor Hardening Guide

Real User Monitor (9.50) Page 3 of 53

Sensitive Data Protection 46
Communication Channel Protection 47

Appendix A: HTTPS Overview 48
Server Certificate 48
Client Certificate 48
Certificate Authority 48

Appendix B: Trusted Certificates 49
Certificate Signed by CA 49
Self-Signed Certificates 49

Appendix C: Client Certificates 50

Appendix D: Using Sniffer Probe Client Authentication Key for RUM Client Monitor
Probe 51

Adapting Existing Server Certificate 51
Adapting Existing Client Certificates 51

Send Documentation Feedback 53

Real User Monitor Hardening Guide

Real User Monitor (9.50) Page 4 of 53

Chapter 1: Introduction
This document covers hardening of the RUM Sniffer Probe, RUMClient Monitor Probe, and RUM Engine.
Application PerformanceManagement (APM) configuration is described only where it relates to connectivity
to the RUM Engine.

This document does not cover:

l General security concepts and tools such as OpenSSL and Java keytool
l General security measures forWindows and Linux machines

How This Guide is Organized
The following is a high-level view of the system:

Number in Graphic For information, see...

2 "Hardening the RUM Sniffer Probe" on page 7

3 "Limiting Communication toMySQL" on page 10

4 "Securing Connections to the RUM Sniffer Probe" on page 13

5 "Configuring a Connection to the APM Environment" on page 20

Real User Monitor (9.50) Page 5 of 53

Number in Graphic For information, see...

6 "Securing Connections to the RUM Engine" on page 25

7 "Hardening the RUMClient Monitor Probe" on page 38

8 "Internet Communication" on page 38

9 "Hardening Connections from RUM Engine to RUMClient Monitor Probe"
on page 42

10 "Hardening InstrumentedMobile Applications" on page 46

Real User Monitor Hardening Guide
Chapter 1: Introduction

Real User Monitor (9.50) Page 6 of 53

Chapter 2: Hardening the RUM Sniffer
Probe
This chapter includes the following topics:

l "Cipher Suite Hardening" below
l "General RUM Sniffer ProbeMachine Hardening for Linux" below
l "General RUM Sniffer ProbeMachine Hardening forWindows" on the next page
l "Changing the Default RUM Sniffer Probe Internal Private and Public Keys" on the next page

Cipher Suite Hardening
The first step in hardening the RUM Sniffer Probe is to limit the cipher suites that can be used. Limiting the
cipher suites has an added advantage of preventing the use of cipher suites that have a known vulnerability.

It is recommended to use the TLS_RSA_WITH_AES_256_CBC_SHA cipher suite.

To limit the cipher suite to TLS_RSA_WITH_AES_256_CBC_SHA:

1. On the RUM Sniffer Probemachine, edit the following file:
HPRumProbe\etc\rum_probe\ rpsecurity.conf

2. Locate the line:

#ssl_cipher_suite :ALL:!ADH:+RC4:@STRENGTH

and replace it with the following:

ssl_cipher_suite AES256-SHA:!ADH:@STRENGTH

General RUM Sniffer Probe Machine
Hardening for Linux
This section describes authentication and authorization security hardening on a RUM Sniffer Probemachine
running on Linux.

For more information on Linux hardening, consult your local Linux systemmanager.

Changing the Password for the “rum_probe” User

When installing a RUM Sniffer Probe, a new user called rum_probe is created. This user is not used to log in
or run the RUM Sniffer Probe. Its only purpose is to enable access to the RUM Sniffer Probe’s output
channels for versions 8.x and earlier.

To configure a password for a user:

Real User Monitor (9.50) Page 7 of 53

1. Log in to the RUM Sniffer Probe as the root user.
2. Define a password for the user by executing the command:

passwd rum_probe <PASSWORD>

Changing the RUM Sniffer Probe User and Password

By default, the RUM Sniffer Probe runs under the root user.

To change the user that the RUM Sniffer Probe runs under:

1. Log in to the RUM Sniffer Probe as the root user.
2. Change the user running the RUM Sniffer Probe process by executing the command:

rp_user.pl <USERNAME>

This creates a new user <USERNAME>, or uses <USERNAME> if it already exists.
3. If a new user is created, configure a login password by executing the command:

passwd <USERNAME>

General RUM Sniffer Probe Machine
Hardening for Windows
There is no special hardening for a RUM Sniffer Probe onWindows. For more information onWindows
hardening, consult your local Windows systemmanager.

Changing the Default RUM Sniffer Probe
Internal Private and Public Keys
The RUM Sniffer Probe stores all the application's loaded private keys in an encrypted keystore. The
encryption is done using an RSA private key which is built into the RUM Sniffer Probe.

To change the default built-in private key:

1. From the RUM Sniffer Probe, remove all previously loaded application/website private keys by deleting
the content of the following folder:
l Linux: <RUM PROBE HOME>/etc/rum_probe/keystore

l Windows: <RUM PROBE HOME>\etc\rum_probe\keystore

2. Create or obtain from your security officer an RSA private and public key in PEM format.
3. Copy the keys to the RUM Sniffer Probemachine, under the following directory <RUM Probe

Home>/etc/rum_probe/keystore.
4. Under the configuration section in the file:

l Linux: <RUM PROBE HOME>/etc/rum_probe/rpsecurity.conf

l Windows: <RUM PROBE HOME>\etc\rum_probe\rpsecurity.conf

Real User Monitor Hardening Guide
Chapter 2: Hardening the RUM Sniffer Probe

Real User Monitor (9.50) Page 8 of 53

Add these lines (or uncomment/edit them if they exist)

l internal_private_key/path/to/private.key

l internal_public_key/path/to/public.key

Note: The key file paths are relative to the RUM Sniffer Probe home directory

5. If the private key is passphrase protected, create a file in the same directory and with the same name as
the private key, but with an additional suffix “.passphrase”, that contains the passphrase:
echo “my secret passphrase” > /path/to/private.key.passphrase

6. Restart the RUM Sniffer Probe:
l Linux: $ <RUM PROBE HOME>/etc/rum_probe-capture restart

l Windows: executeProbe from the computer's Start menu.

7. Load the application's/website's private keys into the RUM Sniffer Probe.

Note: After the RUM Sniffer Probe starts, the /path/to/private.key.passphrase file is deleted and the
passphrase is encrypted and stored in /path/to/private.key.passphrase.encrypted for further use.

Real User Monitor Hardening Guide
Chapter 2: Hardening the RUM Sniffer Probe

Real User Monitor (9.50) Page 9 of 53

Chapter 3: Limiting Communication to
MySQL
The RUM Engine uses an embeddedMySQL database. The installation of the database is part of the RUM
Engine installation.

Local MySQL Installation
If the RUM Engine and theMySQL database are installed on the samemachine, it is recommended to limit
MySQL communication to the local host, so that no external client is able to connect to the RUM Engine
database.

The following procedure describes how to limit MySQL communication to the local host, when the RUM
Engine andMySQL are installed on the samemachine.

1. Go to <RUM_HOME>\ MySQL.
2. Open the rum_options.ini file.
3. Add the following line under the [mysqld] section:

bind-address=127.0.0.1

4. Restart the RUM Engine database:
RunDatabase from the computer's Start menu.

Remote MySQL Installation
If the RUM Engine connects to a remoteMySQL database, for security reasons it is recommended that you
restrict access to theMySQL database server on the host level using a unique ID such as an IP address and
port using tools that are readily available to you.

For example:

l In Linux, you can use the Linux iptables.
l InWindows, you can use the IntegratedWindows Firewall.
If you do not have access to the IntegratedWindows Firewall, you can use the netsh ipsec filtering rules to
block access to port 3306 (MySQL default port) from any source address and allow access only from a
specific source address. The basic workflow is:

1. Open a new text file (using notepad) and copy the text that appears below (starting with the REM line) into
the file.

2. Edit the port and IP address if needed.
3. Save the file with the extension .bat.
4. Run the batch file on theMySQL server machine.

Real User Monitor (9.50) Page 10 of 53

REM: --
--

REM: This procedure will create IP Security Policy on Local Computer. You can see it
through the secpol.msc console.

REM: Open the Start --> run --> secpol.msc --> go to "IP Security Policy on Local
Computer".

REM: Here you can see the "MySQL" with "Policy Assigned" == Yes

REM: --
--

REM: Run it on MySQL server Machine

REM: You must replace 16.59.62.243 with IP of your RUM machine.

REM: We are using port 3306 which is default for MySQL. If you are using non default
port please change this value

REM: --
--

netsh ipsec static add filter filterlist="Block Port 3306 from ANY" srcaddr=any
dstaddr=Me protocol=tcp srcport=0 dstport=3306 mirrored=no

netsh ipsec static add filter filterlist="Allow access from RUM Machine"
srcaddr=16.59.62.243/255.255.255.255 dstaddr=Me protocol=tcp srcport=0 dstport=0
mirrored=no

netsh ipsec static add filter filterlist="Allow access from RUM Machine" srcaddr=Me
dstaddr=16.59.62.243/255.255.255.255 protocol=tcp srcport=0 dstport=0 mirrored=no

netsh ipsec static add filteraction name="BLOCK" action=block

netsh ipsec static add filteraction name="PERMIT" action=permit

netsh ipsec static add policy name="MySQL" assign=yes

netsh ipsec static add rule name="Port 3306 Blocking Rule" policy="MySQL"
activate=yes filteraction="BLOCK" filterlist="Block Port 3306 from ANY"

netsh ipsec static add rule name="Allow access from RUM Machine Rule" policy="MySQL"
activate=yes filteraction="PERMIT" filterlist="Allow access from RUM Machine"

Real User Monitor Hardening Guide
Chapter 3: Limiting Communication toMySQL

Real User Monitor (9.50) Page 11 of 53

Chapter 4: Encrypting Session
Snapshots
By default, session snapshots are stored in the RUM Engine database in binary format. You can encrypt
session snapshots by setting theSnapshotSecrecy parameter to true. When you want to view the snapshot,
you will need to decrypt it.

To encrypt snapshots that are stored in the RUM Engine database:

1. In a text editor, open theRUM\conf\common\common.properties file.
2. To enable a strong RUM Engine web console password policy, change the value of SnapshotSecrecy

to true.
3. Save and close the file.

Real User Monitor (9.50) Page 12 of 53

Chapter 5: Securing Connections to the
RUM Sniffer Probe
By default, the RUM Engine connects to the RUM Sniffer Probe with HTTPS using default server and client
certificates. This section describes various options to harden such connections.

To validate the RUM Engine connection to the RUM Sniffer Probe after each change, perform the
synchronization operation from RUM Engine Web console > Tools > Monitoring Configuration
Information.

The following sections provide instruction for:

l "Replacing the Default Server Certificate" below
l "Replacing the Default Client Certificate" on page 15

Replacing the Default Server Certificate
By default, the RUM Sniffer Probe works with a server certificate that is provided with the RUM Sniffer Probe
software. For enhanced security, you can replace the default server certificate with a new one. For
information about server certificates, see "Server Certificate" on page 48.

To replace the server certificate:

1. Copy the certificate and private key files to the RUM Sniffer Probemachine, in the following directory
<RUM Probe Home>\ etc\rum_Probe. The files must be in PEM (Base64) unencrypted format (no
password). You can store both the certificate and private key in the same PEM file.

2. Log in to the RUM Sniffer Probe and open the file:
l Linux: <RUM PROBE HOME>/etc/rum_probe/rpsecurity.conf

l Windows: <RUM PROBE HOME>\etc\rum_probe\rpsecurity.conf

3. Add the following lines (uncomment or edit the lines if they already exist):

ssl_key<PRIVATE KEY FILE>

ssl_cert<SERVER CERTIFICATE FILE>

Note: The file paths are relative to the RUM Sniffer Probe home directory.

Example:

ssl_key "/etc/rum_probe/rum-probe-server.key"

ssl_cert "/etc/rum_probe/new-probe-server.crt"

4. If the private key that was used for the certificate is passphrase protected, create a file in the same
directory and with the same name as the private key, but with an additional suffix “.passphrase”, that
contains the passphrase.

Real User Monitor (9.50) Page 13 of 53

echo “my secrete passphrase” > /path/to/certificate.private.key.passphrase
5. Restart the RUM Sniffer Probe:

l Linux: $ <RUM PROBE HOME>/etc/rum_probe-capture restart

l Windows: executeProbe from the computer's Start menu.

The following steps add the server certificate to the RUM Engine truststore:

1. Copy the server certificate (without the private key) to the RUM Enginemachine.
2. Import the certificate into a new or existing truststore using the following command:

<RUM_HOME>\JRE\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>
When asked if you want to trust this certificate, answer yes.
For information about trust certificates, see "Appendix B: Trusted Certificates" on page 49.

Note: If you are working in a 64 bit environment, youmust also import the certificate into the JRE64
directory, using the following command:

<RUM_HOME>\JRE64\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_
FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>

3. Select RUM Web console > Configuration > Probe Management.
4. Select the Probe in the list, and click theEdit Configuration button.

Real User Monitor Hardening Guide
Chapter 5: Securing Connections to the RUM Sniffer Probe

Real User Monitor (9.50) Page 14 of 53

5. Open the SSL pane and complete the Truststore path and Truststore password fields.
6. Click Save.
7. Restart the RUMClient Monitor Probe to apply the changes.

Replacing the Default Client Certificate
By default, the RUM Sniffer Probe requires a client certificate for HTTPS connections. The RUM Engine
includes a default certificate. The following procedure can be used to replace the default client certificate. For
information about client certificates, see " Client Certificate" on page 48.

Create and import the client certificate on the RUM Engine, and then export and copy it to the RUM Sniffer
Probemachine.

1. On the RUM Enginemachine, generate a new private key and certificate in a new or existing keystore
using the following command:
<RUM_HOME>\JRE\bin\keytool -genkey -alias rum_probe_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE>
Or, in a 64 bit environment:
<RUM_HOME>\JRE64\bin\keytool -genkey -alias rum_probe_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE>

Real User Monitor Hardening Guide
Chapter 5: Securing Connections to the RUM Sniffer Probe

Real User Monitor (9.50) Page 15 of 53

2. Complete the certificate details.
3. Approve the certificate details when prompted.
4. Export the client certificate from the RUM Enginemachine using the following command :

<RUM_HOME>\JRE\bin\keytool -export -rfc -alias rum_probe_client_cert -keystore
<KEYSTORE_FILE> -file <CLIENT_CERTIFICATE_FILE>
Or, in a 64 bit environment:
<RUM_HOME>\JRE64\bin\keytool -export -rfc -alias rum_probe_client_cert -keystore
<KEYSTORE_FILE> -file <CLIENT_CERTIFICATE_FILE>

5. Copy the certificate file to the RUM Sniffer Probemachine under the following directory <RUM Probe
Home>/etc/rum_Probe.

6. Log in to the RUM Sniffer Probe and open the file:
l Lnux: <RUM PROBE HOME>/etc/rum_probe/rpsecurity.conf

l Windows: <RUM PROBE HOME>\etc\rum_probe\rpsecurity.conf

7. Uncomment, edit, or add (if it does not exist) the following line:

ssl_ca_file <CERTITIFICATE_FILE>

Note: The file path is relative to the RUM Sniffer Probe home directory.

8. Restart the RUM Sniffer Probe:
l Linux: $ <RUM PROBE HOME>/etc/rum_probe-capture restart

l Windows: execute Probe from the computer's Start menu.

9. Select RUM Web console > Configuration > Probe Management.
10. Select the RUM Sniffer Probe from the list, and click theEdit Configuration button.
11. Open the SSL pane and complete the Keystore path and the Keystore password fields.

Real User Monitor Hardening Guide
Chapter 5: Securing Connections to the RUM Sniffer Probe

Real User Monitor (9.50) Page 16 of 53

12. If you use a different password for the private key, update it in thePrivate key password field.

13. Click Save.

Real User Monitor Hardening Guide
Chapter 5: Securing Connections to the RUM Sniffer Probe

Real User Monitor (9.50) Page 17 of 53

Chapter 6: Securing Connections to the
RUM Docker Host
By default, the Docker Engine does not enforce the use of HTTPS to connect to its API. However, you can
setup your Docker Engine to enforce HTTPS for incoming connections using the following steps from Docker
Security Setup Guide (see https://docs.docker.com/engine/security/https/).

If you enabled TLS for your Docker hosts using the above documentation, you need to provide the configured
certificates to the RUM Engine as well to use while connecting to the Docker API.

1. Import the CA certificate (ca.pem in the Docker Security Setup Guide) used to sign your server
certificate into a truststore using the following command:

<RUM_HOME>\JRE\bin\keytool -import -alias docker_ca_cert_01 -keystore <TRUSTSTORE_
FILE> -storepass <TRUSTSTORE_PASSWORD> -file ca.pem

2. If you also configured your Docker Engine to require client authentication, import the Client Key
(key.pem in the Docker Security Setup Guide) and Client certificate (cert.pem in the Docker Security
Setup Guide) into a keystore using the following command

openssl pkcs12 -export -in cert.pem -inkey key.pem -out docker_client.p12 -name
docker_client -CAfile ca.pem -caname root

Note: openssl is not shipped with RUM Engine.

3. Click RUM Web console > Configuration > Docker Host Management.
4. Select RUM Docker Host from the list, and click Edit Configuration.
5. Open the SSL pane and complete the following:

l Truststore path and Truststore password, and if you configured your Docker Engine to require
client authentication

l Keystore path andKeystore password. If you created the keystore using the openssl command
specified in step 2, select Keystore type as PKCS12.

Real User Monitor (9.50) Page 18 of 53

https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/

l If you use a password for the private key, update it in thePrivate key password field.

6. Click Save.

Real User Monitor Hardening Guide
Chapter 6: Securing Connections to the RUMDocker Host

Real User Monitor (9.50) Page 19 of 53

Chapter 7: Configuring a Connection to
the APM Environment
This section describes the security hardening of the RUM Engine connection to the APMGateway server.

The procedures described should only be performed after APM is up and running with the relevant security
configuration.

The information on how to perform security hardening of the APM servers is out of scope of this document
and can be found in the APMHardening documentation.

Note: If the security configurations in the RUM Engine are not adjusted to the security configurations in
the APM Server, the synchronization operation will fail to retrieve RUM configuration data from APM.

Basic Authentication
1. In the RUM EngineWeb console, select Configuration > APM Connection Settings >

Authentication pane.

Real User Monitor (9.50) Page 20 of 53

2. Select theUse authentication check box.
3. Complete theAuthentication user name andAuthentication password fields.
4. Click Save.

HTTPS Connection to APM
By default, the RUM Engine connects to the APMGateway server using an HTTP connection. This section
describes how to set an HTTPS connection from the Rum Engine to APM and how to handle the SSL
certificates.

This section includes the following topics:

l "HTTPS Configuration" below
l "Using Server Certificates" on the next page
l "Using Client Certificates" on page 23
l "Trusting a Self-Signed Client Certificate" on page 24

HTTPS Configuration

1. In the RUM EngineWeb console, select Configuration > APM Connection Settings > Connection
to APM.

Real User Monitor Hardening Guide
Chapter 7: Configuring a Connection to the APM Environment

Real User Monitor (9.50) Page 21 of 53

2. Select theHTTPS protocol, and configure the correct port number for the APM connection.
3. Click Save.

Using Server Certificates

1. Convert the APM server certificate to PEM (Base64) format and copy it to the RUM Enginemachine.
2. Import the certificate into an existing or new truststore on the RUM Enginemachine using the following

command:
<RUM_HOME>\JRE\bin\keytool -import -alias bac_server_cert -keystore <KEYSTORE_FILE> -
file <CERTIFICATE_FILE>
Or, in a 64 bit environment
<RUM_HOME>\JRE64\bin\keytool -import -alias bac_server_cert -keystore <KEYSTORE_FILE>
-file <CERTIFICATE_FILE>

3. In the RUM EngineWeb console, select Configuration > BSM Connection Settings.
4. Open the SSL pane and complete the Truststore path and Truststore password fields.

5. Click Save.

Real User Monitor Hardening Guide
Chapter 7: Configuring a Connection to the APM Environment

Real User Monitor (9.50) Page 22 of 53

Using Client Certificates

1. On the RUM Enginemachine, generate a new private key and certificate into a new or existing keystore
using the following command:
<RUM_HOME>\JRE\bin\keytool -genkey -alias bac_client_cert -keyalg RSA -keystore <KEYSTORE_
FILE>
Or, in a 64 bit environment
<RUM_HOME>\JRE64\bin\keytool -genkey -alias bac_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE>
Complete the certificate details and approve them when prompted.

2. In the RUM EngineWeb console, select Configuration > BSM Connection Settings.
3. Open theSSL pane and complete theKeystore path andKeystore password fields.
4. If you use a password for the private key that is different from the keystore password, update it in the

Private key password field.

5. Click Save.

Real User Monitor Hardening Guide
Chapter 7: Configuring a Connection to the APM Environment

Real User Monitor (9.50) Page 23 of 53

Trusting a Self-Signed Client Certificate

If you do not intend to sign the certificate, use the following procedure to allow APM to trust the client
certificate of the RUM Engine:

1. Export the certificate from the keystore on the RUM Engine:
<RUM_HOME>\JRE\bin\keytool -export -rfc -alias rum_client_cert -keystore <KEYSTORE_FILE>
-file <CERTIFICATE_FILE>
Or, in a 64 bit environment:
<RUM_HOME>\JRE64\bin\keytool -export -rfc -alias rum_client_cert -keystore <KEYSTORE_
FILE> -file <CERTIFICATE_FILE>

2. Copy the certificate file to APMGateway server.
3. Import the certificate to the default APM truststore using the following command:

<APM_HOME>\JRE\bin\keytool -import -alias rum_client_cert -keystore > -keystore "<BAC
Home>\JRE\lib\security\cacerts" -file <CERTIFICATE_FILE>

Note: If you are working in a 64 bit environment you will also need to import the certificate into the
JRE64 directory, using the following command:

<APM_HOME>\JRE64\bin\keytool -import -alias rum_client_cert -keystore > -keystore
"<BAC Home>\JRE\lib\security\cacerts" -file <CERTIFICATE_FILE>

4. Restart the APMGateway server.

Real User Monitor Hardening Guide
Chapter 7: Configuring a Connection to the APM Environment

Real User Monitor (9.50) Page 24 of 53

Chapter 8: Securing Connections to the
RUM Engine
This chapter describes the security of the connections from different entities to the RUM Engine and includes
the following topics:

l "Authentication" below
l "HTTPS" on page 27
l "Supporting Smart Card Authentication" on page 36
RUM contains the following HTTP access points for multiple purposes:

l RUMWeb console
l RUM JMX console
l RUMGateway/Proxy Server – for APM and replay applet

Authentication
All HTTP access points on the engine are protected with an authenticationmechanism.

There are twomain authenticationmechanisms:

l Access to the RUM EngineWeb console is protected with a user name and password.
l All other HTTP access to the RUM Engine is protected with basic authentication.
You can change the user name and password as described in the sections below.

Adding or Changing the RUM Web Console User Name and Password

TheWebConsole default user name and password are configured during the engine installation and can be
changed by performing the following procedure:

1. On the RUM Enginemachine, open the file <RUM_HOME>\conf\rumwebconsole\users.xml.
2. Make the relevant changes to the file and save it:

l To add a new user name, add a new XML tag in the following format:

<user name="<USER_NAME>" login="<USER_LOGIN>" password="<PASSWORD>"
passwordEncrypted="false"/>

Note: The user namemust be unique.

l To change the login for an existing user name, find the relevant XML tag for the user name and
change the login attribute.

l To change the password for an existing user, find the relevant XML tag for the user and change the
value in the password attribute to the new password and set the passwordEncrypted attribute to

Real User Monitor (9.50) Page 25 of 53

false.

3. Restart the RUM Engine. After restart, all passwords specified in this file are automatically encrypted.
Changing the RUM Engine Web Console Password Policy

You can enable a strong RUM Engine web console password policy. This policy requires that a password has
at least 8 characters and contain 2 of the following: digits, lowercase, uppercase, or special characters (-
`~!@#$%^&*()_{}|/?.:;,"'<>|=[]+).

1. In a text editor, open theRUM\conf\common\common.properties file.
2. To enable a strong RUM Engine web console password policy, change the value of

EnableWebConsolePswPolicy to true.
3. Save and close the file.
4. Open theRUM\conf\rumwebconsole\users.xml file and change the password according to the policies

specified in the users.xml file.
5. Save and close the file.
6. Restart the RUM Engine and login with the new credentials.

Changing the JMX Console and Gateway Server Administrator Password

The JMX console default user name and password are defined during the RUM Engine installation, and can
be changed later by performing the following procedure:

1. On the RUM Enginemachine, open the file:
<RUM_HOME>\EJBContainer\server\mercury\conf\users.xml

2. Delete the encryptedPassword attribute (both the attribute name and value) and add an attribute called
password whose value is the new password for the admin user. For example, password=<ADMIN_
PASSWORD>.

3. Restart the RUM Engine. After restart, the password is automatically encrypted.
Make adjustments on the APM server:

1. Log in to APM and select Admin > End User Management screen > Settings tab > Real User
Monitor Settings tab > RUM Engines tab.

2. Select the relevant RUM Engine in the list and click theEdit button.
3. Open theAdvanced Settings pane.
4. Select theOverride default connection settings check box and enter the new user name and

password in the relevant fields.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 26 of 53

5. Click OK to save the settings.
6. Log out of APM and log in again.
7. Validate that APM can connect to the RUM Engine over SSL. See "Validating the APMConnection to

the RUM Engine" on page 34.

HTTPS
Configuring the RUM Engine to work with HTTPS affects all HTTP connections to the RUM Engine.

This necessitates some changes to the APM configuration so that APM connects to the RUM Engine over
HTTPS.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 27 of 53

Using HTTPS

Configure HTTPS on the RUM Enginemachine:

1. Note: Perform this step only if you want to use a self-signed (server) certificate.

On the RUM Enginemachine, generate a new private key and certificate in a new or existing keystore
using the following command:
<RUM_HOME>\JRE\bin\keytool -genkey -alias rum_server_private_key -keyalg RSA -keystore
<KEYSTORE_FILE> -storepass <KEYSTORE_PASSWORD>
Enter the server certificate details.

Note:

l The first and last namemust be the RUM Engine host alias as accessed by APM (that is, the
<ENGINE_HOST_NAME> configured in APM).

l The keystore and key passwords must be the same.

2. Approve the certificate details when prompted.
When prompted for the private key password, select the same password used for the keystore by
pressingEnter.

3. Encrypt the Keystore password by running the following command:
java -cp <RUM_HOME>\ EJBContainer\lib\jbosssx.jar org.jboss.security.plugins.FilePassword
welcometojboss 13 <KEYSTORE_PASSWORD> <RUM
Home>\EJBContainer\server\mercury\conf\keystore.password

Note: If keystore.password already exists in the directory, delete it before running the above
command.

This will encrypt your password <KEYSTORE_PASSWORD> and store it in the file <RUM
Home>\EJBContainer\server\mercury\conf\keystore.password

4. Open the file:
<RUM Home>\EJBContainer\server\mercury\deploy\jbossweb.sar\server.xml

5. To allow access via HTTPS, uncomment the following section:

<Connector protocol="HTTP/1.1" SSLEnabled="true"

port="8443" address="${jboss.bind.address}"

maxThreads="100" minSpareThreads="5" maxSpareThreads="15"

scheme="https" secure="true" clientAuth="false"

SSLImplementation="org.jboss.net.ssl.JBossImplementation"

SecurityDomain="java:/jaas/encrypt-keystore-password"
sslProtocols="TLSv1,TLSv1.1,TLSv1.2" />

6. To block non-secure HTTP connections to the RUM Engine, comment out the following section:

<Connector address="${jboss.bind.address}"

port="${jboss.web.http.port}"

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 28 of 53

protocol="HTTP/1.1"

redirectPort="8443"

server="RUM"/>

7. To configure the RUM EngineWeb server to support strong encryption ciphers, add the following
attribute to the uncommented SSL/TLS Connector section:
ciphers="TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_
256_GCM_SHA384,TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,TLS_DHE_RSA_WITH_
AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_
RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_
ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_
SHA256,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_
SHA256,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_
SHA256,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_AES_128_CBC_
SHA256,TLS_RSA_WITH_AES_256_CBC_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_
RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_
ECDHE_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_
SHA384,TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDH_ECDSA_WITH_AES_
256_CBC_SHA384,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_
WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_
ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_128_GCM_
SHA256,TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_
128_CBC_SHA256"
This attribute forces the server to use only the specified strong ciphers. If you do not specify the cipher
suites that the server is allowed to use, a weak encryption cipher may be used instead.

Note: To use the 256 bit AES Ciphers, it is necessary to install the JCE Unlimited Strength
Jurisdiction Policy Files, which can be found here for Java 8
(http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html). This
should be done to avoid legal concerns.

8. Open the file <RUM Home>\EJBContainer\server\mercury\deploy\security-service.xml and change
the following attributes in the uncommented section:

<attribute name="KeyStoreURL"><KEYSTORE_FILE></attribute>

<attribute name="KeyStorePass">{CLASS}
org.jboss.security.plugins.FilePassword:${jboss.server.home.dir}
/conf/keystore.password</attribute>

Do not change the name or path of the keystore.password file
9. The default certificate type is *.jks. If you are not using a certificate that is of type *.jks, add the following

to the SSL connector section:
<attribute name="KeyStoreType"><KEYSTORE_TYPE></attribute>

For example, if you are using a *.pfx type of certificate, the value of the attribute should look like:

<server>
<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=PBESecurityDomain">
<constructor>

<arg type="java.lang.String" value="encrypt-keystore-password"></arg>

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 29 of 53

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

</constructor>
<attribute name="KeyStoreURL">${jboss.server.home.dir}/conf/chap8.keystore

</attribute>
<attribute name="KeyStorePass">{CLASS}

org.jboss.security.plugins.FilePassword:${jboss.server.home.dir}
/conf/keystore.password</attribute>

<attribute name="KeyStoreType">PKCS12</attribute>
<attribute name="Salt">welcometojboss</attribute>
<attribute name="IterationCount">13</attribute>

<depends>jboss.security:service=JaasSecurityManager</depends>
</mbean>

</server>

10. Restart the RUM Engine.

Note: The link to the RUMWeb console URL in the Start Menu will not be changed automatically
form HTTP to HTTPS. Go toC:\ProgramData\Microsoft\Windows\Start Menu\Programs\Real
User Monitor to delete the old (HTTP)Web console link and create a new (HTTPS) one.

Make HTTPS adjustments on the APM server:

1. Log in to APM and select Admin > End User Management screen > Settings tab > Real User
Monitor Settings tab > RUM Engines tab.

2. Select the relevant engine in the table and click theEdit button.
3. Open theAdvanced Settings pane.
4. In the URL field, enter the following URL:

https://<ENGINE_HOST_NAME>:8443

Note: The <ENGINE_HOST_NAME> must be the same as defined in the certificate.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 30 of 53

Note: The user name and passwordmust match the JMX user name and password configured for
the RUM Engine. If they do not match, APM is unable to communicate with the RUM Engine to
obtain data for End User Management reports. For details on configuring the JMX password, see "
Changing the JMX Console andGateway Server Administrator Password" on page 26.

5. Click OK to save the settings.
6. Log out of APM and log in again.
7. Validate that APM can connect to the RUM Engine over SSL. See "Validating the APMConnection to

the RUM Engine" on page 34.
Trusting a Self-Signed Server Certificate

If the certificate you used with the RUM Engine private key is self-signed, youmust make APM recognize it
as trusted certificate.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 31 of 53

1. Export the certificate from the RUM Engine keystore using the following command:
<RUM_HOME>\JRE\bin\keytool -export -rfc -alias rum_server_private_key -keystore
<KEYSTORE_FILE> -file <CERTIFICATE_FILE>

2. Copy the exported certificate to the APMGateway server.
3. Import the certificate to the default APM keystore using the following command:

<APM_HOME>\JRE\bin\keytool -import -alias rum_server_cert -keystore <APM
Home>\JRE\lib\security\cacerts -file <CERTIFICATE_FILE>
When prompted, enter changeit for the keystore password.

Note: If you are working in a 64 bit environment, you will also need to import the certificate into the
JRE64 directory using the following command:

<APM_HOME>\JRE64bin\keytool -import -alias rum_server_cert -keystore <APM
Home>\JRE64\lib\security\cacerts -file <CERTIFICATE_FILE>

4. Restart the APMGateway server.
Using a Client Certificate

Create a client certificate on the APMGateway server:

1. On the APMGateway server, generate a new private key and certificate into a new or existing keystore
using the following command:
<APM_HOME>\JRE\bin\keytool -genkey -alias bac_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE> -storepass <KEYSTORE_PASSWORD>
Or, if you are using a 64 bit system:
<APM_HOME>\JRE64\bin\keytool -genkey -alias bac_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE> -storepass <KEYSTORE_PASSWORD>
Enter the certificate details and approve them when prompted.
When prompted for the private key password, select the same password used for the keystore by
pressingEnter.

2. On the APMmachine open the file <APM_HOME>\EJBContainer\bin\product_run.bat.
3. Locate the line starting with:

set JAVA_OPTS=-Dtopaz.home=%TOPAZ_HOME_PATH%...
4. Add the following text to the line:

-Djavax.net.ssl.keyStore="<KEYSTORE_FILE>" -
Djavax.net.ssl.keyStorePassword="<KEYSTORE PASSWORD>"

5. Restart APM.
Add the client certificate to the RUM Engine:

1. On the RUM Enginemachine open the file:
<RUM Home>\RUM\EJBContainer\server\mercury\deploy\ jbossweb.sar\server.xml

2. Locate the tag:

<Connector port="8443" address="${jboss.bind.address}"

maxThreads="100" minSpareThreads="5" maxSpareThreads="15"

scheme="https" secure="true" clientAuth="false"

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 32 of 53

keystoreFile=” …"

keystorePass="…." sslProtocol = "TLS" />

3. Change the following attributes:
sslProtocol = "SSL"
clientAuth= "true"

4. Restart the RUM Engine.
Using a Self-Signed Client Certificate

When using a self-signed client certificate, youmust import it into the RUM Engine truststore. This must be
done for all the certificates of all the clients who will connect to the RUM Engine using HTTPS.

To add a client certificate to the truststore:

1. On the APMGateway server, export the APM client certificate using the following command:
<APM_HOME>\JRE\bin\keytool -export -rfc -alias bsm_client_cert -keystore <KEYSTORE_
FILE> -file <CERTIFICATE_FILE>
Or, in a 64 bit system:
<APM_HOME>\JRE64\bin\keytool -export -rfc -alias bsm_client_cert -keystore <KEYSTORE_
FILE> -file <CERTIFICATE_FILE>

2. Copy the certificate file to the RUM Enginemachine.
3. On the RUM Enginemachine, import the certificates into the truststore using the following command (for

each certificate):
<RUM_HOME>\JRE\bin\keytool -import -alias bsm_client_cert -keystore <KEYSTORE_FILE> -
file <CERTIFICATE_FILE>
Approve the certificate details when prompted.

Note: If you are working in a 64 bit environment youmust also import the certificate into the JRE64
directory, using the following command:

<RUM_HOME>\JRE64\bin\keytool -import -alias bsm_client_cert -keystore <KEYSTORE_
FILE> -file <CERTIFICATE_FILE>

4. On the RUM Enginemachine open the file
<RUM Home>\RUM\EJBContainer\server\mercury\deploy\ jbossweb.sar \server.xml

5. Locate the tag:

<Connector port="8443" address="${jboss.bind.address}"

maxThreads="100" minSpareThreads="5" maxSpareThreads="15"

scheme="https" secure="true" clientAuth="true"

keystoreFile=” …"

keystorePass="…." sslProtocol = "SSL" />

6. Edit or add the following attributes:
truststoreFile="<KEYSTORE_FILE>"
truststorePass="<KEYSTORE_PASSWORD>"

7. Restart the RUM Engine.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 33 of 53

8. Validate that APM can connect to the RUM Engine over SSL. See "Validating the APMConnection to
the RUM Engine" below.

Validating the APM Connection to the RUM Engine

To validate that APM can connect to the RUM Engine, generate the RUM Session Analyzer report (or any
other report that connects to the RUM Engine).

1. Go toApplication > End User Management.
2. Validate that you do not receive the following error message:

Using the Session Replay Applet Without APM Bypass

Note: If the RUM Engine is configured to require a client certificate, it is impossible to run the Session
Replay applet without the bypass.

By default, the Session Replay applet retrieves data from RUM through the APM servers.

For performance improvements, it is possible to cancel this bypass mechanism and direct the applet to the
RUM Engine.

When the RUM Engine is working in SSLmode, it is not recommended to cancel the bypass.

If the bypass is canceled:

1. Export the certificate from the keystore on the RUM Engine:
<RUM_HOME>\JRE\bin\keytool -export -rfc -alias rum_client_cert -keystore <KEYSTORE_FILE>
-file <CERTIFICATE_FILE>
Or, on a 64 bit system:
<RUM_HOME>\JRE64\bin\keytool -export -rfc -alias rum_client_cert -keystore <KEYSTORE_
FILE> -file <CERTIFICATE_FILE>

2. For each client machine using the applet:
a. Copy the certificate to the client machine
b. Import the certificate to the default APM truststore using the following command:

<Latest JRE home>\bin\keytool -import -alias rum_client_cert -keystore > -keystore
<Latest JRE home>\lib\security\cacerts” -file <CERTIFICATE_FILE>

c. Restart the browser.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 34 of 53

Securing Remote Connections to JMX
Console and MBean Server
To disable access to the JMX Console andMBean Server, you can prohibit remote users from using specific
HTTP methods by configuring the following filters in the <RUM root
directory>\conf\common\common.properties file.

Note: These filters are only for JMX console remote users. All HTTP methods are allowed for users from
localhost.

Filter Description

JMXFilterForRemoteUsersMethod Prohibits remote users from using HTTP methods specified in
JMXFilterForRemoteUsersMethodParam. By default, this
value is false.

JMXFilterForRemoteUsersMethodParam Specifies the HTTP methods that remote users will not be
allowed to use. By default, the following HTTP methods are
listed:

l CONNECT l PUT

l POST l DELETE

l OPTIONS l TRACE

The following HTTP methods are not in the default list:

l GET l HEAD

To prohibit remote users from using specific HTTP methods:

1. Stop the RUM Engine.
2. In a text editor, open the <RUM root directory>\conf\common\common.properties file.
3. Change the value of the JMXFilterForRemoteUsersMethod parameter to true.
4. To change the list of HTTP methods that remote users are not allowed to access, in the

JMXFilterForRemoteUsersMethodParam parameter, add additional HTTP methods, or delete
HTTP methods that remote user should be allowed to access. Separate the HTTP methods with a
comma.

5. Start the RUM Engine.

Unblocking JMX Services for Remote Users
For security reasons, remote users are only allowed to access JMX services whose names start with the
stringRUM. However you can allow remote users access to additional JMX services by configuring the
following filters in the <RUM root directory>\conf\common\common.properties file.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 35 of 53

Note: These filters are only for JMX console remote users. All JMX services are allowed for users from
localhost.

Filter Description

JMXFilterForRemoteUsers Enables remote users access to JMX services if the name of the service
contains the string specified in JMXFilterForRemotePattern. By default,
this value is true.

JMXFilterForRemotePattern Specifies the string that must be included in the name of the JMX services
that remote users will be allowed to access. By default, remote users are
allowed to access JMX services whose names start with the stringRUM.

To allow all JMX Services for remote users:

1. Stop the RUM Engine.
2. In a text editor, open the <RUM root directory>\conf\common\common.properties file.
3. Change the value of the JMXFilterForRemoteUsers parameter to false.
4. Start the RUM Engine.
To edit the pattern of JMX Services for remote users:

1. Stop the RUM Engine.
2. In a text editor, open the <RUM root directory>\conf\common\common.properties file.
3. Ensure that the value of the JMXFilterForRemoteUsers parameter is true.
4. In the JMXFilterForRemotePattern parameter, type the patterns that must be included in the name of

the JMX services that remote users will be allowed to access.
5. Start the RUM Engine.

Supporting Smart Card Authentication
To support smart card authentication in RUM, youmust:

l Disable user authentication to the RUMweb console. By disabling user credential authorization, you are
not prompted to enter a user name or password when accessing the RUMweb console.

l Restrict access to the RUMweb console to the actual RUM Engine (local host) machine only. When you
restrict access to the RUMweb console to the local host only, trying to connect to the RUMweb console
from a different machine (including from aRUM system usingAdmin > End User Management >
Settings > Real User Monitor Settings > RUM Engines > Open Real User Monitor Engine's Web
Console) results in an 'Access forbidden'message.

Note: The RUMUI is a APM application. You can restrict access to APM by configuring APM to require
smart card authentication for access. (For more information see the APM Platform Administration Guide).

You should only use the RUM EngineWeb console for basic initial configuration (such as connecting to
APM and probes). After performing this configuration, we can restrict access to the RUMweb console by
requiring a user to sign in by physically accessing the RUM Enginemachine (not via a remote desktop or
remote browser) with a smart card.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 36 of 53

To support smart card access by disabling user authentication and restricting access to the RUMweb
console:

1. Stop the RUM Engine.
2. Edit the <RUM root directory>\conf\common\common.properties file and change the value of the

CACMode parameter to true.
3. Start the RUM Engine.

Troubleshooting
If you configured all the security settings as described in this guide and you still cannot connect to the RUM
Engine via HTTPS:

l Check that the RUM Engine is functioning properly by using the default connection (http://<RUM_
ENGINE_HOST>:8180) to confirm that there is no problem in the installation.

l Check that your firewall is not blocking the port you are trying to use to connect to the RUM Engine.

Note: By default, the firewall blocks ports 8443 and 9443.

l Create a JAVA self-signed certificate b y running the following command from your Java path:
keytool -genkey -keyalg RSA -alias <ALIAS> -keystore "<KEYSTORE_FULL_PATH.jks>" -
storepass <PASSWORD> -keypass <SAME_PASSWORD> -validity 360 -keysize 2048
If the secured solution is working with the self-signed certificate, ask your security department to replace
your certificate.

Real User Monitor Hardening Guide
Chapter 8: Securing Connections to the RUM Engine

Real User Monitor (9.50) Page 37 of 53

Chapter 9: Hardening the RUM Client
Monitor Probe

Machine Security Policy and Privileges
You can apply your organization's security policy to the RUMClient Monitor machine.

The RUMClient Monitor Probe is based on a Tomcat server, hardened in its default configuration. After the
RUMClient Monitor Probe is installed, it does not require administrator privileges to run.

The RUMClient Monitor Probe requires read and write access to the RUMClient Monitor installation
directory only; it does not read or write to any other part of the file system.

Internet Communication
Since the RUMClient Monitor Probe collects data reported by an application's end users (either browser or
mobile), the RUMClient Monitor Probe's communication ports are open to the internet. In addition, the RUM
Client Monitor Probe has a port that communicates with the RUM Engine to collect data and configuration.
The following describes how to harden the internet ports.

Configuring Ports

By default, the RUMClient Monitor Probe exposes two ports for client monitoring reports:

l AnHTTP port (8080 by default)
l AnHTTPS port (2021)
It is strongly recommended to use HTTPS, so that the content of the reports can be read by the RUMClient
Monitor Probe only.

Ports configuration is done in the file <RUMClientMonitor>\apache-tomcat\conf\server.xml. Each open
port is configured in the <Connector> node.

Real User Monitor (9.50) Page 38 of 53

l Blocking the HTTP Port
Since the RUMClient Monitor Probe accepts monitoring reports from end user machines through the
internet, it may be located either at the DMZ or in the cloud. By default, both HTTP and HTTPS ports are
open for client reports. The reportingmethod is determined during the instrumentation process of the
application. It is strongly recommended to instrument the application to use HTTPS only thereby blocking
the HTTP communication from the internet.
If you use HTTPS communication (as recommended), you can block the HTTP port.
To block HTTP communication:
a. Edit the file <RUMClientMonitor>\apache-tomcat\conf\server.xml.
b. Remove or comment the connector configuration in the following lines:

<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"

/>

c. Restart the RUMClient Monitor Probe to apply the changes.
l Changing the HTTP or HTTPs Port Numbers
To change the HTTP or HTTPS port numbers:
a. Edit the file <RUMClientMonitor>\apache-tomcat\conf\server.xml.
b. Change the port attribute of the Connector node:

<Connector port="8080" protocol="HTTP/1.1"

connectionTimeout="20000"

/>

<Connector port="2021" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"

keystoreFile="..\conf\ssl\cm-probe-server.jks"

keystorePass="mercurypw"

clientAuth="false" sslProtocol="TLS" />

c. In addition, in the file <RUMClientMonitor>\conf\supernanny\supernanny.properties, change the
value of:

nannyVerifyURL=http://localhost:8080/nannyverify

to reflect the new URL by changing the protocol (http to https) and the port number.

Note: If you change the port number to 80, do not include the port number in the URL
(nannyVerifyURL=http://localhost/nannyverify).

Configuring HTTPS Certificates

By default, the RUMClient Monitor Probe is installed with a self-signed certificate for client HTTPS
communication. Self-signed certificates are not recognized by end user devices unless manually installed on
each client machine. Therefore, in order to use HTTPS youmust replace the default certificate with a new one
from a trusted certificate authority. This certificate is usually provided by your security officer. A certificate is

Real User Monitor Hardening Guide
Chapter 9: Hardening the RUMClient Monitor Probe

Real User Monitor (9.50) Page 39 of 53

unique to the specific machine according to its static IP address, so if there aremultiple RUMClient Monitor
Probes, you need a different certificate for each RUMClient Monitor Probe.

The certificate must be in pkcs12 keystore format. If the certificate is not in pkcs12 keystore format, in a cmd
window, type:

> openssl pkcs12 -export -in <dest-path>\cm-probe-server.crt -inkey <dest-path>\cm-probe-
server.pem -out <dest-path>\<dest-file-name>.p12)

To import other certificate formats into a pkcs12 keystore:

1. Import the pkcs12 keystore into a java keystore:

> <JDK_HOME\bin>\keytool -importkeystore -deststorepass <dest-store-password> -
destkeypass <dest-key-pass> -destkeystore <dest-path>\<dest-keystore-file-name>.jks -
srckeystore <src-path>\<pkcs12-keystore-file-name>.p12 -srcstoretype PKCS12 -
srcstorepass <src-store-pass> -alias 1

Note: In this command line, passwords are optional.

2. Copy the keystore into the following directory: <RUMClientMonitor>\conf\ssl.
3. Open <RUMClientMonitor>\apache-tomcat\conf\server.xml and change the connector keystoreFile

and keystorePass attributes:

<Connector port="2021" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"

keystoreFile="..\conf\ssl\<dest-keystore-file-name>.jks"

keystorePass="<dest-store-password>"

clientAuth="false" sslProtocol="TLS" />

Note: If the keystore is not password-protected, remove the keystorePass attribute.

The following steps add the server certificate to the RUM Engine truststore:

1. Copy the server certificate (without the private key) to the RUM Enginemachine.
2. Import the certificate into a new or existing truststore using the following command:

<RUM_HOME>\JRE\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>
When asked if you want to trust this certificate, answer yes.
For information about trust certificates, see "Appendix B: Trusted Certificates" on page 49.

Note: If you are working in a 64 bit environment, youmust also import the certificate into the JRE64
directory, using the following command:

<RUM_HOME>\JRE64\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_
FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>

3. Select RUM Web console > Configuration > Probe Management.
4. Select the Probe in the list, and click theEdit Configuration button.

Real User Monitor Hardening Guide
Chapter 9: Hardening the RUMClient Monitor Probe

Real User Monitor (9.50) Page 40 of 53

5. Open the SSL pane and complete the Truststore path and Truststore password fields.
6. Click Save.
7. Restart the RUMClient Monitor Probe to apply the changes.

Real User Monitor Hardening Guide
Chapter 9: Hardening the RUMClient Monitor Probe

Real User Monitor (9.50) Page 41 of 53

Chapter 10: Hardening Connections
from RUM Engine to RUM Client Monitor
Probe
The RUMClient Monitor Probe is configured by the RUM Engine. All data collected by the RUMClient
Monitor Probe is transferred to the RUM Engine. Therefore, the RUM Engine communication with the RUM
Client Monitor Probemust be highly secure.

The communication direction is always from the RUM Engine (client) to the RUMClient Monitor Probe
(server). The communication is secured by an SSL port that requires client authentication. A self-signed
certificate can be used since the certificate is used by in-house servers (and not by end users) .

Note: If you already have a RUM Engine and RUM Sniffer Probe with a custom certificate and key
and/or client certificate, see "Appendix D: Using Sniffer Probe Client Authentication Key for RUMClient
Monitor Probe" on page 51.

Replacing the Default Server Certificate
You can obtain a server certificate and key:

l From your security officer
l From a certificate authority
l By generating self-signed one

Note: There are free tools like openssl that can help you generate server certificate.

To import the certificate and key to the RUMClient Monitor Probe:

1. Import the key and certificate into a p12 keystore:

> openssl pkcs12 -export -in <dest-path>\<server-certificate>.crt -inkey <dest-
path>\<server-key>.pem -out <dest-path>\<p12-keystore>.p12

Real User Monitor (9.50) Page 42 of 53

2. Import the p12 keystore into a Java keystore:
a. Convert the certificate from PFX/PKCS#12 to JKS format. For example: keytool.exe -

importkeystore -srckeystore c:\certificate.pfx -destkeystore c:\certificate.jks - srcstoretype
PKCS12

b. Import the CA root certificate into the keystore just created, as in the following example.
Download CA root certificate in BASE-64 format, for example, c:\ca_root.cer.
Import CA root certificate into the keystore: keytool -import -alias ca -file c:\ca_root.cer -
keystore C:\certificate.jks -storepass changeit

c. Copy <dest-path>\<server-keystore>.jks to <RUMClientMonitor>\conf\ssl.
3. Copy <dest-path>\<server-keystore>.jks to <RUMClientMonitor>\conf\ssl.
4. Open <RUMClientMonitor>\apache-tomcat\conf\server.xml and change the connector keystoreFile

and keystorePass attribute:

<Connector port="2020" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"

keystoreFile="..\conf\ssl\rum-probe-server.jks"

keystorePass="YourPassword"

clientAuth="true" truststoreFile="..\conf\ssl\rum-probe-ca.jks" sslProtocol="TLS" />

Note: If the keystore is not password-protected, remove the keystorePass attribute.

The following steps add the server certificate to the RUM Engine truststore:

1. Copy the server certificate (without the private key) to the RUM Enginemachine.
2. Import the certificate into a new or existing truststore using the following command:

<RUM_HOME>\JRE\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>
When asked if you want to trust this certificate, answer yes.
For information about trust certificates, see "Appendix B: Trusted Certificates" on page 49.

Note: If you are working in a 64 bit environment, youmust also import the certificate into the JRE64
directory, using the following command:

<RUM_HOME>\JRE64\bin\keytool -import -alias rum_probe_cert -keystore <KEYSTORE_
FILE>
-storepass <KEYSTORE_PASSWORD> -file <CERTIFICATE_FILE>

3. Select RUM Web console > Configuration > Probe Management.
4. Select the Probe in the list, and click theEdit Configuration button.

Real User Monitor Hardening Guide
Chapter 10: Hardening Connections from RUM Engine to RUMClient Monitor Probe

Real User Monitor (9.50) Page 43 of 53

5. Open the SSL pane and complete the Truststore path and Truststore password fields.
6. Click Save.
7. Restart the RUMClient Monitor Probe to apply the changes.

Replacing the Default Client Certificate
1. On the RUM Enginemachine, generate a new private key and certificate in a new or existing keystore

using the following command:
<RUM_HOME>\JRE\bin\keytool -genkey -alias rum_probe_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE>
Or, in a 64 bit environment:
<RUM_HOME>\JRE64\bin\keytool -genkey -alias rum_probe_client_cert -keyalg RSA -keystore
<KEYSTORE_FILE>

2. Complete the certificate details.
3. Approve the certificate details when prompted.
4. Export the client certificate from the RUM Enginemachine using the following command :

<RUM_HOME>\JRE\bin\keytool -export -rfc -alias rum_probe_client_cert -keystore
<KEYSTORE_FILE> -file <CLIENT_CERTIFICATE_FILE>

Real User Monitor Hardening Guide
Chapter 10: Hardening Connections from RUM Engine to RUMClient Monitor Probe

Real User Monitor (9.50) Page 44 of 53

Or, in a 64 bit environment:
<RUM_HOME>\JRE64\bin\keytool -export -rfc -alias rum_probe_client_cert -keystore
<KEYSTORE_FILE> -file <CLIENT_CERTIFICATE_FILE>

5. Import client certificate file into a Java keystore.

> <JDK_HOME\bin>\keytool -import -keystore <dest-path>\<ca-keystore>.jks -file <ca-
certificate>.crt -alias 1

6. Copy the file <ca-keystore>.jks to the RUMClient Monitor Probe <RUMClientMonitor>\conf\ssl.
7. Open <RUMClientMonitor>\apache-tomcat\conf\server.xml and change the connector truststoreFile

attribute:

<Connector port="2020" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"

keystoreFile="..\conf\ssl\rum-probe-server.jks"

keystorePass="mercurypw"

clientAuth="true" truststoreFile="..\conf\ssl\<ca-keystore>.jks" sslProtocol="TLS" />

8. Restart the RUMClient Monitor Probe to apply the changes.

Real User Monitor Hardening Guide
Chapter 10: Hardening Connections from RUM Engine to RUMClient Monitor Probe

Real User Monitor (9.50) Page 45 of 53

Chapter 11: Hardening Instrumented
Mobile Applications

Sensitive Data Protection
The following are sensitive data protection rules:

l By default, an instrumented application does not send sensitive data. Therefore, POST data is not
collected.

l Request/Response Headers are not collected
l Query values are hidden (starred) in the reported URL, so the reported URL looks like:

http://bsm.hpe.com:8080/WebShell/filestub.html?miniappName=*&v=*
l The user name is not extracted
These rules can be changed in the APM application configuration. You can configure parameters that are
extracted from the content of the POST data, response and request headers, and cookies. You can also
configure a way to extract the user name, and configure query parameter values to be unhidden.

Since sensitive data can potentially be harmful, only a super user in APM can configure this data to be
extracted. See the APMHardening document for additional information.

If you do not need to extract sensitive data, on the application level you can block the ability to configure
additional data extraction.

To block the ability to configure additional data extraction:

l For an Android application:
In the RumWebConsole application, go to Tools > Mobile Application Instrumentation and uncheck
theEnable content extraction from mobile check box.

l For an iOS application:

Real User Monitor (9.50) Page 46 of 53

In the framework configuration file hprummonitor.plist, add a Boolean key named
EnableDynamicConfiguration, and set its value to false.

Communication Channel Protection
The communication channel from themobile device to the probe should always be HTTPS-based.Therefore,
the server has to be configured with a trusted certificate (see "Internet Communication" on page 38), and the
application has to be configured with an HTTPS URL to send the data.

No further encryption is performed on the data that is sent, but it is signed to validate data authenticity. This
ensures that the data cannot be faked by an external source.

Real User Monitor Hardening Guide
Chapter 11: Hardening InstrumentedMobile Applications

Real User Monitor (9.50) Page 47 of 53

Appendix A: HTTPS Overview
This section provides a short overview of the terms used in this document.

For each HTTPS connection there is a Client (the party who initiates the connection) and a Server (the
destination of the client’s connection). In addition to securing the data sent over the HTTPS connection, the
protocol provides additional functionality.

Server Certificate
A server certificate is used by the client to validate the identity of the server. The client trusts the server
certificate in one of the following cases:

l It knows the server’s certificate in advance.
l The certificate is signed by a trusted Authority (see "Certificate Authority" below).

Client Certificate
A client certificate is an optional feature of the HTTPS protocol. It is used by the server to validate that the
client trying to open a connection is allowed to do so, and to enable the server to block connections from
unauthorized clients. As above, the server trusts the client certificate in one of the following cases:

l It knows the client’s certificate in advance.
l The certificate is signed by a trusted Authority (see "Certificate Authority" below).

Certificate Authority
Even when a certificate (either server or client) is not presented to another party in advance, that party can
still accept the certificate provided that it is signed by a Certificate Authority that it trusts.

Real User Monitor (9.50) Page 48 of 53

Appendix B: Trusted Certificates
When the RUM Engine connects to a Probe or APMmachine with HTTPS, it verifies the certificate of the
server. In this case, the RUM Engine is the client and RUM Probe or APMGateway is the server.

There are twomajor types of certificates:

l Certificates signed by a Certificate Authority (CA)
l Self-signed certificates

Certificate Signed by CA
In the following scenarios, the CA should be trusted by the RUM Engine (specifically, by the Java Run-Time
Environment - JRE):

l The CA is a known as the Root Authority, or is approved by such a Root Authority
l The CA is local to the customer

Trusting Root Authorities

Java Run-Time Environment ships preinstalled with a number of trusted Root Authorities. No additional steps
are required.

Trusting a Local CA

The following options are currently available:

l Trusting CA cross-JRE
l Trusting CA for a specific server

Trusting CA Cross-JRE

Perform the following steps to add the local CA to a global trust-store, so that the CA will be trusted by all
RUM Engine components:

1. Log in to the RUM Enginemachine and open a command console (cmd).
2. Run the following command:

<RUM-HOME>\JRE\bin\keytool -importcert -trustcacerts -alias global-ca -keystore <RUM-
HOME>\JRE\lib\security\cacerts -file <CA-CERTIFICATE-FILE>

Trusting CA for a Specific Server

There aremultiple locations in the EngineWeb console where you can configure a custom truststore, which
contains the certificates.

Self-Signed Certificates
If there is no designated Certificate Authority, server certificates are self-signed. In such cases, the server
certificate should be imported into the client machine and added to the truststore.

Real User Monitor (9.50) Page 49 of 53

Appendix C: Client Certificates
The client certificate can be acquired in one of the following ways:

l Generated by Certificate Authority
l Generated by the RUM Engine and then signed by Certificate Authority

Real User Monitor (9.50) Page 50 of 53

Appendix D: Using Sniffer Probe Client
Authentication Key for RUM Client
Monitor Probe

Adapting Existing Server Certificate
1. Save the server certificate and private key files from the RUM Sniffer Probe to any machine, under a

specific directory (<in> directory).

Note: To locate these files, see steps 2-3 in "Replacing the Default Server Certificate" on page 13.

2. Using a command line, create a pkcs12 file that contains both the server certificate and private key:

> openssl pkcs12 -export -in <in>\rum-probe-server.crt -inkey <in>\rum-probe-
server.key -out <dest-path>\rum-probe-server.p12

Note: openssl is a free tool that can be downloaded from http://www.openssl.org/.

3. Import the p12 file as a keystore into the Java keystore.

> <JDK_HOME\bin>\keytool -importkeystore -destkeystore <dest-path>\<new-keystore-
filename>.jks -srckeystore <dest-path>\<dest-file-name>.p12 -srcstoretype PKCS12 -
alias 1

4. Copy the <dest-path>\<new-keystore-filename>.jks file to <RUMClientMonitor>\conf\ssl.
5. Open the file <RUMClientMonitor>\apache-tomcat\conf\server.xml and change the connector

keystoreFile and keystorePass attributes accordingly:

<Connector port="2020" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"

keystoreFile="..\conf\ssl\rum-probe-server.jks"

clientAuth="true" truststoreFile="..\conf\ssl\rum-probe-ca.jks" sslProtocol="TLS" />

6. Restart the Rum Client Monitor Probe to apply changes.

Adapting Existing Client Certificates
1. Save the client certificate file from the RUM Sniffer Probe to any machine, under a specific directory

(<in> directory).

Note: To locate these files, see steps 6-7 in "Replacing the Default Client Certificate" on page 15

Real User Monitor (9.50) Page 51 of 53

2. Import the Probe's client authentication file into a Java keystore.

> <JDK_HOME\bin>\keytool -import -keystore <dest-path>\<dest-file-name>.jks -file
<in>/<src-file-name>.crt -alias 1

3. Copy the file <dest-path>\<dest-file-name>.jks to <RUMClientMonitor>\conf\ssl.
4. Open <RUMClientMonitor>\apache-tomcat\conf\server.xml and change the connector truststoreFile

attribute accordingly:
<Connector port="2020" protocol="org.apache.coyote.http11.Http11NioProtocol" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
keystoreFile="..\conf\ssl\rum-probe-server.jks"
clientAuth="true" truststoreFile="..\conf\ssl\<dest-file-name>.jks" sslProtocol="TLS" />

5. Restart the Rum Client Monitor Probe to apply changes.

Real User Monitor Hardening Guide
Appendix D: Using Sniffer Probe Client Authentication Key for RUMClient Monitor Probe

Real User Monitor (9.50) Page 52 of 53

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on Real User Monitor Hardening Guide (Real User Monitor 9.50)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to docteam@microfocus.com.

We appreciate your feedback!

Real User Monitor (9.50) Page 53 of 53

mailto:docteam@microfocus.com?subject=Feedback on Real User Monitor Hardening Guide (Real User Monitor 9.50)

	Chapter 1: Introduction
	How This Guide is Organized

	Chapter 2: Hardening the RUM Sniffer Probe
	Cipher Suite Hardening
	General RUM Sniffer Probe Machine Hardening for Linux
	General RUM Sniffer Probe Machine Hardening for Windows
	Changing the Default RUM Sniffer Probe Internal Private and Public Keys

	Chapter 3: Limiting Communication to MySQL
	Local MySQL Installation
	Remote MySQL Installation

	Chapter 4: Encrypting Session Snapshots
	Chapter 5: Securing Connections to the RUM Sniffer Probe
	Replacing the Default Server Certificate
	Replacing the Default Client Certificate

	Chapter 6: Securing Connections to the RUM Docker Host
	Chapter 7: Configuring a Connection to the APM Environment
	Basic Authentication
	HTTPS Connection to APM

	Chapter 8: Securing Connections to the RUM Engine
	Authentication
	HTTPS
	Securing Remote Connections to JMX Console and MBean Server
	Unblocking JMX Services for Remote Users

	Supporting Smart Card Authentication
	Troubleshooting

	Chapter 9: Hardening the RUM Client Monitor Probe
	Machine Security Policy and Privileges
	Internet Communication

	Chapter 10: Hardening Connections from RUM Engine to RUM Client Monitor Probe
	Replacing the Default Server Certificate
	Replacing the Default Client Certificate

	Chapter 11: Hardening Instrumented Mobile Applications
	Sensitive Data Protection
	Communication Channel Protection

	Appendix A: HTTPS Overview
	Server Certificate
	Client Certificate
	Certificate Authority

	Appendix B: Trusted Certificates
	Certificate Signed by CA
	Self-Signed Certificates

	Appendix C: Client Certificates
	Appendix D: Using Sniffer Probe Client Authentication Key for RUM Client Moni...
	Adapting Existing Server Certificate
	Adapting Existing Client Certificates

	Send Documentation Feedback

