

Service instance upgrade

Whitepaper

 Page 2

Contents

Introduction ... 4

Service instance upgrade process ... 5

Concepts .. 8

Configure a service design .. 15

Create an upgrade service design ... 15

Edit an upgrade service design .. 17

View upgrade paths ... 20

Edit upgrade path description or delete an upgrade path .. 21

View differences between design versions ... 22

Configure a service offering .. 22

Create an upgrade service offering ... 23

Edit an upgrade service offering ... 27

View upgrade paths ... 27

Edit upgrade path description or delete an upgrade path .. 28

Publish an upgrade service offering .. 28

Upgrade a subscription .. 29

About the service subscription upgrade process .. 33

Behavior of Dynamic Properties during Service Instance Upgrade .. 34

Use cases for constructing upgrade service designs .. 37

Use case 1 – add monitoring capability using HPE SiteScope to server components in service instances 38

Use case 2 – deploy applications using HPE Server Automation to server components in existing service instances 39

Use case 3 – provide additional public actions to service instance components ... 40

Use case 4 – upgrade an application deployed through a sequenced design .. 40

Use case 5 – configure additional firewall rules or apply patches to virtual machines deployed through a sequenced

design. ... 40

Use case 6 – fix problems with modifying or cancelling an existing subscription .. 40

Failure handling when upgrading a service instance ... 40

Token to indicate upgrade retry .. 42

REST API to upgrade a service subscription .. 42

Upgrading multiple subscriptions originating from the same service offering... 42

 Page 3

Send documentation feedback ... 44

Legal notices .. 44

 Page 4

Introduction

HPE Cloud Service Automation (CSA) provides the unique ability to upgrade service instances. CSA service instances can

be upgraded in order to provide additional functional capability and additional operational control beyond what is

possible based on the current definition of the underlying design. To a certain extent, this functionality can also be used

to fix any implementation problems present in service instances. In the current version of CSA, the ability to upgrade a

service instance is only possible for service instances which are based on sequenced service designs. Service instances

can be upgraded to accomplish a variety of use cases. A few examples are discussed below.

Take an example of a sequenced design that is capable of deploying one or more virtual machines based on the VMWare

vCenter resource provider. In the service design, virtual machine settings (such as number of CPUs, amount of memory

and disk size) are configured as properties on the server component. This service design can also have subscriber options

related to compute size (such as small, medium or large) which can be used for ordering virtual machines and for

modifying service subscriptions so that virtual machines can be of a different compute size. Subscriber option model

properties (such as number of CPU, amount of memory and disk size) are bound to the respective server properties.

Once subscriptions are created based on this service design, possible operations only include modification of

subscription by choosing a different option and executing public actions on server components to

start/stop/restart/suspend virtual machines.

After creation of subscriptions based on this service design, there might be additional needs such as adding capability to

monitor virtual machines deployed through subscriptions, deploying additional firewall rules on top of existing firewall

rules on virtual machines, deploying applications on top of the virtual machines deployed through the service

subscriptions, or introducing additional public actions on server components in order to provide more operational

control. Examples of these actions could be an action to take snapshots of virtual machines or creating ovf templates out

of the virtual machines. All such needs are beyond the definition of the original service design underlying the service

instances. Needs such as the ones discussed above can be accomplished through the service instance upgrade

functionality available in CSA.

Take another example of a business setting where a sequenced service design is being utilized for deploying multi-tiered

applications. Newer business requirements would result in the need to move to newer versions of databases and newer

versions of applications. They would also result in change of application deployment architecture. Service instance

upgrade functionality will also enable upgrading service instances representing multi-tiered applications to account for

changes in database versions, application versions and application deployment architecture.

CSA ships with sample designs which enable upgrading service instances for some of the use cases discussed above. A

different section of this white paper discusses implementation aspects of upgrading service instances using these

sample designs.

Note: Throughout this document, we will be talking about upgrading service instances and service subscriptions

interchangeably. Both of them are one and the same.

 Page 5

Service instance upgrade process

This section talks about the overall process involved in upgrading service instances: creating a service subscription and

upgrading a service subscription. Each of the individual steps involved in upgrading service subscriptions are covered at

a greater depth later in this document.

The steps to create service subscriptions in CSA are as follows:

1. The Service Designer creates a service design that can orchestrate the deployment of a cloud service. All service

design components and resource offerings have a unique identifier invisible to end users. When a service design

is published, it cannot be edited and service offerings can be created from it.

2. The Service Business Manager creates a service offering from the service design. A service offering can be

associated with a price, can have customized subscriber options, and can be associated with SLA documents.

3. The Service Business Manager publishes the service offering to a catalog. Approval policies may be added to the

service offering in the catalog.

4. A subscriber orders a service offering from the Marketplace Portal which results in the creation of a service

subscription. During the service subscription creation process, service instance components and resource

subscriptions (the run-time representation of resource offering) inherit the unique identifier from the service

design’s components and resource offerings respectively(that is, service component and resource offering

identifiers match between the service design and service instance). A service instance associated with the

service subscription represents the deployed topology of a cloud service.

Figure 1. Service subscription creation

 Page 6

Once service subscriptions have been created, the steps to upgrade service subscriptions are as follows:

1. After analyzing additional capabilities and operational control that needs to be provided to service instances on

top of what is available, the Service Designer creates a new version of a service design cloned from the original

version of the service design. The cloning process will ensure that the service component’s unique identifiers are

copied over to the service components of the new version of the service design. These unique identifiers will

play a major role in the service instance upgrade process.

The new version of the service design is called an upgrade service design while the original version of the service

design is called an upgradable service design. The changes necessary for providing additional capability or

operational control are added to the new version of the service design. While the upgrade service design can be

modified in a variety of ways based on the use case of service instance upgrade, not all changes are permitted.

Changes that can be made for different use cases and changes that are not allowed on upgrade versions will be

discussed in a later section of this document. When an upgrade service design is published, it cannot be edited

and service offerings can be created from this service design.

2. The Service Business Manager creates a new version of a service offering cloned from the original version of the

service offering based on the upgrade version of the service design. The new version of the service offering is

called an upgrade service offering while the original version of the service offering is called an upgradable

offering. Subscriber options, pricing and SLA documents can be customized in the new version of the service

offering.

3. The upgrade service offering is published into the same catalog as the upgradable the service offering.

Note: This step is required. If the upgrade service offering is not published, the service subscription cannot be

upgraded.

4. The Operations area of the Cloud Service Management Console indicates that service subscriptions originating

from the original version of service offering are upgradable. The Service Operations Manager can upgrade

service subscriptions based on the new version of the service offering from the Operations area or through REST

APIs. During the service instance upgrade process, the unique identifiers from service instance components will

be utilized for detecting changes that need to be merged from the upgradable design.

 Page 7

Figure 2. Service instance upgrade process

 Page 8

Concepts

Upgrade service design

An upgrade service design is a new version (clone) of a service design created from and based on an existing version of a

service design for the purpose of creating new service subscriptions or upgrading service subscriptions originating from

the existing version of the service design.

In the Sequenced Design Version Overview area of the Cloud Service Management Console, upgrade service designs

have an Upgradable From field populated with the version of the existing service design that it is based on, indicating

that service instances originating from that existing service design version can be upgraded to this new version.

Figure 3. The Upgradable From field of service design version 2.0.0 has been populated with version 1.0.0 indicating
version 2.0.0 is going to act as an upgrade design for service subscriptions originating from service design version 1.0.0

Upgradable service design

An upgradable service design is an existing version of a service design where service subscriptions originating from the

existing design can be upgraded to a different version of the existing service design. A service design is upgradable only

in the presence of an upgrade service design (a new version of the existing service design).

In the service design page of the Cloud Service Management Console, upgradable service designs have an Upgradable

label in the right corner.

 Page 9

Figure 4. The Upgradable label in the service design page

In the service design version page of the Cloud Service Management Console, upgradable service designs have an

Upgradable To field populated with the versions of the service design which can be used for upgrading service

subscriptions originating from it. Upgradable service designs also have an Upgradable label in the top right corner.

Figure 5. The Upgradable To field of service design version 1.0.0 has been populated with version 2.0.0 indicating service
subscriptions originating from version 1.0.0 are upgradable to version 2.0.0; An Upgradable label is also displayed in the
top right corner

 Page 10

Upgrade service offering

An upgrade service offering is a new version of a service offering created from an existing version of service offering that

is based on an upgrade service design. The upgrade service offering is used to create new subscriptions or upgrade

service subscriptions originating from the existing version of the service offering.

In the Overview tab of the Offerings area of Cloud Service Management Console, upgrade service offerings have

Upgradable From field populated with the version of the service offering that they are based on and are going to be

used for upgrading service subscriptions originating from that service offering version.

Figure 6. The Upgradable From field of service offering version 2.0.0 has been populated with version 1.0.0 indicating
version 2.0.0 is going to act as an upgrade offering for service subscriptions originating from service offering version
1.0.0

 Page 11

Upgradable service offering

An upgradable service offering is a version of a service offering where service subscriptions originating from it have to be

upgraded to a different version of the service offering. A service offering version is upgradable only in the presence of

upgrade service offerings.

In the Overview tab of the Offerings area of Cloud Service Management Console, upgradable service offerings have an

Upgradable To field populated with the versions of service offerings which are going to be used for upgrading service

subscriptions originating from the current version of the service offering. Upgradable service offerings also have an

Upgradable label in the top right corner. Upgradable service offerings also have an Update Available label indicating the

presence of upgrade service designs on which upgrade service offerings are based.

Note: Service subscriptions originating from an upgradable service offering can be upgraded to many version of upgrade

service offerings if there are multiple versions of upgrade service offerings.

Figure 7. The Upgradable To field of service offering version 1.0.0 has been populated with version 2.0.0 indicating
service subscriptions originating from version 1.0.0 are upgradable to version 2.0.0; An Upgradable label is also
populated in the top right corner

 Page 12

Upgradable service subscription

A service subscription is upgradable if the service subscription is in an Active state and there are upgrade service

offerings published into the same catalog as the service offering from which service subscription originated.

In the subscription overview in the Operations area of Cloud Service Management Console, an Upgrade Available label

indicates that the service subscription is upgradable. The subscription overview indicates that upgrades are available

through the Upgradable to field. Click the gear icon and select Upgrade to upgrade the service subscription.

Figure 8. An upgradable service subscription

Upgrading lifecycle state

A new Upgrading lifecycle state is used to facilitate the service instance upgrade process. The Upgrading lifecycle state

can be utilized for adding lifecycle actions to service components and resource offerings common to the upgrade and

 Page 13

upgradable service designs. These lifecycle actions make changes to an existing service component or resource offering

in a service instance during the upgrade process.

Figure 9. Upgrading lifecycle state

Lifecycle transition during upgrade of service instances

Just like ordering a subscription or modifying a subscription, the service instance undergoes a lifecycle transition by

executing various actions configured on components and resource offerings during the process of upgrading

subscriptions. Service instance lifecycle transition rules during an upgrade are different from those of ordering or

modifying a subscription. They can be summarized as follows:

 Actions configured in the Upgrading lifecycle state are executed for:

o existing service components in the service instance and

o existing and new resource offerings added to the existing service component.

 Actions configured in the Initializing, Reserving and Deploying lifecycle states are executed for service

components (and resource offerings bound to service components) which are new to the service instance.

The following figures depict changes made between upgradable and upgrade service designs followed by the lifecycle

transition in the service instance during the upgrade process.

 Page 14

Figure 10. Service design version 2.0.0 is an upgrade for service design version 1.0.0

Figure 11. During an upgrade to design version 2.0.0, actions present in the Upgrading lifecycle state are executed for
existing service components (and existing or new resource offerings bound to them) while actions present in the

Root

Comp
1

Comp
2

Comp
3

1 2
RO1

RO2

RO3

RO4

Service Design Version 1.0.0 Service Design Version 2.0.0

Root

Comp
1

Comp
2

Comp
3

1 2

RO1

RO2

RO3

RO4

Comp
5

Comp
6

RO6

New property has been added to Comp 1
New property has been added to Comp 3
RO 3 in Comp 3 has a new OO flow in Upgrading
lifecycle state
New RO 6 has been added to Comp 2
Comp 5 and Comp 6 are new components

Changes in Service Design Version 2.0.0

Comp
4

Comp
4

RO5
RO5

3 3

RO7

RO8

 Page 15

Initializing, Reserving and Deploying lifecycle states are executed for only new service components (and resource
offerings bound to them).

Service Instance with SD Version 1.0.0

Deployed
Service Instance with SD Version 2.0.0

Upgrade
to version 2.0.0

DeployedRoot

Comp
1

Comp
2

Comp
3

1 2

RO1

RO2

RO3

RO4 Comp
4

RO5

Deployed

Deployed Deployed

Root

Comp
1

Comp
2

Comp
3

1 2
RO1

RO2

RO3

RO4

Comp
5

Comp
6

RO6

Comp
4

RO5

Upgrading

Upgrading

3

3
Upgrading

Upgrading

Upgrading

Initializing, Reserving,
Deploying

RO7

RO8

Initializing, Reserving,
Deploying

Configure a service design

The first step to upgrade a service instance is to configure an upgrade service design:

1. Create an upgrade service design.

2. Edit an upgrade service design.

Additional tasks for service design upgrades include the following:

 View upgrade paths.

 Delete an upgrade path.

 View differences between design versions.

Create an upgrade service design

There are two ways to create an upgrade service design for upgrading service instances:

 Create a new service design version from an existing published design version.

 Establish an upgrade relationship between two design versions using the Upgradability tab.

Create a new service design version

To create a new service design version from an existing published version:

 Page 16

1. Open the existing design, the design for which you wish to create an upgrade design. This design must be in a

published state.

2. Click the gear icon and select Create New Version.

3. Enter a new version (required) and select Yes for Upgradable from <base design version>?.

4. Click Save. This creates an upgrade design and establishes an upgrade path or relationship between the two

designs.

Establish an upgrade path between two design versions

The second way to create an upgrade service design is to establish an upgrade path or relationship between two

versions of a service design:

1. Open the design that is to be the upgrade service design. The selected version of the service design must be

cloned from the existing design from which the upgrade path will be established.

2. Select the Upgradability tab and click Add. This is only possible if an upgrade is not available from the selected

version of the service design to a different version of the service design.

 Page 17

3. Select a design version and add a description of the changes between the two designs. Only design versions

which are in a published state will be selectable in the dialog.

4. Click Add. This establishes an upgrade relationship between the two designs. If the current version of a service

design violates upgradability rules, an upgrade relation will not be established between the designs. An error

message is displayed and additional details of the error are found in the CSA logs.

Edit an upgrade service design

After the upgrade service design is created, changes can be made to it and its subscriber options. However, an upgrade

service design has restricted editability and actions, and a message with this restriction is displayed in its service design

version page. The sequenced designer and subscriber options interfaces automatically restrict changes that are not

 Page 18

allowed. Changes which are not allowed on upgrade service designs are described in the next section. The upgrade

service design must be published before an upgrade service offering can be created.

Figure 12. Upgrade version of service design has editability restrictions

Restrictions on editing upgrade service designs

The following is a list of items and descriptions of functions that are restricted:

 Resource Offering Properties

o Deleting resource offering properties - The properties of a resource offering cannot be deleted if the

resource offering is linked to a service component that is part of an upgrade service design. That is, if a

resource offering has been configured for a resource binding of a service component that is part of an

upgrade service design, the properties of the resource offering cannot be deleted.

 Service Components and Properties

o Deleting a service component - A service component cannot be deleted if it is part of an upgrade design

and the component originated in the upgradable design. A service component can be deleted from the

current design if the component originated in the current design (the component was initially added to

the current design).

o Editing service component attributes: Component Order and Pattern - The Component Order and

Pattern attributes of a service component cannot be edited if the component originated in an

upgradable design. The Component Order and Pattern attributes of the component are editable if the

component originated in the current design.

o Deleting a service component property - A service component property cannot be deleted if it is part of

an upgrade design and the property originated in the upgradable design. A service component property

 Page 19

can be deleted from the current design if the service component property originated in the current

design (the custom service component property was initially added to the current design).

o Editing a service component property: Name - The Name attribute of a component property cannot be

edited if the component is part of an upgrade design and originated in an upgradable design. The Name

attribute of a component property can be edited if the component property originated in the current

design.

 Service Component Resource Bindings and Properties

o Deleting a resource binding - A resource binding in a service component cannot be deleted if it is part of

an upgrade design and the resource binding originated in the upgradable design. A resource binding can

be deleted from a component in a design if the resource binding originated in a component of the

current design (the resource binding was initially added to a component of the current design).

o Editing a resource binding attribute: Binding Order - The Binding Order of a service component resource

binding cannot be edited if the resource binding is part of an upgrade design and originated in an

upgradable design. The Binding Order attribute of a resource binding can be edited if the resource

binding originated in a component of the current design.

o Adding or deleting measurable properties - A measurable property of a resource binding in a service

component cannot be added or deleted if it is part of an upgrade design.

 Subscriber Option Sets

o Deleting a subscriber option set - Subscriber option sets cannot be deleted if the design is part of an

upgrade path and the option sets were added to the design to which this design is an upgrade for. If an

option set has been added to the current design (whether or not the design is part of an upgrade path),

those option sets can be deleted.

 Subscriber Options and Properties

o Deleting a subscriber option - Subscriber options cannot be deleted if the design is part of an upgrade

design and the options originated from upgradable design. If an option has been added to the current

design (whether or not the design is part of an upgrade path), those options can be deleted.

o Deleting a subscriber option property - Subscriber option properties cannot be deleted if the design is

part of an upgrade design and option properties originated from upgradable design. If an option

property has been added to the current design (whether or not the design is part of an upgrade path),

those option properties can be deleted.

o Editing a subscriber option property: name - The subscriber option property name cannot be edited if

the design is part of an upgrade design and option properties originated from upgradable design. If an

option property has been added to the current design (whether or not the design is part of an upgrade

path), the option property name can be edited.

o Editing a subscriber option property: target binding - Target bindings cannot be edited if the design is

part of an upgrade design and bindings originated from upgradable design. If a target binding has been

added to the current design (whether or not the design is part of an upgrade path), those bindings can

be deleted.

 Page 20

View upgrade paths

The Upgradability tab displays the versions of service designs that can be upgraded to the current version as well as the

versions of service designs to which the current version can upgrade.

Figure 13. The Upgradability tab in the service design version page of the Sequenced Designs area

 Page 21

Edit upgrade path description or delete an upgrade path

In the Upgradability tab of the service design version page, on the left under Versions that can be upgraded to <current

version>, click the gear icon and select to edit the upgrade path description of what has changed between the two

designs or delete the upgrade path.

Figure 14. Upgradability tab options to edit the description of an upgrade path or delete an upgrade path

Deleting the upgrade path only removes the upgrade path between the two designs. It does not delete the upgrade

service design. An upgrade path may not be deleted if an upgrade service offering that upgrades the prior design version

to the current version exists. A warning will appear if such an attempt is made.

 Page 22

View differences between design versions

Upon establishing an upgrade path between different versions of service designs, changes made to the upgrade service

design are viewable. In the Upgradability tab of the service design version page, on the left under Versions that can be

upgraded to <current version>, click View Differences.

Figure 15. Changes made to the upgrade service design compared to the upgradable service design

Configure a service offering

The second step to upgrade a service instance is to configure an upgrade service offering:

1. Create an upgrade service offering.

2. Edit an upgrade service offering.

Additional tasks for service offering upgrades include the following:

 View upgrade paths.

 Edit upgrade path description or delete an upgrade path.

 Page 23

Create an upgrade service offering

After an upgrade service design has been created and published, service offerings created from the original (upgradable)

service design have an Update Available label visible in the top right corner for a selected offering. This indicates that an

upgrade service offering can be created from the original service offering.

Figure 16. Update Available label indicating that an upgrade offering can be created from this service offering

 Page 24

There are two ways to create an upgrade service offering for upgrading service instances:

1. Create a new service offering version

2. Establish an upgrade path between two offering versions

Once a service offering has an upgrade path established to a new upgrade version, an Upgradable label appears.

Figure 17. Service offering version that has an available upgrade

Figure 18. Service offering version list that shows an available upgrade

 Page 25

Create a new service offering version

To create a new service offering version from an existing version:

1. Open the existing offering, the offering for which you wish to create an upgrade offering. This offering display

the Update Available label.

2. Click the gear icon and select Create New Version.

3. Enter a new version (required), select Yes for Upgradable from <selected version>, and select the upgrade

service design. Click View Service Design Upgrade Description to display the description of the upgrade path.

This link displays only if the upgrade description is already defined in the designer.

4. Click Create. This creates an upgrade offering and establishes an upgrade path or relationship between the two

offerings.

 Page 26

Establish an upgrade path between two offering versions

The second way to create an upgrade service offering is to establish an upgrade path or relationship between two

versions of a service offering:

1. Open the offering that is to be the upgrade service offering. The selected version of the service offering must be

cloned from the existing offering from which the upgrade path will be established.

2. Select the upgradability tab and click Add.

Offering versions which can act as upgradable offerings can be selected in the dialog.

3. Select an offering version and add a description of the changes between the two offerings.

4. Click Add. This establishes an upgrade path between the two offerings.

 Page 27

Note: Establishing an upgrade path between offering versions using these steps does not restore subscriber

options and pricing changes made to the upgradable offering.

Edit an upgrade service offering

An upgrade service offering created from an existing version of a service offering has pricing changes and option model

changes preserved from the previous version of service offering. New prices must be added and options model

customizations must be completed for any new option sets, options or option properties added to the upgrade service

design.

Note: If the original service offering has a customized display name, a change in the display name of an option set,

option or option property of an upgrade service design is not reflected in the upgrade service offering. Service offering

subscriber option customizations are given precedence over service design subscriber option changes.

Note: Creating an upgrade service offering from an existing service offering preserves pricing from the original service

offering. Additional pricing changes, such as modifying existing prices and adding new prices to newly added options or

option properties, can be made after creating the upgrade service offering. Only the Service Operations Manager can

upgrade service subscriptions, therefore a subscriber will be unaware of any cost change until after the upgrade process

has started.

View upgrade paths

The Upgradability tab displays the versions of service offerings that can be upgraded to the current version as well as

the versions of service offerings to which the current version can upgrade.

Figure 19. The Upgradability tab in the service offerings version page of the Offerings area

 Page 28

Edit upgrade path description or delete an upgrade path

In the Upgradability tab of the service offering version page, on the left under Versions that can be upgrade to <current

version>, click the gear icon and select to edit the upgrade path description of what has changed between the two

offerings or to delete the upgrade path. The Service Operations Manager uses the description to understand what has

changed in the upgrade offering before upgrading service instances.

Figure 20. Upgradability tab options to edit the description of an upgrade path or delete an upgrade path

Deleting the upgrade path only removes the upgrade path between the two offerings. It does not delete the upgrade

service offering.

Publish an upgrade service offering

The third step to upgrade a service instance is to publish the upgrade service offering. The upgrade service offering must

be published into the same catalog as the upgradable service offering from which the service subscriptions were

created.

Note: If the upgrade service offering is not published, the service subscription cannot be upgraded.

 Page 29

Upgrade a subscription

The Operations area of the Cloud Service Management Console displays service subscriptions by organization and,

depending on the tab selected, subscriptions by users or service offerings.

Select a user or offering to view a list of service subscriptions. A service subscription that has an upgrade available is

clearly indicated through an Upgrade Available label.

Figure 21. Subscription list displaying that upgrades are available for service subscriptions

 Page 30

Selecting a service subscription that has an upgrade available displays additional information, such as available upgrade

versions.

Figure 22. Service subscription view displaying available upgrade versions

 Page 31

To upgrade a subscription:

1. Click the gear icon and select Upgrade.

 Page 32

2. Select the version of the service offering to which to upgrade. The Upgrade Subscriptions dialog displays the cost

of the service subscription after upgrade and a description of the upgrade service offering.

 Page 33

3. Click Upgrade. The service subscription status changes from Active to Pending and then the service instance

state changes from Online to Upgrading. During this process, the service subscription displays the new service

offering selected for upgrade as the offering from which the selected service offering originated.

About the service subscription upgrade process

 When a service subscription upgrade is attempted, the following validations are performed prior to submitting

the service request that initiates the upgrade:

o Subscription status is Active

o Service Instance state is Online or Public Action Failed

o Subscription does not have pending requests (such as cancel, modify or upgrade subscriptions)

o Service offerings (upgradable, upgrade) are published, from the same catalog, and an upgrade path

exists between them

o Service designs (upgradable, upgrade) are published and an upgrade path exists between them

 The subscriber is notified about various events of the subscription upgrade process such as the start of the

upgrade process, completion of the upgrade, failure during the upgrade and subscription cost change during the

upgrade.

 The subscription reflects the selected upgrade service offering version as the service offering underlying the

subscription. If the subscription upgrade results in a new cost for the subscription, the new cost is reflected for

the service subscription.

 Page 34

 If the subscriber selected certain options during the creation or modification of the subscription, these

selections are always preserved. New options or changes in the default option selection in the upgrade service

offering do not affect the selected options.

 If the subscriber entered values for subscriber option properties during subscription creation or modification,

these values are preserved in the service instance component properties after subscription creation or

modification. Such values are always preserved after the subscription upgrade process, both in subscription

option properties and also in the service instance component properties.

 During the creation of an upgrade service design, values of subscriber option properties that are not user

editable could have changed. Such changes in subscription option property values are reflected in the service

instance component properties after service instance has been upgraded.

Behavior of Dynamic Properties during Service Instance Upgrade

This section provides details on how the SIU feature behaves when there are existing subscriber option properties that

are dynamic and depend on the Portal /Client tokens (and) when new dynamic properties are added to the upgraded

design.

 The property having dynamic JSPs in the Subscriber options of the Initial design

During an upgrade, the JS/JSP will be executed initially during the calculation of the price and later during the

upgrade process.

The client tokens will be resolved properly and sent to the JS/JSP when the upgrade transition is triggered.

Portal tokens will not be resolved (if needed the JS/JSP will have to be modified so that it will return a default set

of values or empty values) .They need not be the one that were selected during the ordering of the subscription

from the Marketplace Portal for the first time and can be a default value that is to be used if the incoming portal

token is not resolved in the JS/JSP.

Dynamic option scripts are executed to ensure the calculation of any change in the pricing for the selected

option. If the selected option is unavailable during the execution of the JS/JSP, then the price will not change

and upgrade will continue with the previously selected values.

 A new dynamic list property added to the selected option within an option set (or) a new dynamic property

added to the option set (or) existing static properties converted to dynamic property.

The associated JS/JSP for the new dynamic properties will not be executed. The default value of the property on

the component to which the newly created dynamic property in subscriber options, is target bound, will be

taken during the upgrade. Since the JS/JSP is not executed, the pricing will not be accounted for and is currently

the limitation. Only after doing a modification from the portal side to select the specific JS/JSP value on the

upgraded subscription, the price will be added.

 Page 35

Examples to illustrate this:

Scenario 1: A new dynamic property added in the upgraded design

Design 1.0:

Component1 Property1 – defaultVal1

optionProperty1 b-
dynamicJSP1

Option Model

Option Set1

Option1

optionProperty1 a-
dynamicJSP

Client
Token

Design 2.0:

Component1

Property1 – defaultVal1

Option Model

Property2 – defaultVal2
optionProperty1-

dynamicJSP2

Option1

Option Set2

optionProperty1 b-
dynamicJSP1

Option Set1

Option1

optionProperty1 a-
dynamicJSP

Client
Token

Option Set2

The design 1.0 has a dynamic property (optionProperty1b) that has a JSP that takes a client token. The initial

subscription is created from design 1.0 and the Property1 takes the value R001. In the upgraded design, there is a new

 Page 36

dynamic property (tied to dynamicJSP2) in the subscriber option. It is target bound to a property in Component1 that

has a default value – defaultVal2.

Expected behavior on upgrade:

 DynamicJSP1 will be executed and the client token will be resolved. The updated value of price, if any, for the

option is updated.

 DynamicJSP2 will not be executed. The upgrade will proceed with the value defaultVal2 for the Property2 of

Component1.

Result:

Component1

Property1 – R001

Property2 – defaultVal2

Scenario 2: Exiting Design has Portal Tokens

Design 1.0:

Component1 Property1 – defaultVal1

optionProperty1 b-
dynamicJSP1

Option Model

Option Set1

Option1

optionProperty1 a-
dynamicJSP Client

Portal
Token

Design 2.0:

Component1

Property1 – defaultVal1

Property2 – defaultVal2
optionProperty1-

dynamicJSP2

Option1

Option Set2

optionProperty1 b-
dynamicJSP1

Option Set1

Option1

optionProperty1 a-
dynamicJSP1 Client/

Portal
Token

Option Set2

 Page 37

The initial design has Client and Portal token for dynamicJSP1. The initial subscription created from MPP has the values

set to R001 for Property1 of Component1.

In the upgraded design, there is a new dynamic property (tied to dynamicJSP2) in the subscriber option. It is target

bound to a property in Component1 that has a default value – defaultVal2.

Expected Behavior:

 DynamicJSP1 will be executed. Client tokens are resolved. But Portal Tokens were not resolved and DynamicJSP1

returned empty values.

In such case - The originally selected values R001 will be selected and upgrade will continue with the value of

R001 for Property1 for Component1.

 DynamicJSP2 will not be executed. The upgrade will proceed with the value defaultVal2 for the Property2 of

Component1.

 Result:

Component1

Property1 – R001

Property2 – defaultVal2

Use cases for constructing upgrade service designs

CSA ships with sample designs to demonstrate use cases for upgrading service instances. This section discusses upgrade

use cases which include changes added to new versions of service designs. We will also discuss how to incrementally add

features to service instances by upgrading them from one version of a service design to another.

The service design we will be using for discussion is named vCenter Compute – SIU. This design has four versions: 1.0.0,

2.0.0, 3.0.0 and 4.0.0. Version 2.0.0 is an upgrade for version 1.0.0, version 3.0.0 is an upgrade for version 2.0.0 and

version 4.0.0 is an upgrade for version 3.0.0.

Figure 23. Sample service design to demonstrate upgrading service instances

Note: These service designs were cloned from one another but do not have an upgradability relationship established. An

upgrade relationship needs to be established between the higher version and lower version of the service design from

 Page 38

the higher version of service design (see Establish an upgrade path between two design versions for more information).

The lower version of the service design should be published before establishing this relationship.

Version 1.0.0 of this service design deploys virtual machines using the VMWare vCenter resource provider. A VMWare

vCenter resource offering attached to the server component has OO flows defined to deploy the server. There are three

compute options (small, medium and large) and option properties (Number of CPUs and Memory) that are tied to

corresponding server component properties. Server components from the service instances deployed through this

service design have public actions to execute (Start Server, Stop Server, Restart Server and Suspend Server).

Use case 1 – add monitoring capability using HPE SiteScope to server components in service instances

To provide additional capability such as monitoring to existing virtual machines during an instance upgrade involves the

following changes to the upgrade service design:

 Add a new resource offering to existing server components that includes provider selection actions in the

‘Upgrading Pre-Transition’ state. Then add actions to deploy monitors in the ‘Upgrading Transition’ lifecycle

states. Similar provider selection actions for resource bindings need to be added to the resource offering in the

‘Deploying’ lifecycle state for deploying monitors to virtual machines deployed through the new version of the

service design.

 Add a new component property that specifies the monitor to be applied to the virtual machines.

 Add an option set with one or more options where the options have a property with a default value bound to

the component property that specifies the monitor to be applied. One of the options needs to be the default

option that is applied for upgrading service instances.

Version 2.0.0 of the vCenter Compute – SIU service design provided with CSA is an upgrade for version 1.0.0. It provides

monitoring capability (using HPE SiteScope) to virtual machines either deployed from version 1.0.0 of the service design

through an upgrade process or to virtual machines deployed through service instances originating from version 2.0.0.

A new resource binding to the HPE SiteScope (SiteScope) resource offering has been added to the Simple Compute

Server component in version 2.0.0 of the service design. The resource binding provides monitoring capability to virtual

machines. As you will see from the resource binding, there are Build Resource Provider List and Select Resource

Provider actions configured in two different locations. The first is located under the Provider Selection tab of the

resource binding and the second is located under the Upgrading Pre-Transition lifecycle state of the resource offering.

The first location is used for SiteScope provider selection when deploying new service instances from version 2.0.0 of the

service design. Actions configured in the Upgrading Pre-Transition lifecycle state are used for SiteScope provider

selection when upgrading service instances from version 1.0.0 of the service design. Similarly, you will also observe that

a Simple Compute Monitor – Deploy action is configured in the Deploying Transition and Upgrading Transition lifecycle

states. The action in the Deploying Transition lifecycle state deploys the SiteScope monitor to virtual machines based on

virtual machines deployed directly from version 2.0.0 of the service design. The action in the Upgrading Transition

lifecycle state deploys the SiteScope monitor to virtual machines when upgrading service instances from version 1.0.0 of

the service design.

Other changes you will observe in version 2.0.0 of the service design include a new sitescopeTemplate property on the

Simple Compute Server component which is utilized for passing an appropriate SiteScope template value to an OO flow

deploying the template. This service design also has a new Monitoring Levels option set with two options (Gold and

Silver) where Sitescope Template Name option property is bound to the sitescopeTemplate component property. Since

Silver is the default option selected, at the end of upgrading service instances, the virtual machines have a Silver

template applied for monitoring purposes. After the upgrade process, subscribers can modify their subscriptions to have

the ability to select the Gold option for applying the Gold template for monitoring virtual machines using SiteScope.

 Page 39

Use case 2 – deploy applications using HPE Server Automation to server components in existing service

instances

To add applications to existing virtual machines during an instance upgrade involves the following changes to the

upgrade service design:

 Add one or more new service components that represent applications to upgrade service design under existing

service components.

 Add resource bindings to application-based resource offerings for deploying applications.

 Add option sets where option properties from underlying options are bound to the new application component

properties in the design.

Version 3.0.0 of the vCenter Compute – SIU service design provided with CSA is an upgrade for version 2.0.0. It deploys

applications using HPE Server Automation (SA) to virtual machines deployed from version 2.0.0 of the service design

through the upgrade process. This design version can also be used for provisioning applications by creating subscriptions

using this design.

Note: Since service instances from version 1.0.0 of the service design can be upgraded to version 2.0.0 of service design

and service instances from version 2.0.0 of the service design can be upgraded to version 3.0.0 of the service design, the

service instance upgrade process can be utilized for rolling out services in an incremental manner.

Note: In version 3.0.0 of the service design, the existing binding to the SiteScope resource offering does not have any

actions in the Upgrading lifecycle state as compared to version 2.0.0. Since service instances representing design version

2.0.0 already have SiteScope monitoring deployed, on upgrade from 2.0.0 to 3.0.0, it is not intended to run the

SiteScope-based OO flows again. Since deletion of resource bindings is not allowed on upgrade service designs, resource

offering replacement functionality has been utilized to replace an existing resource offering with another resource

offering that does not have actions in the Upgrading lifecycle state.

In version 3.0.0 of the service design, a new resource binding to an SA resource offering has been added to the Simple

Compute Server component for installing an SA agent to deployed virtual machines. This resource binding creates

instances from this design or by upgrading instances from version 2.0.0 of the service design. Actions have been added

to the Upgrading and Deploying lifecycle states to support SA agent installation when upgrading service instances from

version 2.0.0 and also to support direct deployment.

Additionally a new service component, Software (chef solo), has been added to the Simple Compute Server component

that represents the application component. A resource binding to a different SA resource offering has been added to

this service component for deploying applications. Since Software (chef solo) is a new component and since actions in

the Initializing, Reserving and Deploying lifecycle states are executed for this component, all the actions for the SA

resource offering have been added to these lifecycle states.

A new option set with an option that has properties related to application deployment has been added to this service

design and these option properties are bound to component properties. Also note that the option properties have

default values so that they are used as the default for upgrading instances.

After upgrading service instances from version 2.0.0 of service design, applications are deployed to the service instances

based on the upgrade design version 3.0.0.

 Page 40

Use case 3 – provide additional public actions to service instance components

This is a very simple use case and the steps to create the upgrade service design is to add additional public actions to

existing service components or resource offerings bound to the service components in the Deployed lifecycle state.

Version 4.0.0 of the vCenter Compute – SIU service design provided with CSA is an upgrade for version 3.0.0. It provides

additional public actions to the server-based components. A VMWare vCenter resource offering bound to the Simple

Compute Server component has an additional public action named Refresh Server Info configured at the Deployed

lifecycle state.

After the service instance upgrade, the server components display an additional public action to update server

information.

Note: In version 4.0.0 of the service design, resource offerings bound to service components do not have actions in the

Upgrading lifecycle state. Resource offerings with actions in the Upgrading lifecycle state (of service design version 3.0.0)

were replaced with resource offerings without actions in the Upgrading lifecycle state. This was done so that during

upgrade, actions present in the Upgrading lifecycle state in version 3.0.0 are not executed again. Actions configured in

the Upgrading lifecycle state can also be re-runnable (meaning that after upgrade, running these actions do not have

any effect on the service instance) instead of replacing resource offerings.

Use case 4 – upgrade an application deployed through a sequenced design

CSA does not provide a sample for this use case. However, it can be achieved by adding actions to upgrade applications

in the Upgrading lifecycle state. Inputs, such as application version, can be made available through an option model

property bound to application components.

Use case 5 – configure additional firewall rules or apply patches to virtual machines deployed through a

sequenced design.

Similar to use case 4, this use case can be achieved by configuring additional options and actions related to adding

firewall rules or applying patches to the Upgrading lifecycle state. Inputs such as firewall ports or list of patches can be

made available through an option model property bound to server components. Subscribers can also apply firewall rules

or patches to virtual machines by themselves if additional actions related to adding new firewall rules or applying

patches are added to Modifying lifecycle state.

Use case 6 – fix problems with modifying or cancelling an existing subscription

This use case fixes problems in an existing subscription by correcting, adding or removing actions from the Modifying,

Un-deploying, Un-reserving or Un-initializing lifecycle states of components or resource offerings bound to the

components.

Failure handling when upgrading a service instance

A service subscription upgrade can fail when an error occurs during the upgrade process. For example, an error could

occur during the execution of an OO flow that is part of the Upgrading lifecycle state. When an error occurs during the

upgrade process, the service subscription state remains Active, and the service instance state is set to Upgrade Failed.

 Page 41

Figure 24. When a subscription upgrade fails, the subscription status is Active and the instance status is Upgrade Failed

In the service subscription view of the Operations area in the Cloud Service Management Console, select the Topology

tab to view the service instance topology and identify the node within the topology hierarchy that is the root cause of

the error. In the following example, there is an error upgrading the resource offering.

Figure 25. Service instance topology view of an upgrade failure during the upgrade of a resource offering

When an upgrade failure occurs, the Service Operations Manager can work to correct the error condition. For example,

the Service Operations Manager can correct the OO flow, and re-attempt the service subscription upgrade from the

Operations area of the Cloud Service Management Console. The service subscription that failed to upgrade can also be

cancelled either by the subscriber or the Service Operations Manager.

Note: When an upgrade failure occurs, the lifecycle transition stops at the action that failed during the upgrade process.

When the subscription upgrade process is re-attempted, the lifecycle transition of the service instance continues where

 Page 42

it stopped during the original upgrade process and the action that failed during the original upgrade process is re-

executed.

Token to indicate upgrade retry

There is token that can be passed as a parameter to the OO flow called ACTION_EXECUTION_RETRY. If the OO flow

supports that input parameter, then the parameter’s input value will be set to true or false, depending upon if the action

is being executed for the first time (ACTION_EXECUTION_RETRY = false), or if the action is being re-tried

(ACTION_EXECUTION_RETRY = true). This allows the OO flow to be written such that step(s) can be re-executed. There is

no limit to the number of times a failed service subscription upgrade can be re-attempted. Once the failure is corrected,

the subsequent service subscription upgrade should be successful.

Figure 26. Click the gear icon and select Retry Upgrade to retry the upgrade

REST API to upgrade a service subscription

The REST API for performing a single service subscription upgrade is an HTTP POST request:

https://<FQDN or IP address of CSA host>:<CSA port>/csa/api/service/subscription/<service

subscription id>/upgrade/<upgrade service offering id>

For example:

https://mycsasystem.mydomain.com:8444/csa/api/service/subscription/90cefa215212e353015214027a9b1c1

5/upgrade/90cefa215212e35301521401da251ba4

The JSON response contains the service request id:

{

"id" : "90cefa215212e3530152140316f91c5a"

}

Upgrading multiple subscriptions originating from the same service offering

The REST API mentioned in the previous section can be used with other CSA REST API(s) to upgrade multiple or all

service subscriptions from the same service offering (sometimes referred to as bulk upgrading).

In the Operations area of the Cloud Service Management Console, subscriptions can be filtered by organization. Within a

selected organization, the subscriptions can be filtered by users or by the service offering on which the subscriptions are

based. REST APIs can also be used to filter subscriptions in this manner. For example, if you wanted to upgrade a service

offering for a specific upgradable version for which multiple outstanding active subscriptions exist across multiple users,

do the following:

 Page 43

1. Retrieve the subscription(s) that are based on an upgradable service offering using an HTTP GET request:

https://<FQDN or IP address of CSA host>:<CSA

port>/csa/api/service/subscription/organization/<organization id>/offering/<upgradable

service offering id>

For each subscription that is based on the specified upgradable service offering within the specified

organization, the JSON response contains the service subscription id, service subscription status, and if an

upgrade is available. For example:

{

 …

"@self" : "/csa/api/service/subscription/90cefa215218184601521856d2c10089",

 …

"csa_subscription_status" : "ACTIVE",

 …

"csa_upgrade_available" : true,

 …

}

2. Retrieve the upgrade service offering id for each service subscription using an HTTP GET request:

https://<FQDN or IP address of CSA host>:<CSA port>/csa/api/service/subscription/<service

subscription id>/upgrade-offerings

For example:

https://mycsasystem.mydomain.com:8444/csa/api/service/subscription/90cefa215218184601521856

d2c10089/

upgrade-offerings

The JSON response contains the upgrade service offering id and version:

{

 …

"upgrades_from" : [{

"upgrade_id" : "90cefa215218184601521850b8560038",

 …

"upgrade_version" : "2.0.0"

 }]}

 …

}

3. Upgrade multiple service subscriptions based on an upgradable service offering to an upgrade service offering

using the REST API mentioned in the previous section (an HTTP POST request) in a loop. An example of the REST

API:

https://mycsasystem.mydomain.com:8444/csa/api/service/subscription/90cefa215218184601521856

d2c10089/

upgrade/90cefa215218184601521850b8560038

 Page 44

Send documentation feedback

If you have comments about this document, you can send them to docs.feedback@microfocus.com.

Legal notices

Warranty

The only warranties for Seattle SpinCo, Inc. and its subsidiaries ("Seattle") products and services are set forth in the express warranty statements accompanying such

products and services. Nothing herein should be construed as constituting an additional warranty. Seattle shall not be liable for technical or editorial errors or

omissions contained herein. The information contained herein is subject to change without notice.

Restricted rights legend

Confidential computer software. Except as specifically indicated, valid license from Seattle required for possession, use or copying. Consistent with FAR 12.211 and

12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under

vendor's standard commercial license.

Copyright notice

© Copyright 2011-2018 EntIT Software LLC, a Micro Focus company

Trademark notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks of OpenStack Foundation in the United States and

other countries, and are used with the OpenStack Foundation’s permission.

Support

Visit the Hewlett Packard Enterprise Software Support Online web site at https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to

manage your business. As a valued support customer, you can benefit by using the support website to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Access the Software Licenses and Downloads portal

 Download software patches

 Access product documentation

 Manage support contracts

 Look up Micro Focus support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require you to register as a Passport user and sign in. Many also require a support contract.

You can register for a Software Passport through a link on the Software Support Online site.

To find more information about access levels, go to https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

To check for recent updates or to verify that you are using the most recent edition of a document, contact your Client Director.

mailto:docs.feedback@microfocus.com
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

	Introduction
	Service instance upgrade process
	Concepts
	Upgrade service design
	Upgradable service design
	Upgrade service offering
	Upgradable service offering
	Upgradable service subscription
	Upgrading lifecycle state
	Lifecycle transition during upgrade of service instances

	Configure a service design
	Create an upgrade service design
	Create a new service design version
	Establish an upgrade path between two design versions

	Edit an upgrade service design
	Restrictions on editing upgrade service designs

	View upgrade paths
	Edit upgrade path description or delete an upgrade path
	View differences between design versions

	Configure a service offering
	Create an upgrade service offering
	Create a new service offering version
	Establish an upgrade path between two offering versions

	Edit an upgrade service offering
	View upgrade paths
	Edit upgrade path description or delete an upgrade path

	Publish an upgrade service offering
	Upgrade a subscription
	About the service subscription upgrade process
	Behavior of Dynamic Properties during Service Instance Upgrade

	Use cases for constructing upgrade service designs
	Use case 1 – add monitoring capability using HPE SiteScope to server components in service instances
	Use case 2 – deploy applications using HPE Server Automation to server components in existing service instances
	Use case 3 – provide additional public actions to service instance components
	Use case 4 – upgrade an application deployed through a sequenced design
	Use case 5 – configure additional firewall rules or apply patches to virtual machines deployed through a sequenced design.
	Use case 6 – fix problems with modifying or cancelling an existing subscription

	Failure handling when upgrading a service instance
	Token to indicate upgrade retry

	REST API to upgrade a service subscription
	Upgrading multiple subscriptions originating from the same service offering

	Send documentation feedback
	Legal notices
	© Copyright 2011-2018 EntIT Software LLC, a Micro Focus company

