
HPE SOA Registry Foundation
Software Version: 10.04
Windows and Linux Operating System

Product Documentation

Document Release Date: July 2017
Software Release Date: July 2017

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© 2003-2017 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HP Passport and to sign in. To register for an HP Passport ID, click Register on the HPE Software Support site or click Create an
Account on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.

Support
Visit the HPE Software Support site at: https://softwaresupport.hpe.com/.

Most of the support areas require that you register as an HP Passport user and to sign in. Many also require a support contract. To register for an HP Passport ID, click
Register on the HPE Support site or click Create an Account on the HP Passport login page.

To findmore information about access levels, go to: https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

HPE Software Solutions Now accesses the HPSW Solution and Integration Portal website. This site enables you to explore HPE Product Solutions tomeet your business
needs, includes a full list of Integrations between HPE Products, as well as a listing of ITIL Processes. The URL for this website is
https://softwaresupport.hpe.com/km/KM01702731.

Product Documentation

HPE SOA Registry Foundation (10.04) Page 2 of 642

https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
https://softwaresupport.hpe.com/km/KM01702731

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or read the online help in PDF
format. Because this content was originally created to be viewed as online help in a web browser, some topics may not be formatted properly. Some interactive topics may not
be present in this PDF version. Those topics can be successfully printed from within the online help.

HPE SOA Registry Foundation (10.04) Page 3 of 642

Contents
Chapter 1: Read This First 17

HPE SOA Registry Foundation Features Overview 17
Release Notes 19

Known Issues 19
Change Log 21

Supported Platforms 31
Specifications 32
Document Conventions 32
Documentation Updates 33
Legal 34

Notices 34
Chapter 2: Installation Guide 36

System Requirements 37
Hardware 37
Java™ Platform 38
Relational Database 38

Installation 38
Command Line Options 39
Installation Panels 39

Welcome Panel 40
License Panel 41
Installation Type 42
Installation Directory 43
SMTP Configuration 44
Set Up Administrator Account 45
Database Settings 46

Database Creation Method 46
Select Database 48
Optional JDBC Driver 49
Authentication Account Provider 50

Product Documentation

HPE SOA Registry Foundation (10.04) Page 4 of 642

Direct Deployment 51
Server Configuration Settings 52
Confirmation and Installation Process 54

Confirmation Panel 54
Installation Process Panel 55

Finish 55
Installation Summary 56

Directory Structure 56
Registry Endpoints 57
Pre-Installed Data 59

Command Line Scripts 59
Serverstart 59
serverstop 59
server 60
Setup 60
Signer 60
register 61
SoapSpy 61
PStoreTool 61
env 61

Reconfiguring After Installation 62
Server Properties 63
Windows Services 65
Logs 65
Troubleshooting 66

Server Configuration 67
SMTP Configuration 69
Change Server URLs 72

SAP Integration 77
Database Installation 80

Database Creation Method 81
Select Database Type 83
Preconfigured HSQL 84
Oracle 85
MSSQL 2005 or 2008 86

Product Documentation

HPE SOA Registry Foundation (10.04) Page 5 of 642

JDBC Driver 88
Account Backend 89
Multilingual Data 90
JDBC Drivers 91

External Accounts Integration 92
LDAP 94

LDAP with a Single Search Base 98
LDAP with Multiple Search Bases 103
Multiple LDAP Services 105
LDAP Over SSL/TLS 106
LDAP over SSL With Mutual Authentication 107
LDAP Configuration Examples 109

Custom (Non-LDAP) 119
Deployment to an Application Server 120

Creating a Web Application Archive (WAR,EAR) 120
Weblogic 124

Creating WebLogic Domains Using the Configuration Wizard 127
WebSphere 144
JBoss 149

Cluster Configuration 157
Cluster operation 157
Cluster installation 160
Setting Up Security 161
WebLogic Specific Configuration for Use with Cluster 162

Authentication Configuration 165
HTTP Basic 165
Netegrity SiteMinder 167
SSL Client authentication 169
J2EE Server Authentication 172
Internal SSL Client Authentication Mapping in J2EE 173
Disabling Normal Authentication 174
Consoles Configuration 175
Outgoing Connections Protected with SSL Client Authentication 176

Migration 177
Migration During Installation 177

Product Documentation

HPE SOA Registry Foundation (10.04) Page 6 of 642

Migration After Installation 180
Backup 183

Backup HPE SOA Registry Foundation 183
Restore HPE SOA Registry Foundation 186

NT Service Support 189
Installation 189
Starting and Stopping 190
Logging 191
Logging Customization 191

Message Priority Settings 191
Log File Properties 191
Switching to NT Log 191
Using Other Log4J Appenders 193

Customizing 193
NT Service Name Change 193
JVM Startup Parameters 194
HPE SOA Registry Foundation Deployed to Application Server 194

Uninstallation 194
Running in Linux 195

Using the syslog Daemon with HPE SOA Registry Foundation 195
Running HPE SOA Registry Foundation as a UNIX Daemon 196

Uninstallation 197
Windows 198
Linux 198

Chapter 3: User's Guide 199
Introduction to HPE SOA Registry Foundation 200

UDDI's Role in the Web Services World - UDDI Benefits 200
Typical Application of a UDDI Registry 201
Basic Concepts of the UDDI Specification 201

UDDI Data Model 202
Business Entity 202
Business Service 203
Binding Template 203
tModel 204

Taxonomic Classifications 204

Product Documentation

HPE SOA Registry Foundation (10.04) Page 7 of 642

Enterprise Taxonomies 204
Checked and Unchecked Taxonomies 205

Security Considerations 205
Notification and Subscription 205
Replication 206
UDDI APIs 206
Technical Notes 207
Benefits of UDDI Version 3 207

Subscriptions in HPE SOA Registry Foundation 207
Subscription Arguments 208
Subscription Notification 208
XSLT Over Notification 209
Suppressing Empty Notifications 210
Related Links 210

Registry Console 210
Demo Data 210

Demo data for Registry Console and demos 211
Advanced Topics 212

Data Access Control: Principles 212
Explicit Permissions 214
Permission Rules 214
Composite Operations 215
Pre-installed Groups 216
ACL tModels 216
Setting ACLs on UDDI v3 Structures 217
Setting ACLs on UDDI v1/v2 Structures 217

Publisher-Assigned Keys 218
Generating Keys 219
Affiliations of Registries 219

Affiliation Setup 220
Copying Structures with Key Preservation 220

Range Queries 221
Taxonomy: Principles, Creation and Validation 224

What Is a Taxonomy? 224
Taxonomy Types 224

Product Documentation

HPE SOA Registry Foundation (10.04) Page 8 of 642

Validation of Values 225
Types of keyValues 226
Taxonomy API 229
Predeployed Taxonomies 232
WSM Taxonomies 237

Registry Console Reference 243
Register/Create Account 244

Register 244
Login 245

Registry Console Overview 246
User Profile 248

Create and Manage Groups 250
Manage Group Membership 251
Favorite Taxonomies 252

Browsing 253
Define Filter 254
Define Query 255

Searching 256
Find Business 257
Find Business by Categories 259
Find Business by Identifier 260
Find Business by Discovery URL 261
Find Services 261
Find Binding 262
Find tModel 262
Direct Get 262
Find WSDL 264
Find XSD 265

Publishing 265
Publishing a Business 266
Publishing a Service 272
Publishing a Binding Template 272
Publishing a tModel 273
Publishing Assertions 275
Publishing Subscriptions 277

Product Documentation

HPE SOA Registry Foundation (10.04) Page 9 of 642

Publish Custody Transfer 282
Publishing WSDL Documents 283
Publish XSD 287

Signer Tool 291
Starting the Signer 291
Main Screen 292
Sign 293
Validation 294
Remove Signatures 294
Publish Changes 295
Signer Configuration 295

Chapter 4: Administrator's Guide 296
Registry Management 297

Accessing Registry Management 297
Account Management 299

Create Account 300
Edit Account 304
Delete Account 304

Group Management 305
Create and Manage Groups 305
Manage Group Membership 307

Permissions 307
Accessing Permission Management 308
Add Permission 308
Editing and Deleting Permissions 309
Assigning Administrator's Permission 310

Taxonomy Management 310
Finding Taxonomies 314
Uploading Taxonomies 315
Downloading Taxonomies 316
Deleting Taxonomies 316

Replication Management 316
Master Registry Setup 317
Slave Registry Setup 318

Replacing UDDI Keys 323

Product Documentation

HPE SOA Registry Foundation (10.04) Page 10 of 642

Registry Statistics 324
Management of Configuration - User Interface 327

Current Configurations and Their History 328
Named Collections of Configuration 330

Registry Configuration 334
Core Config 335
Database 335
Security 337
Account 338
Group 340
Subscription 340
Node 341

Configuration in Database 343
Registry Console Configuration 345

Web Interface Configuration 346
Paging Configuration 348

Permissions: Principles 349
Permissions Definitions 349

ApiUserPermission 350
ApiManagerPermission 350
ConfigurationManagerPermission 350

HPE SOA Registry Foundation Permission Rules 350
Setting Permissions 351
Permissions and User Roles 352
ApiManagerPermission Reference 353

PStore Tool 361
Commands 361
Options 362
PStore Tool - GUI Version 363

SSL Tool 368
SSL Tool Examples 368
Associating an SSL client identity with a registry client 369

Chapter 5: Developer's Guide 371
Mapping of Resources 371

WSDL 371

Product Documentation

HPE SOA Registry Foundation (10.04) Page 11 of 642

WSDL PortTypes 372
WSDL Bindings 373
WSDL Service 373
Use Cases 374

XML 375
XSD 375
XSLT 377

Client-Side Development 378
UDDI APIs 378

Principles To Use UDDI API 379
UDDI Version 1 384
UDDI Version 2 385
UDDI Version 3 385
UDDI Version 3 Extension 387

Advanced APIs 393
Validation 394

SOAP 394
Java 395

Taxonomy 395
Data Structures 395
Operations 398
Persistence Format 403
WSDL 404
API Endpoint 404
Java 404
Taxonomy 5.5 Extension 404

Category 406
Data Structures 406
Operations 407
WSDL 411
API Endpoint 412
Java 412

Administration Utilities 412
Operations 412
WSDL 416

Product Documentation

HPE SOA Registry Foundation (10.04) Page 12 of 642

API Endpoint 416
Java 417

Replication 417
Operations 417
WSDL 418
API Endpoint 418
Java 418

Statistics 418
Data Structures 418
Operations 420
WSDL 422
API Endpoint 422
Java 422

WSDL Publishing 422
Data Structures 422
Operations 429
WSDL 434
API Endpoint 434
Java 434

XSD Publishing 435
Data Structures 435
Operations 440
WSDL 446
API Endpoint 446
Java 446

Inquiry UI 446
Data Structures 447
Operations 452
WSDL 452
API Endpoint 453
Java 453

Security APIs 453
Accounts 453

Data Structures 453
Operations 456

Product Documentation

HPE SOA Registry Foundation (10.04) Page 13 of 642

WSDL 459
API Endpoint 459
Java 460

Group 460
Data Structures 460
Operations 461
WSDL 467
API Endpoint 467
Java 467

Permission 467
Data Structures 467
Operations 468
WSDL 471
API Endpoint 471
Java 471

Registry Client 471
Client Package 472
JARs on the Client Classpath 473

HPE SOA Registry Foundation Runtime 474
UDDI API Client v1 474
UDDI API Client v2 474
UDDI API Client v3 475
UDDI API Client v3 ext X 475
Account Client 475
Admin Utilities Client 475
Category Client v3 475
Group Client 476
Permission Client 476
Replication Client v3 476
Statistics Client 476
Taxonomy Client v3 477
UDDI Custody Client v3 477
UDDI Subscription Client v3 477
UDDI Subscription Listener Client v3 477
UDDI Validate Values Client v1 478

Product Documentation

HPE SOA Registry Foundation (10.04) Page 14 of 642

UDDI Validate Values v2 478
UDDI Value Set Caching Client v3 478
UDDI Value Set Validation Client v3 478
WSDL2UDDI Client v2 478
WSDL2UDDI Client v3 479
Resources publishing (XSD) Client 479
Classpath Examples 479

Client Authentication 480
Example Client 480

Server-Side Development 483
Accessing Backend APIs 484
Custom Registry Modules 488

Accessing Registry APIs 489
Custom Module Sample 490

Interceptors 492
Creating and Deploying Interceptors 493
Logging Interceptor Sample 493
Request Counter Interceptor Sample 496

Writing a Custom Validation Service 498
Deploying Validation Service 499
External Validation Service 499
Sample File 501

Writing a Subscription Notification Service 502
Sample Files 504

Systinet Web Framework 505
Architecture Description 506
Directory Structure 512
Framework Configuration 513
syswf JSP Tag Library 516
Typical Customization Tasks 523

UDDI From Developer Tools 523
UDDI From MS Visual Studio 524

How to Debug 526
SOAPSpy Tool 526

Running SOAPSpy 527

Product Documentation

HPE SOA Registry Foundation (10.04) Page 15 of 642

Using SOAPSpy 528
SOAP Request Tab 529
How to Run Clients Using SOAPSpy 529

Logging 530
Chapter 6: Demos 531

Basic Demos 531
UDDI v1 532

Inquiry v1 532
Publishing v1 537

UDDI v2 544
Inquiry v2 544
Publishing v2 549

UDDI v3 557
Inquiry v3 557

Advanced Demos 570
Advanced Inquiry - Range Queries 571
Custody 576
Subscription 582
Validation 590
Taxonomy 595

Security Demos 601
Account 601
Group 606
Permission 612
ACL 616

Resources Demos 623
WSDL2UDDI v2 623
WSDL2UDDI v3 630
XSD2UDDI 636

Send documentation feedback 642

Product Documentation

HPE SOA Registry Foundation (10.04) Page 16 of 642

Chapter 1: Read This First
Welcome to HPE SOA Registry Foundation!

HPE SOA Registry Foundation is the leading business service registry, providing discovery and
publishing of SOA business services. With full support for version 3 of the UDDI (Universal
Description, Discovery and Integration) standard, HPE SOA Registry Foundation is a key component
of a Service Oriented Architecture (SOA).

This product documentation contains the following sections:

Read This First This book is recommended for all readers. It provides a product overview, release
notes, product changes, the typographical conventions used throughout this guide.

Installation and Deployment Guide This book guides you through installing HPE SOA Registry
Foundation, installing and setting up databases, and deploying HPE SOA Registry Foundation to
application servers.

User's Guide This book describes how tomanually maintain HPE SOA Registry Foundation
contents. All basic functions of the Registry Console are discussed here.

Developer's Guide Introduces the basics of creating extensions and client programs in HPE SOA
Registry Foundation. The Developer's Guide also documents the HPE SOA Registry Foundation demo
suite.

Administrator's Guide Explains HPE SOA Registry Foundation's configuration andmanagement,
and introduces the tools and utilities you will need to perform these tasks.

HPE SOARegistry Foundation Features
Overview
HPE SOA Registry Foundation is the only fully V3-compliant implementation of UDDI (Universal
Description, Discovery and Integration), and is a key component of a Service Oriented Architecture
(SOA). HPE SOA Registry Foundation is an easy-to-use, standards-basedmechanism for publishing
and discoveringWeb services and related resources like XML Schemas.

HPE SOA Registry Foundation fully implements the OASIS UDDI V3 standard. HPE SOA Registry
Foundation can be deployed in almost any Java environment and works with all popular database
systems. In addition, the registry has been designed specifically for enterprise deployment and

HPE SOA Registry Foundation (10.04) Page 17 of 642

includes many advanced features that make it easy to configure, deploy, manage and secure. HPE
SOA Registry Foundation is also easy to customize to support different enterprise user communities.

HPE SOA Registry Foundation extends the core UDDI V3 standard with unique functionality designed
for enterprise applications:

l Advanced Security allows for defining granular access control for registered components.
Component publisher can specify find, get, modify and delete access permissions for every
published object.

l Data Accuracy & Quality enforcementmechanisms ensure that component registrations are
accurate and up-to-date. HPE SOA Registry clearly defines responsibility for every registered
component.

l Subscription & Notification for automatically notifying registry users about changes to
components that they depend on.

l Selective Replication amongmultiple registries allow for automated propagation between different
registries (for e.g. between internal and external registries).

l Taxonomy Management for enforcement of well-defined taxonomies.

l Powerful Management for granular control, logging and auditing of the publishing and discovery
processes.

l Performance & ScalabilityUDDI provides maximum performance and scalability by efficient
implementation of web services stack and database algorithms and by supporting of a load
balancing and clusteringmechanism.

HPE SOA Registry Foundation is a platform-independent solution that can easy be deployed in a wide
variety of settings. The registry can run either standalone or within an application server: Many
application servers, ranging from Tomcat to BEAWebLogic, IBMWebsphere or JBoss are supported.
HPE SOA Registry Foundation also unrivalled support for a broad set of databasemanagement
systems for storing registrations (such as Oracle, MS SQLServer, Sybase, PostgreSQL and HSQL).
Crucially, HPE SOA Registry Foundation also integrates with both LDAP andMicrosoft
ActiveDirectory.

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 18 of 642

Release Notes

Known Issues
UDDI Version 3 Specification

The following parts of the UDDI Version 3 specification are not implemented:

l Inter-Node operation - this part of the specification is not implemented.

l Replication Specification - The Replication Specification describes the data replication process and
the programming interface required to achieve complete replication between UDDI Operators in the
UBR (Universal Business Registry ~ UDDI operator cloud). This part of the specification is
mandatory for members of the UBR and is not implemented.

l Policy - The policy description is not defined.

l Exclusive XMLCanonicalization is used for canonicalization of digital signatures. Schema-centric
XMLCanonicalization is not yet implemented.

UDDI Version 2 Specification

The following parts of the UDDI Version 2 specification are not implemented:

l Operator Specification - This part of the specification is mandatory for members of the UBR and is
implemented with the exceptions described in this section.

l Custody transfer from version 2 is not implemented.

l Replication Specification - The Replication Specification describes the data replication process and
the programming interface required to achieve complete replication between UDDI Operators in the
UBR. This part of the specification is mandatory for members of the UBR and is not implemented.

Database

l Sybase ASE (Adaptive Server Enterprise) has a limit of 16 sub-selects for queries (SELECT ...
FROM ... WHERE EXISTS (SELECT...)). Because of this limit, somemore complex queries (such
as find by category bag with more keyed references) do not work.

l There are the following caveats in datamigration and backup:

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 19 of 642

o Deletion history for subscriptions is not migrated and backed up.

o Custody transfer requests are not migrated and backed up.

l Wedo not recommend installing HPE SOA Registry Foundation with the HSQL database under
IBM Java 1.4.x since the installationmay time out.

Other

l Use of SubjectAlternativeName in certificates is not yet supported. This has potential impact
wherever SSL is used and the secure host has more than one hostname. SeeWSDLPublishing
below. The result is a java.net.ssl.SSLException with amessage that hostnames do not match.

l Installation fails if the installation path contains non-ASCII characters;

l Attempting to undeploy HPE SOA Registry Foundation from an application server may appear to
have been successful but can leave files locked until the application server and its JVM exit. This
means than an attempt to redeploy HPE SOA Registry Foundation to the application server will fail
because these files exist and cannot be overwritten. A workaround is to restart the application
server;

l Selective One-way Replication has the following caveats:

o Checked taxonomies are replicated as unchecked. Taxonomy data replication and change of
taxonomy to checkedmust be donemanually.

o Custody transfer requests are not replicated.

o Publisher assertions are not replicated.

l LDAP

o Dynamic groups in LDAP account backends are not processed.

o The approximateMatch find qualifier is not supported in LDAP account backends. There is no
wildcard that can represent any single character in the directory (LDAP or AD). % is mapped to *,
it is not possible to map _.

o Groups from disabled domains are visible in the Registry Console.

l Intranet identity association is not implemented; the system#intranet group is reserved for future
use.

l Password structure and length checking, expiration, checking of repeated failed logins and IP mask
restriction are not implemented.

l The Signer tool does not support the refresh operation. If you start the Signer and thenmodify a
UDDI structure, youmust restart the Signer Tool.

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 20 of 642

l The Setup tool throws an exception when you try to configure registry ports on HPE SOA Registry
Foundation that are not connected to a database. The exception does not affect the port
configuration.

l WSDLPublishing:

o Unable to unpublish unreachableWSDLs in Registry Console.

o Publishing aWSDL at a URL that has https as protocol may fail because the server certificate
uses SubjectAlternativeName to specify alternative hostnames. This is not yet supported as
noted above. The result may be aWSDLException with fault code INVALID_WSDL but the
underlying cause is in fact a java.net.ssl.SSLException with amessage that hostnames do not
match.

l If you change the HPE SOA Registry Foundation configuration using the Setup tool, demo data is
always imported the registry database.

Change Log
HPE SOA Registry Foundation 10.0x

l Support for Oracle databases 11g and 12c.

l Support for MS SQL databases 2005 and 2008.

l Support for JDK 1.7

HPE SOA Registry Foundation 6.65

l The configurations in the Database feature enables the simple configuration of cluster deployment.
The database can also hold a history of configuration files. The administration console enables you
to display differences between current and past configurations and stored configuration collections.

l Replications are improved andmore reliable.

l Client certificate authentication (TwoWay SSL) is supported.

l IPv6 is supported except for literal addresses.

l Enhance the subscription UI.

l Support for publishingWSDLwith empty URL in soap:action location.

l Resolves the following security issues

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 21 of 642

o Prevent Published files from residing on the server file system.

o Closing of cross-site scripting (XSS) security vulnerabilities.

o Verification of session data integrity.

o Increase access point length for UDDI V2.

l SAP NetWare Service Registry integration - Setup tool supports for changing hostname, HTTP(S)
ports and username to integrate with SAP NetWare Service Registry and enabling the HTTP Basic
Authentication.

l Support for changing server URLs.

l Support for Installation onOracleWebLogic Server 11g with Domain Templates - Installer produces
files including a .war file andWebLogic Domain template and places them into the HPE SOA
Registry Foundation Home. Upon completion, you can run the OracleWebLogic Configuration
Wizard to deploy to the selected clusters and/or managed servers.

l Bug fixes. Small improvements.

HPE SOA Registry Foundation 6.64

l Tools support for 64-bit Windows (except Itanium).

o JavaService can run on both 32 and 64 bit Windows.

o Messages can be logged in the EventLog of 32 and 64 bit Windows.

l Improved SiteMinder group support: users can access the registry with permissions granted via
Siteminder Authentication Configuration.

l Database deadlock recovery and prevention.

o User connects to Registry frommultiple threads or computers using any operation (find, get,
save, delete). Registry completes all operations even when there is deadlock in the database.

l Bug fixes. Small improvements.

HPE SOA Registry Foundation 6.63

Bug fixes. Small improvements.

HPE SOA Registry Foundation 6.62

Separate Spanish release of 6.61.

HPE SOA Registry Foundation 6.61

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 22 of 642

l IPv6 support (except for literal IPv6 addresses).

l Removed SSO as newer versions of HPE SOA Systinet (former Systinet 2) do not use it.

l Bug fixes. Small improvements.

HPE SOA Registry Foundation 6.6

l Removed BSC.

l Removed Taxnomoy editor (only viewer left).

l Removed XSLT, XML publising support.

HPE SOA Registry Foundation 6.5.4

Bug fixes. Small improvements.

HPE SOA Registry 6.5.3

l Configuration in Database feature (easy clustering setup, configurations are persisted in case of
redeployment).

l Improved replications.

l SSLCertificate authentication. Added sslTool.

l Bug fixes. Small improvements.

Systinet Registry 6.5.2

l Single Sign-Onwith Systinet 2.

l Bug fixes. Small improvements.

Systinet Registry 6.5.1

Bug fixes. A lot of small improvements.

Systinet Registry 6.5

l Business Service Console:

o TheHome tab has been redesigned as a dashboard of themost frequently used features;

o Context menus for Catalog tree - right click to display the set of operations allowed on the
selected entity type;

o The user interface now only displays links for actions that the user has permission to perform;

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 23 of 642

o Quick search - the user can search all data structures by keyword;

o The navigation panel on the left-hand side of theCatalog andReports tabs can be hidden, with
amouse click orAlt+Q;

o Duplicate scrollbars have been eliminated from the UI;

l Entities in the BSC:

o When viewing entity details, a new System Info tab provides information about the owner,
creation andmodification dates and UDDI keys;

o Custom Entity Types - an administrator can define a new entity type based on a UDDI entity
type and a specific categorization. For example, a "Policy" can be a tModel (UDDI type) with a
keyedReference to uddi:schemas.xmlsoap.org:policytypes:2003_03 with "policy" as the
keyValue. Custom types are added seamlessly to the Catalog tree andReports tab;

o References between entities - it is possible to create and browse references between entities.
The user can view all references from the current entity to other entities and find all entities
which refer to the current entity;

o Configurable Searches - an administrator can configure the search dialog for an entity type by
changing the appropriate categorization;

l Localization - the registry console and Business Service Console are prepared for localization to
other languages;

l Publishing Services:

o A user can publish a service from aWSDL document stored on a web server requiring HTTP
Basic authentication;

o The performance of WSDL to UDDI publishing has been improved;

l Server-Side Development:

o Business Services Console Framework - enhancements to support customization and
integration.

Systinet Registry 6.0

l Business Service Console - The functionality of the Business Service Console has been extended
in the following areas:

o Approval Process - The approval process has been implemented in the Business Service
Console for requestors and approvers. Requestors can create and submit requests, manage
their requests, and clone requests to the request work area. Requestors can also send

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 24 of 642

reminders to their approvers. Approvers can approve/reject requests and view approval
histories.

o Subscriptions and Notifications - The Business Service Console allows you to create and
manage subscriptions for monitoring new, changed, and deleted entities. The following entities
can bemonitored: providers, services, interfaces, and endpoints, as well as resources (WSDL,
XML, XSD and XSLT).

o User Profiles - Systinet Registry contains a list of predefined user profiles which differ in which
mainmenu tabs will be available to them. Each user profile also contains a definition of default
formats for result views. The registry administrator can adjust these user profiles.

o Reports are based on taxonomic classifications.

o Paging and large results set support - The Business Service Console supports paging for
displaying large result sets. Themaximum number of pages and number or rows per page can be
configured for each component.

o Overall performance of the Business Service Console has been increased by Business Service
Console framework optimization.

l Approval Process

o Changed terminology from 5.5 - the staging registry has been renamed to publication registry;
the production registry has been renamed to discovery registry.

o New installation/configuration scenarios have been added. The approval process can be
installed with multiple publication registries and the approval process can be performed in
multiple steps.

l Backup functionality - Backup functionality allows you to save the Systinet Registry data and
configuration to a filesystem directory. Later the backup data can serve for a full restore of HPE
SOA Registry data and configuration.

l Documentation

o Introduction to HPE SOA Registry Foundation

o Accessing UDDI from Developer Tools

Systinet Registry 5.5

l Business Service Console - Using the Business Service Console, developers, architects and
business users can browse the various perspectives of the Systinet Business Services Registry
including business-relevant classifications such as service and interface lifecycle, compliance or
operational/readiness status. They can browse information through business-relevant abstractions

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 25 of 642

of SOA information such as schemas, interface local names or namespaces. The Business Service
Console also provides easy to use and customizable publication wizards.

l Advanced query capabilities - RangeQueries - users can search for UDDI structures using >,<
operators when searching by categories.

l Taxonomy management

o Taxonomy management has been enhanced by drag and drop taxonomy structure editing. You
canmove a category item in the taxonomy hierarchy without de-associating it with current UDDI
entities categorized with this item’s value.

o Administrators can edit an enterprise taxonomy list. Users can edit their lists of favorite
taxonomies.

l Mapping resources. New publishing wizards and APIs. TheWSDL2UDDI publishing wizard and
API have been enhanced. New wizards and APIs for publishing of resources have be been created.

o Publish aWSDL document

o Publish an XML document

o Publish an XML schema document

o Publish an XSL Transformation

Systinet Registry 5.0

l UDDI Multi-version Registry

o UDDI Version 3 Registry - Implementation of the UDDI Version 3 Specification - Committee
Specification v3.0.1

o UDDI Version 2 Registry - Implementation of the UDDI Version 2 Specifications - OASIS
Standard

o UDDI Version 1 Registry - Implementation of the UDDI Version 1 Specifications - contributed

l WSDLPublishing - Implementation of UsingWSDL in a UDDI Registry, Version 2.0 for UDDI
Version 2 and Version 3

l Access Control - Allows definition of granular access control for registered components.
Component publisher can specify find, get, modify, and delete access permissions for every
published object.

l Account andGroupManagement - Allows management of user's account and groups.

l External Accounts Integration - Allows integration of the registry with custom account storages

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 26 of 642

including three integration scenarios with LDAP.

l Taxonomy Management and Validation - Allows administrator to create, download, upload, browse
andmanage taxonomies.

l Approval Process - component promotion and approval mechanisms for promoting components
between development, staging, and production environments.

l Selective One-way Replication - Replication based on subscription-notificationmechanism. An
asynchronous subscription listener listens to incoming subscription data from amaster registry.

l Registry Console - User-friendly UI enables user to query and publish the registry, manage user's
account and provide various administration tasks.

l Administration Tools

o GUI Setup and Administration Tool - Allows administrator to set up, port, and configure the
registry; create and drop the registry database; andmigrate data from other registry databases.

o WebAdministration Console - Allows administrator to configure andmanage registry
permissions, data, and users; configure replications; and view registry access statistics.

l Support for leading database engines including Oracle, MS SQL 2000 or 2005, IBM DB2,
PostgreSQL, Sybase, Hypersonic SQL. Systinet Registry contains both a bundled and a pre-
configured Hypersonic SQL 1.7.1 database.

l Support for application servers - Systinet Registry supports BEAWebLogic and Apache Tomcat
application servers.

l Client Libraries - This distribution includes UDDI Version 1,UDDI Version 2, and UDDI Version 3
account, groups, and permissions management, taxonomy management, approval, administration
and configuration clients with generated javadocs.

l Open Server-Side Architecture

o Registry Integration and Embedding - Developers can directly access instances of registry
APIs, run custom classes inside the registry, create custom loginmodules, and write custom
integration with external accounts and groups storages.

o Registry Extensions - Developers can write their own extension services, create and use
external and internal validation services, write custom interceptors to intercept registry
messages, customize the approval process, and customize or create their own Registry
Console using a supplied JSPWeb Framework.

WASP UDDI 4.6

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 27 of 642

l Evaluation License Enforcement Mechanism - evaluation version of WASP UDDI requires an
evaluation license

l Integration with LDAP/MS Active Directory -WASP UDDI; accounts able to integrate with legacy
systems usingWASP Userstore

l Approval Process - staging-production pattern used to approve data stored in the registry;

l Direct access to back-end services -WASP UDDI services implementations are now directly
accessible

l Administration

o configuration is now transparent for clustered installations

o selected elements in configuration file can be signed to avoid their changes

o created registry privileged users - extended administrators

o admin and superuser able to switch to different user identity

l Localization - support for easier localization.

l Wildcards - selected databases support wildcard queries.

l Demos - demos simplified and refactored.

l WSDLBest Practice - UsingWSDL in a UDDI Registry, Version 2.0 Technical Note supported.

l UDDI Client

l Operation timeout can be set per request.

l Serialization of UDDI API structures from/to XML file, DOM, String.

l Distribution contains the new UDDI client to be used in future releases of WASP UDDI.

WASP UDDI 4.5.2

l Bugfixes - Fixes of major bugs found after 4.5 and 4.5.1 releases

l •New application servers - SunONE Application Server 7

l Taxonomies - Added possibility to configure all combinations of tModelKey and keyName, and
keyValue (tModelKey and keyName; tModelKey and keyValue; and tModelKey, keyName, and
keyValue) when searching for specific taxonomies by keyedReferences.

l Administration - Added cleaner for account audit and subscriptions

WASP UDDI 4.5.1

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 28 of 642

l Runtime - UsedWASP Server for Java, 4.5.1 runtime.

l Database schema - Database schemas changed to reflect optimizations.

l Performance optimizations - Improved performance for high load of data in database.

l New application servers -WebSphere 5.0, JBoss 3.0.4, BEAWebLogic 6.1 SP3, BEAWebLogic
7.0.

l Database installation - Added database installation toWASP UDDI installation.

l GUI database tool - New database tool for database creation, delete andmigration.

l Security Enhancements - Security enhanced with:

o password structure and length checking

o password/account expiration

o repeated failed logins checking

o access to configuration access can be restricted by IP mask

l WASP Secure Identity - Integration withWASP Secure Identity is not supported any more.

l Web Interface look and feel - New web interface look and feel used.

l Support for NT service -WASP UDDI can be now run as NT service.

WASP UDDI 4.5

l Hypersonic SQL - Embedded Hypersonic SQL 1.7.1 database. New demo database pre-configured
for evaluation purposes.

l GUI Upgrade - New graphical upgrade of both registry and database.

l Taxonomy refactoring - Taxonomy publication and validation refactored.

o ◦Added new TaxonomyAdminApi for taxonomy administration.

o ◦Changed specification of taxonomy compatibility

o ◦Unified definition of validation services as specified in Providing a Taxonomy for Use in UDDI
Version 2.

o ◦Created Validation Plug-ins to allow creation of custom taxonomy validators.

l Change UUID - UUIDs can be now changed for all UDDI basic data structures (businessEntity,
businessService, bindingTemplate, tModel) using AdminToolApi

l Category dependencies - New tModel systinet-org:dependency introduced to allow specification of

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 29 of 642

dependencies between UDDI entities.

l Other API Changes:

o ◦UDDIProxy - added save_wsdlTmodel methods

o ◦find_relatedServices extended with fromServiceKey and toServiceKey

l Demos - Created new demos structure.

l Database schema - Database schemas changed to reflect new features.

l GUI Installation - New graphical installation.

l Subscriptions - Allows client to subscribe for changes of any UDDI entities that occur inWASP
UDDI. There are two basic ways how the subscription is used: asynchronous notification and
synchronous pull subscription.

l WASP UDDI Interceptor API - The UDDI interceptor allows implementing customized handling of
UDDI requests and responses.

l Selective OneWay Replication - Replication based on subscription-notificationmechanism. An
asynchronous subscription listener listens to incoming subscription data from amaster registry.

l UDDI Errata - Incorporated last errata from UDDI.org

o UDDI Version 2.04 API

o UDDI Version 2.03 Data Structure Reference

l API Extensions - Extended Inquiry Extensions merged with Access Control API and enhanced
with:

o new assertion related API calls

o enhanced wsdl related API calls

o added categoryBag into bindingTemplate and related API calls extended with categoryBag

l Administration - Configurable direct deletion of tModels.

WASP UDDI 4.0

l InstallShield - Graphical installation tool, InstallShield added.

l PointBase - Support for PointBase 4.3 database added.

l Oracle 9i - Oracle 9i AS (OC4J) deployment added.

l Disabled Runtime Services - System services removed fromWASP UDDI runtime.

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 30 of 642

l Extended installation - Installation extended with security providers configuration.

l Web interface design changed - Improved the look and feel of the web interface.

l JDK 1.4 Support -WASP UDDI now support Sun's implementation of JDK 1.4.

l Deployment - BEAWebLogic, IBMWebSphere, Orion, Tomcat deployment scripts and
documentation included.

l Taxonomy and Validation - Additional Taxonomy and Validation services integrated into the web
interface.

Supported Platforms
HPE SOA Registry Foundation 10.04 has been tested on the following platforms.

l Operating systems:

o WindowsServer 2012 R2

o Windows Server 2008 R2

o Linux (RedHat 5.6, 6)

o Linux (Ubuntu 12, 12.4)

o HPE-UX

o AIX

o Solaris

l JDKs

o Oracle (Sun) JDK 1.7

o HPE JDK 1.7

l Databases:

o Oracle 11g

o Oracle 12c

o Microsoft SQL 2005(SP2)

o Microsoft SQL 2008(SP1)

l LDAP:

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 31 of 642

http://www.microsoft.com/
http://www.microsoft.com/
http://www.linux.com/
http://www.linux.com/
http://h20565.www2.hp.com/hpsc/doc/public/display?docId=emr_na-c02722594
http://www-03.ibm.com/systems/power/software/aix/
http://www.oracle.com/us/sun/index.htm
http://www.oracle.com/index.html
http://www.oracle.com/index.html
http://www.microsoft.com/en-us/server-cloud/products/sql-server/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/

o SunOneDirectory Server 5.2

o Sun Java System Directory Server 6.3

o Microsoft Windows Server 2008 Active Directory

l Application Servers:

o OracleWebLogic Server 11g R1 [http://www.oracle.com]

o OracleWebLogic Server 10g R3 [http://www.oracle.com]

o IBMWebSphere 6.1.x and 7.0.0.7 [http://www.ibm.com/software/info1/websphere/index.jsp]

o JBoss 5.1 [http://www.jboss.org]

o JBoss EAP 5 [http://www.jboss.org]

l Browsers:

o Google Chrome (latest version)

o Microsoft Internet Explorer 10 or newer

o Mozilla Firefox (latest version)

o Mozilla Firefox ESR (latest version)

Specifications
HPE SOA Registry Foundation conforms to the following specifications:

l UDDI Specifications

l UDDI Version 1 Specification

l UDDI Version 2 Specification

l UDDI Version 3 Specification

l Technical Note UsingWSDL in a UDDI Registry, Version 2.0

Document Conventions
This document uses the following typographical conventions:

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 32 of 642

http://www.oracle.com/us/sun/index.htm
http://www.oracle.com/us/sun/index.htm
http://www.microsoft.com/en-in/default.aspx
http://www.oracle.com/
http://www.oracle.com/
http://www.ibm.com/software/info1/websphere/index.jsp
http://www.jboss.org/
http://www.jboss.org/
http://uddi.org/specification.html
http://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv2
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3
http://www.oasisopen.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

run.bat make Script name or other executable command plus mandatory arguments.

[--help] Command-line option.

either | or Choice of arguments.

replace_value Command-line argument that should be replaced with an actual value.

{arg1 | arg2} Choice between two command-line arguments where one or the other is
mandatory.

rmdir /S /Q
System32

User input.

C:\System.ini Filenames, directory names, paths and package names.

a.append(b); Program source code.

server.Version Inline Java class name.

getVersion() Inline Javamethod name.

Shift+N Combination of keystrokes.

Service View Label, word, or phrase in a GUI window, often clickable.

OK Button in a user interface.

New→Service Menu option.

Documentation Updates
This guide's title page contains the following identifying information:

l Software version number, which indicates the software version.

l Document release date, which changes each time the document is updated.

l Software release date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using themost recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HPE Passport and sign-in. To register for an HPE Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HPE Passport login page.

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 33 of 642

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Youwill also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HPE sales representative for details.

Legal

Notices

Legal Notices
Warranty

The only warranties for HPE products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HPE shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HPE required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Third-Party Web Sites

Mercury provides links to external third-party Web sites to help you find supplemental information. Site
content and availability may change without notice. Mercury makes no representations or warranties
whatsoever as to site content or availability.

Copyright Notices

© Copyright 2001-2017 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of SunMicrosystems, Inc. Microsoft®, Windows® andWindows XP® are
U.S. registered trademarks of Microsoft Corporation. IBM®, AIX® andWebSphere® are trademarks or

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 34 of 642

registered trademarks of International Business Machines Corporation in the United States and/or other
countries. BEA® andWebLogic® are registered trademarks of BEA Systems, Inc.

Acknowledgements
This product includes software developed by the Apache Software Foundation
(http://www.apache.org).

This product includes code licensed from RSA Data Security (http://www.rsasecurity.com).

This product includes software developed by jGuru.com (MageLang Institute) (http://www.jGuru.com).

This product includes Antlr (http://www.antlr.org).

This product contains components derived from software developed by the Indiana University
Extreme! Lab (http://www.extreme.indiana.edu).

The Standard Version of the Jetty package is available from http://www.mortbay.com.

Product Documentation
Chapter 1: Read This First

HPE SOA Registry Foundation (10.04) Page 35 of 642

http://www.apache.org/
http://www.rsasecurity.com/
http://www.jguru.com/
http://www.antlr.org/
http://www.extreme.indiana.edu/
http://www.mortbay.com/

Chapter 2: Installation Guide
HPE SOA Registry Foundationmay be installed using the following scenarios:

l Standalone Registry

This is the default installation scenario; under it the HPE SOA Registry Foundation server is
installed on a local machine and connects to a local or external registry database. To perform a
standalone installation, follow the instructions at “Installation”. For more configuration information,
refer to “Server Configuration” and “Database Installation”.

l Deployed to an Application Server

The installed standalone HPE SOA Registry Foundation server may be deployed to several
application servers. To deploy HPE SOA Registry Foundation to an application server, perform the
standalone installation as described in “Installation” and then follow the instructions in “Deployment
to an Application Server”.

l Standalone registry with data migration

In this case, a standalone installation is performed and data is migrated to it from a previous
installation of HPE SOA Registry Foundation. Follow the instructions in “Migration”.

l External Accounts Integration

HPE SOA Registry Foundation server may be optionally configured to use external accounts on an
LDAP or other account store. It is possible to set up external accounts integration during database
installation. For more information, please see “Database Installation” and “External Accounts
Integration”

l Registry cluster

A UDDI cluster is a group of UDDI registries deployed onmultiple servers possibly with a clustered
database in the back-end. Load balancing is used to distribute requests amongst HPE SOA
Registry Foundation servers to get the optimal load distribution. Standalone Registry or registry
deployed to an application server could be configured to cluster with instructions in “Cluster
Configuration”

l Support for Windows NT service and Unix Daemon

HPE SOA Registry Foundation can be run as a service onWindows 2000/XP. Support for NT
service installation is installed by default onWindows servers, see instructions in “NT Service

HPE SOA Registry Foundation (10.04) Page 36 of 642

Support”. Also, HPE SOA Registry Foundation can be run as a system daemon on Unix machines,
see instructions in “Running in Linux”.

System Requirements
This section explains the requirements that must bemet before you start installation. "Supported
Platforms" on page 31 in "Read This First" summarizes the software platform options in the current
release.

You should:

1. Ensure the installationmachinemeets the requirements that follow in " Hardware" below.

2. Decide which combination of supported platform components will be used.

3. Ensure each component is installed as described in this section.

Then you can proceed with installation.

Hardware
The following table summarizes hardware requirements for the installationmachine. Theminimum
specifications are suitable for experimental use of HPE SOA Registry Foundation on a workstation.
Although it may be possible to install the product on amachine with lower specifications, performance
and reliability may be severely affected. The requirements of servers in a production environment are
greater and depend on patterns of use. See "Supported Platforms" on page 31 in "Read This First" if
you need assistance.

Specification Minimum Notes

CPU Intel Xeon
E
processor
family, 8
cores

Actual requirements depend on the on patterns of use in the target
environment.

RAM 16GB

Disk Space 40GB This is sufficient if the selected database system is installed on
another machine.

The database server machinemust have sufficient space for the

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 37 of 642

selected database system. The requirements for registry data are quite
modest. EachGB typically provides for registration of several
thousand additional entities.

So disk performance is more significant.

Java™ Platform
A supported Java Development Kit is required on the installationmachine. A Java Runtime
Environment is not sufficient because it must be possible to compile JSP pages at runtime.

IBM JDK 1.7 and higher must contain a JCE provider. Bouncy Castle provider is supported, and JCE
Unlimited Strength Jurisdiction policy files are required.

1. Copy the file bcprov-ext-jdk15on-*.jar from Bouncy Castle provider to
IBMJava2/jre/lib/ext;

2. Add the following line to the file java.security located in IBMJava2/jre/lib/security:

security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

Relational Database
Setting up a relational database during installation is optional - you can instead set it up after installation
using the setup tool. See "Database Installation" on page 80, and in both cases you can use the pre-
configured HSQL database system that comes with HPE SOA Registry Foundation.

The installation process allows you to set up a database using one of the other supported database
systems, in which case the database server must be installed and running (not necessarily on the
samemachine). JDBC driver files must generally be available locally, but some drivers are distributed
with HPE SOA Registry Foundation.

Installation
This section describes the standalone installation of HPE SOA Registry Foundation and all settings.

Note: Make sure that the JAVA_HOME environment variable points to your JDK and that your
path includes %JAVA_HOME%\bin.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 38 of 642

http://www.bouncycastle.org/
http://java.sun.com/products/jce/index-14.html
http://java.sun.com/products/jce/index-14.html

To install the registry, type the following at a command prompt:

java -jar hpe-soa-registry-foundation-10.04.jar

and follow the wizard panels.

If you have associated javaw with *.jar files onWindows complete the following step:

l Double-click the icon for the file hpe-soa-registry-foundation-10.04.jar.

Command Line Options
Installation can be launched with the following optional arguments:

java -jar hpe-soa-registry-foundation-10.04.jar [[--help] | [-h] | [--gui] | [-g]]

[[-u configfile] | [--use-config configfile]]

[[-s configfile] | [--save-config configfile]]

[[-d] | [--debug]] [[-c] | [--console]] [[-v] | [--version]]

Argument Description

-g | [--gui] Starts the installation in gui mode (default).

-c | [--console] Runs command-line installation.

-h | [--help] Shows helpmessages.

-s configfile | --save-config
configfile

Saves the installation settings into the
configuration file without actually installing the
registry.

-u configfile | --use-config configfile Installs the registry using the settings contained
in the configuration file.

-d | [--debug] The installation produces more information to
localize problems or errors.

-v | [--version] Displays version of the product.

Installation Panels
This section discusses the content of the installation wizard. It goes through the following installation
panels using default settings.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 39 of 642

"Welcome Panel" below

"License Panel" on the next page

"Installation Type" on page 42

"Installation Directory" on page 43

"SMTP Configuration" on page 44

"Set Up Administrator Account" on page 45

" Database Settings" on page 46

"Direct Deployment" on page 51

"Server Configuration Settings" on page 52

"Confirmation and Installation Process" on page 54

"Finish" on page 55

Welcome Panel
The first panel for the Registry Installation wizard is theWelcome panel. This panel contains links to
HPE SOA Registry Foundation documentation and to the Systinet Web site.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 40 of 642

License Panel
To continue with the installation of the registry, read the license agreement:

l To accept the license agreement, select I accept the terms of the license agreement, and click
Next.

l If you do not accept the terms of the license agreement, select I DO NOT accept the terms of the
license agreement, and click Exit.

Until you agree to the license, only theExit button is enabled. You cannot proceed with the installation
unless you agree to the license.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 41 of 642

Installation Type
The Installation Type panel shows two installation scenarios. Select one of the following:

l Standalone registry: Default installation. Installs a standalone registry and enables the creation of
a new registry database.

l Standalone registry with data migration: Installs standalone registry with migration of data from
a previous installation of the registry. For more information, see "Migration" on page 177.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 42 of 642

Installation Directory
Type the path to the Installation Directory where HPE SOA Registry Foundation will be installed. The
default directory is the current working directory.

Note: The Installation directory can consist of ASCII characters. International characters in
installation directory path are not supported.

If you install on aWindows platform, you can select from the following:

l Create shortcut icons on the desktop: If selected, icons for accessing the Registry Console and
for starting and stopping the registry will be created on the desktop.

l Add shortcut icons to the Start menu: If selected, the icons noted above are added to theStart
menu.

l Program group name: Group name created in theStart menuwhere shortcut icons will be placed.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 43 of 642

Note: Youmust have read and write permissions on the installation directory.

SMTP Configuration
The SMTP configuration is important when users need to receive email notifications from
subscriptions.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 44 of 642

Enter the following information:

l Operator Name:Name of the operation for example HPE_SOA_Registry.

l SMTP Host Name: Host name of the SMTP server associated with this installation of HPE SOA
Registry Foundation.

l SMTP Port: Port number for this SMTP server.

l SMTP Password: Password for SMTP server.

l Confirm password: Retype the same password.

l SMTP Default Sender E-mail, Name: HPE SOA Registry Foundation will generate email
messages with this identity.

Set Up Administrator Account
Enter the HPE SOA Registry Foundation administrator account information.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 45 of 642

Database Settings
The registry requires a database, which can be created during installation. During installation you can
create a new database, create schema in an existing empty database, or connect to an existing
database with created schema. Using the Setup tool, you can also drop the database or database
schema.

Database CreationMethod
Select your database creationmethod.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 46 of 642

l Create database: Create new database/users/tablespaces (depending on the type of the database
server) and database schema. This is themost commonmethod, but please note that youmust
know the credentials of the database administrator.

l Create schema: Create a new schema in an existing database. Select this option if you have
access to an existing empty database and the ability to create tables and indexes. This option is
suitable when you do not know the administrator's credentials. It is assumed that the admin has
already created a new database/users/tablespaces for this option. See "Database Installation" on
page 80.

Note: The cannot be started without a database.

l Configure database: Configure registry database. Select this option if the registry database
already exists (For example, from a previous installation) and fill in only the connection parameters.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 47 of 642

l No database: Select this option if you intend to create a registry database later.

Select Database
The Select Database panel shows the supported database engines that can be prepared for HPE
SOA Registry Foundation.

You can specify the name of HPE SOA Registry Foundation installation. The name is saved to the
operational business entity. The registry name appears in the upper right corner of Registry Console.

Select Install demo data if you want to evaluate the provided HPE SOA Registry Foundation demos
after installation.

The default database to create is Preconfigured HSQL (HSQL). This database is recommended for
evaluation purposes.

Preconfigured HSQL Panel

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 48 of 642

The database files will be installed into the REGISTRY_HOME/hsqldb/uddinode directory. The
database user is uddiuser and the password is uddi.

Note: You can use the Setup tool to change the database after installation.

For more information on database installation, see "Database Installation" on page 80.

Optional JDBCDriver
You can specify a custom JDBC connection string. A JDBC string can be useful for special
environments, such as for database clusters where a JDBC driver does load-balancing or failover. This
setting is useful only in Create Schema, Drop Schema and Configure Database.

Note: HPE recommends that you do not select this option unless you have a clear need to do so.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 49 of 642

Enter the path to the JDBC drivers on the JDBC Drivers panel. You do not need to configure this path
for the HSQL and PostgreSQL databases, because the JDBC drivers for those databases are installed
in the distribution.

Authentication Account Provider
You can select an authentication account provider:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 50 of 642

Choose one of the following:

l Database: All accounts will be stored in the registry database.

l LDAP: Registry accounts integrated with LDAP server.

l External: Registry accounts integrated with other external storage. The interface
com.systinet.uddi.account.ExternalBackendApi must be implemented and added to the
registry installation.

Direct Deployment
You can use direct deployment to create EAR orWAR files for deployment in an application server
directly from the installer. You can also deploy later with Setup (see "Creating aWeb Application
Archive (WAR,EAR)" on page 120). Deployment from the installer is similar.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 51 of 642

Server Configuration Settings
The server settings will be used for the HTTP and HTTPS servers. The default recommended settings
are filled in the text fields.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 52 of 642

Host name—The host name of this computer; change the auto-completed entry if it is different.

HTTP Port—The nonsecure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port—Secure port for accessing the Registry Console (default value: 8443)

Connector—The connector port is used by standalone server to listen for control signals. Note that no
other applicationmay use this port (default value: 8081).

SSL Certificate Alias—Alias used to identify the SSL private key in protected storemanagement.
For more information see "PStore Tool" on page 361. (default value: uddiadmin)

SSL Certificate Password—Password to encrypt SSL private key. (default value: changeit)

Confirm Password—Retype the same password. Note that if it is not same as previous, you cannot
continue.

The host name, SSLCertificate Alias, and SSL password are used to create a new security identity in
the local protected store. It creates a certificate and adds this certificate to REGISTRY_
HOME/conf/clientconf.xml, REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 53 of 642

file REGISTRY_HOME/doc/registry.crt. See "PStore Tool" on page 361 for instructions on how to
operate the protected security store.

Note: The server configurationmay be changed after install.

Confirmation and Installation Process

Confirmation Panel
The Confirmation panel shows a summary of installation information. All required and optional
properties are set:

l If you want to continue with the installation, click Next and the install process will start.

l If you want to change any property, click Back.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 54 of 642

Installation Process Panel
The Installation Process panel shows the installation output and progress. Installation consists of
copying files, configuring the server and installing the database. When the installation has completed
successfully, theNext button is enabled. If there is a problem, an error message and aRecovery
button will appear on the screen.

For more information on recovery, see "Troubleshooting" on page 66.

Finish
To complete the installation, click Finish.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 55 of 642

Installation Summary
The following tables contain summary information.

l "Directory Structure" below

l "Registry Endpoints" on the next page

l "Pre-Installed Data" on page 59

Directory Structure
The installation directory structure contains the following directories.

app HPE SOA Registry Foundation deployed as Web services in SOA Registry Foundation
Server for Java.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 56 of 642

bin Contains command-line scripts for running HPE SOA Registry Foundation. See
"Command Line Scripts" on page 59.

conf HPE SOA Registry Foundation configuration files

demos demos of HPE SOA Registry Foundation functionality. For more information, see "Demos"
on page 531.

dist HPE SOA Registry Foundation client packages.

doc HPE SOA Registry Foundation documentation.

etc additional data and scripts.

hsqldb preconfigured HSQL database with registry data.

lib HPE SOA Registry Foundation libraries

log logs of installation, setup, and server output. See "Logs" on page 65.

work This directory is available after the first launch of the server; it is a working image of the app
directory.

Registry Endpoints
HPE Systinet is configured as follows. The <host name>, <http port> and <ssl port> are
specified during installation. For more information, see "Server Settings" on page 1. For each endpoint
you can use either an http or ssl port.

l Registry Console home page: http://<host name>:<http port>/uddi/web

l UDDI Inquiry API endpoint - http://<host name>:<port>/uddi/inquiry

SeeUDDI Version 1, UDDI Version 2, and UDDI Version 3 in "UDDI APIs" on page 378 in the
Developer's Guide.

l UDDI Publishing API endpoint - http://<host name>:<port>/uddi/publishing

SeeUDDI Version 1, UDDI Version 2, and UDDI Version 3 in "UDDI APIs" on page 378 in the
Developer's Guide.

l UDDI Security Policy v3 API endpoint:- http://<host name>:<port>/uddi/security

SeeUDDI Version 3 in "UDDI APIs" on page 378 in the Developer's Guide.

l UDDI Custody API endpoint - http://<host name>:<port>/uddi/custody

SeeUDDI Version 3 in "UDDI APIs" on page 378in the Developer's Guide.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 57 of 642

l UDDI Subscription API endpoint - http://<host name>:<port>/uddi/subscription

SeeUDDI Version 3 in "UDDI APIs" on page 378 in the Developer's Guide.

l Taxonomy API endpoint:- http://<host name>:<port>/uddi/taxonomy

See "Taxonomy" on page 395 in the Developer's Guide.

l Category API endpoint - http://<host name>:<port>/uddi/category

See "Category" on page 406 in the Developer's Guide.

• Administration Utilities API endpoint - http://<host name>:<port>/uddi/administrationUtils

See "Administration Utilities" on page 412 in the Developer's Guide.

• Replication API endpoint - http://<host name>:<port>/uddi/replication

See "Replication" on page 417 in the Developer's Guide.

• Statistics API endpoint - http://<host name>:<port>/uddi/statistics

See "Statistics" on page 418 in the Developer's Guide.

• WSDL2UDDI API endpoint - http://<host name>:<port>/uddi/wsdl2uddi

SeeDeveloper's Guide, WSDL Publishing on page 521.

• XSD2UDDI API endpoint - http://<host name>:<port>/uddi/xsd2uddi

See "XSD Publishing" on page 435 in the Developer's Guide.

• Extended Inquiry API endpoint - http://<host name>:<port>/uddi/inquiryExt

• Extended Publishing API endpoint - http://<host name>:<port>/uddi/publishingExt

• Configurator API endpoint - http://<host name>:<port>/uddi/configurator

• Account API endpoint - http://<host name>:<port>/uddi/account

See "Accounts" on page 453 in the Developer's Guide.

Group API endpoint - http://<host name>:<port>/uddi/group

See "Group" on page 460 in the Developer's Guide.

• Permission API endpoint - http://<host name>:<port>/uddi/permission

See "Permission" on page 467 in the Developer's Guide.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 58 of 642

Pre-Installed Data
HPE SOA Registry Foundation contains the following data:

l Operational business - This entity holds miscellaneous nodes' registry settings such as the
validation service configuration.

l Built in tModels - tModels required by the UDDI specification.

l Demo data - Data required by the HPE SOA Registry Foundation demos. For more information, see
"Demos" on page 531.

Command Line Scripts
The bin subdirectory contains scripts, including those for launching the server, installingWindows
services, and changing configuration.

Serverstart
Windows: serverstart.bat

UNIX: ./serverstart.sh

Starts the standalone registry server.

serverstop
Windows: serverstop.bat

UNIX: ./serverstop.sh

Stops the standalone registry server.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 59 of 642

server
Windows: server.bat

UNIX: ./server.sh

Helper script to manipulate the standalone HPE SOA Registry Foundation server. To start and stop the
registry, use serverstart or serverstop without parameters instead of server with parameters. For more
information, see "Server Properties" on page 63.

Setup
Windows: setup.bat

UNIX: ./setup.sh

Setupmay be launched with the following optional arguments:

setup.sh (.bat) [[--help] | [-h] | [--gui] | [-g] | [-u file] | [--use-config file]] [[-s file] | [--save-
config file]] [--debug]

-h | --help shows helpmessage

-g | --gui starts the setup wizard. The wizard is the default mode.

-u | --use-config file starts setup in non-interactivemode; it reads all properties from the specified
file.

-s | --save-config file starts the setup wizard. All configuration will be saved into specified file
instead of execute configuration. The file may be used later in a non-interactive installation.

--debug the setup produces more information to localize problems or errors.

To change the HPE SOA Registry Foundation configuration after installation see "Reconfiguring After
Installation" on page 62.

Signer
Windows: signer.bat

UNIX: ./signer.sh

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 60 of 642

The Signer is a graphical application that can be used to add, remove, and verify the signatures of
UDDI structures you have published. See "Signer Tool" on page 291.

register
Windows: register.bat

UNIX: ./register.sh

Registers evaluation version of HPE SOA Registry Foundation.

SoapSpy
Windows: SoapSpy.bat

UNIX: ./SoapSpy.sh

Debugging tool to control low level soap communication. See "How to Debug" on page 526.

PStoreTool
Windows: PStoreTool.bat

UNIX: ./PStoreTool.sh

Protected security storagemanipulation tool. See "PStore Tool" on page 361.

env
Windows: env.bat

UNIX: ./env.sh

Helper script to set system variables. HPE recommends that you not use it directly.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 61 of 642

Reconfiguring After Installation
All settings may be changed after installation using the Setup tool.

The Setup tool also facilitates other functions such as deploying to an application server (described in
“Deployment to an Application Server”) and datamigration from previous installation (described in
“Migration”).

The Setup tool contains similar panels to those in the installation tool. To run this tool, execute the
following script from the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

By default setup starts in wizardmode as shown here:

The following topics may be configured:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 62 of 642

Configuration: Change server and registry configuration. Follow Server Configuration on page 103.

Registry Server URLs: Change Registry server URLs in database. Follow Change Server URLs on
page 107.

SAP Integration:Prepare registry for SAP NetWeaver Service Registry integration. Follow SAP
Integration on page 113.

Database: Create, drop, or connect to a database. Follow Database Installation on page 117.

Deployment: Deploy registry to an application server. Follow Deployment to an Application Server on
page 175.

Migration: Migrate registry data from other registry. Follow Migration on page 238.

Backup and Restore: Backup and restore HPE SOA Registry Foundation. Follow Backup on page
244

Authentication account provider: Change account backend configuration. Follow External Accounts
Integration on page 138.

Server Properties
System properties are themainmeans of configuring HPE SOA Registry Foundation as deployed into
Systinet Server for Java. Default values for these properties are in the resource META-
INF/wasp.properties, which is located in lib/runner.jar.

There are two ways to alter system properties, for the two different types of HPE SOA Registry
Foundation installation:

l Standalone Installation: Set the property from the command line when starting the server from either
the REGISTRY_HOME/bin/server.bat or server.sh script. The syntax is:

server(.sh) [-Dname of property=value] { start | stop }

For example: server -Didoox.debug.level=4 start

l HPE SOA Registry Foundation deployed to an application server: Default property values can be
overridden in the init-param elements in the web application deployment descriptor, web.xml.

The following properties are checked when HPE SOA Registry Foundation is initialized:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 63 of 642

Property Description

wasp.location This property is mandatory for running a HPE SOA Registry Foundation
server. It must point to the directory in which HPE SOA Registry
Foundation is installed.

wasp.config.location This is an absolute or wasp.location-relative path pointing to the registry
configuration file. Setting this property is optional; the default value is
conf/clientconf.xml.

wasp.config.include Comma-separated list of additional config paths to include. These paths
can be either absolute or relative to the working directory. This property is
optional.

wasp.impl.classpath Sets a classpath for the registry implementation. This property is optional;
if it is not set, registry interfaces and implementation are loaded in the
same classloader.

wasp.shutdownhook Set to true if HPE SOA Registry Foundation should be automatically
destroyed just before JVM is destroyed. Set to false if you want to
manage the shutdown process yourself. The default setting is true.

idoox.debug.level Determines the number of debuggingmessages produced by HPE SOA
Registry Foundation:

l 0: none

l 1: errors

l 2: warnings

l 3: infos

l 4: debugs

This property is optional; the default value is 2 for the client and 3 for the
server. The debug level is available in the non-stripped distribution only.

The logging level specified by the idoox.debug.level property overrides
the level specified in the configuration file determined by the
log4j.configuration property

idoox.debug.logger Specifies which logging system is used, waspLogger or log4j. Default
is log4j. Setting the value of this property to waspLogger uses this
logger, instead.

log4j.configuration Specifies the location of the configuration (properties file) for log4j. This
property can contain a relative (conf/log4j.config) or absolute
(/home/waspuser/log4j.config) path to the configuration file.

If it is not set, the default configuration (ConsoleAppender with the
pattern %p: %c{2} - %m\n) will be used.

An example configuration file for log4j, log4j.config, is located in the

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 64 of 642

Property Description

conf subdirectory of the HPE SOA Registry Foundation installation
directory.

Windows Services
Use the following scripts to install, uninstall, start, and stop HPE SOA Registry Foundation as a
Windows service:

InstallService - InstallService.bat

Installs HPE SOA Registry Foundation into system services

UnInstallService - UnInstallService.bat

Uninstalls HPE SOA Registry Foundation from system services.

StartService - StartService.bat

Starts the already installed HPE SOA Registry Foundation service.

StopService - StopService.bat

Stops the started HPE SOA Registry Foundation service.

See "NT Service Support" on page 189.

Logs
There are four log files in REGISTRY_HOME/log directory.

These two log files are produced by the Installation and Setup processes:

install.log
This log contains installation output information including all properties set during installation, and
output from the installation process. If an error occurs during installation, see this log for details.

setup.log
The log of the Setup tool. Any execution of the Setup tool writes the set properties and output from
setup processes here. Errors occurring during setup are written to this log.

The default server logs are:

logEvents.log

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 65 of 642

The standard server output contains informative events which occur on the HPE SOA Registry
Foundation server.

errorEvents.log
This file contains detailed logs of error events which occur on the HPE SOA Registry Foundation
server.

replicationEvents.log
Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file.

configuratorEvents.log
Cluster configuration events are logged in the REGISTRY_HOME/log/configuratorEvents.log file

wasp_NTService.log
Events of the server are written into the REGISTRY_HOME\log\wasp_NTService.log file.

The server logs may be configured by one of two logging systems, the in-house waspLogger and
log4j. By default, log4j is used. The default log4j configuration file is located in REGISTRY_
HOME/conf/log4j.config.

Note: An explanation of using log4j is outside the scope of this documentation; see the Apache
log4j documentation for more information.

Troubleshooting
If errors occur during the installation process, the installer displays amessage and aRecovery button.

Execution of Task fails. You can click Recovery and correct erroneous selections or click Exit to exit
the installation.

If you click Recovery, the installation returns to the step that should be corrected. For example, if the
installation fails during copying files, it will return to the installation type panel. If the process fails during
configuring database it will return to the database panels.

If errors occur when using the Setup tool, only the error message is displayed, you can continue by
clickingNext.

The following general problems may occur:

Installation backend timeout
If the task does not respond for a long time, a timeout error is thrown and the task is stopped. The
default timeout is 30minutes. If you have a slow machine, try to redefine the timeout system
property for a greater value in minutes at a java command line.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 66 of 642

http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html

For 60minutes, run installation by following command: java -Dtimeout=60 -jar hpe-soa-registry-
foundation-10.04.jar

For 60minutes, edit the setup.sh (setup.bat) file; add the -Dtimeout=60 option into the java
command line so it looks like:

Windows: "%JAVA_CMD%" -Dtimeout=60

UNIX: "$JAVA_CMD" -Dtimeout=60

Cannot find JDBC driver, java.lang.ClassNotFoundException
Some external classes cannot be found. Usually the path to JDBC driver does not contain the
needed *.jar or *.zip files. Another reason this error may be thrown is that the JDBC driver is not
supported by HPE SOA Registry Foundation. See "Database Installation" on page 80 for more
information about supported databases.

Cannot access database, java.sql.SQLException
This usually happens during the creation of database which already exists. To resolve this error, try
to connect or drop this database first.

This error is also thrownwhen trying to drop a database which is currently in use, or does not exist.
Note that some set properties must exist on the database engine and some of them are optional.
See "Database Installation" on page 80 for more information about supported databases.

Couldn't create or access important files. Wrong path
This error is displayed when the installation directory specified is bad or the user does not have read
and write permissions for it. Try to install to another directory or reset the read and write
permissions.

Server Configuration
The server configurationmay be set up during installation or by using the Setup tool after installation.
Both of these scenarios use the same set of GUI panels shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 67 of 642

Formore information on the Setup tool, see "Reconfiguring After Installation" on page 62.

Select whether you want to setup HPE SOA Registry Foundation that has been deployed (second
choice) or not (first choice).

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 68 of 642

The "SMTP Configuration" panel allows you to configure SMTP. The SMTP configuration is important
when users needs to receive email notification from subscriptions.

SMTP Host Name - Host name of the SMTP server, through which all e-mail alerts and notification are
sent to administrator and users.

SMTP Port - Port number for this SMTP server

SMTP Password - Password to access SMTP server

Confirm password - Retype the same password. Note that if it is not same as the password in the
previous box, you cannot continue.

SMTP Default Sender E-mail, Name - HPE SOA Registry Foundation will generate email messages
with this identity.

SMTP Configuration
Select Configuration on the first panel.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 69 of 642

Formore information on the Setup tool, see "Reconfiguring After Installation" on page 62.

Select whether you want to set up HPE SOA Registry Foundation that has been deployed (second
choice) or not (first choice).

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 70 of 642

The SMTP configuration is important when users needs to receive email notifications from
subscriptions.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 71 of 642

l SMTP Host Name: Host name of the SMTP server, through which all e-mail alerts and notification
are sent to administrator and users.

l SMTP Port: Port number for this SMTP server.

l SMTP Password: Password to access SMTP server.

l Confirm password: Retype the same password. Note that if it is not same as the password in the
previous box, you cannot continue.

l SMTP Default Sender E-mail, Name: HPE SOA Registry Foundation will generate email
messages with this identity.

Change Server URLs
Select Registry Server URLs on the first panel.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 72 of 642

Formore information on the Setup tool, see "Reconfiguring After Installation" on page 62.

Select whether you want HPE SOA Registry Foundation to setup only a configuration (first option) or to
only alter a earlier deployment.

Setup

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 73 of 642

Change Server URLs standalone deployment

This panel allows you to configure server URLs. There is no context field in a standalone deployment.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 74 of 642

Host name: Host name of the computer on which HPE SOA Registry Foundation is installed; change
the auto-completed entry if it is different.

HTTP Port: The non-secure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port: Secure port for accessing the Registry Console (default value: 8443)

Connector: Connector port is used by standalone server to listen for control signals. No other
applicationmay use this port (default value: 8081)

SSL Certificate Alias: Alias used for the identification of an SSL private key used in protected store
management. For more information see “PStore Tool”. (default value: uddiadmin)

SSL Certificate password: Password to encrypt SSL private key.(default value: changeit)

Confirm password: Retype the same password. Note that if it is not identical to the first one, you will
not be able to continue

Change also ports bound by Registry Server: Select this option to change the ports bound to the
Jetty server. When 'Change also ports bound by Registry Server' is selected, the connector port field
will be enabled otherwise it will remain disabled.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 75 of 642

Update demo data:When the option Update demo data is selected, demo data will be deployed to the
registry. It is not imported during installation.

Change Server URLs Oracle WebLogic deployment

Application Server Context: Context part of the URL, used to access Oracle Service Registry ported
to an application server.

The host name, SSLCertificate Alias, and SSL password are used to create a new security identity in
the local protected store. It creates a certificate and adds this certificate to REGISTRY_
HOME/conf/clientconf.xml, REGISTRY_HOME/conf/pstore.xml, and also exports it to the certificate
file REGISTRY_HOME/doc/registry.crt. See "PStore Tool" on page 361 for instructions in how to
operate the protected security store.

Note: The certificate generated by Registry is signed by our DemoCertification Authority. This
enables HPE SOA Systinet 10.04 to access HPE SOA Registry Foundation without additional
trust setup when deployed to JBoss. Using the generated certificate for production is not
recommended.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 76 of 642

After setting these properties, the server will be available at http://[host name]:[HTTP Port]/
[Context of URL]. For example, in the "Change Server URLs standalone deployment" above, the
server is available at http://mydomain.mycompany.com:8080/uddi and at
https://mydomain.mycompany.com:8443/uddi. Note that communication could be spied upon by
using the SoapSpy tool, see "How to Debug" on page 526.

SAP Integration
SAP Integration is set by using the Setup tool after installation. This scenario uses the set of GUI
panels for SAP integration shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

Select SAP Integration on the first panel.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 77 of 642

Formore information on the Setup tool, see "Reconfiguring After Installation" on page 62.

Select whether you want HPE SOA Registry Foundation to setup only a configuration (first option) or to
only alter a earlier deployment (second option).

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 78 of 642

The SAP integration settings are used for the host name, HTTP(S) and user name.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 79 of 642

Host name: Host name of the computer on which HPE SOA Registry Foundation is installed; change
the autocompleted entry if it is different.

HTTP Port: The non-secure port for accessing the Registry Console (default value: 8080)

SSL (HTTPS) Port: Secure port for accessing the Registry Console (default value: 8443)

User name: User name for logging on the Registry Console (default value: admin)

Database Installation
The databasemay be set up during installation or by using the Setup tool after installation. Both of
these scenarios use the same set of GUI panels shown in this section.

To run the Setup tool, execute the following script from the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 80 of 642

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

Select your database. For more information on the Setup tool, see "Reconfiguring After Installation" on
page 62.

Database Creation Method
The registry requires a database. During installation you can create a new database, create schema in
an existing empty database or connect to an existing database with created schema. Using the Setup
tool, you can also drop a database or database schema.

Select your database operation on the following panel:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 81 of 642

Select amethod from those shown in the above figure.

Create database: Create new database/users/tablespaces (depending on the type of database server)
and database schema. This is the easiest way to attach the required database to HPE SOA Registry
Foundation. Note that youmust have the credentials of the database administrator.

Create schema: Create a new schema in existing database. Select this method if you have access to
an existing empty database with the ability to create tables and indexes. This option is suitable when
you does not know the administrator's credentials. We assume the administrator has already created a
new database/users/tablespaces for this option.

Drop database: Drop databaseDrops the whole database/users/tablespaces. Note that this option
depends on the type of database server.

Drop schema: Drops all tables in the database but leave the empty database.

Configure database: Configure registry database. Use this method if the registry database already
exists, for example, from a previous HPE SOA Registry Foundation installation of the same release
number, and fill in only the connection parameters.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 82 of 642

Select Database Type
The “Select Database Type” panel shows the supported database engines that can be prepared for
HPE SOA Registry Foundation. The panel may differ if another method was selected in the previous
step.

Follow these links for the selected database:

l "Preconfigured HSQL" on the next page

l "Oracle" on page 85

l " MSSQL 2005 or 2008" on page 86

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 83 of 642

Preconfigured HSQL
The default database is the preconfigured HSQL. The installer or Setup tool creates a database named
REGISTRY_HOME/hsqldb/uddinodewith the user account uddiuserwith the password uddi in the
database. Note that all database files can be found in REGISTRY_HOME/hsqldb directory.

Note: This database is recommended for evaluation and testing purposes only.

If you use HSQL then the user credentials are stored in the HSQL database files in plain text. You
must protect these files from unauthorized reading using the appropriate filesystem access rights.
The files are located in the directory REGISTRY_HOME/hsqldb/ by default.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 84 of 642

Oracle
TheCreate database option on the installer/Setup tool does not mean to create a new physical
database. The installation process only creates a new tablespace in an existing database and a new
user of the default tablespace is set up on the created one. Then a database schema is created and
UDDI data are loaded. Because relational tables are created in the schema of the specified user, if you
want to createmore UDDI databases, youmust create UDDI databases with different database users.

Oracle database creation requires the following properties. To connect or create a schema requires a
subset of these properties. Please note that properties marked with an asterisk (*) must not collide with
existing objects in the database.

Database Server Address: Usually the host name or IP address of the computer where the database
server is accessible.

Database Server Port: Port on which the database listens for a connection

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 85 of 642

Existing Database Name: Name of a database that already exists into which the HPE SOA Registry
Foundation tablespace will be created.

Database Administrator Name: User name of the administrator of the database; required to create a
new tablespace on the existing database

Database Administrator Password: Password for the administrator account specified in the previous
text box.

Database Tablespace Name *: Name of the tablespace to be created in the existing database and
which will store UDDI data structures.

Database User *: A new user account which will be created to connect to the tablespace.

Database User Password: Password for the user account specified in the previous text box.

Confirm password: Again, if it is not the same as in the previous text box, you cannot continue.

Tablespace Datafile *:Enter the path to the tablespace data file. If you useOracle with Automatic
StorageManagement (ASM) youmay want to specify the disk group in the Tablespace Datafile field in
format: "+DATA" (the DATA is default group name). If you do not use this extension, specify the
filename of the datafile (including the file extension and the full path on the database server).

Continue with "JDBC Driver" on page 88.

MSSQL 2005 or 2008
You have to select right version of MSSQL. Either MSSQL 2005 or MSSQL 2008 can be selected in
panel shown in figure Select Database Type. The options that follow are same for both but the versions
differ in connection string and JDBC class name so that the selected versionmust match the version of
database.

The installation process creates a new database on the database server under the given user name.
The database schema is created and UDDI data are loaded. This user should have the Database
Creators server role.

Note: Make sure your database server has case-sensitive collation, otherwise all comparisons
will be case insensitive, even if the caseSensitiveMatch findQualifier is set. Alternatively, you can
create a database with case-sensitive collationmanually and use the create schema option.

Note: If you selected the optionCreate database in the installation/Setup panel shown in figure
Database CreationMethod, you need a database user account with the Database creators
server role. To create such account, you can use the SQL Server Enterprise Manager:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 86 of 642

1. Select theConsole Root >Microsoft SQL Servers > SQL Server Group > server name >
Security > Logins.

2. Right-click on Logins and select theNew Login from the context menu.

3. Enter the account name, click on theSQL Server Authentication option and fill in the
password.

4. Select Server Roles tab, mark theDatabase Creators, click OK, and retype the password.

MSSQL database creation requires the following properties. To connect or create schema requires a
subset of these properties. Please note that properties marked with an asterisk (*) must not collide with
existing objects in the database.

Database Server Address:Usually the host name or IP address where the database server is
accessible.

Database Server Port: Port on which the database listens for a connection.

Database name *: Name of the database that will hold UDDI data structures.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 87 of 642

Database user: User name of a user who is able to create a new database.

Database User Password *: Password for the user specified above.

Continue with "JDBC Driver" below.

JDBC Driver
Select the JDBC Driver as shown in following figure, “Optional JDBC Driver”. It is not necessary to
configure this path for the HSQL database as the JDBC drivers for this database are installed in the
distribution. It is also not necessary if you have already configured this path previously for the selected
database. The JDBC drivers are usually supplied by database vendors.

You can also specify custom JDBC connection string. Such stringmay be useful for special
environments like database clusters where JDBC driver does load-balancing or failover. This setting is
useful only in Create Schema, Drop Schema and Configure Database. We do not recommend to use
this option unless there is special need to do so.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 88 of 642

Account Backend
If you created a database or schema, you can configure an authentication account provider.

Figure “Authentication Provider” allows you to select the authentication account provider.

Database: All accounts will be stored in the registry database. This is the recommended backend.

LDAP: Registry accounts integrated with LDAP server.

External: Registry accounts integrated with other external storage. To integrate HPE SOA Registry
Foundation, with an external backend, youmust implement the interface
com.systinet.uddi.account.ExternalBackendApi and add it to the registry installation.

For more information about LDAP and External account backends, see "External Accounts Integration"
on page 92.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 89 of 642

Multilingual Data
This section describes how HPE SOA Registry Foundation supports the storage of UDDI structures in
themultilingual data format.

There are two types of text fields in UDDI structures: Unicode fields and ASCII fields.

Unicode fields:intended for human readable information, the field length is measured in number of
characters as follows:

Field Name Max Length (in chars)

name of businessEntity and businessService 255

keyName 255

keyValue 255

useType 255

description 255

addressLine 80

personName 255

ASCII fields: intended for machine processing, such as URIs. The length is measured in bytes. ASCII
fields can typically hold multilingual data. Its length is limited by the number of bytes of its serialized
form in UTF-8 encoding. For example, the name of a tModel can carry 85 Japanese characters,
because Japanese characters are encoded into three bytes each under UTF-8 encoding (255/3=85).

Field Name Max Length (in chars)

name of tModel 255

overviewURL 4096

discoveryURL 4096

sortCode 10

email 255

phone 50

accessPoint 4096

instanceParms 8192

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 90 of 642

MSSQL
MSSQL supports Unicode characters only in Unicode fields. Unicode characters are stored
successfully to ASCII fields only if they match with the server collation, otherwise are converted to
questionmarks (?). For example, Japanese characters are stored correctly if the Japanese_Unicode_
Cl_AS collation is default to the server. If the English collation is set up, Japanese characters are
converted to ? characters.

Oracle
Oracle database supports Unicode characters in both types (Unicode and ASCII) of fields.

JDBC Drivers
HPE SOA Registry Foundation requires by default the following classes for connection to the
database. Please ensure that your downloaded JDBC JAR(s) includes them:

Database Driver class

DB2 com.ibm.db2.jcc.DB2Driver

MSSQL com.microsoft.jdbc.sqlserver.SQLServerDriver

Oracle oracle.jdbc.driver.OracleDriver

Alternative JDBC Drivers

This section describes the use JDBC drivers other than the default drivers mentioned above. Suppose
you downloaded FooJDBC.jar, where the driver class is foo.jdbc.Driver and the connection string is
jdbc:foo:....

If you want to use an alternative JDBC driver while you already installed the registry and set up
database with the default JDBC driver, edit the file REGISTRY_HOME/app/uddi/conf/database.xml as
follows:

1. Add

<universalDriver name="fooDriver">

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 91 of 642

<JDBC_driver>foo.jdbc.Driver</JDBC_driver>

<URI_pattern>jdbc:foo:...</URI_pattern>

</universalDriver>

at the end of <databaseMappings/> element

You can use following parameters in the <URI_pattern> element

o ${hostname} - hostname or IP address of the database server

o ${port} - Port where the database server listens for requests

o ${dbName} - Name of the database

o ${userName} - Name of database account

o ${userPassword} - Password of the account

Replace the parameters with corresponding values using the Setup tool or the Registry Console.

2. Replace the className attribute of the interfaceMapping element with fooDriver value for your
database. Determine the right databaseMapping element by value of type attribute.)

If you want to create a database with the alternative JDBC driver (without needing to use the default
driver):

1. Install the HPE SOA Registry Foundation without the database.

2. Modify REGISTRY_HOME/app/uddi/conf/database.xml as described above.

3. Replace the driver class and connection string in the installation scripts in REGISTRY_
HOME/etc/db/ <database_type>/installXXX.xml

4. Run the Setup tool to create database.

External Accounts Integration
During database installation or by employing the Setup tool, youmay choose to use accounts from
external repositories. This chapter describes how to integrate accounts from an LDAP server and from
non-LDAP user stores into HPE SOA Registry Foundation.

An LDAP server can be integrated with HPE SOA Registry Foundation with these scenarios:

l LDAP with a single search base - The scenario is very simple. There is only one LDAP server in this
scenario. All identities are stored under a single search base.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 92 of 642

l LDAP with multiple search bases - In this scenario there is also only one LDAP server, but it has
multiple search bases mapped to a domain. The domain is a specified part of the user's login name
(that is, DOMAIN/USERNAME). All users must specify the domain name in the login dialog. When
managing accounts or groups, we recommend using the DOMAIN/USERNAME format for performance
reasons. If no domain is set, searches are performed across all domains.

Multiple LDAP services - More than one LDAP service is used in this scenario. The correct LDAP
service is chosen via DNS. As in the previous scenario, users must specify a domain name during
login. Whenmanaging accounts or groups, users have to set domain name. If the domain name is not
specified, then no domain is processed.

This chapter also contains the following configuration examples:

l SunOnewith a single search base

l SunOnewith multiple search bases

Active Directory with a single search base

Note: HPE SOA Registry Foundation treats external stores as read-only. User account properties
stored in these external stores cannot bemodified by HPE SOA Registry Foundation.

Note: The Administrator account must not be stored in the LDAP. We strongly recommend that
users stored in account_list.xml (by default, only administrator) should not be in the LDAP. If
you really need to have users from LDAP in the file account_list.xml, delete password items
from the file and change of all the accounts' properties according to the LDAP. The account_
list.xml file contains a list of users that can be logged into a registry without connection to the
database.

Sometimes HPE SOA Registry Foundation displays various warnings into logs. We recommend
to edit file directory.xml and file group_core.xml manually in order to suppress warnings
related to account / group integration - LDAP (set true for attribute suppressWarnings).

To integrate external accounts from another repository, either:

l Create a database or create a new schema on the connected database by following the instructions
in " Database Settings" on page 46, or

l Use the Setup tool and chooseAuthentication provider. To run the Setup tool, execute the
following script from the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 93 of 642

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

For more information on the Setup tool, see "Reconfiguring After Installation" on page 62.

LDAP
Select LDAP on theAccount Provider panel.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 94 of 642

Enter the following settings:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 95 of 642

HPE SOA Registry Foundation uses a JNDI interface to connect to LDAP servers. The following JNDI
properties must be known to the server. (The default properties are noted in parentheses.)

Java naming provider URL - A URL string for configuring the service provider specified by the "Java
naming factory initial" property. (ldap://hostname:389).

Initial Naming Factory - Class name of the initial naming factory.
(com.sun.jndi.ldap.LdapCtxFactory).

Security Principal - The name of the principal for anonymous read access to the directory service.

Password - Password of security principal.

Authentication - Security level. (simple)

LDAP Usage Scenarios

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 96 of 642

You can select the following LDAP usage scenarios:

LDAP with a single search base - The scenario is very simple. There is only one LDAP server in this
scenario. All identities are stored under a single search base.

LDAP with multiple search bases - In this scenario there is also only one LDAP server, but it has
multiple search bases mapped to a domain. The domain is a specified part of user's login name (that is,
DOMAIN/USERNAME). All users must specify the domain name in the login dialog. During themanaging
with accounts or groups it is recommended to use DOMAIN/USERNAME because of performance. If no
domain is set then search is performed across all domains.

Domains can be specified dynamically or statically. For dynamic settings it is necessary to specify, for
example, a domain prefix or postfix. Static domains are set during the installation directly and so they
must be known in time of installation.

Multiple LDAP services - More than one LDAP service are used in this scenario. The correct LDAP
service is chosen via DNS. As in the previous scenario, users must specify a domain name during
login. Whenmanaging accounts or groups users have to set domain name. If domain name is not
specified then no domain is processed.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 97 of 642

Note: HPE SOA Registry Foundation treats external stores as read-only. User account properties
stored in these external stores cannot bemodified by HPE SOA Registry Foundation.

The automatic discovery of LDAP servers allows you not to hardwire the URL and port of the
LDAP server. For example, you can use ldap:///o=JNDITutorial,dc=example,dc=com as a
URL and the real URLwill be deduced from the distinguished name
o=JNDITutorial,dc=example,dc=com.

HPE SOA Registry Foundation integration with LDAP uses the JNDI API. For more information,
see http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html and
http://docs.oracle.com/javase/jndi/tutorial/getStarted/overview/index.html

LDAP with a Single Search Base
The installation consists of the following steps:

1. Specify user/account search properties as shown in the “User Search Properties” figure below.

2. Map Registry user properties to LDAP properties as shown in Figure 39, “User Properties
Mapping”.

3. Specify group search properties as shown in Figure 40, “Group Search Properties”.

4. Map Registry group properties to LDAP properties as shown in the “Group Properties Mapping”
figure below.

User Search Properties

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 98 of 642

http://java.sun.com/products/jndi/tutorial/ldap/connect/create.html
http://docs.oracle.com/javase/jndi/tutorial/getStarted/overview/index.html

Field description:

l Search Filter - The notation of the search filter conforms to the LDAP search notation. You can
specify the LDAP node property that matches the user account.

l Search Base - LDAP will be searched from this base including the current LDAP node and all
possible child nodes.

l Search Scope - Here you can specify how deep the LDAP tree structure's data will be searched.

o Object Scope - Only the search base node will be searched.

o One-level Scope - Only direct sub-nodes of the search base (entries one level below the search
base) will be searched. The base entry is not included in the scope.

o Subtree Scope - Search base and all its sub-nodes will be searched.

l Results Limit - Number of items returned when searching LDAP.

If an LDAP search returns more results than the limit then the following warning is returned:

WARN: ldap.LdapBackendImpl - The result of LDAP query (searchbase:
'dc=in,dc=idoox,dc=com', filter:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 99 of 642

'(&(uid=*)(objectClass=person))') is truncated by using the count limit search
control which is set to '100'.

The query produced too many answers and so please narrow your search filter or
increase default limit count.

Read the documentation in order to suppress the warning.

User Property Mapping

You can specify mapping between HPE SOA Registry Foundation user account properties and
LDAP properties. You can add rows by clicking Add. To edit an entry, double click on the value you
wish to edit.

The following user account properties can bemapped from an LDAP server:

java.lang.String loginName
java.lang.String email
java.lang.String fullName
java.lang.String languageCode
java.lang.String password
java.lang.String description
java.lang.String businessName

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 100 of 642

java.lang.String phone
java.lang.String alternatePhone
java.lang.String address
java.lang.String city
java.lang.String stateProvince
java.lang.String country
java.lang.String zip
java.util.Date expiration
java.lang.Boolean expires
java.lang.Boolean external
java.lang.Boolean blocked
java.lang.Integer businessesLimit
java.lang.Integer servicesLimit
java.lang.Integer bindingsLimit
java.lang.Integer tModelsLimit
java.lang.Integer assertionsLimit
java.lang.Integer subscriptionsLimit

Note: The Registry account property dn specifies the LDAP distinguished name. The value
depends on the LDAP vendor.

l On the SunONE Directory Server, the value is entryDN

l OnMicrosoft Active Directory, the value is distinguishedName

If an optional property (such as email) does not exist in the LDAP, then the property's value is
set according to the default account. The default account is specified in the config file whose
name is account_core.xml.

User account properties that you specify in the “User Property Mapping” page (shown above)
will be treated as read-only from the Registry Console and registry APIs.

For more information, see the "userAccount" data structure in "Accounts" on page 453 in the
Developer's Guide.

Group Search Properties

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 101 of 642

Field description:

Search Filter - The notation of the search filter conforms to LDAP search notation. You can specify
the LDAP node property that matches the group.

Search Base - LDAP, including the current LDAP node and possible all child nodes, will be searched
from this base.

Search Scope - Here you can specify how deep the LDAP tree structure data will be searched.

l Object Scope - Only the search base node will be searched.

l One-level Scope - Search base and its direct sub-nodes will be searched.

l Subtree Scope - Search base and all its sub-nodes will be searched.

Group Property Mapping

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 102 of 642

You can specify mapping between HPE SOA Registry Foundation group properties and LDAP
properties. You can add rows by clickingAdd. To edit an entry, double click on the value you wish to
edit.

If a property (such as description) does not exist in the LDAP then property value is set according to the
default group. The default group (groupInfo) is specified in the config file whose name is group.xml.

For more information, please seeDeveloper's Guide, group data structure.

LDAP with Multiple Search Bases
The installation consists of the following steps:

1. Specify the domain delimiter, domain prefix and postfix as shown in figure "Domain Delimiter”.

2. Enable/Disable domains as shown in figure “Enable/Disable Domains”.

3. Specify User Search properties as shown in figure “User Search Properties”.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 103 of 642

4. Map Registry user properties to LDAP properties as shown in figure “User Property Mapping”.

5. Specify group search properties as shown in figure “Group Search Properties”.

6. Map Registry group properties to LDAP properties as shown in figure “Group Property Mapping”

Domain Delimiter

Field descriptions:

Domain Delimiter - Specifies the character that delimits domain and user name. When left empty,
users are searched from all domains.

Domain Prefix, Domain Postfix - Domains are searched using the following pattern: {domain
prefix}domain_name{domain postfix}{search base}

where {domain prefix} is the value of the property called domain prefix, {domain postfix} is the value of
the property called domain postfix and {searchbase} is the value of the property called searchbase.

Enable/Disable Domains

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 104 of 642

Enable Domains - Left column: domain name that users will be using during login. Right column:
distinguished domain name.

Disable Domains - Enter distinguished domain name of domains you wish to disable.

Multiple LDAP Services
The correct LDAP service is chosen via DNS. The installation consists of the following steps:

1. Specify user/account search properties as shown in figure “User Search Properties”.

2. Map Registry user properties to LDAP properties as shown in figure “User Property Mapping”.

3. Specify group search properties as shown in figure “Group Search Properties”.

4. Map Registry group properties to LDAP properties as shown in figure “Group Property Mapping”.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 105 of 642

LDAP Over SSL/TLS
It is only amatter of configuration to setup LDAP over SSL (or TLS) with a directory server of your
choice. We recommend that you first install HPE SOA Registry Foundation with a connection to LDAP
that does not use SSL. You can then verify the configuration by logging in as a user defined in this
directory before configuring use of SSL.

The configuration procedure assumes that you have already installed HPE SOA Registry Foundation
with an LDAP account provider. HPE SOA Registry Foundationmust not be running.

LDAP over SSL Without Client Authentication

In this case only LDAP server authentication is required. This is usually the case.

Edit the REGISTRY_HOME/app/uddi/conf/directory.xml file in one of the following ways depending on
the version of Java used to run HPE SOA Registry Foundation:

l If HPE SOA Registry Foundation will always be running with Java 1.4.2 or later:

a. Change the java.naming.provider.url property to use the ldaps protocol and the port on which
the directory server accepts SSL/TLS connections. For example
ldaps://sranka.in.idoox.com:636;

l Otherwise, if HPE SOA Registry Foundationmay be run with a Java version less than 1.4.2:

a. Change the java.naming.provider.url property to the appropriate URL using the ldap protocol.
For example ldap://sranka.in.idoox.com:636;

b. Add a new property, after the java.naming.provider.url property, with name
java.naming.security.protocol and value ssl;

This is shown in the following example:

Example 1. Directory configuration

<config name="directory" savingPeriod="5000">

<directory>

<!-- LDAP over (SSL/TLS) unprotected connection -->

<!--

<property name="java.naming.provider.url" value="ldap://hostname:47361"/>

-->

<!-- LDAP over SSL/TLS for Java 1.4.2 and later -->

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 106 of 642

<!--

<property name="java.naming.provider.url" value="ldaps://hostname:636"/>

-->

<!-- LDAP over SSL/TLS for Java where LDAP over SSL is supported -->

<property name="java.naming.provider.url" value="ldap://hostname:636"/>

<property name="java.naming.security.protocol" value="ssl"/>

...

...

...

</directory>

</config>

In both cases, be sure that the hostname specified in the java.naming.provider.url property matches the
name that is in the directory server certificate's subject common name (CN part of certificate's
Subject). Otherwise you will get an exception during startup of HPE SOA Registry Foundation. It will
inform you of a hostname verification error. The stacktrace contains the hostname that youmust use.

LDAP over SSL With Mutual Authentication
HPE SOA Registry Foundation can be configured to communicate with LDAP server over 2 way SSL.
In this case HPE SOA Registry Foundation has to authenticates itself to LDAP server via client
certificate.

To enable 2 way SSL communication with LDAP server:

l Specify the client certificate for HPE SOA Registry Foundation via Java system properties.

Property Description

javax.net.ssl.keyStore Absolute path to client keystore file. Keystore file must
contain keyEntry that identifies the client.

javax.net.ssl.keyStorePassword Password for the keystore file.

l Ensure trust to LDAP server. For more information see section bellow. Briefly:

o Get the certificate of LDAP server or the certificate of its CA.

o Import the certificate to keystore file via keytool.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 107 of 642

o Add the following properties to Java system properties.

Property Description

javax.net.ssl.trustStore Absolute path of your trust store file.

javax.net.ssl.trustStorePassword Password for the trust store file.

l Modify REGISTRY_HOME/app/uddi/conf/directory.xml

o Change the java.naming.provider.url property to LDAPs URL or alternatively add
java.naming.security.protocol (for Java version less 1.4.2). More details are described above.

o Change the value of the java.naming.security.authentication from simple to EXTERNAL. In this
case LDAP server does not use principal and his password so properties
java.naming.security.principal and java.naming.security.credentials have no sense.

Note: If LDAP server requires client authentication then it is necessary to set
uddi.ldap.clientCertificateAuthentication to true. In this case HPE SOA Registry Foundation
must be installed in two way SSLmode, in order to check client identity properly

Ensuring Trust of the LDAP Server

The client that connects to the SSL/TLS server must trust the server certificate in order to establish
communication with that server. The configuration of LDAPS explained above inherits the default rule
for establishing trust from JSSE (the Java implementation of SSL/TLS). This is based on trust stores.

When a trust store is needed to verify a client/server certificate, it is searched for in the following
locations in order:

1. The file specified by the javax.net.ssl.trustStore system property, if defined;

2. Otherwise the file JAVA_HOME\jre\lib\security\jssecacerts if it exists;

3. Otherwise the file JAVA_HOME\jre\lib\security\cacerts if it exists;

It is recommended to use the first option to define a trust store specifically for the application you are
running. In this case, you have to change the command that starts the registry (or the JVM environment
of the deployed registry) to define the following Java system properties:

Property Description

javax.net.ssl.trustStore Absolute path of your trust store file.

javax.net.ssl.trustStorePassword Password for the trust store file.

To ensure that the server certificate is trusted, you have to:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 108 of 642

1. Contact the administrator of the LDAP server and get the certificate of the server or the certificate
of the authority that signed it;

2. Import the certificate into the trust store of your choice using the Java keytool:

keytool -import -trustcacerts -alias alias -file file -keystore keystore -
storepass storepass

where the parameters are as follows:

alias

A mandatory, unique alias for the certificate in the trust store;

The file containing the certificate (usually with .crt extension);

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

file

The file containing the certificate (usually with .crt extension);

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

keystore

The keystore file of your choice;

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

storepass

A password designed to protect the keystore file from tampering. Java level keystores (cacerts
and jssecacerts) usually require the password changeit;

LDAP Configuration Examples
SUN One with Single Search Base

In this example, we show how to configure a SunOneDirectory Server 5.2 under the LDAP Single
Search Base scenario.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 109 of 642

“SUN Onewith Single Search Base” shows user properties that are stored in the LDAP server.

User Properties in LDAP

“SUN Onewith Single Search Base” shows group properties that are stored in the LDAP server.

Group Properties in LDAP

The following table shows how to configure HPE SOA Registry Foundation using this scenario.

Config Property Config Value See

Java naming
provider URL

ldap://localhost:389 Figure 36, “LDAP
Service”

Initial Naming
Factory

com.sun.jndi.ldap.LdapCtxFactory Figure 36, “LDAP
Service”

Security Principal uid=JPatroni,ou=people,dc=in,dc=idoox,dc=com Figure 36, “LDAP
Service”

Security Protocol simple Figure 36, “LDAP
Service”

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 110 of 642

User Properties

Search Filter objectClass=person Figure 38, “User Search
Properties”

Search Base ou=people,dc=in,dc=idoox,dc=com Figure 38, “User Search
Properties”

Search Scope Subtree Scope Figure 38, “User Search
Properties”

Result Limit 100 Figure 38, “User Search
Properties”

telephoneNumber phone Figure 39, “User
Properties Mapping”

uid loginName Figure 39, “User
Properties Mapping”

cn fullName Figure 39, “User
Properties Mapping”

mail email Figure 39, “User
Properties Mapping”

Group Properties

Search Filter objectClass=groupofuniquenames Figure 40, “Group Search
Properties”

Search Base ou=groups,dc=in,dc=idoox,dc=com Figure 40, “Group Search
Properties”

Search Scope Subtree Scope Figure 40, “Group Search
Properties”

Result Limit 100 Figure 40, “Group Search
Properties”

creatorsName owner Figure 41, “Group
Properties Mapping”

description description Figure 41, “Group
Properties Mapping”

uniqueMember member Figure 41, “Group
Properties Mapping”

cn name Figure 41, “Group
Properties Mapping”

Sun One with Multiple Search Bases

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 111 of 642

In this example, we show how to configure SunOneDirectory Server 5.2 with multiple search bases. In
Figure 47, “Registry Users”, you can see users and domains that are stored on the LDAP server. We
want to configure the LDAP integration with HPE SOA Registry Foundation in this way:

l Only users from domain1 and domain10 can log into HPE SOA Registry Foundation. LDAP
domain2 will be disabled.

l LDAP domain10 will bemapped to the domain3 user group in HPE SOA Registry Foundation.

Figure 47, “Registry Users” shows how users from LDAP aremapped to HPE SOA Registry
Foundation

The following table shows how to configure HPE SOA Registry Foundation using this scenario.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 112 of 642

Config Property Config Value See

Java naming provider URL ldap://localhost:1000 Figure 36,
“LDAP Service”

Initial Naming Factory com.sun.jndi.ldap.LdapCtxFactory Figure 36,
“LDAP Service”

Security Principal uid=JPatroni,ou=people,dc=in,dc=idoox,dc=com Figure 36,
“LDAP Service”

Security Protocol simple Figure 36,
“LDAP Service”

uddi.ldap.domain.delimiter / Figure 42,
“Domain
Delimiter”

uddi.ldap.domain.prefix ou= Figure 42,
“Domain
Delimiter”

uddi.ldap.domain.postfix leave empty Figure 42,
“Domain
Delimiter”

Enable domains

domain name domain3 Figure 43,
“Enable/Disable
Domains”

Distinguished name ou=domain10,ou=example,dc=in,dc=idoox,dc=com Figure 43,
“Enable/Disable
Domains”

Disable domains

Distinguished name ou=domain2,ou=example,dc=in,dc=idoox,dc=com Figure 43,
“Enable/Disable
Domains”

User Properties

Search Filter ou=people,dc=in,dc=idoox,dc=com Figure 38, “User
Search
Properties”

Search Scope Subtree Scope Figure 38, “User
Search
Properties”

Result Limit 100 Figure 38, “User

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 113 of 642

Search
Properties”

telephoneNumber phone Figure 39, “User
Properties
Mapping”

uid loginName Figure 39, “User
Properties
Mapping”

cn fullName Figure 39, “User
Properties
Mapping”

mail email Figure 39, “User
Properties
Mapping”

Group Properties

Search Filter objectClass=groupofuniquenames Figure 40,
“Group Search
Properties”

Search Base ou=groups,dc=in,dc=idoox,dc=com Figure 40,
“Group Search
Properties”

Search Scope Subtree Scope Figure 40,
“Group Search
Properties”

Result Limit 100 Figure 40,
“Group Search
Properties”

creatorsName owner Figure 41,
“Group
Properties
Mapping”

description description Figure 41,
“Group
Properties
Mapping”

uniqueMember member Figure 41,
“Group
Properties
Mapping”

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 114 of 642

cn name Figure 41,
“Group
Properties
Mapping”

Active Directory with Single Search Base

In this example, we show how to configure an Active Directory with a single search base. Figure 48,
“LDAP User Group” shows group properties that are stored in the Active Directory. These group
properties will bemapped to HPE SOA Registry Foundation as shown in Figure 49, “User Group in
HPE SOA Registry Foundation”.

Figure 50, “LDAP User Properties” shows user properties that are stored in the Active Directory. These
user properties will bemapped to HPE SOA Registry Foundation as shown in Figure 49, “User Group in
HPE SOA Registry Foundation”.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 115 of 642

The following table shows how to configure HPE SOA Registry Foundation using this scenario.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 116 of 642

Config Property Config Value See

Java naming
provider URL

ldap://localhost:389 Figure 36,
“LDAP
Service”

Initial Naming
Factory

com.sun.jndi.ldap.LdapCtxFactory Figure 36,
“LDAP
Service”

Security Principal CN=userx,OU=root,DC=registry,DC=in,DC=mycompany,DC=c
om

Figure 36,
“LDAP
Service”

Security Protocol DIGEST-MD5 Figure 36,
“LDAP
Service”

User Properties

Search Filter objectClass=person Figure 38,
“User
Search
Propertie
s”

Search Base ou=example,dc=registry,dc=in,dc=mycompany,dc=com Figure 38,
“User
Search
Propertie
s”

Search Scope Subtree Scope Figure 38,
“User
Search
Propertie
s”

Result Limit 100 Figure 38,
“User
Search
Propertie
s”

sAMAccountNam
e

loginName Figure 39,
“User
Properties
Mapping”

cn fullName Figure 39,
“User
Properties

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 117 of 642

Mapping”

mail email Figure 39,
“User
Properties
Mapping”

telephoneNumber phone Figure 39,
“User
Properties
Mapping”

Group
Properties

Search Filter objectClass=group Figure 40,
“Group
Search
Propertie
s”

Search Base ou=example,dc=registry,dc=in,dc=mycompany,dc=com Figure 40,
“Group
Search
Propertie
s”

Search Scope Subtree Scope Figure 40,
“Group
Search
Propertie
s”

Result Limit 100 Figure 40,
“Group
Search
Propertie
s”

member member Figure 41,
“Group
Properties
Mapping”

cn name Figure 41,
“Group
Properties
Mapping”

uniqueMember member Figure 41,
“Group

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 118 of 642

Properties
Mapping”

cn name Figure 41,
“Group
Properties
Mapping”

Custom (Non-LDAP)
Select External on theAdvanced Account Settings panel.

External accounts require implementation of the interface
org.systinet.uddi.account.ExternalBackendApi.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 119 of 642

Deployment to an Application Server
To deploy HPE SOA Registry Foundation to any application server, it must be installed as standalone
server, as described in "Installation" on page 38. After installation, use the Setup tool as described in
"Creating aWeb Application Archive (WAR,EAR)" below to createWeb application archive
(WAR,EAR) for the specific application server.

TheWAR file or EAR file is then prepared for deployment to the application server. Youmust deploy it
into the application server manually, according to your specific application server's instructions:

Note: If you are going to use the HSQL (despite the fact it is recommended only for demo/testing
purposes) and deploying the registry.war on a different machine, do not forget to copy the
database files from the REGISTRY_HOME/hsqldb directory to the host where the application server
is running. Then, change the database configuration accordingly after the first start of HPE SOA
Registry Foundation.

Creating a Web Application Archive

(WAR,EAR)
To create aWeb application archive:

1. Briefly, launch the Setup tool by executing the following command from the bin directory of your
installation:

Windows: setup.bat

UNIX: ./setup.sh

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 120 of 642

2. Select Deployment on the first panel:

3. Select the application server on the next panel.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 121 of 642

Select the application server to which you want to deploy HPE SOA Registry Foundation.

4. The next panel shows deployment settings on the application server.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 122 of 642

HTTP Port - HTTP port of the application server

SSL(HTTPS) Port - HTTPS port of the application server

Host name - Host name of the application server

Application Server Context - Use the context you will use to deploy on the application server.
(default: wasp)

Deployment Process After Confirmation of Settings

To continue the deployment process, follow the instruction in the log window. For further details, see
the instructions in the individual sections below dedicated to the individual application servers.

l "Weblogic" on the next page

l "WebSphere" on page 144

l "JBoss" on page 149

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 123 of 642

Weblogic
This section describes OracleWebLogic deployment options. Both OracleWebLogic 10.3 andOracle
WebLogic 11g are supported.

InvokeOracleWebLogic installation by selectingWebLogic deployment option in the following installer
screen:

Note: WL_HOME refers to the directory whereWebLogic is installed.

REGISTRY_HOME refers to the directory in which the HPE SOA Registry Foundation distribution is
installed.

The next installation screen requests amethod deployment.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 124 of 642

Domain Configuration is supported forWeblogic 11g only. Upon completion, youmust run the Oracle
WebLogic ConfigurationWizard to createWebLogic domains. Seemore at CreatingWebLogic
Domains Using the ConfigurationWizard. If you select OracleWeblogic 10.3 on the previous page,
Domain Configuration will not be shown.

The next installation screen requests URL components (hostname, port, ssl port, context) that HPE
SOA Registry Foundation uses in its web user interface. If you use proxy or load-balancer, the URL
components should point to it. The registry administrator can change the URL later in Registry
Management. If the URL is incorrect the web UI cannot be accessed until the URL value is corrected in
the configuration files. In the case of domain configuration, the hostname and port values in this page
must be the same as the values set when running the Configuration tools to create the weblogic
domain.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 125 of 642

If you want to deploy manually youmust specify the location of the HPE SOA Registry Foundation
.war

file. This file is in REGISTRY_HOME/conf/porting/weblogic/build/[context_name].war (if
installation succeeded).

Other required changes to complete the integration:

1. Modify the OracleWebLogic server launch script which is:

a. WL_HOME/user_projects/domains/DOMAIN_NAME/startWebLogic.sh or
startWebLogic.cmd

b. Add the following property to the Java command line for starting theWebLogic server:

-Djava.security.auth.login.config=REGISTRY_HOME/conf/jaas.config

2. Import the SSL certificate of theWebLogic server to the HPE SOA Registry Foundation
configuration.

Obtain theWebLogic SSL certificate. There are twomethods:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 126 of 642

a. You can get certificate using Internet Explorer 6.0 web browser connected toWebLogic via
HTTPS. Select "Properties" in context menu of the page, button "Certificates", tab "Details",
button "Copy to file", and then export certificate in Base 64 encoded X.509 .cer format.

b. You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_HOME\bin\sslTool.bat
to get certificate. Run command:

sslTool serverInfo --url https://HOST:9043 --certFile weblogic.cer

c. This commandwill connect to specified host and port using HTTPS and it will store server
certificate into specified file.

To import this certificate use

PStoreTool located in [registry_home]/bin PStoreTool.sh add -config

[registry_home]/conf/clientconf.xml -certFile [weblogic.cer]

3. Enable SSL inWebLogic if not yet enabled and (re)start the OracleWebLogic server.

Deployment should now be complete. The HPE SOA Registry Foundation URL is

http://[hostname]:[http_port]/[context]/uddi/web

Note: WebLogic 8.x: When "Segmentation fault" problems occur duringWebLogic startup on
RedHat Enterprise Linux, you have to set environment variable LD_ASSUME_KERNEL to value
2.4.1. Add this line toWebLogic startup script: export LD_ASSUME_KERNEL="2.4.1"

To set up a managed server:Cause: WebLogic 10g (10.3) nodemanager uses system variables
PATH and CLASSPATH in the server start command. The nodemanager does not handle these
variables if they contain spaces. To avoid this problem, do the following:

1. OnWindows, replace the conflicting parts of the paths with DOS-like 8.3 file names and
restart nodemanager.

2. Edit WL_HOME/common/nodemanager/nodemanager.properties, and add the parameter
StartScriptEnabled=true, and then restart nodemanager.

Creating WebLogic Domains Using the

Configuration Wizard
This section provides information and examples for some common domain configuration tasks using
the ConfigurationWizard.

Create New Domain with default Managed Server

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 127 of 642

1. Start the ConfigurationWizard in graphical mode.

a. OnWindows: Start—>Programs—>BEA Products—>Tools—>Configuration Wizard or
enter <WEBLOGIC_HOME>/common/bin/config.cmd

b. OnUNIX: enter <WEBLOGIC_HOME>/common/bin/config.sh

2. In theWelcomewindow select Create a new WebLogic domain

3. In theSelect a Domain Source window, select Generate a domain configured automatically
to support the following BEA products and theHPE SOA Registry Foundation check box is
selected.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 128 of 642

4. In theSpecify Domain Name and Locationwindow, enter the name and location for the domain.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 129 of 642

5. In theConfigure Administrator Username and Passwordwindow, enter a valid username and
password, and click Next. This username is used to boot the Administration Server and connect to
it.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 130 of 642

6. In the Configure Server Start Mode and JDK window, specify whether to start the server in
development mode or productionmode, and select which JDK to use

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 131 of 642

7. In Select Optional Configuration indicate whether you want to change the distribution of your
domain across servers, clusters, andmachines

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 132 of 642

8. In Configuration Summary, review the values supplied to the configuration and click Create to
create the domain.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 133 of 642

9. The domain will be created so long as there are no erroneous or conflicting values.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 134 of 642

Extend Existing Domain and Target on an existing Managed Server

1. Start the ConfigurationWizard in graphical mode.
o OnWindows: Start—>Programs—>BEA Products—>Tools—>Configuration Wizard or

enter <WEBLOGIC_HOME>/common/bin/config.cmd

o OnUNIX: enter <WEBLOGIC_HOME>/common/bin/config.sh

2. In theWelcomewindow, select Extend an existing WebLogic domain.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 135 of 642

3. In the Select aWebLogic Domain Directory window, navigate to the domain directory that you
want to extend.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 136 of 642

4. In the Select Extension Source window, you can choose to extend your domain by selecting an
HPE SOA Registry Foundation.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 137 of 642

5. In Select Optional Configuration, select these options to configure servers, clusters, and
machines

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 138 of 642

6. Select the configuremanaged servers.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 139 of 642

7. Configure the clusters.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 140 of 642

8. Configure themachines.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 141 of 642

9. Assign servers to themachines.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 142 of 642

10. Select the clusters or servers.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 143 of 642

11. After configuring these environments you can extend the existing domain.

WebSphere
This process has been tested onWebSphere 6.1.x and 7.0.0.7

Note: REGISTRY_HOME refers to the directory in which the HPE SOA Registry Foundation
distribution is installed.

WEBSPHERE_HOME refers to the directory in which IBMWebSphere is installed.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 144 of 642

PORTING_CONTEXT refers to context under which the HPE SOA Registry Foundation is deployed.

The REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear file is ready for
deployment. Please follow these steps to complete the integration:

1. The IBMWebSphere server uses IBM java, which is installed in theWEBSPHERE_HOME/java
directory. Youmust set up the security for this IBM JVM. To do so, follow the java security section
in "System Requirements" on page 37.

Note: You should not download and replace the following security jars: US_
ExportPolicy.jar and local_policy.jar

2. Modify the file WEBSPHERE_HOME/profiles/default/config/cells/DOMAIN_
NAME/security.xml (for version 6.0) by adding the following lines between the tags
<applicationLoginConfig> and </applicationLoginConfig>:

Example: WebSphere Configuration

<entries xmi:id="WaspCredentials" alias="Credentials">
<loginModules xmi:id="Credentials"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_1" name="debug" value="true"/>
<options xmi:id="delegate_property_1" name="delegate"

value="com.idoox.security.jaas.GSSLoginModule"/>
</loginModules>

</entries>
<entries xmi:id="WaspReceivedCredentials" alias="ReceivedCredentials">

<loginModules xmi:id="ReceivedCredentials"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_2" name="debug" value="true"/>
<options xmi:id="delegate_property_2" name="delegate"

value="com.idoox.security.jaas.GSSLoginModuleNoAuth"/>
</loginModules>

</entries>
<entries xmi:id="WaspHttpCredentials" alias="HttpCredentials">

<loginModules xmi:id="HttpCredentials"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_3" name="debug" value="true"/>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 145 of 642

<options xmi:id="delegate_property_3" name="delegate"
value="com.idoox.security.jaas.HttpLoginModule"/>

</loginModules>
</entries>
<entries xmi:id="WaspKrbCredentials" alias="KrbCredentials">

<loginModules xmi:id="KrbCredentials"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_4" name="debug" value="false"/>
<options xmi:id="krb_property_1" name="storeKey" value="true"/>
<options xmi:id="delegate_property_4" name="delegate"

value="com.sun.security.auth.module.Krb5LoginModule"/>
</loginModules>

</entries>
<entries xmi:id="WaspCachedKrbCredentials" alias="CachedKrbCredentials">

<loginModules xmi:id="CachedKrbCredentials"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_5" name="debug" value="false"/>
<options xmi:id="krb_property_2" name="useTicketCache" value="true"/>
<options xmi:id="delegate_property_5" name="delegate"

value="com.sun.security.auth.module.Krb5LoginModule"/>
</loginModules>

</entries>
<entries xmi:id="WaspNamePasswordNoAN" alias="NamePasswordNoAN">

<loginModules xmi:id="NamePasswordNoAN"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_6" name="debug" value="true"/>
<options xmi:id="delegate_property_6" name="delegate"

value="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"/>
</loginModules>

</entries>
<entries xmi:id="UDDINamePasswordAN" alias="NamePasswordAN">

<loginModules xmi:id="NamePasswordAN"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_7" name="debug" value="true"/>
<options xmi:id="delegate_property_7" name="delegate"

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 146 of 642

value="com.systinet.uddi.security.jaas.NamePasswordLoginModule"/>
</loginModules>

</entries>
<entries xmi:id="UDDIAuthTokenAN" alias="AuthTokenAN">

<loginModules xmi:id="AuthTokenAN"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_8" name="debug" value="true"/>
<options xmi:id="delegate_property_8" name="delegate"

value="com.systinet.uddi.security.jaas.AuthTokenLoginModule"/>
</loginModules>

</entries>
<entries xmi:id="WaspNameDigestAN" alias="NameDigestAN">

<loginModules xmi:id="NameDigestAN"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_9" name="debug" value="true"/>
<options xmi:id="delegate_property_9" name="delegate"

value="com.idoox.security.jaas.NameDigestLoginModule"/>
</loginModules>

</entries>
<entries xmi:id="WaspNameMapping" alias="NameMapping">

<loginModules xmi:id="NameMapping"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_10" name="debug" value="true"/>
<options xmi:id="delegate_property_10" name="delegate"

value="com.idoox.security.jaas.NameLoginModuleNoAuth"/>
</loginModules>

</entries>
<entries xmi:id="WaspCertsMapping" alias="CertsMapping">

<loginModules xmi:id="CertsMapping"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_11" name="debug" value="true"/>
<options xmi:id="delegate_property_11" name="delegate"

value="com.idoox.security.jaas.CertsLoginModule"/>
</loginModules>

</entries>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 147 of 642

<entries xmi:id="HttpRequestMapping" alias="HttpRequest">
<loginModules xmi:id="HttpRequest"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_12" name="debug" value="true"/>
<options xmi:id="delegate_property_12" name="delegate"

value="com.systinet.uddi.security.jaas.SmLoginModule"/>
</loginModules>

</entries>
<entries xmi:id="RegistryIdentityAsserter" alias="IdentityAsserter">

<loginModules xmi:id="IdentityAsserter"

moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProx
y"

authenticationStrategy="REQUIRED">
<options xmi:id="debug_property_13" name="debug" value="true"/>
<options xmi:id="delegate_property_13" name="delegate"

value="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"/>
</loginModules>

</entries>

3. Deploy the file REGISTRY_HOME/conf/porting/websphere/6.x/build/PORTING_CONTEXT.ear
file using the IBMWebSphere admin console, leaving all the options set at their default values.

4. After you finish the deployment, useWebSphere's admin console to set following properties. They
are in "Class loading and update detection" section inside of enterprise application properties (in
WebSphere 6.1).

o mode of theWASP Application's classloader to 'PARENT_LAST' or "Classes loaded with
application class loader first" option.

o WAR Classloader Policy to 'Application' or "Single class loader for application" option

5. Import the SSL certificate of theWebsphere server to the HPE SOA Registry configuration.
Follow these steps:

a. Obtain theWebSphere SSL certificate. There are twomethods:

i. You can get certificate using Internet Explorer 6.0 web browser connected to
WebSphere via HTTPS. Select "Properties" in context menu of the page, button
"Certificates", tab "Details", button "Copy to file", and then export certificate in Base 64
encoded X.509 .cer format.

ii. You can also use REGISTRY_HOME/bin/sslTool.sh or REGISTRY_
HOME\bin\sslTool.bat to get certificate. Run command:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 148 of 642

sslTool serverInfo --url https://HOST:9043 --certFile websphere.cer

This commandwill connect to specified host and port using HTTPS and it will store
server certificate into specified file.

b. Import this certificate using the PStoreTool located in REGISTRY_HOME/bin. The command
follows (replace variables with real values):

PStoreTool add -config REGISTRY_HOME/conf/clientconf.xml -certFile
websphere.cer

HPE SOA Registry Foundation is now running on http://<hostname>:9080/wasp/uddi/web.

Note:

l The lines added to login-config.xml are an analogy of jaas.config expressed in XML.

l The PARENT_LAST option and Application ClassLoader policy need to be set because there
is a conflict between our implementations of the saaj, jaxm, jaxrpc and wsdl interfaces.
PARENT_LAST assures that the servlet classloader is the first to be asked for the definition of
classes.

JBoss
Tested on JBoss 4.3.0, 5.1 GA and JBoss EAP 5

Note: REGISTRY_HOME refers to the directory in which the HPE SOA Registry Foundation
distribution is installed.

JBOSS_HOME refers to the directory in which JBoss is installed.

REGISTRY_HOME/conf/porting/jboss/build/[context_name].war is now ready for deployment.
Please follow these steps to complete the integration:

1. Unpack the created file into the [context_name].war subdirectory of the JBoss deployment
directory, which is usually JBOSS_HOME/server/[jboss_configuration]/deploy.

2. Modify the JBoss launch script (usually in JBOSS_HOME/bin/run.sh) as follows:

a. Add the following jars to the beginning of the JBoss classpath:

REGISTRY_HOME/lib/security-ng.jar

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 149 of 642

REGISTRY_HOME/conf/porting/dist/security3-ng.jar

JBOSS_HOME/server/[jboss_configuration]/lib/log4j.jar

3. Enable security: Add the following lines to the file JBOSS_HOME/server/[jboss_configuration]
/conf/loginconfig. xml between the tags <policy>...</policy>:

Enabling Security - JBoss

<application-policy name="Credentials">

<authentication>

<login-module code="com.idoox.security.jaas.GSSLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="ReceivedCredentials">

<authentication>

<login-module code="com.idoox.security.jaas.GSSLoginModuleNoAuth"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="HttpCredentials">

<authentication>

<login-module code="com.idoox.security.jaas.HttpLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="NamePasswordNoAN">

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 150 of 642

<authentication>

<login-module code="com.idoox.security.jaas.NamePasswordLoginModuleNoAuth"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="NamePasswordAN">

<authentication>

<login-module code="com.systinet.uddi.security.jaas.NamePasswordLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="NameDigestAN">

<authentication>

<login-module code="com.idoox.security.jaas.NameDigestLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="NameMapping">

<authentication>

<login-module code="com.idoox.security.jaas.NameLoginModuleNoAuth"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 151 of 642

</application-policy>

<application-policy name="CertsMapping">

<authentication>

<login-module code="com.idoox.security.jaas.CertsLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="AuthTokenAN">

<authentication>

<login-module code="com.systinet.uddi.security.jaas.AuthTokenLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="HttpRequest">

<authentication>

<login-module code="com.systinet.uddi.security.jaas.SmLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

</login-module>

</authentication>

</application-policy>

<application-policy name="IdentityAsserter">

<authentication>

<login-module
code="com.systinet.uddi.security.jaas.IdentityAsserterLoginModule"

flag="required">

<module-option name = "debug">true</module-option>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 152 of 642

</login-module>

</authentication>

</application-policy>

4. Configure log4j for HPE SOA Registry: Add the following lines to the file JBOSS_HOME/server/
[jboss_configuration]/conf/jboss-log4j.xml after the last tag </appender>:

Example 4. Log4j Configuration - JBoss

<!-- Registry log4j appenders -->

<appender name="sr_eventLog" class="org.apache.log4j.RollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="File"

value="${jboss.server.home.dir}/log/HPSOARegistry_logEvents.log"/>

<param name="MaxFileSize" value="10000KB"/>

<param name="MaxBackupIndex" value="10"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="(%d) - %m%n"/>

</layout>

</appender>

<appender name="sr_errorLog" class="org.apache.log4j.RollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="File"

value="${jboss.server.home.dir}/log/HPSOARegistry_errorEvents.log"/>

<param name="MaxFileSize" value="10000KB"/>

<param name="MaxBackupIndex" value="10"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="(%d) - %m%n"/>

</layout>

</appender>

<appender name="sr_clusterLog" class="org.apache.log4j.RollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="File"

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 153 of 642

value="${jboss.server.home.dir}/log/HPSOARegistry_configuratorEvents.log"/>

<param name="MaxFileSize" value="10000KB"/>

<param name="MaxBackupIndex" value="10"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="(%d) - %m%n"/>

</layout>

</appender>

<appender name="sr_replicationLog"
class="org.apache.log4j.RollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="File"

value="${jboss.server.home.dir}/log/HPSOARegistry_replicationEvents.log"/>

<param name="MaxFileSize" value="10000KB"/>

<param name="MaxBackupIndex" value="10"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="(%d) - %m%n"/>

</layout>

</appender>

<appender name="sr_notificationLog"
class="org.apache.log4j.RollingFileAppender">

<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="File"

value="${jboss.server.home.dir}/log/HPSOARegistry_notificationEvents.log"/>

<param name="MaxFileSize" value="10000KB"/>

<param name="MaxBackupIndex" value="10"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="(%d) - %m%n"/>

</layout>

</appender>

<!-- Registry log4j categories -->

<category name="com.idoox.wasp.server.adaptor.RawAdaptor" additivity="false">

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 154 of 642

<priority value="ERROR"/>

</category>

<category name="com.systinet.wasp.events" additivity="false">

<priority value="INFO"/>

<appender-ref ref="sr_eventLog"/>

</category>

<category name="com.systinet.wasp.errors" additivity="false">

<priority value="ERROR"/>

<appender-ref ref="sr_errorLog"/>

</category>

<category name="org.apache.xml.security" additivity="true">

<priority value="ERROR"/>

</category>

<category

name="configurator.com.systinet.uddi.configurator.cluster.ConfiguratorManagerAp
iImpl"

additivity="false">

<priority value="INFO"/>

<appender-ref ref="sr_clusterLog"/>

</category>

<category name="replication_v3.com.systinet.uddi.replication.v3.ReplicatorTask"

additivity="false">

<priority value="DEBUG"/>

<appender-ref ref="sr_replicationLog"/>

</category>

<category name="uddi_subscription_v3.com.systinet.uddi.subscription.v3"

additivity="false">

<priority value="DEBUG"/>

<appender-ref ref="sr_notificationLog"/>

</category>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 155 of 642

5. If you do not have SSL keys and certificate, generate them using the keytool from the JDK
distribution as follows:

l Change the directory to the bin subdirectory of JBOSS_HOME and enter the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -
genkey -alias jboss -keyalg RSA -storepass changeit

l Change your directory to the bin subdirectory of REGISTRY_HOME.

l Export the certificate to a file using the following command:

keytool -keystore JBOSS_HOME/server/[jboss_configuration]/conf/server.keystore -
export -file jboss.crt -alias jboss -storepass changeit

l Import the certificate to clientconf.xml in the HPE SOA Registry Foundation distribution using
this command:

PStoreTool.sh (bat) add -certFile jboss.crt -alias jboss -config REGISTRY_
HOME/conf/clientconf.xml

6. Enable SSL in JBoss.
o JBoss 4.x: Uncomment the following lines in the file

JBOSS_HOME/server/[jboss_configuration]/deploy/jboss-web.deployer/server.xml

<Connector port="8443" address="${jboss.bind.address}"

maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"

emptySessionPath="true"

scheme="https" secure="true" clientAuth="false"

keystoreFile="${jboss.server.home.dir}/conf/server.keystore"

keystorePass="123456" sslProtocol = "TLS" />

Change the values of keystoreFile to ${jboss.server.home.dir}/conf/server.keystore and
keystorePass to

changeit.

Note: Use the actual values you used when invoking the keytool utility if those values
differ from the values shown here.

o JBoss 5.x: Uncomment and edit the following lines in the file

JBOSS_HOME/server/[jboss_configuration]/deploy/jbossweb.sar/server.xml

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 156 of 642

<Connector protocol="org.apache.coyote.http11.Http11Protocol"
SSLEnabled="true"

port="8443" address="${jboss.bind.address}"

maxThreads="100" strategy="ms" maxHttpHeaderSize="8192"

emptySessionPath="true"

scheme="https" secure="true" clientAuth="false"

keystoreFile="${jboss.server.home.dir}/conf/server.keystore"

keystorePass="123456" sslProtocol = "TLS" />

Change the values of keystoreFile to ${jboss.server.home.dir}/conf/server.keystore
and keystorePass to changeit.

7. (Re)start the JBoss server

Installation should be complete. The HPE SOA Registry Foundation URL is

http://hostname:8080/[context_name]/uddi/web.

Note: The lines added to login-config.xml are an analogy of jaas.config expressed in
XML.

Cluster Configuration
This chapter contains general notes about the synchronized configuration of a HPE SOA Registry
Foundation cluster and gives instructions on how to deploy HPE SOA Registry Foundation to a
WebLogic Cluster ("WebLogic Specific Configuration for Use with Cluster" on page 162).

Cluster operation
Cluster operation is achieved by runningmultiple registries and joining their functionality with a load
balancer (proxy).

Load balancing is used to distribute requests among registries to get the optimal load distribution. The
load balancer should be configured to distribute requests among all physical endpoints of the registry
nodes. If using an application server, refer to its documentation for details about configuring load
balancing.

HPE SOA Registry Foundation in WebLogic Cluster

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 157 of 642

Clients to HPE SOA Registry Foundation access TCP ports on the balancer which forwards the
connection to a running cluster node with an actual HPE SOA Registry Foundation. Each HPE SOA
Registry Foundation has a connection to a common database so that each HPE SOA Registry
Foundation has access to the latest data. This connection also serves as a distribution point for
changed configurations and inter-node events.

When a HPE SOA Registry Foundation node fails (there are various reasons for this such as hardware
problems, network connection problems or software failure), other nodes can work without it. The
intelligent load balancer will detect this and further requests will not be directed there until the node
starts to respond.

Every node has a Node ID - a string identifying the node. Each node should have a different ID.
Breaking this rule will cause nodes with the same ID tomiss some configuration changes and
synchronization events.

Node ID can be specified by the administrator in the REGISTRY_HOME\app\uddi\conf\nodeid.xml file.
If it is not specified before the initial start of HPE SOA Registry Foundation, it will be generated as a
unique UUID string. It is possible to change it later, but node-local configurations under the old ID will
be left in the database. Ensure that EAR/WAR file generated for deployment has either:

1. Empty Node ID - so that each deployment of the file will generate a unique Node ID on first run and
will retain it until deletion or redeployment of EAR/WAR. You can use such EAR/WAR to deploy
on all nodes.

2. Specified Node ID - when you deploy the EAR/WAR file to a single node and generate another
EAR/WAR file for others. You can choosemeaningful names for Node ID this way.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 158 of 642

You can set the Node ID in the nodeid.xml file before starting setup to generate EAR/WAR file. If
you use generation of EAR/WAR file directly from installer the Node ID will be empty.

Note: Latest configurations are identified by internal index sequencing. Time stamps of
configurations as displayed in configurationmanagement UI are not relevant as they may be
unreliable in case of clock skew on a cluster node.

Cluster operation is affected by the interaction of connection security (HTTPS) and the load balancer.
For security reasons, client access is done using the HTTPS protocol. This protocol requires that there
is a valid andmatching security certificate on the server side (possibly on the client side too if client
authentication is required). There are generally twomethods for achieving clustered operation via
independent load balancer. If you deploy on an application server it may provide an integrated load
balancer for you whichmay be easier to configure than an independent load balancer.

1. Secure connection can take a place between a client and the load balancer. The load balancer
would be the end point for the secure connection which originated at the client. The load balancer
will make an independent connection to some of the HPE SOA Registry Foundation nodes. This
connectionmay be either in HTTP or HTTPS. The certificate which the client checks has to be
placed on the load balancer. A connection between the load balancer and each HPE SOA Registry
Foundation can be protected by HTTPS in which case the load balancer and the registries should
know each others certificates.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 159 of 642

2. Secure connection can be passed by the load balancer and terminated at the cluster node. This
case requires that the certificates on all the nodes be the same to provide the illusion of a single
service. However the common name inside the certificate should specify the DNS name of the
balancer.

Note: Load balancer is not part of HPE SOA Registry Foundation product. You can use
almost any HTTP/HTTPS load balancer that supports the described configurations.

Most of the Client - HPE SOA Registry Foundation interactions require an authentication token to be
passed along the way. This token is encrypted by the HPE SOA Registry Foundation certificate.
Therefore each HPE SOA Registry Foundation behind the balancer has to have the same certificate.

WEB interfaces of HPE SOA Registry Foundation (Registry Console) need to know the absolute
HTTP addresses of themselves. This address in the cluster is the address of the load balancer and the
possible context under which it is deployed. This address can be changed during setup.

Cluster installation
Cluster installation requires the setup of a load balancer andmultiple registries. These steps are
recommended on the HPE SOA Registry Foundation side when an application server is used:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 160 of 642

1. Install HPE SOA Registry Foundation.

a. Fill-in the hostname and ports of the load balancer.

2. Port HPE SOA Registry Foundation via the Deploy option in the HPE SOA Registry Foundation
Setup program (or directly in Installer program).

3. Deploy the generatedWAR or EAR to all cluster nodes via the application server.

These steps are recommended on the HPE SOA Registry Foundation side wheremultiple standalone
instances of HPE SOA Registry Foundation are used:

1. Install the first HPE SOA Registry Foundation.

a. Fill-in the hostname and ports of the load balancer.

2. Setup SSL certificates as required in the first HPE SOA Registry Foundation.

3. Install other Registries.

o Do not create new databases, just connect to the database of first HPE SOA Registry
Foundation.

o Copy REGISTRY_HOME\conf\pstore.xml from the first registry to each HPE SOA Registry
Foundation. This assures that each HPE SOA Registry Foundation will have the same identity
with respect to authentication tokens.

o Copy the configuration files in the REGISTRY_HOME\app\uddi\conf\ directory from the first
HPE SOA Registry Foundation. This is required because some fields in the configuration files
are coded by a key specified in application_core.xml. Failure to do somay result in error
messages during startup and inconsistent configuration data in the database.

4. Run the first installed HPE SOA Registry Foundation first so that its configuration files are stored
in database first. The next time you can run the Registries in any order (including the first one).

Setting Up Security
If using a cluster of standalone registries, they must share the same private key for validating
authentication tokens.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 161 of 642

Sharing Token Key
If HPE SOA Registry Foundation is installed as a cluster of standalone registries, youmust ensure that
all cluster nodes share the same private key for checking authentication token validity. (By a
standalone registry, wemean HPE SOA Registry Foundation that is not deployed to an application
server. You do not need to do this if HPE SOA Registry Foundation is deployed to an application
server). To set this up, choose one of the cluster nodes and copy its private key to all other nodes in the
cluster by entering this command at a command prompt:

PStoreTool copy -alias authTokenIdentity -keyPassword SSL_CERTIFICATE_PASSWORD -
config REGISTRY_HOME\conf\pstore.xml -config2 TARGET_REGISTRY_HOME\conf\pstore.xml

SSL_CERTIFICATE_PASSWORD is a ssl certificate password entered during the installation

TARGET_REGISTRY_HOME is the directory where a cluster node is installed.

WebLogic Specific Configuration for Use with

Cluster
This section will guide you through an example setup of clustering with aWebLogic application server.

To deploy HPE SOA Registry Foundation to aWebLogic cluster follow these steps:

1. Install WebLogic, then configure it by addingmachines to the cluster. In our case, the cluster is
named cluster and is running on 10.0.0.79. The nodes in theWebLogic cluster are named:

o kila (10.0.0.79), running on kila.mycompany.com, with an http port of 7101 and https port of
7102

o fido (10.0.0.134), running on fido.mycompany.com, with an http port of 7101 and https port
of 7102

2. Generate the certificates of all cluster nodes: Let's create proper certificates for our two nodes. It
will be done via the CertGen tool provided by WebLogic. Go to the directory %WEB_LOGIC_
HOME%\weblogic81\server\lib. CertGen is located in weblogic.jar's utils package. Invoke
it with the command:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 162 of 642

java -cp weblogic.jar utils.CertGen changeit kilacert kilakey export
kila.mycompany.com

The output resembles the following:

kilacert kilakey export kila.mycompany.com
...... Will generate certificate signed by CA from CertGenCA.der file
...... With Export Key Strength
...... Common Name will have Host name kila.mycompany.com
...... Issuer CA name is
CN=CertGenCAB,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Use the password changeit for starting the UDDI node servers. The output file with the
certificate is kilacert, and kilakey is the output file containing the private key. Generate
certificates for all remaining nodes from their CertGen tools. (In our case, the other node is
fido.mycompany.com.)

3. Once you have certificates from all nodes (in our case files kilacert.der and fidocert.der),
import them to pstore.xml using the PstoreTool. Also include CertGenCA.der (from the directory
%WEB_LOGIC_HOME%\weblogic81\server\lib). The pstore.xml file is now ready. For more info
about WebLogic certificates and SSL settings, please see Configuring SSL in BEA's WebLogic
product documentation.

4. Prepare a registry deployment package (REGISTRY_
HOME\conf\porting\weblogic\registry.war) as described in “Deployment to an Application
Server”.

In our case, the http port is 7101, the https port is 7102, and the application server context is wasp.

5. Check that the paths for log4j.appender.eventLog.File, log4j.appender.errorLog.File,
and registry.war\conf\log4j.config are valid on all cluster nodes.

6. Deploy registry.war into all WebLogic cluster nodes.

Youmust also prepare the package for the balancer which will only be deployed to the cluster manager
server. To do so:

1. Create a balancer directory, in, for example, REGISTRY_HOME. This directory is referenced in this
section as PACKAGE_HOME.

2. Create a subdirectory of PACKAGE_HOME named WEB-INF.

3. In this subdirectory, create the file web.xml containing the following text. Under WebLogicCluster
specify the names and ports of your cluster nodes separated by a pipe (|). In our case, the file
looks like:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 163 of 642

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"

"http://java.sun.com/dtd/web-app_2_
3.dtd">
<web-app>

<servlet>
<servlet-name>HttpClusterServlet</servlet-name>
<servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
<init-param>

<param-name>WebLogicCluster</param-name>
<param-value>kila:7101|fido:7101</param-value>

</init-param>
</servlet>

<servlet>
<servlet-name>FileServlet</servlet-name>
<servlet-class>weblogic.servlet.FileServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>FileServlet</servlet-name>
<url-pattern>/uddi/webdata*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>
</web-app>

4. In theWEB-INF subdirectory, create the file weblogic.xml containing the following text, where
/wasp is the context of HPE SOA Registry Foundation deployed to this application server. Your
text must be customized for your own installation.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application
8.1//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd">
<weblogic-web-app>

<context-root>/wasp</context-root>
</weblogic-web-app>

5. Create the directory %PACKAGE_HOME%\uddi\webdata.

6. Unjar REGISTRY_HOME\app\uddi\web.jar and copy the content of the webroot subdirectory from
the jar to %PACKAGE_HOME%\uddi\webdata.

7. Package the content of %PACKAGE_HOME% into the file balancer.war using jar or some other
compression utility.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 164 of 642

8. Deploy balancer.war into the cluster manager server.

Authentication Configuration
In this section, we will show you how to change the HPE SOA Registry Foundation configuration to
allow the following authentication options:

l "HTTP Basic" below

l "Netegrity SiteMinder" on page 167

l "SSL Client authentication" on page 169

l "J2EE Server Authentication" on page 172

l "Internal SSL Client AuthenticationMapping in J2EE" on page 173

l "Disabling Normal Authentication" on page 174

l "Consoles Configuration" on page 175

l "Outgoing Connections Protected with SSLClient Authentication" on page 176

HTTP Basic
To allow HTTP Basic authentication:

Note: In case Registry is deployed to OracleWebLogic Server

l Add the <enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-
credentials> element to config.xml in directory [domain]\config within the <security-
configuration> element.

l The enforce-valid-basic-auth-credentials flag effects the entire domain. Client requests that
use HTTP BASIC authentication will be ignored by WebLogic Server authentication.

1. Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml to enable HTTP basic
authentication as follows:
a. Under <processing name="UDDIv1v2v3PublishingProcessing"/>, uncomment <use

ref="tns:HttpBasicInterceptor"/>. This enables the HTTP Basic authentication for
UDDI Publishing API v1, v2, v3.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 165 of 642

b. Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use
ref="tns:HttpBasicInterceptor"/>. This enables the HTTP Basic authentication for all
three versions of the UDDI Inquiry API.

c. Under <processing name="wsdl2uddiProcessing">, add <use
ref="tns:HttpBasicInterceptor"/> . This enables the HTTP Basic authentication for
versions 2 and 3 of theWSDL2UDDI API.

d. Add the attribute accepting-security-providers="HttpBasic" to other service-endpoints (except
UDDI publishing and Inquiry endpoint) you wish to access via HTTP Basic authentication.

A fragment of the package.xml is shown below in Example 5, “package.xml - HTTP Basic
Enabled”

2. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart
the registry.

Example: package.xml - HTTP Basic Enabled

.....
<service-endpoint path="/inquiry" version="3.0" name="UDDIInquiryV3Endpoint"

service-instance="tns:UDDIInquiryV3"
processing="tns:UDDIv1v2v3InquiryProcessing"

accepting-security-providers="HttpBasic">
<wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Inquiry_

SoapService"/>
<envelopePrefix xmlns="arbitraryNamespace" value=""/>
<namespaceOptimization

xmlns="arbitraryNamespace">false</namespaceOptimization>
</service-endpoint>
<service-instance

implementation-class="com.systinet.uddi.publishing.v3.PublishingApiImpl"
name="UDDIPublishingV3"/>

<service-endpoint path="/publishing" version="3.0"
name="UDDIPublishingV3Endpoint"

service-instance="tns:UDDIPublishingV3"
processing="tns:UDDIv1v2v3PublishingProcessing"
accepting-security-providers="HttpBasic">
<wsdl uri="uddi_api_v3.wsdl" service="uddi_api_v3:UDDI_Publication_

SoapService"/>
<envelopePrefix xmlns="arbitraryNamespace" value=""/>
<namespaceOptimization

xmlns="arbitraryNamespace">false</namespaceOptimization>
</service-endpoint>

<processing name="UDDIv3Processing">
<use ref="uddiclient_v3:UDDIClientProcessing"/>
<fault-serialization name="MessageTooLargeFaultSerializer"

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 166 of 642

serializer-
class="com.systinet.uddi.publishing.v3.serialization.MessageTooLargeFaultSerialize
r"

serialized-exception-
class="com.systinet.uddi.interceptor.wasp.MessageTooLargeException"/>

</processing>

<processing name="UDDIv1v2v3PublishingProcessing">
<use ref="uddiclient_v3:UDDIClientProcessing"/>
<use ref="uddiclient_v2:UDDIClientProcessing"/>
<use ref="uddiclient_v1:UDDIClientProcessing"/>
<!-- HttpBasic (without authtoken) -->
<use ref="tns:HttpBasicInterceptor"/>

<interceptor name="MessageSizeCheckerInterceptor"
implementation-

class="com.systinet.uddi.interceptor.wasp.MessageSizeCheckerInterceptor"
direction="in">
<config:maxMessageSize>2097152</config:maxMessageSize>
</interceptor>

</processing>

<processing name="UDDIv1v2v3InquiryProcessing">
<use ref="tns:UDDIv3Processing"/>
<use ref="tns:UDDIv2Processing"/>
<use ref="tns:UDDIv1Processing"/>
<use ref="tns:HttpBasicInterceptor"/>

</processing>
.....

Netegrity SiteMinder
To allow Netegrity SiteMinder authentication:

1. Modify REGISTRY_HOME/app/uddi/services/Wasp-inf/package.xml as follows:

a. Under <processing name="UDDIv1v2v3PublishingProcessing"/>, add <use
ref="tns:SiteMinderInterceptor"/>. This enables the SiteMinder authentication for all
three versions of the UDDI Publishing API.

b. Under <processing name="UDDIv1v2v3InquiryProcessing">, add <use
ref="tns:SiteMinderInterceptor"/>. This enables the SiteMinder authentication for
versions 1, 2, and 3 of the Inquiry API.

c. Under <processing name="wsdl2uddiProcessing">, add <use
ref="tns:SiteMinderInterceptor"/> . This enables the SiteMinder authentication for

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 167 of 642

versions 2 and 3 of theWSDL2UDDI API.

d. Add the attribute accepting-security-providers="Siteminder" to other service-endpoints
(except UDDI publishing and Inquiry endpoint) you wish to access via Netegrity SiteMinder
authentication.

e. Under the elements <securityProviderPreferences> and <interceptor
name="SiteMinderInterceptor", fill in:

l <loginNameHeader> - login name header

l <groupHeader> - group header

l <delimiter> - group name delimiter.

Note: Youmust set the same element values to both <securityProviderPreferences>
and <interceptor name="SiteMinderInterceptor" elements.

A fragment of the package.xml is shown in Example 6 below.

2. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and
restart the registry.

Example 6. package.xml - Netegrity SiteMinder Enabled

.....
<!-- Netegrity SiteMinded security provider preferences for the server side

-->
<securityProviderPreferences

xmlns="http://systinet.com/wasp/package/extension"
name="Siteminder">
<loginNameHeader>sm-userdn</loginNameHeader>
<groupHeader>sm-role</groupHeader>
<delimiter>^</delimiter>

</securityProviderPreferences>

<!-- Netegrity SiteMinded interceptor-->
<interceptor name="SiteMinderInterceptor"

implementation-
class="com.systinet.uddi.security.siteminder.SmInterceptor" >

<config:loginNameHeader>sm-userdn</config:loginNameHeader>
<config:groupHeader>sm-role</config:groupHeader>
<config:delimiter>^</config:delimiter>

</interceptor>
.....

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 168 of 642

SSL Client authentication
Standalone registry can be configured to perform authentication using client certificate obtained via 2-
way SSL, where also the client has to authenticate itself to a server. Setup instructions differs for a
standalone and a deployed registry. This section is focused on a standalone registry. See "J2EE
Server Authentication" on page 172 for instructions about configuring SSL client authentication for a
deployed registry.

To allow SSL client authentication for a standalone registry:

1. Make sure that the registry is not running.

2. Modify REGISTRY_HOME/conf/serverconf.xml as follows:

o Under <httpsPreferences name="https">, change <needsClientAuth> to true. This will
setup HTTPS transport to require client certificates.

o Under <securityPreferences name="main">, add
<acceptingSecurityProvider>SSL</acceptingSecurityProvider>. This will turn on
mapping of client certificates to a user name.

A fragment of changed REGISTRY_HOME/conf/serverconf.xml is shown in Example 7 below, “A
fragment of serverconf.xml with 2-way SSL turned on”.

3. Trust the certificate of a certification authority that is used to issue client certificates. Run the
PStoreTool tool from the REGISTRY_HOME/bin directory to import this certificate to a truststore
that is used by registry.

PStoreTool add -certFile <client certificates authority certificate file> -
config <path to pstore.xml>

4. Configure a way how a client certificate is mapped to a user name. Registry comes with JAAS
loginmodule that extracts the user name out of a subject that is necessary part of a client
certificate. The login module that performs this mapping is configured under the CertsMapping
entry of the REGISTRY_HOME/conf/jaas.conf file. An example of CertsMapping entry is shown
in Example 8 below, “CertsMapping JAAS configuration”.

You can configure the following options:

o debug - if set it to true, debug actions of the login module are printed to error stream. False by
default.

o issuer - issuer name, recommended to set. If set, mapped certificate must be issued by a

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 169 of 642

certification authority with this subject name.

o pattern - regular expression (as per java.util.regexp) that is used to get user name. The first
capturing group of a specified pattern is used as a user name. When there is no capturing group
and the patternmatches, the whole subject becomes a user name. Used regular expressions
are case-insensitive. Examples are:

l The default is (?<!\\,\s?)EMAILADDRESS=(.+)@. It matches a name listed in
EMAILADDRESS. This regular expression ignores the case of EMAILADDRESS possibly
contained in another part of subject.

l CN=([^,]+)matches common name.

l .*matches every subject. Since it has no capturing group, the whole subject DN is used.

You can configuremore than one login module to perform certificate mapping. This is usefull
when you have to accept different issuers and/or provide a fallback to a failed certificate
mapping of the first configured login module. An example of a CertsMapping entry that allows
tomap certificates issued by 2 issuers with a different way of mapping is shown in Example 9,
“CertsMapping JAAS configuration with 2 possible issuers”.

5. Now the registry is configured for SSL client authentication. Youmay also change the applicability
of SSL client authentication by changing configuration of SSL security provider. This configuration
is in the <securityProviderPreferences name="SSL"> element of the REGISTRY_
HOME/conf/serverconf.xml file. An example is shown below in Example 7, “A fragment of
serverconf.xml with 2-way SSL turned on”.

Example 7. A fragment of serverconf.xml with 2-way turned on

<?xml version="1.0" encoding="UTF-8"?>
<config name="main">

...
<securityPreferences name="main">

<!-- Added acceptingSecurityProvider -->
<acceptingSecurityProvider>SSL</acceptingSecurityProvider>
<pstoreInitParams/>
...
</securityPreferences>

...
<httpsPreferences name="https">

...
<!-- Client authentication required -->
<needsClientAuth>true</needsClientAuth>

...
</httpsPreferences>
...
<!-- security provider preferences intended mainly for SSL client

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 170 of 642

authentication -->
<securityProviderPreferences name="SSL">

<!-- What to do when SSL is not used to access the resource? Available
options:

redirect
- perform HTTP redirect to associated HTTPS URL (302 Moved Temporarily)

fail
- return a message that informs to use HTTPS URL (400 Bad Request)

skip
- do not perform certificate mapping at all

perform
- try to perform certificate mapping with no client certificates

-->
<whenNotSsl>skip</whenNotSsl>
<!-- Can certificate mapping fail? If set to true and it fails, no

received subject will be constructed.
-->

<certMappingMayFail>false</certMappingMayFail>
<!-- Can a default account be created when no account for a mapped user

exists? -->
<createDefaultAccount>false</createDefaultAccount>

</securityProviderPreferences>
</config>

Example 8: CertsMapping JAAS configuration

CertsMapping{
com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="

(?<!\\,\s?)EMAILADDRESS=(.+)@"
debug=false issuer="CN=Company CA, OU=mycomp";

};

Example 9: CertsMapping JAAS configuration with 2 possible issuers

CertsMapping{
com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient pattern="

(?<!\\,\s?)EMAILADDRESS=(.+)@"
debug=false issuer="CN=Company CA, OU=mycomp";
com.systinet.uddi.security.jaas.CertMappingLoginModule sufficient

pattern="CN=([^,]*)" issuer="CN=Company
CA2, OU=mycomp" debug=false;

};

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 171 of 642

J2EE Server Authentication
The registry can be configured to let a J2EE application server perform authentication. Unlike
"Netegrity SiteMinder" on page 167 and "HTTP Basic" on page 165, the authentication takes place for a
whole registry application. To allow J2EE server authentication:

1. Create a deployment package using instructions provided in "Deployment to an Application
Server" on page 120.

2. Modify WEB-INF/web.xml file of the resulted war file as follows:

a. Change the value of context parameter use.request.user to true.

b. Add a login-config element with a type of chosen J2EE authentication. Example 10, “A
fragment of web.xml” below shows a login config that will turn on CLIENT-CERT
authenticationmethod, which is essentially used for SSL client authentication.

Youmay also add security-constraint element to specify a set of resources where
confidentially and/or integrity is required. Example 10, “A fragment of web.xml” below contains
a security-constraint that requires confidential communication between client and server for all
registry resources, which typically means to allow only HTTPS in the communication with
registry.

c. Configure a J2EE application server for an authenticationmethod of your choice. For SSL
client authentication, this typically means to setup HTTPS transport to require client
certificates and tomap client certificates to user name. Consult documentation of a target
J2EE application server for details.

3. Go on with deployment of amodified war file.

Example 10: A fragment of web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>

<display-name>Registry</display-name>
...

<context-param>
<param-name>use.request.user</param-name>
<param-value>true</param-value>

</context-param>
....
<!-- Added CLIENT-CERT authentication method -->

<login-config>
<auth-method>CLIENT-CERT</auth-method>

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 172 of 642

</login-config>
<!-- Added security constraint that allow to access registry only via HTTPS -->

<security-constraint>
<display-name>HTTPS required to access registry</display-name>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<user-data-constraint>
<description>Require confidentiality</description>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

</web-app>

Internal SSL Client Authentication Mapping in

J2EE
While J2EE application authentication can be configured inmany ways, some configurations can be
cumbersome on some application servers. Internal SSL client authenticationmapping can be easier to
configure for simple deployments. This method has been tested on Tomcat 5.5 and JBOSS 4.0.5.

Internal client authenticationmapping offers the same options for configuration as CertMapper
described in "SSLClient authentication" on page 169. Installation steps:

1. Ensure that certificates are trusted by the J2EE server. Some servers have dedicated trust stores,
while others use the cacerts java keystore file inside Java runtime. Add the certificate of the
Certification Authority you are using to the server's trust store as a trusted certificate.

2. Set up your J2EE server SSL. You usually need to provide the Java trust store file with the server
identity. Configure the server SSL to use the trust store by specifying file, alias and store
password.

3. Set up your J2EE server to ask for or require Client Authentication.

4. Edit web.xml inside the deployed registry.

o Change tag servlet-class to contain
com.systinet.transport.servlet.server.registry.RegistryServletTwoWaySSL.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 173 of 642

o Add the CLIENT-CERT authentificationmethod (as seen below in Example 11, “A fragment of
web.xml”).

o Add context parameters. Set the context parameter "twowayssl.use_user" to value "true".

o Set the context parameter "twowayssl.issuer" to the X.509 Issuer DN of certificates you want
to allow.

o You can set the context parameter "twowayssl.mapping" to a regular expression for matching
parts of Subject DN (by default, it is set to the name part of the email address in the email field).

o You can set the context parameter "twowayssl.debug" to "true" for run-time information about
matching.

All context parameters that you set correspond to parameters in "SSLClient authentication" on
page 169. For examples of these parameters, see Example 11, “A fragment of web.xml” below.

Example 10: A fragment of web.xml

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

<context-param>
<param-name>twowayssl.use_user</param-name>
<param-value>true</param-value>

</context-param>
<context-param>

<param-name>twowayssl.issuer</param-name>
<param-value>C=CZ, ST=Czech, L=Prague, O=Example company, OU=Security Team,

CN=CA</param-value>
</context-param>

Disabling Normal Authentication
After you implement a custom authenticationmechanism, such as a client SSL certificate, youmay
want to disable normal authentication. Disable normal authentication by removing permission for the
get_authTokenUDDI API from the system#everyone group. (The get_authToken API has this
permission by default.)

To remove permission for the get_authTokenUDDI API from the system#everyone group:

1. Log into theWEB UI using your administrative account and open theManagement tab.

2. Open thePermissions page.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 174 of 642

3. Select theGroup radio button.

4. Edit the group system#everyone and remove the following permissions (Permission type / Api
name / Actions):

o org.systinet.uddi.security.permission.ApiUserPermission / org.systinet.uddi.client.v3.UDDI_
Security_PortType / get_authToken,

o org.systinet.uddi.security.permission.ApiUserPermission / org.systinet.uddi.client.v3.UDDI_
Security_PortType / get_authToken,

o org.systinet.uddi.security.permission.ApiUserPermission /
org.systinet.uddi.client.v1.PublishSoap / get_authToken.

Remember that you will not be able to log in toWEB user interfaces with the normal login dialog
after you disable normal authentication.

Consoles Configuration
In this section, we will show you how to configure HTTP Basic or Netegrity Siteminder authentication
for Registry Console. The configuration of consoles is very similar to the configuration of other
endpoints.

Note: Referring to jar packages

The file path REGISTRY_HOME/app/uddi/web.jar/WASP-INF/package.xml means the /WASP-
INF/package.xml inside the jar package REGISTRY_HOME/app/uddi/web.jar.

For the Registry Console, modify the file REGISTRY_HOME/app/uddi/web.jar/WASP-
INF/package.xmlwith the following:

<service-endpoint path="/web" name="WebUIEndpoint1"

service-instance="tns:WebUI" type="raw" other-methods="get"

accepting-security-providers="HttpBasic"/>

<service-endpoint path="/web/*" name="WebUIEndpoint2"

service-instance="tns:WebUI" type="raw" other-methods="get"

accepting-security-providers="HttpBasic"/>

If you want to set Netegrity SiteMinder provider, use accepting-security-providers="Siteminder"

We just set authentication providers for both HTTP and HTTPS protocols. Now, wemust specify
which protocol consoles will be using for user authentication. The default registry configuration is to use

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 175 of 642

HTTP for browsing and searching. HTTPS is used for publishing. To avoid displaying the login dialog
twice, (for the first time when accessing via HTTP then the second time when accessing via HTTPS),
modify the configuration to use only one protocol.

For the Registry Console, modify url and secureUrl elements in the file REGISTRY_
HOME/app/uddi/conf/web.xml to have the same value:

<url>https://servername:8443</url>

<secureUrl>https://servername:8443</secureUrl>

Outgoing Connections Protected with SSL

Client Authentication
HPE SOA Registry Foundation can be the client in SSLClient Authentication. This allows the following
scenarios:

l SOAP Client - This is commonly used in following scenarios

o Approval process

o Replications

o Cluster

Approval process, Replications, or Cluster functionality connects via SOAP endpoints.
Deployment in those scenarios does not usually need SSL protection because all registries are
located in a dedicated internal network, but HPE SOA Registry Foundation can be configured to use
client SSL certificates in those scenarios. When registry on the other side is protected with Client
SSL Authentication and plain HTTP connection is not allowed, your registry has to connect with an
SSLCertificate. This can be achieved by configuring destinationConfig inside security.xml. See
the documentation for sslTool in the Administration Guide, which describes the tool for SSL related
tasks and destinationConfig. Destination config allows you to specify different certificates for
different endpoints by either specifying the SOAP stub or the URL prefix.

l HTTPS protected resources

o WSDL

o XML

o XSD

o XSLT

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 176 of 642

Resources which are downloaded for processing by HPE SOA Registry Foundation can be
behind HTTPS protected by Client SSL Authentication. HPE SOA Registry Foundation can be
set up so that these connections use a specified certificate. The certificate has to be present as
a key entry inside pstore.xml. This key entry is identified by its alias. The alias and password
has to be specified in REGISTRY_HOME/app/uddi/conf/security.xml inside security which is
contained in config as shown in example:

<sslConnectionAlias>myAliasName</sslConnectionAlias>

<sslConnectionPassword_coded>9vTJ9GKyjIURFY0qrWvADA==

</sslConnectionPassword_coded>

To get encoded password from clear-text password, use REGISTRY_HOME/bin/sslTool(.bat
or .sh)with "encrypt" option.

Migration
Migration is used tomigrate data from one database to another. You canmigrate data during installation
or during setup. Often users evaluate HPE SOA Registry Foundation using the preconfigured
Hypersonic SQL database, andmigrate data to another database after evaluation.

Note: Demo data are not migrated. Internal UDDI data such as built-in T-Models are not migrated
since they are available in any installation by default. The list of such skipped entities is inside
migration*.xml in app\uddi\conf directory which youmay view beforemigration if you use
"Migration After Installation" on page 180.

Migration During Installation
Tomigrate data during installation:

1. Select Standalone registry with data migration as shown in the figure below.

Standalone Installation with Migration

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 177 of 642

2. Click Next. This returns theMigration panel shown below.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 178 of 642

3. Fill the following properties:

o Previous Registry Version - HPE SOA Registry version from which you aremigrating data

o Previous Registry Directory - the directory containing the previous installation of HPE SOA
Registry Foundation. The existing data will bemigrated from it.

o Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry. By default, only administrator canmigrate all data including
private data.

o Installation directory - select the directory where HPE SOA Registry Foundation will be
installed.

4. Click Next and continue your Standalone installation as described in "Server Settings" on page 1.
During the installation process, all data will bemigrated from the specified previous HPE SOA
Registry Foundation installation to the current installation.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 179 of 642

Migration After Installation
Note: Migration is additive. It does not delete entities that are already present in HPE SOA
Registry Foundation and not present in migration source.

Tomigrate data after installation, use the Setup tool described in "Reconfiguring After Installation" on
page 62. Briefly:

1. Launch the Setup tool by issuing the following command from the bin subdirectory of your
installation:

Windows: setup.bat

UNIX: ./setup.sh

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

2. Select theMigration tool on first panel:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 180 of 642

3. Fill in the following properties:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 181 of 642

o Previous Registry Version - HPE SOA Registry version from which you aremigrating data

o Previous Registry Directory - the directory in which the previous HPE SOA Registry
Foundation is installed. The existing data will bemigrated from it.

o Previous Registry Administrator Username - name of the user having rights to retrieve data
from the previous version Registry.

o Current Registry Administrator Username - name of the user having rights to save UDDI
structure keys. By default, only administrator canmigrate all data including private data.

o JDBC drivers - Set path to the directory in which the .jar (.zip) of JDBC drivers is located.

Note: Enter this path only if the previous HPE SOA Registry Foundation installation is
configured with a different type of database than the current one.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 182 of 642

Backup
Backup functionality allows you to save the HPE SOA Registry Foundation data and configuration to a
filesystem directory. Later the backup data can serve for full restore of HPE SOA Registry Foundation
data and configuration.

What is subject to backup?

l All registry data stored in the database.

l Configuration files.

l HPE SOA Registry Foundation libraries and JSP files.

Note: The HPE SOA Registry Foundation server must be shut down before you start backup
or restore operations.

Restoration is additive. It does not delete entities that are already present in HPE SOA
Registry Foundation and not present in the data source. If you need to restore and don't want to
retain any current data, youmust clean the database which can be done via: drop schema,
create schema during setup. For details, see "Database Installation" on page 80.

Backup HPE SOA Registry Foundation
To back up HPE SOA Registry Foundation data:

1. Use the Setup tool and choose Backup. To run the Setup tool, execute the following script from
the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

For more information, see command-line parameters in "Setup" in "Command Line Scripts" on
page 59..

Setup Tool - Select Backup

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 183 of 642

2. Select whether you want to use HPE SOA Registry Foundation that has been deployed (second
choice) or not (first choice).

Setup

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 184 of 642

3. Specify the location of the backup directory. You can check which items you wish to back up as
shown in the “Setup Tool - Backup” figure below.

Item description:

a. Backup datamakes a backup of UDDI data such as different kind of entities and taxonomies

b. Backup configuration files makes a backup of configuration files from REGISTRY_
HOME/app/uddi/conf and REGISTRY_HOME/work/uddi/bsc.jar/conf.

c. Backup configuration from Databasemakes a backup of configuration files and their history
as they are stored in database. See "Configuration in Database" on page 343.

d. Backup libraries makes a backup of bsc.jar and web.jar from both app and work directories.
These files and directories contain UI customizations andmodifications.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 185 of 642

Setup Tool - Backup

Restore HPE SOA Registry Foundation
To restore registry data and configuration from a backup:

1. Use the Setup tool and choose Restore. To run the Setup tool, execute the following script from
the bin subdirectory of your installation:

Windows: setup.bat

UNIX: ./setup.sh

See command-line parameters in "Setup" in "Command Line Scripts" on page 59.

Setup Tool - Select Restore

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 186 of 642

2. Select whether you want to use HPE SOA Registry Foundation that has been deployed (second
choice) or not (first choice).

Setup

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 187 of 642

3. Specify the location of backup directory and check the items you wish to restore. The restore will
work only for items that have been backed up previously.

Setup Tool - Restore from Backup

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 188 of 642

NT Service Support
The HPE SOA Registry Foundation server can be run as a service onWindows server 2008 and
Windows server 2012 64-bits (CPU Xeon). Support for NT service installation is included by default on
Windows servers, and cannot be installed on UNIX machines. The support is a set of executable files
that enable you to install, start, stop, and uninstall HPE SOA Registry Foundation as an NT service.

The server log is by default written into the log file. The output to the NT log can bemanually
configured.

Installation
When the HPE SOA Registry Foundation installation is complete, the REGISTRY_HOME\bin directory
contains these four batch files related to NT service support:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 189 of 642

l InstallService.bat

l UnInstallService.bat

l StartService.bat

l StopService.bat

Note: After installing HPE SOA Registry Foundation with NT Service support, the registry
server is not installed as an NT service. It must be installedmanually, as follows.

If you want to customize the NT service first (set-up the JVMmax memory, add files to classpath,
etc.), please read the Customizing section now.

Make sure that the JAVA_HOME environment variable points to your JDK and run the
InstallService.bat command.

When the installation is finished, the name of the installed NT service is printed to the screen. The
default name is HPE SOA Registry Foundation.

Note: Youmay need extra permissions to install a new service into your OS. To determine
whether you have these permissions, please consult your system administrator.

If the installation fails, read the Customizing section. If it does not contain the solution, contact
HPE Support.

Starting and Stopping
Once the HPE SOA Registry Foundation server NT service is installed, start it as you would any NT
service, by selectingControl Panel> Administrative Tools > Services > start.

As a shortcut, you can use the StartService.bat command in the REGISTRY_HOME\bin directory.

Note: Youmay need extra permissions to start or stop an NT service in your OS. To determine
whether you have these permissions, please consult your system administrator.

To stop the server, use either the system tools or the StopService.bat command.

Note: For security reasons, you cannot use serverstop.bat or server.bat stop to stop a HPE SOA
Registry Foundation server that is running as an NT service.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 190 of 642

http://www.hp.com/go/hpsoftwaresupport

Logging
By default, the logs of the server are written into the REGISTRY_HOME\log\registry_NTService.log
file. The default maximum size of the log file is 1MB. When the file is full, a backup is created and the
content of the file is cleaned. By default, 3 backups are kept and older backups are deleted.

Logging Customization
HPE SOA Registry Foundation uses the Log4J library for logging. You canmanually change its logging
behavior. The configuration is stored in the file REGISTRY_HOME\conf\log4j_NTservice.config. You
can change the log output, message priority and other settings in this file as follows:

Message Priority Settings
To change themessage priority from INFO to ERROR, comment out the following lines in the config
file:

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false

log4j.category.com.systinet.wasp.events=INFO,ntlog
log4j.additivity.com.systinet.wasp.events=false

Log File Properties
To change the log file properties, change the Rolling File appender settings:

log4j.appender.R.File=log/registry_NTService.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=3

Switching to NT Log
To switch logging from file to NT log, comment out the lines:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 191 of 642

log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

and uncomment the lines:

#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

from this section:

Assigning appenders to categories
(using rolling file appender by default)
log4j.category.com.systinet.wasp.events=INFO,R
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,R
log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
#log4j.category.com.systinet.wasp.events=INFO,ntlog
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,ntlog
#log4j.additivity.com.systinet.wasp.errors=false

so that the section reads:

Assigning appenders to categories
(using rolling file appender by default)
#log4j.category.com.systinet.wasp.events=INFO,R
#log4j.additivity.com.systinet.wasp.events=false
#log4j.category.com.systinet.wasp.errors=ERROR,R
#log4j.additivity.com.systinet.wasp.errors=false

Uncomment next line if you want use NT Event Log
for logging of error messages
log4j.category.com.systinet.wasp.events=INFO,ntlog
log4j.additivity.com.systinet.wasp.events=false
log4j.category.com.systinet.wasp.errors=ERROR,ntlog
log4j.additivity.com.systinet.wasp.errors=false

Note: We recommend that you log only errors to the NT log.

Note: The REGISTRY_HOME\lib\NTEventLogAppender.dll file must be copied into the system
PATH if you want to use the NT event log for logging.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 192 of 642

For security reasons, on 64-bit Windows, the folder "windows\system32" remains hidden from 32-
bit programs and the system redirects all operations concerning this folder to
"windows\syswow64". Using a 32-bit program to copy NTEventLogAppender.dll to
"windows\system32" may cause problems with the NT log.

Using Other Log4J Appenders
Rolling File and NTLog are the two default appenders. You can choose any Log4J appender that suits
your needs. To add custom classes to the HPE SOA Registry Foundation NT service classpath,
please see the Customizing section.

Youmust restart the HPE SOA Registry Foundation NT service to put the changes into effect.

For more information about Log4J and its settings, visit Apache/Jakarta's Log4j Project website.

Customizing
You canmanually set up the name "HPE SOA Registry Foundation NT Service" and the JVM
parameters that are used to start HPE SOA Registry Foundation as an NT service. To customize
logging, please visit the previous section, Logging.

All customizable files in the following instructions are located in the REGISTRY_HOME\bin directory.

Note: All the following changes require re-installation of the HPE SOA Registry Foundation NT
Service. Uninstall it first, make your modifications and reinstall the service.

NT Service Name Change
To change the service name:

1. Uninstall the existing service by running UnInstallService.bat.

2. Manually edit the files

o UnInstallService.bat

o InstallService.bat

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 193 of 642

http://jakarta.apache.org/log4j

o StartService.bat

o StopService.bat

3. Change the system variable NT_SERVICE_NAME, so the row with the variable resembles:

set NT_SERVICE_NAME=HPE SOA Registry Foundation

4. Install your NT service with its new name by running InstallService.bat.

5. Start the new service by running StartService.bat.

JVM Startup Parameters
The parameters of the Java Virtual Machine are set up during the installation of the NT service. If you
modify the parameters, youmust reinstall the NT service to put the changes into effect. Tomodify the
parameters of the NT service, open InstallService.bat in a text editor and do the following:

l To change themaximum size of available memory, change the value of the JVM_MEM variable, with
a command like set JVM_MEM=-Xmx256m.

l To add custom files to the classpath, edit the RegistryService.exe parameters. These are in the
line "-Djava.class.path=%REGISTRY_HOME%\lib\wasp.jar".

HPE SOA Registry Foundation Deployed to

Application Server
Systinet does not support installation of deployed HPE SOA Registry Foundation as an NT Service.
For more information, please see the documentation of your application server provider. However, any
Java application can be installed as an NT Service with Systinet's NT service solution. Contact
http://www.hp.com/go/hpsoftwaresupport if you need to run a deployed HPE SOA Registry Foundation
server as an NT service.

Uninstallation
To uninstall the HPE SOA Registry Foundation server NT service, run UnInstallService.bat from
the REGISTRY_HOME\bin directory. The uninstaller first tries to stop the NT service. It then removes the
NT service from your OS.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 194 of 642

http://www.hp.com/go/hpsoftwaresupport

Running in Linux
This section has the following topics:

"Using the syslog Daemonwith HPE SOA Registry Foundation" below

"Running HPE SOA Registry Foundation as a UNIX Daemon" on the next page

Using the syslog Daemon with HPE SOA

Registry Foundation
The log4j system used in HPE SOA Registry Foundation can be configured to send logmessages to
the syslog daemon. In order to utilize this feature, your systemmust be configured as follows:

1. Change log4j in REGISTRY_HOME/conf/log4j.config. First add a syslog appender, as shown
in Example 12, “log4j.config--syslog Appender” below. Note the following properties in particular:

o syslogHost - Set to host name of the computer where syslog is running.

o Facility - HPE SOA Registry Foundation logmessage facility recognized by syslog.

Example 12. log4j.config--syslog Appender

Appender to syslog
log4j.appender.syslog=org.apache.log4j.net.syslogAppender
log4j.appender.syslog.syslogHost=localhost
log4j.appender.syslog.Facility=local6
log4j.appender.syslog.layout=org.apache.log4j.PatternLayout
log4j.appender.syslog.layout.ConversionPattern=%p: %c{2} - %m%n

Then add syslog to the value of the property
log4j.category.com.systinet.wasp.events under # event monitoring, as follows:

Example 13. log4j.config--Event Monitoring

event monitoring
log4j.category.com.systinet.wasp.events=INFO,eventLog,syslog

2. Set the syslogd configuration to recognize logmessages from HPE SOA Registry Foundation.
Implicitly, HPE SOA Registry Foundation sends logmessages to syslog under the facility
local6. Therefore, modify the /etc/syslog.conf file by adding the following line of text:

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 195 of 642

local6.* /var/log/registry.log

HPE SOA Registry Foundation will now logmessages of all priorities into the file
/var/log/registry.log. You should create this file now with appropriate permissions (otherwise
syslogd will create it for you automatically with default permissions, whichmay not be suitable
for you).

3. Your syslog daemonmust be started with remote logging enabled (the -r command line option).
Tomake sure that:

o syslogd is running, use the pgrep syslogd command.

o remote logging is enabled, use the netstat -l command (syslog's udp port is 514).

Note: The local6 facility is not mandatory in any way. Youmay use other localX
facilities instead.

Running HPE SOA Registry Foundation as a

UNIX Daemon
HPE SOA Registry Foundation can be forced to start as a system daemon using the script
REGISTRY_HOME/etc/bin/registry.sh. This script can be renamed registry as per UNIX conventions.
The directions for using this script follow.

1. Tailor the service script as needed. Themeaning of variables is shown in the following table:

Variables in the HPE SOA Registry Service Script

Name of
variable in
registry
service
script

Description Default value

REGISTRY_
HOME

Home directory of HPE SOA
Registry Foundation

HPE SOA Registry Foundation Installation
directory.

JAVA_
HOME

Home directory of Java None. This variable must be set manually.

REGISTRY_
USER

User under whom the HPE
SOA Registry server should run.

Determined during runtime according to the
user who owns the REGISTRY_HOME

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 196 of 642

If this is set to root, it will be
changed to "nobody".

directory. If the user is root, this value
reverts to "nobody".

TIMEOUT Number of seconds the system
waits for HPE SOA Registry to
successfully start up.

60 seconds.

2. Rename the script registry (without the .sh extension) and save it in the /etc/init.d/
directory.

3. (optional) To start HPE SOA Registry Foundation automatically in the appropriate run-level, create
SXXregistry and KXXregistry symbolic links in the appropriate /etc/rcX.d/ directory.

Now youmay start and stop HPE SOA Registry Foundation using the installed script. You can invoke
this script directly or by using specific OS tools. For example, on RedHat, by using the redhat-config-
services command.

The parameters of the script are shown in the following table:

Parameters of init.d Scripts

Parameter Function

start Starts HPE SOA Registry Foundation

stop Stops HPE SOA Registry Foundation

restart Restarts HPE SOA Registry Foundation

condrestart Restarts HPE SOA Registry Foundation only if it is already running

status Displays whether HPE SOA Registry Foundation is running or not

The provided startup script may be run by the root user. The script uses the su command to run as
REGISTRY_USER.

Uninstallation
This section describes how to uninstall on:

"Windows" on the next page

"Linux" on the next page

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 197 of 642

Windows
1. If you installed HPE SOA Registry Foundation as NT service, uninstall it by executing script

REGISTRY_HOME\bin\UninstallService.bat. Seemore information on "NT Service Support" on
page 189.

2. Remove Icons and Start menu items onWindows platform.

3. Drop databasemanually via the Setup tool. Setup should automatically detect the current
configuration of the database. See "Reconfiguring After Installation" on page 62.

4. Delete installation directory of HPE SOA Registry Foundation.

Linux
1. If you installed HPE SOA Registry Foundation as Linux daemon, remove the registry files from

/etc/init.d. Remove also links KXXregistry and SXXregistry from appropriate directory
/etc/rcX.d. Unregister the daemon by system tools.

2. Drop databasemanually via the Setup tool. Setup should automatically detect the current
configuration of the database. See "Reconfiguring After Installation" on page 62.

3. Delete installation directory of HPE SOA Registry Foundation.

Product Documentation
Chapter 2: Installation Guide

HPE SOA Registry Foundation (10.04) Page 198 of 642

Chapter 3: User's Guide
The HPE SOA Registry Foundation User's Guide is mainly focused on the web user interface. The
users to whom this guide is addressed are those who query the registry or publish to it using this
interface as opposed to accessing the registry over SOAP. It is comprised of the following sections:

l Introduction to HPE SOA Registry Foundation

This section is a brief intoduction to HPE SOA Registry Foundation including basic concepts of
UDDI specifications.

l Registry Consoles

This section presents Registry Consoles.

l Demo Data Description

The HPE SOA Registry Foundation's DemoData chapter describes the business domain and
UDDI data structures used in the HPE SOA Registry Foundation Demo Suite and both registry
consoles.

l Advanced Topics

o Access Control Principles

Describes principles of permissions and access control to UDDI data structures.

o Publisher-Assigned Keys

Under UDDI v3, users may assign alpha-numeric keys to structures rather than having these
keys automatically generated by the registry (as was the case under UDDI v1 and v2).

o Range Queries

HPE SOA Registry Foundation's range queries functionality allows you to search UDDI entities
with the ability to use comparative operators (>, <).

o Taxonomy: Principles, Creation and Validation

This section gives you a brief overview of taxonomy classification in HPE SOA Registry
Foundation.

o Registry Console Reference

Describes the Registry Console and basic tasks you can perform with it.

HPE SOA Registry Foundation (10.04) Page 199 of 642

o Signer Tool

Allows the user to digitally sign published UDDI structures and validate digital signatures.

Introduction to HPE SOARegistry
Foundation
HPE SOA Registry Foundation is a fully V3-compliant implementation of the UDDI (Universal
Description, Discovery and Integration) specification, and is a key component of a Service Oriented
Architecture (SOA). A UDDI registry provides a standards-based foundation for locating services,
invoking services andmanagingmetadata about services (security, transport or quality of service). A
UDDI registry can store and provide thesemetadata using arbitrary categorizations. These
categorizations are called taxonomies.

This introduction has the following sections:

l "UDDI's Role in theWeb Services World - UDDI Benefits" below

l " Typical Application of a UDDI Registry" on the next page

l "Basic Concepts of the UDDI Specification" on the next page

l " Subscriptions in HPE SOA Registry Foundation" on page 207

UDDI's Role in the Web Services World -

UDDI Benefits
When development teams start to buildWeb service interfaces into their applications, they face such
issues as code reuse, ongoingmaintenance and documentation. The need tomanage these services
can increase rapidly.

The UDDI registry can help to address these issues and provides the following benefits:

l It delivers visibilitywhen identifying which services within the organization can be reused to
address a business need.

l It promotes reuse and prevents reinvention. It accelerates development time and improves
productivity. This ability of UDDI to categorize a growing portfolio of services makes it easier to

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 200 of 642

manage them. It helps you understand relationships between components, supports versioning and
manages dependencies.

l It supports service configurability and adaptability by using the service-oriented architectural
principle of location and transport independence. Users can dynamically discover services stored in
the UDDI registry.

l It allows you to understand andmanage relationships between services, component versions and
dependencies.

Typical Application of a UDDI Registry
A UDDI registry stores data andmetadata about business services. A UDDI registry offers a
standards-basedmechanism to classify, catalog andmanageWeb services so that they can be
discovered and consumed by other applications. As part of a generalized strategy of indirection among
services-based applications, UDDI offers several benefits to IT managers at both design-time and run-
time, including increasing code reuse and improving infrastructuremanagement by:

l Publishing information about Web services and categorization rules (taxonomies) specific to an
organization.

l FindingWeb services that meet given criteria.

l Determining the security and transport protocols supported by a givenWeb service and the
parameters necessary to invoke the service.

l Providing ameans to insulate applications (and providing fail-over and intelligent routing) from
failures or changes in invoked services.

Basic Concepts of the UDDI Specification
UDDI is based upon several established industry standards, including HTTP, XML, XML Schema
(XSD), SOAP, andWSDL. The latest version of the UDDI specification is available at:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3.

The UDDI specification describes a registry of Web services and its programmatic interfaces. UDDI
itself is a set of Web services. The UDDI specification defines services that support the description
and discovery of:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 201 of 642

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

l Businesses, organizations and other providers of Web services;

l TheWeb services they make available;

l The technical interfaces whichmay be used to access andmanage those services.

UDDI Data Model
The basic informationmodel and interaction framework of UDDI registries consist of the following data
structures:

l A description of a service business function is represented as a businessService.

l Information about a provider that publishes the service is put into a businessEntity.

l The service's technical details, including a reference to the service's programmatic interface or API,
is stored in a bindingTemplate.

l Various other attributes, or metadata, such as taxonomy, transports, and policies, are stored in
tModels.

These UDDI data structures are expressed in XML and are stored persistently by a UDDI registry.
Within a UDDI registry, each core data structure is assigned a unique identifier according to a standard
scheme. This identifier is referred as a UDDI key.

Business Entity
A business entity represents an organization or group of people responsible for a set of services (a
service provider). It can also represent anything that overreaches a set of services; for example a
development project, department or organization. The business entity structure contains the following
elements:

l Names and Descriptions. The business entity can have a set of names and descriptions, in a
variety of languages if necessary.

l Names and Descriptions. The business entity can have a set of names and descriptions, in a
variety of languages if necessary.

l Categories. Set of categories that represent the business entity's features or quantities. For
example the business entity can be associated with the category California to say that the business
entity is located in that geographical area.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 202 of 642

l Identifiers. The business entity can be associated with arbitrary number of identifiers that uniquely
identify it. For example, the business entity can be identified by a department number or D-U-N-S
number.

l Discovery URLs are additional links to documents describing the business entity.

Business entities can be linked to one another using so-called assertions that model a relationships
between them.

Business Service
Business services represent functionality or resources provided by business entities. A business entity
can referencemultiple business services. A business service is described by the following elements:

l Names and descriptions. The business service can have a set of names and descriptions, in a
variety of languages if necessary.

l Categories. A set of categories that represent the business service features and quantities. For
example, the business service can be associated by a category that represents service availability,
version, etc.

A business service in a UDDI registry does not necessarily represent aWeb service. The UDDI
registry can register arbitrary services such as example EJB, CORBA, etc.

Binding Template
A business service can contain one or more binding templates. A binding template represents the
technical details of how to invoke its service. Binding templates are described by the following
elements:

l Access point represents the service endpoint. It contains endpoint URI and specification of the
protocol.

l tModel instance infos can be used to represent any other information about the binding template

l Categories. The binding template can be associated with categories to reference specific features
of the binding template, for example certification status (test, production) or versions.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 203 of 642

tModel
The tModel provides a reference to an abstraction describing compliance with a specification and
concepts. TModels are described by the following elements:

l Name and description. The tModel can have a set of names and descriptions, in different languages
if required.

l An overview document is a reference to a document that specifies the tModel's purpose.

l Categories. Like all the other UDDI entities, tModels can be categorized.

l Identifiers. The tModel can be associated with an arbitrary number of identifiers that uniquely
identify it.

UDDI entities are categorized through tModels via taxonomies. Business entities, business services,
and binding templates declare associations to a certain category by presence of specific tModels in
their categoryBags.

Taxonomic Classifications
UDDI provides a foundation and best practices that help provide semantic structure to the information
about Web services contained in a registry. UDDI allows users to definemultiple taxonomies that can
be used in a registry. Users can employ an unlimited number of appropriate classification systems
simultaneously. UDDI also defines a consistent way for a publisher to add new classification schemes
to their registrations.

Taxonomies are used for representing various UDDI entity features and qualities (such as product
types, geographical regions or departments in a company).

The UDDI specificationmandates several standard taxonomies that must be shipped with each UDDI
registry product. Some are internal UDDI taxonomies such as the UDDI types taxonomy or
geographical taxonomy. A taxonomy can bemarked as specific to business, service, binding template
or tModel or it can be used with any type of the UDDI entity

Enterprise Taxonomies
Enterprise taxonomies are taxonomies that are specific to the particular enterprise or application.
These taxonomies reflect specific categories like company departments, types of applications, and

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 204 of 642

access protocols.

HPE SOA Registry Foundation allows definition of enterprise taxonomies. Users can also download
and upload any taxonomy as an XML file. HPE SOA Registry Foundation offers tools for browsing
taxonomies on both the web user interface and SOAP API levels.

Checked and Unchecked Taxonomies
There are two types of taxonomies: checked and unchecked. Checked taxonomies are rigid, meaning
that the UDDI registry does not allow the use of any categories other than those predefined in the
taxonomy. Checked taxonomies are usually used when the taxonomy author can enumerate all distinct
values within the taxonomy. A checked taxonomy can be validated using the internal validation service
that is available in HPE SOA Registry Foundation or by using an external validation service.

Unchecked taxonomies do not prescribe any set of fixed values and any name and value pair can be
used for categorization of UDDI entities. Unchecked taxonomies are used for things like volume,
weight, price, etc. A special case of the unchecked taxonomy is the general_keywords taxonomy that
allows categorizations using arbitrary keywords.

Security Considerations
UDDI specification does not define an access control mechanism. The UDDI specification allows
modification of the specific entity only by its owner (creator). This does not scale in the enterprise
environment where the right to modify or delete a specific UDDI entity must be assigned with more
identities or even better with some role.

HPE SOA Registry Foundation addresses this issue with the ACL (Access Control List) extension to
the UDDI security model. Every UDDI entity can be associated with the ACL that defines who can find
(list it in someUDDI query result), get (retrieve all details of the UDDI object), modify or delete it. The
ACL can reference either the specific user account or user group.

The UDDI v3 specification provides support for digital signatures. In HPE SOA Registry Foundation,
the publisher of a UDDI structure can digitally sign that structure. The digital signature can be validated
to verify the information is unmodified by any means and confirm the publisher's identity.

Notification and Subscription
The UDDI v3 specification introduces notification and subscription features. Any UDDI registry user
can subscribe to a set of UDDI entities andmonitor their creation, modification and deletion. The

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 205 of 642

subscription is defined using standard UDDI get or find API calls. The UDDI registry notifies the user
whenever any entity that matches the subscription query changes even if the change causes the entity
to not match the query anymore. It also notifies about entities that were changed in a way that after the
change they match the subscription query.

The notificationmight be synchronous or asynchronous. By synchronous, wemean solicited
notification when the interested party explicitly asks for all changes that have happened since the last
notification. Asynchronous notifications are run periodically in a configurable interval and the interested
party is notified whenever thematched entity is created, modified, or deleted.

Replication
Content of the UDDI registry can be replicated using the simplemaster-slavemodel. The UDDI
registry can replicate data according tomultiple replication definitions that are defined using UDDI
standard queries. Themaster-slave relationship is specific to the replication definition. So one registry
might bemaster for one specific replication definition and slave for another. The security settings (ACL,
users, and groups) are not subject to replication but you can set permissions on replicated data.

UDDI APIs
The core datamanagement tools functions of a UDDI registry are:

l Publishing information about a service to a registry.

l Searching a UDDI registry for information about a service.

The UDDI specification also includes concepts of:

l Replicating and transferring custody of data about a service.

l Registration key generation andmanagement.

l Registration subscription API set.

l Security and authorization.

The UDDI specification divides these functions into Node API sets that are supported by a UDDI
server and Client API Sets that are supported by a UDDI client .

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 206 of 642

Technical Notes
Technical Notes (TN) are non-normative documents accompanying the UDDI Specification that
provide guidance on how to use UDDI registries. Technical Notes can be found at http://www.oasis-
open.org/committees/uddi-spec/doc/tns.htm. One of themost important TNs is "UsingWSDL in a
UDDI Registry".

Benefits of UDDI Version 3
Themost important features include:

l User-friendly identifiers facilitate reuse of service descriptions among registries.

l Support for digital signatures allows UDDI to deliver a higher degree of data integrity and
authenticity.

l Extended discovery features can combine previous, multi-step queries into a single-step,
complex query. UDDI now also provides the ability to nest sub-queries within a single query, letting
clients narrow their searches muchmore efficiently.

Subscriptions in HPE SOA Registry

Foundation
Subscriptions are used to alert interested users in changes made to structures in HPE SOA Registry
Foundation. The HPE SOA Registry Foundation Subscription API provides users the ability to manage
(save and delete) subscriptions and evaluate notification. Notifications are lists of changes made within
a specified time interval. The Subscriptionmechanism allows the user to monitor new, changed, and
deleted entries for businessEntities, businessServices, bindingTemplates, tModels or
publisherAssertions. The set of entities in which a user is interested is expressed by a
SubscriptionFilter, which can be any one of the following UDDI v3 API queries:

l find_business, find_relatedBusinesses, find_services, find_bindings, find_tmodel

l get_businessDetail, get_serviceDetail, get_bindingDetail, get_tModelDetail, get_
assertionStatusReport

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 207 of 642

http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tns.htm

Subscription Arguments
A subscription is the subscriber's interest in changes made to entities as defined by the following
arguments:

l SubscriptionKey - The identifier of the subscription, as generated by the server when the
subscription is registered.

l Subscription Filter - Specifies the set of entities in which the user is interested. This field is
required. Note that once the subscription filter is set, it cannot be changed.

l Expires After - The time after which the subscription is invalid (optional).

l Notification Interval - How often the client will be notified (optional). The server can extend it
to theminimum supported notification interval supported by the server as configured by the
administrator.

For more information, see "Registry Configuration" on page 334 in the Administrator's Guide.

l Max Entities - how many entities can be listed in a notification (optional). When the number of
entities in a notification exceeds max entities, the notification will contain only the number of
entities specified here or in the registry configuration. A chunkToken different from "0" will be
specified in the notification. This chunkToken can be used to retrieve trailing entities.

l BindingKey - points to the bindingTemplate that includes the endpoint of the notification handling
service (optional). Only http andmail transports are currently supported. If this bindingKey is not
specified, the notification can be retrieved only by synchronous calls.

l Brief - By default, notifications contain results corresponding to the type of the Subscription
Filter. For example, when the subscription filter is find_business, notifications contain Business
Entities in the businessInfos form. If brief is toggled on, notifications will contain only the keys of
entities. (optional)

Subscription Notification
Notification is themechanism by which subscribers learn about changes. Notifications inform
subscribers about entities that:

l Satisfy the Subscription Filter now and were last changed, or created, within a given time period.
The entities are included in a list of the appropriate data type by default. For example, when find_

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 208 of 642

business represents the Subscription Filter, notifications contain Business Entities in the
businessList/businessInfo form. (If the brief switch is toggled on, only the entity keys in the keyBag
are included.)

l Were changed or deleted in the given time period and no longer satisfy the Subscription Filter. Only
the keys of the appropriate entities are included in the keyBag structure and the deleted flag is
toggled on.

There are two types of notifications:

l Asynchronous notification - Using asynchronous notification, the server periodically checks for
changes and offers them to the client via HTTP or SMTP. HTTP is suitable for services listening to
UDDI changes. SMTP (that is, mail notification) is suitable for both services and users. With this
transport, the user is notified at each notification interval by email. To perform asynchronous
notification, the subscriptionmust be populated with notification interval and bindingKey.
For details, see "Writing a Subscription Notification Service" on page 502 in the Developer's Guide.

l Synchronous notification - Using synchronous notification, the server checks for changes and
offers them when the client explicitly asks for them outside of periodical asynchronous
notifications. It is useful for client applications which cannot listen for notifications, and for services
that want to manage the time of notification by themselves. For details, see "Subscription" on page
582 in Demos.

XSLT Over Notification
To improve the readability of notifications sent to users via email, HPE SOA Registry Foundation
provides the ability to process the XSL transformation before the notification is sent. To enable this
feature:

1. Register the XSL transformation in UDDI as a tModel that refers to XSL transformation in its first
overviewDoc.

2. Modify the bindingTemplate (with the bindingKey specified in the subscription) to refer to the XSLT
tModel by its tModelInstanceInfo.

3. Tag the XSLT tModel by a keyedReference to uddi:uddi.org:resource:typewith the
keyValue="xslt".

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 209 of 642

Suppressing Empty Notifications
Another HPE SOA Registry Foundation extension to the specification is the ability to suppress empty
notifications. To do this, tag the bindingTemplate referenced from the subscription with a
keyedReference to the tModel uddi:uddi.org:categorization:general_keywordswith
keyValue="suppressEmptyNotification" and keyName="suppressEmptyNotification".

Related Links

l Tomanage subscriptions via the Registry Console, see "Registry Console Reference" on page
243.

l To use andmanage subscriptions, see the Subscription API chapter of the UDDI v3 Specification.

Registry Console
HPE SOA Registry Foundation web console.

l Registry Console : Using the Registry Console users can browse and publish registry contents,
create subscriptions and perform ownership changes. The Registry Console is the primary console
for administrators to perform registry management.

The Registry Console can be found at http://<hostname>:<port>/uddi/web. Host name and
port are defined when HPE SOA Registry Foundation is installed. The default port is 8080. See
“Registry Console Overview”

Note: Make sure your browser allows HTTPS connections, supports JavaScript and does not
block popup windows.

Demo Data
Demo data is pre-installed with HPE SOA Registry Foundation. There is one demo data set:

l To demonstrate Registry Console and DemoSuite

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 210 of 642

http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

Demo data for Registry Console and demos
Demo data describes amultinational company with offices in several locations and HPE SOA Registry
Foundation installed in its headquarters division. The headquarters division has two departments: IT
and HR.

There are two predefined users, demo_john and demo_jane. The passwords for these users are the
same as their log on names.

Departments are represented as the following Business Entities:

l Headquarters

l HR

l IT

The following taxonomies are used:

demo:hierarchy

Represents the organizational structure (hierarchy). KeyValue is the businessKey of the parent
department.

demo:location:floor

Represents the geographical location of departments. Headquarters is located in a building; IT and HR
are located in different floors of the same building. KeyValue is the number of the floor.

demo:departmentID

Identifies each department uniquely. The value from keyValue can be used as an argument inWSDL
services.

Pre-published services are shown in Table 4, “Pre-published DemoWeb Services”:

Name WSDL
Service

Description

Holiday
request

Yes stored in the HR department; used by employees to submit holiday request

Phone
support

No stored in the IT department; used by employees to call IT phone support for
help with their PCs.

Employee Yes stored in the HR department, projected to IT department; takes single

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 211 of 642

list argument - departmentId; used by employees to view a list of employees that
belong to a department.

Assertions are an alternate way to represent relationships between business entities. In the HPE SOA
Registry Foundation demo data, assertions are created between the Headquarters and HR
departments.

The demo data also contains the following resource files located in the REGISTRY_HOME/demos/conf
directory:

l EmployeeList.wsdl

l employees.xml

l employees.xsd

l employeesToDepartments.xsl

l departments.xml

l departments.xsd

Advanced Topics
" Data Access Control: Principles" below

"Publisher-Assigned Keys" on page 218

"RangeQueries" on page 221

"Taxonomy: Principles, Creation and Validation" on page 224

"Registry Console Reference" on page 243

"Signer Tool" on page 291

Data Access Control: Principles
This chapter describes the entity access control mechanism, which defines permissions for users and
groups to access structures in HPE SOA Registry Foundation.

There are two types of user groups: public and private. Both public and private groups are visible to all
users in the registry, meaning that all users are able to see which groups exist. Public and private

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 212 of 642

groups differ in that members of public groups are visible to all users of the registry whereas members
of private groups are visible only to the owner of the group.

Note: There are other permissions in HPE SOA Registry Foundation used to control access to
APIs and their operations. API permissions are relations between the user or group and operation
only. For details, see "Permissions: Principles" on page 349 in the Administrator's Guide.

Permission in this chapter is limited to Data Access Permission - ACL permission.

We use the following terms with regard to ACL permissions:

PartyA user or group of users

Core StructureOne of themajor UDDI data structures: businessEntity, businessService,
bindingTemplate or tModel

Action An operation: "find", "get", "save", or "delete" on the entity plus special action "create", which
means to save sub-entities. (For example, a user with the "create" permission on a businessService
can save new bindingTemplates under the businessService, but can not update whole
businessService.) Note that the "create" permissionmakes sense only on businessEntity and
businessService, because bindingTemplates and tModels have no sub-entities.

Standard UDDI access control defines that only the owner of a UDDI core structure can update or
delete it. Every user can find or get the structure (with the exception that deleted/hidden tModels are
visible for get_tModelDetail but not for the find_tModel operation). ACLs (Access Control Lists)
added to a UDDI entity can override standard UDDI access control as there are several cases in which
standard access control is not sufficient.

Examples:

l When aWeb service is under construction, its UDDI representation (businessService and
bindingTemplate) should be visible only to members of the development team. Arbitrary users
should not be able to obtain it in the result set of get_serviceDetail or find_service operations.
Moreover, a get_businessDetail or find_business operation result, which includes a superior
businessEntity, should not give away the existence of the businessService.

l On the other hand when the server (where the service prototype is running) goes down, the
administrator should be able to deploy theWeb service on another server and repair the service
endpoint in the accessPoint within its bindingTemplate, despite not being the owner of the
bindingTemplate.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 213 of 642

Explicit Permissions
Explicit permission gives (positive permission), or revokes (negative permission), access rights to a
party to process an action on a specified entity.

Explicit permissions are saved with the entity as special keyedReferences in the categoryBag. For
more information, please see Setting ACLs on UDDI v3 Structures and Setting ACLs on UDDI v1 and
v2 Structures below.

Permission Rules
When no explicit permission is set for the find/get action on an entity, everyone can find/get it. When no
explicit permission is set for the save/delete action on an entity, only owner of the entity can
save/delete it. This is a standard UDDI access control. When an explicit Permission is set for an
action, a completely different access control is used which is defined by the following rules:

1. Owner always has full control The owner can always process an operation over an owned
entity, even if the permission is explicitly revoked.

2. Negative permission for a user overrides positive permission for a user. Example: User U
has explicit positive permission on businessEntity BE for the get action. However, if U also has
explicit negative permission on BE for action get, then an attempt to process get_businessDetail
by user U on the BE will fail.

3. Negative permission for group overrides positive permission for group. Example: User U
has belongs to groups G1 andG2. GroupG1, has explicit positive permission on the BE for action
get. GroupG2, has explicit negative permission on the BE for action get. Because of this negative
permission, any attempt to process get_businessDetail by user U on the BE will fail.

4. Permission for user has more weight than permission for group Example: User U has
explicit positive permission on businessEntity BE for action get. GroupG, to which U belongs, has
explicit negative permission on the BE for action get. User U can process get_businessDetail on
the BE, even though U belongs to groupG.

5. The owner of an entity can always process get_XXX on a direct sub-entity Example: User U1
owns businessEntity BE. U1 (as owner) grants "create" permission to user U2. Then U2 saves
new businessService BS with bindingTemplate BT under BE. When user U1 executes get_
businessDetail, U1 obtains BE with BS but without BT, because BT is not a direct sub-element of

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 214 of 642

the BE.

Motivation: This rule ensures that the owner of an entity will see all direct sub-entities. The
number of sub-entities is limited. By default, a user can save only one businessEntity, four
businessServices per businessEntity, two bindingTemplates per businessService and 10
tModels. Suppose that user U1 has businessEntity BE. User U2 can save businessServices in
BE (permission "create" on BE). If U2 has already saved four businessServices under BE, user
U1 cannot, therefore, save a new businessService. Therefore, the owner of an businessEntity
should see why the limit is reached.

6. Delete and Save positive permissions are inherited from parent entities and override
negative permissions on sub-entitiesExample: User U has "delete" permission on
businessEntity BE. Then U can execute the delete_business operation, which deletes the BE with
all its businessServices and bindingTemplates, even if some of these sub-entities have negative
permission for deletion by the user U.

Motivation: Sub-entities can not survive parent entity deletion. This rule ensures that a user who
can save/delete an entity can do this despite not having sufficient privileges on sub-entities.

7. To perform update by save_XXX operation, it is necessary to have both "save" and "get"
permissionsExample: User U1 has "save" and "get" permissions on businessEntity BE, but he
is not the owner. User U2 owns the BE and saves businessService BS1, which has "get"
permission for U1, and businessService BS2without any permissions. Both BS1 and BS2 are
created under BE. U1 gets BE with only BS1 and updates BE in this way: U1 can add a category
and save BE again without BS1. In fact, when BE is updated, BS1 is deleted but BS2 remains.

Example:

User U1 owns a businessEntity BE. The user U1 defines the explicit get allowed permission to
user groupG1. Everyone can find the BE, because there is no explicit permission for find and
therefore the standard UDDI access control is used. On the other hand, only user U1 (as the
owner) and all users from groupG1 can get the BE.

Composite Operations
BusinessService BS can bemoved from one businessEntity BE1 to other businessEntity BE2. By
performing the save_service operation on BS, where BS has updated businessKey to point to the
BE2. To perform this action, the party must have permission to save BE1, BE2, and BS, because
all these entities are changed.

Similarly bindingTemplate BT can bemoved from businessService BS1 to businessService BS2.
The party whomoves it must have save permission on BS1, BS2 and BT.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 215 of 642

BusinessService BS hosted in businessEntity BE1 can be projected into businessEntity BE2. The
party who projects BS must have save permission on BE2.

Pre-installed Groups
ACL logic considers some special pre-published abstract groups during permission evaluation. These
abstract groups allow a publisher to give a permission to a specific set of HPE SOA Registry
Foundation users.

l system#everyone
Holds all users of HPE SOA Registry Foundation (both users who have and who do not have a HPE
SOA Registry Foundation account, authenticated and non-authenticated). If this group is used, all
users always have the specified permission to the associated data.

l system#registered
Holds all authenticated HPE SOA Registry Foundation users. Every user who is authenticated (that
is, who has an account and has logged into the registry) is amember of this group. If this group is
used, all authenticated users always have the specified permission to the associated data.

l system#intranet
Holds users who access HPE SOA Registry Foundation via a local intranet. (This group is reserved
for a future release. There is no implementation behind it as of HPE SOA Registry Foundation 6.65).

ACL tModels
ACL permissions are represented as tModels as detailed below:

ACL
Permission

v3 tModelKey v2 tModelKey

find allowed uddi:systinet.com:acl:find-allowed uuid:aacfc8e0-dcf5-11d5-b238-
cbbeaea0a8d4

find denied uddi:systinet.com:acl:find-denied uuid:ced3c160-dcf5-11d5-b238-
cbbeaea0a8d4

get allowed uddi:systinet.com:acl:get-allowed uuid:f9977a90-dcf5-11d5-b238-
cbbeaea0a8d4

get denied uddi:systinet.com:acl:get-denied uuid:09e202d0-dcf6-11d5-b238-
cbbeaea0a8d4

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 216 of 642

save allowed uddi:systinet.com:acl:save-
allowed

uuid:19885bd0-dcf6-11d5-b239-
cbbeaea0a8d4

save denied uddi:systinet.com:acl:save-denied uuid:2a25e610-dcf6-11d5-b239-
cbbeaea0a8d4

delete allowed uddi:systinet.com:acl:delete-
allowed

uuid:37f44ac0-dcf6-11d5-b239-
cbbeaea0a8d4

delete denied uddi:systinet.com:acl:delete-
denied

uuid:4e51d8f0-dcf6-11d5-b239-
cbbeaea0a8d4

create allowed uddi:systinet.com:acl:create-
allowed

uuid:5bc32980-dcf6-11d5-b239-
cbbeaea0a8d4

create denied uddi:systinet.com:acl:create-
denied

uuid:6d0be7e0-dcf6-11d5-b239-
cbbeaea0a8d4

Setting ACLs on UDDI v3 Structures
In UDDI v3, explicit ACL permission is saved in a special keyedReferenceGroup having the tModelKey
uddi:systinet.com:acl. This keyedReferenceGroup can contain only keyedReferences to ACL
tModels. Only the terms "user" and "group" are allowed in the included keyName, and the keyValue
must contain the name of the user or group (according to keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

Example 14. Setting ACLs - v3

<businessEntity xmlns="urn:uddi-org:api_v3">
...
<categoryBag>

...
<keyedReferenceGroup tModelKey="uddi:systinet.com:acl">

<keyedReference tModelKey="uddi:systinet.com:acl:save-allowed"
keyName="user" keyValue="demo_john"/>
...

</keyedReferenceGroup>
</categoryBag>

</businessEntity>

Setting ACLs on UDDI v1/v2 Structures
Under versions 1 and 2 of UDDI, explicit ACL permission is saved as a special keyedReference in the
categoryBag. This keyedReference refers to one of the tModels representing ACL permissions. Only

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 217 of 642

the terms "user" and "group" are allowed in the included keyName and the keyValuemust contain the
name of the user or group (according to the keyName value).

For example, user demo_john can save (update) following businessEntity even if he is not the owner:

<businessEntity ...>
...
<categoryBag>

<keyedReference tModelKey="uuid:19885bd0-dcf6-11d5-b239-cbbeaea0a8d4"
keyName="user" keyValue="demo_john"/>

...
</categoryBag>

</businessEntity>

Note: ACL permissions cannot be set on the bindingTemplate structure because this structure
has no categoryBag in UDDI v1/v2.

Publisher-Assigned Keys
Under UDDI v1 and v2, keys are generated automatically when a structure is published. Generated
keys in these versions are in form (uuid:)8-4-4-4-12 where the numbers indicate a count of hexadecimal
values. For example, uuid:327A56F0-3299-4461-BC23-5CD513E95C55. Note that the prefix "uuid:"
was only used in tModelKeys.

In UDDI v3 users may assign keys when saving a structure for the first time. These Keys can be 255
characters long and can contain numbers and Latin characters, so that the key itself describes what the
UDDI structuremeans. For example, the key
uddi:systinet.com:uddiRegistry:demo:businessService has the following elements:

l The prefix uddi: is a schemamuch like http: or ftp: andmust be always present.

l systinet.com is an optional host name.

l The elements uddiRegistry, demo, and businessService represent a hierarchy of domains. The
domain demo is a subdomain of uddiRegistry.

This description is sufficient for our purposes for now. For amore precise description of keys, see the
UDDI v3 Specification.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 218 of 642

http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm#_Toc42047327

Generating Keys
The key generator tModel is a tModel with a key in the form domain:keygenerator. This tModel
permits its owner to save structures with keys in the form domain:string. For example, the tModel
uddi:systinet.com:uddiRegistry:demo:keygenerator allows its owner to publish structures with
keys like:

l uddi:systinet.com:uddiRegistry:demo:businessService

l uddi:systinet.com:uddiRegistry:demo:b52

These are derived keys of the uddi:systinet.com:uddiRegistry:demo domain.

With one exception, the key generator tModel does not allow the user to save keys from subdomains
such as uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate, that is,
derived keys of uddi:systinet.com:uddiRegistry:demo:businessService.

The key generator tModel, however, permits the user to save the key generator for each direct
subdomain. For example, the user can save
uddi:systinet.com:uddiRegistry:demo:businessService:keygenerator. After creating this
second key generator, the user is permitted to save structures with keys of the
uddi:systinet.com:uddiRegistry:demo:businessService domain, such as
uddi:systinet.com:uddiRegistry:demo:businessService:exchangeRate.

Note: To generate keys for a domain, the user must own the domain's key generator tModel. Only
the administrator can save structures with assigned keys without having the key generator tModel.
To enable this process for other users, the administrator must save the domain's tModel and then
change its ownership to the user via custody transfer. For more information, please see “Publish
Custody Transfer” in "Publishing" in .

Affiliations of Registries
The rules above ensure that two users can not create structures with the same key. A complicated
situation arises when one user wants to copy UDDI structures from one registry to another while
preserving the keys of those structures. There are two problems:

1. The rules above ensure that two users can not create structures with the same key. A complicated
situation arises when one user wants to copy UDDI structures from one registry to another while

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 219 of 642

preserving the keys of those structures. There are two problems:

2. The user must be allowed to save a structure with a specified key on the second registry.

TheAffiliated registriesmechanism solves both problems. An affiliation is a relationship
between two registries. The first registry gives up generation of keys for a certain domain and
transfers this privilege to the second registry. This ensures that keys from both registries are
unique.

Note: In the examples below we name the two registries 'master' and 'slave'. Moreover there
are three people:

o The person 1 is an administrator of themaster registry, this account is calledmaster-
admin

o The person 2 is an administrator of the slave registry (account slave-admin) and a
common user on themaster registry (accountmaster-user2).

o The person 3 is a common user on slave registry (account slave-user3) and a common
user onmaster registry (accountmaster-user3).

Affiliation Setup
To set up an affiliation:

1. The administrator of the slave registry (slave-admin) registers a user account on themaster
registry (master-user2).

2. Master-user2 requests a key generator tModel from the administrator of theMaster registry.

3. This administrator, master-admin, creates the key generator tModel and transfers it to themaster-
user2 account using custody transfer.

4. Person 2manually copies the key generator tModel to the slave registry (his slave-admin account
has permission to assign any key) and sets up the slave registry to generate all keys based on this
key generator. For more information, please see “Node” in the Administrator's Guide.

All keys generated by the slave registry or its users will be from the domain or some subdomain defined
by the key generator.

Copying Structures with Key Preservation
Given key should refer to the same structure nomatter which registry the structure is in.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 220 of 642

Suppose that slave-admin creates a key generator tModel for slave-user3 and this user uses the key
generator to generate a key for a structure in the slave registry. To copy the structure to themaster
registry, this key generator tModel must exist on both registries.

To copy a structure from the slave to themaster registry:

1. The slave-user3must ask person 2 (slave-admin) to copy the second key generator, because only
the holder of the account master-user2, as owner of the first key generator, can do this on the
master registry.

2. Thenmaster-user2 transfers ownership of the second key generator in themaster registry to
master-user3. Now master-user3 can copy the structure while preserving the generated keys.

Range Queries
HPE SOA Registry Foundation's range queries functionality allows you to search UDDI entities with
the ability to use comparative operators (>, <) for matching keyValues in keyedReferences. Theremust
be a defined type of keyValues in the taxonomy which defines the ordering. The following ordering
types are supported: string, numeric, and custom. KeyedReferences in find_XXX queries are
extended by a list of find qualifiers. Do not mix with find qualifiers of the whole query. Find Qualifiers are
used for specifying comparison operators.

See “Find Business by Categories” in "Searching" on page 256 for instructions on how to search for
UDDI data structures using range queries with the Registry Console.

Note: The HPE SOA Registry Foundation implementation of range queries goes beyond the
current UDDI v3 specification since the specification does not define this functionality.

The following findQualifiers are supported:

l equal - the default find qualifier. If no one from the group of (equal, greaterThan, lesserThan
qualifiers) is specified. This is done due to the backward compatibility with a standard UDDI. When
used, the keyedReference from the request matches to the all keyedReferences from the database
with the same tModelKey and the same keyValue.

l greaterThan - When used, the keyedReference from the request match to the all
keyedReferences from the database with the same tModelKey and a greater keyValue.

l lesserThan - When used, the keyedReference from the request match to the all keyedReferences
from the database with the same tModelKey and a lesser keyValue.

l notExists - This findQualifier has validity for the whole keyedReference (not just for keyValues).

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 221 of 642

An entity matches the find request with notExists findQualifier if and only if the specific
keyedReference does not exist in its categoryBag. This findQualifier can be arbitrarily combined
with greaterThan, lesserThan and equal findQualifiers. If the notExists findQualifier is used
alone, then the equal findQualifier is considered automatically.

Comparators can be combined:

l greaterThan and equal find qualifiers can be used together with the keyedReferencematch to
the all keyedReferences with the same tModelKey and a greater or equal keyValue (>=).

l lesserThan and equal find qualifiers can be used together with the keyedReferencematch to the
all keyedReferences with the same tModelKey and a lesser or equal keyValue (<=).

l lesserThan and greaterThan find qualifiers can be used together with the keyedReference
match to the all keyedReferences with the same tModelKey and a not equals keyValue (<>).

l Combination of lesserThan, greaterThan and equal is not allowed.

Examples

The following examples demonstrate the usage of range queries. Suppose that the keyedReferences
are placed in the category bag of the find_business request.

greaterThanOnly business entities that have a keyedReference with tModelKey equal to tmKey, and
a keyValue that is greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">

<findQualifiers>

<findQualifier>greaterThan</findQualifier>

</findQualifiers>

</keyedReference>

greaterThan and lesserThanOnly business entities that have keyedReference with tModelKey that is
equal to tmKey, and a keyValue not equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">

<findQualifiers>

<findQualifier>greaterThan</findQualifier>

<findQualifier>lesserThan</findQualifier>

</findQualifiers>

</keyedReference>

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 222 of 642

notExistsOnly business entities that do not have a keyedReference with a tModelKey equal to tmKey,
and a keyValue equal to kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">

<findQualifiers>

<findQualifier>notExists</findQualifier>

</findQualifiers>

</keyedReference>

notExists and greaterThanOnly business entities that do not have a keyedReference with a
tModelKey equal to tmKey, and a keyValue greater than kv, in their categoryBags are returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">

<findQualifiers>

<findQualifier>notExists</findQualifier>

<findQualifier>greaterThan</findQualifier>

</findQualifiers>

</keyedReference>

notExists, greaterThan, equal Only business entities that do not have a keyedReference with a
tModelKey equal to tmKey, and a keyValue greater than or equal to kv, in their categoryBags are
returned.

<keyedReference tModelKey="tmKey" keyValue="kv" keyName="kn">

<findQualifiers>

<findQualifier>notExists</findQualifier>

<findQualifier>greaterThan</findQualifier>

<findQualifier>equal</findQualifier>

</findQualifiers>

</keyedReference>

See also "Advanced Inquiry - RangeQueries" on page 571 in Demos.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 223 of 642

Taxonomy: Principles, Creation and

Validation
The UDDI Version 3 Specification provides tools for setting the context on all four major UDDI
structures: businessEntities, businessServices, bindingTemplates and tModels. This document
covers basic principles andmanagement of this feature - the taxonomies.

What Is a Taxonomy?
A taxonomy, or value set in the terminology of the UDDI specifications, is a tModel which can be used
in categoryBags, identifier bags, or Publisher Assertions. This tModel must be in a specific form, so
that HPE SOA Registry Foundation can recognize it as a taxonomy. The tModel must be categorized
with the type of taxonomy and, optionally, with information concerning whether and how to validate the
values in keyedReferences.

Taxonomy Types
The UDDI specification distinguishes four types of taxonomies: categorizations,
categorizationGroups, identifiers, and relationships.

Categorizations — Categorizations can be used in all four main UDDI structures. They are used to
tag them with additional information, such as identity, location, and what the taxonomy describes.

CategorizationGroups — New in UDDI version 3, CategorizationGroups group several categorizations
into one logical categorization. For example, a geographical location comprised of two categorizations:
longitude and latitude.

Identifiers — Used in businessEntities and tModels, Identifiers reference published information.

Relationships — Used only in Publisher Assertions, Relationships define the relation between two
businessEntities.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 224 of 642

https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

Validation of Values
The publisher of a taxonomy can decide whether the values in keyedReferences within the taxonomy
will be checked or not.

Unchecked Taxonomies

HPE SOA Registry Foundation does not perform any checks on values used in keyedReferences
associated with unchecked taxonomies. Unchecked taxonomies are those that aremarked as such, or
those that are not marked as checked. These two states are equivalent.

Checked Taxonomies

If a taxonomy is checked, HPE SOA Registry Foundation executes its validation service for every
keyedReference in which the checked taxonomy is used. The validation servicemay check the
expected syntax of values, such as the format of a credit card or ISBN number. Taxonomies like the
ISO 3166Geographic taxonomy, which permits only existing countries, check the existence of the
value against a list. A validation servicemay even permit or deny values depending on the context in
which they are used.

HPE SOA Registry Foundation Requirements

HPE SOA Registry Foundation conforms to the technical note "Providing A Value Set For Use" in
UDDI Version 3.

To create a checked taxonomy, youmust:

1. Prepare and deploy a validation service which implements the Valueset_validation API.

2. Publish the tModel categorized as a checked taxonomy andmark it as unvalidatable.

3. Publish the bindingTemplate that implements the Valueset_validation API and the taxonomy's
tModel.

4. Republish the tModel, without the unvalidatable categorization, and with the categorization uddi-
org:validatedBy pointing to the bindingTemplate.

HPE SOA Registry Foundation requires that the bindingTemplate be published in the businessService
of the Operational Business Entity. If this businessService is not part of the Operational Business
Entity, the checked taxonomy will not be validatable and thus it may not be used in keyedReferences.
This implies that only the HPE SOA Registry Foundation administrator may publish checked
taxonomies.

The bindingTemplate must contain an accessPoint with its useType attribute set to "endPoint".

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 225 of 642

https://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

If the accessPoint starts with the prefix class:, then the remaining part is assumed to contain the fully
qualified name of the class that implements interface
org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType and
is accessible by the HPE SOA Registry Foundation classloader.

If the accessPoint does not start with the prefix class:, it is assumed to be the URL of theWeb
service implementing the Valueset_validation API and a stub is created for this Web service.

Internal Validation Service

HPE SOA Registry Foundation contains a special validation service called the Internal Validation
Service. This service is used by checked taxonomies that declare a list of available values published
using the Systinet Taxonomy API.

Types of keyValues
The creator of the taxonomy must specify types of keyValues by assigning the appropriate comparator
reference (comparator tModel) of the systinet-com:isOrderedBy taxonomy to the categorization
taxonomy you want to use to categorize a UDDI entity. The following types of key values types are
supported:

l string - keyValues are treated as string values. If keyValues type is unknown then keyValues are
treated as strings. Themaximum length is 255 characters.

l numeric - keyValues are treated as decimal numbers. The value can havemaximum 19 digits
before the decimal point andmaximum 6 digits after the decimal point.

l custom - keyValues must be transformed to string or numeric values using a transformation
service. For more information, see “Custom Ordinal Types” below.

For example, the tModel of the categorization taxonomy with numeric key values must have the
following keyedReference in its category bag:

<keyedReference tModelKey="uddi:systinet.com:isOrderedBy"

keyValue="uddi:systinet.com:comparator:numeric"/>

Example of Numeric Categorization

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 226 of 642

The above example shows how the demo:location:floor taxonomy from Demo data can be assigned
numeric key values.

Note: If you change type of keyValues of the taxonomy and there are entities in the HPE SOA
Registry Foundation that were already categorized with the taxonomy, the HPE SOA Registry
Foundation administrator must execute the task Transform keyed references. The button for
executing this task is located in the Registry Console under theManage tab, Registry
Management link. See "Accessing Registry Management" on page 297 in the Administrator's
Guide.

l To learn how tomake this assignment using the Registry Console , see “Adding a Category” in
"Publishing" on page 265 in the User's Guide.

l For instructions on how to search UDDI data structures using range queries with Registry Console,
see "Searching" on page 256 in the User's Guide.

Custom Ordinal Types

You can define your custom ordinal types. To demonstrate possible extensions, HPE SOA Registry
Foundation contains two demo comparators:

l systinet-com:comparator:date

l systinet-com:comparator:stringToLowerCase

Let us assume that you want to create a taxonomy with date values in keyValues. Youmust mark the
taxonomy tModel (that is, add the following keyedReference into its categoryBag) by
<keyedReference tModelKey="uddi:systinet.com:isOrderedBy"
keyValue="uddi:systinet.com:comparator:date"/>. It is quite easy because there is a demo
comparator for date in the registry. Imagine the date comparator is not present. Take the following
steps to create it in the registry:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 227 of 642

1. Create a transformer service that transforms the date value into a string or numeric value. The
transformer servicemust implement TransformerKeyedReferenceApi and add this class to the
HPE SOA Registry Foundation class path.

2. Create a new comparator tModel for date. The tModel must be categorized as a comparator using
the systinet-com:comparator taxonomy. The comparator must refer to the transformer service.
This reference is specified by the taxonomy IsTransformedBy (where "uddi:cba104c0-fb5c-
11d8-8761-eb2505508761" is the key of the bindingTemplate with the specification of the
transformer service.

Note: If you change implementation of the of the transformer service of the taxonomy and
there are entities in the HPE SOA Registry Foundation that were already categorized with the
taxonomy, the HPE SOA Registry Foundation administrator must execute the task
Transform keyed references. The button for executing this task is located in the Registry
Console under theManage tab, Registry Management link. See "Accessing Registry
Management" on page 297 in the Administrator's Guide.

The following figure, “Example of Custom Categorization (date)” shows the tModel references for date
categorization ordering. It describes a purchase order document that has beenmapped to HPE SOA
Registry Foundation via XML-to-UDDI functionality, and then categorized by the acceptancedate
taxonomy. The categorization taxonomy must refer to the comparator tModel
uddi:systinet.com:comparator:date that references a bindingTemplate with the location of the
date transformation service.

Example of Custom Categorization (date)

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 228 of 642

The transformer service is called whenever the appropriate keyedReference is processed. If any entity
contains the keyedReference with a taxonomy tModel whose type is custom then the transformer
service is called to discover the correct (that is, transformed) keyValue of the keyedReference. Such
transformed values are stored into the database. If you want to find entities by this keyedReference
(the keyedReference with the same taxonomy tModel), the service is called again to get the
transformed value. Transformed values are used for the saving and searching of keyedReferences.

Taxonomy API
This section demonstrates the basics of taxonomy API and taxonomy persistence format. A
comprehensive description of the Taxonomy API can be found in "Taxonomy" on page 395 in the
Developer's Guide.

Note: For clarity, we use an XML representation, but you can achieve the same results with Java
objects.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 229 of 642

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
xmlns:uddi="urn:uddi-org:api_v3"
check="false">

<tModel tModelKey="uddi:systinet.com:demo:myTaxonomy">
<uddi:name>My taxonomy</uddi:name>
<uddi:description>Category system</uddi:description>

</tModel>
<compatibilityBag>

<compatibility>businessEntity</compatibility>
</compatibilityBag>
<categorizationBag>

<categorization>categorization</categorization>
</categorizationBag>

</taxonomy>

Each taxonomy, in order to be saved, requires a valid tModel. While it must contain a tModelKey and a
name, you do not need to set the content of the categoryBag.

l The Taxonomy attribute check determines whether the taxonomy will be checked or not.

l The compatibilityBag is an interface to Systinet's
uddi:systinet.com:taxonomy:categorization taxonomy, which is used to limit usage of the
selected taxonomy within the four main UDDI structure types. In this way you can enforce that your
taxonomy can be used only within the UDDI structures of your choice and not in others.

l The categorizationBag is used to declare the type of the taxonomy, for example, whether it is a
categorization, categorizationGroup, identifier or relationship taxonomy.

Note that values may be combined.

Let's enhance the previous example and convert the taxonomy from unchecked to checked. Checked
taxonomies must contain Validation. In this example, the taxonomy is checked by the Custom
ValidationWeb service located at http://www.foo.com/MyValidationService.wsdl.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
xmlns:uddi="urn:uddi-org:api_v3"
check="true">

<tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
<uddi:name>My taxonomy</uddi:name>
<uddi:description>Category system</uddi:description>

</tModel>
<compatibilityBag>
<compatibility>businessEntity</compatibility>

</compatibilityBag>
<categorizationBag>

<categorization>categorization</categorization>
</categorizationBag>
<validation>

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 230 of 642

<bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
<accessPoint useType="endPoint">

http://www.foo.com/MyValidationService.wsdl
</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo
tModelKey="uddi:uddi.org:v3_valueSetValidation"/>

<tModelInstanceInfo
tModelKey="uddi:systinet.com:demo:myTaxonomy"/>

</tModelInstanceDetails>
</bindingTemplate>

</validation>
</taxonomy>

The validation element must hold the bindingTemplate identifying the validationWeb service or
categories structures. In this example we chose bindingTemplate. It must contain complete
accessPoint and tModelInstanceDetails must hold the Valueset_validation API and tModelKey of
the saved taxonomy. If the serviceKey is specified and if the businessService already exists, it must
be part of the Operational Business Entity.

Note: Be aware that the service will be replaced during the save_taxonomy process.

If you can provide a list of allowed values, you do not need to implement your own validationWeb
service. Just provide the allowed values inside the categories structure (as shown below) and the
Internal Validation Service will be responsible for validation of the keyedReferences.

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
xmlns:uddi="urn:uddi-org:api_v3"
check="true">

<tModel tModelKey="uddi:foo.com:demo:myTaxonomy">
<uddi:name>My taxonomy</uddi:name>
<uddi:description>Category system</uddi:description>

</tModel>
<compatibilityBag>

<compatibility>businessEntity</compatibility>
</compatibilityBag>
<categorizationBag>

<categorization>categorization</categorization>
</categorizationBag>
<validation>

<categories>
<category keyName="Value A" keyValue="A"/>
<category keyName="Value B" keyValue="B">

<category keyName="Value B1" keyValue="B1"/>
<category keyName="Value B3" keyValue="B3" disabled="true" />

</category>
<category keyName="Value C" keyValue="C"/>

</categories>

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 231 of 642

</validation>
</taxonomy>

As you can see, you can arrange your values hierarchically. This is useful for the Registry Console that
implements the drill-down pattern. If you really need, you can even specify bindingTemplate along with
the categories structure, but its accessPoint must point to the Internal Validation Service.

Predeployed Taxonomies
HPE SOA Registry Foundation comes with the following predeployed taxonomies:

l uddi-org:types is a UDDI Type Category System.

v3 UDDI key uddi:uddi.org:categorization:types

v2 UUID key uuid:c1acf26d-9672-4404-9d70-39b756e62ab4

Categorization categorization

Compatibility tModel

Checked yes, Internal Validation Service

l uddi-org:general_keywords is a category system consisting of namespace identifiers and the
keywords associated with namespaces.

v3 UDDI key uddi:uddi.org:categorization:general_keywords

v2 UUID key uuid:A035A07C-F362-44dd-8F95-E2B134BF43B4

Categorization categorization

Compatibility tModel

Checked yes, Internal Validation Service

l uddi-org:entityKeyValues is a category system used to declare that a value set uses entity
keys as valid values.

v3 UDDI key uddi:uddi.org:categorization:entitykeyvalues

v2 UUID key uuid:916b87bf-0756-3919-8eae-97dfa325e5a4

Categorization categorization

Compatibility tModel

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 232 of 642

Checked yes, Internal Validation Service

l uddi-org:isreplacedby is the identifier system used to point to the UDDI entity, using UDDI
keys, that is the logical replacement for the one in which isReplacedBy is used.

v3 UDDI key uddi:uddi.org:identifier:isReplacedBy

v2 UUID key uuid:e59ae320-77a5-11d5-b898-0004ac49cc1e

Categorization identifier

Compatibility tModel, businessEntity

Checked yes

l uddi-org:nodes is a category system for identifying the nodes of a registry.

v3 UDDI key uddi:uddi.org:categorization:nodes

v2 UUID key uuid:327A56F0-3299-4461-BC23-5CD513E95C55

Categorization categorization

Compatibility businessEntity

Checked yes

l uddi-org:owningBusiness_v3 is a category system used to point to the businessEntity
associated with the publisher of the tModel.

v3 UDDI key uddi:uddi.org:categorization:owningbusiness

v2 UUID key uuid:4064c064-6d14-4f35-8953-9652106476a9

Categorization categorization

Compatibility tModel

Checked yes

l uddi-org:validatedBy is a category system used to point a value set or category group system
tModel to associated value set Web service implementations.

v3 UDDI key uddi:uddi.org:categorization:validatedby

v2 UUID key uuid:25b22e3e-3dfa-3024-b02a-3438b9050b59

Categorization categorization

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 233 of 642

Compatibility tModel

Checked yes

l uddi-org:wsdl:types is aWSDL Type Category System.

v3 UDDI key uddi:uddi.org:wsdl:types

v2 UUID key uuid:6e090afa-33e5-36eb-81b7-1ca18373f457

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes, Internal Validation Service

l uddi-org:wsdl:categorization:protocol

v3 UDDI key uddi:uddi.org:wsdl:categorization:protocol

v2 UUID key uuid:4dc74177-7806-34d9-aecd-33c57dc3a865

Categorization categorization

Compatibility tModel

Checked yes

l uddi-org:wsdl:categorization:transport

v3 UDDI key uddi:uddi.org:wsdl:categorization:transport

v2 UUID key uuid:e5c43936-86e4-37bf-8196-1d04b35c0099

Categorization categorization

Compatibility tModel

Checked yes

l uddi-org:wsdl:portTypeReference is a category system tModel that can be used to identify a
relationship to a portType tModel.

v3 UDDI key uddi:uddi.org:wsdl:portTypeReference

v2 UUID key uuid:082b0851-25d8-303c-b332-f24a6d53e38e

Categorization categorization

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 234 of 642

Compatibility tModel

Checked yes

l systinet-com:taxonomy:compatibility enhances a taxonomy tModel with additional
information, in which structures the taxonomy can be used.

v3 UDDI key uddi:systinet.com:taxonomy:compatibility

v2 UUID key uuid:cf68c700-f93d-11d6-8cfc-b8a03c50a862

Categorization categorization

Compatibility tModel

Checked yes, Internal Validation Service

l systinet-com:dependency creates link between two structures (may be different types). Both
keyName and keyValuemust be specified. KeyNamemust be one of businessEntity,
businessService, bindingTemplate and tModel. KeyValuemust be existing UDDI key of specified
structure.

v3 UDDI key uddi:systinet.com:dependency

v2 UUID key uuid:179e5540-f27b-11d6-9738-b8a03c50a862

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes

l dnb-com:D-U-N-S - Thomas Registry Suppliers

v3 UDDI key uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s

v2 UUID key uuid:8609c81e-ee1f-4d5a-b202-3eb13ad01823

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked no

l microsoft-com:geoweb:2000 - Geographic Taxonomy: GeoWeb (2000 Release)

v3 UDDI key uddi:297aaa47-2de3-4454-a04a-cf38e889d0c4

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 235 of 642

v2 UUID key uuid:297aaa47-2de3-4454-a04a-cf38e889d0c4

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked no

l ntis-gov:naics:1997 - Business Taxonomy: NAICS (1997 Release)

v3 UDDI key uddi:uddi.org:ubr:categorization:naics:1997

v2 UUID key uuid:c0b9fe13-179f-413d-8a5b-5004db8e5bb2

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes, Internal Validation Service

l ntis-gov:sic:1997 - Business Taxonomy: SIC (1997 Release)

v3 UDDI key uddi:70a80f61-77bc-4821-a5e2-2a406acc35dd

v2 UUID key uuid:70a80f61-77bc-4821-a5e2-2a406acc35dd

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes, Internal Validation Service

l ntis-gov:naics:2002 - Business Taxonomy: Business Taxonomy: NAICS (2002 Release)

v3 UDDI key uddi:70a80f61-77bc-4821-a5e2-2a406acc35dd

v2 UUID key uuid:70a80f61-77bc-4821-a5e2-2a406acc35dd

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes, Internal Validation Service

l unspsc-org:unspsc:3-1 - Product Taxonomy: UNSPSC (Version 3.1)

v3 UDDI key uddi:db77450d-9fa8-45d4-a7bc-04411d14e384

v2 UUID key uuid:db77450d-9fa8-45d4-a7bc-04411d14e384

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 236 of 642

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked no

l unspsc-org:unspsc - Product Taxonomy: UNSPSC (Version 7.3)

v3 UDDI key uddi:unspsc-org:unspsc

v2 UUID key uuid:cd153257-086a-4237-b336-6bdcbdcc6634

Categorization categorization

Compatibility tModel, businessEntity, businessService, bindingTemplate

Checked yes, Internal Validation Service

l unspsc-org:unspsc:v6.0501 - Product and Service Category System: United Nations Standard
Products and Services Code (UNSPSC)

v3 UDDI key uddi:uddi.org:ubr:categorization:unspsc

v2 UUID key uuid:4614C240-B483-11D7-8BE8-000629DC0A53

Categorization categorization

Compatibility tModel businessEntity businessService bindingTemplate

Checked yes, Internal Validation Service

l ws-i-org:conformsTo:2002_12 is a category system used for UDDI entities to point to theWS-I
concept to which they conform.

v3 UDDI key uddi:65719168-72c6-3f29-8c20-62defb0961c0

v2 UUID key uuid:65719168-72c6-3f29-8c20-62defb0961c0

Categorization categorization

Compatibility tModel

Checked no

WSM Taxonomies
The following taxonomies are used for integration with a web servicemanagement system:

systinet-com:management:metrics:avg-byte

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 237 of 642

Average sum of incoming and outgoingmessage length

v3 UDDI key uddi:systinet.com:management:metrics:avg-byte

v2 UUID key uuid:3c13a2e2-dfd0-30a2-bd58-c5de8c2ae3bb

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:avg-byte-input

Average input message length per hour

v3 UDDI key uddi:systinet.com:management:metrics:avg-byte-input

v2 UUID key uuid:f18a50ad-ddb2-392a-b97c-1181c67b2817

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:avg-byte-output

Average output message length

v3 UDDI key uddi:systinet.com:management:metrics:avg-byte-output

v2 UUID key uuid:7664723d-896a-3ed2-b7e9-46c9f38e7681

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:avg-hits

Averagemessage hits per hour

v3 UDDI key uddi:systinet.com:management:metrics:avg-hits

v2 UUID key uuid:bf010bf9-cafa-3f68-bf51-3cde3bd0f483

Categorization categorization

Compatibility tModel

Checked no

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 238 of 642

systinet-com:management:metrics:avg-response-time

Average response time inmilliseconds

v3 UDDI key uddi:systinet.com:management:metrics:avg-response-time

v2 UUID key uuid:099d67a9-eae6-3c30-8be9-48b44c5d9728

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:errors

Count of application failures in the last hour

v3 UDDI key uddi:systinet.com:management:metrics:errors

v2 UUID key uuid:b074de10-e781-383a-bd00-248a1c42f0fa

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:hits

Count of hits in the last hour

v3 UDDI key uddi:systinet.com:management:metrics:hits

v2 UUID key uuid:720689a4-dce4-398c-adba-e5c0f50d1eb2

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:median-byte

Median sum of incoming and outgoingmessage lengths

v3 UDDI key uddi:systinet.com:management:metrics:median-byte

v2 UUID key uuid:0adefd4c-7624-3973-91a5-ea4971d6b0ef

Categorization categorization

Compatibility tModel

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 239 of 642

Checked no

systinet-com:management:metrics:median-byte-input

Median value of incomingmessage lengths

v3 UDDI key uddi:systinet.com:management:metrics:median-byte-input

v2 UUID key uuid:c9c2fd87-f806-3ca0-819e-3f788cc8fd95

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:median-byte-output

Median output message length

v3 UDDI key uddi:systinet.com:management:metrics:median-byte-output

v2 UUID key uuid:bdb4e8f8-1aba-3558-b1f5-cf89b5455529

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:median-response-time

Median response time inmilliseconds

v3 UDDI key uddi:systinet.com:management:metrics:median-response-time

v2 UUID key uuid:62f08146-1d3f-30e3-8c6a-1f2062c332d4

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:policy-violations

Count of policy violations in the last hour

v3 UDDI key uddi:systinet.com:management:metrics:policy-violations

v2 UUID key uuid:be42511a-3c68-34d2-b137-d00e56bb4de4

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 240 of 642

Categorization categorization

Compatibility tModel

Checked no

systinet-com:management:metrics:reference

Reference to a tModel containing all metrics about the service. The keyValues in keyedReferences
that

refer to this tModel must be a tModelKey of themetric tModel.

v3 UDDI key uddi:systinet.com:management:metrics:reference

v2 UUID key uuid:0d709256-b9f3-30a3-9aa1-51a1adb11324

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:proxy-reference

WSMProxy Reference Taxonomy

v3 UDDI key uddi:systinet.com:management:proxy-reference

v2 UUID key uuid:79bf6f6d-b0b7-3f08-b45e-9893b525de9b

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:server-reference

WSMServer Reference Taxonomy

v3 UDDI key uddi:systinet.com:management:server-reference

v2 UUID key uuid:1583604a-57a2-3887-9b1d-2549e270390c

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:state

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 241 of 642

WSMState Taxonomy

v3 UDDI key uddi:systinet.com:management:state

v2 UUID key uuid:73c7ef28-6150-36a0-ba82-414424ede582

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:state-change-request-type

WSMState Change Request Taxonomy

v3 UDDI key uddi:systinet.com:management:state-change-request-type

v2 UUID key uuid:64473cda-4a78-3ddb-b0c6-801533ce1943

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:system

WSManagement System Taxonomy

v3 UDDI key uddi:systinet.com:management:system

v2 UUID key uuid:e148d85e-cc08-32f6-8f00-db85e258e511

Categorization categorization

Compatibility bindingTemplate

Checked no

systinet-com:management:type

WSM Type Taxonomy

v3 UDDI key uddi:systinet.com:management:system

v2 UUID key uuid:e148d85e-cc08-32f6-8f00-db85e258e511

Categorization categorization

Compatibility bindingTemplate

Checked yes

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 242 of 642

systinet-com:management:type

WSM Type Taxonomy

v3 UDDI key uddi:systinet.com:management:type

v2 UUID key uuid:5d14645d-66ea-39ac-8122-49d06b09b492

Categorization categorization

Compatibility bindingTemplate

Checked yes

systinet-com:management:url

Endpoint URL Taxonomy

v3 UDDI key uddi:systinet.com:management:url

v2 UUID key uuid:4897f99b-bd23-3889-af37-b80351cf8b52

Categorization categorization

Compatibility bindingTemplate

Checked yes

Registry Console Reference
l Registry Console Overview

l Manage user account and user groups

l Browsing the registry;

l Searching the registry

l Publishing in the registry

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 243 of 642

Register/Create Account

Register
Before you can publish data to the registry, youmust have a HPE SOA Registry Foundation account.
You can create an account via the web interface.

Follow these steps to register a user account:

1. Click the Register link on themainRegistryConsole page. This returns theCreate account
page.

2. Fill in all fields. Those labeled with an asterisk (*) are required. Your email address may be used
later for enabling your account.

Create Account Page

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 244 of 642

3. Click theCreate account button.

The new account is now enabled.

Note: HPE SOA Registry Foundationmay be configured to require email confirmation in order to
enable the user account. In this case, the registry sends an email confirmation. Follow the
instructions in this email to enable your account.

Login
To log on, click the Login link on the upper part of the Registry Console, and enter your username and
password.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 245 of 642

Once logged into the registry, you are able to publish, delete, and update the various UDDI structures.
Users have access to their own account information. Administrators also have account administration
access; that is, the ability to delete and edit accounts and produce account audit reports.

Registry Console Overview
Registry Console is comprised of the following objects:

A: Main Menu Tabs

Browse — This tab allows you to browse UDDI entities using taxonomies.

Search — This tab allows you to search the registry. You can perform inquiry on UDDI entities, you
can find business entity, service, bindings, tModels, and related businesses. Themenu option also
allows you to browse taxonomies and directly get information from HPE SOA Registry Foundation
when you know a key of UDDI data types (business, service, binding, and tModel)

Publish — This tab allows you to publish UDDI structures (businessEntities, businessServices,
bindingTemplates, and tModels). On this tab, you can also assert relationships between business
entities, subscribe interest in receiving information about changes made to a registry, transfer
ownership of selected UDDI structures (Custody Transfer), and publishWSDLs to the registry.

Profile — Here you canmanage your user account properties, account groups and favorite
taxonomies.

Manage — This tab is used by the HPE SOA Registry Foundation administrator to perform
management tasks. See Administrators Guide for more information.

B: Menu Bar Submenu options are located here.

Registry Console Overview

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 246 of 642

C: History path (breadcrumbs) This area displays the log of your recent actions. You can return to
any of these previous actions by clicking on the hyperlinks.

D: User Actions This area contains several control elements that enable a user to:

l Create an account

l LogOn

l LogOut

F: Main Display Area Information chosen from the tabs and the tree display is made available in the
Main Display Area.

G: Display Tabs These tabs allow the user to control themain area's display based on information
type. A plain listing of all business properties would be very long and very difficult to read. Dividing the
properties into tabs reduces the amount of information and improves page readability. The displayed
information changes with the context.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 247 of 642

H: Action Buttons The action buttons allow you to perform operations on the contents of themain
display.

J: Action Icons There are two icons in this area. The first one allows you to refresh the page content,
second one will open the product documentation page.

K: Action Icons Icons from this area allow you to switch on/off display tabs and open the current page
in the printer friendly mode.

For more information, see the Registry Console Overview figure above.

User Profile
You canmanage your user account, user groups, and favorite taxonomies under the Profile menu tab.

Profile Menu Tab

To update your account properties, selectMy account and click theEdit Account button.

View Account

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 248 of 642

Field descriptions (self-explanatory fields are omitted):

Default Language Code — Set the default language code. Used when publishing, it is the language
code associated with a particular field when the language is not specified.

Use the following profile — Profile preference - Select your preferred predefined user profile from
this drop down list

Tomaintain user groups, click theGroups link. From theGroups screen, you can:

l Create andmanage your own groups

l Manage groupmembership

View User Groups

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 249 of 642

Create andManageGroups
To create a new group:

1. Click on theProfilemenu tab, and select theGroups link. This returns the Group list shown in the
“View User Groups” screen above.

2. Click theAdd Group button.

Edit Group Membership

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 250 of 642

3. In the edit box labeled Group name, type the name of your group.

4. Use the radio buttons labeled public and private to establish whether this group should be visible
to all members (public) or visible only to the group owner (private).

5. Click Filter to display a list of the registry's users.

6. Check the boxes for all members you wish to include, then click the right-pointing arrow tomove
them to the Group members table.

7. Once users are added, click Save Group to update HPE SOA Registry Foundation.

ManageGroupMembership
To add or removemembers from a group:

1. Click on theProfilemenu tab.

2. Click on theGroups link. This returns the Group list shown in the “View User Groups” screen
above.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 251 of 642

3. Click on theEdit button.

4. Use arrow buttons to add and remove users as shown in the “Edit GroupMembership” screen
above.

Favorite Taxonomies
You canmanage your favorite taxonomies under theProfile tab. You can define which taxonomies will
be present in the list of your favorite taxonomies. Favorite taxonomies help you to search and
categorize UDDI entities.

Tomanage your list of favorite taxonomies:

1. Click theProfilemenu tab. Click the Favorite taxonomies link. This returns the list of your
favorite taxonomies shown in the “Manage Favorite Taxonomies” screen below.

2. Click Filter to search taxonomies by name.

3. Check the boxes for all taxonomies you wish to include, and click the right-pointing arrow to copy
them to the favorite taxonomies table.

4. Once taxonomies are added, click theSave button to update the registry.

Manage Favorite Taxonomies

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 252 of 642

Browsing
In this section, we will show you how to browse taxonomy structures to discover UDDI entities
categorized or identified by taxonomies. You can also define a taxonomy filter and put your search
criteria to a query. We present a demo data set that is installed with HPE SOA Registry Foundation.
This demonstration set is designed to help familiarize you with the registry

To browse taxonomies and UDDI entities:

l Click on the Taxonomies link under theBrowsemainmenu tab.
The following page will appear.

Browse Menu Tab

On this page, you can use the drop down list to switch the taxonomy list to favorite taxonomies,
enterprise taxonomies, and a defined filter.

Note: The favorite taxonomies option appears in the drop down list only if your list of favorite
taxonomies is not empty. To add a taxonomy to your favorites, follow the direction in “Favorite
Taxonomies” in "User Profile" on page 248. The list of enterprise taxonomies is defined by an
administrator. For more information, see "Taxonomy Management" on page 310 in the
Administrator's Guide.

Initially, the filter contains all taxonomies except system taxonomies. Icons next to the drop down list
serve to show/hide categorized entities, and show all/suppress empty categories.

Drill down through the taxonomy tree to see all of the taxonomy categories. Those with sub-categories
can be expanded and collapsed.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 253 of 642

When you browse internally-checked taxonomies you can see their value set to see UDDI entities
categorized by these key values. For unchecked or externally checked taxonomies, you can search
UDDI entities by key values. Wewill show you how to browse an unchecked taxonomy from the demo
data.

To browse the demo data using demo:location:floor taxonomy:

1. In theBrowse MenuTab, select the filter option.

2. Click on the demo:location:floor taxonomy. Expand the taxonomy by clicking on the plus sign in
front of the taxonomy name. The key name and key value field pair appears.

3. Enter the key value as 5, then click Search.

You will get a list of UDDI entities categorized by this taxonomy with matching key value (IT in
this case) as shown in the following Browse Demo figure.

Browse Demo

You can also add this search criterion to a query.

Define Filter
You can reduce the number of taxonomies in the taxonomy list by defining a taxonomy filter. To switch
from taxonomy browsing to filter definition, click on the filter link in the lower left corner. The following
Taxonomy Filter page will appear.

Taxonomy Filter

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 254 of 642

You can filter taxonomies by name using the wild card characters % and _. You can specify taxonomy
type, compatibility, and a validation type. Once you define the filter criteria, click Apply filter. This will
return you to the browse taxonomy page.

Define Query
You can also combine search criteria in a query. To add a search criterion to a query, use the button
Add to query shown in the “Browse Demo" figure above.. Then, you can expand another taxonomy
and specify a new criterion. The following Query page presents the query displaying business entities

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 255 of 642

located on the 5th floor (demo:location:floor taxonomy) having Headquarter department as the superior
department (demo:hierarchy taxonomy).

Query

To remove a category from the query, right-click on the query and select remove from query from the
context menu.

Note: The query definition is not persistent. Once you leave theBrowseMenu Tab, the query will
disappear.

Searching
HPE SOA Registry Foundation search function allows you to perform the following searches:

Find UDDI data structures

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 256 of 642

You can search for business entities, services, bindings, and tModels using names and categories in
combination with find qualifiers including range queries.

l Find Business

l Find Services

l Find Binding

l Find tModel

Direct Get

You can retrieve data from HPE SOA Registry Foundation when you know the key of the UDDI entity
you want to retrieve.

Find Resources

You can search for resources:

l FindWSDL

l Find XSD

In the Search section, we present a demonstration data set that is installed with HPE SOA Registry
Foundation. This demonstration set is designed to help familiarize you with the registry.

Note: HPE SOA Registry Foundation supports the use of wildcard characters. You can use both %
and _. Use % in place of any number of characters and spaces. For example, if you wish to find all
business beginning with A, type A%. Use the underscore wildcard (_) in place of any single
character. For example, to find Dan or Dane, type Dan_.

See “Find Business by Categories” below for instructions on how to use the range queries functionality.

Find Business
In this section, we cover locating business entities using a number of different methods. You can locate
business entities by:

l Name

l Categories

l Identifiers

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 257 of 642

l Discovery URL

l tModel

For each findmethod, you can specify qualifiers located on the Find Qualifiers tab of theSearch
panel.

Find Qualifiers

Find Business by Name

To find a business by name:

1. Under themainSearch tab, click theBusinesses link.

2. Click theAdd Name button in theSearch panel.

3. Type in the business name, such as IT from the pre-installed demo data. Then click the Find tab
at the bottom right corner.

To see all businesses, type the wildcard% and click Find.

4. The search result will appear on theResults panel. Click on the link with the business name, this
opens the following View Business Detail page.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 258 of 642

View Business Detail

Find Business by Categories
In this section wewill show you how to search for business entities by categories. Wewill use demo
data to demonstrate how to find all departments located on specific floors. Also, an example how to use
range queries will be shown.

To find a business by category:

1. Under themainSearch tab, click theBusinesses link.

2. Click theCategories tab, then click theAdd category button. This returns a list of available
taxonomies.

You can switch theShow drop down list from favorite taxonomies to see all taxonomies. To
manage favorite taxonomies see "User Profile" on page 248.

3. Click on the desired taxonomy.

The taxonomy is shown as a tree; its sub-branches include categories.

Select demo:location:floor from our demo data.

4. 4.Now you can enter Key name and Key value.

Type 1 in the box labeled Key value and then click the Add category icon.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 259 of 642

Find Business by Category

5. Once a category is added as your search criteria, click Find.

You will get the department with that is located on the first floor. If you want search for all departments
located on higher floors youmust use range queries functionality. Wewill continue with the previous
search.

1. Click the tab Search to return to the Find business by categories page.

2. Click theEdit category icon. The following page is returned.

Find Business by Range Category

3. From theOperator drop down list, select the > operator, and click theUpdate icon.

4. Click Find. You will get all departments located higher than the first floor.

Find Business by Identifier
In this section wewill show you how to find a business entity by identifier. Wewill use demo data to
demonstrate how to find departments by their department number identifiers.

To find a business by identifier:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 260 of 642

1. Under themainSearch tab, click theBusinesses link.

2. Click the Identifiers tab. Then click theAdd identifier button. This returns a list of available
taxonomies.

3. Click on the desired taxonomy.

The taxonomy is shown as a tree with its sub-branches including categories.

Select demo:departmentID from the demo data.

4. Now you can enterKey name andKey value.

Type 002 in the box labeledKey value, and click Add identifier.

Find Business by Identifier

5. Once the Identifier is added as your search criteria, click Find.

Find Business by Discovery URL
To find a business entity by discovery URL:

1. Under themainSearch tab, click theBusinesses link.

2. Select theDiscovery URLs tab.

3. Type in the discovery URL and click Find.

Find Services
You can find services using a number of different methods including by:

l Name

l Category

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 261 of 642

l tModel

Search principles for finding services are the similar to those used for finding business entities.

Find Binding
You can find bindings using a number of different methods including by:

l Parent service

l Category

l tModel

The search principles for finding bindings are similar to those used for finding business entities.

Find tModel
You can find tModels using a number of different methods including by:

l Name

l Category

l Identifiers

The search principles for finding tModels are similar to those used for finding business entities.

Direct Get
You can also useDirect get from theSearchmenu tab to retrieve data from HPE SOA Registry
Foundation when you know the key of the UDDI structure you want to retrieve. HPE SOA Registry
Foundation allows you to specify keys for both UDDI version 2 and UDDI version 3. Click the Find by
v2 tab if you want to search using UDDI v2 keys.

Direct Get

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 262 of 642

Direct Get of XML Structures

You can also acquire the XML form of businesses, services, bindings, and tModels for use in
automated processing by entering the key of the structure into a URI.

The form of the URI is:

http://<hostname>:<port>/uddi/web/directGetXml?<structureKey>=<key>

URI Examples. Note that UDDI v3 is assumed by default.

l http://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:uddino
debusinessKey

l http://localhost:8080/uddi/web/directGetXml?serviceKey=...

l http://localhost:8080/uddi/web/directGetXml?bindingKey=...

l http://localhost:8080/uddi/web/directGetXml?tModelKey=...

Example with Login. This URI includes username and password.

https://localhost:8080/uddi/web/directGetXml?businessKey=uddi:systinet.com:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 263 of 642

uddinodebusinessKey&userName=admin&password=changeit

Example with UDDI Version Specification. Use this format when getting information
associated with v1 and v2 structures.

http://localhost:8080/uddi/web/directGetXml?businessKey=8f3033d0-c22f-11d5-b84b-
cc663ab09294&version=2

FindWSDL
You can find all WSDL documents published in HPE SOA Registry Foundation. When you supply the
WSDL location URI, you can review how artifacts of theWSDL document are published in HPE SOA
Registry Foundation. The following criteria: aWSDL document location, a tModel key, a business
service key, and a binding template key can be used. To search for aWSDL document in HPE SOA
Registry Foundation:

1. Select theSearchmenu tab and click theWSDL link. The FindWSDL page shown below will
appear.

2. Click the Find all published WSDLs button, or

EnterWSDL location URI , then click Examine this WSDL button.

Find WSDL

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 264 of 642

Find XSD
You can search for an XMLSchema in HPE SOA Registry Foundation according to location URI of the
XML document.

To search an XML document:

1. Select theSearch menu tab and click theXSD link. The following Find XSD page will appear.

2. You can search by the location of the XMLSchema document, namespaces, and by xsd:elements
and xsd:types defined in the XMLSchema document. Once you specify the search criteria, click
Find.

Find XSD

Publishing
Publishing in HPE SOA Registry Foundation has several components:

l Publish UDDI core structures:

o "Publishing a Business" on the next page

o "Publishing a Service" on page 272

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 265 of 642

o "Publishing a Binding Template" on page 272

o "Publishing a tModel" on page 273

o "Publishing Assertions" on page 275 - Asserting relationships between business entities.

l "Publishing Subscriptions" on page 277 - Subscribing interest in receiving alerts regarding changes
made to a registry.

l "Publish Custody Transfer" on page 282- Transferring ownership of selected UDDI structures.

l Publish Resources

o "PublishingWSDLDocuments" on page 283 - PublishingWeb Services Description Language
documents (WSDL) to HPE SOA Registry Foundation.

o "Publish XSD" on page 287- Publishing XMLSchemaDefinition (XSD) Documents.

Note: Youmust be logged into HPE SOA Registry Foundation to publish to it. There is a
limitation of how many UDDI structures a user can store. See "Account Limits" in "Registry
Management" on page 297 in the Administrator's Guide.

Publish Page

Publishing a Business
This section explains how to publish a businessEntity and edit businessEntity-related structures:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 266 of 642

l Add business name and description

l AddContact

l Add a Discovery URL

l Add a Category

l Add an Identifier

l Add Business Services

l Add Projected Services

l Assert Business Relationships

To publish a business:

1. Click theAdd Business button in the right-hand panel of the publish page, or select Add
Business from the context menu that appears when you right-click theBusiness Entities node.

Add Business

2. Enter the business name and a description, then click Add Business.

3. The business will appear in the left tree panel under theBusiness entities node.

To edit a business entity:

1. Select thePublishmenu tab.

2. Click thePublish link.

3. Click the List Businesses link and click on edit icon next the name of business you wish to edit.

Edit Business

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 267 of 642

4. After youmodified the business entity, click theSave changes button.

Adding a Contact

The contact structure provides you with a space where you can list the people associated with the
business entity. It is comprised of six properties: name, phone, email, address, description, and use
type.

It is recommended that you use the description field to give a brief explanation of how the contact
should be used.

Use types can be used to indicate the expected way in which the contact should be used. For example,
"New Franchises", "Sales contact", "Technical Questions".

To add a contact:

1. On theContacts tab of the Edit business or View business page, click theAdd contact button.
This displays the following Add contact page where you can specify the contact's name and use
type:

Add Contact

2. Click Add contact.

3. Build your lists of information for descriptions, phone numbers, and addresses. Each collection
page, with the exception of Address collection, functions in the samemanner. Click theAdd
button for the element you want to add. You will see two or more edit fields to be completed.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 268 of 642

Note: Once the fields have been edited, youmust click theUpdate icon on the right.

For addresses, click theAddresses tab. On this tab, add, edit, or delete existing address
structures by clicking through the appropriate buttons.

When you add or edit an address, fill in the desired fields, add the data to your list, and click
Updatewhen finished.

4. Once you have updated all of the contact's information, click Save changes at the bottom of the
Edit contact page. You will see the name and use type of your new contact entry in the contacts
list.

Adding a Discovery URL

To add a Discovery URL:

1. On the Edit business page click on theAdd discovery URL button at the bottom of the
Discovery URLs tab.

2. Complete theDiscovery URL andUse Type edit fields with the relevant data.

3. When the fields are complete, click Update on the right to add this information to the list.

4. Click Save changes.

Adding a Category

With categories you canmake your business more visible to searches by associating it with a number
of accepted taxonomies. These taxonomic categories identify a business and its services by location,
product or service line, and industry.

HPE SOA Registry Foundation comes with keys for three basic checked taxonomies by default: These
are the ISO 3166 geographical classification system and the NAICS and SIC industry and product
classifications.

A key is also provided for Microsoft GeoWeb 2000, but as this is an unchecked taxonomy, key names
and key values must be entered by hand.

To add a category to your list:

1. On theCategories tab of the Edit business page, click theEdit button. If there are already
categories associated with this business entity, a list of them will be returned along with theAdd
category button. Otherwise, only the button will be displayed.

2. Click theAdd category button beneath theCategories tab. This returns a list of available
taxonomies from which you can choose categories to add to the list.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 269 of 642

3. Click on an available taxonomy. Checked taxonomies will expand to a tree of categories valid for
that model. You can type a known key name in the search box for faster retrieval. Note that larger
branches are limited to ten items per page.

4. You can also search for the name of the taxonomy through the search box at the top of the
taxonomy form. Use the starts with, contains, and exact match radio buttons as necessary.
Like standard wild cards, these buttons search for the entered string as specified. For example,
The pattern Cana, when used with the starts with button and a geographic taxonomy, returns the
set {"Canada" "Canarias"}. The result set is limited to amaximum of 250 items.

Note: If you provide too broad a search pattern, the resulting list will be truncated to 100
items.

With unchecked taxonomies (for example, Microsoft's GeoWeb taxonomy), it is possible to supply
the key name and value through edit fields.

5. To addmultiple categories, for example Albania and Armenia from the uddi-org:iso-
ch:3166:1999 taxonomy, check the boxes to the right of those key names, and click Add
category. If you would like to add categories from different pages, youmust click Add category
on the first page before continuing to the next page containing your selections. For example, to
choose Albania and Kazakhstan:

a. Select Albania and click Add category.

b. Click Add category on the Find service page.

c. Click the link for page 8 on the expanded Find service page.

d. Check the box next to Kazakhstan and click Add category.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 270 of 642

Add Category

6. When you find the taxonomic classification you want, click the Add category button for checked
taxonomies. For unchecked taxonomies, click Add category once the edit fields have been
completed.

Adding an Identifier

You can alsomake your organizationmore visible by supplying any of your public or private identifiers,
such as D-U-N-S, Tax, or Geographical Locator numbers to the registry. UDDI identifier structures are
composed of the following elements:

tModel Key — Identifies a namespace or service in which the key name and key value have
significance.

keyName — The name or description of the key being used.

keyValue — The value of the key.

To add an identifier to your list:

1. On the Edit business page, switch to the Identifiers tab.

2. Click theAdd identifier button at the bottom of the Identifiers list.

3. Choose the identifier type from the displayed list of available taxonomical tmodels. This returns a
field in which you enter key names and key values.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 271 of 642

4. When you have filled in the fields, click theAdd identifier button to the right to add the new
identifier to the list.

Note: If you use a tModel for a checked identifier, the key valuemust be of a recognizable
form and value. For example, if you want to use a uddi-org:isReplacedBy key, youmust
supply the valid business entity UUID key in the keyValue field. Failure to do so will generate
an error when you attempt to submit your business data to the database.

Publishing a Service
To publish a service:

1. Select thePublishmenu tab and click thePublish link.

2. In the left panel, click on the business to which you want to add a service. The right display area
will show business details.

3. Select theServices tab, and click theAdd Service button.

Alternately, right-click on the business node to which you want to add a service, and select Add
Service from the context menu.

Add Service

4. Enter the service name and description and click Add service.

The service is added to the left panel tree.

Publishing a Binding Template
Once you have declared and defined a business service, youmust establish how current and potential
business partners can access that service, a technical description of the service including where it can
be found. This is accomplished through bindingTemplates.

A bindingTemplate represents aWeb service instance where you obtain (among other things) the
access point of an instance of the parent business service. Every bindingTemplate has a unique

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 272 of 642

bindingKey for identification. (An access point contains contact information such as a URL, email
address, or telephone number used to locate the service.)

The AccessPoint in a bindingTemplate structure can contain a URL of the endpoint of the web service.
If there is more than one businessEntity that provides the same business service we recommend you
reuse this information in a bindingTemplate. Create a bindingTemplate on the businessService that
holds technical information. Other businessServices should contain bindingTemplates with
accessPoints containing the key of the first technical bindingTemplate. These accessPoints should
also contain useTypes with the value hostingRedirector.

Note: Alternatively, reference to another bindingTemplate can be stored in a hostingRedirector
structure instead of in an accessPoint. However the hostingRedirector structure (not the
hostingRedirector value of useType) is a relic of UDDI v2 and is deprecated in UDDI v3.

To add a bindingTemplate:

1. Select thePublishmenu tab and click thePublish link.

2. In the left panel, click on the service to which you want to add a binding. The right display area will
show service details. Select theBindings tab and click theAdd Binding button.

Alternatively, right-click the service node to which you want to add a binding, and select Add
Binding from the context menu.

Add Binding

Publishing a tModel
The tModel is a structure that takes the form of keyedmetadata (data about data). In a general sense,
the purpose of a tModel within HPE SOA Registry Foundation is to provide a reference system based
on abstraction. Among the roles that a tModel plays in UDDI is the ability to provide and to describe
compliance with a specification or concept, to a taxonomy, for example.

To publish a tModel:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 273 of 642

1. Select thePublishmenu tab and click thePublish link.

2. On the right Publish panel, click theAdd tModel button.

Alternatively, right-click on the tModels node in the left panel and select Add tModel from the
context menu.

Add tModel

3. Enter the tModel name and description, and click theAdd tModel button.

Note: If you delete an unused tModel, the tModel will be deleted from the database. The HPE
SOA Registry Foundation Administrator can change this behavior that tModels will be only marked
as deleted. See "Node" on page 341 in the Administrator's Guide.

Adding a Category

In this section you will see how to assign demo:location:floor taxonomy to the numeric ordering as
shown in the “Example of Numeric Categorization” in "Types of key Values" in "Taxonomy: Principles,
Creation and Validation" on page 224.

1. Log on as demo_john user. (password is the same as the username).

2. Click thePublish tab in themainmenu. Click on the tModel demo:location:floor item in the
tree in the left part of the page. Edit tModel 'demo:location:floor' page will appear.

3. Click Add category button. A taxonomy list will appear.

4. Select the taxonomy systinet-com:isOrderedBy, enterKey
valueuddi:systinet.com:comparator:numeric.

5. Click the buttonAdd category , thenSave changes button.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 274 of 642

Publishing Assertions
You can assert relationships that businesses under your HPE SOA Registry Foundation custody have
with others under your custody or with those under the custody of another user registered at the same
operator node. The success of the latter assertion depends upon the approval of the user to whom the
assertion is made.

Whenmaking an assertion youmust supply:

l The identity of the business from which the assertion is beingmade

l The identity of the business to which it is making a claim. HPE SOA Registry Foundation specifies
these business identities through their UUID keys.

l A reference explaining the nature of the relationship. References about the nature of the asserted

l relationship are derived from your own tModels or from the uddi-org:relationships tModel.

Adding an Assertion

To add a new assertion:

1. On the Edit business panel, switch to the Relationships tab. This displays the Relationship
assertions page. If you have already set assertions you will see a list of those previously
published. If not, you will see themessage "No assertions found."

2. Click the Add new assertion button to display the Add assertion page.

Add Assertion

3. If the business for which you aremaking an assertion will assume the "To" role, click theChange
Direction button.

4. Find the business with which you want to assert a relationship in the sameway you would on the
inquiry side of UDDI. The difference is that, along with the business name, you will see the
business descriptions in the retrieved record set and aSelect business key icon next to each

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 275 of 642

record.

When you locate the target business among the records, click its Select business key icon. This
returns you to the Add assertion page with the UUID key of the selected business as the
previously missing role.

Note: A Keyed Reference will be required for the assertion to be valid. Click the Set button on
the right of the Keyed Reference line. The Set keyed reference page displays.

5. Locate a tModel for your reference in the sameway you would on the inquiry side of UDDI. The
difference is that there are edit fields for Key Names and Key Values next to the tModel names
and a Set button at the end of each row. Pertinent tModels include uddi-orgs:relationship
and those you have published yourself.

a. Enter the key value and the key name or description. For uddi-orgs:relationship, the key
valuemay be parent-child, peer-peer, or identity.

b. Click the Set value. This returns you to the Add assertion page. The tModel, key name, and
key value added to the Keyed Reference record are displayed there.

6. Click theAdd assertion button.

7. If the assertion is made to a business of which you have custody, the assertion will be completed
automatically. If it is made to a business in the custody of another user, that user will need to
review the assertion and complete it through his or her own account. This process is described
below.

Accepting an Assertion

Assume that you have been notified by a parent company, a subsidiary, a peer, or a cooperative
member that they have asserted a relationship with your company. Now youmust review that assertion
and, if you are in agreement, complete it.

To accept the assertion:

1. On the Edit business page, switch to theRelationships tab.

2. View the incomplete assertions made toward your business in theRequested assertions list.
Each assertion will have aComplete assertion button next to its status message.

3. Click theComplete assertion button to accept the assertion.

4. If you wish to refuse, leave the assertion incomplete by omitting step 3. Return to the Publisher
assertions page by clicking the link at the top of the page. Contact the business making the
assertion to resolve the details of your relationship. Incomplete assertions will not appear when
users query for related businesses.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 276 of 642

Publishing Subscriptions
Subscriptions give you the ability to register interest in receiving information about changes made to
HPE SOA Registry Foundation. It allows themonitoring of new, changed, and deleted UDDI
structures. Each subscription has a filter that limits the subscription scope to a subset of registry
entities.

You can establish a subscription based on a specific query or set of entities in which you are interested.
Query-based subscriptions notify the user if the result set changes within a given time span; entity-
based subscriptions notify the user if the contents of the specified entities change.

Subscriptions enable:

l notification of the registration of new businesses or services

l monitoring of existing businesses or services

l acquiring registry information for use in a private registry

l acquiring data for use in amarketplace or portal registry

This filter should be one of the following ordinary UDDI inquiry calls:

l find_business

l find_relatedBusinesses

l find_service

l find_binding

l find_tModel

l get_businessDetail

l get_serviceDetail

l get_bindingDetail

l get_tModelDetail

Add Subscription

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 277 of 642

Adding Subscriptions

To add new subscription:

1. Click on the Subscriptions link under the Publishmenu tab to display the Subscriptions page.

2. Click the Add subscription button to display the Add subscriptions page shown in the “Add
Subscription” figure above.

3. Click Change filter to specify a filter for your subscriptions. This returns the Subscription filter type
page.

4. Select the filter type from the drop down list labeled Subscription filter type.

5. Click Select filter.

6. Set the filter properties in the sameway you would for ordinary search calls.

7. Click the Preview results button to check filter results.

8. Click Save filter to return to the page with the filter settings shown in the “Add Subscription” figure
above.

9. Fill in the other subscription fields if needed. These are described below.

Notification Listener Types

Add Subscription - Email Notification Listener Type

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 278 of 642

l Subscription filter - Specifies on which UDDI structure change the notification will occur.

l Notification listener type - Select notification listener type

o Email address

o Service endpoint

o Binding template

l Email address - Email address to which notifications will be sent

l XSLT transformer tModel - tModel that references XSLT

l Business service and Business entity - Business service and business entity to which the
bindingTemplate representing the notification listener service will be saved. These drop down lists
lists only business entities and business services under which you have the permission to create
the binding template.

l Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

l Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

l Max entities - Contains themaximum number of entities in a notification returned to a subscription
listener.

l Brief - Controls the level of detail returned to a subscription listener.

Add Subscription - Service Endpoint Listener Type

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 279 of 642

l Subscription filter - Specifies on which UDDI structure change the notification will occur.

l Notification listener type - Select notification listener type here.

o Email address

o Service endpoint

o Binding template

l Notification listener endpoint - URL to which the notification will be sent

l Business service and Business entity - business service and business entity to which the
bindingTemplate representing the notification listener service will be saved. These drop down lists
lists only business entities and business services under which you have the permission to create
the binding template.

l Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

l Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

l Max entities - Contains themaximum number of entities in a notification returned to a subscription
listener.

l Brief - Controls the level of detail returned to a subscription listener.

Add Subscription - Binding Template Listener Type

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 280 of 642

l Subscription filter - Specifies on which UDDI structure change the notification will occur.

l Notification listener type - Select notification listener type here.

o Email address

o Service endpoint

o Binding template

l Binding Template - The bindingTemplate representing the notification listener service.

l Notification interval - Specifies how often change notifications are to be provided to a subscriber.
Required only for asynchronous notifications.

l Expires after - Specifies the period of time for which the administrator would like the subscription to
exist.

l Max entities - Contains themaximum number of entities in a notification returned to a subscription
listener.

l Brief - Controls the level of detail returned to a subscription listener.

Editing Subscriptions

To edit an existing subscription:

1. Click on theSubscriptions link underPublishmenu tab to display the Subscriptions page.

2. Click theEdit button beside the subscription you want to edit. This returns the Edit subscription
page. Here you can edit all subscription arguments except Subscription filter.

Deleting Subscriptions

To delete subscription:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 281 of 642

1. Click on theSubscriptions link underPublishmenu tab to display the Subscriptions page.

2. Check the boxes beside subscriptions you want to delete.

3. Click theDelete selected button. This returns a confirmation page.

4. The confirmation page contains a list of subscriptions marked for deletion. If it is correct, press the
Yes button to delete subscriptions permanently.

Publish Custody Transfer
Custody transfer is a service used to transfer ownership of a selected structure (business entity,
business service, binding template or tModel) from one user to another. It consists of two steps:
selecting structure(s) to transfer and generating a custody transfer token. When the potential new
owner receives the transfer token (by a secure transport such as encrypted email), that user may
accept or reject the custody transfer.

Note: This tokenmust be kept secret, as it is sufficient information to transfer custody of the
structure to any user!

If you decide to cancel the request (for example the transfer token has been compromised), use the
Discard transfer token button.

Requesting Custody Transfer

To request custody transfer:

1. Click on theCustody link underPublishmenu tab to display the Custody transfer page.

2. Click theRequest transfer token link. This returns a list of UDDI data structures you own.

3. Check the box next to the UDDI structure(s) you wish to transfer, and click Request transfer
token.

4. The next page will generate the transfer token. Copy the text of the transfer token to a file and
send this file to the user who shall become the new owner of selected structures. Keep the token
secret, as anyone who knows it can use it to transfer custody of that structure. Unencrypted
email, for example, is not good data transfer choice.

Accepting Custody Transfer

To accept custody transfer:

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 282 of 642

1. Click on theCustody link underPublishmenu tab to display the Custody transfer page.

2. Click on the Transfer custody link.

3. Open the file with the transfer token, copy its contents to clipboard and paste it to the edit area on
the Transfer structures page.

4. Click Transfer button.

PublishingWSDLDocuments
HPE SOA Registry FoundationWSDL to UDDI (WSDL2UDDI) mapping is compliant with OASIS's
technical note UsingWSDL in a UDDI registry Version 2.0 [http://www.oasis-
open.org/committees/uddispec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm]. It enables the
automatic publishing of WSDL documents to UDDI, enables precise and flexible UDDI queries based
on specific WSDL artifacts andmetadata, and provides a consistent mapping for UDDI v2.

Publish WSDL

To publish aWSDL document:

1. Click on theWSDL link under thePublishmainmenu tab.

2. The following page will appear.

Publish WSDL

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 283 of 642

http://www.oasis-open.org/committees/uddispec/doc/tn/uddi-spec-tc-tn-wsdl-v200-20031104.htm

3. Enter the Business key of the business where services fromWSDL document will be published.
You can find a business key by clicking on the Find business key button.

4. Enter aWSDL location. You can try theWSDL document from HPE SOA Registry Foundation
demos from REGISTRY_HOME/demos/conf/employeeList.wsdl.

5. Leave theAdvancedmode check box unchecked, then click Publish button.

Note: Publishing aWSDL document by using basic authentication, HPE SOA Registry
Foundationmust be started with the below parameters from startup command-line:

-Dsystinet.wsdlpublishing_http.username=admin

-Dsystinet.wsdlpublishing_http.password=changeit

TheWSDL document will be published to HPE SOA Registry Foundation. You can review how WSDL
artifacts of the document have beenmapped to the HPE SOA Registry Foundation as shown in the
following figure.

Publish WSDL Summary

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 284 of 642

TheBusiness Entity button in the summary screen enables you to copy permissions from the
business entity for which theWSDLwas published to all other entities involved in the publishing
operation. If the entities already contain permissions, the permission lists aremerged.

When a business service is reused during the publishing step, it may also contain permissions to
distribute to associated binding templates and tModels.

The Business Service button, shown only when a business service is reused, enables you to copy
permissions from a business service to associated binding templates and tModels involved in the
publishing operation. If the entities already contain permissions, the permission lists aremerged.

Publishing WSDL Documents (Advanced Mode)

The advanced publishingmode allows you to specify certain details of how theWSDL document will be
mapped to the UDDI registry. To publish in this mode, follow the steps from the previous section, and
toggle theAdvanced mode check box on. Once you click on the buttonPublish the following
AdvancedMode Publish page will appear.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 285 of 642

Publish WSDL (Advanced Mode)

In the left tree panel, you can see how artifacts of theWSDL document will be published. Click on a
tree branch to edit how WSDL artifacts will bemapped to HPE SOA Registry Foundation. Explanatory
instructions in the right panel describe themapping options. Click Preview to see how each part of the
WSDL document will bemapped to the registry. From the Preview page, you can go back to adjust the
WSDLmapping.

The wizard's default selection in the above figure is based on the following rules:

l If a possible mapping of aWSDL artifact already exists in the registry, and the user owns this UDDI
structure, the wizard will suggest rewriting that mapping in the registry.

l If a possible mapping of aWSDL artifact already exists in the registry, and the user does not own
this UDDI structure, the wizard will suggest reusing that UDDI entity.

l If nomapping of theWSDL artifact exists in the registry, the wizard will suggest creating a new
UDDI entity to represent themapping.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 286 of 642

HPE SOA Registry Foundation applies these rules automatically when you publish aWSDL document
without the Advancedmode option.

Note: Publishing of WSDL operations andWSDLmessages is not implemented in this HPE SOA
Registry Foundation release.

Unpublish WSDL

To unpublish aWSDL definition:

1. Search for theWSDL document in the registry.

2. In the result view, click on a business service.

3. The page with business service details will appear, click theUnpublish button at the page.

4. TheUnpublish WSDL documentwizard will appear.

Publish XSD
HPE SOA Registry Foundation XSD to UDDI (XSD2UDDI) mapping enables the automatic publishing
of XML schema documents to UDDI, enabling precise and flexible UDDI queries based on specific
XML schema artifacts andmetadata.

If you want to unpublish an XML schema document, use the Find XSD button and click the Unpublish
button in the search result page.

Publishing an XML Schema

To publish an XMLSchema document:

1. Click on theXSD link under thePublishmainmenu tab.

2. The following page will appear.

Publish XSD

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 287 of 642

3. Enter anXML Schema location. To demonstrate, use the file REGISTRY_
HOME/demos/conf/employees.xsd from the HPE SOA Registry Foundation demos.

4. Leave theAdvanced mode check box unchecked, then click Publish.

5. The XMLSchema document will be published to the registry. You can review mappings of the
XMLSchema document itself and its elements as shown in the following figure.

Publish XSD Summary

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 288 of 642

Publishing an XML Schema (Advanced Mode)

The advanced publishingmode allows you to specify certain details of how the XMLSchema document
will bemapped to the UDDI registry. To publish in this mode:

1. Follow the steps from the previous section, but check theAdvanced mode box.

2. Click Publish. This returns the following AdvancedMode Publish page.

Publish XSD - Advanced

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 289 of 642

3. In the left tree panel, you can see how the XMLSchema and its possible XML Schema imports will
be published. Click on an XMLSchemamodel node to edit how the parts of the XMLSchemawill
bemapped to the HPE SOA Registry Foundation. The explanatory instructions in the right panel
describe themapping options.

4. Click Preview to see how the XMLSchema document will bemapped to HPE SOA Registry
Foundation. From the Preview page, you can go back to edit the XMLSchemamapping.

Unpublish an XML Schema

The Unpublish XML operation allows you to delete the XMLSchemamapping from HPE SOA Registry
Foundation. To unpublish an XMLSchema document, youmust search for the XMLSchema document
first.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 290 of 642

Signer Tool
One of themost important advantages of UDDI version 3 is its support for digital signatures. Without
signatures you cannot verify whether the publisher of a business entity is really who that publisher
claims to be. But if the publisher has signed the UDDI structure, anyone can verify that the information
is unmodified by any means (including by UDDI registry operators) and to confirm the publisher's
identity.

The HPE SOA Registry Foundation Signer tool simplifies signaturemanipulation. You can find this
tool's script in the bin directory of your HPE SOA Registry Foundation installation. The Signer is a
graphical application that can be used to add, remove, and verify the signatures of UDDI structures you
have published.

Note: If you are using IBM Java, youmust install Bouncy Castle security provider. See "System
Requirements" on page 37 in the Installation Guide.

Starting the Signer

1. To start the Signer tool, first ensure that HPE SOA Registry Foundation is running, then execute
the following script from the bin subdirectory of your HPE SOA Registry Foundation installation:

Windows: signer.bat

UNIX: ./signer.sh

2. When the tool starts, youmust first authenticate yourself against the selected UDDI version 3
registry. Simply provide your user name and password. If your registry is not running on a local
machine, youmust configure its endpoints. This can be accomplished via theConfigure UDDI
button.

Login Dialog

3. On the returned screen, set the endpoints of the Security, Inquiry, and PublishingWeb services.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 291 of 642

For help, ask the administrator of your registry.

Configure Dialog

4. Once you have entered your user name and password, click the Login button. The Signer tool will
attempt to authorize you at the selected registry. If authorization fails, you can correct your login
information. Once it succeeds, the Login dialog disappears and the Signer tool asks HPE SOA
Registry Foundation for your registered information (businessEntities and tModels that you have
published).

Main Screen
In the Signer tool's interface, the left part of themain screen consists of a tree containing all your
businessEntities and tModels. If you wish to add or remove a digital signature, select the structure to
sign from this tree. The Signer will fetch it from the registry. When the structure is fetched, its XML
representation is displayed in the right panel. TheSign button is unblocked. If the structure has been
already signed, theRemove signatures button is unblocked as well.

Signature Tool - Main Screen

The status bar at the bottom of the application informs the user of current action progress and results.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 292 of 642

Sign
To sign a UDDI structure, youmust set up the Java keystore. Use JDK tool keytool to generate the
keystore. Please, see your JDK documentation for more information how to use keytool. The Signer
tool has been tested with keystores in JKS and PKCS12 formats.

Note: To generate the certificate issue the following command

keytool -genkey -keyalg RSA -storetype JKS -alias demo_john -keystore test_certificate.jks

Example of the dialog:

Enter keystore password: changeit
What is your first and last name?

[Unknown]: John.Johnson
What is the name of your organizational unit?

[Unknown]: UDDI
What is the name of your organization?

[Unknown]: Myorg
What is the name of your City or Locality?

[Unknown]: San Diego
What is the name of your State or Province?

[Unknown]: California
What is the two-letter country code for this unit?

[Unknown]: CA
Is CN=John Johnson, OU=UDDI, O=Myorg, L=San Diego, ST=California, C=CA correct?

[no]: yes
Enter key password for <demo_john>

(RETURN if same as keystore password):

To sign a UDDI structure, youmust set the Java keystore file, alias, and password as follows:

1. Click on theSign button. This returns the Select identity dialog.

2. In the box labeledSelectidentity, type the path to the file with your Java keystore.

3. In the box labeledAlias, type the alias located in the identity.

4. In the box labeledPassword, type the password used to encrypt the private key.

Note: If you enter the wrong value for the alias or the password, the tool will not be able to
open the identity.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 293 of 642

5. If the keystore is in the Sun JKS format, you do not have to click onChoose format button. You
can leave default values there. If the keystore is not in the Sun JKS format, you can specify the
format by clicking theChoose format button. In the returned dialog window, set the keystore
format and its provider. For example, to use the PKCS12 format, set the format to PKCS12 and
the provider to SunJSSE.

KekyStore Format Dialog

6. When the signing operation succeeds, the selected UDDI structure will have a digital signature
and its XML representation will be updated. For security reasons, the signing process takes place
on your computer so as not to risk compromise to your private key.

7. Finally thePublish changes andRemove signatures buttons are enabled.

Validation
TheValidate button is used to perform validity check of UDDI structures that contain XML digital
signatures. The result of this operation is displayed in the status bar.

Remove Signatures
TheRemove signatures button is used to remove all digital signatures from the selected UDDI
structure. When this operation is complete, the XML representation of the UDDI structure is updated. If
thePublish changes button had been disabled, it is enabled.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 294 of 642

Publish Changes
If you have signed the selected UDDI structure or removed digital signatures from it, you can select the
Publish changes button to publish the changes to the registry. Its invocation uses standard UDDI
publishingmethods (save_tModel, etc.) to update this UDDI structure on the registry. The private key
is not used during this operation.

Signer Configuration
The Signer tool automatically remembers the actual configuration such as registry endpoints or
keystore location and format. The config file is saved in the user's home directory with the name
signer.conf. You can change the location (and filename) by using the signer script's -c option. If you
do not want this feature, use -n. The list of valid options can be obtained with -h option.

Product Documentation
Chapter 3: User's Guide

HPE SOA Registry Foundation (10.04) Page 295 of 642

Chapter 4: Administrator's Guide
The HPE SOA Registry Foundation Administrator's Guide contains information necessary for the
management of HPE SOA Registry Foundation. It is aimed at the user responsible for configuring the
registry andmanaging permissions, and replication. This guide is divided into the following sections:

"Registry Management" on the next page . Registry management includes alsomanagement of user
accounts and permissions and taxonomy management.

"Registry Configuration" on page 334 . How to configure the Registry Console.

"Registry Console Configuration" on page 345. This section covers setting the URLs, directories,
contexts, timeouts and limits associated with the HPE SOA Registry Foundation interface.

"Permissions: Principles" on page 349. This section discusses themechanism HPE SOA Registry
Foundation provides for themanagement of users' rights; permissions allow the administrator to
manage or make available different parts of the registry to different users.

"PStore Tool" on page 361. Describes a tool for management of protected stores for certificates and
security identities.

Note: Make sure HPE SOA Registry Foundation is running before attempting to use its consoles
for configuration. To start it change to the bin subdirectory of REGISTRY_HOME and run:

Windows: serverstart.bat

UNIX: ./serverstart.sh

The Registry Console can be found at http://<hostname>:<port>/uddi/web.

Hostname and port are defined when HPE SOA Registry Foundation is installed. The default port is
8080.

Log on as administrator. Initially, the administrator's user name is set to admin and the password to
changeit.

Note: We strongly advise you to change the password for user admin once you have logged in.

Be very careful when editing the Operational business entity, or deleting of the taxonomy
uddi-org:types. Modification of these structures can lead to registry instability.

HPE SOA Registry Foundation (10.04) Page 296 of 642

Registry Management
"Accessing Registry Management" below

"Account Management" on page 299

"GroupManagement" on page 305

"Permissions" on page 307

"Taxonomy Management" on page 310

"ReplicationManagement" on page 316

"Replacing UDDI Keys" on page 323

"Registry Statistics" on page 324

"Management of Configuration - User Interface" on page 327

Accessing Registry Management
Registry Management is a set of tasks that the administrator can address through the Registry
Console. These tasks are listed in the “Registry Management” figure below.

To access the Registry Management console:

1. Log on as administrator or as a user with privilege to display Manage tab as described in the Rules
to Display theManage Tab note below.

2. Click theManagemainmenu tab.

3. Select theRegistry management link underManage tab. This returns the “Registry
Management” screen shown below.

Note: Rules to Display the Manage Tab

TheManage tab is available if at least one of the following conditions is satisfied:

o You have ApiManagerPermission to all methods (*) of one or more APIs
(Account,Group,Permission,Taxonomy,Statistics,Administration Utils).

o You have ConfiguratorManagerPermission to all operations (*) and all configurations (*).

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 297 of 642

o You have ApiManagerPermission to all methods (*) of ReplicationApi and
ConfiguratorManagerPermission to all operations (*) for replication configuration.

o You have ConfiguratorManagerPermission to all operations (*) for web configuration.

Registry Management

l Account Management - Create, edit, and delete user accounts.

l GroupManagement - Create, edit, and delete accounts groups.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 298 of 642

l Permissions - Set up permissions using the Registry Console

l Taxonomy Management - Upload, download and removing taxonomies via the Registry Console.

l ReplicationManagement - Set up a subscription-based replicationmechanism under which a slave
registry receives notification from amaster registry regarding updates and changes. (For more
information on replication, see "ReplicationManagement" on page 316.)

l Replace UDDI keys - Replace the UDDI keys of businessEntities, businessServices, tModels,
and bindingTemplates.

l Replace URLs - Replace URL prefixes in the following entities:

o tModel - OverviewDoc URL

o tModelInstanceInfo - overviewDoc URL and DiscoveryURL

o binding template - accessPoint URL

l Delete deprecated tModels - This option lets the administrator permanently delete deprecated
tModels. A tModel is considered deprecated when it is marked as deleted by its owner. By default,
tModels are deleted permanently by users. See "Node" on page 341for instructions on how to
change this behavior.

l Transform keyed references - This operation is necessary when the type of taxonomy keyValues
or the implementation of the taxonomy transformation service have been changed. For more
information see, "Taxonomy: Principles, Creation and Validation" on page 224 in the User's Guide.

l Statistics - This option displays two statistics tabs:

o The first tab displays information about the number of accesses made to the various UDDI
interfacemethods. One column displays the total request counts and a count of calls that fail
and therefore return exceptions.

o The second one contains counts of themain data structures (businessEntities,
businessServices, tModels, bindingTemplates) in the database.

Account Management
The HPE SOA Registry Foundation administrator manages user accounts using the Registry Console.
Use this console whenever you want to disable an account, change limits for a particular account, or
take care of general housekeeping.

To access the Account management console:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 299 of 642

1. Log on as administrator.

2. Click theRegistry management link under theManage tab.

3. Click theAccount management button.

This displays a list of all accounts, as shown in Figure “Find Account”.You can search accounts
using the Find users button.

Find Account

Create Account
To create an account:

1. On the Find Account page, click Create Account button. This returns the Create account page
shown in Figure “Create Account”.

Create Account

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 300 of 642

2. Provide the information shown in . Fields marked with a red asterisk (*) are required.

New Account - All Fields

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 301 of 642

Field descriptions (self-explanatory fields are omitted):

Default Language Code — Set the default language to be used during publishing when the
language code associated with a particular field is not specified.

Use the following profile— Profile preference - deprecated and unused now.

Blocked — Here you can enable/disable a user account. This is the account flag which
prevents/permits a user from successfully logging onto the server.

Limits — These fields (Assertions limit, Bindings limit, Businesses limit, Services limit,
Subscriptions limit, and TModels limit) indicate the number of these items allowed by the user.
Changing default user limits is discussed in the Accounts section of Registry Configuration.

3. When finished, click Create account. This returns the Find account page. Note that the list of
accounts now includes the account you have just created.

Account Limits

Each user account has the following limits for data saved under the account:

l Businesses limit - maximum number of businessEntities the account can hold. (1 by default).

l Services limit - maximum number of businessServices in the same businessEntity (4 by default).

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 302 of 642

l bindings limit - maximum number of bindingTemplates in the same businessService (2 by default).

l tModels limit - maximum number of tModels the account can hold. (100 by default).

l Assertions limit - maximum number of publisherAssertions the account can hold (10 by default).

l Subscriptions limit - maximum number of subscriptions an account can hold. (5 by default)

Common users can not change these limits. Only the administrator can change limits for a user or
change default limits for newly created users.

The number of businessServices/bindingTemplates are checked against the limit on the user account
owning the parent structure, not against the limit of the user processing the save_XXX call. For
example, a user U1 owns a businessEntity BE_U1 and provides create ACL right to the user U2. The
user U2 saves a new businessService under the BE_U1, total count of businessServices under the
BE_U1 (nomatter who is the owner) is checked against the service limit of the BE account.

Limit checking is skipped if a user who performs the operation has an ApiManagerPermission with the
appropriate permission name and action:

l API (permission name)

o org.systinet.uddi.client.v3.UDDI_Publication_PortType for skipping limit tests on
Publishing V3 API.

o org.systinet.uddi.client.v2.Publish for skipping limit tests on Publishing V2 API.

o org.systinet.uddi.client.v1.PublishSoap for skipping limit tests on Publishing V1 API.

o org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType for skipping
limit tests on Subscription API.

l operation (action)

o save_business for skipping businesses limit test on Publishing V1/V2/V3 API

o save_service for skipping services limit test on Publishing V1/V2/V3 API

o save_binding for skipping bindings limit test on Publishing V1/V2/V3 API

o save_tModel for skipping tModels limit test on Publishing V1/V2/V3 API

o add_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

o set_publisherAssertions for skipping assertions limit test on Publishing V2/V3 API

o save_subscription for skipping subscriptions limit test on Subscription API

For more information see "Permissions: Principles" on page 349. By default, only the administrator has
these permissions, and therefore the administrator has an unlimited account.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 303 of 642

Edit Account
To edit an account:

1. On the Find account page shown in the “Find Account” figure, click theEdit Account icon ()

associated with the account you want to edit.

This returns the Edit account page.

2. On the Edit account page, provide or change the information in the various fields. These are the
same as the fields shown in the “New Account - All Fields” figure.

Field descriptions (self-explanatory fields are omitted):

Default Language Code — Set the default language to be used during publishing when the
language code associated with a particular field is not specified.

Blocked — Here you can enable/disable a user account. This is the account flag which
prevents/permits a user from successfully logging onto the server.

Limits — These fields (Assertions limit, Bindings limit, Businesses limit, Services limit,
Subscriptions limit, and TModels limit) indicate the number of these items allowed by the user.
These are described in detail in the Accounts section of Registry Configuration.

3. When finished, click the button labeledSave Changes. This returns the Find account page.

Delete Account
To delete an account:

1. On the Find account page, check the box next to the Login name of the account you want to
delete.

2. Click theDelete Selected button.

3. If you are certain you want to delete the account, click Yeswhen prompted. Note that on
publication registries and standard installations of HPE SOA Registry Foundation, all published
information associated with the user will be lost.

Note: If you are using LDAP for storing users, the user account will not be deleted from the
LDAP store, because LDAP stores are treated as read-only. The delete account operation
will delete an account only from the registry database.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 304 of 642

Group Management
User groups simplify management of access rights to each UDDI data structure. You can use groups
to group users with similar rights.

The administrator can:

l Create andmanage user groups

l Manage groupmembership

View User Groups

Create and Manage Groups
To create a new group:

1. Click on theManagemenu tab. On theManage tab, select theRegistry management link, and
then click theGroup management button. This returns the GroupManagement page.

2. To display all groups on the registry, click Filter. This returns aGroup list like the one shown in the
“View User Groups” figure above.

3. Click theAdd Group button. This returns a blank Add group pagemuch like the one shown in the
“AddGroup Page” figure below.

Add Group Page

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 305 of 642

4. In the edit box labeledGroup name, type the name of your group. In the edit box labeledGroup
owner, type the owner of the group. The default owner is Admin. These two fields are required.

5. Use the radio buttons labeled public and private to set group visibility.

Both public and private groups are visible to all users in the registry, meaning that all users are able
to see which groups exist. Public and private groups differ in that members of public groups are
visible to all users of the registry whereas members of private groups are visible only to the owner
of the group.

6. Optionally, enter a description of the group in the box labeledDescription.

7. Click theSave group properties button. This returns theUsers list andGroup members
sections shown in the “View User Groups” figure.

Edit Group Membership

8. In theUsers list section, click Filter to display a list of all of the registry's users.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 306 of 642

Use the drop down list in this section to sort users by Login name or Full name.

Use the text box to further filter users. You can use% as wildcard in this field.

9. 9.Check the boxes next to all members you wish to include, and click the right-pointing arrow (
) to move them to theGroup members table.

Groupmembers are updated in the database once you click the arrow buttons.

Manage Group Membership
To add or removemembers from a group:

1. Click on theManagemainmenu tab.

2. Click on theRegistry management link. This returns themain Registry Management page.

Click theGroup management button. This returns the Group list shown in the “View User
Groups” figure above.

3. Enter your search criteria, then click the Filter button. Click Filterwithout search criteria to return
a list of all groups.

4. Click theEdit button () in the row with the group you want to manage. This returns the Edit

Group page. Specify search criterion for user accounts, then click the Filter button.

5. Use the arrow buttons (and) to add and remove users as shown in the “Edit Group

Membership” figure above.

Permissions
This chapter describes how you can set permissions using the Registry Console. Before you start to
work with permissions, we recommend reading "Permissions: Principles" on page 349 to become
familiar with permissions principles.

HPE SOA Registry Foundation uses the same interface for managing both user permissions and group
permissions. In this section we discuss user permissions, but group permissions are handled the same
way.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 307 of 642

Accessing Permission Management
To access permissionmanagement:

1. Log on as Administrator or as a user who has permission to set permissions, as described in
"Permissions Definitions" on page 349.

2. Click theManagemainmenu tab. On theManage tab, select theRegistry management link,
and then click thePermissions button.

3. On the initial Select Principal screen, click Filter, without changing the default settings, to view a
list of all users (principals).

Note: Use the drop down list in this section, labeled Filter: to sort users by Login name or
Full name.

Use the text box to further filter users by name. You can use% as wildcard in this field.

Select the radio button labeled User to manage permissions for individual users. Select the button
labeledGroup to manage group permissions.

Check the box labeledShow only users/groups with some permission to filter out principals
who have not already been granted permissions.

This returns the list of users shown in the following “Select Principal” page.

Select Principal

4. Click theEdit icon () associated with the user or group whose permissions you wish to set.

Add Permission
To add permissions:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 308 of 642

1. Access permissionmanagement as described above in “Accessing PermissionManagement”.

2. On the principal list page shown in the “Select Principal” figure above, click theEdit icon ()

associated with the group or user to whom you wish to add permissions. On the returned
Permissions page, click Add permission.

3. An Add permissions pagemuch like the one shown in the following figure will appear.

Add Permission

4. To add permissions:

a. Select the type of permission from the drop down list labeledPermission type.

b. From the drop down list labeledPermission name, select the name of the permission to add.

c. Check the box(es) next to the actions associated with the permission name in order to grant
permission to perform those actions. Check the box next to the asterisk (*) to permit all the
actions on the list.

5. Click Save Changes to save the permission.

Editing and Deleting Permissions
To edit a permission:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 309 of 642

1. On the principal list page shown in the “Select Principal” figure above, click theEdit icon ()

associated with the user whose permissions you want to edit or delete.

2. If the principal has permissions defined, a permission list like the one shown in the following figure
will appear.

Permissions List

3. Click theEdit orDelete icon () associated with the permission you want to address.

Assigning Administrator's Permission
If you want to give administrator's permissions to an existing user, youmust assign the following
permissions types to the user:

l org.systinet.uddi.security.permission.ApiManagerPermission

l org.systinet.uddi.security.permission.ApiUserPermission

l org.systinet.uddi.security.permission.ConfigurationManagerPermission

For eachPermission type set all Permission names and all actions using the asterisk (*).

Taxonomy Management
This chapter describes how administrators can build andmaintain taxonomies using the Registry
Console. Before you start to manage taxonomies, it is recommended that you read "Taxonomy:
Principles, Creation and Validation" on page 224 in the User's Guide, to become familiar with taxonomy
principles.

The following tasks are described in this chapter:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 310 of 642

l Finding taxonomies - How to locate taxonomies in HPE SOA Registry Foundation.

l Uploading a taxonomy

l Downloading a taxonomy

To view the Taxonomy management page:

1. Log on as administrator.

2. Click theManage tab under theMainmenu, and then click on theRegistry management link
under theManagemenu tab.

3. Click Taxonomy management. This returns a blank Taxonomy management page. To view a
selection of taxonomies, select a filter from the drop down list labeledShow. Possible filters are:

o Favorite taxonomies

o Enterprise taxonomies

o All taxonomies hide system

o All taxonomies including system

This returns a list of taxonomies similar to that shown in the following figure.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 311 of 642

Find Taxonomy (Enterprise Taxonomies)

Use the above page, “Find Taxonomy (Enterprise Taxonomies),” to search enterprise taxonomies. You
can classify taxonomies according to the following overlapping groups:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 312 of 642

l Enterprise taxonomies - The HPE SOA Registry Foundation administrator can define which
taxonomies will be present in the enterprise taxonomies list. TheEnterprise taxonomies button
located in the bottom part of the “Find Taxonomy (Enterprise Taxonomies)” figure allows you to
manage a list of enterprise taxonomies for all registry user accounts.

l Favorite taxonomies - All registry users can define their list of favorite taxonomies. See “Favorite
Taxonomies” in "User Profile" on page 248 in the User's Guide, for more information on how to
manage your list of favorite taxonomies.

l System taxonomies - When you edit a taxonomy you can assign whether the taxonomy is a
system taxonomy using the check box System taxonomy.

The reason for this taxonomy classification is to make taxonomy management and UDDI entity
categorization easier.

If you want to manage taxonomies which are not in the enterprise taxonomy list, select see all
taxonomies including system taxonomies from the drop down list labeledShow. The following
"Find Taxonomy" page will appear. You can search taxonomies using the following criteria: taxonomy
name, type, compatibility, and validation.

Find Taxonomy

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 313 of 642

Finding Taxonomies
To locate a taxonomy in HPE SOA Registry Foundation:

1. Log on as administrator.

2. Click theManage tab under theMainmenu, and then click on the Registry management link under
theManagemenu tab.

3. Click Taxonomy management. This returns a blank Taxonomy management page. Select a filter

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 314 of 642

from the drop down list labeled Show. Possible filters are:

a. Favorite taxonomies

b. Enterprise taxonomies

c. All taxonomies hide system

d. All taxonomies including system

This returns a list of taxonomies similar to that shown in the “Find Taxonomy (Enterprise
Taxonomies)” figure above.

4. On the returned Find taxonomy page, you can further filter the results by

a. name

b. type - Types are discussed in “Taxonomy Types” in "Taxonomy: Principles, Creation and
Validation" on page 224 in the User's Guide

c. compatibility

d. validation

5. From the list of taxonomies the fit the filter criteria, select the taxonomy you wish to view by
clicking on its name.

Uploading Taxonomies
To upload a taxonomy:

1. Log on as administrator.

2. Click Managemainmenu tab, then click on the link Registry management under theManage
menu tab.

3. A list of taxonomies like the one shown in the “Find Taxonomy” figure above will appear.

4. Click theUpload taxonomy button.

5. Choose a taxonomy file using theBrowse button.

6. Click theUpload taxonomy button.

Note: The format of data on this page is described in the “Persistence Format” in "Taxonomy"
on page 395 in the Developer's Guide.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 315 of 642

To uploadmultiple taxonomies at once you should add them into one ZIP archive and upload
this archive.

Downloading Taxonomies
There are two obvious cases in which you will want to download a taxonomy from the database:

1. If you are planning to edit the taxonomy, it is good to keep a safe copy for version control. You can
either edit the downloaded copy directly, and evenmanage it through a versioning system, or keep
the downloaded copy as the safety copy and edit the taxonomy directly through the Registry
Console and save changes directly to the database.

2. Youmay wish to replicate the taxonomy for other systems in other departments of your
organization. These departments or branches may even tailor the taxonomy for their own
purposes.

To download the taxonomy, click theDownload () icon. This returns the system Save file dialog.
The default name for the destination file is the taxonomy namewith a .xml extension appended.
Rename the file if you choose, then save the taxonomy file as you would any other.

Deleting Taxonomies
If at any point you decide that a taxonomy is no longer necessary, you can delete it by clicking the
Delete taxonomy icon () in the Find Taxonomy page.

Note: Because this procedure is irreversible you will be asked to confirm your deletion.

Replication Management
Selective One-way Replication is a subscription-based replicationmechanism under which a slave
registry retrieves update and change notifications from amaster registry. The slave registry then
applies these to its own data.

Replication is set up by a subscription defining the set of businessEntities or tModels being replicated.
The subscription filter is a find_business or find_tModel query with no special requirements.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 316 of 642

Each time replication is invoked, the slave registry retrieves a set of changed entities from all
subscriptions. These changes are then saved.

Note: Replicated data should not be changed because such changes in the slave registry will be
lost when someone changes these entities in themaster registry and the replication is
automatically processed. Note also that replicated data should be stored under an account having
administrator's privileges (admin).

Replicationmay fail or produce warningmessages. The failuremay occur for one of the following
reasons:

l Themaster registry is not accessible or the connection is broken during data replication;

l Saving/Deleting of a subscribed businessEntity on the slave registry fails.

A warning is produced when:

l The subscribed businessEntity is not accessible on themaster registry. For example because of
ACLGET denied permission;

l Referenced tModels are not accessible on themaster registry;

l Referenced tModels are saved/deleted.

Replication tries to obtain all changes to subscribed data since the last successful replication.

Replication process logs can be found in the REGISTRY_HOME/log/replicationEvents.log file. You
can edit the REGISTRY_HOME/conf/log4j.config andmake replication loggingmore detailed by
uncommenting the following statement:

log4j.category.replication_
v3.com.systinet.uddi.replication.v3.ReplicatorTask=DEBUG,replicationLog

Note: Each registry must have a uniqueOperator Name. This value is set in the SMTP
Configuration step during Registry installation. TheOperator Names for themaster registry and for
any slave registries must not be the same.

Master Registry Setup
To set up themaster registry:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 317 of 642

1. If you do not have an account on themaster registry, youmust create one. It can be a standard
account.

Note: The default subscription limit for a new user is five. The HPE SOA Registry
Foundation Administrator may increase the subscriptions limit for the user.

2. Log into themaster registry account.

3. Create a subscription for the replication with the following details:

o The subscription filter must be a find_business or find_tModel query.

o Set theNotification listener type drop down list to None.

o The brief option is recommended to reduce the amount of transferred data.

For more information, please see “Publishing Subscriptions” in "Publishing" on page 265 in the
User's Guide.

Slave Registry Setup
Note: Only the administrator of the slave registry should do this.

There are two parts to the slave registry configuration:

l Master registry information including the location of master registry endpoints for inquiry,
subscription and security APIs, and the username/password pair on themaster registry needed to
obtain notifications;

l Slave registry information including the username/password pair on the slave registry for the user
who will own the replicated data, and the notification interval.

To set up replication:

1. Log on as Administrator to the slave registry.

2. Click theManagemainmenu tab, then click on the link Registry management under theManage
menu tab.

3. Click Replication management. This returns a list of replications.

4. Click Add replication.

5. Fill in the form under theMaster tab as described in the “Add ReplicationMaster” figure below.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 318 of 642

6. Fill in the form under theSlave tab as described in the “Add Replication Slave” figure below..

7. Specify permissions for replicated data under thePermissions tab as shown in the “Add
Replication Permissions” figure below.

8. Click Save replication.

Add Replication Master

o User name - Name of the user who created the replication subscription on themaster registry

o Password - Password of the user who created this subscription. This password is encrypted in
the configuration file.

o URLs of Master Registry - All URLs (Inquiry URL, Subscription URL and Security URL)must
refer to the samemaster registry. Moreover the URLs must not refer to the slave registry itself,
otherwise you can loose some data.

l Inquiry URL - Inquiry URL of master registry. For example,
http://master.mycompany.com:8080/uddi/inquiry. The inquiry URL is used to obtain
full standard UDDI v3 structures.

Note: UDDI v2 keys are not included in the UDDI v3 structure and replicated
structures differ with regard to v2 keys. To replicate v2 keys, specify the URL of the
proprietary inquiry API, which returns extended structures including v2 keys. This

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 319 of 642

extended API has the context /uddi/export. For example,
http://master.mycompany.com:8080/uddi/export.

l Subscription URL - Master registry's subscription URL. For example,
http://master.mycompany.com:8080/uddi/subscription.

l Security URL - Master registry's security URL. For example,
https://master.mycompany.com:8443/uddi/security.

o Replication subscription key - key of the find_business or find_tModel subscription from
themaster registry.

o tModel subscription key - key of the helper subscription for changes to tModels from the
master registry.

o Replication name - Name the replication for better orientation within the list of replications.

o Disabled - Check this box to disable replication.

o User name - User account name under which replicated data will be stored.

Note: The user must have the ApiManagerPermission on
org.systinet.uddi.client.v3.UDDI_Publication_PortType API for all * actions to be able to
generate keys without having the appropriate keyGenerator. For more information, see
"Generating Keys" on page 219 in the User's Guide. By default, the only user who can do

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 320 of 642

this is the admin.

o Execution time - Specify the period between replications by selecting an option from the drop-
down box or select "Other" and input a period pattern. The pattern follows the UNIX Crontab
format. It consists of five fields that describe the time period in the following order:

l Minute of the hour (0-59)

l Hour of the day (0-24)

l Day of themonth (1-31)

l Month of the year (Jan-Dec or 1-12)

l Day of the week (Sun-Sat or 0-6, 7 is same as 0)

Instead of a number, the patterns can contain a star character whichmeans any value. They
can also contain a star, a slash, and a number N whichmeans that only N-th occurrence of
such a time would be active. A list of comma separated numbers, months or days (without
spaces) is also allowed. Examples:

l 15 * * * *

every hour on 15thminute

l */10 * * * *

every 10minutes

l 0 0 * * Sat-Sun

every weekend at midnight

l 0 18 1 *

6:00 PM on the 1st day of any month

l 0 */6 * * Fri

every sixth hour on Friday

o Last replication time - The date and time when the last replication occurred.

Add Replication Permissions

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 321 of 642

In the page shown in the above figure, the administrator can set up permissions for replicated data. If
you do not enter any data on this page, all users from the slave registry have find and get permissions
on replicated data.

To specify permissions on replicated data:

1. Enter a filter criteria for users or groups, and click Filter.

2. Check the box in front of users or groups. Then, click theAdd selected users button. Selected
users or groups will be added to the permissions list.

3. Click theEdit icon to change permissions for Find, Get, Save and Delete operations

4. Click theSave replication button.

Note: Use the buttonReplicate now on the replication page to test the replication settings.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 322 of 642

Replacing UDDI Keys
Replacing keys of businessEntities, businessServices, tModels, and bindingTemplates is intended to
correct errors in keys before entities are commonly used by users.

To access the key replacement page:

1. Log on as administrator.

2. Click theRegistry management link under theManage tab.

3. In the row labeledReplace UDDI keys, click the appropriate button tModel, business, service,
or binding.

Note: The replace key operation can break digital signatures on changing entity as well as on
other entities which reference to the changing entity.

Replacing tModel keys

When you replace a tModel key, the key will be updated in the following data structures:

l tModel

l keyedReferenceGroups

l keyedReferences

l tModelInstanceInfos

l publisherAssertions

l addresses

l taxonomies

Replacing businessEntity keys

When you replace a businessEntity key, the key will be updated in the following data structures:

l businessEntity

l services

l keyedReferences

Replacing businessService keys

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 323 of 642

When you replace a businessService key, the key will be updated in the following data structures:

l businessService

l bindingTemplates

l keyedReferences

Replacing bindingTemplate keys

When you replace a bindingTemplate key, the key will be updated in the following data structures:

l bindingTemplate

l keyedReferences

l subscriptions

l hostingRedirector

l accessPoint with bindingTemplate useType

Registry Statistics
Registry statistics include statistics on::

l UDDI structure counts versus limits imposed by the product license;

l invocations of registry APIs;

l UDDI structure counts generally;

To access the registry statistics page:

1. Log on as administrator.

2. Click theRegistry management link under theManage tab.

3. Click theStatistics button.

4. The page similar to the figure below will appear, summarizing publishing limits imposed by the
product license, current counts and the number remaining.

Statistics - Publication Limits

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 324 of 642

5. Click theAPI Usage tab and you will see a page similar to the following figure showing the
number of requests for each API, number of unsuccessful requests and datetime of last API call.
You can reset count separately for each API by clicking theReset button or reset counts for all
API by clicking on theReset all statistics.

Statistics - API usage

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 325 of 642

6. You can click on theStructure tab. The page similar to the figure below appears. On that page you
can see number of UDDI entities stored in HPE SOA Registry Foundation.

Statistics - Structure

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 326 of 642

Management of Configuration - User Interface
ConfigurationManagement User Interface is available on the Registry Console, "Manage" tab,
"Registry management" sub-tab (default), Configurationmanagement button.

This management tool has twomain parts designed for the following tasks:

1. Inspection of current configurations and their history.

2. Saving configuration states into collections to compare or restore them later.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 327 of 642

Current Configurations and Their History
View of current configurations

This view shows current configurations. You can either sort it alphabetically or by time by clicking on
the relevant column heading. Configurations that are local to a cluster node are displayed for all nodes.
You can switch to the named collections view with the left tab.

Two actions are available:

1. View the current configuration by clicking on the configuration name or in the case of cluster-local
configurations on its Node ID.

2. View all versions of some configuration by clicking on the icon in the last column

When the list is sorted by time the configurations with the same name but different Node IDs are not
grouped together.

View of all versions

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 328 of 642

This view shows all versions of a specified configuration. If such a configuration is local, multiple
entries may bemarked as latest, one for each node. Latest nodes are also highlighted. The Length of
this list is limited by rules for retaining older configurations (see Configuration in database section).

Clicking on a configuration namewill show the configuration which is described in the row.

Configuration view

This view shows specified configuration information including the content. There are also links to
related versions of the configurations (such as latest, later, older, or oldest). You can see these related
configurations by clicking on the view icon or compare differences between the displayed version and a
selected version by clicking the differences icon in the selected row.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 329 of 642

If the displayed configuration is not the latest, aReactivate button appears in the window. Its function
is to make the displayed configuration active (after confirmation). It does so by adding it as a new
configuration entry with the latest time stamp.

Differences

This view can be invoked from the configuration view. It shows a comparison between two versions of
the configuration. You can alter the options for differences comparison: whether it is case sensitive and
whether the full text is shown or omitted.

Named Collections of Configuration
List of named collections

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 330 of 642

This view shows named collections of configurations which are stored in the database. It also allows
you to capture the current state of configurations into such a collection so that you can later compare or
restore them.

Creating new collections is easy. Just fill in the name and optionally the description of the collection
and press theMake a snapshot button.

Once some collections are created, you can view their contents (by clicking the name) and compare
them to the current set of configurations (by clicking the differences icon).

Activation of a collectionmeans that all configurations that the collection holds will be added as new
current configurations. Activation can be done on the collection as a whole (by clicking the icon in this
view) or selectively on specified configurations (by button in the collection configuration view). Before
activation proceeds a confirmation is required.

All Differences

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 331 of 642

This is what a comparison between a collection and the current set of configurations looks like. It
shows the differences of matching pairs of all configurations. Matching configurations where no
differences appear are listed below. Non-matching configurations (when the configuration appears in
the collection only or in the current set only) are also listed below.

You can alter the options for differences comparison: whether it is case sensitive and whether the full
text is shown or omitted. It is not recommended to show full text in all differences because the resulting
pagemight get very long.

View collection

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 332 of 642

Collection content usually looks like this. When you click on the configuration name its view with
actions is displayed.

View configuration

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 333 of 642

This view shows a configuration stored inside a collection. You can see the comparison between this
configuration and the current configuration by clicking on buttonDifferences. You can alsomake this
configuration the current with theActivate button (after confirmation).

Registry Configuration
Registry configuration is used whenever you want to set up the database, registry parameters, or
account properties.

To access Registry configuration:

1. Log on as administrator or as a user with privilege to display theManage tab. For more
information, see the "Rules to Display theManage Tab" note in "Accessing Registry
Management" on page 297.

2. Click theManagemainmenu tab.

3. Select theRegistry configuration link underManage tab. This returns the Registry configuration
panel shown in the following figure.

Registry Configuration

The Registry configuration panel includes the following tabs:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 334 of 642

l Core Config

l Database

l Security

l Account

l Group

l Subscription

In this part of the chapter, each of these sections settings is described in detail. Fields marked with an
asterisk (*) are themost important.

Core Config
Threads

Maximum number of threads used in statement execution

The default is 2.

Mail

SMTP Host Name, SMTP Host Port, SMTP Auth User, SMTP Auth Password, Default sender email,
and Default sender name are used to set up the entity that sends emails on behalf the registry
administrator.

Retries in case of DB deadlock

Themaximum number of retries in case of DB deadlocks. This option doesn't appear in the Registry
Configuration, you can edit the optionmanually in the configuration file REGISTRY_
HOME\app\uddi\conf\application_core.xml. After editing, add the attribute updateDB=”true” to the
top level config tag to update the database from the edited configuration file. Seemore at "Configuration
in Database" on page 343.

Database
This section details how to set up the database connection. The default values are set according to the
database chosen at installation. For details, see the “Default Ports for Supported Database Servers”
table below.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 335 of 642

Database installation, that is, creating the database schema and loading basic data, is described in
"Database Installation" on page 80.

Registry Configuration - Database

Backend type *: A menu of databases from which to select the vendor of your database.

Hostname *: Database host name or IP address, for example, dbserver.mycompany.com

Port *: Database port number. For default values see Table 5, “Default Ports for Supported Database
Servers”. Note that if you are using the HSQL database, it is embedded in the same JVM and therefore
the port number is ignored in this case.

Database Name *: Database name; for example, uddinode

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 336 of 642

User Name *: User name; uddiuser by default

User Password *: Database user password;uddi by default

Default pool size:Count of concurrent database connections initialized at start time

Max pool size: Maximum count of concurrent database connections. Each request books one
connection until the request is served. If all connections are booked and new request comes in, the
connection pool creates a new connection till themaximum count is reached. If this maximum is
reached and new request comes in, this request must wait for a free connection to be released by a
previous request.

Pool cleaning interval: How often database connections are closed over the default count. This value
represents time in hours.

Database cache: This is used for performance optimization.

Pessimistic Locking: This option is not recommended unless there are excessive deadlock recovery
messages in the log. It affects performance.

Default Ports for Supported Database Servers

Database Default Port

Oracle 11g or 12c 1521

MS SQL 2005 or 2008 1433

Sybase ASE 12.5 5000

PostgreSQL 5432

hsqldb 1.7.3 -

Security
On theSecurity tab, you can configure your digital signature token and key properties.

Registry Configuration - Security

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 337 of 642

AuthInfo Time Out: Authorization token is obtained by invoking the get_authTokenmethod. This
token is used for each operation on the publishing port. Here you can set up the authorization token
time-out in seconds. The default value is one hour.

Token Creation Time Tolerance: Tolerance interval of token validity, expressed inmilliseconds.

Token Signature:Whether authorization token is signed. We recommend you toggle this switch on.

Account
On this tab, you can specify accounts properties applicable for all HPE SOA Registry Foundation user
accounts.

Registry Configuration - Account

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 338 of 642

Backend type

This field is not editable. Its value is specified during installation.

Default result size

Number of items returned in search results when querying accounts

Confirm registration by email

Check this box if you would like new users to confirm account creation.

Confirmation URL

URLwhere new users can confirm registration

Default User Limits Limits are used as default values only when creating a new account. Accounts
that exist at the time of change are exempt from new limit values. Limits for existing accounts can be
updated with the Account Management tool.

Business entities

Business entity limit; default is 1.

Business services

Number of allowed business services per business entity; default is 4.

Binding templates

Number of allowed bindingTemplates per businessService; default is 2.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 339 of 642

TModels

Number of allowed tModels; default is 100.

Publisher assertions

Number of allowed relationship assertions; default is 10.

Subscriptions

Number of allowed subscriptions saved by user. Default is 5.

Group
On this tab, you can specify the properties of the group API.

Backend type

Not editable, this field's value is specified during installation.

Default result size

Number of items returned in search results when querying groups; the default value for this field is 10.

Subscription
On theSubscription tab, you can configure server limits for subscriptions. If a user saves a
subscription which does not match these limits, the registry automatically adjusts the user's values.

Registry Configuration - Subscriptions

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 340 of 642

There are three fields to configure on this tab:

Min. notification interval

Minimal interval between notifications provided to a subscriber

Sender Pool size

Number of stubs ready for notification

Transformer Cache Size

Number of cached XSLT transformations

Node
On theNode tab, you can configure UDDI node properties.

Registry Configuration - Node

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 341 of 642

Default key generator

The Default Key generator tModel allows the Registry to generate keys in the form domain:string
instead of only in the form uuid. For example, uddi:mycompany.com:myservice:61c08bf0-be41-
11d8-aa33-b8a03c50a862 instead of only 61c08bf0-be41-11d8-aa33-b8a03c50a862. Enter the key
of the tModel that is the key generator. For example, if you enter
uddi:mycompany.com:myservice:keyGenerator, keys will be generated with the prefix
uddi:mycompany.com:myservice:. For more information, see "Publisher-Assigned Keys" on page 218
in the User's Guide.

Operator name

The name of the operator of the UDDI node. The default entry for this field is configured during
installation.

Operational business key

The key of the Operational business entity. This entity holds miscellaneous registry settings such as
the validation service configuration.

Operational business key v2

The key of the Operational business entity in UDDI v2 format.

Web UI URL

The URL of the Registry Console.

tModel deletion

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 342 of 642

If this box is checked then deleted tModels are deleted permanently. Otherwise, tModels aremarked as
deprecated. (Deprecated tModels are visible by direct get tModel call, but do not appear in any search
results.)

Configuration in Database
HPE SOA Registry Foundation uses many configuration files. They are stored in REGISTRY_
HOME\app\uddi\conf and REGISTRY_HOME\work\uddi\bsc.jar\conf directories. Some of themmay
be changed during setup or with web interfaces.

Each such configuration file is an XML file containing tag config with some information about how the
configuration file is used.

These attributes are generally recognized:

Attributes of config tag

Attribute Meaning Optional Default
value

name configuration name no

local true when the file is local to the cluster node yes false

updateDB when true the file is stored in the database on HPE SOA
Registry Foundation start

yes false

history when false configuration history is not logged yes true

savingPeriod delay before changes inmemory are written to file in
milliseconds

yes 2000

Themost important attribute is namewhich is the identifier by which HPE SOA Registry Foundation
tries to find the configuration. Some configuration files have attribute local set to true. That means that
the configuration is only used by this HPE SOA Registry Foundation and other Registries in the cluster
will not share it. Other nodes will have their own independent versions. These cluster nodes are
distinguished by the Node ID which is specified inside nodeid.xml. If its value is empty, a unique ID
will be generated at HPE SOA Registry Foundation startup.

The configuration files are always present in the directories, however their copy is in the database. If a
configuration file is present in both database and file-system, the one in the database has priority. After
the initial startup of HPE SOA Registry Foundation all configurations are put into the database. When
HPE SOA Registry Foundation needs to change some configuration settings it does so in the both the
database and file-system.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 343 of 642

If a user or another program like HPE SOA Registry Foundation setup wants to edit the configuration
file the priority of the configuration in database has to be overridden. This can be done in two ways:

1. By setting attribute updateDB to true in the top-level tag config in all configuration files where
modifications have been done. Once HPE SOA Registry Foundation starts, the attribute will be
automatically removed.

2. By setting attribute updateDBAll (see in table below) to true in tag dbconfig in database.xmlOnce
HPE SOA Registry Foundation starts the attribute will be automatically cleared. There can be also
time stamp in this attribute in format like 20070321133058 where digits denote year, month, day of
month, hour, minute, and second in GMT time zone. Such time stamp is compared to time stamp
in database. When config files havemore recent time, they will be put in database on HPE SOA
Registry Foundation start. When stamp in database is more recent, database version will be used.
In both cases the attribute will be cleared.

Time stamp in updateDBAll is used by setup. Each time setup task is run it updates time stamp
except for task that do not modify configuration files like drop database and backup. Purpose of
the time stamp is to prevent overwritting current configuration with old one while redeploying same
EAR/WAR file to application server.

When HPE SOA Registry Foundation operates in cluster mode the other means than the time
stamp is used for synchronization. Clocks on cluster nodes are assumed to be not enough precise
for that, but enough precise for redeployment and configuration changes. There is only one time
stamp in database.xml, individual configuration files allow only true/false values in updateDB
attribute.

The other important configuration setting for configurations is inside the database.xml file, in the
dbconfig tag. The tag has following attributes:

Attributes of dbconfig tag

Attribute Meaning Optional Default
value

configRetainCount number of latest configuration versions that are not
deleted

yes 10

configRetainMinutes age of configuration version before it can be deleted yes 10

eventRetainMinutes age of event information before it can be deleted yes 5

updateDBAll when true all configuration files will be stored in the
database at HPE SOA Registry Foundation startup,
can be also a time stamp

yes false

Note: HPE SOA Registry Foundation setup automatically sets the updateDBAll attribute when its

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 344 of 642

operation has been successful so that all changed configurations will be stored in the database at
HPE SOA Registry Foundation startup. This is usually desirable behavior.

Note: WhenHPE SOA Registry Foundation encounters an identical configuration in the database
to the one that is being stored (e.g. when set updateDB or updateDBAll is encountered) then the
store operation is ignored. This may be surprising as there would be no entry in the log of
configurations, however the resulting state of the configurations is correct.

The database not only holds the current set of configurations but also their history in a log. You can
monitor configuration changes, what the previous content was, or let HPE SOA Registry Foundation
show you differences between versions. This configuration history log is purged every few minutes.
Old configurations are not retained indefinitely. There are rules on how many older versions are left
there and the age of a configuration before it can be deleted. The purpose of these rules is to avoid
running out of space in the database and yet still have information about recent changes. Rules can be
configured inside tag dbconfig in database.xml. Their defaults are in the table above. Default settings
specify that theremust be at least configRetainCount new versions of the configuration before it can
be deleted automatically. Also, the configuration has to be older than configRetainMinutes before it can
be deleted automatically. This allows the correction of most non-fatal configuration errors after an
invalid change or to track which configuration changemight have caused unexpected behavior.

To allow easy comparison of current and older configurations or try-then-rollback scenarios, the current
set of configurations can be stored into a named collection of configurations. These collections are not
deleted automatically. They allow you to store a configuration that works correctly and compare it with
the current version if something breaks later. You can then activate the old one if needed or change the
incorrect settingmanually.

Note: Backup tool in setup can store both file and database configurations. You can select which
you want to backup.

Configurations in the database can bemanaged with the "ConfigurationManagement" component of
the Registry Console. You can find it under theManage tab, then Registry management sub-tab
(default), then ConfigurationManagement button.

Registry Console Configuration
This section provides you with a catalog of web engine parameters.

Initially almost every web engine parameter is set correctly by default.

To access the Registry Console configuration:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 345 of 642

1. Log on as administrator.

2. Click theManagemenu tab.

3. Click Registry console configuration link under theManage tab. This returns the configuration
screen shown in Figure, “Registry Console Configuration -Web Interface Tab”. The Registry
Console Configuration screen has two tabs:

o On theWeb Interface tab, you can set various parameters associated with HPE SOA Registry
Foundation's interface.

o On thePaging tab, configure the number of rows per page and themaximum number of pages
associated with the returns of various searches.

Note that on both tabs there is a button labeledReload Configuration. When you change a registry
configuration file directly, and save it, use this button to put the configuration changes into effect.

Web Interface Configuration
Registry Console Configuration - Web Interface Tab

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 346 of 642

Field description:

l URL - nonsecure registry URL

l Secure URL - secure registry URL

l Context - context of the Registry Console URL

l Data context - context where static objects such as JavaScript and images are stored

l JSP directory - location of JSP pages relative to $REGISTRY_HOME/work/uddi

l Upload directory - upload directory used for tasks such as uploading taxonomies

l Maximum upload size - maximum upload size in bytes

l Server session timeout - session timeout (measured in seconds)

l Name cache timeout - cache timeout for the names of UDDI structures. If someone renames a
UDDI structure, the Registry Console will load the new name after this interval has passed

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 347 of 642

(measured in seconds).

l Entity cache enabled - If you check this check box, entities will be cached.

Click Save configuration when finished.

Paging Configuration
Registry Console Configuration - Paging Tab

Paging limits - On this tab, you can specify how many records and on how many pages searched data
will appear. Click Save configuration when finished.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 348 of 642

Permissions: Principles
Permissions in HPE SOA Registry Foundation were developed so that administrators might exercise
control over users. Permissions:

l Provide a simplemechanism for themanagement of users' rights in HPE SOA Registry
Foundation.

l Allow the administrator to manage or make available different parts of the registry to different users.

l Help HPE SOA Registry Foundation better reflect the real world where there aremany roles with
different responsibilities.

This chapter describes permissions in detail with some examples and a description of permission
configuration.

Permission is defined as the right to perform an action on some interface. Put another way: permission
is the ability to process somemethod on some interface. Permissions are very different from the other
mechanism for rights in HPE SOA Registry Foundation, the Access Control List.

Access Control enables the user to control access to the basic UDDI data structures (businessEntity,
businessService, bindingTemplate, and tModel). Access Control on HPE SOA Registry Foundation is
provided by the Access Control List (ACL). The ACL is based on permissions given to a user or group.
In the context of ACL, this means that a given user can access only that information in HPE SOA
Registry Foundationmade available to the user by the registry administrator or other users. For more
information about the Access Control List, see the Access Control chapter in the User's guide.

Access Control Lists limit the visibility of entities and so restrict the access to data in HPE SOA
Registry Foundation. Permissions on the other hand restrict access to interfaces. The ACLs restrain
users by the restricting the visibility of UDDI structures. Permissions limit users through the visibility of
interfaces.

Permissions Definitions
There are two basic kinds of permission:

l The first, consisting of "ApiUserPermission" on the next pageand "ApiManagerPermission" on the
next page, is used to restrict access for some users on some interfaces.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 349 of 642

l The second, "" below, is used to restrict the ability to change configurations in HPE SOA Registry
Foundation.

ApiUserPermission
ApiUserPermission consists of the interface's name andmethod from the given interface. This
permission provides the user common access to the specifiedmethod on the given API.
ApiUserPermission enables the user to call methods on an interface as a common user. Users usually
must have this permission to perform any call.

ApiManagerPermission
ApiManagerPermission also consists of the names of an interface and of amethod. This permission
allows the user to call a determinedmethod on the given API. It is very similar to ApiUserPermission.
The only difference is in the user's significance. If a user has ApiManagerPermission, that user is
considered to be a privileged user. There aremany API calls where the result depends on user's
importance.

ConfigurationManagerPermission
ConfigurationManagerPermission consists of configuration files and amethod's name. The name of the
method is either get or set. The ConfigurationManagerPermission combined with the get method allows
user to read (get) data from the configuration file. On the other hand, the
ConfigurationManagerPermission combined with the set method enables the user to write to the
configuration.

HPE SOA Registry Foundation Permission

Rules
The following permissions' rules are always valid:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 350 of 642

l Permission is the ability to process amethod on an API.

l Permission contains the type of permission (ApiUserPermission, ApiManagerPermission,
ConfigurationManagerPermission), the name (interface's or config's name) and an action (method's
name).

You are allowed to use the asterisk wildcard (*) to substitute all names - names of interfaces,
configurations, or actions.

l There is no hierarchy in permissions. The ability to set permission for users is also a permission (for
somemethods on PermissionApi).

l The HPE SOA Registry Foundation administrator has all permissions for all methods on all APIs.

l Permissions are always positive. This means that permissions say what is possible or allowed.
Permissions allow user to perform an action (somemethod on some API). Any action that is not
expressly permitted is denied.

l Permissions can be set for an individual user or for a group of members. Each user is member of the
group system#everyone, therefore every user has the default permissions associated with this
group.

For more information, see " Data Access Control: Principles" on page 212 in the User's Guide.

Setting Permissions
This section describes the configuration of permissions. The setting of permissions is written from the
administrator's point of view.

There are three basic ways to set permissions for a user:

l By performingmethods on PermissionApi. A user can call thesemethods only if that user has the
appropriate permissions.

l By callingmethods via SOAP or via the Registry Console.

l By changing permissions directly in the configuration file.

The PermissionApi contains several methods for managing permissions. Thesemethods are
described below:

get_permission: Used for obtaining all of a user's permissions. A user possessing the
ApiManagerPermission can obtain permissions of other users. A user with only ApiUserPermission,
can only discover his or her own permissions.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 351 of 642

Note that users who have neither ApiUserPermission nor ApiManagerPermission for amethod on
PermissionApi, cannot call this method.

set_permission: Provides users the ability to set permissions for other users. It is necessary to
possess ApiManagerPermission for this call.

get_permissionDetail: Similar to get_permission, this method can be called for more than one
user at a time.

get_permission takes a principal as the input parameter. On the other hand, get_permissionDetail
takes an array of principals as the input parameter. If you want to find out the permissions of three
users, you can call get_permission three times or you can call get_permissionDetail once.

who_hasPermission: Enables a user to find out who owns a given permission.

Note: It is not recommended to change permissions directly in the configuration file. However, if
the administrator wants to change default permissions for new users (meaning changing
permissions for the group system#everyone), there is no other possibility. Beforemaking any
changes to these permissions, we strongly recommendmaking a reserve copy of the
configuration. The permissions for special users or groups are stored in the file permission_
list.xml.

Permissions and User Roles
Many systems use user roles in addition to permissions. A user role is usually a set of permissions; it
can be predefined in the system or be user-defined. In HPE SOA Registry Foundation, the user roles
mechanism is implemented by groups. The administrator is allowed to set permissions not only for
individual users but also for groups. Instead of restricting the relationship to users and roles, it is
possible to create groups, set permissions for them and then add users into these groups. This "group"
mechanism in HPE SOA Registry Foundation is nearly the same as user role mechanism and it is used
instead of user roles.

HPE SOA Registry Foundation contains the following built-in groups that represent basic roles. Each
role has appropriate permissions already defined. So, administrator can set simply permissions by
adding users into these groups. For more information, see "GroupManagement" on page 305.

accountManagerGroup

Members of the group accountManagerGroup are able tomanage accounts. For example, they can
create new accounts, edit and delete existing ones.

administrationUtilsManagerGroup

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 352 of 642

Members of the group administrationUtilsManagerGroup are able to use administration utilities.
For example, they can delete tModels permanently, replace keys, replace URLs.

bscConfiguratorGroup

Members of the group bscConfiguratorGroup are able to configure settings for Business Service
Console.

configuratorGroup

Members of the group configuratorGroup are able to configure setting for HPE SOA Registry
Foundation. This means that they can set consoles, database, mail settings and so on.

groupManagerGroup

Members of the group groupManagerGroup are able tomanage groups. For example, they can create
new groups, edit or delete existing ones.

permissionManagerGroup

Members of the group permissionManagerGroup are able tomanage permissions. For example, they
can add permission to some principal or remove permission from some principal.

replicationManagerGroup

Members of the group replicationManagerGroup are able tomanage replication. For example, they
can create new replication or manage the existing one.

statisticsManagerGroup

Members of the group statisticsManagerGroup are able to view or reset statistics.

taxonomyManagerGroup

Members of the group taxonomyManagerGroup are able tomanage taxonomies. For example, they can
upload or delete taxonomy.

webConfiguratorGroup

Members of the group webConfiguratorGroup are able to configure Registry Console.

ApiManagerPermission Reference
ApiManagerPermission allow user to use operation in a privilegedmode. The following tables explain
what does it mean for certain APIs and operations.

Account API (org.systinet.uddi.account.AccountApi)

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 353 of 642

operation
(action)

Description

find_
userAccount

Not used.

get_
userAccount

Allows to get foreign account.

save_
userAccount

Allows to save/update any account. Allows to set up non default limits. Allows to
skip mail confirmation (if it is required).

delete_
userAccount

Allows to delete any account.

enable_
userAccount

Not used.

Admin Utils API (org.systinet.uddi.admin.AdministrationUtilsApi)

operation (action) Description

deleteTModel Allows to call the deleteTModel operation. (ApiUserPermission is not
sufficient to call the operation.)

replaceKey Allows to call the replaceKey operation. (ApiUserPermission is not
sufficient to call the operation.)

cleanSubscriptionHistory Allows to call the cleanSubscriptionHistory operation.
(ApiUserPermission is not sufficient to call the operation.)

resetDiscoveryURLs Allows to call the resetDiscoveryURLs operation. (ApiUserPermission is
not sufficient to call the operation.)

transform_
keyedReferences

Allows to call the transform_keyedReferences operation.
(ApiUserPermission is not sufficient to call the operation.)

rebuild_cache Allows to call the rebuild_cache operation. (ApiUserPermission is not
sufficient to call the operation.)

replaceURL Allows to call the replaceURL operation. (ApiUserPermission is not
sufficient to call the operation.)

Category API (org.systinet.uddi.client.category.v3.CategoryApi)

operation
(action)

Description

set_category Allows to call the set_category operation. (ApiUserPermission is not sufficient to
call the operation.)

add_category Allows to call the add_category operation. (ApiUserPermission is not sufficient to

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 354 of 642

call the operation.)

move_
category

Allows to call themove_category operation. (ApiUserPermission is not sufficient to
call the operation.)

delete_
category

Allows to call the delete_category operation. (ApiUserPermission is not sufficient
to call the operation.)

find_category Not used.

get_category Not used.

get_
rootCategory

Not used.

get_rootPath Not used.

Custody API (org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType)

operation (action) Description

get_transferToken Allows to call the get_transferToken operation on foreign entities.

discard_transferToken Allows to call the discard_transferToken operation on foreign tokens.

Group API (org.systinet.uddi.group.GroupApi)

operation (action) Description

find_group Allows to find foreign private groups.

get_group Allows to get foreign private groups.

save_group Allows to save/update foreign groups.

delete_group Allows to delete foreign groups.

where_amI Not used.

find_user Not used.

add_user Not used.

remove_user Not used.

Inquiry V1 API (org.systinet.uddi.client.v1.InquireSoap)

operation (action) Description

find_binding Allows to find all bindingTemplates despite ACL rights.

find_business Allows to find all businessEntities despite ACL rights.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 355 of 642

find_services Allows to find all services despite ACL rights.

find_tModel Allows to find all tModels despite ACL rights.

get_bindingDetail Allows to get any bindingTemplate despite ACL rights.

get_businessDetail Allows to get any businessEntity despite ACL rights.

get_businessDetailExt Not used.

get_serviceDetail Allows to get any businessService despite ACL rights.

get_tModelDetail Allows to get any tModel despite ACL rights.

Inquiry V2 API (org.systinet.uddi.client.v2.Inquire)

operation (action) Description

find_binding Allows to find all bindingTemplates despite ACL rights.

find_business Allows to find all businessEntities despite ACL rights.

find_relatedBusinesses Allows to find all related businessEntities despite ACL rights.

find_services Allows to find all services despite ACL rights.

find_tModel Allows to find all tModels despite ACL rights.

get_bindingDetail Allows to get any bindingTemplate despite ACL rights.

get_businessDetail Allows to get any businessEntity despite ACL rights.

get_businessDetailExt Not used.

get_serviceDetail Allows to get any businessService despite ACL rights.

get_tModelDetail Allows to get any tModel despite ACL rights.

Inquiry V3 API (org.systinet.uddi.client.v3.UDDI_Inquiry_PortType)

operation (action) Description

find_binding Allows to find all bindingTemplates despite ACL rights.

find_business Allows to find all businessEntities despite ACL rights.

find_relatedBusinesses Allows to find all related businessEntities despite ACL rights.

find_services Allows to find all services despite ACL rights.

find_tModel Allows to find all tModels despite ACL rights.

get_bindingDetail Allows to get any bindingTemplate despite ACL rights.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 356 of 642

get_businessDetail Allows to get any businessEntity despite ACL rights.

get_operationalInfo Not used.

get_serviceDetail Allows to get any businessService despite ACL rights.

get_tModelDetail Allows to get any tModel despite ACL rights.

Permission API (org.systinet.uddi.permission.PermissionApi)

operation
(action)

Description

get_permission Allows to call the get_permission operation on foreign accounts and groups.

set_permission Allows to call the set_permission operation. (ApiUserPermission is not sufficient to
call the operation.)

who_
hasPermission

Allows to call the who_hasPermission operation. (ApiUserPermission is not
sufficient to call the operation.)

find_principal Allows to call the find_principal operation. (ApiUserPermission is not sufficient to
call the operation.)

Publishing V1 API (org.systinet.uddi.client.v1.PublishSoap)

operation
(action)

Description

delete_
binding

Allows deletion of any bindingTemplate despite ACL rights.

delete_
business

Allows deletion of any businessEntity despite ACL rights

delete_
service

Allows deletion of any businessService despite ACL rights

delete_tModel Allows deletion of any tModel despite ACL rights

save_binding * Allows to update any bindingTemplate or create new bindingTemplate in any
businessService despite ACL rights. * Skips bindings limit checking.

save_
business

* Allows to update any businessEntity despite ACL rights. * Skips businesses limit
checking.

save_service * Allows to update any businessService or create new businessService in any
businessEntity despite ACL rights. * Skips services limit checking.

save_tModel * Allows to update any tModel despite ACL rights. * Skips tModels limit checking.

get_
authToken

Default in system#everyone group. When removed, only other authentication
methods will work.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 357 of 642

discard_
authToken

Default in system#everyone group.

get_
registeredInfo

Not used.

validate_
categorization

Not used.

Publishing V2 API (org.systinet.uddi.client.v2.Publish)

operation (action) Description

delete_binding Allows deletion of any bindingTemplate despite ACL rights.

delete_business Allows deletion of any businessEntity despite ACL rights

delete_service Allows deletion of any businessService despite ACL rights

delete_tModel Allows deletion of any tModel despite ACL rights

save_binding * Allows to update any bindingTemplate or create new bindingTemplate in
any businessService despite ACL rights. * Skips bindings limit checking.

save_business * Allows to update any businessEntity despite ACL rights. * Skips
businesses limit checking.

save_service * Allows to update any businessService or create new businessService in
any businessEntity despite ACL rights. * Skips services limit checking.

save_tModel * Allows to update any tModel despite ACL rights. * Skips tModels limit
checking.

add_
publisherAssertions

Skips assertions limit checking in add_publisherAssertions operation.

set_
publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.

delete_
publisherAssertions

Not used.

get_
publisherAssertions

Not used.

get_
assertionStatusReport

Not used.

get_authToken Default in system#everyone group. When removed, only other
authenticationmethods will work.

discard_authToken Default in system#everyone group.

get_registeredInfo Not used.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 358 of 642

Publishing V3 API (org.systinet.uddi.client.v3.UDDI_Publication_PortType)

operation (action) Description

delete_binding Allows deletion of any bindingTemplate despite ACL rights.

delete_business Allows deletion of any businessEntity despite ACL rights

delete_service Allows deletion of any businessService despite ACL rights

delete_tModel Allows deletion of any tModel despite ACL rights

save_binding * Allows to update any bindingTemplate or create new bindingTemplate in
any businessService despite ACL rights. * Skips bindings limit checking.

save_business * Allows to update any businessEntity despite ACL rights. * Skips
businesses limit checking.

save_service * Allows to update any businessService or create new businessService in
any businessEntity despite ACL rights. * Skips services limit checking.

save_tModel * Allows to update any tModel despite ACL rights. * Skips tModels limit
checking.

add_
publisherAssertions

Skips assertions limit checking in add_publisherAssertions operation.

set_
publisherAssertions

Skips assertions limit checking in set_publisherAssertions operation.

delete_
publisherAssertions

Not used.

get_
publisherAssertions

Not used.

get_
assertionStatusReport

Not used.

get_registeredInfo Not used.

Replication V3 API (org.systinet.uddi.replication.v3.ReplicationApi)

operation
(action)

Description

replicate Allows to call the replicate operation. (ApiUserPermission is not sufficient to call
the operation.)

Statistics API (org.systinet.uddi.statistics.StatisticsApi)

operation
(action)

Description

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 359 of 642

get_
accessStatistics

Allows to call the get_accessStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

reset_
accessStatistics

Allows to call the reset_accessStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

get_
structureStatistics

Allows to call the get_structureStatistics operation. (ApiUserPermission is not
sufficient to call the operation.)

Subscription V3 API (org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType)

operation (action) Description

delete_subscription Allows to delete any subscription despite the caller is not a subscription
owner.

save_subscription * Allows to update any subscription despite the caller is not a subscription
owner. * Skips subscription limit checking.

get_
subscriptionResults

Allows to get result of any subscription despite the caller is not a subscription
owner.

get_subscriptions Allows to get any subscription despite the caller is not a subscription owner.

Taxonomy API (com.systinet.uddi.taxonomy.v3.TaxonomyApi)

operation
(action)

Description

get_taxonomy Allows to obtain all categories in the taxonomy.

find_taxonomy Not used.

save_
taxonomy

Allows to call the save_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

delete_
taxonomy

Allows to call the delete_taxonomy operation. (ApiUserPermission is not sufficient
to call the operation.)

download_
taxonomy

Allows to call the download_taxonomy operation. (ApiUserPermission is not
sufficient to call the operation.)

upload_
taxonomy

Allows to call the upload_taxonomy operation. (ApiUserPermission is not
sufficient to call the operation.)

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 360 of 642

PStore Tool
The PStoreTool provides HPE SOA Registry Foundation Protected Storemanagement. It provides
functionality to:

l Import and export trusted certificates locally to or from a file.

l Create new security identities in the HPE SOA Registry Foundation configuration file.

l Copy identities between protected stores.

Note: Use "SSL Tool" on page 368 to import and export a key entry to or from HPE SOA
Registry Foundation protected store.

Note: Remote protected storemanagement via SOAP is not supported with HPE SOA
Registry Foundation.

The general usage is:

PStoreTool [command [options]]

You can perform operations from the command line or start up aGUI interface.

Commands
The PStore tool has the following commands (see also "Options" on the next page):

l new - Creates a new security identity in the local protected store. The configuration file of the
protected store can be specified using the -config parameter.

l newServer - Creates a new security identity on HPE SOA Registry Foundation. The location of the
server is specified with the -url parameter.

l copy - Copies the existing security identity from one protected source to another or to the HPE
SOA Registry Foundation protected store.

l add - Adds a trusted X.509 certificate to the local protected store. The X.509 certificate can be
supplied as a local file.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 361 of 642

This command can also addmapping between the security identity alias and the X.509 certificate to
the user store part of the protected store. (The certificate is needed only for the server-side
protected store.) This can be requested by using -user with the -alias option.

l addServer - Adds a trusted certificate to HPE SOA Registry Foundation. This command also adds
themapping between the security identity alias and its X.509 certificate to the user store part of the
HPE SOA Registry Foundation protected store. The certificate can be given in the local file or can
be fetched from the local protected store. The configuration file can be specified using the -config
option.

l remove - Removes the given alias from the local protected store. This command can also remove
an alias from the user store part of the protected store using the -user option. When removing a
mapping from the user store, the X.509 certificates mapped to the given alias are also removed from
the key store.

l removeServer - Removes a given alias from the protected store. The alias is removed from the user
store part of the protected store if it is not found in the key store. When removingmapping from the
user store part, the X.509 certificates mapped to the given alias are also removed from the key
store.

l lsTrusted - Displays a list of the trusted certificate's Subject-distinguished names from the local
protected store.

l lsTrustedServer - Displays a list of the trusted certificate's Subject distinguished names from the
server.

l list - Displays all aliases contained in the key store part of the local protected store.

l listServer - Displays all aliases contained in the key store part of the HPE SOA Registry Foundation
protected store.

l export - Exports the X.509 certificate chain stored in the key store or in the user store of the local
protected store with the given alias.

l exportServer - Exports the X.509 certificate chain stored in the key store or in the user store of the
protected store with the given alias.

l gui - Launches the graphical version of this tool.

Options
The PStore tool has the following options:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 362 of 642

l -alias alias - This optionmust be used with a command that refers to an alias.

l -keyPassword password - Password for encrypting/decrypting the security identity private key.

l -subject subjectDN - Subject-distinguished name to be used in the generated X.509 certificate.

l -config configPath - File and path to the configuration file to be used during command execution
for the source of the local protected store.

l -username username - Username for authentication process. Not required if the HPE SOA
Registry Foundation server is unsecured.

l -password password - Password for authentication process. Not required if the server is
unsecured.

l -secprovider provider - Authenticationmechanism used during the authentication process. Not
required if the server is unsecured.

l -certFile certPath - File and path to the X.509 certificate stored in a local file.

l -user - Indicates that a command should be executed only with the contents of the user store of the
protected store.

l -config2 secondConfigPath - Path to the second configuration file. Used for the copy command,
when copying an identity from one local protected store to another.

PStore Tool - GUI Version
You can add, edit, or remove any user properties in the user store. You can also add, edit, and remove
certificates and identities in the key store. You can do all of this with a local file containing the protected
store.

PStore Tool

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 363 of 642

Running the GUI PStore Tool

To run the graphical version of this tool, use gui as parameter with the PStoreTool command.

PStoreTool gui

Opening and Closing the Protected Store

Opening Protected Store from a File

TheGUI PStore Tool canmanipulate every protected store in a file. Tomanipulate the client's
protected store, open clientconf.xml. To open the server protected store, open pstore.xml.

To open protected store from file, select Open From File... from the PStoremenu. This returns the file
chooser dialog. Select the file you want to open as shown in the following figure, “Open Protected Store
from a File”.

Open Protected Store from a File

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 364 of 642

Closing Protected Store

To close the protected store, select Close from thePStoremenu.

Open Next Protected Store

In some cases you need to work with more than one protected store at the same time. Typically you
want to copy certificates from one protected store to another. To open another protected store, select
theNew Window from thePStoremenu. New windows appear. Now you can open the protected store
from a file.

Copy Data Between Protected Stores

With the PStore Tool, you canmanipulate more than one protected store at the same time. You can
simply copy identities, certificates, users, and user properties from one protected store to another using
the Copy and Paste actions located in context menus of the Aliases, Users, and Properties panels.

Note: When you copy data from one area to another, the Paste action is disabled for some
categories of data. This means that datamay be copied, but cannot be pasted to the selected area.
For example, the password property from the user store cannot be pasted to the key store.

Key Store

Towork with the key store, select theKey Store tab. This tab has two panels. The left side has a list of
all entries. The right has detailed information for the selected entry.

Key Store Tab

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 365 of 642

Create New Identity

To create a new identity, select New Identity... from theKey Storemenu. This opens a dialog for
information such as Alias, Distinguished Name, and Password. (The Distinguished Name is not
mandatory.) If the specified information is valid, the new identity will be added to the key store with the
specified Alias. Otherwise an error dialog will be returned.

Key Store Trust

If you want to trust a key entry, select Trust from theKey Storemenu. This action is available only for
the key entry type.

Import Alias

To import a certificate from a file into the key store, select Import Alias from theKey Storemenu.
This opens a dialog in which you can specify Alias, Type, and value that depend on the entry type. In
the current implementation, you can import only the certificate chain entry type.

Remove Alias

To remove an alias from the key store, select the alias you want to remove and select Remove Alias
from theKey Storemenu. You can remove several aliases at once.

Refresh Aliases

To synchronize information shown in this tool with the original key store source, perform a refresh by
selectingRefresh Aliases from theKey Storemenu.

Alias Details Panel

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 366 of 642

It is not surprising that theDetails panel has more details about the selected alias. This panel shows
details that depend on the entry type. You can also change this value. If you want to store a new value,
press theApply Changes button. To return to the original value, press Restore.

User Store

There are three panels on the User Store tab. The left side has a list of all entries. On the right top are
properties available for the selected user. On the right bottom is detailed information for the selected
user property.

User Store Tab

Add User

To add a new user, select Add User from theUser Storemenu. This opens a dialog for entering the
Username. Press OK when done.

Remove User

To remove a user from the user store, select the user you want to remove and chooseRemove User
from theUser Storemenu. You can remove several users at once.

Refresh Users

Refresh synchronizes information shown in this tool with the original user store source. To refresh,
select Refresh Users from theUser Storemenu.

Add Property

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 367 of 642

To add a new user property, select Properties andAdd Property from theUser Storemenu. This
returns a dialog for the property you want to create and its value.

Remove Property

To remove one or more user properties from the user store, select them and select Properties and
Remove Property from theUser Storemenu.

Refresh Properties

To synchronize information on the Properties panel with the original user store source, perform a
refresh. Select Properties andRefresh Properties from theUser Storemenu.

User Properties Details Panel

TheDetails panel has more information about user properties that depend on the property type. Select
the property you want to see. You can also change this value. If you want to store a new value press
Apply Changes.

To return to the original value, press Restore.

SSL Tool
The sslTool helps with setup of SSL on the client side of HPE SOA Registry Foundation. The general
usage is:

sslTool [command [options]]

The SSL tool has the following commands:

l serverInfo - Prints out security requirements of an SSL server and saves a server certificate to a
file.

l encrypt - Prints out the encrypted form of a password supplied as plain text. Encrypted passwords
are used in the configuration files of HPE SOA Registry Foundation.

l pstoreEI - Exports and imports a java keystore to or from the HPE SOA Registry Foundation
Protected Store. Both PKCS12 and JKS keystores are supported. The type of a supplied keystore is
automatically detected during import.

SSL Tool Examples
To print out security requirements of an SSL server:

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 368 of 642

sslTool serverInfo --url https://localhost:8443

To print out security requirements of an SSL server and save server certificates:

sslTool serverInfo --url https://localhost:8443 --certFile /tmp/sever.cer

To print out an encrypted password for use in HPE SOA Registry Foundation configuration files:

sslTool encrypt --password changeit

To import a key entry from a java keystore to HPE SOA Registry Foundation client Protected Store:

sslTool pstoreEI -i --keystore /tmp/java.keystore
--storepass changeit --alias mykey --keypass changeit

--pstore ../conf/clientconf.xml
--pstoreAlias registryclient --pstoreKeypass changeit2

To export a key entry from HPE SOA Registry Foundation Protected Store to a java keystore:

sslTool pstoreEI -e --keystore /tmp/java.keystore2
--storepass changeit --alias mykey --keypass changeit

--pstore ../conf/clientconf.xml
--pstoreAlias registryclient --pstoreKeypass changeit2

Associating an SSL client identity with a

registry client
Instructions on how to associate an SSL client identity with a registry client are explained in "Example
Client" on page 480 in the Developer's Guide. In this case, a key entry must be imported to registry's
client protected store, which is the conf/clientconf.xml file of the registry installation directory and a
few system properties must be added to a script that runs the client application.

There are also cases where a registry acts as a client to another registry. These include:

l Communication between nodes in a clustered HPE SOA Registry Foundation.

Associating an SSL client identity with a HPE SOA Registry Foundation server can be done in the
app/uddi/conf/security.xml file of a registry installation directory (or deployed package for a
deployed registry) by adding the destinationConfig elements. A fragment of the security.xml with
example destinationConfig elements is shown in the following example, “Association of client
identities with a registry server”.

Association of client identities with a registry server

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 369 of 642

<?xml version="1.0" encoding="UTF-8"?>
<config name="security" savingPeriod="5000">

...
<security>
...
</security>
<!-- For communication with other nodes in the cluster -->
<destinationConfig>
<alias>clusterClient</alias>
<password_coded>gNFDFWMNdkU=</password_coded>
<destination

proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorManagerStub"/>
<destination

proxyName="com.systinet.uddi.configurator.cluster.ConfiguratorListenerStub"/>
</destinationConfig>
<!-- For communication via registry client to services accessible
at URLs that start with https://pc1.mycom.com or https://pc2.mycom.com -->

<destinationConfig>
<alias>otherClient</alias>
<password_coded>Vr+i+UzC2WLJXWg0ih6J+Q==</password_coded>
<destination url="https://pc1.mycom.com/*"/>
<destination url="https://pc2.mycom.com/*"/>

</destinationConfig>
</destinationConfig>

</config>

There can bemore destinationConfig elements. A destinationConfig element is used to
associate a particular SSL client identity with a set of destinations. It contains:

l alias in the server protected store. A key entry with the same name as the alias must exist in a
server's Protected Store. This key entry represents security material used to establish SSLwith a
destination server. The HPE SOA Registry Foundation server Protected Store is in the
conf/pstore.xml file of a registry deployment package. Use this file when importing a key entry
from a java keystore, as shown in "SSL Tool Examples" on page 368.

l password_coded element, which contains the encrypted password that is used to access a private
key stored under the alias supplied. See "SSL Tool Examples" on page 368 for an example that
prints out the encrypted form of a password supplied in plain text.

l One ormore destination elements each specify a rule. The rule can contain url or proxyName
attributes. The rule matches when a client use a proxy class specified by the proxyName attribute
or connects to a URL that is specified by the url attribute. The value of the url can end with a
wildcard * to specify amatch of all URLs that start with the string specified before the wildcard. The
whole destinationConfig element matches if at least one rule matches.

The first matching destinationConfig is used.

Product Documentation
Chapter 4: Administrator's Guide

HPE SOA Registry Foundation (10.04) Page 370 of 642

Chapter 5: Developer's Guide
The Developer's Guide is divided into the followingmain parts:

l Mapping of Resources covers registering various XML resources in HPE SOA Registry Foundation
includingWSDL definitions, schemas, and transformations.

l Client-Side Development describes the basic principles of using HPE SOA Registry Foundation
APIs. For each client API, there is a comprehensive description of data structures and operations
including links to JavaDoc, XML Schemas andWSDL documents.

l Server-Side Development discusses how to access server-side APIs, including custommodules,
interceptors, external validation services, and subscription notification services. The HPE SOA
Registry Foundation web framework is also described in this section.

l UDDI From Developer Tools discusses how to access UDDI Microsoft Visual Studio .NET.

l How to debug describes logging and using the SOAPSpy tool.

Mapping of Resources
HPE SOA Registry Foundation provides you with functionality to register the following resources:

l "WSDL" below definition

l "XML" on page 375 Schema (XSD)

l "XSD" on page 375

l "XSLT" on page 377

WSDL
This describes how to publish aWSDL file to HPE SOA Registry Foundation. The implementation
reflects the OASIS UDDI technical note UsingWSDL in a UDDI Registry, Version 2.0. As shown in
the following figure, the technical note suggests amapping betweenWSDL and UDDI.

WSDL TO UDDI

HPE SOA Registry Foundation (10.04) Page 371 of 642

https://www.oasis-open.org/

WSDL PortTypes
As shown in the following table, “WSDL portType:UDDI Mapping”, eachWSDL portTypemaps to a
tModel having the the same name as the local name of the portType in theWSDL specification. The
overviewURL of the tModel becomes the URL of theWSDL specification. The tModel contains a
categoryBag with a keyedReference for the type of WSDL artifact and the namespace of theWSDL
definitions element containing the portType, as follows:

l The type is categorized as portType.

l The namespace is categorized as theWSDL binding namespace.

WSDL portType:UDDI Mapping

WSDL UDDI

portType tModel (categorized as portType)

Namespace of portType keyedReference in categoryBag

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 372 of 642

Local name of portType tModel name

WSDL location overviewURL

WSDL Bindings
In similar fashion, as summarized in the following table, “wsdl binding:UDDI mapping”, WSDL bindings
aremapped to tModels created for each binding, with name of the tModel gathered from theWSDL
binding local name and the overviewURL again being the URL of theWSDL specification. Again, the
tModel contains a categoryBag, this time with the following keyedReferences:

l The type is categorized as binding.

l The namespace is categorized as theWSDL binding namespace.

l A portType category on the binding is used to refer to the portType tModel that was created for the
WSDL portType (as described above).

l The protocol and transport categories are set to the same attributes as described in theWSDL
binding, such as SOAP and HTTP, respectively.

wsdl binding:UDDI mapping

WSDL UDDI

Binding tModel (categorized as binding and wsdlSpec)

Namespace of binding keyedReference in categoryBag

Local name of binding tModel name

WSDL location overviewURL

portType binding keyedReference in categoryBag

Protocol keyedReference in categoryBag

Transport keyedReference in categoryBag

WSDL Service
WSDL services are represented as UDDI businessServices. The name is a human readable name.
The tModel again contains a categoryBag which this time contains the following keyedReferences:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 373 of 642

l The type is categorized as service

l The namespace is again categorized as theWSDL binding namespace.

l The local name is categorized as the local name of the service.

The businessService also contains a bindingTemplate:

l The access type is categorized as the access point of the service.

l The portType is categorized as the tModel of the portType.

l The binding is categorized as the tModel of the binding information.

l The local name is categorized as the local name of the port.

wsdl service:UDDI mapping

WSDL UDDI

Service businessService (categorized as service)

Namespace of service keyedReference in categoryBag

Local name of service keyedReference in categoryBag; optionally used name of service

Use Cases
HPE SOA Registry Foundation supports the following use cases:

l Publishing aWSDL file You can also specify how artifacts of theWSDL file will bemapped to the
existing UDDI structures.

l Search for aWSDL You can search for theWSDL file by WSDL location (URI).

l Unpublish and republish theWSDLYou can unpublish and republish theWSDL

Formore information, also see:

l User's Guide, “PublishingWSDLDocuments” in "Publishing" on page 265

l User's Guide, “FindWSDL” in "Searching" on page 256

l Developer's Guide, "WSDL Publishing" on page 422

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 374 of 642

XML
As shown in the following figure, an XML file is mapped to a tModel. The location of the XML file is
added to the tModel's overviewURL element. Namespaces aremapped to keyedReferences in the
tModel categoryBag. Each namespace is mapped to a tModel.

XML TO UDDI

XSD
As shown in the following figure, an XMLSchema file is mapped to a tModel. The location URI of the
XSD file is put to the tModels overviewURL element and the target namespace is mapped to a
keyedReference in the tModel category bag. xsd:types, xsd:elements and xsd:imports aremapped to
the tModel keyedReferences. For each type, element or import, a new tModel is created.

XSD to UDDI

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 375 of 642

Use Cases

HPE SOA Registry Foundation supports the following use cases:

l Publish an XML Schema:You can also specify how artifacts of the XMLSchema file will be
mapped to existing UDDI structures

l Search for an XML schema:

o Search for an XMLSchema that imports artifacts declared in the specified XSD file.

o Search for an XMLSchema located in a specified server or folder.

o Search for all XSL transformations that can process documents using a specified XSD.

o Search for all XSL transformations producing documents that use the specified XSD.

l Unpublish and republish the XML Schema: You can unpublish and republish the XMLSchema

For more information, also see:

l User's Guide, “Find XSD” in in "Searching" on page 256

l User's Guide, “Publish XSD” in "Publishing" on page 265

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 376 of 642

l Developer's Guide, "XSD Publishing" on page 435

XSLT
As shown in the following figure, “XSLT TOUDDI”, an XSL Transformation is mapped to a tModel:

l The location URI of the XSLT file is added to the tModel's overviewURL element.

l Namespaces aremapped to keyedReferences in the tModel's categoryBag.

l The xsl:import elements are alsomapped to keyedReferences in the tModel's categoryBag.

For each import and namespace, a new tModel is created.

XSLT TO UDDI

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 377 of 642

Client-Side Development
Client-Side Development includes the following sections:

l "UDDI APIs" below - Describes the principles of how to use HPE SOA Registry Foundation APIs.
The UDDI API set can be split by typical use case into two parts. The Inquiry API set is used to
locate and obtain details on entries in the UDDI registry. For example to find out endpoint of given
web service. The publication API set is used to publish and update information in the UDDI
registry.

l " Advanced APIs" on page 393 - Advanced APIs cover the following APIs: Validation API,
Taxonomy API, Category APIs, Administration Utilities API, Replication API, Statistics API,
Inquiry UI API, Subscription Ext Api, and Publishing API for resources:

o WSDLPublishing

o XSD Publishing

l "Security APIs " on page 453 - Security APIs cover the following APIs: Account API, Group API,
Permission API.

l "Registry Client" on page 471 - This section describes how to prepare your own client distribution. A
client created this way allows you to access the HPE SOA Registry Foundation API through a
SOAP interface.

l "Client Authentication" on page 480 - describes how to create a client that autheticates thru HTTP
Basic.

UDDI APIs
UDDI (Universal Description Discovery and Integration) is a set of Web service that supports the
description and discovery of Web service providers, Web services and technical fingerprints of those
Web service.

The UDDI API set can be split by typical use case into two parts. The Inquiry API set is used to locate
and obtain details on entries in the UDDI registry. For example to find out endpoint of given web
service. The publication API set is used to publish and update information in the UDDI registry.

The UDDI API set is described in the following topics:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 378 of 642

l "Principles To Use UDDI API" below

l UDDI Version 1

l "UDDI Version 2" on page 385

l "UDDI Version 3" on page 385

l "UDDI Version 3 Extension" on page 387

Principles To Use UDDI API
This section will show you how to use the HPE SOA Registry Foundation API. Examples are based on
the UDDI version 3 Specification.

To use Inquiry APIs you can follow these steps. The complete code fragment is shown in "Example:
FindBinding v3" on page 381.

1. Get API implementation from stub

String url = "http://localhost:8080/uddi/inquiry";
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);

2. Collect inquiry parameters

String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
Find_binding find_binding = new Find_binding();
find_binding.setServiceKey(serviceKey);
find_binding.addTModelKey(tModelKey);
find_binding.setMaxRows(new Integer(10));

3. Call inquiry method

BindingDetail bindingDetail = inquiry.find_binding(find_binding);

4. Operate with inquiry result

ListDescription listDescription = bindingDetail.getListDescription();
if (listDescription != null) {

int includeCount = listDescription.getIncludeCount();
int actualCount = listDescription.getActualCount();
int listHead = listDescription.getListHead();
System.out.println("Displaying " + includeCount + " of " +

actualCount+ ", starting at position " + listHead);
}

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 379 of 642

http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

Note: If you get the java.lang.reflect.UndeclaredThrowableException exception,
check whether HPE SOA Registry Foundation is running.

To use the publishing API, follow these steps. The complete code fragment is shown in "Example:
SaveService v3" on page 382.

1. Get API of security stub

String securityUrl = "http://localhost:8080/uddi/security";
UDDI_Security_PortType security = UDDISecurityStub.getInstance(securityUrl);
String publishingUrl = "http://localhost:8080/uddi/publishing";
UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance
(publishingUrl);

2. Get authentication token

AuthToken authToken = security.get_authToken(new Get_authToken(userName,
password));
String authInfo = authToken.getAuthInfo();

3. Create save object

String businessKey = "uddi:systinet.com:demo:it";
String serviceKey = ""; // serviceKey is optional
int count = 1;
String[] serviceNames = new String[count];
String[] languageCodes = new String[count];
languageCodes[0] = null; // can set an array of language codes
serviceNames[0] = "Requests Service"; //service name
String serviceDescription = "Saved by Example"; //service description
BusinessService businessService = new BusinessService();
businessService.setBusinessKey(businessKey);
if (serviceKey != null && serviceKey.length() > 0)

businessService.setServiceKey(serviceKey);
businessService.addName(new Name(serviceNames[0], languageCodes[0]));
businessService.addDescription(new Description(serviceDescription));
Save_service save = new Save_service();
save.addBusinessService(businessService);
save.setAuthInfo(authInfo);

4. Call publishingmethod

ServiceDetail serviceDetail = publishing.save_service(save);

5. Operate with publishing result

BusinessServiceArrayList
businessServiceArrayList = serviceDetail.getBusinessServiceArrayList();

int position = 1;

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 380 of 642

for (Iterator iterator = businessServiceArrayList.iterator();
iterator.hasNext();) {

BusinessService service = (BusinessService) iterator.next();
System.out.println("Service " + position + " : " + service.getServiceKey

());
System.out.println(service.toXML());
position++;

}

6. Discard the authentication token

security.discard_authToken(new Discard_authToken(authInfo));

Example: FindBinding v3

// //(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

package example.inquiry;

import org.systinet.uddi.client.v3.UDDIInquiryStub;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import java.util.Iterator;

public class PrincipleFindBinding {

public static void main(String args[]) throws Exception {

//1. Get API implementation from stub
String url = "http://localhost:8080/uddi/inquiry";
System.out.print("Using Inquiry at url " + url + " ..");
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
System.out.println(" done");

//2. Collect inquiry parameters
String serviceKey = "uddi:systinet.com:demo:hr:employeesList";
String tModelKey = "uddi:systinet.com:demo:employeeList:binding";
Find_binding find_binding = new Find_binding();
find_binding.setServiceKey(serviceKey);
find_binding.addTModelKey(tModelKey);
find_binding.setMaxRows(new Integer(10));

//3. Call inquiry method
System.out.print("Search in progress ..");
BindingDetail bindingDetail = inquiry.find_binding(find_binding);
System.out.println(" done");

//4. Operate with result
ListDescription listDescription = bindingDetail.getListDescription();
if (listDescription != null) {

int includeCount = listDescription.getIncludeCount();

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 381 of 642

int actualCount = listDescription.getActualCount();
int listHead = listDescription.getListHead();
System.out.println("Displaying " + includeCount + " of " +

actualCount
+ ", starting at position " + listHead);

}
BindingTemplateArrayList bindingTemplateArrayList

= bindingDetail.getBindingTemplateArrayList();
if (bindingTemplateArrayList == null) {

System.out.println("Nothing found");
return;

}

int position = 1;
for (Iterator iterator = bindingTemplateArrayList.iterator();

iterator.hasNext();) {
BindingTemplate bindingTemplate = (BindingTemplate)

iterator.next();
System.out.println("Binding " + position + " : " +

bindingTemplate.getBindingKey());
System.out.println(bindingTemplate.toXML());
position++;

}
}

}

Example: SaveService v3

// //(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

package example.publishing;

import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDISecurityStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.UDDI_Security_PortType;
import org.systinet.uddi.client.v3.struct.AuthToken;
import org.systinet.uddi.client.v3.struct.BusinessService;
import org.systinet.uddi.client.v3.struct.BusinessServiceArrayList;
import org.systinet.uddi.client.v3.struct.Description;
import org.systinet.uddi.client.v3.struct.Discard_authToken;
import org.systinet.uddi.client.v3.struct.DispositionReport;
import org.systinet.uddi.client.v3.struct.Get_authToken;
import org.systinet.uddi.client.v3.struct.Name;
import org.systinet.uddi.client.v3.struct.Save_service;
import org.systinet.uddi.client.v3.struct.ServiceDetail;

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 382 of 642

import javax.xml.soap.SOAPException;
import java.util.Iterator;

public class PrincipleSaveService {

public static void main(String[] args) throws UDDIException,
InvalidParameterException, SOAPException {

String userName = "demo_john";
String password = "demo_john";

//1. Get API implementation from stub
String securityUrl = "http://localhost:8080/uddi/security";
System.out.print("Using Security at url " + securityUrl + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance

(securityUrl);
System.out.println(" done");
String publishingUrl = "http://localhost:8080/uddi/publishing";
System.out.print("Using Publishing at url " + publishingUrl + " ..");
UDDI_Publication_PortType publishing = UDDIPublishStub.getInstance

(publishingUrl);
System.out.println(" done");

//2. Get authentication token
System.out.print("Logging in ..");
AuthToken authToken =

security.get_authToken(new Get_authToken(userName, password));
System.out.println(" done");
String authInfo = authToken.getAuthInfo();

//3. Create save object
String businessKey = "uddi:systinet.com:demo:it";
String serviceKey = ""; // serviceKey is optional
int count = 1;
String[] serviceNames = new String[count];
String[] languageCodes = new String[count];
languageCodes[0] = null; // can set an array of language codes
serviceNames[0] = "Requests Service"; //service name
String serviceDescription = "Saved by Example"; //service description
BusinessService businessService = new BusinessService();
businessService.setBusinessKey(businessKey);
if (serviceKey != null && serviceKey.length() > 0)

businessService.setServiceKey(serviceKey);
businessService.addName(new Name(serviceNames[0], languageCodes[0]));
businessService.addDescription(new Description(serviceDescription));

Save_service save = new Save_service();
save.addBusinessService(businessService);
save.setAuthInfo(authInfo);

//4. Call publishing method
System.out.print("Save in progress ...");

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 383 of 642

ServiceDetail serviceDetail = publishing.save_service(save);
System.out.println(" done");

//5. Operate with publishing result
BusinessServiceArrayList businessServiceArrayList =

serviceDetail.getBusinessServiceArrayList();
int position = 1;
for (Iterator iterator = businessServiceArrayList.iterator();
iterator.hasNext();) {
BusinessService service = (BusinessService) iterator.next();
System.out.println("Service " + position + " : "
+ service.getServiceKey());

System.out.println(service.toXML());
position++;

}

//6. Discard authentication token
System.out.print("Logging out ..");
security.discard_authToken(new Discard_authToken(authInfo));
System.out.println(" done");

}

}

UDDI Version 1
The UDDI version 1 Specification has provided a foundation for next versions.

Inquire

l WSDL: REGISTRY_HOME/doc/wsdl/inquire_v1.wsdl

l API endpoint: http://<host name>:<port>/uddi/inquiry

l Java API: org.systinet.uddi.client.v1.InquireSoap

l Demos: Inquiry demos v1

Publish

l WSDL: REGISTRY_HOME/doc/wsdl/publish_v1.wsdl

l API endpoint: http://<host name>:<port>/uddi/publishing

l Java API: org.systinet.uddi.client.v1.PublishSoap

l Demos: Publishing demos v1

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 384 of 642

https://www.oasis-open.org/committees/uddi-spec/doc/contribs.htm#uddiv1
http://org.systinet.uddi.client.v1.inquiresoap/
http://org.systinet.uddi.client.v1.publishsoap/

UDDI Version 2
The UDDI version 2 Specification has introducedmany improvements of existing concepts and new
features like service projections.

Inquiry

l Specification: Inquiry API functions

l WSDL: REGISTRY_HOME/doc/wsdl/inquire_v2.wsdl

l API endpoint: http://<host name>:<port>/uddi/inquiry

l Java API: org.systinet.uddi.client.v2.Inquire

l Demos: Inquiry demos v2

Publish

l Specification: Publishing API Function

l WSDL: REGISTRY_HOME/doc/wsdl/publish_v2.wsdl

l API endpoint: http://<host name>:<port>/uddi/publishing

l Java API: org.systinet.uddi.client.v2.Publish

l Demos: Publishing demos v2

UDDI Version 3
The UDDI version 3 Specification is amajor step in providing industry standard for building and
querying XMLweb services registries useful in both public and private deployments.

Inquiry

l Specification: "Inquiry API set" in the UDDI version 3 Specification

l API endpoint: http://<host name>:<port>/uddi/inquiry

l Java API: org.systinet.uddi.client.v3.UDDI_Inquiry_PortType

l Demos: Inquiry demos v3

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 385 of 642

http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm

Publication

l Specification: "Publication API set" in the UDDI version 3 Specification

l API endpoint: http://<host name>:<port>/uddi/publishing

l Java API: org.systinet.uddi.client.v3.UDDI_Publication_PortType

l Demos: Publishing demos v3

Security

l Specification: "Security API set" in the UDDI version 3 Specification

l API endpoint: http://<host name>:<port>/uddi/security

l Java API: org.systinet.uddi.client.v3.UDDI_Security_PortType

Custody

The Custody andOwnership Transfer API is used to transfer UDDI structures between UDDI nodes
and to change their ownership. One use case is when the publisher wishes to transfer responsibility for
a selected UDDI structure to another user, typically after a business reorganization.

l Specification: Custody andOwnership Transfer API Set

l API endpoint: http://<host name>:<port>/uddi/custody

l Java API: org.systinet.uddi.client.custody.v3.UDDI_CustodyTransfer_PortType

l Demos: Custody Demos

Subscription

The Subscription API is a service that asynchronously sends notification to users who have registered
an interest in changes to a registry. These users have a range of options in specifyingmatching criteria
so that they receive only the information in which they are interested.

l Specification: Subscription API Set

l API endpoint: http://<host name>:<port>/uddi/custody

l Java API: org.systinet.uddi.client.subscription.v3.UDDI_Subscription_PortType

l Demos: Subscription Demos

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 386 of 642

http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm
http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm

UDDI Version 3 Extension
UDDI Version 3 Extensions are HPE extensions of the UDDI Version 3 Specification. The following
data structures are used by APIs for the Registry Console and APIs that will be approved as official
technical notes of the UDDI specification.

Data Structures

businessEntityExt

Attributes

Name Required

businessKey Optional

This structure is used by the Registry Console for performance enhancements. The structure is an
extension of businessEntity, the added element is uddi:assertionStatusItem that points to the related
businessEntity,

businessInfoExt

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 387 of 642

http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm

Attributes

Name Required

businessKey Optional

This structure is an extension of the businessInfo structure; the added element is uddi_
ext:contactInfos.

contactInfo

Attributes

Name Required

useType Optional

This structure represents a person name for the businessInfoExt.

contactInfos

Attributes

Name Required

useType Optional

This structure holds a list of contactInfos.

operationalInfoExt

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 388 of 642

Attributes

Name Required

entityKey Required

entityKeyV2 Optional

This structure is an extension of the operationalInfo structure, the added element is uddi:name. The
entityKeyV2 holds UDDI v2 key values.

qualifiedKeyedReference

Attributes

Name Required

tModelKey Required

keyName Optional

keyValue Required

This structure holds findQualifiers that are used in RangeQueries.

registeredInfoExt

Attributes

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 389 of 642

Name Required

truncated Optional

This structure is used by ACL functionality. The added elements are uddi:serviceInfos and
uddi:bindingTemplates that point to UDDI entities the user does not own but has privileges to
modify.

serviceInfoExt

Attributes

Name Required

serviceKey Required

businessKey Required

This structure is an extension of serviceInfo. It is used by the web interface for performance
enhancements. The added elements are uddi:description and uddi:bindingTemplates.

Find Qualifiers

UDDI V3 Specification permits vendors to define new find qualifiers. Table “Summary of Additional
Find Qualifiers in HPE SOA Registry Foundation ” summarizes the additional find qualifiers in HPE
SOA Registry Foundation and the find_xx operations that support them. See “Inquiry” in "UDDI Version
3" on page 385 for more information on inquiry API operations.

Each short name in the following table, links to a subsection that follows. Note that the tModel key is
the short name prefixed with uddi:systinet.com:findQualifier:.

Summary of Additional Find Qualifiers in HPE SOA Registry Foundation

Short Name Supporting Operations

find_
business

find_
service

find_
binding

find_
tModel

find_
relatedBusinesses

deletedTModels ✓

foreignEntities ✓ ✓ ✓ ✓

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 390 of 642

keyNameMatch ✓ ✓ ✓ ✓ ✓

myEntities ✓ ✓ ✓ ✓

omitKeyNameMatch ✓ ✓ ✓ ✓ ✓

omitKeyValueMatch ✓ ✓ ✓ ✓ ✓

omitTModelKeyMatch ✓ ✓ ✓ ✓ ✓

tModelKeyApproximateMatch ✓ ✓ ✓ ✓ ✓

deletedTModels

This find qualifier returns only hidden tModels, hence enabling administrators to locate and permanently
delete garbage tModels.

Note that the registry settings determine whether delete_tModel:

l just hides the tModel from find_tModel operations (default behavior required by the specification);

l really deletes the tModel, provided there are no dependencies on it;

See "Node" on page 341 in the Administrator's Guide for more information.

tModel Key uddi:systinet.com:findQualifier:deletedTModels

Supporting Operations find_tModel.

foreignEntities

This find qualifier restricts results to entities that do not belong to the caller.

Note: This qualifier does not make any sense for an anonymous caller because all entities will be
returned in the query.

tModel Key uddi:systinet.com:findQualifier:foreignEntities

Supporting Operations All find_xx operations except find_relatedBusinesses.

keyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when theGeneral Keywords tModelKey is specified. This find qualifier enforces comparison
of keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers aremutually exclusive.

tModel Key uddi:systinet.com:findQualifier:keyNameMatch

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 391 of 642

Supporting Operations All find_xx operations.

myEntities

This find qualifier restricts results to entities that belong to the caller.

Note: This qualifier does not make any sense for an anonymous caller. All entities would be
returned in that case.

tModel Key uddi:systinet.com:findQualifier:myEntities

Supporting Operations All find_xx operations except find_relatedBusinesses.

omitKeyNameMatch

This find qualifier changes default rules for matching keyedReferences. By default keyNames are only
compared when theGeneral Keywords tModelKey is specified. This find qualifier skips comparison of
keyNames.

The keyNameMatch and omitKeyNameMatch findQualifiers aremutually exclusive.

tModel Key uddi:systinet.com:findQualifier:omitKeyNameMatch

Supporting Operations All find_xx operations.

omitKeyValueMatch

This find qualifier changes default rules for matching keyedReferences. By default keyValues are
compared. This find qualifier skips comparison of keyValues.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers aremutually exclusive.

tModel Key uddi:systinet.com:findQualifier:omitKeyValueMatch

Supporting Operations All find_xx operations.

omitTModelKeyMatch

This find qualifier changes default rules for matching keyedReferences. By default tModelKeys are
compared. This find qualifier skips comparison of tModelKeys.

The omitKeyValueMatch and omitTModelKeyMatch findQualifiers aremutually exclusive.

tModel Key uddi:systinet.com:findQualifier:omitTModelKeyMatch

Supporting Operations All find_xx operations.

tModelKeyApproximateMatch

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 392 of 642

This find qualifier changes the default rules for matching keyedReferences. By default tModelKeys are
compared without wildcards and case insensitively. This find qualifier enables a tModelKey in a query
to include wildcards:

l '%' interpreted as zero or more arbitrary characters;

l '_' interpreted as an arbitrary character.

The behavior is similar to the approximateMatch find qualifier.

tModel Key uddi:systinet.com:findQualifier:tModelKeyApproximateMatch

Supporting Operations All find_xx operations.

Advanced APIs
Advanced APIs cover the following APIs:

l "Validation" on the next page - The Valueset Validation API is used to validate values in
keyedReferences involved in save operations that reference checked taxonomies. Valueset
validation is defined in the UDDI version 3 specification. Every checked taxonomy requires aWeb
service that implements this API.

l "Taxonomy" on page 395 - The Systinet Taxonomy API provides a high-level view of taxonomies
andmakes them easy tomanage and query. This API was designed according to the UDDI
technical note Providing A Value Set For Use In UDDI Version 3.

l "Category" on page 406 - The Systinet Category API complements the Systinet Taxonomy API.
It is used to query and tomanipulate Internal taxonomies in HPE SOA Registry Foundation. More
information on the subject of internal taxonomies can be found in the API documentation. The
categories may be hierarchically organized. Each category may be top-level (without parent), it may
have children, or it may be a child of another category. You can drill down through this pattern In the
Registry Console.

l "Administration Utilities" on page 412 - The Systinet Administration Utilities API provides an
interface to perform several low level administrative tasks in HPE SOA Registry Foundation.

l "Replication" on page 417 - The Replication API is used to launch replications in HPE SOA
Registry Foundation.

l "Statistics" on page 418- The Systinet Statistics API provides useful information about HPE SOA
Registry Foundation usage.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 393 of 642

http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm

l "WSDL Publishing" on page 422 - HPE SOA Registry FoundationWSDL-to-UDDI mapping is
compliant with OASIS's Technical Note, UsingWSDL in a UDDI registry Version 2.0. It enables
the automatic publishing of WSDL documents to UDDI, enables precise and flexible UDDI queries
based on specific WSDL artifacts andmetadata, and provides a consistent mapping for UDDI v2
and UDDI v3.

l "XSD Publishing" on page 435 - XSD2UDDI. These API sets allow you tomanipulate with
resources in HPE SOA Registry Foundation. XML Schemas are supported.

l "Inquiry UI" on page 446 - The Inquiry UI API has been implemented for improving the
performance of the Business Service Console. The basic idea is to retrieve data that appear in the
Business Service Console using a single API call.

Validation
The Valueset validation API is used to validate values in keyedReferences involved in save operations
that reference checked taxonomies. Valueset validation is defined in the UDDI version 3 specification.
Every checked taxonomy requires aWeb service that implements this API. The API is defined by the
uddi:uddi.org:v3_valueSetValidation tModel for UDDI version 3, uddi:systinet.com:v2_
validateValues for UDDI version 2 and uddi:systinet.com:v1_validateValues for UDDI version
1.

HPE SOA Registry Foundation is built according to the UDDI technical note Providing A Value Set For
Use In UDDI Version 3. To function correctly, checked taxonomies must be categorized with uddi-
org:validatedBy taxonomy pointing to the bindingTemplate with the valueset validationWeb service
accessPoint. This Web service is called whenever the checked taxonomy occurs within a
keyedReference during a save operation.

If theWeb service is accessible by HPE SOA Registry Foundation's classloader, the validationWeb
service does not need to be invoked over SOAP, but it may run inside the registry's Java Virtual
Machine.

The accessPoint valuemust be in a special form: It must start with the class: prefix and continue with
fully qualified class name. For example, the internal validation service endpoint is defined as follows:
class:com.systinet.uddi.publishing.v3.validation.service.AclValidator.

For more information, consult the UDDI version 3 specification, section 5.6 .

SOAP
Specification: REGISTRY_HOME/doc/wsdl/uddi_vs_v3.wsdl

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 394 of 642

https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.uddi.org/pubs/uddi_v3.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

Java

l Java API: org.systinet.uddi.client.valueset.validation.v3.UDDI_ValueSetValidation_PortType

l Demos: Validation demos

Taxonomy
The Systinet Taxonomy API provides high-level view of taxonomies andmakes them easy tomanage
and query. This API was built according to the UDDI technical note Providing A Value Set For Use In
UDDI Version 3.

Data Structures
The following structures are used by the Systinet Taxonomy API:

Categories

This structure is a container for zero or more category structures. If the taxonomy is internal, then
categories are used to hold possible values of its keyedReferences.

categorizationBag

This structure is a container for one or more categorizations. It defines the containers (categoryBag,
keyedReferenceGroup, identifierBag and Publisher Assertion) in which this taxonomy can be used.
Possible values are categorization, categorizationGroup, identifier, and relationship. A save operation
containing a keyedReference referencing a taxonomy in the wrong container will be denied with E_
valueNotAllowed UDDI exception.

Category

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 395 of 642

http://org.systinet.uddi.client.valueset.validation.v3.uddi_valuesetvalidation_porttype/
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-valuesetprovider-20030212.htm

This structure corresponds to the keyedReference. It defines the keyedReference of the taxonomy in
which it is used. The keyValue must be unique. The disabled attribute is used tomark the category as
either helper or deprecated, so it cannot be used as a valid option in keyedReferences. The keyName
attribute serves as a label for this category.

Attributes

Name Required

keyName Yes

keyValue Yes

disabled No

compatibilityBag

This structure is a container for one or more compatibilities. It defines the compatibility of the taxonomy
with the four basic UDDI data structures - tModel, businessEntity, businessService and
bindingTemplate. If the taxonomy is not compatible with one of these UDDI structures, then a save
operation containing a keyedReference referencing this taxonomy in this structure will be denied with
E_valueNotAllowed UDDI exception.

taxonomy

Attributes

Name Required

check No

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 396 of 642

unvalidatable No

brief No

Each taxonomy is identified by its tModel.

l The optional check attribute is used to define whether the taxonomy is checked or not. If the tModel
is checked, then a validation structuremust be present.

l The unvalidatable attribute is used tomark the checked taxonomy as unvalidatable.
Unvalidatable taxonomies cannot be used in keyedReferences.

l The brief attribute is related to categories structure and its meaning depends on context, in which
it is used.

taxonomyDetail

Attributes

Name Required

truncated No

This structure is a container for zero or more taxonomies. The truncated attribute indicates whether
the list of taxonomies is truncated.

taxonomyInfo

Attributes

Name Required

check Yes

unvalidatable No

The taxonomyInfo is an extension of the tModelInfo structure.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 397 of 642

l The check attribute indicates whether or not the taxonomy is checked.

l The unvalidatable attribute is used tomark the checked taxonomy as unvalidatable.
Unvalidatable taxonomies cannot be used in keyedReferences.

taxonomyInfos

This structure is a container for zero or more taxonomyInfo structures.

taxonomyList

This structure serves as a container for optional listDescription and optional taxonomyInfos
structures. The truncated attribute indicates whether the list of taxonomies is truncated.

Attributes

Name Required

truncated Yes

validation

This structure is used to hold information for validating a checked taxonomy. The categories
structure defines the list of available values for keyedReferences checked by the Internal validation
service. Binding templates contains the valueset validationWeb service endpoint.

Operations
delete_taxonomy

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 398 of 642

The delete_taxonomy API call is used to delete one or more taxonomies from HPE SOA Registry
Foundation. The taxonomy consists of a tModel and optional business services and categories.

Arguments

l uddi:authInfo - This optional argument is an element that contains an authentication token.

l uddi:tModelKey - One or more required uddiKey values that represent existing taxonomy tModels.

Upon successful completion, a disposition report is returned with a single success indicator.

Permissions

This API call requires API manager permission with the name
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action delete_taxonomy.

download_taxonomy

The download_taxonomy API call is used to fetch a selected taxonomy from HPE SOA Registry
Foundation. This call is stream oriented and is useful for fetching the content of very large taxonomies.

Arguments

l taxonomy:authInfo - This optional argument is an element that contains an authentication token.

l uddi:tModelKey - required uddiKey value that represents an existing taxonomy tModel.

Returns

This API call returns a ResponseMessageAttachment with the selected taxonomy upon success.

Permissions

This API call requires the API manager permission with name
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action download_taxonomy.

find_taxonomy

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 399 of 642

The find_taxonomy API call is used to find all taxonomies in a registry that match given criteria. This
call is an extension of the UDDI v3 find_tModel API call.

Attributes

Name Required

check No

unvalidatable No

Arguments

l uddi:authInfo - This optional argument is an element that contains an authentication token.

l uddi:findQualifiers - The collection of findQualifier used to alter default behavior.

l uddi:name - The string value represents the name of tModel to be found.

l uddi:identifierBag - The list of keyedReferences from tModel IdentifierBag.

l uddi:categoryBag - The list of keyedReferences from tModel categoryBag.

l taxonomy:compatibilityBag - An optional list of Compatibilities.

l taxonomy:categorizationBag - An optional list of Categorizations.

l check - Optional boolean value that limits returned data to checked (or unchecked) taxonomies
only.

l unvalidatable - Optional boolean value that limits returned data to unvalidatable taxonomies only.

Note: The unvalidatable attribute of the tModel of a checked taxonomy will be set to true, if one
of the following rules is met:

l The tModel of a checked taxonomy does not contain the validatedBy keyedReference

l The bindingTemplate from keyedReferences does not exists or is not readable because of
ACLs.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 400 of 642

Returns

This API call returns the TaxonomyList upon success.

Permissions

This API call requires API user permission org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
and the action find_taxonomy.

get_taxonomy

The get_taxonomy API call returns the Taxonomy structure corresponding to each of the tModelKey
values specified.

Attributes

Name Required

brief No

Arguments

l uddi:authInfo - This optional argument is an element that contains an authentication token.

l uddi:tModelKey - Required uddiKey value representing an existing taxonomy tModel.

l brief - Requests not to fetch the categories element. Note that only the API manager can set this
attribute to false.

Returns

This API call returns the TaxonomyList on success.

Note: If the tModel of a checked taxonomy does not contain the validatedBy keyedReference, the
taxonomy's unvalidatable attribute will be set to true and the validation structure will be
missing.

Permissions

This API call requires the API user permission
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action get_taxonomy.

save_taxonomy

The save_taxonomy API call is used to publish taxonomies to HPE SOA Registry Foundation.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 401 of 642

The taxonomy properties (checked, unvalidatable, compatibilityBag, and categorizationBag) are first
combined with their counterparts in the tModel's categoryBag.

Note: It is an error to specify a validation structure for an unchecked taxonomy. If the taxonomy
contains a validation structure, it is automatically set to be checked. If the taxonomy is neither
checked nor unchecked, it will be saved as unchecked. If a checked taxonomy does not have a
validation structure, the taxonomy is saved with the unvalidatable attribute set to true.

If the categories structure is defined in the validation structure, then the taxonomy will be checked by
the Internal validation service. The bindingTemplates are optional; if they are specified, then their
AccessPoint must point to the Internal validation service's Web service endpoint.

If the categories structure is not defined in the validation structure, then theremust be at least one
bindingTemplate. The bindingTemplate must implement valueset validation API (either
uddi:uddi.org:v3_valueSetValidation, uddi:systinet.com:v2_validateValues or
uddi:systinet.com:v1_validateValues). Theremust be a valid AccessPoint.

If the serviceKey is given, then this businessServicemust be part of the Operational business entity
(uddi:systinet.com:uddinodebusinessKey). During the save_taxonomy operation, the
businessService will be overwritten.

Arguments

l taxonomy:authInfo - This optional argument is an element that contains an authentication token.

l taxonomy:taxonomy - A list of taxonomies to be saved.

Returns

This API call returns the TaxonomyDetail on success.

Permissions

This API call requires the API manager permission
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action save_taxonomy.

upload_taxonomy

The upload_taxonomy API call is used to publish a Taxonomy into HPE SOA Registry Foundation.
This call is stream oriented and is useful for publishing very large taxonomies.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 402 of 642

Permissions

This API call requires the API manager permission named
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and the action upload_taxonomy.

Persistence Format
The taxonomy persistence format is used by taxonomy Download/Upload operations. Following is an
example of the taxonomy persistence format:

<taxonomy xmlns="http://systinet.com/uddi/taxonomy/v3/5.0"
xmlns:uddi="urn:uddi-org:api_v3"

check="true">
<tModel tModelKey="uddi:foo.com:demo:myTaxonomy">

<uddi:name>My taxonomy</uddi:name>
<uddi:description>Category system</uddi:description>

</tModel>
<compatibilityBag>

<compatibility>businessEntity</compatibility>
</compatibilityBag>
<categorizationBag>

<categorization>categorization</categorization>
</categorizationBag>
<validation>

<bindingTemplate bindingKey="" serviceKey="" xmlns="urn:uddi-org:api_v3">
<accessPoint useType="endPoint">

http://www.foo.com/MyValidationService.wsdl
</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo
tModelKey="uddi:uddi.org:v3_valueSetValidation"/>

<tModelInstanceInfo
tModelKey="uddi:systinet.com:demo:myTaxonomy"/>

</tModelInstanceDetails>
</bindingTemplate>

</validation>
</taxonomy>

This format reflects the REGISTRY_HOME/doc/wsdl/taxonomy.wsdl XMLSchemaDefinition file. For
more information, see the data structure of “taxonomy”.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 403 of 642

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/taxonomy.wsdl .

API Endpoint
You can find the Taxonomy API endpoint at http://<host name>:<port>/uddi/taxonomy.

Java
Systinet Java API is generated from Taxonomy WSDL. You are encouraged to browse
org.systinet.uddi.client.taxonomy.v3.TaxonomyApi and to read and try Taxonomy demos.

Taxonomy 5.5 Extension
This section describes the taxonomy 5.5. extension intended for Range queries functionality
implementation.

Data Structures

The following structures are used by the Systinet Taxonomy 5.5 API:

Taxonomy

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 404 of 642

Attributes

Name Required

check No

unvalidatable No

brief No

This structure is almost identical to taxonomy, except that the transformation argument has been
added.

taxonomyInfo

Attributes

Name Required

check Yes

tModelKey Yes

unvalidatable No

isOrderedBy No

This structure is almost identical to taxonomyInfo, except that the optional attribute isOrderedBy was
added to contain the name of the comparator tModel.

transformation

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 405 of 642

This structure holds a reference to a transformation service implementation. For more information about
the transformation service, see “Custom Ordinal Types” in "Taxonomy: Principles, Creation and
Validation" on page 224 in the User's Guide.

l uddi:tModel - The tModel that represents a comparator taxonomy.

l uddi:bindingTemplate - This argument holds the reference of the transformation service
implementation. The accessPoint element of the bindingTemplate includes the name of the java
class implementation of the sevice with the prefix class:.

l uddi:tModelKey The key of the tModel that represents the transformation.

API Endpoint

You can find the Taxonomy 5.5 API endpoint at http://<host name>:<port>/uddi/taxonomy55.

Category
The Systinet Category API complements the Systinet Taxonomy API. It is used to query and to
manipulate Internal taxonomies in HPE SOA Registry Foundation. The categories may be
hierarchically organized. Each category may be top-level (without parent), it may have children, or it
may be a child of another category. You can drill down through this pattern in the Registry Console.

Data Structures
The following structures are used by the Systinet Category API:

Categories

This structure is a container for zero or more category elements.

category

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 406 of 642

Attributes

Name Required

disabled No

leaf No

This element contains a single keyedReference element that defines value of the category.

The disabled attribute is used to indicate that a category cannot be used as a valid option in
keyedReferences. Either it has been deprecated or it is only a parent for other categories. The tModel
key value in the uddi-org:types taxonomy is one such disabled category.

The leaf attribute indicates whether this category is a leaf in the category tree.

categoryList

Attributes

Name Required

truncated No

This structure serves as a container for optional listDescription and categories structures. The
truncated attribute indicates whether a returned list of categories is truncated.

Operations
add_category

The add_category API call is used to add a new category to the Internal taxonomy identified by the
tModelKey in the keyedReference. The parentKeyedReference element is used to define the parent
category of new category to be saved. If the parentKeyedReference element is missing, then the new
category will have no parent.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 407 of 642

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l category:category - Category to be added.

l parentKeyedReference - Optional keyedReference; serves as parent of the new category.

Permissions

This API call requires API manager permission for
org.systinet.uddi.client.category.v3.CategoryApi and for the action add_category.

delete_category

The delete_category API call deletes the selected category from HPE SOA Registry Foundation.

Syntax

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l keyedReference - Category to be deleted.

Permissions

This API call requires API manager permission for
org.systinet.uddi.client.category.v3.CategoryApi and the action delete_category.

find_category

The find_category API call is used to query HPE SOA Registry Foundation for categories that match
given criteria.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 408 of 642

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l category:findQualifiers - Optional list of findQualifiers, that modifies default behavior.

l uddi:keyedReference - The category containing search arguments.

Behavior

FindByName and findByValue findQualifiers are used to distinguish whether the call will search by
keyName or keyValue from the keyedReference that is the argument of the call. The default is to
search by value.

The caseSensitiveMatch and caseInsensitiveMatch findQualifiers are used to control whether the
search will be case sensitive; the default is case sensitive.

The ApproximateMatch findQualifier is used to search with SQLwildcards. The default findQualifier,
exactMatch, instructs the search to perform an exact comparison.

Finally there are four findQualifiers that affect the order in which categories are returned:

l sortByNameAsc

l sortByNameDesc

l sortByValueAsc (default)

l sortByValueDesc

These find qualifiers are exclusive. If you combine them, an exception is thrown.

Returns

This API call returns a CategoryList upon success.

get_rootCategory

The get_rootCategory API call returns all categories of the Internal taxonomy identified by given
tModelKey that have no parent.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 409 of 642

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l uddi:tModelKey - Required uddiKey value that represents an existing taxonomy tModel.

l category:getQualifiers - Control search behavior.

Returns

This API call returns a CategoryList upon success.

get_rootPath

The get_rootPath API call returns categories from root category, then its child categories until the
selected category in this order: root category, parent's parent, parent and the selected category.

Syntax

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l uddi:keyedReference - Category to be searched

Returns

This API call returns a CategoryList upon success.

move_category

The move_category API call is used tomove selected category from current parent (if any) to a new
parent category. If the newParentKeyedReference is not defined, then the category will have no parent.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 410 of 642

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l keyedReference - Category to be deleted.

l newParentKeyedReference - Optional category, that becomes new parent of the category.

Permissions

This API call requires API manager permission for
org.systinet.uddi.client.category.v3.CategoryApi and the action move_category.

set_category

The set_category API call is used to update the selected category in HPE SOA Registry Foundation.

Syntax

Arguments

l category:authInfo - This optional argument is an element that contains an authentication token.

l oldKeyedReference - Current category to be updated.

l category:category - New category, that will replace selected category.

Permissions

This API call requires API manager permission for
org.systinet.uddi.client.category.v3.CategoryApi and the action set_category.

WSDL
You can find this API's WSDL specification in the file REGISTRY_HOME/doc/wsdl/category.wsdl .

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 411 of 642

API Endpoint
You can find the Category API at http://<host name>:<port>/uddi/category.

Java
Systinet Java API is generated from Category WSDL. You are encouraged to browse
org.systinet.uddi.client.category.v3.CategoryApi and to read and try Category demos.

Administration Utilities
The Systinet Administration Utilities API provides an interface to perform several low level
administration tasks in HPE SOA Registry Foundation.

Operations
cleanSubscriptionHistory

This utility removes subscription histories from HPE SOA Registry Foundation. If the olderThan
value is not specified, the utility deletes all historical data; otherwise it deletes data older than the
specified value.

Syntax

Arguments

l uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

l olderThan - Optional argument specifying the date before which subscription history is deleted.

Permissions

This API call requires API manager permissions for
org.systinet.uddi.admin.AdministrationUtilsApi and for the cleanSubscriptionHistory action.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 412 of 642

clean_unusedAccounts

This utility is useful when LDAP is used as a user store. HPE SOA Registry Foundation treats LDAP
as read-only and all data from LDAP is mirrored to the registry's database. After you remove users from
LDAP using LDAP tools, data removed from LDAP stays in the database. To remove the orphan data
from the database, execute the clean_unusedAccounts operation.

Syntax

Permissions

This API call requires API manager permissions for
org.systinet.uddi.admin.AdministrationUtilsApi and for the clean_unusedAccounts action.

deleteTModel

The delete_tModel API removes one or more tModels from HPE SOA Registry Foundation. Note that
the delete_tModel call in the UDDI version 3 specification does not physically remove the tModel from
the database; it marks the tModel as deprecated. The delete_tModel call from Administration Utilities
can be used to delete such deprecated tModels from the database.

Syntax

Arguments

l uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

l uddi_v3:tModelKey - One or more required uddiKey values that represent existing tModels.

Permissions

This API call requires API manager permission for
org.systinet.uddi.admin.AdministrationUtilsApi and the action deleteTModel.

rebuild_cache

Database cache stores v3 UDDI structures in database as objects. Using this cache increases
performance of v3 inquiry get_business, get_service, get_binding, get_tModel and find_binding

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 413 of 642

operations. On the other hand the cache synchronization take some timemainly in v1 and v2 publishing
API operations. The cache can be enabled or disabled by Registry Console. By default, the cache is
enabled. Each time caching is switched on, the cache is rebuilt. After the initial rebuild the cache is
incrementally synchronized each time save_xxx or delete_xxx operation is performed on v1, v2, v3
publishing API. Explicit rebuild is enabled by rebuild_cache operation. This operation is suitable when
data is changed by an administrator in a SQL console (note that such data changing is not
recommended).

Syntax

Arguments

uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires API manager permissions for
org.systinet.uddi.admin.AdministrationUtilsApi and for the rebuild_cache action.

replaceURL

The replaceURL API call is used to replace URL prefixes in the following entities:

l tModel - OverviewDoc URL

l tModelInstanceInfo - overviewDoc URL and DiscoveryURL

l binding template - accessPoint URL

Syntax

Arguments

l uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

l oldURLPrefix - old value of URL prefix

l newURLPrefix - new value of URL prefix

Permissions

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 414 of 642

This API call requires API manager permission for
org.systinet.uddi.admin.AdministrationUtilsApi and the action replaceURL.

replaceKey

The replaceKey API call is used to change the uddiKey of a selected UDDI structure in HPE SOA
Registry Foundation. The key must be specified in either UDDI version 3 format or UDDI version 2
format. The optional elements uddiKeyNewV2 and uddiKeyNewV3 hold new values of uddiKeys for the
selected UDDI structure.

Syntax

Arguments

l uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

l uddiKeyOldV2 - Value of the uddiKey of an existing UDDI structure in UDDI version 2 format.

l uddiKeyOldV3 - Value of a uddiKey of an existing UDDI structure in UDDI version 3 format.

l uddiKeyNewV2 - New value of the uddiKey in UDDI version 2 format.

l uddiKeyNewV3 - New value of the uddiKey in UDDI version 3 format.

Permissions

This API call requires API manager permission for
org.systinet.uddi.admin.AdministrationUtilsApi and the action replaceKey.

resetDiscoveryURLs

Sets the discoveryURL value of each businessEntity in HPE SOA Registry Foundation to its default
value.

Syntax

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 415 of 642

uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

Permissions

This API call requires API manager permission for
org.systinet.uddi.admin.AdministrationUtilsApi and the action resetDiscoveryURLs.

transform_keyedReferences

This operation is necessary when the type of taxonomy keyValues or the implementation of the
taxonomy transformation service have been changed. For more information see, User's Guide,
“Taxonomy: Principles, Creation and Validation”.

Syntax

Arguments

l uddi_v3:authInfo - This optional argument is an element that contains an authentication token.

l uddi_v3:tModelKey

Permissions

This API call requires API manager permission for
org.systinet.uddi.admin.AdministrationUtilsApi and the action transform_keyedReferences.

WSDL
You can find theWSDL specification for this API in REGISTRY_
HOME/doc/wsdl/administrationUtils.wsdl .

API Endpoint
You can find the Administration Utilities API endpoint at http://<host
name>:<port>/uddi/administrationUtils.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 416 of 642

Java
The Systinet Java API is generated from Administration Utils WSDL. You are encouraged to browse
org.systinet.uddi.admin.AdministrationUtilsApi for more information.

Replication
The Replication API is used to launch replications in HPE SOA Registry Foundation.

Operations
Replicate

The replicate API call is used to immediately start replications.

Arguments

authInfo - This optional argument is an element that contains an authentication token.

Behavior

When this API call is invoked, it stops the scheduling of replications and, if needed, waits until the
completion of current replications. It then starts a new replication process in which replications are
rescheduled from this time with the normal replication interval. This results in one of two scenarios:

l If no replications are in process when the replicate call is made, the call stops the replication
schedule, runs the replication, and restarts the schedule from the time the call was made. For
example, if replications had been scheduled on the hour, and the call is made at 9:15, replications
will then occur at 10:15, 11:15, and so forth.

l If there is a replication in process when the replicate call is made, scheduling is stopped, the call
waits for the current process to conclude, runs the replication, and restarts schedule from the time
the call was made as in the previous scenario.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 417 of 642

http://org.systinet.uddi.admin.administrationutilsapi/

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/replication_v3.wsdl .

API Endpoint
You can find the Replication API endpoint at http://<host name>:<port>/uddi/replication.

Java
The Systinet Java API is generated from the ReplicationWSDL. You are encouraged to browse its
org.systinet.uddi.replication.v3.ReplicationApi.

Statistics
The Systinet Statistics API provides useful information about HPE SOA Registry Foundation usage.

Data Structures
The following structures are used by the Systinet Statistics API:

accessStatisticsDetail

Attributes

Name Required

enable Yes

This structure is a container for zero or more apiStatisticsDetail elements. The enable attribute is
used to distinguish whether the returned data is consistent or not. If set to false, the Statistics
interceptor has been configured not to run and returned data will be outdated.

apiStatisticsDetail

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 418 of 642

Attributes

Name Required

apiName Yes

requestCount Yes

exceptionCount Yes

lastCall Yes

This structure contains information about usage of the API specified in the attribute apiName and its
methods. It also serves as a container for methodStatisticsDetail elements.

The requestCount attribute holds a number indicating how many times this API has been used since
its last reset or since HPE SOA Registry Foundation installation.

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of
the API's methods.

The lastCall attribute contains the time this API was last invoked.

methodStatisticsDetail

Attributes

Name Required

methodName Yes

requestCount Yes

exceptionCount Yes

lastCall Yes

This element contains information about usage of themethod specified in the attribute methodName.

The requestCount attribute holds a number indicating how many times this method has been called
since its last reset or since HPE SOA Registry Foundation installation.

The exceptionCount attribute indicates the number of exceptions that have interrupted execution of
this method.

The lastCall attribute contains the time this method was last invoked.

structureStatisticsDetail

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 419 of 642

This structure serves as a container for the structure element.

Structure

Attributes

Name Required

name Yes

count Yes

The structure element indicates how many UDDI structures of the type given by the name attribute
are stored in the registry.

Operations
get_accessStatistics

The get_accessStatistics API call is used to fetch information about usage of selected UDDI APIs in
HPE SOA Registry Foundation. The filter element is used to specify which APIs' statistics will be
returned. If it is empty, the statistics for all APIs are returned.

Arguments

l statistics:authInfo - This optional argument is an element that contains an authentication
token.

l statistics:filter - Optional regular expression tomatch selected APIs by their name. The
wildcard characters ? and * are supported.

Returns

Upon successful completion, an accessStatisticsDetail structure is returned.

Permissions

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 420 of 642

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi
and the action get_accessStatistics.

get_structureStatistics

The get_structureStatistics API call is used to get overview information about how many UDDI
structures is stored within HPE SOA Registry Foundation.

Arguments

statistics:authInfo - This optional argument is an element that contains an authentication token.

Returns

Upon successful completion, an structureStatisticsDetail structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi
and the action get_structureStatistics.

reset_accessStatistics

The reset_accessStatistics API call is used to reset API usage statistics in HPE SOA Registry
Foundation. The optional filter element is used to limit affected APIs, if it is not set, statistics for all
APIs is removed.

Arguments

l statistics:authInfo - This optional argument is an element that contains an authentication
token.

l statistics:filter - Optional regular expression tomatch selected APIs by their name. The
wildcard characters ? and * are supported.

Permissions

This API call requires API manager permission for org.systinet.uddi.statistics.StatisticsApi
and the action reset_accessStatistics.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 421 of 642

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/statistics.wsdl .

API Endpoint
You can find the Statistics API endpoint at http://<host name>:<port>/uddi/statistics.

Java
Systinet Java API is generated directly fromWSDL. You are encouraged to browse
org.systinet.uddi.statistics.StatisticsApi.

WSDL Publishing
HPE SOA Registry FoundationWSDL-to-UDDI mapping is compliant with OASIS's Technical Note,
UsingWSDL in a UDDI registry Version 2.0. It enables the automatic publishing of WSDL documents
to UDDI, enables precise and flexible UDDI queries based on specific WSDL artifacts andmetadata,
and provides a consistent mapping for UDDI v2 and UDDI v3.

Data Structures
wsdlDetail

wsdlDetail completes information about theWSDL to bemapped.

Arguments

l wsdl2uddi:wsdl - Contains URI or physical location of mappedWSDL.

l wsdl2uddi:wsdlMapping - Describes wsdl:types to bemapped.

wsdl

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 422 of 642

http://org.systinet.uddi.statistics.statisticsapi/
https://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

WSDL contains information about location of amappedWSDL.

Arguments

l wsdlLocation - The URI or physical location of amappedWSDL.

l any - Used tomake extensible documents (see XML schema). It is generally used as the DOM
pattern of amappedWSDL.

wsdlMapping

WsdlMapping describes the wsdl:types to bemapped. It is used to alter the default behavior of
mapping the specifiedWSDL. In contained structures, it is possible to describe eachmapped
wsdl:type correctly. This is to ensure exact mapping and prevent duplication of data in the registry.

Arguments

l uddi:businessKey - Represents the businessKey of an existing uddi:businessEntity to which the
assigned wsdl:types will bemapped.

l uddi:businessEntity - Represents an existing businessEntity to which the assigned wsdl:types
will bemapped.

l wsdl2uddi:porttypes - Represents the container of wsdl:portTypes to bemapped.
wsdl2uddi:porttypes makes it possible map a uddi:tModel to its corresponding wsdl:portType .

l wsdl2uddi:bindings - Represents the container of wsdl:bindings to bemapped.
wsdl2uddi:bindings makes it possible to map a uddi:tModel to its corresponding wsdl:binding.

l wsdl2uddi:services - Represents the container of wsdl:services to bemapped.
wsdl2uddi:services makes it possible to map a uddi:businessService to its corresponding
wsdl:service.

Note: Note that uddi:businessKey and uddi:businessEntity aremutually exclusive.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 423 of 642

http://www.w3.org/TR/xmlschema-1/

portTypes

The portTypes structure is a simple container of one or more wsdl2uddi:portTypes.

portType

PortType represents amapping of wsdl:portType in UDDI. It contains information necessary tomap
the wsdl:portType to a corresponding uddi:tModel accurately.

Arguments

l uddi:tModelKey - Represents the tModelKey of an existing uddi:tModelwhich will be reused or
rewritten (depending on the publishingMethod selected by the user) with data from wsdl:portType.

l uddi:tModel - Represents an existing uddi:tModelwhich will be reused or rewritten (depending
on the publishingMethod selected by the user) with data from wsdl:portType.

Note: Note that uddi:tModelKey and uddi:tModel aremutually exclusive.

Attributes

Name Required

name optional

namespace optional

publishingMethod optional

These attributes describe the wsdl:portType of the appropriateWSDL. Name and namespace
represent the wsdl:portTypeQName. publishingMethod represents an enumeration of available
mapping use cases. It can be set to rewrite, create, reuse, or ignore. The default
publishingMethod is reuse.

Bindings

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 424 of 642

The bindings structure is a simple container of one or more wsdl2uddi:bindings.

binding

A binding represents amapping of wsdl:binding in UDDI. It contains information necessary for the
precisemapping of a wsdl:binding to the appropriate uddi:tModel.

Arguments

l uddi:tModelKey - Represents the tModelKey of an existing uddi:tModelwhich will be reused or
rewritten (depending on the publishingMethod selected by the user) with data from wsdl:binding.

l uddi:tModel - Represents an existing uddi:tModel which will be reused or rewritten (depending
on the publishingMethod selected by the user) with data from wsdl:binding.

Note: Note that uddi:tModelKey and uddi:tModel aremutually exclusive.

Attributes

Name Required

name optional

namespace optional

publishingMethod optional

These attributes describe the wsdl:binding from the appropriateWSDL. Name and namespace
represent the wsdl:bindingQName.

publishingMethod represents an enumeration of the available mapping use cases. It can be set to
rewrite, create, reuse, or ignore. The default publishingMethod is reuse.

Services

The services structure is a simple container of one or more wsdl2uddi:services.

service

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 425 of 642

Service represents themapping of wsdl:service in UDDI. It contains information necessary tomap a
wsdl:service to the appropriate uddi:businessService precisely.

Arguments

l uddi:businessKey - represents businessKey of an existing uddi:businessEntity to which the
translated wsdl:servicewill be stored.

l uddi:serviceKey - represents the serviceKey of an existing uddi:businessServicewhich will be
reused or rewritten (depending on the publishingMethod selected by user) with data from
wsdl:service.

l uddi:businessService - represents an existing uddi:businessService which will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:service.

l wsdl:ports - represents existing uddi:bindingTemplateswhich will be reused or rewritten
(depending on the publishingMethod selected by user) with data from wsdl:service ports.

Note: Note that uddi:serviceKey and uddi:businessService aremutually exclusive.

Attributes

Name Required

name optional

namespace optional

publishingMethod optional

These attributes describe the wsdl:service from an appropriateWSDL. Name and namespace
represents the wsdl:serviceQName.

publishingMethod represents an enumeration of available mapping use cases. It can be set to
rewrite, create, reuse, or ignore. The default publishingMethod is reuse.

ports

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 426 of 642

The ports structure is a simple container for one or more wsdl2uddi:ports.

port

Port represents amapping of wsdl:port in UDDI. It contains information necessary tomap the
wsdl:port to the appropriate uddi:bindingTemplate precisely.

Arguments

l uddi:bindingKey - Represents the bindingKey of an existing uddi:bindingTemplatewhich will
be reused or rewritten (depending on the publishingMethod selected by user) with data from
wsdl:port.

l uddi:bindingTemplate - Represents an existing uddi:bindingTemplatewhich will be reused or
rewritten (depending on the publishingMethod selected by user) with data from wsdl:service.

Note: Note that uddi:bindingKey and uddi:bindingTemplate aremutually exclusive.

Attributes

Name Required

name optional

publishingMethod optional

These attributes describe the wsdl:port from an appropriateWSDL.Name represents the wsdl:port
name. publishingMethod represents an enumeration of available mapping use cases. It can be set to
rewrite, create, or reuse. The default publishingMethod is reuse.

wsdlServiceInfos

The wsdlServiceInfo structure is a simple container of one or more wsdl2uddi:wsdlServiceInfos.

wsdlServiceInfo

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 427 of 642

The wsdlServiceInfo completes information about the wsdlLocation and uddi:businessService being
searched.

Arguments

l wsdlLocation - The URI or physical location of aWSDL.

l wsdl2uddi:portInfos - Container for wsdl2uddi:ports which contain the wsdl:portmapped to the
appropriate uddi:bindingTemplate.

Attributes

Name Required

name required

namespace required

serviceKey required

These attributes describes how the wsdl:service is mapped from the appropriateWSDL. Name and
namespace represent the wsdl:serviceQName.

The serviceKey represents the uddi:businessService on which the wsdl:service is mapped.

PortInfos

The portInfos structure is a simple container of one or more wsdl2uddi:portInfos.

portInfo

The portInfo completes information about uddi:bindingTemplates used in the
uddi:businessService being searched.

Arguments

uddi:accessPoint contains information about accessing the uddi:businessService being searched.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 428 of 642

Attributes

Name Required

name required

bindingKey required

These attributes describe how the wsdl:port is mapped from the appropriateWSDL. Name represents
the wsdl:port name. BindingKey represents the uddi:bindingTemplate on which the wsdl:port is
mapped.

Operations
publish_wsdl

Publish_wsdl ensures the publishing of aWSDL to a UDDI registry. It uses the Publishing API to store
translated wsdl:types to the UDDI registry. For more information about the Publishing API, see UDDI
v3 - publishing API).

By default UDDI entities are rewritten by data contained in wsdl:types as follows: Each wsdl:type is
first searched on the specified registry. The found UDDI entity is rewritten, or a new entity is created if
one is not found. However, the user can specify how the wsdl:typeswill be published to the registry.

You can alter the default publish behavior and define which wsdl:typeswill bemapped on the
appropriate UDDI entity and, naturally, whether the UDDI entity will be created, rewritten, or reused.

For more information about publish behavior and its use cases, see publishingMethod. Below are some
rules by which wsdl:types are assigned to the appropriate UDDI entities depending on whether the
wsdl:type is found on the user account or on a foreign account. Note that wsdl:services are
searched only on the user's account, unlike wsdl:portType or wsdl:binding. This is because it is
preferable to use tModels from a foreign account rather then tModels translated from aWSDL.

publishingMethod

PublishingMethod describes the behavior of the publish operation. In accordance with the set behavior,
the corresponding wsdl:typewill bemapped to the UDDI registry.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 429 of 642

http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm

Note that publish_wsdl is set to reuse by default. However, if a user wants to rewrite an entity or a
create a new entity, the default behavior can be changed from "reuse" to "rewrite" or "create" to ensure
uniquemapping.

Use cases

l rewrite - wsdl:type is searched on the registry and the found UDDI structure is redrawn by data of
that wsdl:type. If the wsdl:type is not found, a new one will be created.

l reuse - The default behavior of the publish operation. Using this behavior, the user is able to reuse
an entire existing UDDI structure. The found UDDI entity will not be redrawn by data of that
wsdl:type. Note that when using this method, inconsistencies may occur between the published
wsdl:type and the corresponding UDDI entity. This behavior should be helpful when we need to use
existing tModels instead of tModels mapped from wsdl:portTypes or wsdl:bindings (For example,
uddi:hostingRedirectors).

l create - This method is usedmainly for testing purposes. By using this behavior a new UDDI
entity is created from the wsdl:type regardless of whether the UDDI entity already exists on the
registry.

Note: When using this behavior, undesirable duplications may occur. It is necessary to use
this behavior carefully.

l ignore - This method is used when you do not want to publish the UDDI entity. You can restrict
which parts of theWSDL document will be published.

Arguments

l uddi:authInfo - This required argument is the string representation of the uddi:authToken.

l wsdl2uddi:wsdlDetail - Completes WSDL location and user-definedWSDLmapping rules. For
more information, see wsdl2uddi:wsdlDetaill.

Here the user can specify which wsdl:type from theWSDL corresponds to the entity on the target
registry and how the specified wsdl:typewill bemapped. For more information, see
wsdl2uddi:publishingMethod.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how the individual wsdl:types are
published. For more information, see wsdl2uddi:wsdlDetaill.

unpublish_wsdl

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 430 of 642

Unpublish_wsdl ensures unpublishing of WSDL from UDDI registry. It uses the Publishing API to
delete UDDI entities corresponding to wsdl:types from aUDDI registry. For more information about
the Publishing API, see UDDI v3 - publishing API.

Each wsdl:type is first searched on the specified registry. The found UDDI entity is deleted or if the
entity is not found it is simply omitted. Found tModels are either physically deleted or only marked as
deprecated in accordance with configuration. (When tModels are deleted by their owners, they are
generally marked as deprecated. Usually only the administrator can permanently delete deprecated
tModels from the registry.)

Arguments

l uddi:authInfo - This required argument is the string representation of the uddi:authToken.

l wsdl2uddi:wsdlDetail - completes theWSDL location and user-definedWSDL unpublish rules.
For more information, please see wsdl2uddi:wsdlDetaill. Here the user can specify which
wsdl:type from aWSDL corresponds to the UDDI entity existing on the target registry. This is
because that wsdl:type can occur more than once on a registry.

Returns

wsdl2uddi:wsdlDetail - Contains detailed information about how individual wsdl:types are
unpublished from a target registry. For more information, see wsdl2uddi:wsdlDetaill.

get_wsdlServiceInfo

Get_wsdlServiceInfo discovers uddi:businessServices corresponding to wsdl:services from a
particularWSDL. It uses the Inquiry API to get UDDI entities matching wsdl:types. For more
information about the Inquiry API, see UDDI V3 - UDDI-inquiry API.

This operation discovers corresponding UDDI entities either on the user's account or on the foreign
account (in accordance with the specified uddi:authInfo). In consideration with multiple occurrences
of UDDI entities corresponding to wsdl:types, the search algorithm optimizes output in accordance

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 431 of 642

http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm

with relations between individual wsdl:types from the givenWSDL. Only the
wsdl2uddi:wsdlServiceInfo corresponding exactly to the wsdl:service from theWSDL (that is,
that contains all wsdl:types from the appropriateWSDL) will be returned.

Arguments

l uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

l wsdl2uddi:wsdl - An argument used to discover wsdl2uddi:wsdlServiceInfos. This argument
ensures that only the uddi:businessService corresponding exactly to the wsdl:service from
that WSDLwill be returned. For more information, please see wsdl2uddi:wsdl).

l uddi:serviceKey - uddi:serviceKey of uddi:businessService existing on the target registry.
Note that only uddi:businessServices containing a "WSDL Type Category System" (that is, the
uddi:categoryBag of a found uddi:businessService must contain a uddi:keyedReference
with a uddi:tModelKey representing "WSDL Type Category System" and the keyValue "service")
will be returned.

l uddi:bindingKey - uddi:bindingKey of uddi:bindingTemplate existing on the target registry.
For UDDI v3 holds that only uddi:businessServiceswhich contain uddi:bindingTemplate
corresponding to a given uddi:bindingKeywith the "WSDL Type" Category System. (that is, the
uddi:categoryBag of a found uddi:bindingTemplate must contain uddi:keyedReference with
uddi:tModelKey representing "WSDL Type Category System" and the keyValue "binding") will be
returned. Naturally this "WSDL Type Category System" must also be contained in the appropriate
uddi:businessService.

Note that uddi:bindingTemplates in v2 do not contain uddi:categoryBag. Even though the found
uddi:bindingTemplatemust contain uddi:tModels compliant with "WSDL Type Category
System" in its uddi:tModelInstanceDetails.

l uddi:tModelKey - the uddi:tModelKey of the uddi:tModel existing on the target registry. Note
that only uddi:businessServiceswhich use uddi:tModels compliant with "WSDL Type
Category System" will be returned. That is, the uddi:categoryBag of the found uddi:tModel must
contain uddi:keyedReferencewith uddi:tModelKey representing "WSDL Type Category
System" and the keyValue "binding" or "portType"). Naturally, this "WSDL Type Category System"
must also be contained in the appropriate uddi:businessService.

Note: Note that wsdl2uddi:wsdl, uddi:serviceKey, uddi:bindingKey and uddi:tModelKey are
mutually exclusive.

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the
specifiedWSDL. For more information, please see wsdl2uddi:wsdlServiceInfos.

find_wsdlServiceInfo

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 432 of 642

This operation is a bit more complex than wsdl2uddi:get_wsdlServiceInfo. Find_wsdlServiceInfo
discovers uddi:businessServices corresponding to wsdl:services from a particularWSDL. It uses
the Inquiry API to find UDDI entities matching wsdl:types. For more information about the Inquiry API,
see UDDI V3-inquiry API).

This operation discovers corresponding UDDI entities either on the user's account or on a foreign
account (in accordance with the specified uddi:authInfo). In consideration for multiple occurrence of
UDDI entities corresponding to wsdl:types, the search algorithm optimizes output in accordance with
relations between individual wsdl:types from the specifiedWSDL and the uddi:find_xx structure
specified by the user. Only the wsdl2uddi:wsdlServiceInfo corresponding exactly to the
wsdl:service from theWSDLwill be returned, that is, the wsdl2uddi:wsdlServiceInfo containing
all wsdl:types from the appropriateWSDL at once, and satisfying the user's defined uddi:find_xx.

Arguments

l uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

l wsdl2uddi:wsdl - required argument used to discover wsdl2uddi:wsdlServiceInfos. This argument
ensures that only the uddi:businessService corresponding exactly to the wsdl:service from
that WSDLwill be returned. For more information, see wsdl2uddi:wsdl.

l uddi:find_service - Argument used for amore detailed description of search criteria. For more
information, see uddi:find_service. Found uddi:businessServicesmust follow the same rules
as in the case of wsdl2uddi:get_wsdlServiceInfo.

l uddi:find_binding - Argument used for amore detailed description of search criteria. For more
information, see uddi:find_binding. Found uddi:businessServices and
uddi:bindingTemplatesmust follow the same rules as in the case of wsdl2uddi:get_
wsdlServiceInfo.

l uddi:find_tModel - Argument used for amore detailed description of search criteria. For more
information, see uddi:find_tModel. Found UDDI entities must follow the same rules as in the
case of wsdl2uddi:get_wsdlServiceInfo.

Note: Note that uddi:find_service, uddi:find_binding and uddi:find_tModel aremutually
exclusive.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 433 of 642

http://www.uddi.org/pubs/uddi_v3.htm

Returns

wsdl2uddi:wsdlServiceInfos - Contains UDDI entities corresponding to wsdl:types from the
specifiedWSDL. For more information, see wsdl2uddi:wsdlServiceInfos.

find_wsdlMapping

This operation finds mapping of theWSDL document.

Arguments

l uddi:authInfo - This argument is the string representation of the uddi:authToken.

l uddi:findQualifiers - See UDDI Version 3 - Find Qualifiers

l wsdl2uddi:wsdl

Returns

This operation returns wsdl2uddi:wsdlMapping.

WSDL
REGISTRY_HOME/doc/wsdl/wsdl2uddi_v2.wsdl

REGISTRY_HOME/doc/wsdl/wsdl2uddi_v3.wsdl

API Endpoint
You can find theWSDL2UDDI API endpoint at http://<host name>:<port>/uddi/wsdl2uddi.

Java
org.systinet.uddi.client.wsdl2uddi.v3.Wsdl2uddiApi

"WSDL2UDDI v2" on page 623 demos

"WSDL2UDDI v3" on page 630 demos

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 434 of 642

http://www.uddi.org/pubs/uddi_v3.htm
http://org.systinet.uddi.client.wsdl2uddi.v3.wsdl2uddiapi/

XSD Publishing
Systinet XSD-to-UDDI mapping enables the automatic publishing of XML SchemaDocuments into
UDDI and enables precise, flexible UDDI queries based on specific XML schemametadata.

Themapping of XML SchemaDocument information to UDDI covers:

l XML types - Types declared at the global level in the XMLSchemaDocument. These types are
mapped to tModels in UDDI.

l XML elements - XML elements declared at the global level in the XMLSchemaDocument. These
elements aremapped to tModels in UDDI.

l References to other XML namespaces - Information about imported schemas are stored in the
registry.

The API allows the user to search for an schema's tModels based on the namespace they define, or the
elements and types they declare within that namespace. The API can also extract the published
information back from the registry, so it can be accessed as a list of elements, types, and schemas
rather than tModels and other UDDI entities.

Data Structures
Elements

This structure represents elements declared by the published XMLSchemaDocument.

Arguments

element - This argument represents an element declared by the published XMLSchemaDocument.

importedSchemaModel

This structure contains the basics of the imported XMLSchema tModel.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 435 of 642

Arguments

l uddi:tModelKey - The key of the tModel of the schema of the imported XML namespace.

l uddi:name - The name of that schema's tModel.

resourceInfo

This structure describes the location of the XMLSchemaDocument.

schemaCandidate

This structure holds possible mappings of how the XMLSchemaDocument can be published.

Arguments

l location - The location of the candidate XML SchemaDocument.

l xsd2uddi:schemaMapping - Themapping of the candidate XML SchemaDocument contents.

schemaImport

This structure holds the imported namespace, that is, the list of possible mappings for this
xsd:import, for an xsd:import clause in the XMLSchemaDocument. If a specific location is
specified in the XMLSchemaDocument text for the imported XMLSchemaDocument, it is also
present.

Arguments

l xsd2uddi:namespace - The imported namespace. If missing, a no-namespaced XML schema is
imported

l schemaLocation - The location for the XMLSchemaDocument, if given explicitly. If the imported

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 436 of 642

XMLSchemaDocument does not specify an exact schema location, this value is null.

l xsd2uddi:importedSchemaModel - The tModel information of the candidates for this import.

schemaImports

This structure describes a list of xs:imports in the schema.

schemaMapping

This structure describes amapping of the XSD contents to an individual XSD tModel and its contents.

Arguments

l uddi:name - Name of the XMLSchema tModel.

l uddi:tModelKey - tModelKey for the XMLSchema tModel

l xsd2uddi:elements - Mapping for contained XML elements

l xsd2uddi:types - Mapping for contained XML types.

schemaMappings

This structure describes amapping from the contents of a XML SchemaDocument to UDDI entities.
There are two parts. The first part describes possible matches for xs:imports specified by the XML
SchemaDocument; the second, individual candidates that may match the XMLSchemaDocument
contents. The candidate structure then contains amapping of the XMLSchemaDocument onto the
particular candidate tModel and the related UDDI entities.

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 437 of 642

l xsd2uddi:schemaImports - mapping for referenced (imported) XML SchemaDocuments.

l xsd2uddi:schemaCandidate - an individual mapping candidate.

symbol

This structure holds mapping of an individual symbol (XSD element and type) to the registry.

Arguments

l localName - Local name of themapped symbol.

l xsd2uddi:symbolModel - The basics of the tModel that represents the symbol.

symbols

A common structure for mapping types and elements.

symbolModel

Basic information about a tModel that represents an element or a type declared by the XMLSchema
Document

Arguments

l uddi:name - Name of the symbol's tModel. This argument is optional when publishing a XML
SchemaDocument; it is always filled in API responses.

l uddi:tModelKey - tModelKey of the symbol's model.

types

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 438 of 642

Mapping of types declared by the XMLSchemaDocument beingmapped

xsdDetail

The structure provides detailed information about a specific XML SchemaDocument, its contents and
its references.

Arguments

l xsd2uddi:xsdInfo - General information about the XMLSchemaDocument itself

l xsd2uddi:schemaImports - Information about XML namespaces imported into the XMLSchema
Document

l xsd2uddi:elements - List of elements in the schema

xsd2uddi:types - List of types in the schema

xsdDetails

Details of the XSD

xsdInfo

This structure holds general information about the XMLSchemaDocument.

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 439 of 642

l location - The location of the XMLSchemaDocument. This location can be used to retrieve the
contents

l xsd2uddi:namespace - The URI of the XML namespace defined by the XMLSchemaDocument

l uddi:tModelKey - tModel key for the schema's tModel

l uddi:name - tModel name for the schema's tModel

xsdResourceList

Attributes

Name Required

truncated optional

This structure holds a list of XSDs, returned from a find_xsd call.

Arguments

l uddi:listDescription - holds a list of descriptions as specified in UDDI's API documentation.

l xsd2uddi:xsdInfo - holds information about individual registered XSD models.

Operations
find_xsd

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 440 of 642

This operation finds the XMLSchemaDocument. The caller can limit the number of search results to
be returned and can iterate through the search results using the listHead and maxRows arguments.

The name and URI lists passed as the input search criteria may use wildcard characters provided that
the approximateMatch findQualifier is present. If the ownEntities findQualifier is used, the operation
returns only entities owned by the authenticated user. Other entities are not returned even though they
match the other search criteria.

Attributes

Name Required

listHead optional

maxRows optional

Arguments

l uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

l xsd2uddi:resourceInfo - URI location of the published XMLSchemaDocument. The registry
does not read from the location, it is used as a search criteria for the current UDDI contents only.

l xsd2uddi:namespace - Allows to search by the namespace defined by a XMLSchemaDocument.
Contains a list of XML namespace URIs. An XMLSchemaDocument satisfies this condition if its
targetNamespace attribute is among the URIs.

l definesType - Allows the user to search by defined type. Contains a list of type names. An XML
SchemaDocument satisfies this condition if it defines a global type with a name passed in the list.

l definesElement - The returned schemas must define the named element.

l uddi:find_tModel - An argument used for amore detailed description of search criteria. For more
information, see UDDI Version 3 - uddi:find_tModel. These criteria are combined with the other

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 441 of 642

http://www.uddi.org/pubs/uddi_v3.htm

criteria specified by the find_xsd structure. In the case of a conflict, the criteria in find_xsd take
precedence.

Returns

This API call returns thexsdResourceList on success. If the caller specifies the maxRows attribute, the
returned xsdResourceList will contain, at most, that many results. Note that the searchmay yield a
tModel, which does not entirely comply with the XSD-to-UDDI mapping specification, such as when
the tModel information is alteredmanually. In these cases, an attempt to use get_xsdDetail on such a
tModel will produce an exception.

find_xsdMapping

Syntax

This operation finds a suitable mapping for contents of the given XMLSchemaDocument. The
operation downloads and parses the XMLSchemaDocument at the given location, andmatches the
contents against the information already published in the registry. It will produce zero or more possible
mappings for the given XMLSchemaDocument.

The caller may request that themapping is attempted only against a specific tModel that represents an
XMLSchemaDocument. In that case, only onemapping will be returned.

If the document at the specified location, or one of its dependencies (for example, schemas for XML
namespaces which the document imports) are not accessible to the registry, an exception will be
raised. If the document is not an XML schema or contains errors, the operation will throw an exception.

Arguments

l uddi:authInfo - (Optional) - authentication

l xsd2uddi:resourceInfo - The XSD identification (location)

l uddi:tModelKey - (Optional), the proposed schema tModel whose contents should bematched. If
set, only published contents of that XML SchemaDocument will be considered for mapping.

Returns

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 442 of 642

This API call returns xsd2uddi:schemaMapping upon success. The structure contains possible
matches for the XMLSchemaDocument at the specified location, which are already stored in the
UDDI. There are also possible matches for the XMLSchemaDocuments for XML namespaces
imported into themain XML SchemaDocument.

The call will fail if it cannot access the XMLSchemaDocument or one of its dependencies.

get_xsdDetail

Syntax

Gets the detail about a published XMLSchemaDocument tModels.

Arguments

l uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

l uddi:tModelKey - Required uddiKey value representing an existing XML SchemaDocument tModel.

Returns

This API call returns the xsd2uddi:xsdDetails.

If the passed tModelKey does not exist, or identifies a tModel that does not represent an XMLSchema
Document, an exception is raised.

publish_xsd

Syntax

Attributes

Name Required

importPolicy optional

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 443 of 642

contentPolicy optional

publishingMethod optional

contentPublishingMethod optional

importPublishingMethod optional

Request to publish XML schema information to the registry. The user may pass only minimal
information and rely on thematching algorithm used internally to find the appropriate mapping for the
published XMLSchemaDocument.

Using the importPolicy and contentPolicy, the caller may limit the scope of the published data. By
the publishingMethod, contentPublishingMethod and importPublishingMethod attributes, the
caller may specify the default behavior for publishing - whether an existing UDDI entity is reused and
possibly updated, or a new UDDI entity is created, or the particular kind of information is ignored at all.

The registry will need to read the XMLSchemaDocument during the call as well as any resources
referenced (imported) by it. If a XML SchemaDocument or a referenced resource is not available, the
operation will fail.

If the caller does not specify amapping for some element, type, or XML namespace import and there
will bemore possible matching UDDI entities, the call will fail because themapping of that XML
schema entity is considered ambiguous. It is the responsibility of the caller to provide specific
directions for the publishing in such cases.

If the schemaMapping entry for a type, an element or an import specifies a publishingMethod reuse,
the API will try to find a suitable UDDI entity. If such an entity is not found, the API will create one. If
the caller provides a specific tModelKey with the reuse publishingMethod, the tModelKey must exist
and that tModel will be updated with the element, type or import data.

If the schemaMapping entry for a type, an element or an import specifies a publishingmethod create,
the API will always create a new UDDI entity for that XML SchemaDocument piece. If the caller
specifies the tModelKey in the schemaMapping entry, the new UDDI entity will be assigned that
tModelKey. The caller may specify a name for the new tModel, too.

If the caller specifies ignore publishingmethod for an element, a type or an import, that particular XML
SchemaDocument piece will not be published at all. If the publishing operation updates an existing
entity in the registry that contains a reference to the element, type or an import, the reference will be
purged. When an element or type is ignored, thematching UDDI entity will be deleted from the registry
as well by the publish operation.

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 444 of 642

l uddi:authInfo - (Optional) - authentication

l location - XSD identification (location).

l xsd2uddi:schemaImports - Mapping for referenced (imported) XML SchemaDocuments

l xsd2uddi:schemaMapping - (Optional) customizedmapping for the schema contents and
references

l importPolicy - attribute specifying which imports will be published

l contentPolicy - attribute specifying which content will be published

l publishingMethod - attribute specifying the default publishingmethod for the contents (elements,
types) declared by the schema; default = update

l contentPublishingMethod - The default publishingmethod for elements and types (ignore,
create, reuse); default = reuse. This publishingmethod will be used for all elements or types unless
the schemaMapping contains an entry for the element or type that provides a different value.

l contentPublishingMethod - The default publishingmethod for imports (ignore, create, reuse);
default = reuse. This publishingmethod will be used for all imported XML namespaces unless the
schemaMapping contains an entry for the XML namespace that provides a different value.

Returns

This API call returns the xsdDetail with the published XMLSchemaDocument information on
success.

unpublish_xsd

Syntax

Unpublish the XMLSchemaDocument. The operation checks whether the XMLSchemaDocument is
referenced from other data published in the UDDI. If so, the operation fails as the semantics of the
referencing datamight break if the XML SchemaDocument information is removed from the UDDI
registry.

Arguments

l uddi:authInfo - This optional argument is the string representation of the uddi:authToken.

l uddi:tModelKey - tModelKey of the tModel that represents the XMLSchemaDocument.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 445 of 642

Returns

This API call returns the xsdDetail on success.

WSDL
REGISTRY_HOME/doc/wsdl/xsd2uddi_v3.wsdl

API Endpoint
You can find the XSD2UDDI API endpoint at http://<host name>:<port>/uddi/xsd2uddi.

Java
org.systinet.uddi.client.xsd2uddi.v3.Xsd2uddiApi

Inquiry UI
The Inquiry UI API has been implemented for improving the performance of the Business Service
Console. The basic idea is to retrieve data that appear in the Business Service Console using a single
API call.

This API contains only one operation get_entityDetail. Its input includes a query specification and an
output format:

l The query specification comprises one of the standard UDDI v3 API data structures: find_
business, find_services, find_binding, find_tModel, get_businessDetail, get_serviceDetail, get_
bindingDetail and get_tModelDetail.

l The output format defines which data structures will be returned and how they will be pruned.

The operation get_entityDetail returns a list of UDDI data structures. ACLs are also applied to retrieved
data.

For example, if you specify the following inquiry:

<get_entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
<outputFormat>

<businessEntityMask descriptionIncluded="true" identifierBagIncluded="true"/>
<businessServiceMask descriptionIncluded="true"/>

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 446 of 642

http://org.systinet.uddi.client.xsd2uddi.v3.xsd2uddiapi/

</outputFormat>
<find_binding serviceKey="uddi:systinet.com:demo:hr:employeesList"

xmlns="urn:uddi-org:api_v3"/>
</get_entityDetail>

Youwill receive the following output:

<entityDetail xmlns="http://systinet.com/uddi/inquiryUI/6.0">
<businessEntity businessKey="uddi:systinet.com:demo:hr"

xmlns="urn:uddi-org:api_v3">
<name>HR</name>
<description>HR department</description>
<businessServices>

<businessService serviceKey="uddi:systinet.com:demo:hr:employeesList"
businessKey="uddi:systinet.com:demo:hr">

<name>EmployeeList</name>
<description>wsdl:type representing service</description>

</businessService>
</businessServices>
<identifierBag>
<keyedReference tModelKey="uddi:systinet.com:demo:departmentID"

keyName="department id" keyValue="002"/>
</identifierBag>

</businessEntity>
</entityDetail>

If there arematching bindingTemplates accessible while associated businessServices are not
(because of ACLs), such bindingTemplates will be included in the result in a separate list of
bindingTemplates. The same behavior applies to accessible businessServices of inaccessible
businessEntities.

Data Structures
The following structures are used by the Systinet Inquiry UI API:

l "bindingTemplateMask" on the next page

l "businessEntityMask" on the next page

l "businessServiceMask" on page 449

l "contactMask" on page 449

l "entityDetail" on page 450

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 447 of 642

l "entityDetail" on page 450

l "tModelInstanceInfoMask" on page 451

l "tModelMask" on page 451

bindingTemplateMask

Attributes

Name Required

descriptionIncluded No

categoryBagIncluded No

SignatureIncluded No

The bindingTemplateMask structure specifies themask of the binding template of the outputFormat.
Optional attributes define which elements will be returned in the entityDetail.

businessEntityMask

Attributes

Name Required

discoveryURLIncluded No

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 448 of 642

descriptionIncluded No

identifierBagIncluded No

categoryBagIncluded No

SignatureIncluded No

The businessEntityMask structure specifies themask of the business entity of the outputFormat. It
also include a contactMask. Optional attributes define which elements will be returned in the
entityDetail.

businessServiceMask

Attributes

Name Required

descriptionIncluded No

categoryBagIncluded No

SignatureIncluded No

The businessServiceMask structure specifies themask of the business service of the outputFormat.
Optional attributes define which elements will be returned in the entityDetail.

contactMask

The contactMask structure specifies the submask of the business entity mask of the outputFormat.
Optional attributes define which elements will be returned in the entityDetail.

Attributes

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 449 of 642

Name Required

descriptionIncluded No

phoneIncluded No

emailIncluded No

addressIncluded No

entityDetail

The entityDetail structure is returned by the get_entityDetail operation. The attribute truncated
indicates a truncated result list.

Attributes

Name Required

uddi:truncated No

outputFormat

The outputFormat is a mask for data to be returned and can prune returned structures. The output
format is defined by the following arguments.

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 450 of 642

l inquiryUI:businessEntityMask

l inquiryUI:businessServiceMask

l inquiryUI:bindingTemplateMask

l inquiryUI:tModelMask

tModelInstanceInfoMask

The tModelInstanceInfoMask structure specifies themask of the tModel instance info of the
outputFormat. Optional attributes define which elements will be returned in the entityDetail.

Attributes

Name Required

descriptionIncluded No

instanceDetailsIncluded No

tModelMask

The tModelMask structure specifies themask of the tModel of the outputFormat. Optional attributes
define which elements will be returned in the entityDetail.

Attributes

Name Required

descriptionIncluded No

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 451 of 642

overviewDocIncluded No

identifierBagIncluded No

categoryBagIncluded No

SignatureIncluded No

Operations
get_entityDetail

This is the core operation of the Inquiry UI API.

Arguments

l uddi:authInfo - This optional argument is an element that contains an authentication token.

l inquiryUI:outputFormat

l uddi:get_businessDetail, uddi:get_bindingDetail, uddi:get_tModelDetail, uddi:find_business,
uddi:find_service, uddi:find_binding, uddi:find_tModel - standard UDDI v3 structures.

Returns

Upon successful completion, an entityDetail structure is returned.

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/inquiryUI.wsdl .

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 452 of 642

API Endpoint
You can find the Inquiry UI API endpoint at http://<host name>:<port>/uddi/inquiryUI.

Java
Systinet Java API is generated directly fromWSDL. You are encouraged to browse
org.systinet.uddi.client.v3.ui.InquiryUIApi.

Security APIs
Security APIs cover the following APIs:

l "Accounts" below- Systinet Account API is used to query andmanage user accounts in HPE SOA
Registry Foundation.

l "Group" on page 460 - Systinet Group API is used to query andmanage user groups in HPE SOA
Registry Foundation.

l "Permission" on page 467- Systinet Permission API is used to query andmanage permissions in
HPE SOA Registry Foundation.

Accounts
Systinet Account API is used to query andmanage user accounts in HPE SOA Registry Foundation.

Data Structures
The following structures are used by the Systinet Account API:

userAccount

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 453 of 642

http://org.systinet.uddi.client.v3.ui.inquiryuiapi/

The userAccount element is container that holds the attributes of a user account in the HPE SOA
Registry Foundation. The required elements are:

l loginName

l email

l fullName

l languageCode

All other elements are optional.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 454 of 642

Element Description

loginName contains the login name of the user account

password contains the password used to authorize the user

email holds the user's email address

fullName holds the user's full name

description use for describing the user or the user's role

languageCode the language the user speaks

businessName name of organization where the user is employed

phone telephone number used to contact the user

alternatePhone second telephone number used to contact the user

address

city

stateProvince

country

zip

expiration may hold the time when the user account expires

expires indicates whether the account may expire over time

external a flag indicating whether the user account is external or stored in the UDDI
registry

blocked a flag indicating whether the user is blocked

account:property an unspecified string; its meaning depends on UserStore type

businessesLimit specifies how many business entities the user account may save

servicesLimit specifies maximum number of business services within a single business entity
that the user account may own

bindingsLimit specifies how many bindingTemplates the user account may save within a
single businessService

tModelsLimit specifies the number of tModels the user account may save

assertionsLimit specifies the number of publisherAssertions the user account may save

subscriptionsLimit specifies the number of subscriptions the user account may save

lastLoginTime contains information regarding when the user last logged into the registry

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 455 of 642

userInfo

This element serves as a container for short information about single userAccount. It contains the
required element loginName, and the optional elements fullName, description, and email.

userInfos

This element holds one or more userInfo elements.

userList

This element contains optional listDescription and userInfos elements.

Operations
find_userAccount

The find_userAccount API call is used to find user accounts in HPE SOA Registry Foundation that
match given criteria.

Syntax

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 456 of 642

l authInfo - This optional argument is an element that contains an authentication token.

l name - Name to be searched.

l account:findQualifier - The collection of findQualifier used to alter default behavior.

Behavior

The following findQualifiers affect behavior of the call:

l The findByLoginName findQualifier (default) is used to specify that user accounts shall be searched
by loginName.

l With the findByFullName findQualifier, user accounts are searched by the fullName property.

l If the exactMatch findQualifier is present, an exact match is required.

l The default approximateMatch findQualifier enables SQLwildcard queries.

l If the findBlockedAccount findQualifier is present, only blocked accounts are returned.

l The sortByNameAsc (default) and sortByNameDesc findQualifiers controls the order in which the
data is returned.

Returns

This API call returns the userList upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
find_userAccount.

get_userAccount

The get_userAccount API call returns userAccount structure of selected user.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l loginName - This required argument uniquely identifies the user account.

Returns

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 457 of 642

This API call returns userAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
get_userAccount to get user's own account detail and API manager permission for
org.systinet.uddi.account.AccountApi and the action get_userAccount to get other users' accounts.

save_userAccount

The save_userAccount API call is used to save or update userAccount in HPE SOA Registry
Foundation. Whether public registration is allowed or not depends on the HPE SOA Registry
Foundation configuration. It may be also configured to block registered account until it is enabled by
code sent by email.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l account:userAccount - The user account to be saved.

Returns

This API call returns userAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
save_userAccount to save user's own account or register new account and API manager permission
for org.systinet.uddi.account.AccountApi and the action save_userAccount to save other users'
accounts.

delete_userAccount

Syntax

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 458 of 642

l authInfo - This optional argument is an element that contains an authentication token.

l loginName - This required argument uniquely identifies the user account.

Returns

This API call returns UserAccount upon success.

Permissions

This API call requires the API user permission for org.systinet.uddi.account.AccountApi and the action
delete_userAccount to delete user's own account and API manager permission for
org.systinet.uddi.account.AccountApi and the action delete_userAccount to delete other users'
accounts.

enable_userAccount

The enable_userAccount API call is used to activate user account identified by loginName argument in
HPE SOA Registry Foundation.

Syntax

Arguments

l loginName - This required argument uniquely identifies the user account.

l account:enableCode - Confirmation string.

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/account.wsdl .

API Endpoint
You can find the Account API endpoint at http://<host name>:<port>/uddi/account .

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 459 of 642

Java
The Systinet Java API is generated from Account WSDL. You are encouraged to browse
org.systinet.uddi.account.AccountApi and to read and try Account demos.

Group
Systinet Group API is used to query andmanage user groups in HPE SOA Registry Foundation.

Data Structures
The following structures are used by the Systinet Group API:

group

This element serves as a container for groupInfo and userInfos structures.

groups

This element serves as a container for one or more group structures.

groupInfo

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 460 of 642

http://org.systinet.uddi.account.accountapi/

This element contains information about one user group:

l The required name element holds the name of the group.

l The optional description element is used to describe group and its usage.

l The owner element contains the loginName of the user who created this group.

l The privateGroup element indicates whether the group is public or private.

l The external element indicates whether the group is external (For example, in LDAP) or not.

groupInfos

This element serves as a container for one or more groupInfo elements.

groupList

Attributes

Name Required

truncated No

This structure server as a container for optional listDescription and optional groupInfos
structures. The truncated attribute indicates whether the list of groupInfos is truncated.

Operations
add_user

The add_user API call is used to add a user to a user group.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 461 of 642

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l groupName - the group to which the user will be added.

l account:userInfos - user that will be added to the group.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action add_user.

find_user

The find_user API call is used to find user within the user group.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l name - login name of the user

l account:findQualifier - find qualifier

l groupName - the group in which the user will be searched.

Permissions

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 462 of 642

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action find_user.

Returns

Upon successful completion, the UserList structure is returned.

find_group

The find_group API call is used to search groups in HPE SOA Registry Foundation.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l group:findQualifier - The collection of findQualifier used to alter default behavior.

l name - The required value contains name of the group to be searched.

Behavior

The following findQualifiers affect behavior of the call. The exactMatch findQualifier causes that exact
match on group name is required, while default approximateMatch findQualifier enables SQLwildcard
query. The findPrivateGroups findQualifier enables search between private groups, findPublicGroups
enables search between public groups and findMyGroups will cause the search to be performed only
between groups owned by the user who executed this call. The sortByNameAsc and
sortByNameDesc findQualifiers controls order, in which the data is returned.

If no findQualifier is defined, default findQualifier set contains approximateMatch, findPrivateGroups,
findPublicGroups and sortByNameAsc findQualifiers.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 463 of 642

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action find_group.

get_group

The get_group API call is used to get details for one or more groups in HPE SOA Registry Foundation.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l name - The required value contains name of the group to be returned.

l brief - if you set this attribute, the result will not contain members of the group. Setting the attribute
is useful when working with large groups with thousands of members.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action get_group. The user permission is
needed to get user's own groups, themanager permission is required to get other users' groups.

save_group

The save_group API call is used to save collection of groups to HPE SOA Registry Foundation.

Syntax

Arguments

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 464 of 642

l authInfo - This optional argument is an element that contains an authentication token.

l group:groups - The groups to be saved.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action save_group. The user permission is
needed to save user's own groups, themanager permission is required to update other users' groups.

remove_user

The remove_user API call removes user from the group.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l name - login name of the user

l groupName - the group from which the user will be removed

Permissions

This API call requires API user or manager permission for org.systinet.uddi.client.group.GroupApi and
the action remove_user.

delete_group

The delete_group API call causes that groups identified by their names will be removed from HPE SOA
Registry Foundation.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 465 of 642

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l name - The required value contains names of the groups to be deleted.

Returns

Upon successful completion, the groups structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action delete_group. The user permission is
needed to delete user's own groups, themanager permission is required to delete other users' groups.

where_amI

The where_amI API call is there to return list of groups where the user executing this call is member.
The call returns both private and public groups.

Syntax

Arguments

l authInfo - This optional argument is an element that contains an authentication token.

l loginName - This required argument uniquely identifies the user account.

Returns

Upon successful completion, the groupList structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.client.group.GroupApi and the action where_amI. The user permission is
needed to get groups for the user himself, themanager permission is required to get groups for other
user.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 466 of 642

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/group.wsdl .

API Endpoint
You can find the Group API endpoint at http://<host name>:<port>/uddi/group.

Java
The Systinet Java API is generated from GroupWSDL. You are encouraged to browse
org.systinet.uddi.group.GroupApi and to read and try Group demos.

Permission
The Systinet Permission API is used to query andmanage permissions in HPE SOA Registry
Foundation.

Data Structures
The following structures are used by the Systinet Permission API:

permissionDescriptor

This structure serves as a container for one permission and its actions. The type element contains
the type of the permission. The name element contains the permission's name. Optional action
elements are used to provide finer granularity to the permission and contain individual actions of this
permission.

permissionDescriptors

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 467 of 642

This structure holds an optional principal element and zero or more permissionDescriptor
structures.

permissionDetail

This structure is a container for zero or more permissionDescriptors structures.

principal

This element contains the optional attribute principalType, whichmay be assigned to a user or group.
The element's text contains the loginName of the user, or the group name, depending on the
principalType value.

principals

This structure serves as a container for zero or more principal elements.

principalList

This structure serves as a list principals returned from the operation find_principal.

Operations
find_principal

This operation is used to find principals, it replaces the deprecared operation who_hasPermission .

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 468 of 642

Arguments

l permission:authInfo - This optional argument is an element that contains an authentication
token.

l permissionDescriptor

l name - name of the principal

l findQualifier

Returns

Upon successful completion, the principalList structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.permission.PermissionApi and the action get_permission. The user
permission is needed to get permissions for the user himself, themanager permission is required to get
permissions for other users.

get_permission

The get_permission API call is used to get permissions in HPE SOA Registry Foundation, that have
been assigned to users or groups identified by the principal's structure.

Syntax

Arguments

l permission:authInfo - This optional argument is an element that contains an authentication
token.

l permission:principals - This mandatory structure contains list of users or groups to be
searched.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 469 of 642

Returns

Upon successful completion, the permissionDetail structure is returned.

Permissions

This API call requires API user or manager permission for
org.systinet.uddi.permission.PermissionApi and the action get_permission. The user
permission is needed to get permissions for the user himself, themanager permission is required to get
permissions for other users.

set_permission

The set_permission API call serves to set permissions in HPE SOA Registry Foundation. Existing
permissions for users or groups referenced in permissionDescriptors are overwritten by this call.

Syntax

Arguments

l permission:authInfo - This optional argument is an element that contains an authentication
token.

l permission:permissionDescriptors - This mandatory structure holds permissions to be set.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi
and the action set_permission.

who_hasPermission

Note: The who_hasPermission operation is deprecated. We recommend to use the operation
find_principal instead.

The who_hasPermission API call is used to find out which users or groups have the specified
permissions.

Syntax

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 470 of 642

Arguments

l permission:authInfo - This optional argument is an element that contains an authentication token.

l permission:permissionDescriptor - This argument contains a description of permissions to be
searched.

Returns

Upon successful completion, the principals structure is returned.

Permissions

This API call requires API manager permission for org.systinet.uddi.permission.PermissionApi
and the action who_hasPermission.

WSDL
You can find theWSDL specification in the file REGISTRY_HOME/doc/wsdl/permission.wsdl

API Endpoint
You can find the Permission API endpoint at http://<host name>:<port>/uddi/permission.

Java
The Systinet Java API is generated from PermissionWSDL. You are encouraged to browse its
org.systinet.uddi.permission.PermissionApi and to read and try the Permission demos.

Registry Client
The ;following topics in this section describes how to prepare your own client distribution. A client
created this way allows you to access the HPE SOA Registry Foundation API through a SOAP
interface.

l "Client Package" on the next page

l "JARs on the Client Classpath" on page 473

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 471 of 642

http://org.systinet.uddi.permission.permissionapi/

Client Package
Note: CLIENT_HOME refers to the directory in which the HPE SOA Registry Foundation Client
distribution will be created.

REGISTRY_HOME refers to the directory in which HPE SOA Registry Foundation is installed.

To create a client application distribution follow these steps:

1. Make sure HPE SOA Registry Foundation is successfully installed.

2. In the CLIENT_HOME directory, create a subdirectory named lib.

Copy the following files from REGISTRY_HOME/lib to CLIENT_HOME/lib

activation.jar
builtin-serialization.jar
core_services_client.jar
jaas.jar
jaxm.jar
jaxrpc.jar
jetty.jar
runner.jar
saaj.jar
security-ng.jar
security2-ng.jar
security_providers_client.jar
wasp.jar
wsdl_api.jar
xercesImpl.jar
xml-apis.jar
xmlParserApis.jar

3. In the CLIENT_HOME directory, create a subdirectory named dist.

Copy the following files from REGISTRY/dist to CLIENT_HOME/dist:

account_client.jar
admin_utils_client.jar
category_client_v3.jar
configurator_client.jar
configurator_cluster_client.jar
group_client.jar
permission_client.jar
replication_client_v3.jar
statistics_client.jar

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 472 of 642

taxonomy_client_v3.jar
taxonomy_client_v31.jar
transformer_kr_client.jar
uddiclient_api_ext.jar
uddiclient_api_v1.jar
uddiclient_api_v2.jar
uddiclient_api_v3.jar
uddiclient_api_v3_ext.jar
uddiclient_core.jar
uddiclient_custody_v3.jar
uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_validate_values_v1.jar
uddiclient_validate_values_v2.jar
uddiclient_value_set_caching_v3.jar
uddiclient_value_set_validation_v3.jar
wsdl2uddi_client_v2.jar
wsdl2uddi_client_v3.jar
xsd2uddi_client_v3.jar

4. In the CLIENT_HOME directory, create a subdirectory named conf. Copy the following files from
REGISTRY_HOME/conf to CLIENT_HOME/conf:

clientconf.xml
log4j.config

Note: If you want to use the https connection in HPE SOA Registry Foundation, youmust
import the certificate file into clientconf.xml using the PStoreTool. This file contains the
certificate of the HPE SOA Registry Foundation installation by default.

Note: You do not have to copy client files to directories that have specific names (lib, dist,
and conf). All client files can be copied to the flat directory CLIENT_HOME, for example. If you
do this, however, replace CONF_DIRECTORY, DIST_DIRECTORY, and LIB_DIRECTORYwith
CLIENT_HOME in this section's instructions.

JARs on the Client Classpath
For each client package, the associated .jar files must be added to the classpath. These .jar files are
listed in the appropriate sections below.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 473 of 642

HPE SOARegistry Foundation Runtime
To enable the HPE SOA Registry Foundation Runtime client package, add these .jar files to the
classpath.

activation.jar
builtin-serialization.jar;
core_services_client.jar;
jaas.jar;
jaxm.jar;
jaxrpc.jar
runner.jar
saaj.jar;
security-ng.jar;
security2-ng.jar;
security_providers_client.jar;
wasp.jar;
wsdl_api.jar
xercesImpl.jar;
xml-apis.jar;
xmlParserApis.jar;

UDDI API Client v1
To enable the UDDI API (v1) client package, add these .jar files to the classpath. For more information
on this client package, see “UDDI Version 1” in "UDDI APIs" on page 378.

uddiclient_api_v1.jar
uddiclient_core.jar

UDDI API Client v2
To enable the UDDI API (v2) client package, add these .jar files to the classpath. For more information
on this client package, see “UDDI Version 2” in "UDDI APIs" on page 378.

uddiclient_api_v2.jar
uddiclient_core.jar

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 474 of 642

UDDI API Client v3
To enable the UDDI API (v3) client package, add these .jar files to the classpath. For more information
on this client packages, please see “UDDI Version 3” in "UDDI APIs" on page 378.

uddiclient_api_v3.jar
uddiclient_core.jar

UDDI API Client v3 ext X
To enable the UDDI API (v3, ext X) client package, add these .jar files to the classpath.

uddiclient_api_v3_ext.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Account Client
To enable the Account client package, add these .jar files to the classpath. For more information on this
client package, see "Accounts" on page 453.

account_client.jar
uddiclient_core.jar

Admin Utilities Client
To enable the Admin Utilities client package, add these .jar files to the classpath. For more information
on this client package, see "Administration Utilities" on page 412.

admin_utils_client.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Category Client v3
To enable the Category (v3) client package, add these .jar files to the classpath. For more information
on this client package, see "Category" on page 406

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 475 of 642

category_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Group Client
To enable the Group client package, add these .jar files to the classpath. For more information on this
client package, see "Group" on page 460.

group_client.jar
account_client.jar
uddiclient_core.jar

Permission Client
To enable the Permission client package, add these .jar files to the classpath. For more information on
this client package, see "Permission" on page 467.

permission_client.jar
account_client.jar
uddiclient_core.jar

Replication Client v3
To enable the Replication (v3) client package, add these .jar files to the classpath. For more information
on this client package, see "Replication" on page 417.

replication_client_v3.jar
uddiclient_core.jar

Statistics Client
To enable the Statistics client package, add these .jar files to the classpath. For more information on
this client package, see "Statistics" on page 418.

statistics_client.jar
uddiclient_core.jar

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 476 of 642

Taxonomy Client v3
To enable the v3 Taxonomy client package, add these .jar files to the classpath. For more information
on this client package, see "Taxonomy" on page 395.

taxonomy_client_v3.jar
taxonomy_client_v31.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Custody Client v3
To enable the v3 UDDI Custody client package, add these .jar files to the classpath. For more
information on this client package, see “Custody” in "UDDI Version 3" in "UDDI APIs" on page 378.

uddiclient_custody_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Subscription Client v3
To enable the v3 UDDI Subscription client package, add these .jar files to the classpath. For more
information on this client package, see “Subscription” in "UDDI Version 3" in "UDDI APIs" on page
378.

uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Subscription Listener Client v3
To enable the v3 UDDI Subscription Listener client package, add these .jar files to the classpath. For
more information on this client package, see “Subscription” in "UDDI Version 3" in "UDDI APIs" on
page 378.

uddiclient_subscription_listener_v3.jar
uddiclient_subscription_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 477 of 642

UDDI Validate Values Client v1
To enable the UDDI Validate Values (v1) client package, add these .jar files to the classpath. For more
information on this client package, see "Validation" on page 394.

uddiclient_validate_values_v1.jar
uddiclient_api_v1.jar
uddiclient_core.jar

UDDI Validate Values v2
To enable the UDDI Validate Values (v2) client package, add these .jar files to the classpath. For more
information on this client package, see "Validation" on page 394.

uddiclient_validate_values_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

UDDI Value Set Caching Client v3
To enable the UDDI Value Set Caching (v3) client package, add these .jar files to the classpath.

uddiclient_value_set_caching_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

UDDI Value Set Validation Client v3
To enable the UDDI Value Set Validation (v3) client package, add these .jar files to the classpath. For
more information on this client package, see "Validation" on page 394.

uddiclient_value_set_validation_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

WSDL2UDDI Client v2
To enable theWSDL2UDDI (v2) client package, add these .jar files to the classpath. For more
information on this client package, see"WSDL Publishing" on page 422.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 478 of 642

wsdl2uddi_client_v2.jar
uddiclient_api_v2.jar
uddiclient_core.jar

WSDL2UDDI Client v3
To enable theWSDL2UDDI (v3) client package, add these .jar files to the classpath. For more
information on this client package, see"WSDL Publishing" on page 422.

wsdl2uddi_client_v3.jar
uddiclient_api_v3.jar
uddiclient_core.jar

Resources publishing (XSD) Client
To enable the client package, add these .jar files to the classpath.

uddiclient_api_v3.jar
uddiclient_core.jar
xsd2uddi_client_v3.jar

Classpath Examples
To run your HPE SOA Registry Foundation client code youmust add a config directory, wasp.jar, and
client's jars to the classpath.

Note: CLIENT_HOME=. CONF_DIRECTORY=CLIENT_HOME\conf DIST_DIRECTORY=CLIENT_
HOME\dist LIB_DIRECTORY=CLIENT_HOME\lib

l If you want to use only UDDI Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar

l If you want to use only UDDI Version 3 and UDDI Subscription Version 3:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;

DIST_DIRECTORY\uddiclient_subscription_v3.jar

l If you want to use only UDDI Version 3, UDDI Subscription Version 3, and Taxonomy:

CONF_DIRECTORY;LIB_DIRECTORY\wasp.jar;DIST_DIRECTORY\uddiclient_api_v3.jar%;

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 479 of 642

DIST_DIRECTORY\uddiclient_subscription_v3.jar;DIST_DIRECTORY\taxonomy_client_
v3.jar

Client Authentication
By default, all exposed registry APIs use the UDDI authentication scheme, where an authentication
token is passed with every call to identify a remote user. This is shown in registry demos such as
“Publishing v3” in "UDDI v3" on page 557. The UDDI authentication scheme can be replaced.

In this section, we will show you an example client that publishes a new business entity using HTTP-
Basic or SSL client authentication.

Example Client
For simplicity, the example client uses a SOAP stack provided with HPE SOA Registry Foundation.
You can use a SOAP stack of your choice to communicate with the registry.

ExampleClient.java

// //(C) Copyright 2003-2010 Hewlett-Packard Development Company, L.P.
// Use is subject to license terms.

import org.systinet.uddi.client.v3.UDDIPublishStub;
import org.systinet.uddi.client.v3.UDDI_Publication_PortType;
import org.systinet.uddi.client.v3.struct.*;

public class ExampleClient {
public static void main(String[] args) {

String registryBaseUrl = System.getProperty
("registry.base.url","http://localhost:8080");

String urlPublishing = registryBaseUrl+ "/uddi/publishing";
System.out.print("Using publishing URL "+urlPublishing + " .");

try {
UDDI_Publication_PortType publish = UDDIPublishStub.getInstance

(urlPublishing);
System.out.println(publish.save_business(new Save_business

(new BusinessEntityArrayList(new BusinessEntity(new NameArrayList
(new Name("Created by Client Authentication Example")))))));

System.out.println(" done");
} catch (Exception e) {

e.printStackTrace();
}

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 480 of 642

}
}

The client is created as follows:

1. Create the directory CLIENT_HOME.

2. Create a client class in the CLIENT_HOME directory. The example client is shown in the above
example, “ExampleClient.java ”. It has no security calls or structures internally. Client-side
security will be configured later using properties supplied to the java command that runs the client.

3. Create the lib subdirectory of CLIENT_HOME. Copy the jar files required for compilation and
client execution to this directory. All the jars are in the HPE SOA Registry Foundation installation
directory. They are:

o lib/activation.jar

o lib/builtin_serialization.jar

o lib/core_services_client.jar

o lib/jaxm.jar

o lib/jaxrpc.jar

o lib/jetty.jar

o lib/log4j.jar

o lib/saaj.jar

o lib/security-ng.jar

o lib/security2-ng.jar

o lib/security_providers_client.jar

o lib/wasp.jar

o lib/wsdl_api.jar

o lib/xalan.jar

o lib/xercesImpl.jar

o lib/xml-apis.jar

o dist/uddiclient_core.jar

o dist/uddiclient_api_ v3.jar

4. 4.Create the conf subdirectory of CLIENT_HOME. Copy configuration files required to run the
client to this directory. These files are are also in the HPE SOA Registry Foundation installation

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 481 of 642

directory:

o conf/clientconf.xml

o conf/package12.xml

o conf/package13.xml

o conf/jaas.config

5. Compile the example client class using a CLASSPATH that includes all jar files in the lib
subdirectory of CLIENT_HOME

Before running the client, configure registry for a particular authentication scheme, as explained in
"HTTP Basic" on page 165 or "SSLClient authentication" on page 169. If you want to configure a
deployed registry for SSL client authentication, follow instructions given in "J2EE Server
Authentication" on page 172.

To run the client:

1. Use a classpath that includes all jar files from the CLIENT_HOME/lib directory, and the directory
containing the compiled example class.

2. Add the following property definitions to the java command line:

o -Dwasp.location=CLIENT_HOME

o -Djava.security.auth.login.config=CLIENT_HOME/conf/jaas.config

3. To run the client with HTTP Basic authentication also add the following:

o -Dwasp.username=USERNAME

o -Dwasp.password=PASSWORD

o -Dwasp.securityMechanism=HttpBasic

o -Dregistry.base.url=http://HOST:PORT/CONTEXT

Use the credentials of a registered user instead of USERNAME and PASSWORD. To register a new
user, start with themain page of registry console. See "Registry Console" on page 210 for details.
Youmay also use the demo user demo_johnwith password demo_john if you imported demo data
during installation.

The base URL of registry is specified using the registry.base.url property as shown in
Example 18, “ExampleClient.java ”. Replace HOST,PORT and CONTEXT to match your registry
deployment; for example http://pc1.mycomp.com:8080.

4. 4.To run the client with SSL client authentication add the following:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 482 of 642

o -Dwasp.username=USERNAME

o -Dwasp.password=PASSWORD

o -Dwasp.securityMechanism=SSL

o -Dregistry.base.url=https://HOST:PORT/CONTEXT

Unlike HTTP Basic authentication, USERNAME and PASSWORD are used to obtain the client identity from
a local protected store. You have to import the client identity using instructions provided in “SSL Tool”.
The protected store of the example client is in the file CLIENT_HOME/conf/clientconf.xml. You also
have to import a server certificate (or the certificate of a certification authority that issued the server
certificate) in the same protected store using instructions provided in “PStore Tool”.

Use an alias in the protected store instead of USERNAME. PASSWORD stands for the password that is
used to protect the private key stored under that alias.

The base URL of registry is specified using the registry.base.url System property as shown in the
“ExampleClient.java ” example. Replace HOST,PORT and CONTEXT to match your registry deployment;
for example https://pc1.mycomp.com:8443.

Server-Side Development
This chapter focuses on the server-side development of HPE SOA Registry Foundation extensions.
Possible ways of accessing HPE SOA Registry Foundation are discussed including examples.

l Accessing backend APIs via servlet deployed on an application server.

l Custom HPE SOA Registry FoundationModules - how to create and deploy custom HPE SOA
Registry Foundationmodules.

l Interceptors canmonitor or modify the requests and responses of HPE SOA Registry Foundation.
Interceptors are at the lowest level of HPE SOA Registry Foundation API call processing.

l Writing custom Validation services - HPE SOA Registry Foundation provides several ways to
define and use validation services for taxonomies or identifier systems including remotely and
locally deployed validation services and an internal validation service. For details, see "Taxonomy:
Principles, Creation and Validation" on page 224 in the User's Guide. This chapter focuses on how
to create a validation service.

l Writing subscription notification services - How to implement subscription notification service
deployed on Systinet Server for Java.

l JSP Framework - This section covers the Systinet Web Framework.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 483 of 642

Accessing Backend APIs
This section will show you how to integrate HPE SOA Registry Foundation with your application. Your
application can be deployed as a servlet to the same context of the application server as the registry. In
this case, the servlet of your application can access instances of HPE SOA Registry Foundation APIs
as shown in the following figure.

Accessing Backend Registry APIs - Architecture View

The sequence of steps that precedes access to the HPE SOA Registry Foundation API is shown in the
figure below, “Accessing Backend Registry APIs - Sequence Diagram”.

1. HPE SOA Registry Foundation's API implementations are registered in the WASP context during
the boot of the registry.

2. The example servlet deployed in the WASP context calls the getInstance()method with the
required UDDI Registry interface as a parameter to obtain a reference of the interface
implementation.

3. The example servlet can call the API methods of HPE SOA Registry Foundation.

Accessing Backend Registry APIs - Sequence Diagram

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 484 of 642

Note: WeassumeHPE SOA Registry Foundation is deployed to Tomcat. TOMCAT_HOME
refers to the directory in which the application server is installed. The step-by-step procedure has
been tested on Tomcat 5.0.28.

Follow these steps to create and deploy the example servlet:

1. Create the example servlet class shown in the example below, “ ExampleServet.java ”.

Compile the ExampeServlet.java using:

javac -classpath %REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\lib\wasp.jar;
%TOMCAT_HOME%\common\lib\servet-api.jar ExampleServlet.java

2. Copy ExampleServlet.class to the directory TOMCAT_HOME/webapps/wasp/Web-
inf/classes/com/systinet/example/servlet.

3. Add the example servlet to TOMCAT_HOME/webapps/wasp/Web-inf/web.xml as shown in the
example below, “Example Servlet's web.xml ”.

4. Restart the Tomcat application server.

The example servlet will be available at http://localhost:8080/wasp/myexamples.

You can test it as shown in the following figure.

Example Servlet Output

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 485 of 642

ExampleServet.java

package com.systinet.example.servlet;
import org.idoox.wasp.Context;
import org.idoox.wasp.InstanceNotFoundException;
import org.systinet.uddi.InvalidParameterException;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.UDDI_Inquiry_PortType;
import org.systinet.uddi.client.v3.struct.*;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Iterator;

public class ExampleServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

try {
String searchedBusiness = request.getParameter("sbusiness");
if (searchedBusiness == null) searchedBusiness = "";

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 486 of 642

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML>");
out.println("<HEAD>");
out.println("<H1>Example servlet integration with HPE SOA

Registry</H1>");
out.println("<P>Enter the business name you wish to search");
out.println("<FORM METHOD=GET ACTION=/wasp/myexamples/>");
out.println("<INPUT NAME=sbusiness SIZE=20 VALUE=" + searchedBusiness +

">");
out.println("<INPUT TYPE=SUBMIT VALUE=Search>");
out.println("</FORM>");

// get UDDI API V3 Inquiry implementation
UDDI_Inquiry_PortType inquiry =

(UDDI_Inquiry_PortType) Context.getInstance(UDDI_Inquiry_
PortType.class);

// prepare find_business call
Find_business find_business = new Find_business();
if (searchedBusiness.length() > 0) {
find_business.addName(new Name(searchedBusiness));
out.println("<P>Searching business :" + searchedBusiness);
// call find_business
BusinessList businessList = inquiry.find_business(find_business);
// process the result
BusinessInfoArrayList businessInfoArrayList

= businessList.getBusinessInfoArrayList();
if (businessInfoArrayList == null) {

out.println("<P>Nothing found");
} else {

out.println("<P>Business "+searchedBusiness+" found");
for (Iterator iterator =

businessInfoArrayList.iterator(); iterator.hasNext();) {
BusinessInfo businessInfo = (BusinessInfo) iterator.next();
out.println("<P>Business key : " +

businessInfo.getBusinessKey()+"");
out.println("<P><TEXTAREA ROWS=10 COLS=70>");
out.println(businessInfo.toXML());
out.println("</TEXTAREA");

}
}

}
out.println("</HTML>");

} catch (InvalidParameterException e) {
} catch (InstanceNotFoundException e) {
} catch (UDDIException e) {
}

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 487 of 642

}
}

Example Servlet's web.xml

<servlet>
<servlet-name>ExampleServlet</servlet-name>
<servlet-class>com.systinet.example.servlet.ExampleServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ExampleServlet</servlet-name>
<url-pattern>/myexamples/*</url-pattern>

</servlet-mapping>

Custom Registry Modules
In this section, we will show you how to extend HPE SOA Registry Foundation functionality with your
custommodules. Custommodules can be added to HPE SOA Registry Foundation as shown in the
following figure, “Custom Registry Module - Architecture View”.

Custom Registry Module - Architecture View

To create and deploy a registry module, follow these steps:

1. Write a class that implements org.systinet.uddi.module.Module.

2. Copy your module implementation class to the directory REGISTRY_

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 488 of 642

HOME/app/uddi/services/WASP-INF/classes.

3. Create a configuration file for themodule in REGISTRY_HOME/app/uddi/conf.

4. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart
the registry.

Themain class of the custommodulemust implement org.systinet.uddi.module.Module interface
that has thesemethods:

l load() is invoked as the first method of themodule. You can put reading of the configuration file in
here.

l init() is invoked after the load() method. Put the core implementation of your module in here.
Write non-blocking code or start a new thread.

l destroy() is invoked just before the HPE SOA Registry Foundation shutdown.

Accessing Registry APIs
To access the HPE SOA Registry Foundation API youmust obtain the API stub using the
getApiInstance()method of the API implementation class. For example to obtain the stub of the
Statistics API use:

StatisticsApi statapi = StatisticsApiImpl.getApiInstance();

Mapping between API interface classes and implementation classes is stored in the REGISTRY_
HOME/app/uddi/services/WASP-INF/package.xml file. See the following table, “Mapping API
Interface and Implemenation Classes”.

Mapping API Interface and Implemenation Classes

Interface class Implementation class

org.systinet.uddi.client.v1.InquireSoap com.systinet.uddi.inquiry.v1.InquiryApiImpl

org.systinet.uddi.client.v1.PublishSoap com.systinet.uddi.publishing.v1.PublishingApiImpl

org.systinet.uddi.client.v2.Publish com.systinet.uddi.publishing.v2.PublishingApiImpl

org.systinet.uddi.client.v2.Inquire com.systinet.uddi.inquiry.v2.InquiryApiImpl

org.systinet.uddi.client.v3.UDDI_Security_
PortType

com.systinet.uddi.v3.SecurityApiImpl

org.systinet.uddi.client.v3.UDDI_ com.systinet.uddi.publishing.v3.PublishingApiImpl

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 489 of 642

Publication_PortType

org.systinet.uddi.client.v3.UDDI_Inquiry_
PortType

com.systinet.uddi.inquiry.v3.InquiryApiImpl

org.systinet.uddi.client.subscription.v3.UDD
I_Subscription_PortType

com.systinet.uddi.subscription.v3.SubscriptionApiI
mpl

org.systinet.uddi.client.custody.v3.UDDI_
CustodyTransfer_PortType

com.systinet.uddi.custody.v3.CustodyApiImpl

org.systinet.uddi.replication.v3.ReplicationA
pi

com.systinet.uddi.replication.v3.ReplicationApiImpl

org.systinet.uddi.client.wsdl2uddi.v3.Wsdl2u
ddiApi

com.systinet.uddi.wsdl2uddi.v3.Wsdl2uddiApiImpl

org.systinet.uddi.client.wsdl2uddi.v2.Wsdl2u
ddiApi

com.systinet.uddi.wsdl2uddi.v2.Wsdl2uddiApiImpl

org.systinet.uddi.client.category.v3.Category
Api

com.systinet.uddi.category.v3.CategoryApiImpl

org.systinet.uddi.client.taxonomy.v3.Taxono
myApi

com.systinet.uddi.taxonomy.v3.TaxonomyApiImpl

org.systinet.uddi.statistics.StatisticsApi com.systinet.uddi.statistics.StatisticsApiImpl

org.systinet.uddi.admin.AdministrationUtilsA
pi

com.systinet.uddi.admin.AdministrationUtilsApiImp
l

org.systinet.uddi.permission.PermissionApi com.systinet.uddi.permission.PermissionApiImpl

org.systinet.uddi.group.GroupApi com.systinet.uddi.group.GroupApiImpl

org.systinet.uddi.account.AccountApi com.systinet.uddi.account.AccountApiImpl

org.systinet.uddi.configurator.ConfiguratorAp
i

com.systinet.uddi.configurator.cluster.Configurator
ApiImpl

CustomModule Sample
This section includes step-by-step instructions how to create a registry module that counts the number
of restarts of HPE SOA Registry Foundation and saves the result to a configuration file.

Follow these steps:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 490 of 642

1. Create Java file ExampleModule.java as shown in example, “ ExampleModule.java ”

2. Compile themodule using java -classpath "%REGISTRY_HOME%\app\uddi\services\WASP-
INF\lib\application_ core.jar; %REGISTRY_HOME%\lib\wasp.jar" ExampleModule.java

3. Copy all module classes (ExampleModule.class,
ExampleModule$RestartConfig$Counter.class, ExampleModule$RestartConfig.class) to
the REGISTRY_HOME/app/uddi/services/WASP-INF/classes/com/systinet/example/module
directory.

4. Create the configuration file mymodule.xml in REGISTRY_HOME/app/uddi/conf folder. For details,
see example, “Example configuration file for custommodule”.

5. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart
the registry.

The number of restarts will be printed in the window console in which you started HPE SOA Registry
Foundation. See also the configuration file of themodule where a new element counter is created.

ExampleModule.java

package com.systinet.example.module;

import org.idoox.config.Configurable;
import org.systinet.uddi.module.Module;

public class ExampleModule implements Module {
private long restart = 0;
private RestartConfig.Counter counter;

interface RestartConfig {
public Counter getCounter();
public void setCounter(Counter counter);
public Counter newCounter();
interface Counter {

public long getRestart();
public void setRestart(long restart);

}
}

public void load(Configurable config) {
System.out.println("MY MODULE CONFIG READING");
RestartConfig restartConfig = (RestartConfig) config.narrow

(RestartConfig.class);
if (restartConfig != null) {

counter = restartConfig.getCounter();
if (counter == null) {

counter = restartConfig.newCounter();

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 491 of 642

restartConfig.setCounter(counter);
}
try {

restart = counter.getRestart();
} catch (Exception e) {

counter.setRestart(0);
}

}
}

public void init() {
System.out.println("MY MODULE STARTED");
counter.setRestart(++restart);
System.out.println("UDDI REGISTRY: number of restarts = " + restart);

}

public void destroy() {
}

}

Example configuration file for custom module

<?xml version="1.0" encoding="UTF-8"?>
<config name="myconf">

<module loader="com.systinet.example.module.ExampleModule" name="MyModule">
</module>

</config>

Interceptors
Interceptors canmonitor or modify the requests and responses of HPE SOA Registry Foundation as
shown in the figure below, “Registry Interceptors”. They are at the lowest level of HPE SOA Registry
Foundation API call processing, and can be used for:

l Logging requests. See "Logging Interceptor Sample" on the next page.

l Computingmessage statistics. See "Request Counter Interceptor Sample" on page 496.

l Changing request arguments (adding default values)

l Prohibiting some API calls

Registry Interceptors

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 492 of 642

There are three types of HPE SOA Registry Foundation interceptor:

l Request InterceptorMonitors or modifies request arguments, stops processing requests, or
throws an exception. This type of interceptor accepts a calledmethod object and its arguments.

l Response InterceptorMonitors or modifies response values or throws an exception. This
interceptor accepts a calledmethod object and its response value.

l Exception InterceptorMonitors, modifies, or changes an exception. This interceptor accepts a
calledmethod object and its thrown exception.

If you want to directly access the HPE SOA Registry Foundation API see “Accessing Registry APIs”
in " Custom Registry Modules" on page 488 for more information.

Creating and Deploying Interceptors

1. Write a class that implements the org.systinet.uddi.interceptor interface.

2. Copy your interceptor implementation class to the directory REGISTRY_
HOME/app/uddi/services/Wasp-inf/classes.

3. Create a configuration file for your interceptor in the REGISTRY_HOME/app/uddi/conf directory.
See "Interceptor Configuration" on page 495.

4. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart
the registry.

Logging Interceptor Sample
This section includes step-by-step instructions how to create the interceptor that logs requests.

To create a logging interceptor:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 493 of 642

1. Create Java file LoggingInterceptor.java as shown in example, “Logging Interceptor Class”.

2. Compile the interceptor using Java -classpath "%REGISTRY_
HOME%\app\uddi\services\Wasp-inf\lib\application_core.jar; %REGISTRY_
HOME%\lib\wasp.jar" LoggingInterceptor.java

3. Copy LoggingInterceptor.class to the REGISTRY_HOME/app/uddi/services/Wasp-
inf/classes/interceptor directory.

4. Create the configuration file Myinterceptor.xml in REGISTRY_HOME/app/uddi/conf folder. For
details, see example, "Logging Interceptor Configuration File".

5. ShutdownHPE SOA Registry Foundation, delete the REGISTRY_HOME/work directory, and restart
the registry.

Logging Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.ExceptionInterceptor;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.ResponseInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class LoggingInterceptor implements RequestInterceptor,
ResponseInterceptor, ExceptionInterceptor {

public void load(Configurable config)
throws WaspInternalException {
// no initialization required

}

public void destroy() {
// no destroy required

}

public void intercept(Method method,
Object[] args,
InterceptorChain chain,
int position)

throws StopProcessingException, Exception {
System.out.println("request: " + method.getName());

}

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 494 of 642

public Object intercept(Method method,
Object returnValue,
InterceptorChain chain,
int position)

throws Exception {
System.out.println("response: " + method.getName());
return returnValue;

}

public Exception intercept(Method method,
Exception e,
InterceptorChain chain,
int position) {

System.out.println("exception: " + method.getName());
return e;

}
}

Logging Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="MyInterceptorConfig">

<UDDIInterceptorInstance name="LoggingInterceptorInstance"
instancePerCall="false"
className="interceptor.LoggingInterceptor"/>

<UDDIInterceptor name="LoggingInterceptor"
instanceName="LoggingInterceptorInstance"
interceptorChain="inquiry_v3"
request="true"
response="true"
fault="true" />

</config>

Interceptor Configuration

The configuration file must be present in the REGISTRY_HOME/app/uddi/conf directory. For details see
example, “Logging Interceptor Configuration File”. Interceptors are called in the same order as they
appear in the configuration file.

l config name - the unique (unambiguous) name of the configuration.

l UDDIInterceptorInstance - contains information about the implementation class and its
instantiation.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 495 of 642

o name - The name of interceptor instance. This name is used as a link to the
UDDIInterceptor/instanceName section of the configuration.

o instancePerCall - If the instancePerCall attribute is set to true, then the class will be
instantiated once per API call. Otherwise, this interceptor instantiates only once for all calls.

o className - name of the class that implements the interceptor.

l UDDIInterceptor - The UDDIInterceptor contains references to UDDI Interceptors and their
types.

o name - name of the interceptor.

o instanceName - this attribute contains the name of the UDDIInterceptorInstance section of the
configuration file.

o interceptorChain - UDDIInterceptorChains are defined for each API in their configuration
files. This attribute contains a reference to the required API.

o request - when set true, the interceptor catches requests.

o response - when set true, the interceptor catches responses.

o fault - when set true, the interceptor catches faults.

Request Counter Interceptor Sample
In this section, we will create an interceptor that counts requests and stores the number of request to a
configuration file. The steps required to create a Request Counter Interceptor are the same as those in
the "Logging Interceptor Sample" on page 493.

Interceptor implementation is shown in example, “Request Counter Interceptor Class”. The
configuration file is shown in example, “Request Counter Interceptor Configuration File”.

Request Counter Interceptor Class

package interceptor;

import org.idoox.config.Configurable;
import org.idoox.wasp.WaspInternalException;
import org.idoox.wasp.interceptor.InterceptorChain;
import org.systinet.uddi.interceptor.RequestInterceptor;
import org.systinet.uddi.interceptor.StopProcessingException;
import java.lang.reflect.Method;

public class RequestCounterInterceptor implements RequestInterceptor {

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 496 of 642

private long request = 0;
private RequestCounterInterceptorConfig.Counter counter;

/**
* RequestCounterInterceptor config interface
*/
interface RequestCounterInterceptorConfig {

public Counter getCounter();
public void setCounter(Counter counter);
public Counter newCounter();
interface Counter {

public long getRequest();
public void setRequest(long request);

}
}
public void intercept(Method method,

Object[] args,
InterceptorChain chain,
int position)

throws StopProcessingException, Exception {
counter.setRequest(++request);
System.out.println("request: " + request);

}

public void load(Configurable config)
throws WaspInternalException {
RequestCounterInterceptorConfig intinterceptorConfig =

(RequestCounterInterceptorConfig)
config.narrow(RequestCounterInterceptorConfig.class);

if (intinterceptorConfig != null) {
counter = intinterceptorConfig.getCounter();
if (counter == null) {
counter = intinterceptorConfig.newCounter();
intinterceptorConfig.setCounter(counter);

}
try {
request = counter.getRequest();

} catch (Exception e) {
counter.setRequest(0);
}

}
}

/**
* Destroys the interceptor.
*/
public void destroy() {

// no destroy required
}

}

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 497 of 642

Request Counter Interceptor Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<config name="myInterceptors">

<UDDIInterceptorInstance className="interceptor.RequestCounterInterceptor"
instancePerCall="false" name="RequestCounterInterceptorSampleInstance">

</UDDIInterceptorInstance>
<UDDIInterceptor fault="false"

instanceName="RequestCounterInterceptorSampleInstance"
interceptorChain="inquiry_v3" name="RequestCounter" request="true"
response="false"/>

</config>

Writing a Custom Validation Service
HPE SOA Registry Foundation provides several ways to define and use validation services for
taxonomies or identifier systems. For details about HPE SOA Registry Foundation taxonomies, see
"Taxonomy: Principles, Creation and Validation" on page 224 in the User's Guide. This chapter focuses
on custom validation services that you can deploy:

l Locally on HPE SOA Registry Foundation - Local validation service.

l Remotely to a SOAP server, for example the Systinet Server for Java - External validation service.

There are three different Java interfaces for validation services, one for each of themain UDDI data
structures. These interfaces correspond to theWSDLPort Types of the Validation Service defined in
the UDDI specification.

l UDDI v3 validation services must implement org.systinet.uddi.client.valueset.validation.v3.UDDI_
ValueSetValidation_PortType .

l UDDI v2 validation services must implement org.systinet.uddi.client.vv.v2.ValidateValues .

l UDDI v1 validation services must implement org.systinet.uddi.client.vv.v1.ValidateValues .

These interfaces are similar enough that we will only describe v3 validation. Your validation service
must implement the interface UDDI_ValueSetValidation_PortType. This interface only has the
validate_values method which has only one parameter, Validate_values. This parameter is a
wrapper for real parameters: optional authInfo and basic UDDI data structures (businessEntities,
businessServices, bindingTemplates, tModels and publisherAssertions) to validate. The validate_
values method returns DispositionReport. If validation passes successfully, the DispositionReport
should contain only one Result with errNo equals UDDIErrorCodes.E_SUCCESS.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 498 of 642

http://org.systinet.uddi.client.valueset.validation.v3.uddi_valuesetvalidation_porttype/
http://org.systinet.uddi.client.valueset.validation.v3.uddi_valuesetvalidation_porttype/
http://org.systinet.uddi.client.vv.v2.validatevalues/
http://org.systinet.uddi.client.vv.v1.validatevalues/

Deploying Validation Service
Once the validation service is implemented, you can deploy the validation service locally on HPE SOA
Registry Foundation. To deploy the validation service on HPE SOA Registry Foundation

1. Create a classes subdirectory under REGISTRY_HOME/app/uddi/services/WASP-INF and copy
the class file into this directory (with respect to subdirectories corresponding to packages).

2. ShutdownHPE SOA Registry Foundation, delete the REGISTRY/work directory, and restart HPE
SOA Registry Foundation.

For more information, see "Validation" in "Advanced Demos" on page 570. For details about the
configuration of Validation Services, see "Taxonomy Management" on page 310 in the Administrator's
Guide.

To deploy an external validation service, youmust create a deployment package.

External Validation Service
This section shows you how to implement and package an external validation service that will be
deployed to Systinet Server for Java 5.5. We show you how to package and deploy the ISBN validation
service from the validation demo described in Validation" in "Advanced Demos" on page 570. It is
assumed you have already built the Validation demo.

Note: Wealso assumeHPE SOA Registry Foundation is installed in the REGISTRY_HOME folder
and running at http://localhost:8080/ and that

Systinet Server for Java is installed in WASP_HOME folder and running at
http://localhost:6060/

To package and deploy a validation service to Systinet Server for Java:

1. Create a deployment package.

Create the jar file ExampleValidation.jarwith the following structure:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 499 of 642

Copy ISBNValidation.class from REGISTRY_
HOME/demos/advanced/validation/build/classes to the package.

Copy the wsdl and xsd files from REGISTRY_HOME/doc/wsdl to the package.

Copy the package.xml file shown in example, “ package.xml ”, to the package.

2. Deploy the validation package with required HPE SOA Registry Foundation client packages into
Systinet Server for Java 5.5.

a. copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar %WASP_HOME%\app\system\uddi

b. copy %REGISTRY_HOME%\dist\uddiclient_value_set_validation_v3.jar %WASP_
HOME%\app\system\uddi

c. copy ExampleValidation.jar %WASP_HOME%\app\system\uddi

3. Shut down the Systinet Server for Java, delete theWASP_HOME/work directory, and restart the
Systinet Server for Java.

Now you can upload the checked taxonomy from REGISTRY/demos/advanced/validation/data.
For more information, see “Uploading Taxonomies” in "Taxonomy Management" on page 310 in
the User's Guide.

Modify the validation service endpoint as shown in the following figure, “Validation for Checked
Taxonomy” by using the Taxonomy Editor in the HPE Systinet Workbench.

Validation for Checked Taxonomy

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 500 of 642

You can run and test the validation service using Validation demo described in "Validation" in
"Advanced Demos" on page 570.

Sample File

package.xml
<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"

xsi:schemaLocation="http://systinet.com/wasp/package/1.2"
targetNamespace="http://my.org" version="1.0"
name="ISBNValidation" client-package="false" library="false"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tns="http://my.org"

xmlns:UDDIClient-value-set-validation-v3=
"http://systinet.com/uddi/client/value-set-validation/v3/5.0">

<dependency ref="UDDIClient-value-set-validation-v3:UDDIClient-value-set-
validation-v3"

version="5.0"/>
<service-endpoint name="ISBNValidation"

path="/ISBNValidation"
service-instance="tns:ISBNValidationInstance"

processing="UDDIClient-value-set-validation-v3:UDDIClientProcessing">
<wsdl uri="uddi_vs_v3.wsdl" xmlns:wsdl="urn:uddi-org:vs_v3"

service="wsdl:UDDI_ValueSetValidation_SoapService"/>
</service-endpoint>

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 501 of 642

<service-instance name="ISBNValidationInstance"
implementation-class="demo.uddi.validation.ISBNValidation"
preload="false" ttl="600" instantiation-method="shared"/>

</package>

Writing a Subscription Notification Service
This section will show you how to implement a subscription notification service. When you create a
HPE SOA Registry Foundation subscription you can specify a notification listener service endpoint as
described in " Subscriptions in HPE SOA Registry Foundation" on page 207 in the User's Guide.

In this chapter, we describe the following use case: The user wants to create a service that will be
executed when a subscription notification is sent. The listener notification service will be deployed on
the Product Documentation Server for Java.

The procedure of creating and deploying the subscription notification consist of the following steps:

1. Create subscription notification service class. Package the notification service class with
necessary wsdl, schema, and deployment descriptor files.

2. Deploy the service notification package with the required HPE SOA Registry Foundation client
packages into Systinet Server for Java.

3. Create a subscription using the Registry Console.

Note: WeassumeHPE SOA Registry Foundation is installed in REGISTRY_HOME folder and
running at http://localhost:8080/, and that

Systinet Server for Java is installed in WASP_HOME folder and running at
http://localhost:6060/.

Now wewill describe the process in detail:

1. Create the subscription notification service class shown in example, “
ExampleNotificationListener.java ”.

2. Compile the ExampleNotificationListener.java using:

javac -classpath%REGISTRY_HOME%\dist\uddiclient_api_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_core.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar;
%REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar
ExampleNotificationListener.java

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 502 of 642

3. Package the ExampleNotificationListener.classwith necessary wsdl, schema and
deployment descriptor file as follows:

a. Create a jar file ExampleNotificationListener.jar with the following structure:

b. Copy the wsdl and schema files from REGISTRY_HOME/doc/wsdl to the package.

c. Copy the package.xml file shown in example, “ package.xml ”, to the package.

4. Deploy the service notification package with required HPE SOA Registry Foundation client
packages into the Systinet Server for Java 5.5.

a. copy %REGISTRY_HOME%\dist\uddiclient_api_v3.jar %WASP_HOME%\app\system\uddi

b. copy %REGISTRY_HOME%\dist\uddiclient_subscription_v3.jar %WASP_
HOME%\app\system\uddi

c. copy %REGISTRY_HOME%\dist\uddiclient_subscription_listener_v3.jar %WASP_
HOME%\app\system\uddi

d. copy ExampleNotificationListener.jar %WASP_HOME%\app\system\uddi

5. Shutdown the Systinet Server for Java, delete theWASP_HOME/work directory, and restart the
Systinet Server for Java

6. Create a subscription using the Registry Console.

See “Publishing Subscriptions” in "Publishing" on page 265 in the User's Guide for instructions on
how to create a subscription.

7. Publish the subscription with the Notification listener type Service endpoint. Enter the Notification
listener endpoint as http://your.computer.name.com:6060/ExampleNotificationListener
as shown in the following figure, “Create Subscription”

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 503 of 642

Create Subscription

Sample Files
Example: ExampleNotificationListener.java

package com.systinet.subscription;

import org.systinet.uddi.client.subscription.listener.v3.UDDI_SubscriptionListener_
PortType;
import org.systinet.uddi.client.subscription.listener.v3.struct.Notify_
subscriptionListener;
import org.systinet.uddi.client.v3.UDDIException;
import org.systinet.uddi.client.v3.struct.DispositionReport;

public class ExampleNotificationListener implements UDDI_SubscriptionListener_
PortType{

public DispositionReport notify_subscriptionListener(Notify_
subscriptionListener body)

throws UDDIException {
System.out.println(body.toXML());
DispositionReport result = DispositionReport.DISPOSITION_REPORT_

SUCCESS;
return result;

}
}

Example: package.xml

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://systinet.com/wasp/package/1.2"

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 504 of 642

xsi:schemaLocation="http://systinet.com/wasp/package/1.2
http://systinet.com/wasp/package/1.2"

targetNamespace="http://my.org" version="1.0"
name="ExampleNotificationListener" client-package="false" library="false"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tns="http://my.org"

xmlns:uddi_subr_v3="urn:uddi-org:subr_v3_binding"
xmlns:uddiclient_subscription_listener_v3=

"http://systinet.com/uddi/client/subscription/listener/v3/5.0">

<dependency ref=
"uddiclient_subscription_listener_v3:UDDIClient-subscription-listener-v3"

version="5.0"/>

<service-endpoint name="ExampleNotificationListener"
path="/ExampleNotificationListener"
service-instance="tns:ExampleNotificationListenerInstance"
processing="uddiclient_subscription_listener_v3:UDDIClientProcessing">
<wsdl uri="uddi_subr_v3.wsdl"

service="uddi_subr_v3:UDDI_SubscriptionListener_SoapService"/>
</service-endpoint>
<service-instance name="ExampleNotificationListenerInstance"

implementation-
class="com.systinet.subscription.ExampleNotificationListener"

preload="false" ttl="600" instantiation-method="shared"/>
</package>

Systinet Web Framework
This section describes HPE SOA Registry Foundation from the developer's point of view. It describes
the HPE SOA Registry Foundation Framework architecture and configuration.

l “Architecture Description”

l “Directory Structure”

l “Framework Configuration”

l “syswf JSP tag library”

l “Typical Customization Tasks”

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 505 of 642

Architecture Description
The framework uses the Jasper engine, a part of the Tomcat server. It is able to run on Jasper1 from
Tomcat version 4.1 (Servlet API 2.3/JSP spec 1.2) or Jasper2 from Tomcat version 5 (Servlet API
2.4/JSP spec 2.0). It also uses a customized JSTL 1.0 tag library implementation which is based on
Apache tag libraries from the Jakarta project.

Applications using the Systinet Web Framework are composed of pages. Every page of the web has a
URI where it can be accessed. In the Systinet Web Framework, we call each page of the web as a
task.

The Systinet Web Framework uses a component model to build up the web application. Every task is
assigned to a component which is the real entity behind the process that generates the resulting HTML
page displayed to the user. Thus, every task references a component, but components need not be
associated with tasks, as wewill see later.

Each component is built from two parts:

l a JSP part

l a Java part

The JSP part serves as a template and takes care of parsing and visualization of the data that comes in
a session, or in a request to which they are stored in the Java part of a component.

The framework functionality is accessible from the JSP parts of components through the Systinet
custom JSP tag library. This library contains tags for creating references to tasks, nesting
components, and tags for creating HTML form elements that support dynamic behavior.

Sometimes, a component is purely JSP-based as the one associated with this documentation page.
But when the pagemust process user-entered information, or when datamust bemodified before
presentation, youmust use the Java part of the component.

To switch from one page to a another, use the syswf:control custom tag in the JSP part of the
source task component. The syswf:control tag's targetTask attribute defines the task (that is, the
page) the user should be transferred to. The custom tag is translated into a piece of JavaScript code
responsible for correct page submitting.

Tasks can be accessed directly using a web browser. For example, if the registry's web interface runs
on the address http://localhost:8080/uddi/web, a task with the URI /findBusiness can be
accessed directly from the client browser at http://localhost:8080/uddi/web/findBusiness.

Component Java Interface Part

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 506 of 642

The Java part of the component must implement the com.systinet.webfw.Component interface from
theWeb Framework library. However, it usually extends its default implementation:
com.systinet.webfw.ComponentImpl. For those components that do not declare their Java part, this
default implementation is automatically used.

The interface consists of twomethods:

l void process(String action, Map params)

l void populate(String action, Map params)

The process()method is called just before the translation of the component's JSP part is started, so it
should take care of data preparation and it should also handle the actions requested by the user (react
to pressed buttons, etc.).

The populate()method is called only when the POST request to the URI comes from the sameURI ,
so it's a perfect place tomodify the way data from aweb page is populated back into objects. Actually,
the target objects are always Java Beans which simplify their handling quite a bit.

Request Diagram

The diagram shown in figure, “Request Diagram” demonstrates how requests for the page are handled
by theWeb Framework:

Request Diagram

1. The request is sent by the client browser from a different page than the page requested.

2. The process() method is called on taskA component's Java part. This method should perform
actions triggered by controls in the web page and/or prepare data for taskA component's JSP part.

3. Processing of taskA component's JSP part is initialized.

4. While taskA component's JSP part is being processed, the resulting HTML is generated.

5. Processing of taskA component's JSP part finishes; the response is returned to the client's

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 507 of 642

browser.

Note: If the request is sent by the client browser from the same page as the page requested
(meaning the source and target tasks are the same), then the populate()method is called on
the task component's Java part before the process()method.

Nesting Components

As we noted above, the component JSP part can include other components using the
syswf:component custom tag right in the JSP code. The diagram shown in figure, “Nesting
Components Diagram” presents how a request is handled when there are such nested components.
Note that now the request comes from the same task it is targeted to:

Nesting Components Diagram

1. The request is sent by the client browser from the same page as the page requested.

2. The populate()method is called on taskA component's Java part. This method is responsible
for the transfer of data from web page form elements (input fields, radio buttons, etc.) to
JavaBeans objects on the server.

3. The process()method is called on taskA component's Java part. This method should perform
actions triggered by controls in the web page and/or prepare data for taskA component's JSP part.

4. Processing of taskA component's JSP part is initialized.

5. Request for insertion of component A is found.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 508 of 642

6. The process()method is called on the Java part of component A. This method should prepare
data for component presentation.

7. Processing of the JSP part of component A is performed. Once finished, the result is included in
the parent JSP page.

8. Request for insertion of component B is found.

9. The process()method is called on the Java part of component B. This method should prepare
data for component presentation.

10. Processing of the JSP part of component B is performed. Once finished, the result is included in
the parent JSP page.

11. Processing of taskA component's JSP part finishes. The response is returned in the client's
browser.

Component JSP Part

Skeleton of the JSP Page

The following example displays theWSDLURL for aWSDL service.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="syswf" uri="http://systinet.com/jsp/syswf" %>

<syswf:page headerTemplate="pageHeader.jsp" footerTemplate="pageFooter.jsp">

<syswf:wrap headerTemplate="design/pageHeader.jsp"
footerTemplate="design/pageFooter.jsp">

...
</syswf:wrap>

</syswf:page>

The core of the JSTL (standard tag library) together with the Registry Web Framework custom tag
library are imported. The beginning of the page is declared (syswf:page tag); page header and footer
represented as JSP pages are passed as attributes. These pages contain the basic HTML tags and
declaration of Java Scripts that will be used in the page.

To enable automatic wrapping and resizing, all of the page's content is packed into the syswf:wrap tag
to which page header and footer JSP pages are passed as attributes. The header and footer pages
contain:

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 509 of 642

l The design part - the logo andmenu, such as the labels at the top of this page under the product
name

l The navigation path - shown in the top right corner of this page

l Text that should be displayed in the bottom of the page, such as copyright information.

Implicit Objects

Implicit objects allow you to interact with various framework parts, from Java code or JSP pages. A
reference to an implicit object should be obtained from the com.systinet.uddi.util.CallContext
class, or by using simple getter methods from com.systinet.webfw.ComponentImpl.

l request HTTP request interface; here you can read, for example, http headers included in user's
request. Using request attributes is the preferred way to transfer data from Java to JSP pages.

l response HTTP response interface; can be used, for example, to set content type and other
response header data or to send binary data back to client.

l localSession Contains the java.util.Map object, which is accessible from the current task only.
For example, when you have tasks A and B in navigation history, each has a separate local
session. When you return from task B to task A, the whole local session content of task B is
discarded.

l globalSession Contains the java.util.Map object, which is shared among all tasks; this
session can be used, for example, to store the current user's authToken, or other application-wide
data.

Data Types

Data type classes are responsible for converting values between web page HTML form fields and
underlying Java Beans objects. The Data type class must implement the simple interface
com.systinet.webfw.datatype.DataType with twomethods:

l String objectToWeb(Object value) provides conversion from arbitrary Java type to String
usable in web pages.

l Object webToObject(String value) provides conversion in the opposite direction.

There are predefined implementations of this object for converting the simple Java data types string,
int, long, and boolean.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 510 of 642

Client-Side Validators

Validators can be used to validate user input before a web page is submitted to a server. The validation
is invoked by a specific page control (a button or a link). There is a predefined set of validators for
common input field checks.

Predefined Validators

Name Description

required Checks if the field is not empty.

uddiKey Checks if the field content starts with the uddi: prefix.

length50, length80, length255,
length4096, length8192

Checks if the field contains nomore than the specified
number of characters.

email Checks if the field contains an email address.

long Checks if the field contains a number of type long.

int Checks if the field contains a number of type int.

To add a validator to an input field or a text area, use the sysfw:checker tag. To trigger the validation
control, use the syswf:validate tag.

Example: Validators Usage

<syswf:input name="businessKey" value="">
<syswf:checker name="required" action="viewBusinessV3"/>
<syswf:checker name="uddiKey" action="viewBusinessV3"/>

</syswf:input>
...
<syswf:control action="viewBusiness" caption="View business" mode="button">

<syswf:validate action="viewBusinessV3"/>
</syswf:control>

The above example, “Validators Usage” shows an input field with two checkers, the first one checks if
the field is not empty and the second one checks if the field contains a string starting with the prefix
uddi: (uddi key). Both checkers are invoked when a user clicks theView business button.

Validation is performed using a JavaScript function. The validator name is required to be defined in the
JavaScript function with the name check_required. The return value from the validator is of the boolean
type: true when the field content is valid, and false when content is invalid. In case of error, the validator
displays an error message with the description of the allowed field content. This validator is also
responsible for transferring the focus to the field with an error.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 511 of 642

Example: Required Validator Implementation

// is required checker
function check_required (formID, fieldID)
{

var value = getFieldValue(formID, fieldID);
if (isEmpty(value))
{

alertRequired();
setFocus(formID, fieldID);
return false;

}
return true;

}

Custom validators should be can be added to the file REGISTRY_
HOME/app/uddi/web.jar/webroot/script/uddi.js. Many functions for validation are defined in the
file REGISTRY_HOME/app/uddi/web.jar/webroot/script/wf.js.

Directory Structure
JSP pages for the HPE SOA Registry Foundation user interface are placed in the REGISTRY_
HOME/app/uddi/web.jar/jsp directory. Static content, such as scripts and images, is stored in the
REGISTRY_HOME/app/uddi/web.jar/webroot directory.

JSP Page Reference

Root Files

File Description

error.jsp skeleton for error page

home.jsp main page with welcome text

login.jsp login page

management.jsp page with buttons for all registry management tasks

pageFooter.jsp page header containing required JavaScripts and HTML form. Do not
write any design here; use design/pageFooter.jsp instead

pageHeader.jsp contains mainly page hidden fields. Do not write any design here; use

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 512 of 642

design/pageHeader.jsp instead

uddiErrorComponent.jsp component responsible for displaying error messages

Content of Page Directories

Directory Description

account All pages related to account management

admin Administration tools for tModel deletion and key replacement

configuration Registry and web configuration pages

custody User interface for custody transfer

design Contains various design elements such as frames and tabs

group Groupmanagement

inquiry UDDI inquiry pages

permission Permissionmanagement

publishing UDDI publishing pages

replication Replicationmanagement

statistics Shows registry statistics

subscription UDDI subscription pages

taxonomy Taxonomy browsing andmanagement

util Various page components

wsdl2uddi WSDL-to-UDDI mapping pages

xsd2uddi Inquiry and publishing pages for mapping of XML schemas to UDDI

Framework Configuration
All needed configuration settings are stored in the file REGISTRY_HOME/app/uddi/conf/web.xml

Component

Specifies configuration of page components.

Component Attributes

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 513 of 642

Attribute Description Required

name Unique component identification yes

className Fully qualified class name of the component implementation class no

page Path to JSP page with component design; path is relative to root JSP
directory.

no

Task

Contains definition of tasks.

Task Attributes

Attribute Description Required

URI Unique string used to call a task from controls or directly using http URL;
the URI must start with a forward slash (/) character.

yes

caption task description to be displayed, for example as page title no

component Name of task root component yes

Subelement

Element Description Required

param Additional parameters to be passed to the root component; each parameter is
specified as name-value pair.

no

Data Type

Contains the definition of the data types.

Data Type Attributes

Attribute Description Required

typeName Unique name of the data type; this name is used to reference a data type,
for example from the syswf:input tag.

yes

className Name of data type implementation class yes

Other Configuration

Configuration Elements

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 514 of 642

Attribute Description

url First part of the URL used to access HPE SOA Registry Foundation
without encryption (plain HTTP); this part should contain the http protocol
prefix, hostname, and port.

secureUrl First part of the URL used to access HPE SOA Registry Foundation using
encryption. This part should contain https protocol prefix, hostname and
port.

context Context part of the URL, used to access HPE SOA Registry Foundation
tasks; the default value is uddi/web for standalone registries and
wasp/uddi/web for registries deployed to an application server.

dataContext Context part of the URL, used to access HPE SOA Registry Foundation's
static content, for example, images and cascading style sheets. The
default value is uddi/webdata for standalone registries and
wasp/uddi/webdata for registries deployed to an application server.

serverSessionTimeout Default timeout of server-side sessions (measured in seconds).

uploadTempDir Directory used to store temporary files during the upload process; this path
should be relative to service context directory.

maxUploadSize Maximum size of uploaded files; larger files are rejected.

jspDir Directory with JSP pages; the path should be relative to service context
directory.

jspEngine Contains JSP engine initialization parameters and the compilation
classpath. A complete list of available Jasper initialization parameters can
be found below.

Jasper Configuration

Jasper init Configuration Parameters

Parameter name Default value Description

checkInterval 300 If the development parameter is false and reloading
parameter is true, background compiles are enabled.
checkInterval is the time in seconds between checks to
see if a JSP page needs to be recompiled.

compiler javac Which compiler Ant should be used to compile JSP
pages. See the Ant documentation for more information.

classdebuginfo true Indicates whether the class file should be compiled with
debugging information

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 515 of 642

development true Indicates whether Jasper is used in development mode;
checks for JSP modification on every access.

enablePooling true Determines whether tag handler pooling is enabled

ieClassId clsid:8AD9C840-
044E-11D1-
B3E9-
00805F499D93

The class-id value sent to Internet Explorer when using
>jsp:plugin< tags.

fork true Tells Ant to fork compiles of JSP pages so that a
separate JVM is used for JSP page compiles from the
JVM in which Tomcat is running.

javaEncoding UTF8 Java file encoding to use for generating java source files.

keepgenerated true Indicates whether generated Java source code for each
page is kept or deleted.

logVerbosityLevel WARNING The level of detailedmessages to be produced by this
servlet. Increasing levels cause the generation of more
messages. Valid values are FATAL, ERROR,
WARNING, INFORMATION, and DEBUG.

mappedfile false Indicates whether the static content is generated with one
print statement per input line, to ease debugging.

reloading true Indicates whether Jasper checks for modified JSPs.

syswf JSP Tag Library
A JSP page using the syswf tag library must include this header <%@ taglib prefix="syswf"
uri="http://systinet.com/jsp/syswf" %>

syswf:component

Includes the component with specified parameters.

syswf:componentAttributes

Attribute Description Required

prefix All parameter names in component will be prefixed with this prefix; the prefix
must be unique within each JSP page.

yes

name Name of component, as written in the config file. yes

syswf:component Subelements

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 516 of 642

Element Description Required

param When this parameter value is passed into a component, it will be accessible
in the request scope in the component Java class and in the JSP page.

optional

The value of the parameter should be specified in two ways: As a value attribute or as a content of the
value tag.

Example: Component Parameters

<syswf:component prefix="names" name="nameList">
<syswf:param name="color1" value="white"/>
<syswf:param name="color2">black</syswf:param>

</syswf:component>

syswf:page

Creates an HTML page form with all required internal fields. This must be the root element of all
components used as tasks.

syswf:page Attributes

Attribute Description Required

headerTemplate The filename of the JSP page containing the page header, this file is
designed to create elements required for framework functionality.
Note that there should be no graphic design.

yes

footerTemplate The filename of the JSP page containing the page footer, this file is
designed to create elements required for framework functionality.
Note that there should be no graphic design.

yes

syswf:wrap

This tag helps you to separate page functionality from its design. It includes specified header and footer
templates before and after the body element. Header and footer templates should be parametrized
using syswf:param tags.

syswf:wrap Attributes

Attribute Description Required

headerTemplate File name of JSP page containing the header. no

footerTemplate File name of JSP page containing the footer. no

syswf:wrap Subelements

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 517 of 642

Element Description Required

param When you pass the parameter value into a component, this parameter will be
accessible in the request scope in the component Java class and JSP page.

no

syswf:control

Creates a button or link, which should be used to trigger actions and transfers to other tasks.

syswf:control Attributes

Attribute Description Required

action Action to be passed to a control's parent component. no

mode Allowed values are button, anchor, script, or image. The script generates
the submit JavaScript command, which can be used, for example, as a
value for the HTML onClick attribute. Image is a graphic button.

yes

targetTask URI of task to be called. no

targetDepth Specifies level in navigation path to be used. no

targetUrl Specifies the URL to be used to submit data; usable, for example, when
you need to switch from http to https.

no

caption control caption required in
anchor
and
button
mode

hint Help text, displayed as tooltip. no

disabled If set to true, button is disabled and link cannot be clicked. no

redirect If set to true, the task is only redirected to another task. This means that
task data stored in a local session will also be accessible from the target
task. Normal behavior is that a local session is not transferred between
tasks.

no

src Path to the image file used as graphic button. required in
image
mode

syswf:control Subelements

Element Description Required

param Adds action parameters. no

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 518 of 642

attribute Adds attributes to created input or an HTML tag. no

syswf:input

Inserts input field into JSP page.

syswf:input Attributes

Attribute Description Required

name Specifies the name of the accessible value of this input field. yes

value Specifies a value which appears in the input field, or a base object for the
property attribute.

yes

property Contains the property name of the object specified by the expression in the
value attribute.

no

hint Help text, displayed as a tooltip. no

dataType Data type which will be used to transform values between the underlying
Java Bean object and the input field.

no

disabled If set to true, the input field will be disabled. no

mode A possible value is password, used for password fields. no

syswf:input Subelements

Element Description Required

attribute Appends a name and value pair as attribute to the resulting HTML tag;
usable, for example, for the CSS class specification for an input field.

no

syswf:selectOne

Displays controls which enable the user to select one value from a list of available values.

syswf:selectOne Attributes

Attribute Description Required

name Specifies the name under which this value will be
accessible; select one element.

yes

mode Specifies visual style; possible values are radio, check
box, andmenu.

no

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 519 of 642

value Specifies a value which will be selected, or a base object
for the property attribute.

yes

property Contains the property name of the object specified by
expression in the value attribute.

no

optionValues Specifies a comma-delimited list of available values, the
expression of which evaluates either to String[], or to an
array of object for the optionValuesProperty attribute.

yes

optionValuesProperty Contains property name of objects specified by expression
in the optionValues attribute.

no

optionCaptions Specifies a comma-delimited list of available captions, the
expression of which evaluates either to String[], or to an
array of object for the optionCaptionsProperty attribute.

no

optionCaptionsProperty Contains property name of objects specified by expression
in the optionCaptions attribute.

no

hint Help text, displayed as tooltip. no

dataType Data type which will be used to transform values between
the underlying Java Bean object and the selected element.

no

syswf:selectOne Subelements

Element Description Required

attribute Appends a name/value pair as an attribute to resulting HTML tags. no

syswf:selectMany

Displays controls which enable the user to select multiple values from list of available values.

syswf:selectMany Attributes

Attribute Description Required

name Specifies the name under which the value of this
selectMany element will be accessible.

yes

mode Specifies visual style possible values check, box and
menu.

no

value Specifies an array of values which will be selected, or base
objects, for the property attribute.

yes

property Contains property name of objects specified by expression
in the value attribute.

no

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 520 of 642

optionValues Specifies a comma-delimited list of available values the
expression of which evaluates to String[], or to an array of
object for the optionValuesProperty attribute.

yes

optionValuesProperty Contains the property name of objects specified by
expression in the optionValues attribute.

no

optionCaptions Specifies a comma-delimited list of available captions, the
expression of which evaluates to either String[], or to an
array of object for the optionCaptionsProperty attribute.

no

optionCaptionsProperty Contains a property name for objects specified by
expression in the optionCaptions attribute.

no

hint Help text, displayed as tooltip. no

syswf:selectMany Subelements

Element Description Required

attribute Appends a name/value pair as an attribute to result HTML tags. no

syswf:textArea

Creates a text area HTML component.

syswf:textArea Attributes

Attribute Description Required

name Specifies the name under which the value of this text area will be
accessible.

yes

value Specifies a value which appears in the text area, or a base object for the
property attribute.

yes

property Contains a property name of an object specified by expression in the value
attribute.

no

hint Help text, displayed as tooltip. no

dataType Data type which will be used to transform values between underlying the
Java Bean object and the text area.

no

disabled If set to true, the text area will be disabled. optional

syswf:textArea Subelements

Element Description Required

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 521 of 642

attribute Appends a name/value pair as an attribute to the result HTML tag; usable,
for example, for CSS class specification for the text area.

no

syswf:value

Evaluates the given expression and transform result using data type.

syswf:value Attributes

Attribute Description Required

value Specifies the expression which will be evaluated. yes

hint Help text, displayed as tooltip. no

dataType Data type which will be used to transform value. no

syswf:size

This tag will fill the page attribute with size of given List, UDDIList, StringArrayList or Array.

syswf:size Attributes

Attribute Description Required

var Name of variable to store the size of a given list or array. yes

value Specifies an expression to be evaluated; the result must be List, UDDIList,
StringArrayList or Array.

yes

scope Scope of the variable to store the size of a given list or array. Allowed values
are request, session, application, or default.

no

navigationPath

This component renders the history path (bread crumbs links)

navigationPath component in action

Example: Component Parameters

<syswf:component name="navigationPath" prefix="path"/>

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 522 of 642

Typical Customization Tasks

l Q: Where can I find the code which generates the page header? A: It is defined in the file
design/pageHeader.jsp.

l Q: How do I change the text displayed on a page's title bar? A: Modify content of <title> tag in
the file pageHeader.jsp.

l Q: Where is the right place to include my own JavaScript files? A: Reference to your files
should be placed in pageHeader.jsp. Place your script files in the REGISTRY_
HOME/app/uddi/web.jar/webroot/script directory.

l Q: Where is it possible to change the text displayed in the page footer? A: The page footer is
defined in the file design/pageFooter.jsp.

UDDI From Developer Tools
In this section, we will show you how to access UDDI from the following tools:

l Microsoft Visual Studio .NET

Developer tools include wizards for searching a UDDI registry and publishing to a UDDI registry. We
can say that UDDI searching and publishing rely on getting and publishingWSDL files.

Figure “WSDLMapping to UDDI” shows how aWSDL is mapped to UDDI. For more information, see
the OASIS Technical Note "UsingWSDL in a UDDI Registry" in https://www.oasis-open.org/.

WSDL Mapping to UDDI

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 523 of 642

https://www.oasis-open.org/

UDDI FromMS Visual Studio
Microsoft Visual Studio .NET 2003 includes a wizard for accessing a UDDI registry that allows you to
find aWSDL/ASMX file in the UDDI registry. Once you have found aWSDL, you can add a web
reference to theWeb service definition file to your project.

To start theWebReferenceWizard:

1. On theProject menu in Visual Studio .NET, click Add Web Reference.

2. TheAdd Web Reference dialog box shown in figure, “AddWebReference Default” appears.
Enter the URI of a UDDI registry or the URI of aWSDL document representing theWeb service.

Add Web Reference Default

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 524 of 642

Figure “Searching HPE SOA Registry Foundation viaWebReferenceWizard” shows how to
browse/search HPE SOA Registry Foundation via theAdd Web Reference Wizard.

Searching HPE SOA Registry Foundation via Web Reference Wizard

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 525 of 642

Add Web Reference - Found Web service

If you find aWSDL file, the wizard shown in the above figure, “AddWebReference - FoundWeb
service” parses theWSDL file displayingWeb servicemethod. Then, you can click Add Reference
button to add the reference to your project.

How to Debug
The following sections describe debugging:

"SOAPSpy Tool" below

"Logging" on page 530

SOAPSpy Tool
When debugging, it can be useful to track communication between the client and server. SOAPSpy
allows the inspection of messages that the client and server exchange. Messages, or more precisely,
requests and responses, are coupled to calls. Figure “SOAPSpy Tool” shows the SOAPSpy dialog box.

SOAPSpy Tool

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 526 of 642

SOAPSpy works as an HTTP proxy server. It accepts HTTP requests from clients and resends them
to their final destinations, or to another HTTP proxy server. SOAPSpy can track not only SOAP and
WSDLmessages, but also any other documents (HTML pages, binary data, etc.). However, the binary
data is shown only schematically; all invalid text characters are translated into questionmark (?)
characters. SOAPSpy can also work as an HTTP server client: you canmake it contact another proxy
server instead of connecting to the final destination.

Running SOAPSpy
This tool is placed in the bin subdirectory of your HPE SOA Registry Foundation server distribution.
To start SOAPSpy, enter the command SoapSpy.bat onWindows platforms, or ./SoapSpy.sh on
UNIX machines.

Start Spying

Spyingmust be started first by selectingStart Spying from theSpymenu or by clicking the spy icon in
themain panel, shown in figure “Start Spying”.

Status Line

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 527 of 642

The lower part of the window contains a status bar, shown in figure “Status Line”, with information
about the state of the tool. Once started, the status line displays the proxy host and port number.

The following options can be used on the command line when activating SOAPSpy:

l --port [PORT]

Starts SOAPSpy at the given port

l --help

Shows the help screen on the console

l --version

shows the version of SOAPSpy on the console

Tomake SOAPSpy contact another proxy server instead of making a direct connection to the
destination, use the standard Java system properties for HTTP proxies:

l -Dhttp.proxyHost=PROXY_HOST - The host name of the proxy server

l -Dhttp.proxyPort=PROXY_PORT - The port of the proxy server

There are two possible ways to load the tool:

1. ./SoapSpy

2. ./SoapSpy --port PROXY_PORT

Using SOAPSpy
The program consists of a call list and amessage viewer.

Received calls are stored in a list on the left side of the window. Calls can be selected and examined.
Unwanted calls can by removed from the list using the Call menu or context pop-up.

Themessage viewer displays the selected call, as shown in figure “Call Types”. Every call contains
HTTP Request and HTTP Response tabs, which contain raw data caught by SOAPSpy. SOAP calls
contain two specific panels, SOAP Request and SOAP Response, for advancedmanipulation of
SOAP messages. The same applies forWSDL calls.

Call Types

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 528 of 642

SOAP Request Tab
The SOAP Request tab, shown in figure “Request Tab”, consists of the SOAP Action, SOAP message
and Target URLwhere the original request was sent. Every file can be edited. Click the Resend to
produce a new HTTP request. The resent request appears in the call list.

Request Tab

How to Run Clients Using SOAPSpy
Java system properties http.proxyHost and http.proxyPort need to be set. Use the command:

java -Dhttp.proxyHost=CLIENT_COMPUTER_NAME -Dhttp.proxyPort=4444... before running
SoapSpy.

For example:

java -Dhttp.proxyHost=%CLIENT_COMPUTER_NAME% -Dhttp.proxyPort=4444 org.my.FooClient

Note: Because SoapSpy works with the java.net proxy classes, it will not work with a
localhost address. This applies to the endpoint URL that your client calls. If you do not see any
activity when using SoapSpy, this is a likely cause. If you want to try running a service locally,
simply obtain themachine's hostname via the java.net.InetAddress class.

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 529 of 642

Logging
HPE SOA Registry Foundation wraps the Log4j logging service to log errors, warnings, and other
information. By default:

l All such events are logged to REGISTRY_HOME\log\logEvents.log.

l All errors including stack traces are logged to REGISTRY_HOME\log\errorEvents.log.

l Behavior descriptions are configured in REGISTRY_HOME\conf\log4j.config.

To use the same loggingmechanism in custom server code (such as the Custom Validation Service):

1. Import com.idoox.debug.Category to your java class:

import com.idoox.debug.Category;

2. Create static instance with name of the category:

private static Category log = Category.getCategory
("com.company.MyValidationService");

3. It is a good habit to name the category according to its class name. You can use the category

...
try{

...
} catch(Exception e){

log.error("Fatal error", e);
}

...

Product Documentation
Chapter 5: Developer's Guide

HPE SOA Registry Foundation (10.04) Page 530 of 642

Chapter 6: Demos
The HPE SOA Registry Foundation demos suite is used to teach the capabilities of the HPE SOA
Registry Foundation APIs and how tomake use of these to interact with the registry over a SOAP
interface.

Note: If you want to run demos on HPE SOA Registry Foundation deployed to an application
server, make sure you have properly imported the SSL certificate of the application server to the
HPE SOA Registry Foundation configuration. For more information see "Deployment to an
Application Server" on page 120 in the Installation Guide. Youmay also need tomodify the HPE
SOA Registry Foundation URLs used in demos as shown in the demos property file, REGISTRY_
HOME/demos/env.properties.

If you get the java.lang.reflect.UndeclaredThrowableException, check whether HPE
SOA Registry is running

The demos are divided into the following categories:

"Basic Demos" below - The Basic demos cover inquiry and publishing for versions 1, 2, and 3 of the
UDDI specification andWSDL2UDDI for versions 2 and 3.

"Advanced Demos" on page 570- The Advanced demos discuss custody, subscriptions, validation,
and taxonomies.

"Security Demos" on page 601 - In the Security demos, we cover accounts, groups, permissions,
and access control lists (ACLs).

"Resources Demos" on page 623 - In the resources demos, we cover publishing of WSDL and XSD.

Basic Demos
Basic Demos section includes the following demos:

l "UDDI v1" on the next page

l "UDDI v2" on page 544

l "UDDI v3" on page 557

HPE SOA Registry Foundation (10.04) Page 531 of 642

UDDI v1
l "Inquiry v1" below

l "Publishing v1" on page 537

Inquiry v1
The HPE SOA Registry Foundation basic inquiry demo set is used to demonstrate the HPE SOA
Registry Foundation application programming interface's capabilities and to teach the reader how to
use this API to perform basic inquiry calls to a UDDI registry. This documentation covers the UDDI
Version 1 Specification.

You will learn how to use the HPE SOA Registry Foundation client API to contact and get information
from aUDDI registry over a SOAP interface. There is one demo for each UDDI call, from find_
business to get_tModelDetail.

The HPE SOA Registry Foundation basic inquiry demo set contains following demos to assist you in
learning the HPE SOA Registry Foundation client API.

FindBindingDemonstrates how to construct and fill the Find_binding object, get an Inquiry stub for
the UDDI registry, perform a find_binding call, and display the results.

FindBusinessDemonstrates how to construct and fill a Find_business object, get an Inquiry stub for
the UDDI registry, perform a find_business call and display the results.FindService Demonstrates how
to construct and fill a Find_service object, get an Inquiry stub for the UDDI registry, perform a find_
service call and display the results.

FindTModel Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the
UDDI registry, perform a find_tModel call and display the results.

GetBindingDetail Demonstrates how to create a Get_bindingDetail object, set the bindingKey of
the bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
bindingDetail call, and display the result.

GetBusinessDetail Demonstrates how to create a Get_businessDetail object, set the businessKey
of the businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
businessDetail call, and display the result.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 532 of 642

GetServiceDetail Demonstrates how to create a Get_serviceDetail object, set the serviceKey of the
business service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_serviceDetail
call, and display the result.

GetTModeDetail Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the
tModel to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and
display the result

Prerequisites and Preparatory Steps: Code

Weexpect, that you have already installed the HPE SOA Registry Foundation and set the
REGISTRY_HOME environment variable to its installation location.

To run the HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine a property's value for a single demo (that is, at
the local level), edit the file env.properties in the directory where run.bat (run.sh) is located. Local
properties for Basic/Inquiry demos are loaded in the file:

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v1\env.properties

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v1/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.result.max_
rows

5 limit on data returned from
registry

uddi.demos.url.inquiry http://localhost:8080/uddi/inquiry the inquiry Web service port
URL

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 533 of 642

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\inquiry\src\demo\uddi\v1\inquiry\FindTModel.java

UNIX: $REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v1/inquiry/FindTModel.java

Themainmethod is straightforward. It gathers user's input (tModel name), calls amethod to initialize
the Find_tModel object, executes the find_tModelUDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);|
printTModelList(result);

The createFindTModel()method is used to create a new instance of the Find_tModel class and
initialize it with values from parameters:

public static Find_tModel createFindByTModel(String name)
throws InvalidParameterException {

System.out.println("name = " + name);
Find_tModel find = new Find_tModel();
find.setName(name);
find.setMaxRows(new Integer(MAX_ROWS));
find.setGeneric(Constants.GENERIC_1_0);
return find_tModel;

}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the
URL specified in the URL_INQUIRY property.

public static InquireSoap getInquiryStub()
throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.inquiry
String url = DemoProperties.getProperty(URL_INQUIRY,

"http://localhost:8080/uddi/inquiry");
System.out.print("Using Inquiry at url " + url + " ..");
InquireSoap inquiry = UDDIInquiryStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

The UDDI API call find_tModel is performed in themethod findTModel:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 534 of 642

public static TModelList findTModel(Find_tModel find_tModel)
throws UDDIException, SOAPException {
InquireSoap inquiry = getInquiryStub();
System.out.print("Search in progress ..");
TModelList tModelList = inquiry.find_tModel(find_tModel);
System.out.println(" done");
return tModelList;

}

The list of found tModels is printed with themethod printTModelList. One interesting aspect of the
HPE SOA Registry Foundation client API is that each UDDIObject contains themethod toXML(),
which returns a human-readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
System.out.println();

TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
if (tModelInfoArrayList==null) {
System.out.println("Nothing found");
return;

}

int position = 1;
for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();)

{
TModelInfo tModelTemplate = (TModelInfo) iterator.next();
System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey

());
System.out.println(tModelTemplate.toXML());
System.out.println();
System.out.println

("**");
position++;}

}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Basic Inquiry demo set.
Our example continues with the FindTModel demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 535 of 642

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v1

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v1

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. Run a selected demo by executing the run commandwith the name of the demo as a parameter.
For example, to run the FindTModel demo, invoke

Windows: run.bat FindTModel

UNIX: ./run.sh FindTModel

The output of this demowill resemble the following:

Running FindTModel demo...
**
*** HPE SOA Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329"
xmlns="urn:uddi-org:api_v1">
<name>demo:departmentID</name>
</tModelInfo>

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 536 of 642

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9"
xmlns="urn:uddi-org:api_v1">
<name>demo:hierarchy</name>
</tModelInfo>

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd"
xmlns="urn:uddi-org:api_v1">
<name>Demo identifier</name>
</tModelInfo>

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Publishing v1
The HPE SOA Registry Foundation basic publishing demo set demonstrates the HPE SOA Registry
Foundation application programming interface's capabilities and teaches how to use this API to perform
basic publishing calls to a UDDI registry.

The HPE SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI
Version 1 Specification. You will learn, how to use the HPE SOA Registry Foundation client API to
publish information to a UDDI registry over a SOAP interface. There is one demo for each UDDI call,
from delete_binding to save_business.

The HPE SOA Registry Foundation basic publishing demo set contains the following demos to assist
you in learning the HPE SOA Registry Foundation client API.

DeleteBinding Demonstrates how to construct and fill the Delete_binding object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusinessDemonstrates how to construct and fill the Delete_business object, get Publishing
stub for the UDDI registry, get an authToken, and perform the delete_business call.

DeleteServiceDemonstrates how to construct and fill the Delete_service object, get Publishing stub
for the UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel Demonstrates how to construct and fill the Delete_tModel object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_tModel call.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 537 of 642

GetRegisteredInfo Demonstrates how to construct and fill the Get_registeredInfo object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBindingDemonstrates how to construct and fill the Save_binding object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_binding call.

SaveBusinessDemonstrates how to construct and fill the Save_business object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the save_business call.

SaveServiceDemonstrates how to construct and fill the Save_service object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_service call.

SaveTModel Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_tModel call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to its installation location.

To run the HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: %REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,
at the local level), edit the file env.properties in the directory where run.sh(run.bat) is located.
Local level properties for the Basic/Inquiry demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\basic\publishing\v1\env.properties

UNIX: $REGISTRY_HOME/demos/basic/publishing/v1/env.properties

Properties Used in the demos

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 538 of 642

Name Default Value Description

uddi.demos.user.john.name demo_john First user's name

uddi.demos.user.john.password demo_john First user's
password

uddi.demos.user.jane.name demo_jane Second user's
name

uddi.demos.user.jane.password demo_jane Second user's
password

uddi.demos.url.publishing http://localhost:8080/uddi/publishing The publication
Web service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security The security Web
service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\publishing\src\demo\uddi\v1\publishing\SaveBusiness.java

UNIX: $REGISTRY_
HOME/demos/basic/publishing/src/demo/uddi/v1/publishing/SaveBusiness.java

Themainmethod is easy to understand:

1. It gathers the user's input: an optional publisher-assigned businessKey, an array of business
entity names with their language codes, and the business' description.

2. The next step is to get the security stub and authorize the user. The resulting authInfo string is a
secret key passed in all requests.

3. Next, the Save_business object is created, filled, and passed to the saveBusiness method as a
parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed.

4. The last step is to discard the authInfo string, so that nomalicious user can use it to compromise a
user's account.

String name = UserInput.readString("Enter business name", "Marketing");
String description = UserInput.readString("Enter description", "Saved by

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 539 of 642

SaveBusiness demo");
System.out.println();
UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes,
description, authInfo);a
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening at
the URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.security
String url = DemoProperties.getProperty(URL_SECURITY,

"http://localhost:8080/uddi/security");
System.out.print("Using Security at url " + url + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
System.out.println(" done");
return security;

}

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of theWeb
service listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.publishing
String url = DemoProperties.getProperty(URL_PUBLISHING,
"http://localhost:8080/uddi/publishing");
System.out.print("Using Publishing at url " + url + " ..");
UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

The getAuthInfo()method is used to authorize the user against the UDDI registry and to get the
secret key authInfo.

public static String getAuthInfo(String userName,
String password, UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging in ..");
AuthToken authToken = security.get_authToken(new Get_authToken(userName,

password));

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 540 of 642

System.out.println(" done");
return authToken.getAuthInfo();

}

The discardAuthInfo()method invalidates the secret key authInfo, so it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging out ..");
DispositionReport dispositionReport = security.discard_authToken(new Discard_

authToken(authInfo));
System.out.println(" done");
return dispositionReport;

}

The createSaveBusiness()method is used to create a new instance of the Save_business class and
initialize it with values from parameters:

public static Save_business createSaveBusiness(String name,
String description, String authInfo)

throws InvalidParameterException {
System.out.println("name = " + name);
System.out.println("description = " + description);

BusinessEntity businessEntity = new BusinessEntity();
businessEntity.setBusinessKey("");
businessEntity.setName(name);
businessEntity.addDescription(new Description(description));

Save_business save = new Save_business();
save.addBusinessEntity(businessEntity);
save.setAuthInfo(authInfo);
save.setGeneric(Constants.GENERIC_1_0);
return save;

}

The UDDI API call save_business is performed in the saveBusiness()method:

public static BusinessDetail saveBusiness(Save_business save)
throws UDDIException, SOAPException {

UDDI_Publication_PortType publishing = getPublishingStub();
System.out.print("Save in progress ...");
BusinessDetail businessDetail = publishing.save_business(save);
System.out.println(" done");

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 541 of 642

return businessDetail;
}

The saved businessEntity is displayed by the printBusinessDetail()method. One interesting
aspect of the HPE SOA Registry Foundation client API is that each UDDIObject contains the toXML
(), which returns a human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
System.out.println();
BusinessEntityArrayList businessEntityArrayList =

businessDetail.getBusinessEntityArrayList();
int position = 1;
for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext

();) {
BusinessEntity entity = (BusinessEntity) iterator.next();
System.out.println("Business " + position + " : " + entity.getBusinessKey

());
System.out.println(entity.toXML());
System.out.println();
System.out.println

("**");
position++;

}
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Basic Publishing demo
set. Let us continue with our SaveBusiness demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\basic\publishing\v1

UNIX: $REGISTRY_HOME/demos/basic/publishing/v1

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 542 of 642

Note: When compiling demos onWindows platforms, youmay see the following text:

subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of demo as a
parameter. For example, to run the SaveBusiness demo, invoke

Windows: run.bat SaveBusiness

UNIX: ./run.sh SaveBusiness

The output of this demowill resemble the following:

Running SaveBusiness demo...
**

HPE SOA Registry Demo - SaveBusiness
**

Saving business entity where
Enter business name [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : 79596f30-a5a9-11d8-91cd-5c1d367091cd
<businessEntity businessKey="79596f30-a5a9-11d8-91cd-5c1d367091cd"
operator="Systinet"
authorizedName="demo_john" xmlns="urn:uddi-org:api">
<name>Marketing</name>
<description>Saved by SaveBusiness demo</description>

</businessEntity>

**
Logging out .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 543 of 642

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

UDDI v2
l "Inquiry v2" below

l "Publishing v2" on page 549

Inquiry v2
The HPE SOA Registry Foundation basic inquiry demo set is used to demonstrate the HPE SOA
Registry Foundation application programming interface's capabilities and to teach the reader how to
use this API to perform basic inquiry calls to a UDDI registry.

The HPE SOA Registry Foundation basic inquiry demos cover inquiry aspects of the UDDI Version
2.0.4 Specification. You will learn how to use the HPE SOA Registry Foundation client API to contact
and get information from aUDDI registry over a SOAP interface. There is one demo for each UDDI
call, from find_business to get_tModelDetail.

The HPE SOA Registry Foundation basic inquiry demo set contains following demos to assist you in
learning the HPE SOA Registry Foundation client API.

FindBindingDemonstrates how to construct and fill the Find_binding object, get an Inquiry stub for
the UDDI registry, perform a find_binding call, and display the results.

FindBusiness Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for
the UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness Demonstrates how to construct and fill a Find_relatedBusiness object, get an
Inquiry stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the
UDDI registry, perform a find_service call and display the results.

FindTModel Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the
UDDI registry, perform a find_tModel call and display the results.

GetBindingDetail Demonstrates how to create a Get_bindingDetail object, set the bindingKey of
the bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
bindingDetail call, and display the result.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 544 of 642

GetBusinessDetail Demonstrates how to create a Get_businessDetail object, set the businessKey
of the businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
businessDetail call, and display the result.

GetServiceDetail Demonstrates how to create a Get_serviceDetail object, set the serviceKey of
the business service to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
serviceDetail call, and display the result.

GetTModeDetail Demonstrates how to create a Get_tModelDetail object, set the tModelKey of the
tModel to be fetched, get an Inquiry stub for the UDDI registry, perform a get_tModelDetail call, and
display the result.

Prerequisites and Preparatory Steps: Code

Weexpect, that you have already installed the HPE SOA Registry Foundation registry and set the
REGISTRY_HOME environment variable to its installation location.

To run HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit the file env.properties in the directory where run.bat (run.sh) is
located. Local level properties for Basic/Inquiry demos are loaded in the file:

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v2\env.properties

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v2/env.properties

Properties Used in Demos

Name Default Value Description

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 545 of 642

uddi.demos.result.max_
rows

5 limit of data returned from
registry

uddi.demos.url.inquiry http://localhost:8080/uddi/inquiry the inquiry Web service port
URL

Presentation and Functional Presentation

This section describes the programing pattern used in all demos using the FindTModel demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\inquiry\src\demo\uddi\v2\inquiry\FindTModel.java

UNIX: $REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v2/inquiry/FindTModel.java

Themainmethod is straightforward. It gathers user's input (tModel name), calls amethod to initialize
the Find_tModel object, executes the find_tModelUDDI call, and displays the list of found tModels:

String name = UserInput.readString("Enter name", "demo%");

Find_tModel find_tModel = createFindByTModel(name, findQualifier);

TModelList result = findTModel(find_tModel);

printTModelList(result);

The createFindTModel()method is used to create new instance of the Find_tModel class and
initialize it with values from parameters:

public static Find_tModel createFindByTModel(String name)
throws InvalidParameterException {

System.out.println("name = " + name);
Find_tModel find = new Find_tModel();
find.setName(new Name(name));
find.setMaxRows(new Integer(MAX_ROWS));
find.setGeneric(Constants.GENERIC_2_0);
return find_tModel;

}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at the
URL specified in the URL_INQUIRY property.

public static UDDI_Inquiry_PortType getInquiryStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.inquiry
String url = DemoProperties.getProperty(URL_INQUIRY,

"http://localhost:8080/uddi/inquiry");

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 546 of 642

System.out.print("Using Inquiry at url " + url + " ..");
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

The UDDI API call find_tModel is performed in themethod findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
throws UDDIException, SOAPException {

UDDI_Inquiry_PortType inquiry = getInquiryStub();
System.out.print("Search in progress ..");
TModelList tModelList = inquiry.find_tModel(find_tModel);
System.out.println(" done");
return tModelList;

}

The list of found tModels is printed with themethod printTModelList. One interesting aspect of the
HPE SOA Registry Foundation client API is that each UDDIObject contains method toXML(), which
returns a human-readable, formatted listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
System.out.println();

TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
if (tModelInfoArrayList==null) {
System.out.println("Nothing found");
return;

}

int position = 1;
for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();)

{
TModelInfo tModelTemplate = (TModelInfo) iterator.next();
System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey

());
System.out.println(tModelTemplate.toXML());
System.out.println();
System.out.println

("**");
position++;

}
}

Building and Running Demos

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 547 of 642

This section shows how to build and run the HPE SOA Registry Foundation Basic Inquiry demo set.
Our example continues with the FindTModel demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v2

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v2

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. Run a selected demo by executing the run commandwith the name of the demo as a parameter.
For example, to run the FindTModel demo, invoke

Windows: run.bat FindTModel

UNIX: ./run.sh FindTModel

The output of this demowill resemble the following:

Running FindTModel demo...
**
*** HPE SOA Registry Demo - FindTModelDemo ***
**

Searching for tModel where
Enter name [demo%]:
name = demo%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 548 of 642

TModel 1 : uuid:13aee5be-8531-343c-98f8-d2d3a9308329
<tModelInfo tModelKey="uuid:13aee5be-8531-343c-98f8-d2d3a9308329"
xmlns="urn:uddi-org:api_v2">
<name>demo:departmentID</name>
</tModelInfo>

**
TModel 2 : uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9
<tModelInfo tModelKey="uuid:8af5f49e-e793-3719-92f3-6ab8998eb5a9"
xmlns="urn:uddi-org:api_v2">
<name>demo:hierarchy</name>
</tModelInfo>

**
TModel 3 : uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<tModelInfo tModelKey="uuid:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd"
xmlns="urn:uddi-org:api_v2">
<name>Demo identifier</name>
</tModelInfo>

**

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Publishing v2
The HPE SOA Registry Foundation basic publishing demo set demonstrates the HPE SOA Registry
Foundation application programming interface's capabilities and teaches how to use this API to perform
basic publishing calls to a UDDI registry.

The HPE SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI
Version 2 Specification. You will learn how to use the HPE SOA Registry Foundation client API to
publish information to a UDDI registry over a SOAP interface. There is one demo for each UDDI call,
from add_publisherAssertion through get_registeredInfo to save_business.

The HPE SOA Registry Foundation basic publishing demo set contains the following demos. They will
assist you in learning the HPE SOA Registry Foundation client API.

AddAssertion Demonstrates how to construct and fill the Add_publisherAssertion object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion
call.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 549 of 642

DeleteAssertion Demonstrates how to construct and fill the Delete_publisherAssertion object, get
a Publishing stub for the UDDI registry, get an authToken, and perform the delete_
publisherAssertion call.

DeleteBinding Demonstrates how to construct and fill the Delete_binding object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness Demonstrates how to construct and fill the Delete_business object, get Publishing
stub for the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService Demonstrates how to construct and fill the Delete_service object, get Publishing stub
for the UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel Demonstrates how to construct and fill the Delete_tModel object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_tModel call.

GetAssertionStatusReport Demonstrates how to construct and fill the Get_assertionStatusReport
object, get a Publishing stub for the UDDI registry, get an authToken, and perform the get_
assertionStatusReport call.

GetPublisherAssertions Demonstrates how to construct and fill the Get_publisherAssertions
object, get a Publishing stub for the UDDI registry, get an authToken, and perform the get_
publisherAssertions call.

GetRegisteredInfo Demonstrates how to construct and fill the Get_registeredInfo object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding Demonstrates how to construct and fill the Save_binding object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness Demonstrates how to construct and fill the Save_business object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the save_business call.

SaveService Demonstrates how to construct and fill the Save_service object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_service call.

SaveTModel Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions Demonstrates how to construct and fill the Set_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions
call.

Prerequisites and Preparatory Steps: Code

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 550 of 642

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to its installation location.

To run the HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: cd $REGISTRY_HOME/bin/serverstart.sh

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,
at the local level), edit the file env.properties in the directory where run.sh(run.bat) is located.
Local level properties for the Basic/Inquiry demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\basic\publishing\v2\env.properties

UNIX: $REGISTRY_HOME/demos/basic/publishing/v2/env.properties

Properties Used in the Demos

Name Default Value Description

uddi.demos.user.john.name demo_john First user's name

uddi.demos.user.john.password demo_john First user's
password

uddi.demos.user.jane.name demo_jane Second user's
name

uddi.demos.user.jane.password demo_jane Second user's
password

uddi.demos.url.publishing http://localhost:8080/uddi/publishing The publication
Web service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security The security Web
service port URL

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 551 of 642

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\publishing\src\demo\uddi\v2\publishing\SaveBusiness.java

UNIX: $REGISTRY_
HOME/demos/basic/publishing/src/demo/uddi/v2/publishing/SaveBusiness.java

Themainmethod is easy to understand. First it gathers the user's input. Namely optional publisher
assigned businessKey, then an array of business entity names with their language codes and finally a
description of the business.

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret
key passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a
parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last
step is to discard the authInfo string, so it cannot be used to compromise a user's account.

int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {

String tmp = UserInput.readString("Enter language code", "");
languageCodes[i] = (tmp.length() > 0) ? tmp : null;
names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");

}
String description = UserInput.readString("Enter description",

"Saved by SaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes,description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of theWeb service listening
at the URL specified by the URL_SECURITY property.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 552 of 642

public static UDDI_Security_PortType getSecurityStub()
throws SOAPException

// you can specify your own URL in property - uddi.demos.url.security
String url = DemoProperties.getProperty(URL_SECURITY,"http://localhost:8080/uddi/security");
System.out.print("Using Security at url " + url + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
System.out.println(" done");
return security;

}

The helper method getPublishingStub() returns the UDDI Publication stub of theWeb service
listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.publishing
String url = DemoProperties.getProperty(URL_PUBLISHING,

"http://localhost:8080/uddi/publishing");
System.out.print("Using Publishing at url " + url + " ..");
UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

The getAuthInfo()method is used to authorize the user against the UDDI registry and to get the
secret authInfo key.

public static String getAuthInfo(String userName,
String password, UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging in ..");
AuthToken authToken = security.get_authToken(new Get_authToken(userName,password));
System.out.println(" done");
return authToken.getAuthInfo();

}

The discardAuthInfo()method invalidates the secret authInfo key, so it cannot be used anymore.

public static DispositionReport discardAuthInfo(String authInfo,
UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging out ..");

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 553 of 642

DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
System.out.println(" done");
return dispositionReport;

}

The createSaveBusiness()method is used to create a new instance of the Save_business class and
initialize it with values from parameters:

public static Save_business createSaveBusiness(String[] names,
String[] nameLangCodes, String description, String authInfo)

throws InvalidParameterException {
for (int i = 0; i < names.length; i++) {

System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
}
System.out.println("description = " + description);

BusinessEntity businessEntity = new BusinessEntity();
businessEntity.setBusinessKey("");
for (int i = 0; i < names.length; i++) {

if (nameLangCodes[i] == null) {
businessEntity.addName(new Name(names[i]));

} else {
businessEntity.addName(new Name(names[i], nameLangCodes[i]));

}
}
businessEntity.addDescription(new Description(description));

Save_business save = new Save_business();
save.addBusinessEntity(businessEntity);
save.setAuthInfo(authInfo);
save.setGeneric(Constants.GENERIC_2_0);
return save;

}

The UDDI API call save_business is performed in themethod saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
throws UDDIException, SOAPException {

UDDI_Publication_PortType publishing = getPublishingStub();
System.out.print("Save in progress ...");
BusinessDetail businessDetail = publishing.save_business(save);
System.out.println(" done");
return businessDetail;

}

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 554 of 642

The saved businessEntity is displayed by the printBusinessDetail() method. One interesting
aspect of the HPE SOA Registry Foundation client API is that each UDDIObject contains the toXML
(), which returns a human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
System.out.println();
BusinessEntityArrayList businessEntityArrayList =businessDetail.getBusinessEntityArrayList();
int position = 1;
for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {

BusinessEntity entity = (BusinessEntity) iterator.next();
System.out.println("Business " + position + " : " + entity.getBusinessKey());
System.out.println(entity.toXML());
System.out.println();
System.out.println("**");
position++;

}
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Basic Publishing demo
set. Let us continue with our SaveBusiness demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\basic\publishing\v2

UNIX: $REGISTRY_HOME/demos/basic/publishing/v2

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 555 of 642

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example to run the SaveBusiness demo, invoke

Windows: run.bat SaveBusiness

UNIX: ./run.sh SaveBusiness

The output of this demowill resemble the following:

Running SaveBusiness demo...
**
*** HPE SOA Registry Demo - SaveBusiness ***
**

Saving business entity where
Enter count of names [1]:
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Logging in .. done
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Save in progress ... done

Business 1 : c9e8be50-a5a5-11d8-91cd-5c1d367091cd
<businessEntity businessKey="c9e8be50-a5a5-11d8-91cd-5c1d367091cd"operator="Systinet"
authorizedName="demo_john" xmlns="urn:uddi-org:api_v2">

<name>Marketing</name>
<description>Saved by SaveBusiness demo</description>

</businessEntity>

**
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 556 of 642

UDDI v3
l "Inquiry v3" below

l "Publishing v3" on page 563

Inquiry v3
The HPE SOA Registry Foundation basic inquiry demo set is used to demonstrate the HPE SOA
Registry Foundation application programming interface's capabilities and to teach the reader how to
use this API to perform basic inquiry calls to a UDDI registry.

The HPE SOA Registry Foundation basic inquiry demos cover the inquiry aspect of the UDDI Version
3.0.1 Specification. You will learn how to use the HPE SOA Registry Foundation client API to contact
and get information from aUDDI registry over a SOAP interface. There is one demo for each UDDI
call, from find_business to get_tModel.

The HPE SOA Registry Foundation basic inquiry demo set contains following demos. They will assist
you in learning the HPE SOA Registry Foundation client API.

FindBinding Demonstrates how to construct and fill the Find_binding object, get an Inquiry stub for
the UDDI registry, perform a find_binding call, and display the results.

FindBusiness Demonstrates how to construct and fill a Find_business object, get an Inquiry stub for
the UDDI registry, perform a find_business call and display the results.

FindRelatedBusiness Demonstrates how to construct and fill a Find_relatedBusiness object, get
an Inquiry stub for the UDDI registry, perform a find_relatedBusiness call and display the results.

FindService Demonstrates how to construct and fill a Find_service object, get an Inquiry stub for the
UDDI registry, perform a find_service call and display the results.

FindTModel Demonstrates how to construct and fill a Find_tModel object, get an Inquiry stub for the
UDDI registry, perform a find_tModel call and display the results.

GetBindingDetail Demonstrates how to create a Get_bindingDetail object, set the bindingKey of
the bindingTemplate to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
bindingDetail call, and display the result.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 557 of 642

GetBusinessDetail Demonstrates how to create a Get_businessDetail object, set the businessKey
of the businessEntity to be fetched, get an Inquiry stub for the UDDI registry, perform a get_
businessDetail call, and display the result.

GetOperationalInfo Demonstrates how to create a Get_operationalInfo object, set a UDDI key,
get an Inquiry stub for the UDDI registry, perform a get_operationalInfo call, and display the
operational info of the selected UDDI structure.

Prerequisites and Preparatory Steps: Code

Weexpect, that you have already installed the HPE SOA Registry Foundation and set the
REGISTRY_HOME environment variable to its installation location.

To run HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
UDDI registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit the file env.properties in the directory where run.bat (run.sh) is
located. Local level properties for Basic/Inquiry demos are loaded in the file:

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v3\env.properties

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v3/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.result.max_
rows

5 limit on data returned from
registry

uddi.demos.url.inquiry http://localhost:8080/uddi/inquiry the inquiry Web service port
URL

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 558 of 642

Presentation and Functional Presentation

This section describes programing pattern used in all demos using the FindTModel demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\inquiry\src\demo\uddi\v3\inquiry\FindTModel.java

UNIX: $REGISTRY_HOME/demos/basic/inquiry/src/demo/uddi/v3/inquiry/FindTModel.java

Themainmethod is straightforward. It gathers user's input (tModel name and findQualifier name), calls
amethod to initialize the Find_tModel object, executes the find_tModel UDDI call, and displays the
list of found tModels:

String name = UserInput.readString("Enter name", "demo%");
String findQualifier = UserInput.readString("Enter findQualifier","approximateMatch");
Find_tModel find_tModel = createFindByTModel(name, findQualifier);
TModelList result = findTModel(find_tModel);
printTModelList(result);

The createFindTModel()method is used to create new instance of Find_tModel class and initialize it
with values from parameters:

public static Find_tModel createFindByTModel(String name, String findQualifier)
throws InvalidParameterException {

System.out.println("findQualifier = " + findQualifier);
System.out.println("name = " + name);
Find_tModel find_tModel = new Find_tModel();
find_tModel.setName(new Name(name));
find_tModel.setMaxRows(new Integer(MAX_ROWS));
find_tModel.addFindQualifier(findQualifier);
return find_tModel;

}

The helper method getInquiryStub() returns the UDDI Inquiry stub of the web service listening at
the URL specified in the URL_INQUIRY property.

public static UDDI_Inquiry_PortType getInquiryStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.inquiry
String url = DemoProperties.getProperty(URL_INQUIRY,"http://localhost:8080/uddi/inquiry");
System.out.print("Using Inquiry at url " + url + " ..");
UDDI_Inquiry_PortType inquiry = UDDIInquiryStub.getInstance(url);

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 559 of 642

System.out.println(" done");
return inquiry;

}

The UDDI API call find_tModel is performed in themethod findTModel:

public static TModelList findTModel(Find_tModel find_tModel)
throws UDDIException, SOAPException {

UDDI_Inquiry_PortType inquiry = getInquiryStub();
System.out.print("Search in progress ..");
TModelList tModelList = inquiry.find_tModel(find_tModel);
System.out.println(" done");
return tModelList;

}

The list of found tModels are printed with themethod printTModelList. One interesting aspect of the
HPE SOA Registry Foundation client API is that each UDDIObject contains method toXML(), which
returns a human-readable, formatted, listing of its XML representation.

public static void printTModelList(TModelList tModelList) {
System.out.println();
ListDescription listDescription = tModelList.getListDescription();
if (listDescription!=null) {

// list description is mandatory part of result,
// if the resultant list is subset of available data

int includeCount = listDescription.getIncludeCount();
int actualCount = listDescription.getActualCount();
int listHead = listDescription.getListHead();
System.out.println("Displaying "+includeCount+" of "+

actualCount+", starting at position " + listHead);
}

TModelInfoArrayList tModelInfoArrayList = tModelList.getTModelInfoArrayList();
if (tModelInfoArrayList==null) {

System.out.println("Nothing found");
return;

}

int position = 1;
for (Iterator iterator = tModelInfoArrayList.iterator(); iterator.hasNext();){

TModelInfo tModelTemplate = (TModelInfo) iterator.next();
System.out.println("TModel "+position+" : "+tModelTemplate.getTModelKey());
System.out.println(tModelTemplate.toXML());
System.out.println();

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 560 of 642

System.out.println("**");
position++;

}
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Basic Inquiry demo set.
Our example continues with the FindTModel demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Windows: %REGISTRY_HOME%\demos\basic\inquiry\v3

UNIX: $REGISTRY_HOME/demos/basic/inquiry/v3

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. Run a selected demo by executing the run commandwith the name of the demo as a parameter.
For example, to run the FindTModel demo, invoke

Windows: run.bat FindTModel

UNIX: ./run.sh FindTModel

The output of this demowill resemble the following:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 561 of 642

*** HPE SOA Registry Demo - FindTModelDemo ***

Searching for tModel where
Enter name [demo%]:
Enter findQualifier [approximateMatch]:
findQualifier = approximateMatch
name = demo%
Using Inquiry at url http://localhost:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 3 of 3, starting at position 1
TModel 1 : uddi:systinet.com:demo:departmentID

<tModelInfo tModelKey="uddi:systinet.com:demo:departmentID"
xmlns="urn:uddi-org:api_v3">

<name>demo:departmentID</name>
<description>Identifier of the department</description>

</tModelInfo>

**
TModel 2 : uddi:systinet.com:demo:hierarchy

<tModelInfo tModelKey="uddi:systinet.com:demo:hierarchy"
xmlns="urn:uddi-org:api_v3">

<name>demo:hierarchy</name>
<description>Business hierarchy taxonomy</description>

</tModelInfo>

**
TModel 3 : uddi:systinet.com:demo:location:floor

<tModelInfo tModelKey="uddi:systinet.com:demo:location:floor" xmlns="
urn:uddi-org:api_v3">

<name>demo:location:floor</name>
<description>Specifies floor, on which the department islocated</description>

</tModelInfo>

**

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 562 of 642

Publishing v3
The HPE SOA Registry Foundation basic publishing demo set demonstrates the HPE SOA Registry
Foundation application programming interface's capabilities and teaches how to use this API to perform
basic publishing calls to a UDDI registry.

The HPE SOA Registry Foundation basic publishing demos cover the publication aspect of the UDDI
Version 3 Specification. You will learn, how to use the HPE SOA Registry Foundation client API to
publish information to a UDDI registry over a SOAP interface. There is one demo for each UDDI call,
from add_publisherAssertion through get_registeredInfo to save_business.

The HPE SOA Registry Foundation basic publishing demo set contains the following demos. They will
assist you in learning the HPE SOA Registry Foundation client API.

AddAssertion Demonstrates how to construct and fill the Add_publisherAssertion object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the add_publisherAssertion
call.

DeleteAssertion Demonstrates how to construct and fill the Delete_publisherAssertion object, get
a Publishing stub for the UDDI registry, get an authToken, and perform the delete_
publisherAssertion call.

DeleteBinding Demonstrates how to construct and fill the Delete_binding object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_binding call.

DeleteBusiness Demonstrates how to construct and fill the Delete_business object, get Publishing
stub for the UDDI registry, get an authToken, and perform the delete_business call.

DeleteService Demonstrates how to construct and fill the Delete_service object, get Publishing stub
for the UDDI registry, get an authToken, and perform the delete_service call.

DeleteTModel Demonstrates how to construct and fill the Delete_tModel object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the delete_tModel call.

GetAssertionStatusReport Demonstrates how to construct and fill the Get_assertionStatusReport
object, get a Publishing stub for the UDDI registry, get an authToken, and perform the get_
assertionStatusReport call.

GetPublisherAssertions Demonstrates how to construct and fill the Get_publisherAssertions
object, get a Publishing stub for the UDDI registry, get an authToken, and perform the get_
publisherAssertions call.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 563 of 642

GetRegisteredInfo Demonstrates how to construct and fill the Get_registeredInfo object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the get_registeredInfo call.

SaveBinding Demonstrates how to construct and fill the Save_binding object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_binding call.

SaveBusiness Demonstrates how to construct and fill the Save_business object, get a Publishing
stub for the UDDI registry, get an authToken, and perform the save_business call.

SaveService Demonstrates how to construct and fill the Save_service object, get a Publishing stub
for the UDDI registry, get an authToken, and perform the save_service call.

SaveTModel Demonstrates how to construct and fill the Save_tModel object, get a Publishing stub for
the UDDI registry, get an authToken, and perform the save_tModel call.

SetAssertions Demonstrates how to construct and fill the Set_publisherAssertions object, get a
Publishing stub for the UDDI registry, get an authToken, and perform the set_publisherAssertions
call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to its installation location.

To run the HPE SOA Registry Foundation's demos, your UDDI registry must be running. To start the
registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is neccessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit the file env.properties in the directory where run.sh(run.bat) is
located. Local level properties for the Basic/Inquiry demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\basic\publishing\v3\env.properties

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 564 of 642

UNIX: $REGISTRY_HOME/demos/basic/publishing/v3/env.properties

Properties Used in the Demos

Name Default Value Description

uddi.demos.user.john.name demo_john First user's name

uddi.demos.user.john.password demo_john First user's
password

uddi.demos.user.jane.name demo_jane Second user's
name

uddi.demos.user.jane.password demo_jane Second user's
password

uddi.demos.url.publishing http://localhost:8080/uddi/publishing The publication
Web service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security The security web
service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveBusiness demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\publishing\src\demo\uddi\v3\publishing\SaveBusiness.java

UNIX: $REGISTRY_
HOME/demos/basic/publishing/src/demo/uddi/v3/publishing/SaveBusiness.java

Themainmethod is easy to understand. First it gathers the user's input: an optional publisher-assigned
businessKey, then variable long array of business entity names with their language codes, and a
description of the business.

The next step is to get the security stub and authorize the user. The resulting authInfo string is a secret
key passed in all requests.

Next, the Save_business object is created, filled, and passed to the saveBusiness method as a
parameter.

When successful, the BusinessDetail object is returned from the UDDI registry and printed. The last
step is to discard the authInfo string, so nomalicious user can use it to compromise a user's account.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 565 of 642

String businessKey = UserInput.readString("Enter (optional) businessKey", "");
int count = UserInput.readInt("Enter count of names", 1);
String[] names = new String[count];
String[] languageCodes = new String[count];
for (int i = 0; i < count; i++) {

String tmp = UserInput.readString("Enter language code", "");
languageCodes[i] = (tmp.length() > 0) ? tmp : null;
names[i] = UserInput.readString("Enter name in language " + tmp, "Marketing");

}
String description = UserInput.readString("Enter description", "Saved bySaveBusiness demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_business save = createSaveBusiness(businessKey, names, languageCodes,description, authInfo);
BusinessDetail result = saveBusiness(save);
printBusinessDetail(result);
discardAuthInfo(authInfo, security);

The helper method, getSecurityStub() returns the UDDI Security stub of the web service listening
at the URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.security
String url = DemoProperties.getProperty(URL_SECURITY,"http://localhost:8080/uddi/security");
System.out.print("Using Security at url " + url + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
System.out.println(" done");
return security;

}

Similarly, the helper method getPublishingStub() returns the UDDI Publication stub of the web
service listening at the URL specified by the URL_PUBLISHING property.

public static UDDI_Publication_PortType getPublishingStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.publishing
String url = DemoProperties.getProperty(URL_PUBLISHING,"http://localhost:8080/uddi/publishing");
System.out.print("Using Publishing at url " + url + " ..");
UDDI_Publication_PortType inquiry = UDDIPublishStub.getInstance(url);
System.out.println(" done");
return inquiry;

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 566 of 642

}

The getAuthInfo()method is used to authorize the user against the UDDI registry and to get the
secret authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
throws InvalidParameterException, UDDIException {

System.out.print("Logging in ..");
AuthToken authToken = security.get_authToken(new Get_authToken(userName,password));
System.out.println(" done");
return authToken.getAuthInfo();

}

The discardAuthInfo()method invalidates the secret authInfo key, so it cannot be used anymore.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortTypesecurity)
throws InvalidParameterException, UDDIException {

System.out.print("Logging out ..");
security.discard_authToken(new Discard_authToken(authInfo));
System.out.println(" done");

}

The createSaveBusiness()method is used to create a new instance of the Save_business class and
initialize it with values from parameters:

public static Save_business createSaveBusiness(String businessKey, String[] names,
String[] nameLangCodes, String description, String authInfo)
throws InvalidParameterException {

System.out.println("businessKey = " + businessKey);
for (int i = 0; i < names.length; i++) {

System.out.println("lang = " + nameLangCodes[i] + ", name = " + names[i]);
}
System.out.println("description = " + description);

BusinessEntity businessEntity = new BusinessEntity();
if (businessKey!=null && businessKey.length()>0)

businessEntity.setBusinessKey(businessKey);
for (int i = 0; i < names.length; i++) {

if (nameLangCodes[i] == null) {
businessEntity.addName(new Name(names[i]));

} else {
businessEntity.addName(new Name(names[i], nameLangCodes[i]));

}

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 567 of 642

}
businessEntity.addDescription(new Description(description));

Save_business save = new Save_business();
save.addBusinessEntity(businessEntity);
save.setAuthInfo(authInfo);
return save;
}

The UDDI API call save_business is performed in themethod saveBusiness():

public static BusinessDetail saveBusiness(Save_business save)
throws UDDIException, SOAPException {

UDDI_Publication_PortType publishing = getPublishingStub();
System.out.print("Save in progress ...");
BusinessDetail businessDetail = publishing.save_business(save);
System.out.println(" done");
return businessDetail;

}

The saved businessEntity is displayed by the printBusinessDetail()method. One interesting
aspect of the HPE SOA Registry Foundation client API is that each UDDIObject contains the toXML
(), which returns a human-readable formatted listing of the XML representation.

public static void printBusinessDetail(BusinessDetail businessDetail) {
System.out.println();
BusinessEntityArrayList businessEntityArrayList =businessDetail.getBusinessEntityArrayList();
int position = 1;
for (Iterator iterator = businessEntityArrayList.iterator(); iterator.hasNext();) {

BusinessEntity entity = (BusinessEntity) iterator.next();
System.out.println("Business " + position + " : " +entity.getBusinessKey());
System.out.println(entity.toXML());
System.out.println();
System.out.println("**");
position++;

}
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Basic Publishing demo
set. Let's continue with our SaveBusiness demo.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 568 of 642

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Windows: %REGISTRY_HOME%\demos\basic\publishing\v3

UNIX: $REGISTRY_HOME/demos/basic/publishing/v3

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example to run the SaveBusiness demo, invoke

Windows: run.bat SaveBusiness

UNIX: ./run.sh SaveBusiness

The output of this demowill resemble the following:

**
*** HPE SOA Registry Demo - SaveBusiness ***
**

Saving business entity where
Enter (optional) businessKey []: uddi:systinet.com:demo:marketing
Enter count of names [1]: 1
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]: Marketing department

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 569 of 642

Using Security at url http://localhost:8080/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:marketing
lang = null, name = Marketing
description = Marketing department
Using Publishing at url http://localhost:8080/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:systinet.com:demo:marketing
<businessEntity businessKey="uddi:systinet.com:demo:marketing" xmlns="urn:uddi-org:api_v3">

<name>Marketing</name>
<description>Marketing department</description>

</businessEntity>

**
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Advanced Demos
Advanced demos section includes the following demos:

l "Advanced Inquiry - Range Queries" on the next page - The HPE SOA Registry Foundation
Range queries demos set demonstrates, how to use HPE SOA Registry Foundation inquiry
enhancement - RangeQueries. HPE SOA Registry Foundation range queries functionality allows
you to search UDDI entities with the ability to use comparative operators (>, <) for matching
keyValues in keyedReferences.

l "Custody" on page 576 - The HPE SOA Registry Foundation Custody demo covers the custody
transfer aspects of the UDDI API specification. You will learn how to generate a custody transfer
token and transfer the ownership of selected structures to another user.

l "Subscription" on page 582 - The HPE SOA Registry Foundation advanced subscription demos
cover the subscription aspects of the UDDI Version 3 Specification. They teach how to use the
HPE SOA Registry Foundation client API to create new subscriptions, get lists of subscriptions,
get subscription results, and delete subscriptions.

l "Validation" on page 590 - The valueset validation API provides methods to validate values used
in the keyedReferences of checked taxonomies. The checks might range from very simple (check

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 570 of 642

value against list of available values as in the InternalValidation service), to complex, such as
performing contextual checks.

l "Taxonomy" on page 595 - The Taxonomy API is used tomanage and query taxonomies in the
HPE SOA Registry Foundation. These demos cover all API methods, so you can learn how to
download, upload, save, delete, get and find taxonomies. In addition, you canmanage individual
values in internally checked taxonomies using the Category API.

Advanced Inquiry - Range Queries
The HPE SOA Registry Foundation Range queries demos set demonstrates, how to use HPE SOA
Registry Foundation inquiry enhancement - RangeQueries. HPE SOA Registry Foundation range
queries functionality allows you to search UDDI entities with the ability to use comparative operators
(>, <) for matching keyValues in keyedReferences.

The demos set includes the following demo:

FindBusiness

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 571 of 642

(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the Advanced Inquiry demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\advanced\inquiry\env.properties

UNIX: $REGISTRY_HOME/demos/advanced/inquiry/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.result.max_
rows

5 limit of data returned
from registry

uddi.demos.url.inquiryExt http://localhost:8080/uddi/inquiryExt the extended inquiry
web service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in demos using the FindBusiness demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_HOME%\demos\advanced\inquiry\src\demo\uddi\rq\FindBusiness.java

UNIX: $REGISTRY_HOME/demos/advanced/inquiry/src/demo/uddi/rq/FindBusiness.java

The helper method createFindBusiness creates a FindBusiness structure:

public Find_business createFindBusiness(String tModelKey, String keyValue,
String operator, String quantifier)

throws InvalidParameterException {
System.out.println("tModelKey = " + tModelKey);
System.out.println("keyValue = " + keyValue);
System.out.println("operator = " + operator);
System.out.println("quantifier = " + quantifier);

Find_business find_business = new Find_business();
QualifiedKeyedReference qualifiedKeyedReference = new QualifiedKeyedReference();
qualifiedKeyedReference.setTModelKey(tModelKey);
qualifiedKeyedReference.setKeyValue(keyValue);
qualifiedKeyedReference.setFindQualifierArrayList(parseFindQualifiers(operator, quantifier));
find_business.setCategoryBag(new CategoryBag(new KeyedReferenceArrayList(qualifiedKeyedReference)));
find_business.setMaxRows(new Integer(MAX_ROWS));

return find_business;

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 572 of 642

}

The findBusiness method performs the searching operation:

public BusinessList findBusiness(Find_business find_business) throws UDDIException,SOAPException {
System.out.print("Check structure validity .. ");
try {

find_business.check();
} catch (InvalidParameterException e) {

System.out.println("Failed!");
throw new UDDIException(e);

}
System.out.println("OK");

UDDI_Inquiry_PortType inquiry = getInquiryStub();
System.out.print("Search in progress ..");
BusinessList businessList = inquiry.find_business(find_business);
System.out.println(" done");
return businessList;

}

Building and Running Demos

This section shows, how to build and run the HPE SOA Registry Foundation Advanced Inquiry demo
set. Let us continue with our FindBusiness demo.

1. Be sure that the demo are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\advanced\inquiry

UNIX: $REGISTRY_HOME/demos/advanced/inquiry

3. Build demo using:

Windows: UNIX:

run.bat make ./run.shmake

Note: When compiling demo onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 573 of 642

. This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example, to run the FindBusiness demo, invoke

Windows: run.bat FindBusiness

UNIX: ./run.sh FindBusiness

The output of this demowill resemble the following:

**
*** HPE SOA Registry Demo - FindBusiness ***
**

Searching for businesses by category where keyedReference
Enter tModelKey [uddi:systinet.com:demo:location:floor]:
Enter keyValue [1]: 3
Enter operator (=,<,>,<=,>=,<>) [=]:>
Enter quantifier (exists,notExists) [exists]:
tModelKey = uddi:systinet.com:demo:location:floor
keyValue = 3
operator = >
quantifier = exists
Check structure validity .. OK
Using Inquiry at url http://van.in.idoox.com:8080/uddi/inquiryExt .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1
Business 1 : uddi:systinet.com:demo:it
<businessInfoExt businessKey="uddi:systinet.com:demo:it"xmlns="http://systinet.com/uddi/api/v3/ext/5.0">

<name xmlns="urn:uddi-org:api_v3">IT</name>
<description xmlns="urn:uddi-org:api_v3">IT department</description>
<serviceInfos xmlns="urn:uddi-org:api_v3">
<serviceInfoExt serviceKey="uddi:systinet.com:demo:it:support"businessKey="uddi:systinet.com:demo:it"

xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
<name xmlns="urn:uddi-org:api_v3">Support</name>
<description xmlns="urn:uddi-org:api_v3">Telephone support</description>
<bindingTemplates xmlns="urn:uddi-org:api_v3">

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 574 of 642

<bindingTemplate bindingKey="uddi:b77eb8f0-86ce-11d8-ba05-123456789012"
serviceKey="uddi:systinet.com:demo:it:support">

<description>IT related issues shall be reported there</description>
<accessPoint useType="endPoint">tel:+1-123-456-7890</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfotModelKey="uddi:uddi.org:transport:telephone"/>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

</serviceInfoExt>
<serviceInfoExt serviceKey="uddi:systinet.com:demo:hr:employeesList"

businessKey="uddi:systinet.com:demo:hr"xmlns="http://systinet.com/uddi/api/v3/ext/5.0">
<name xmlns="urn:uddi-org:api_v3">EmployeeList</name>
<description xmlns="urn:uddi-org:api_v3">wsdl:type representingservice</description>
<bindingTemplates xmlns="urn:uddi-org:api_v3">
<bindingTemplate bindingKey="uddi:5c546520-78b8-11d8-bec4-123456789012"

serviceKey="uddi:systinet.com:demo:hr:employeesList">
<description>wsdl:type representing port</description>

<accessPointuseType="http://schemas.xmlsoap.org/soap/http">urn:unknown-location-uri</accessPoint>

<tModelInstanceDetails>
<tModelInstanceInfotModelKey="uddi:systinet.com:demo:employeeList:binding">

<instanceDetails>
<instanceParms>EmployeeList</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

<tModelInstanceInfotModelKey="uddi:systinet.com:demo:employeeList:portType">
<instanceDetails>
<instanceParms>EmployeeList</instanceParms>

</instanceDetails>
</tModelInstanceInfo>
</tModelInstanceDetails>
<categoryBag>

<keyedReference tModelKey="uddi:uddi.org:xml:namespace"keyName="uddi.org:xml:namespace"
keyValue="http://systinet.com/wsdl/demo/uddi/services/"/>

<keyedReference tModelKey="uddi:uddi.org:wsdl:types"keyName="uddi.org:wsdl:types"
keyValue="port"/>

<keyedReference tModelKey="uddi:uddi.org:xml:localName"keyName="uddi.org:xml:localName"
keyValue="EmployeeList"/>

<keyedReferencetModelKey="uddi:systinet.com:taxonomy:endpoint:availability"keyName="Available"

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 575 of 642

keyValue="Available"/>
<keyedReferencetModelKey="uddi:systinet.com:taxonomy:endpoint:status" keyName="Operational"

keyValue="Operational"/>
</categoryBag>

</bindingTemplate>
</bindingTemplates>

</serviceInfoExt>
</serviceInfos>
<contactInfos>
<contactInfo useType="Technical support">
<personName xmlns="urn:uddi-org:api_v3">John Demo</personName>

</contactInfo>
</contactInfos>

</businessInfoExt>
**

Custody
The HPE SOA Registry Foundation demo is used to demonstrate the registry's application
programming interface's capabilities and to demonstrate how to use this API.

The HPE SOA Registry Foundation Custody demo covers the custody transfer aspects of the UDDI
Version 3.01 Specification.. You will learn how to generate a custody transfer token and transfer the
ownership of selected structure to another user.

There is a single demowithin this package - CustodyDemo. It demonstrates how to generate a transfer
token for a selected UDDI key and how to use it to transfer the custody of the structure identified by the
UDDI key to another user.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 576 of 642

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,,
at the local level), edit env.properties. This file is located in the same directory as the file run.sh
(run.bat). Local level properties for the Custody demo are loaded from the file:

Windows: %REGISTRY_HOME%\demos\advanced\custody\env.properties

UNIX: $REGISTRY_HOME/demos/advanced/custody/env.properties

Properties used in demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.user.jane.name demo_jane second user's name

uddi.demos.user.jane.password demo_jane second user's
password

uddi.demos.url.custody http://localhost:8080/uddi/custody the custody Web
service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes programming pattern of the Custody demo. You can find its source code in the
file:

Windows: %REGISTRY_
HOME%\demos\advanced\custody\src\demo\uddi\custody\CustodyDemo.java

UNIX: $REGISTRY_
HOME/demos/advanced/custody/src/demo/uddi/custody/CustodyDemo.java

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 577 of 642

Tomake the demo easier to use, it contains two use cases. The first use case shows the owner of a
UDDI structure who wants to transfer it to another user. The second use case is the second user
transferring the same structure to his own custody. Let us start with first use case.

Wemust gather user input first. It is necessary to read user credentials and the key of the structure
owned by the user. If you use default values, this means that the user demo_john is transferring
custody of the systinet.com:departmentID tModel to user demo_jane. The user logs in and
generates a transfer token for the given UDDI key. The transfer token contains information about the
registry, expiration time, and secret opaqueToken. Any user who knows these data, can transfer the
structure(s) covered by the transferToken.

String user = UserInput.readString("Enter first user name",
DemoProperties.getProperty(USER_JOHN_NAME));

String password = UserInput.readString("Enter password",
DemoProperties.getProperty(USER_JOHN_PASSWORD));

String uddiKey = UserInput.readString("Enter UDDI key",
"uddi:systinet.com:demo:departmentID");

System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_transferToken get = createGetTransferToken(uddiKey, authInfo);
TransferToken token = getTransferToken(get);
printTransferToken(token);
discardAuthInfo(authInfo, security);

The helper method getCustodyStub() returns the UDDI Custody stub of theWeb service listening at
the URL specified by the URL_CUSTODY property.

public static UDDI_CustodyTransfer_PortType getCustodyStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.custody
String url = DemoProperties.getProperty(URL_CUSTODY,"http://localhost:8080/uddi/custody");
System.out.print("Using Custody at url " + url + " ..");
UDDI_CustodyTransfer_PortType custody = UDDICustodyStub.getInstance(url);
System.out.println(" done");
return custody;

}

The createGetTransferToken()method is used to create the Get_transferToken object, which
encapsulates the parameters of this UDDI call. In this example we set authInfo and a single key for the
UDDI structure to be transferred int the custody of the second user.

public static Get_transferToken createGetTransferToken(String uddiKey, StringauthInfo)

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 578 of 642

throws InvalidParameterException {
System.out.println("uddiKey = " + uddiKey);
Get_transferToken get = new Get_transferToken();
get.addKey(uddiKey);
get.setAuthInfo(authInfo);
return get;

}

The next step is to invoke the get_transferTokenUDDI call and get the result, which is a
TransferToken.

public static TransferToken getTransferToken(Get_transferToken get)
throws UDDIException, SOAPException {

UDDI_CustodyTransfer_PortType custody = getCustodyStub();
System.out.print("Get in progress ...");
TransferToken token = custody.get_transferToken(get);
System.out.println(" done");
return token;

}

At this point the first user, John Demo, has generated a transfer token. He can discard it or send it to
the second user Jane Demo, so she can transfer the entities to her custody. The transfer tokenmust be
kept secret, so plain text transports such as unencrypted emails are not suitable for this purpose. Let
us suppose that Jane Demo has received the transfer token already. She logs in, creates a Transfer_
entities object and invokes the UDDI call transfer_entities.

user = UserInput.readString("Enter second user name",
DemoProperties.getProperty(USER_JANE_NAME));

password = UserInput.readString("Enter password", DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

authInfo = getAuthInfo(user, password, security);
Transfer_entities transfer = createTransferEntities(uddiKey, token, authInfo);
transferEntities(transfer);
discardAuthInfo(authInfo, security);

The createTransferEntities()method is used to create Transfer_entities object, which
encapsulates parameters of same nameUDDI call. In this example we set Jane's authInfo, UDDI key
to be transferred, and the TransferToken generated by John.

public static Transfer_entities createTransferEntities(String uddiKey,
TransferToken token, StringauthInfo)

throws InvalidParameterException {
Transfer_entities transfer = new Transfer_entities();

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 579 of 642

transfer.addKey(uddiKey);
transfer.setTransferToken(token);
transfer.setAuthInfo(authInfo);
return transfer;

}

The final step is to make the transfer_entitiesUDDI call. When it successfully returns, the second
user (Jane) is the happy owner of the UDDI structure systinet.com:demo:departmentID.

public static void transferEntities(Transfer_entities transfer)
throws UDDIException, SOAPException {

UDDI_CustodyTransfer_PortType custody = getCustodyStub();
System.out.print("Transfer in progress ...");
custody.transfer_entities(transfer);
System.out.println(" done");

}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Custody demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\advanced\custody

UNIX: $REGISTRY_HOME/demos/advanced/custody

3. Build demo using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available commands, run

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 580 of 642

Windows: run.bat help

UNIX: ./run.sh help

5. The demo can be executed via the run command, using the name of the demo as a parameter. To
run the Custody demo, invoke

Windows: run.bat CustodyDemo

UNIX: ./run.sh CustodyDemo

The output of this demowill resemble the following:

Running CustodyDemo demo...
**
*** HPE SOA Registry Demo - CustodyDemo ***
**

Getting transfer token where
Enter first user name [demo_john]:
Enter password [demo_john]:
Enter UDDI key [uddi:systinet.org:demo:departmentID]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
uddiKey = uddi:systinet.org:demo:departmentID
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Get in progress ... done

TransferToken
<transferToken xmlns="urn:uddi-org:custody_v3">
<nodeID xmlns="urn:uddi-org:api_v3">Systinet</nodeID>
<expirationTime>2004-05-17T12:32:51.236+02:00</expirationTime>
<opaqueToken>ZmZmZmZmZmZlMDVmZGEzNg==</opaqueToken>
</transferToken>

Logging out .. done

Transfering custody where
Enter second user name [demo_jane]:
Enter password [demo_jane]:

Logging in .. done
Using Custody at url https://mycomp.com:8443/uddi/custody .. done
Transfer in progress ... done
Logging out .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 581 of 642

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Subscription
The HPE SOA Registry Foundation advanced subscription demo set demonstrates the HPE SOA
Registry Foundation application programming interface's capabilities and shows how to use the
Subscription API to perform subscription calls to the registry.

The HPE SOA Registry Foundation advanced subscription demos cover the subscription aspects of
the UDDI Version 3 Specification. They teach how to use the HPE SOA Registry Foundation client
API to create new subscriptions, get lists of subscriptions, get subscription results, and delete
subscriptions.

The HPE SOA Registry Foundation basic publishing demo set contains the following demos to assist
you in learning the HPE SOA Registry Foundation client API:

SaveSubscription Demonstrates how to construct and fill the Save_subscription object, get a
Subscription stub for the UDDI registry, and perform the save_subscription call.

GetSubscriptionsDemonstrates how to construct and fill the Get_subscriptions object, get a
Subscription stub for the UDDI registry, and perform the get_subscriptions call.

GetSubscriptionResultsDemonstrates how to construct and fill the Get_subscriptionResults
object, get a Subscription stub for the UDDI registry, and perform the get_subscriptionResults call.

DeleteSubscription Demonstrates how to construct and fill the Delete_subscription object, get a
Subscription stub for the UDDI registry, and perform the delete_subscription call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 582 of 642

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the Subscription demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\advanced\subscription\env.properties

UNIX: $REGISTRY_HOME/demos/advanced/subscription/env.properties

Properties used in demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's
name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.url.subscription http://localhost:8080/uddi/subscription the
subscription
web service
port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security
Web service
port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the GetSubscriptionResults
demo as an example. You can find this demo's source code in the file:

Window
s:

%REGISTRY_
HOME%\demos\basic\subscription\src\demo\uddi\subscription\GetSubscriptionResult
s.java

UNIX: $REGISTRY_
HOME/demos/basic/subscription/src/demo/uddi/subscription/GetSubscriptionResults.j
ava

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 583 of 642

Let us start with a description of main method. The first part is used to configure the demo by the user.
Then it logs the user into the UDDI registry, creates a Get_subscriptionResults object holding the
parameters of the request. This object is transformed in the next step into the SOAP UDDI call get_
subscriptionResults. Its results are then displayed and the user is logged off from the UDDI registry.

String user = UserInput.readString("Enter user name",
DemoProperties.getProperty(USER_JOHN_NAME));

String password = UserInput.readString("Enter password",
DemoProperties.getProperty(USER_JOHN_PASSWORD));

String key = UserInput.readString("Enter subscription key", "");
int shift = UserInput.readInt("Enter start of coverage period in minutes", 60);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Get_subscriptionResults get = createGetSubscriptionResults(key, shift, authInfo);
SubscriptionResultsList result = getSubscriptionResults(get);
printSubscriptionResults(result);
discardAuthInfo(authInfo, security);

Themethod createGetSubscriptionResults takes subscriptionKey as a parameter that identifies
the subscription in the UDDI registry, coveragePeriod, and authInfo of the user. The CoveragePeriod is
used to identify the time period for which the user is interested in changes matched by the selected
Subscription.

public static Get_subscriptionResults createGetSubscriptionResults(StringsubscriptionKey,
int coveragePeriod, String authInfo) throws InvalidParameterException {

Get_subscriptionResults getSubscriptionResults = new Get_subscriptionResults();
getSubscriptionResults.setSubscriptionKey(subscriptionKey);

// calculate coverage period
long coveragePeriodShiftInMs = coveragePeriod * 60 * 1000;
long endPoint = System.currentTimeMillis();
long startPoint = endPoint - coveragePeriodShiftInMs;
getSubscriptionResults.setCoveragePeriod(new CoveragePeriod(new Date(startPoint),

new Date(endPoint)));

getSubscriptionResults.setAuthInfo(authInfo);

return getSubscriptionResults;
}

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 584 of 642

The helper method, getSubscriptionStub(), returns the UDDI Subscription stub of the web service
listening at the URL specified by the URL_SUBSCRIPTION property.

public static UDDI_Subscription_PortType getSubscriptionStub() throws SOAPException{
String url = DemoProperties.getProperty(URL_SUBSCRIPTION,

"http://localhost:8080/uddi/subscription");
System.out.print("Using Subscription at url " + url + " ..");
UDDI_Subscription_PortType subscriptionStub =UDDISubscriptionStub.getInstance(url);
System.out.println(" done");
return subscriptionStub;

}

The UDDI API call get_subscriptionResults is performed in themethod getSubscriptionResults
():

public static SubscriptionResultsList getSubscriptionResults(Get_subscriptionResults save)
throws UDDIException, SOAPException {

UDDI_Subscription_PortType subscriptionStub = getSubscriptionStub();
System.out.print("Get in progress ...");
SubscriptionResultsList result = subscriptionStub.get_subscriptionResults(save);
System.out.println(" done");
return result;

}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Advanced Subscription
demo set. Let us continue with our GetSubscriptionResults demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Windows: %REGISTRY_HOME%\demos\advanced\subscription

UNIX: $REGISTRY_HOME/demos/advanced/subscription

3. Build all demos using:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 585 of 642

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get a list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run with the name of the demo as parameter. For
example, to run the GetSubscriptionResults demo, invoke

Windows: run.bat GetSubscriptionResults

UNIX: ./run.sh GetSubscriptionResults

6. The HPE SOA Registry Foundation Subscription demos show a complete use case for the
Subscription API. The SaveSubscription demo creates a new subscription for the user John
Demo. This subscriptionmonitors changes to the business entity named Marketing.

Running SaveSubscription demo...
**
*** HPE SOA Registry Demo - SaveSubscriptionDemo ***
**

Saving subscription where
Enter user name [demo_john]:
Enter password [demo_john]:
Enter business name to watch [Marketing]:
Enter subscription validity in days [2]:
Enter limit of subscription results [5]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessName = Marketing
limit = 5
valid = 2
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Save in progress ... done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 586 of 642

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">

<subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
<subscriptionFilter>

<find_business xmlns="urn:uddi-org:api_v3">
<name>Marketing</name>

</find_business>
</subscriptionFilter>
<maxEntities>5</maxEntities>
<expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>

</subscription>

**
Logging out .. done

If you want to list your available subscriptions, run the GetSubscriptions demo:
Finding subscriptions where
Enter user name [demo_john]:
Enter password [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done

Subscription 1 : uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
<subscription brief="false" xmlns="urn:uddi-org:sub_v3">

<subscriptionKey>uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
<subscriptionFilter>

<find_business xmlns="urn:uddi-org:api_v3">
<name>Marketing</name>

</find_business>
</subscriptionFilter>
<maxEntities>5</maxEntities>
<expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>

</subscription>

**
Logging out .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 587 of 642

Now we need to generate some traffic on UDDI registry, that matches the subscription filter, that
we have defined. You can use SaveBusiness demo from HPE SOA Registry Foundation Basic
Publishing demos to save business entity namedMarketing.

Running SaveBusiness demo...
**
*** HPE SOA Registry Demo - SaveBusinessDemo ***
**

Saving business entity where
Enter (optional) businessKey []:
Enter count of names [1]:
Enter language code []:
Enter name in language [Marketing]:
Enter description [Saved by SaveBusiness demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey =
lang = null, name = Marketing
description = Saved by SaveBusiness demo
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save in progress ... done

Business 1 : uddi:8097cc00-a578-11d8-91cd-5c1d367091cd
<businessEntity businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd"xmlns="urn:uddi-org:api_v3">

<name> Marketing</name>
<description> Saved by SaveBusiness demo</description>

</businessEntity>

Then wewant to get the results of the subscription. It is necessary to specify correct subscription
key and sufficient coverage period.

Running GetSubscriptionResults demo...
**
***HPE SOA Registry Demo - GetSubscriptionResultsDemo ***
**

Finding subscription results where
Enter user name [demo_john]:
Enter password [demo_john]:
Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Enter start of coverage period in minutes [60]:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 588 of 642

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Get in progress ... done
Subscription uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Coverage period=Fri May 14 08:30:28 CEST 2004 - Fri May 14 09:30:28 CEST 2004

Subscription results:
<subscriptionResultsList xmlns="urn:uddi-org:sub_v3">

<chunkToken>0</chunkToken>
<coveragePeriod>

< startPoint>2004-05-14T08:30:28.565+02:00</startPoint>
< endPoint>2004-05-14T09:30:28.824+02:00</endPoint>

</coveragePeriod>
< subscription brief="false">

< subscriptionKey> uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd</subscriptionKey>
< subscriptionFilter>

< find_business xmlns="urn:uddi-org:api_v3">
< name> Marketing</name>

</find_business>
</subscriptionFilter>
< maxEntities>5</maxEntities>
< expiresAfter>2004-05-14T11:28:30.721+02:00</expiresAfter>

</subscription>
< businessList>

< businessInfos>
< businessInfo businessKey="uddi:8097cc00-a578-11d8-91cd-5c1d367091cd">

< name> Marketing</name>
< description> Saved by SaveBusiness demo</description>

</businessInfo>
</businessInfos>

</businessList>
</subscriptionResultsList>

**

If we do not need the subscription anymore, we can delete it with DeleteSubscription demo.

**
***HPE SOA Registry Demo - DeleteSubscriptionDemo ***
**

Deleting subscription where

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 589 of 642

Enter subscription key []: uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
subscriptionKey = uddi:4f0d7450-a578-11d8-91cd-5c1d367091cd
Using Subscription at url https://mycomp.com:8443/uddi/subscription .. done
Delete in progress ... done
Logging out .. done

Validation
The HPE SOA Registry Foundation Validation demo shows how to implement, deploy, and use a
custom valueset validation service.

The valueset validation API provides methods to validate values used in keyedReferences of checked
taxonomies. The checks might range from very simple (check value against list of available values like
in InternalValidation service) to complex, which performs contextual checks.

There are two classes and one xml file to import taxonomy, that are used by the Validation demo.

ISBNValidation Valueset validation interface implementation. It checks keyValues from
keyedReferences in all structures. The keyValuemust be in ISBN format, otherwise E_invalidValue
UDDI exception is thrown to deny the save operation.

isbn.xml Taxonomy description used to import checked categorization demo:ISBN into the HPE SOA
Registry Foundation.

ValidationDemo Demonstrates how to save a tModel with the keyedReference, that uses demo:ISBN
categorization checked by ISBNValidation.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 590 of 642

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located
in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the Validation demo is loaded from the file:

Windows: %REGISTRY_HOME%\demos\advanced\validation\env.properties

UNIX: $REGISTRY_HOME/demos/advanced/validation/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.url.publishing http://localhost:8080/uddi/publishing the publishing
Web service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes programming pattern used in ISBNValidation class. You can find its source
code in the file

Windows: %REGISTRY_
HOME%\demos\advanced\validation\src\demo\uddi\validation\ISBNValidation.java

UNIX: $REGISTRY_
HOME/demos/advanced/validation/src/demo/uddi/validation/ISBNValidation.java

The HPE SOA Registry Foundation simplifies the development of Valueset validation services. It
intelligently performs some checks automatically based on the properties of the taxonomy (content of
categoryBag), so you as developer may concentrate on logic of your validation service. For example it

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 591 of 642

ensures, that categorization tModelKey is not used in identifierBag or that it is used only in UDDI
structures, for which its compatibility was declared.

Let's start with description of validate_valuesmethod. It serves as starting point to the validation
service. The Validate_values object contains at least one tModel, businessEntity, businessService,
bindingTemplate or publisherAsertion, which contains reference to the taxonomy validated by this web
service. If the validation service is shared between several taxonomies, UDDI structures, which use
them, are grouped in single validate_values call.

When themethod validate_values finds the structure type to be validated, it calls validate_
values on the list of UDDI structures, which iterates over each element in the list and call validate
method on single structure. If there is at least one error in dispositionReport, UDDI exception is thrown
to deny the save operation.

public DispositionReport validate_values(Validate_values body) throws UDDIException{
DispositionReport report = new DispositionReport();

if (body.getBusinessEntityArrayList() != null)
validate_values(body.getBusinessEntityArrayList(), report);

else if (body.getBusinessServiceArrayList() != null)
validate_values(body.getBusinessServiceArrayList(), report);

else if (body.getTModelArrayList() != null)
validate_values(body.getTModelArrayList(), report);

else if (body.getPublisherAssertionArrayList() != null)
validate_values(body.getPublisherAssertionArrayList(), report);

else if (body.getBindingTemplateArrayList() != null)
validate_values(body.getBindingTemplateArrayList(), report);

ResultArrayList results = report.getResultArrayList();
if (results == null || results.size() == 0)

return DispositionReport.DISPOSITION_REPORT_SUCCESS;
throw new UDDIException(report);

}

This method than validates all keyedReferences and if the structure contains children (for example
businessServices in businessEntity), it recursively validates the too. For demo:ISBN categorization
the check of identifierBag is useless, because the HPE SOA Registry Foundation would already detect
it as error and stop the execution of save operation.

private void validate(TModel tModel, DispositionReport report) throws UDDIException{

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 592 of 642

CategoryBag categoryBag = tModel.getCategoryBag();
IdentifierBag identifierBag = tModel.getIdentifierBag();
KeyedReferenceArrayList keyedReferences;

if (categoryBag != null) {
keyedReferences = categoryBag.getKeyedReferenceArrayList();
if (keyedReferences != null) {

validate(keyedReferences, report);
}

validateKeyedReferenceGroups(categoryBag.getKeyedReferenceGroupArrayList(), report);
}

if (identifierBag != null) {
keyedReferences = identifierBag.getKeyedReferenceArrayList();
if (keyedReferences != null) {

validate(keyedReferences, report);
}

}
}

Themethod validate iterates over all keyedReferences and if they reference demo:ISBN taxonomy,
than it checks the keyValue, if it is in valid ISBN format. If not, it adds error report to dispositionReport.

private void validate(KeyedReferenceArrayList keyedReferenceArrayList,DispositionReport report)
throws UDDIException {
for (Iterator iter = keyedReferenceArrayList.iterator(); iter.hasNext();) {

KeyedReference keyedReference = (KeyedReference) iter.next();
if (TMODEL_KEY.equalsIgnoreCase(keyedReference.getTModelKey())) {

if (!checkISBN(keyedReference.getKeyValue())) {
String message = "KeyValue is not valid ISBN number in " +keyedReference.toXML();
report.addResult(createResult(UDDIErrorCodes.E_INVALID_VALUE,message));

}
}

}
}

The implementation of ISBNValidation web service is not optimal. It scans all UDDI structures and
containers of keyedReferences, even if the HPE SOA Registry Foundation was configured to deny
such usage. The optimal code would check only categoryBag in tModels.

Building and Running Demos

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 593 of 642

This section shows, how to build, deploy and run the HPE SOA Registry Foundation Advanced
Validation demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\advanced\validation

UNIX: $REGISTRY_HOME/demos/advanced/validation

3. Build all classes using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. Copy the file ISBNValidation.class to REGISTRY_HOME/app/uddi/services/Wasp-inf/classes

Windows: cd%REGISTRY_HOME%\demos\advanced\validation\build

xcopy classes %REGISTRY_HOME%\app\uddi\services\Wasp-inf\classes /S

UNIX: cd $REGISTRY_HOME/demos/advanced/validation/build

cp -r classes $REGISTRY_HOME/app/uddi/services/Wasp-inf

5. Now use Advanced Taxonomy demoUploadTaxonomy to upload the file isbn.xml located in data
subdirectory of Validation demo directory. For more information, how to do it, read Taxonomy
demo documentation.

6. When the demo:ISBN taxonomy has been uploaded and ISBNValidation.class copied, you
must shutdown the HPE SOA Registry Foundation, delete the REGISTRY_HOME/work
directory, and restart the HPE SOA Registry Foundation.

7. The ValidationDemo can be executed via command run with

Windows: run.bat ValidationDemo

UNIX: ./run.sh ValidationDemo

The output of this demowill resemble the following:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 594 of 642

8. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Taxonomy
The HPE SOA Registry Foundation Taxonomy demos demonstrates the HPE SOA Registry
Foundation's Taxonomy capabilities and show how to use this API.

The Taxonomy is used tomanage and query taxonomies in the HPE SOA Registry Foundation. These
demos cover all API methods, so you can learn how to download, upload, save, delete, get and find
taxonomies. In addition, you canmanage individual values in internally checked taxonomies using the
Category API.

The HPE SOA Registry Foundation contains the following demos to assist you in learning the HPE
SOA Registry Foundation Taxonomy and Category APIs.

SaveTaxonomyDemonstrates how to save unchecked taxonomy, which can be used in
businessEntities and tModels.

DeleteTaxonomyDemonstrates how to deletes selected taxonomy. If the taxonomy was checked,
associated binding template is automatically removed too.

UploadTaxonomyDemonstrates how to upload the file containg taxonomy. This API call is usefull,
when you need to process really large taxonomies, because it operates on stream of data.

DownloadTaxonomyDemonstrates how to download selected taxonomy. Again this method is
stream oriented.

GetTaxonomyDemonstrates how to get details of selected taxonomy.

FindTaxonomyDemonstrates how to search for taxonomies based on given criteria.

AddCategoryDemonstrates how to add new category (keyedReference value) to existing internal
taxonomy.

DeleteCategoryDemonstrates how to delete the category in existing internal taxonomy.

SetCategoryDemonstrates how to update the category in existing internal taxonomy.

MoveCategoryDemonstrates how to change the parent of the category in existing internal taxonomy.

GetCategoryDemonstrates how to get the category of the internal taxonomy.

GetRootCategoryDemonstrates how to get list of the top-level categories of the internal taxonomy.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 595 of 642

GetRootPathDemonstrates how to get list of parents of selected category, from the top-level category
to the selected one.

FindCategoryDemonstrates how to get list of categories, that match some criteria.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located
in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the Taxonomy demo is loaded from the file:

Windows: %REGISTRY_HOME%\demos\advanced\taxonomy\env.properties

UNIX: $REGISTRY_HOME/demos/advanced/taxonomy/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.url.taxonomy http://localhost:8080/uddi/taxonomy the taxonomy Web
service port URL

uddi.demos.url.category http://localhost:8080/uddi/category the category Web

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 596 of 642

service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the SaveTaxonomy demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_
HOME%\demos\advanced\taxonomy\src\demo\uddi\taxonomy\SaveTaxonomy.java

UNIX: $REGISTRY_
HOME/demos/advanced/taxonomy/src/demo/uddi/taxonomy/SaveTaxonomy.java

Themainmethod of this demo is straightforward. It gathers user's input, logs the user in the HPE SOA
Registry Foundation, creates an object of Save_taxonomy, sends it to UDDI registry over SOAP and
displays the result.

String user = UserInput.readString("Enter user name", "admin");
String password = UserInput.readString("Enter password", "changeit");
String name = UserInput.readString("Enter name", "Demo identifier");
String description = UserInput.readString("Enter description", "Saved bySaveTaxonomy demo");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Save_taxonomy save = createSaveTaxonomy(name, description, authInfo);
TaxonomyDetail result = saveTaxonomy(save);
printTaxonomyDetail(result);
discardAuthInfo(authInfo, security);

When saving taxonomy, youmust first create a tModel, that will represent it. You can set your
publisher assigned tModelKey and other properties. The only mandatory property is name. You don't
need to specify taxonomy related keyedReferences in categoryBag, they shall be set in Taxonomy.

The Categorization is used to define usage of the taxonomy. Valid values are identifier, categorization,
categorizationGroup and relationship. The compatibility marks tModel with information, in which UDDI
structures it can be used.

This example creates an unchecked identifier, that can be used only in categoryBags of business
entities and tModels.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 597 of 642

public static Save_taxonomy createSaveTaxonomy(String name, String description,String authInfo)
throws InvalidParameterException {

System.out.println("name = " + name);
System.out.println("description = " + description);

TModel tModel = new TModel();
tModel.setName(new Name(name));
tModel.addDescription(new Description(description));

Taxonomy taxonomy = new Taxonomy(tModel);
taxonomy.setCheck(Boolean.FALSE);
taxonomy.addCategorization(Categorization.identifier);
taxonomy.addCompatibility(Compatibility.businessEntity);
taxonomy.addCompatibility(Compatibility.tModel);

Save_taxonomy save = new Save_taxonomy();
save.addTaxonomy(taxonomy);
save.setAuthInfo(authInfo);
return save;

}

The helper method getTaxonomyStub() returns the Taxonomy stub of theWeb service listening at the
URL specified by the URL_TAXONOMY property.

public static TaxonomyApi getTaxonomyStub() throws SOAPException {
String url = DemoProperties.getProperty(URL_TAXONOMY,"http://localhost:8080/uddi/taxonomy");
System.out.print("Using Taxonomy at url " + url + " ..");
TaxonomyApi taxonomy = TaxonomyStub.getInstance(url);
System.out.println(" done");
return taxonomy;

}

The Taxonomy API call save_taxonomy is performed in themethod saveTaxonomy().

public static TaxonomyDetail saveTaxonomy(Save_taxonomy save)
throws UDDIException, SOAPException {
TaxonomyApi taxonomy = getTaxonomyStub();
System.out.print("Save in progress ...");
TaxonomyDetail taxonomyDetail = taxonomy.save_taxonomy(save);
System.out.println(" done");
return taxonomyDetail;

}

The returned TaxonomyDetail object is displayed in printTaxonomyDetail method.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 598 of 642

public static void printTaxonomyDetail(TaxonomyDetail taxonomyDetail) {
System.out.println();

TaxonomyArrayList taxonomyArrayList = taxonomyDetail.getTaxonomyArrayList();
int position = 1;
for (Iterator iterator = taxonomyArrayList.iterator(); iterator.hasNext();) {

Taxonomy taxonomy = (Taxonomy) iterator.next();
System.out.println("Taxonomy " + position + " : " + taxonomy.getTModel().getTModelKey());
System.out.println(taxonomy.toXML());
System.out.println();
System.out.println("**");
position++;

}
}

Building and Running Demos

This section shows, how to build and run the HPE SOA Registry Foundation Advanced Taxonomy
demo set. Let's continue with our SaveTaxonomy demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\advanced\taxonomy

UNIX: $REGISTRY_HOME/demos/advanced/taxonomy

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 599 of 642

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via command run with name of demo as parameter. For
example to run the SaveTaxonomy demo, invoke

Windows: run.bat SaveTaxonomy

UNIX: ./run.sh SaveTaxonomy

The output of this demowill resemble the following:

Running SaveTaxonomy demo...
**
*** HPE SOA Registry Demo - SaveTaxonomyDemo ***
**

Saving taxonomy where
Enter user name [admin]:
Enter password [changeit]:
Enter name [Demo identifier]:
Enter description [Saved by SaveTaxonomy demo]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
name = Demo identifier
description = Saved by SaveTaxonomy demo
Using Taxonomy at url https://mycomp.com:8443/uddi/taxonomy .. done
Save in progress ... done

Taxonomy 1 : uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd
<taxonomy check="false" xmlns="http://systinet.com/uddi/taxonomy/v3/5.0">

<tModel tModelKey="uddi:5c1d5d80-a4d4-11d8-91cd-5c1d367091cd"
xmlns="urn:uddi-org:api_v3">
<name>Demo identifier</name>
<description>Saved by SaveTaxonomy demo</description>
<categoryBag>

<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="Identifier system" keyValue="identifier"/>

<keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
keyName="Compatibility" keyValue="businessEntity"/>

<keyedReference tModelKey="uddi:systinet.com:taxonomy:compatibility"
keyName="Compatibility" keyValue="tModel"/>

<keyedReference tModelKey="uddi:uddi.org:categorization:types"

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 600 of 642

keyName="Unchecked value set" keyValue="unchecked"/>
</categoryBag>

</tModel>
<compatibilityBag>

<compatibility>businessEntity</compatibility>
<compatibility>tModel</compatibility>

</compatibilityBag>
<categorizationBag>

<categorization>identifier</categorization>
</categorizationBag>

</taxonomy>

**
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Security Demos
Security Demos section includes the following demos:

l "Account" below- You will learn how to register new accounts (or update existing accounts),
enable, get, find, and delete accounts.

l "Group" on page 606 - You will learn how to create or update, get, find and delete groups.

l "Permission" on page 612 - You will learn how to set and search permissions.

l "ACL" on page 616 - The Systinet ACL extension is used to grant or revoke rights to selected
users or groups. You will learn how to create, save, delete, get and find ACLs.

Account
The HPE SOA Registry Foundation Account Demos are used to demonstrate the HPE SOA Registry
Foundation application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to register new accounts (or update existing accounts), enable, get, find, and delete
accounts.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 601 of 642

The HPE SOA Registry Foundation security account demo set contains the following demos to assist
you in learning the HPE SOA Registry Foundation client API:

SaveAccount Demonstrates how to construct and fill the Save_account object, get an Account stub for
the UDDI registry, and perform the save_account call.

DeleteAccount Demonstrates how to construct and fill the Delete_account object, get an Account
stub for the UDDI registry, and perform the delete_account call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,,
at the local level), edit env.properties. This file is located in the same directory as the file run.sh
(run.bat). Local level properties for the Account demo are loaded from the file:

Windows: %REGISTRY_HOME%\demos\security\account\env.properties

UNIX: $REGISTRY_HOME/demos/security/account/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.url.account http://localhost:8080/uddi/account the account Web service
port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web service
port URL

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 602 of 642

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SaveAccount demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_
HOME%\demos\security\account\src\demo\uddi\account\SaveAccount.java

UNIX: $REGISTRY_
HOME/demos/security/account/src/demo/uddi/account/SaveAccount.java

Themainmethod is divided into two parts. The first part serves to configure the demo by the user. It
reads the credentials of the user who will run the demo. If you wish to save new user on a registry that
supports public registration, then the demomay bemodified to skip authentication. It then reads
information about the new user to be saved (or about the user to be updated) including login name,
password, name, and email address.

The second part contains the execution of the demo. It looks up the security stub and authenticates the
user. It then creates a Save_userAccount object and sends it over SOAP to the UDDI registry as a
save_userAccount operation. The returned UserAccount object is printed to the console and the
authInfo is discarded.

String admin = UserInput.readString("Enter admin login","admin");
String admin_password = UserInput.readString("Enter admin password","changeit");
String login = UserInput.readString("Enter new user's login","demo_eric");
String password = UserInput.readString("Enter password","demo_eric");
String name = UserInput.readString("Enter full name","Eric Demo");
String email = UserInput.readString("Enter email","demo_eric@localhost");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(admin, admin_password, security);
Save_userAccount save = createSaveUserAccount(login, password, name, email,authInfo);
UserAccount userAccount = saveUserAccount(save);
printUserAccount(userAccount);
discardAuthInfo(authInfo, security);

Themethod createSaveUserAccount is used to create an object representing the save_userAccount
operation. The authInfo is required under two circumstances: if the HPE SOA Registry Foundation is
configured not to allow public registration or if the account already exists.

public static Save_userAccount createSaveUserAccount(String login, String password,
String name, String email, String authInfo) throws InvalidParameterException {

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 603 of 642

System.out.println("login = " + login);
System.out.println("password = " + password);
System.out.println("name = " + name);
System.out.println("email = " + email);

UserAccount account = new UserAccount();
account.setLoginName(login);
account.setPassword(password);
account.setFullName(name);
account.setEmail(email);
account.setLanguageCode("EN");

Save_userAccount save = new Save_userAccount(account, authInfo);
return save;

}

The helper method, getAccountStub(), returns the UDDI Account stub of the web service listening at
the URL specified by the URL_ACCOUNT property.

public static AccountApi getAccountStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.account
String url = DemoProperties.getProperty(URL_ACCOUNT,"http://localhost:8080/uddi/account");
System.out.print("Using Account at url " + url + " ..");
AccountApi account = AccountStub.getInstance(url);
System.out.println(" done");
return account;

}

The HPE SOA Registry Foundation API call save_userAccount is performed in themethod
saveUserAccount.

public static UserAccount saveUserAccount(Save_userAccount save) throwsSOAPException, AccountException {
AccountApi accountApi = getAccountStub();
System.out.print("Save in progress ...");
UserAccount userAccount = accountApi.save_userAccount(save);
System.out.println(" done");
return userAccount;

}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Account demos.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 604 of 642

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\security\account

UNIX: $REGISTRY_HOME/demos/security/account

3. Build demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available commands, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example, to run the SaveAccount demo, invoke

Windows: run.bat SaveAccount

UNIX: ./run.sh SaveAccount

The output of this demowill resemble the following:

Running SaveAccount demo...
**
*** HPE SOA Registry Demo - SaveAccount ***
**

Saving user account where
Enter admin login [admin]:
Enter admin password [changeit]:
Enter new user's login [demo_eric]:
Enter password [demo_eric]:
Enter full name [Eric Demo]:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 605 of 642

Enter email [demo_eric@localhost]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_eric
password = demo_eric
name = Eric Demo
email = demo_eric@localhost
Using Account at url https://mycomp.com:8443/uddi/account .. done
Save in progress ... done

User account
<userAccount xmlns="http://systinet.com/uddi/account/5.0">
<loginName>demo_eric</loginName>
<password>GD70gCeNfkwBph1m2bgGxQ==</password>
<email>demo_eric@localhost</email>
<fullName>Eric Demo</fullName>
<languageCode>EN</languageCode>
<expiration>1970-01-01T02:00:00.000+02:00</expiration>
<external>false</external>
<blocked>false</blocked>
<businessesLimit>1</businessesLimit>
<servicesLimit>4</servicesLimit>
<bindingsLimit>2</bindingsLimit>
<tModelsLimit>100</tModelsLimit>
<assertionsLimit>10</assertionsLimit>
<subscriptionsLimit>0</subscriptionsLimit>
<lastLoginTime>2004-05-18T16:20:09.084+02:00</lastLoginTime>
</userAccount>

**
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Group
The HPE SOA Registry Foundation Group demos are used to demonstrate the HPE SOA Registry
Foundation application programming interface's capabilities and to demonstrate how to use this API.

You will learn how to create or update, get, find and delete groups.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 606 of 642

The HPE SOA Registry Foundation security group demo set contains the following demos to assist
you in learning the HPE SOA Registry Foundation client API:

Save Demonstrates how to construct and fill the Save_group object, get a Group stub for the UDDI
registry, and perform the save_group call.

Delete Demonstrates how to construct and fill the Delete_group object, get a Group stub for the UDDI
registry, and perform the delete_group call.

Get Demonstrates how to construct and fill the Get_group object, get a Group stub for the UDDI
registry, and perform the get_group call.

Find Demonstrates how to construct and fill the Find_group object, get a Group stub for the UDDI
registry, and perform the find_group call.

WhereIAm Demonstrates how to construct and fill the Where_amI object, get a Group stub for the
UDDI registry, and perform the where_amI call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,,
at the local level), edit env.properties. This file is located in the same directory as the file run.sh
(run.bat). Local level properties for the Group demo are loaded from the file:

Windows: %REGISTRY_HOME%\demos\security\group\env.properties

UNIX: $REGISTRY_HOME/demos/security/group/env.properties

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 607 of 642

Properties Used in Demos

Name Default Value Description

uddi.demos.url.group http://localhost:8080/uddi/group the groupWeb service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web service
port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using theWhereIAm demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_HOME%\demos\security\group\src\demo\uddi\group\WhereIAm.java

UNIX: $REGISTRY_HOME/demos/security/group/src/demo/uddi/group/WhereIAm.java

Themainmethod starts by gathering configuration information from the user. The first, login name, is
used to run the command; the second is argument of the where_amI operation. It then logs the user to
the registry, creates the Where_amI object, sends it over SOAP and prints a list of groups to which the
login belongs.

String user = UserInput.readString("Enter login to authenticate",
DemoProperties.getProperty(USER_JOHN_NAME));

String password = UserInput.readString("Enter password",
DemoProperties.getProperty(USER_JOHN_PASSWORD));

String login = UserInput.readString("Enter login to search", user);
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Where_amI save = createWhereAmI(login, authInfo);
GroupList groups = whereAmI(save);
printGroupList(groups);
discardAuthInfo(authInfo, security);

Themethod createWhereAmI is used to create an object representation of the where_amI operation.

public static Where_amI createWhereAmI(String login, String authInfo)
throws InvalidParameterException {

System.out.println("login = " + login);

Where_amI find = new Where_amI();

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 608 of 642

find.setLoginName(login);
find.setAuthInfo(authInfo);
return find;

}

The helper method, getGroupStub(), returns the UDDI Group stub of theWeb service listening at the
URL specified by the URL_GROUP property.

public static GroupApi getGroupStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.group
String url = DemoProperties.getProperty(URL_GROUP,"http://localhost:8080/uddi/group");
System.out.print("Using Group API at url " + url + " ..");
GroupApi account = GroupStub.getInstance(url);
System.out.println(" done");
return account;

}

The HPE SOA Registry Foundation API call where_amI is performed in themethod whereAmI.

public static GroupList whereAmI(Where_amI find)
throws SOAPException, GroupException {

GroupApi groupApi = getGroupStub();
System.out.print("Search in progress ...");
GroupList groups = groupApi.where_amI(find);
System.out.println(" done");
return groups;

}

Finally themethod printGroupList is used to print the found groups to the console.

public static void printGroupList(GroupList groups) {
System.out.println();
ListDescription listDescription = groups.getListDescription();
if (listDescription != null) {

// list description is mandatory part of result, if the resultant list issubset of available data

int includeCount = listDescription.getIncludeCount();
int actualCount = listDescription.getActualCount();
int listHead = listDescription.getListHead();
System.out.println("Displaying " + includeCount + " of " + actualCount + ",

starting at position " + listHead);
}

GroupInfoArrayList groupInfoArrayList = groups.getGroupInfoArrayList();

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 609 of 642

if (groupInfoArrayList == null) {
System.out.println("Nothing found");
return;

}

int position = 1;
for (Iterator iterator = groupInfoArrayList.iterator(); iterator.hasNext();) {

GroupInfo group = (GroupInfo) iterator.next();
System.out.println("Group " + position);
System.out.println(group.toXML());
System.out.println();
System.out.println("**");
position++;

}
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Group demos.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Windows: %REGISTRY_HOME%\demos\security\group

UNIX: $REGISTRY_HOME/demos/security/group

3. Build demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available commands, run

Windows: run.bat help

UNIX: ./run.sh help

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 610 of 642

5. The selected demo can be executed via the run commandwith the name of the demo as
parameter. For example, to run theWhereIAm demo, invoke

Windows: run.bat WhereIAm

UNIX: ./run.shWhereIAm

The output of this demowill resemble the following:

Running WhereIAm demo...
**
*** HPE SOA Registry Demo - WhereIAm ***
**

Find groups of user where
Enter login to authenticate [demo_john]:
Enter password [demo_john]:
Enter login to search [demo_john]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
login = demo_john
Using Group API at url https://mycomp.com:8443/uddi/group .. done
Search in progress ... done

Group 1
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#everyone</name>
<description>The special group that contains all users.</description>
<privateGroup>false</privateGroup>
<external>false</external>
</groupInfo>

**
Group 2
<groupInfo xmlns="http://systinet.com/uddi/group/5.0">
<name>system#registered</name>
<description>The special group that contains all users who are logged
onto the UDDI registry.</description>
<privateGroup>false</privateGroup>
<external>false</external>
</groupInfo>

**
Logging out .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 611 of 642

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

Permission
The HPE SOA Registry Foundation Permission Demos are used to demonstrate the HPE SOA
Registry Foundation application programming interface's capabilities and to demonstrate how to use
this API.

You will learn how to set and search permissions.

The HPE SOA Registry Foundation security permission demo set contains the following demos to
assist you in learning the HPE SOA Registry Foundation client API:

SetPermission Demonstrates how to construct and fill the Set_permission object, get a Permission
stub for the UDDI registry, and perform the set_permission call.

WhoHasPermission Demonstrates how to construct and fill the Who_hasPermission object, get a
Permission stub for the UDDI registry, and perform the who_hasPermission call.

GetPermission Demonstrates how to construct and fill the Get_permission object, get a Permission
stub for the UDDI registry, and perform the get_permission call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 612 of 642

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,,
at the local level), edit env.properties. This file is located in the same directory as the file run.sh
(run.bat). Local level properties for the Permission demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\security\permission\env.properties

UNIX: $REGISTRY_HOME/demos/security/permission/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.url.permission http://localhost:8080/uddi/permission the permissionWeb
service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the SetPermission demo as an
example. You can find this demo's source code in the file:

Windows: %REGISTRY_
HOME%\demos\security\permission\src\demo\uddi\permission\SetPermission.java

UNIX: $REGISTRY_
HOME/demos/security/permission/src/demo/uddi/permission/SetPermission.java

Themainmethod is divided into two parts. The first part serves to configure the demo by the user. It
reads the credentials of the user who will run the demo and is allowed to set permissions. Then it reads
permission type, name, and action.

The second part contains the execution of the demo. It looks up the security stub and authenticates the
user. It then creates a Set_permission object and sends it over SOAP to the UDDI registry as a set_
permission operation. If the user has explicitly declared permissions that are not present in this
operation, these will be removed.

String user = UserInput.readString("Enter login","admin");
String password = UserInput.readString("Enter password","changeit");
String principal = UserInput.readString("Enter principal type",PrincipalType.user.getValue());
String login = UserInput.readString("Enter login/group name",

DemoProperties.getProperty(USER_JOHN_NAME));
String type = UserInput.readString("Enter permission type",

"org.systinet.uddi.security.permission.ApiManagerPermission");
String name = UserInput.readString("Enter permission name",

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 613 of 642

"org.systinet.uddi.client.taxonomy.v3.TaxonomyApi");
String action = UserInput.readString("Enter action", "download_taxonomy");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Set_permission set = createSetPermission(login, principal, name, type, action,authInfo);
setPermission(set);
discardAuthInfo(authInfo, security);

Themethod createSetPermission creates an object representing the set_permission operation.

public static Set_permission createSetPermission(String login, String principal,
String name, String type, String action, String authInfo) throwsInvalidParameterException {

System.out.println(principal+", login/name = " + login);
System.out.println("type = " + type);
System.out.println("name = " + name);
System.out.println("action = " + action);

PermissionDescriptors permissionDescriptors = new PermissionDescriptors();
permissionDescriptors.setPrincipal(new Principal(login,PrincipalType.getPrincipalType(principal)));
PermissionDescriptor descriptor = new PermissionDescriptor();
descriptor.setName(name);
descriptor.setType(type);
descriptor.addAction(action);
permissionDescriptors.addPermissionDescriptor(descriptor);

Set_permission set = new Set_permission();
set.setPermissionDescriptors(permissionDescriptors);
set.setAuthInfo(authInfo);
return set;

}

The helper method, getPermissionStub(), returns the UDDI Permission stub of theWeb service
listening at the URL specified by the URL_PERMISSION property.

public static PermissionApi getPermissionStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.permission
String url = DemoProperties.getProperty(URL_PERMISSION,"http://localhost:8080/uddi/permission");
System.out.print("Using Permission API at url " + url + " ..");
PermissionApi permission = PermissionStub.getInstance(url);
System.out.println(" done");
return permission;

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 614 of 642

}

The HPE SOA Registry Foundation API call set_permission is performed in themethod
setPermission.

public static void setPermission(Set_permission set) throws
SOAPException, PermissionException {

PermissionApi permissionApi = getPermissionStub();
System.out.print("Save in progress ...");
permissionApi.set_permission(set);
System.out.println(" done");

}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation Permission demos.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\security\permission

UNIX: $REGISTRY_HOME/demos/security/permission

3. Build demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available commands, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example, to run the SetPermission demo, invoke

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 615 of 642

Windows: run.bat SetPermission

UNIX: ./run.sh SetPermission

The output of this demowill resemble the following:

Running SetPermission demo...
**
*** HPE SOA Registry Demo: SetPermission ***
**

Setting permission where
Enter login [admin]:
Enter password [changeit]:
Enter principal type [user]:
Enter login/group name [demo_john]:
Enter permission type[org.systinet.uddi.security.permission.ApiManagerPermission]:
Enter permission name [org.systinet.uddi.client.taxonomy.v3.TaxonomyApi]:
Enter action [download_taxonomy]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
user, login/name = demo_john
type = org.systinet.uddi.security.permission.ApiManagerPermission
name = org.systinet.uddi.client.taxonomy.v3.TaxonomyApi
action = download_taxonomy

Using Permission API at url https://mycomp.com:8443/uddi/permission .. done
Save in progress ... done
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

ACL
The HPE SOA Registry Foundation ACLDemos demonstrate the HPE SOA Registry Foundation ACL
application programming interface's capabilities and how to use this API.

The SOA Registry Foundation ACL extension is used to grant or revoke rights to selected users or
groups. You will learn how to create, save, delete, get and find ACLs.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 616 of 642

The HPE SOA Registry Foundation Security ACL demo set contains the following demos to assist you
in learning the HPE SOA Registry Foundation client API:

CreateDemonstrates how to use Create ACL to give one user rights to create a service in the business
entity of another user.

SaveDemonstrates how to use Save ACL to give one user rights to update the business entity of
another user.

DeleteDemonstrates how to use Delete ACL to give one user rights to delete a business entity of
another user.

GetDemonstrates how to useGet ACL to revoke from a selected user the right to get the business
detail of a business entity.

FindDemonstrates how to use Find ACL to hide the business entity in a find_business operation from
a selected user.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine a property's value for a single demo (that is,,
at the local level), edit env.properties. This file is located in the same directory as the file run.sh (
run.bat). Local level properties for the ACL demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\security\acl\env.properties

UNIX: $REGISTRY_HOME/demos/security/acl/env.properties

Properties Used in Demos

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 617 of 642

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.user.jane.name demo_jane second user's
name

uddi.demos.user.jane.password demo_jane second user's
password

uddi.demos.url.publishing http://localhost:8080/uddi/publishing The publication
Web service port
URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the Find demo as an example.
You can find this demo's source code in the file:

Windows: %REGISTRY_HOME%\demos\security\acl\src\demo\uddi\acl\Find.java

UNIX: $REGISTRY_HOME/demos/security/acl/src/demo/uddi/acl/Find.java

Themainmethod is divided into several logical parts. The first part is used to configure the demo for the
user. The "good" user represents the user who will receive a positive ACL; the "bad" user represents
the user who will receive a negative ACL.

The second part contains the save_business operation with extra information. The ACLs are set in the
categoryBag. In the next section, the bad user unsuccessfully tries to find the business entity by name,
and finally the good user finds the business entity.

String name = UserInput.readString("Enter business name", "ACL find demo");
String description = UserInput.readString("Enter description",

"Demonstration of find-allowed, find-deniedACLs");
String searchName = UserInput.readString("Enter search string", "ACL%");
String owner = UserInput.readString("Enter entity owner", "admin");
String password = UserInput.readString("Enter owner's password", "changeit");
String loginGood = UserInput.readString("Enter good user's login",

DemoProperties.getProperty(USER_JOHN_NAME));
String passwordGood = UserInput.readString("Enter good user's password",

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 618 of 642

DemoProperties.getProperty(USER_JOHN_PASSWORD));
String loginBad = UserInput.readString("Enter bad user's login",

DemoProperties.getProperty(USER_JANE_NAME));
String passwordBad = UserInput.readString("Enter bad user's password",

DemoProperties.getProperty(USER_JANE_PASSWORD));
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfoOwner = getAuthInfo(owner, password, security);
Save_business saveBusiness = createSaveBusiness(name, description, loginGood,loginBad, authInfoOwner);
BusinessDetail result = saveBusiness(saveBusiness);
printBusinessDetail(result);
discardAuthInfo(authInfoOwner, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoGood = getAuthInfo(loginGood, passwordGood, security);
Find_business findBusiness = createFindByName(searchName, authInfoGood);
BusinessList businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

System.out.println(" ");
System.out.println("Finding business entity where");
String authInfoBad = getAuthInfo(loginBad, passwordBad, security);
findBusiness = createFindByName(searchName, authInfoBad);
businessList = findBusiness(findBusiness);
printBusinessList(businessList);
discardAuthInfo(authInfoGood, security);

The createSaveBusiness operation is used to create the Save_business object. The ACLs are stored
in the keyedReferenceGroup with the uddi:systinet.com:acl tModelKey as keyedReference, where
the tModelKey specifies the tModelKey of the ACL, keyValue holds the login name of the user or group,
and finally keyName is used to distinguish between users and groups in the keyValue.

public static Save_business createSaveBusiness(String name,
String description, StringgoodUser,

String badUser, String authInfo) throws InvalidParameterException {
System.out.println("name = " + name);
System.out.println("description = " + description);
System.out.println("goodUser = " + goodUser);
System.out.println("badUser = " + badUser);

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 619 of 642

BusinessEntity businessEntity = new BusinessEntity();
businessEntity.addName(new Name(name));
businessEntity.addDescription(new Description(description));

CategoryBag categoryBag = new CategoryBag();
businessEntity.setCategoryBag(categoryBag);
KeyedReferenceGroup aclGroup = new KeyedReferenceGroup("uddi:systinet.com:acl");
aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-allowed",

goodUser,"user"));
aclGroup.addKeyedReference(new KeyedReference("uddi:systinet.com:acl:find-denied",

badUser,"user"));
categoryBag.addKeyedReferenceGroup(aclGroup);

Save_business save = new Save_business();
save.addBusinessEntity(businessEntity);
save.setAuthInfo(authInfo);
return save;

}

The find_business operation takes the authInfo parameter used to identify the user who runs the
query.

public static Find_business createFindByName(String name, String authInfo)
throws InvalidParameterException {

System.out.println("name = " + name);
Find_business find_business = new Find_business();
find_business.addName(new Name(name));
find_business.setMaxRows(new Integer(MAX_ROWS));
find_business.setAuthInfo(authInfo);
find_business.addFindQualifier("approximateMatch");
return find_business;
}

Building and Running Demos

This section shows how to build and run the HPE SOA Registry Foundation ACL demos.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 620 of 642

Windows: %REGISTRY_HOME%\demos\security\acl

UNIX: $REGISTRY_HOME/demos/security/acl

3. Build demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available commands, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run commandwith the name of the demo as
parameter. For example, to run the Find demo, invoke

Windows: run.bat Find

UNIX: ./run.sh Find

The output of this demowill resemble the following:

Running Find demo...
**
*** HPE SOA Registry Demo - ACLFind ***
**

Saving business entity where
Enter business name [ACL find demo]:
Enter description [Demonstration of find-allowed, find-denied ACLs]:
Enter search string [ACL%]:
Enter entity owner [admin]:
Enter owner's password [changeit]:
Enter good user's login [demo_john]:
Enter good user's password [demo_john]:
Enter bad user's login [demo_jane]:
Enter bad user's password [demo_jane]:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 621 of 642

Using Security at url https://mycomp.com:8443/uddi/security .. done
Authenticating the user admin .. done
name = ACL find demo
description = Demonstration of find-allowed, find-denied ACLs
goodUser = demo_john
badUser = demo_jane
Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done
Save business in progress ... done

Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessEntity businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
<categoryBag>
<keyedReferenceGroup tModelKey="uddi:systinet.com:acl">
<keyedReference tModelKey="uddi:systinet.com:acl:find-allowed"
keyName="user" keyValue="demo_john"/>
<keyedReference tModelKey="uddi:systinet.com:acl:find-denied"
keyName="user" keyValue="demo_jane"/>
</keyedReferenceGroup>
</categoryBag>
</businessEntity>

Logging out .. done

Finding business entity where
Authenticating the user demo_john .. done
name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 1 of 1, starting at position 1
Business 1 : uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad
<businessInfo businessKey="uddi:91ba8390-a8e0-11d8-b2ad-779f83c0b2ad"
xmlns="urn:uddi-org:api_v3">
<name>ACL find demo</name>
<description>Demonstration of find-allowed, find-denied ACLs</description>
</businessInfo>

Logging out .. done

Finding business entity where
Authenticating the user demo_jane .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 622 of 642

name = ACL%
Using Inquiry at url http://mycomp.com:8080/uddi/inquiry .. done
Search in progress .. done

Displaying 0 of 0, starting at position 1
Nothing found
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory
and run.bat make (./run.sh make) to rebuild the demo classes.

Resources Demos
The Resources Demos section includes the following demos:

l "WSDL2UDDI v2" below- Teaches how to publish, unpublish and find aWSDL document in UDDI
version 2.

l "WSDL2UDDI v3" on page 630- Teaches how to publish, unpublish and find aWSDL document in
UDDI version 3.

l "XSD2UDDI" on page 636- Teaches how to publish, unpublish and find an XMLSchema.

WSDL2UDDI v2
The HPE SOA Registry FoundationWSDL2UDDI demo set is used to demonstrate the HPE SOA
Registry FoundationWSDL2UDDI application programming interface's capabilities and to demonstrate
how to use this API. The HPE SOA Registry FoundationWSDL2UDDI demos cover the UDDI Version
2.0.4 Specification. You will learn how to query and publish aWSDL to a UDDI registry over a SOAP
interface. The HPE SOA Registry FoundationWSDL2UDDI demo set contains following demos to
assist you in learning theWSDL2UDDI client API.

PublishWSDL Demonstrates how to construct and fill the Publish_wsdl object, get theWSDL2UDDI
stub for the UDDI registry, get an authToken, and perform the publish_wsdl call.

UnPublishWSDL Demonstrates how to construct and fill the Unpublish_wsdl object, get
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 623 of 642

FindWSDLDemonstrates how to construct and fill the Find_wsdlServiceInfo object, get the
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo
call.

GetWSDL Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo
call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located
in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of the box, and
their modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the WSDL2UDDI demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\basic\wsdl\v2\env.properties

UNIX: $REGISTRY_HOME/demos/basic/wsdl/v2/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 624 of 642

uddi.demos.url.wsdl2uddi http://localhost:8080/uddi/wsdl2uddi the wsdl2uddi Web
service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an
example. You can find its source code in the file:

Windows: %REGISTRY_
HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v2\wsdl2uddi\PublishWSDL.java

UNIX: $REGISTRY_
HOME/demos/basic/wsdl2uddi/src/demo/uddi/v2/wsdl2uddi/PublishWSDL.java

Themainmethod is very short. After gathering the user's input, it gets the security stub and authorizes
the user. The resulting authInfo string is a secret key passed to the Publish request, which is created
and initialized in the createPublish()method.

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL()
method.

When successful, theWsdlDetail object is returned from the UDDI registry and printed.

The last step is to discard the authInfo string, so that nomalicious user can use it to compromise
another user's account.

String businessKey = UserInput.readString("Enter businessKey",
"d7222f66-08aa-3a6e-a299-2ed4ac785682");

String url = UserInput.readString("Enter WSDL URL",
"http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");

System.out.println();
UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

The helper method getSecurityStub() returns the UDDI Security stub of theWeb service listening at
the URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 625 of 642

throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.security
String url = DemoProperties.getProperty(URL_SECURITY,

"http://localhost:8080/uddi/security");
System.out.print("Using Security at url " + url + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
System.out.println(" done");
return security;

}

Similarly, the helper method getWsdl2uddiStub() returns theWSDL2UDDI stub of theWeb service
listening at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.wsdl2uddi
String url = DemoProperties.getProperty(URL_WSDL2UDDI,

"http://localhost:8080/uddi/wsdl2uddi");
System.out.print("Using WSDL2UDDI at url " + url + " ..");
Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the
secret authInfo key.

public static String getAuthInfo(String userName,
String password, UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging in ..");
AuthToken authToken = security.get_authToken(new Get_authToken(userName,password));
System.out.println(" done");
return authToken.getAuthInfo();

}

The discardAuthInfo()method invalidates the secret authInfo key, so that it cannot be reused.

public static DispositionReport discardAuthInfo(String authInfo,
UDDI_Security_PortType security)

throws InvalidParameterException, UDDIException {
System.out.print("Logging out ..");
DispositionReport dispositionReport = security.discard_authToken(new Discard_authToken(authInfo));
System.out.println(" done");
return dispositionReport;

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 626 of 642

}

The createPublish()method is used to create a new instance of the Publish class and initialize it
with values from parameters:

public static Publish_wsdl createPublish(String businessKey,
String url, String authInfo)

throws InvalidParameterException {
System.out.println("businessKey = " + businessKey);
System.out.println("url = " + url);
WsdlMapping wsdlMapping = new WsdlMapping();
wsdlMapping.setBusinessKey(businessKey);
Wsdl wsdl = new Wsdl(url);
WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
return publish;

}

TheWSDL2UDDI API call Publish_wsdl is performed in themethod publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
throws UDDIException, SOAPException {

Wsdl2uddiApi publishing = getWsdl2uddiStub();
System.out.print("Save in progress ...");
WsdlDetail wsdlDetail = publishing.publish_wsdl(save);
System.out.println(" done");
return wsdlDetail;

}

The returned WsdlDetail is displayed by the printWsdlDetail()method.

One interesting aspect of HPE SOA Registry Foundation client API is that each UDDIObject contains
the toXML()method, which returns a human-readable formatted listing of its XML representation.

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
System.out.println();
System.out.println(wsdlDetail.toXML());

}

Building and Running Demos

This section shows, how to build and run the HPE SOA Registry Foundation Basic Publishing demo
set. Let's continue with our SaveBusiness demo.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 627 of 642

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\security\acl\src\demo\uddi\acl\Find.java

UNIX: $REGISTRY_HOME/demos/security/acl/src/demo/uddi/acl/Find.java

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of demo as parameter.
For example, to run the PublishWSDL demo, invoke

Windows: run.bat PublishWSDL

UNIX: ./run.sh PublishWSDL

The output of this demowill resemble the following:

Running PublishWSDL demo...
**
*** HPE SOA Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [d7222f66-08aa-3a6e-a299-2ed4ac785682]:
Enter WSDL URL [http://localhost:8080/uddi/inquiry/wsdl]:

http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl

Using Publishing at url https://mycomp.com:8443/uddi/publishing .. done

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 628 of 642

Logging in .. done
businessKey = d7222f66-08aa-3a6e-a299-2ed4ac785682
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl
Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v2/5.0">
<wsdl>

<wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
</wsdl>
<wsdlMapping>

<businessKey xmlns="urn:uddi-org:api_v2">d7222f66-08aa-3a6e-a299-2ed4ac785682<
/businessKey>

<services>
<service name="EmployeeList" namespace="

http://systinet.com/wsdl/demo/uddi/services/"
publishingMethod="rewrite">
<serviceKey xmlns="urn:uddi-org:api_v2">

d0a50390-af1c-11d8-b9bf-eb2d7e20b9bf</serviceKey
<ports>

<port name="EmployeeList" publishingMethod="rewrite">
<bindingKey xmlns="urn:uddi-org:api_v2">

d0aca4b0-af1c-11d8-b9bf-eb2d7e20b9bf</bindingKey>
</port>

</ports>
</service>

</services>
<bindings>

<binding name="EmployeeList_binding"
namespace="http://systinet.com/wsdl/demo/uddi/services/"

publishingMethod="rewrite">
<tModelKey xmlns="urn:uddi-org:api_v2">

uuid:d07da570-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
</binding>

</bindings>
<portTypes>

<portType name="EmployeeList_portType"
namespace="http://systinet.com/wsdl/demo/uddi/services/"

publishingMethod="rewrite">
<tModelKey xmlns="urn:uddi-org:api_v2">

uuid:d0658990-af1c-11d8-b9bf-eb2d7e20b9bf</tModelKey>
</portType>

</portTypes>
</wsdlMapping>

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 629 of 642

</wsdlDetail>
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

WSDL2UDDI v3
The HPE SOA Registry FoundationWSDL2UDDI demo set is used to demonstrate the HPE SOA
Registry FoundationWSDL2UDDI application programming interface's capabilities and to show how to
use this API. The HPE SOA Registry FoundationWSDL2UDDI demos cover the UDDI Version 3.01
Specification. You will learn how to query and publish aWSDL to a UDDI registry over a SOAP
interface.

The HPE SOA Registry FoundationWSDL2UDDI demo set contains following demos to assist you in
learning theWSDL2UDDI client API.

PublishWSDL Demonstrates how to construct and fill the Publish_wsdl object, get the
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the publish_wsdl call.

UnPublishWSDL Demonstrates how to construct and fill the Unpublish_wsdl object, get
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the unpublish_wsdl call.

FindWSDL Demonstrates how to construct and fill the Find_wsdlServiceInfo object, get the
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the find_wsdlServiceInfo
call.

GetWSDL Demonstrates how to construct and fill the Get_wsdlServiceInfo object, get the
WSDL2UDDI stub for the UDDI registry, get an authToken, and perform the get_wsdlServiceInfo
call.

Prerequisites and Preparatory Steps: Code

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your HPE SOA Registry Foundationmust be
running. To start the registry, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart.bat

UNIX: $REGISTRY_HOME/bin/serverstart.sh

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 630 of 642

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at local level. The global properties are located
in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during installation of the HPE SOA Registry Foundation work out of the box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the WSDL2UDDI demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\basic\wsdl\v3\env.properties

UNIX: $REGISTRY_HOME/demos/basic/wsdl/v3/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.url.wsdl2uddi http://localhost:8080/uddi/wsdl2uddi the wsdl2uddi Web
service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes programming pattern used in all demos using the PublishWSDL demo as an
example. You can find its source code in file

Windows: %REGISTRY_
HOME%\demos\basic\wsdl2uddi\src\demo\uddi\v3\wsdl2uddi\PublishWSDL.java

UNIX: $REGISTRY_
HOME/demos/basic/wsdl2uddi/src/demo/uddi/v3/wsdl2uddi/PublishWSDL.java

Themainmethod is very short. After gathering the user's input, it gets the security stub and authorizes
the user. The resulting authInfo string is a secret key passed to the Publish request, which is created
and initialized in the createPublish() method.

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 631 of 642

The user's choice of WSDL is published to the selected businessEntity within the publishWSDL()
method.

When successful, theWsdlDetail object is returned from the UDDI registry and printed.

The last step is to discard the authInfo string, so that nomalicious user can use it to compromise
another user's account.

String businessKey = UserInput.readString("Enter businessKey","uddi:systinet.com:demo:hq");
String url = UserInput.readString("Enter WSDL URL","http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl");
System.out.println();

UDDI_Security_PortType security = getSecurityStub();
String authInfo = getAuthInfo(user, password, security);
Publish_wsdl publish = createPublish(businessKey, url, authInfo);
WsdlDetail result = publishWSDL(publish);
printWsdlDetail(result);
discardAuthInfo(authInfo, security);

The helper method getSecurityStub() returns the UDDI Security stub of theWeb service listening at
the URL specified by the URL_SECURITY property.

public static UDDI_Security_PortType getSecurityStub()
throws SOAPException {

// you can specify your own URL in property - uddi.demos.url.security
String url = DemoProperties.getProperty(URL_SECURITY,"http://localhost:8080/uddi/security");
System.out.print("Using Security at url " + url + " ..");
UDDI_Security_PortType security = UDDISecurityStub.getInstance(url);
System.out.println(" done");
return security;

}

Similarly, the helper method getWsdl2uddiStub() returns theWSDL2UDDI stub of theWeb service
listening at URL specified by the URL_WSDL2UDDI property.

public static Wsdl2uddiApi getWsdl2uddiStub() throws SOAPException {
// you can specify your own URL in property - uddi.demos.url.wsdl2uddi
String url = DemoProperties.getProperty(URL_WSDL2UDDI,"http://localhost:8080/uddi/wsdl2uddi");
System.out.print("Using WSDL2UDDI at url " + url + " ..");
Wsdl2uddiApi inquiry = Wsdl2uddiStub.getInstance(url);
System.out.println(" done");
return inquiry;

}

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 632 of 642

The getAuthInfo() method is used to authorize the user against the UDDI registry and to get the
secret authInfo key.

public static String getAuthInfo(String userName, String password, UDDI_Security_PortType security)
throws InvalidParameterException, UDDIException {

System.out.print("Logging in ..");
AuthToken authToken = security.get_authToken(new Get_authToken(userName,password));
System.out.println(" done");
return authToken.getAuthInfo();

}

The discardAuthInfo()method invalidates the secret authInfo key, so that it cannot be reused.

public static void discardAuthInfo(String authInfo, UDDI_Security_PortTypesecurity)
throws InvalidParameterException, UDDIException {

System.out.print("Logging out ..");
security.discard_authToken(new Discard_authToken(authInfo));
System.out.println(" done");

}

The createPublish()method is used to create a new instance of the Publish class and initialize it
with values from parameters:

public static Publish_wsdl createPublish(String businessKey, String url, StringauthInfo)
throws InvalidParameterException {

System.out.println("businessKey = " + businessKey);
System.out.println("url = " + url);

WsdlMapping wsdlMapping = new WsdlMapping();
wsdlMapping.setBusinessKey(businessKey);
Wsdl wsdl = new Wsdl(url);
WsdlDetail wsdlDetail = new WsdlDetail(wsdl, wsdlMapping);
Publish_wsdl publish = new Publish_wsdl(wsdlDetail, authInfo);
return publish;

}

TheWSDL2UDDI API call Publish_wsdl is performed in themethod publishWSDL().

public static WsdlDetail publishWSDL(Publish_wsdl save)
throws UDDIException, SOAPException {

Wsdl2uddiApi publishing = getWsdl2uddiStub();
System.out.print("Save in progress ...");
WsdlDetail wsdlDetail = publishing.publish_wsdl(save);

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 633 of 642

System.out.println(" done");
return wsdlDetail;

}

The returned WsdlDetail is displayed by the printWsdlDetail()method.

One interesting aspect of HPE SOA Registry Foundation client API is that each UDDIObject contains
the toXML() method, which returns a human-readable formatted listing of its XML representation.

public static void printWsdlDetail(WsdlDetail wsdlDetail) {
System.out.println();
System.out.println(wsdlDetail.toXML());

}

Building and Running Demos

This section shows, how to build and run the HPE SOA Registry Foundation Basic Publishing demo
set. Let's continue with our SaveBusiness demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\basic\wsdl\v3

UNIX: $REGISTRY_HOME/demos/basic/wsdl/v3

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 634 of 642

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example, to run the PublishWSDL demo, invoke

Windows: run.bat PublishWSDL

UNIX: ./run.sh PublishWSDL

The output of this demowill resemble the following:

Running PublishWSDL demo...
**
***HPE SOA Registry Demo - PublishWSDL ***
**

Publishing WSDL where
Enter businessKey [uddi:systinet.com:demo:hq]:
Enter WSDL URL [http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl]:

Using Security at url https://mycomp.com:8443/uddi/security .. done
Logging in .. done
businessKey = uddi:systinet.com:demo:hq
url = http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl
Using WSDL2UDDI at url https://mycomp.com:8443/uddi/wsdl2uddi .. done
Save in progress ... done

<wsdlDetail xmlns="http://systinet.com/uddi/wsdl2uddi/v3/5.0">
<wsdl>

<wsdlLocation>http://localhost:8080/uddi/doc/demos/EmployeeList.wsdl</wsdlLocation>
</wsdl>
<wsdlMapping>
<businessKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:hq</businessKey>
<services>

<service name="EmployeeList"namespace="http://systinet.com/wsdl/demo/uddi/services/"
publishingMethod="rewrite">
<serviceKey xmlns="urn:uddi-org:api_v3">uddi:dde19a70-af1a-11d8-b9bf-eb2d7e20b9bf</serviceKey>

<ports>
<port name="EmployeeList" publishingMethod="rewrite">

<bindingKey xmlns="urn:uddi-org:api_v3">uddi:dde85130-af1a-11d8-b9bf-eb2d7e20b9bf</bindingKey>
</port>

</ports>
</service>

</services>

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 635 of 642

<bindings>
<binding name="EmployeeList_binding"namespace="http://systinet.com/wsdl/demo/uddi/services/"
publishingMethod="rewrite">

<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddc84610-af1a-11d8-b9bf-eb2d7e20b9bf</tModelKey>

</binding>
</bindings>
<portTypes>

<portType name="EmployeeList_portType"namespace="http://systinet.com/wsdl/demo/uddi/services/"

publishingMethod="rewrite">
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ddbc3820-af1a-11d8-b9bf-eb2d7e20b9bf</tModelKey>

</portType>
</portTypes>
</wsdlMapping>

</wsdlDetail>
Logging out .. done

6. To rebuild demos, execute run.bat clean (./run.sh clean) to delete the classes directory and
run.bat make (./run.sh make) to rebuild the demo classes.

XSD2UDDI
The HPE SOA Registry Foundation XSD2UDDI demo set demonstrates the HPE SOA Registry
Foundation application programming interface's capabilities and shows how to use the XSD2UDDI API
to manipulate XSD documents.

The demos set includes the following demos:

l FindXsd

l FindXsdMapping

l GetXsdDetail

l PublishXsd

l UnpublishXsd

Prerequisites and Preparatory Steps: Code

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 636 of 642

Weexpect that you have already installed the HPE SOA Registry Foundation and set the REGISTRY_
HOME environment variable to the registry's installation location.

To run the HPE SOA Registry Foundation's demos, your registry must be running. To start the HPE
SOA Registry Foundation, execute the serverstart script:

Windows: %REGISTRY_HOME%\bin\serverstart

UNIX: $REGISTRY_HOME/bin/serverstart.sh

It is necessary to configure the demos. The configuration system has two levels: global and local. The
properties defined at the global level may be overwritten at the local level. The global properties are
located in the file:

Windows: %REGISTRY_HOME%\demos\env.properties

UNIX: $REGISTRY_HOME/demos/env.properties

The values set during the installation of the HPE SOA Registry Foundation work out of box, and their
modification affects all demos. If you need to redefine the value of some property for a single demo
(that is, at the local level), edit env.properties. This file is located in the same directory as the file
run.sh (run.bat). Local level properties for the XSD2UDDI demos are loaded from the file:

Windows: %REGISTRY_HOME%\demos\resources\xsd\env.properties

UNIX: $REGISTRY_HOME/demos/resources/xsd/env.properties

Properties Used in Demos

Name Default Value Description

uddi.demos.user.john.name demo_john first user's name

uddi.demos.user.john.password demo_john first user's
password

uddi.demos.url.xsd2uddi http://localhost:8080/uddi/xsd2uddi the xsd2uddi web
service port URL

uddi.demos.url.security http://localhost:8080/uddi/security the security Web
service port URL

Presentation and Functional Presentation

This section describes the programming pattern used in all demos using the PublishXsd demo as an
example. You can find its source code in the file:

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 637 of 642

Windows: %REGISTRY_HOME%\demos\resources\xsd\src\demo\uddi\xsd\PublishXsd.java

UNIX: $REGISTRY_HOME/demos/resources/xsd/src/demo/uddi/xsd/PublishXsd.java

The helper method createPublishXsd creates a Publish_xsd structure:

public Publish_xsd createPublishXsd(String location, String publishingMethod,String importMethod, String importPolicy,

String contentMethod, String contentPolicy, StringauthInfo)
throws InvalidParameterException {

System.out.println("location = " + location);

Publish_xsd publish = new Publish_xsd();
publish.setLocation(location);
publish.setPublishingMethod(XsdPublishingMethod.getXsdPublishingMethod(publishingMethod));
publish.setImportPolicy(ImportPublishPolicy.getImportPublishPolicy(importMethod));
publish.setImportPublishingMethod(ImportPublishingMethod.getImportPublishingMethod(importPolicy));

publish.setContentPolicy(ContentPublishPolicy.getContentPublishPolicy(contentPolicy));
publish.setContentPublishingMethod(ContentPublishingMethod.getContentPublishingMethod(contentMethod));

publish.setAuthInfo(authInfo);

return publish;
}

The publishXsdResource method performs the publishing operation:

public XsdDetail publishXsdResource(Publish_xsd publish) throws UDDIException,SOAPException {
System.out.print("Check structure validity .. ");
try {

publish.check();
} catch (InvalidParameterException e) {

System.out.println("Failed!");
throw new UDDIException(e);

}
System.out.println("OK");

Xsd2uddiApi xsdApi = getXsd2UddiStub();
System.out.print("Publishing in progress ...");
XsdDetail xsdDetail = xsdApi.publish_xsd(publish);
System.out.println(" done");
return xsdDetail;

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 638 of 642

}

Building and Running Demos

This section shows, how to build and run the HPE SOA Registry Foundation XSD2UDDI demo set. Let
us continue with our PublishXsd demo.

1. Be sure that the demos are properly configured and the HPE SOA Registry Foundation is up and
running.

2. Change your working directory to

Windows: %REGISTRY_HOME%\demos\resources\xsd

UNIX: $REGISTRY_HOME/demos/resources/xsd

3. Build all demos using:

Windows: run.bat make

UNIX: ./run.shmake

Note: When compiling demos onWindows platforms, youmay see the following text:

A subdirectory or file ..\..\common\.\build\classes already exists.

. This is expected and does not indicate a problem.

4. To get list of all available demos, run

Windows: run.bat help

UNIX: ./run.sh help

5. The selected demo can be executed via the run command using the name of the demo as a
parameter. For example, to run the PublishWSDL demo, invoke

Windows: run.bat PublishXsd

UNIX: ./run.sh PublishXsd

The output of this demowill resemble the following:

Running PublishXsd demo...
**
*** HPE SOA Registry Demo - PublishXsd ***
**

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 639 of 642

Publishing XML schema with the following parameters:
Enter XSD location (URI) [http://localhost:8080/uddi/doc/demos/employees.xsd]:
Enter publishing method (update,create) [update]:
Enter import publishing policy (all,explicit) [all]:
Enter import publishing method (reuse,create,ignore) [reuse]:
Enter content publishing policy (all,explicit) [all]:
Enter content publishing method (reuse,create,ignore) [reuse]:

Using Security at url https://localhost:8443/uddi/security .. done
Logging in .. done
location = http://localhost:8080/uddi/doc/demos/employees.xsd
Check structure validity .. OK
Using XSD2UDDI at url https://localhost:8443/uddi/xsd2uddi .. done
Publishing in progress ... done

XML Schema http://localhost:8080/uddi/doc/demos/employees.xsd
<xsdDetail xmlns="http://systinet.com/uddi/xsd2uddi/v3/5.5">

<xsdInfo>
<location>http://localhost:8080/uddi/doc/demos/employees.xsd</location>
<namespace>http://systinet.com/uddi/demo/employeeList</namespace>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:systinet.com:demo:xsd:employees</tModelKey>
<name xmlns="urn:uddi-org:api_v3">employees.xsd</name>

</xsdInfo>
<elements>

<element>
<localName>persons</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">persons</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca43cec0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

</symbolModel>
</element>

<element>
<localName>person</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">person</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca5e82b0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

</symbolModel>
</element>
<element>

<localName>department</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">department</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca6a90a0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 640 of 642

</symbolModel>
</element>
</elements>
<types>
<type>
<localName>persons</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">persons</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca742d90-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

</symbolModel>
</type>
<type>
<localName>person</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">person</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca856ba0-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

</symbolModel>
</type>
<type>
<localName>department</localName>
<symbolModel>
<name xmlns="urn:uddi-org:api_v3">department</name>
<tModelKey xmlns="urn:uddi-org:api_v3">uddi:ca908f30-20f8-11d9-9c6a-1d0743509c6a</tModelKey>

</symbolModel>
</type>
</types>

</xsdDetail>
Logging out .. donee

Product Documentation
Chapter 6: Demos

HPE SOA Registry Foundation (10.04) Page 641 of 642

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Product Documentation (SOA Registry Foundation 10.04)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to clouddocs@hpe.com.

We appreciate your feedback!

HPE SOA Registry Foundation (10.04) Page 642 of 642

mailto:clouddocs@hpe.com?subject=Feedback on Product Documentation (SOA Registry Foundation 10.04)

	Chapter 1: Read This First
	HPE SOA Registry Foundation Features Overview
	Release Notes
	Known Issues
	Change Log

	Supported Platforms
	Specifications
	Document Conventions
	Documentation Updates
	Legal
	Notices

	Chapter 2: Installation Guide
	System Requirements
	Hardware
	Java™ Platform
	Relational Database

	Installation
	Command Line Options
	Installation Panels
	Welcome Panel
	License Panel
	Installation Type
	Installation Directory
	SMTP Configuration
	Set Up Administrator Account
	Database Settings
	Database Creation Method
	Select Database
	Optional JDBC Driver
	Authentication Account Provider

	Direct Deployment
	Server Configuration Settings
	Confirmation and Installation Process
	Confirmation Panel
	Installation Process Panel

	Finish

	Installation Summary
	Directory Structure
	Registry Endpoints
	Pre-Installed Data

	Command Line Scripts
	Serverstart
	serverstop
	server
	Setup
	Signer
	register
	SoapSpy
	PStoreTool
	env

	Reconfiguring After Installation
	Server Properties
	Windows Services
	Logs
	Troubleshooting

	Server Configuration
	SMTP Configuration
	Change Server URLs

	SAP Integration
	Database Installation
	Database Creation Method
	Select Database Type
	Preconfigured HSQL
	Oracle
	MSSQL 2005 or 2008
	JDBC Driver
	Account Backend
	Multilingual Data
	JDBC Drivers

	External Accounts Integration
	LDAP
	LDAP with a Single Search Base
	LDAP with Multiple Search Bases
	Multiple LDAP Services
	LDAP Over SSL/TLS
	LDAP over SSL With Mutual Authentication
	LDAP Configuration Examples

	Custom (Non-LDAP)

	Deployment to an Application Server
	Creating a Web Application Archive (WAR,EAR)
	Weblogic
	Creating WebLogic Domains Using the Configuration Wizard

	WebSphere
	JBoss

	Cluster Configuration
	Cluster operation
	Cluster installation
	Setting Up Security
	WebLogic Specific Configuration for Use with Cluster

	Authentication Configuration
	HTTP Basic
	Netegrity SiteMinder
	SSL Client authentication
	J2EE Server Authentication
	Internal SSL Client Authentication Mapping in J2EE
	Disabling Normal Authentication
	Consoles Configuration
	Outgoing Connections Protected with SSL Client Authentication

	Migration
	Migration During Installation
	Migration After Installation

	Backup
	Backup HPE SOA Registry Foundation
	Restore HPE SOA Registry Foundation

	NT Service Support
	Installation
	Starting and Stopping
	Logging
	Logging Customization
	Message Priority Settings
	Log File Properties
	Switching to NT Log
	Using Other Log4J Appenders

	Customizing
	NT Service Name Change
	JVM Startup Parameters
	HPE SOA Registry Foundation Deployed to Application Server

	Uninstallation

	Running in Linux
	Using the syslog Daemon with HPE SOA Registry Foundation
	Running HPE SOA Registry Foundation as a UNIX Daemon

	Uninstallation
	Windows
	Linux

	Chapter 3: User's Guide
	Introduction to HPE SOA Registry Foundation
	UDDI's Role in the Web Services World - UDDI Benefits
	Typical Application of a UDDI Registry
	Basic Concepts of the UDDI Specification
	UDDI Data Model
	Business Entity
	Business Service
	Binding Template
	tModel

	Taxonomic Classifications
	Enterprise Taxonomies
	Checked and Unchecked Taxonomies

	Security Considerations
	Notification and Subscription
	Replication
	UDDI APIs
	Technical Notes
	Benefits of UDDI Version 3

	Subscriptions in HPE SOA Registry Foundation
	Subscription Arguments
	Subscription Notification
	XSLT Over Notification
	Suppressing Empty Notifications
	Related Links

	Registry Console
	Demo Data
	Demo data for Registry Console and demos

	Advanced Topics
	Data Access Control: Principles
	Explicit Permissions
	Permission Rules
	Composite Operations
	Pre-installed Groups
	ACL tModels
	Setting ACLs on UDDI v3 Structures
	Setting ACLs on UDDI v1/v2 Structures

	Publisher-Assigned Keys
	Generating Keys
	Affiliations of Registries
	Affiliation Setup
	Copying Structures with Key Preservation

	Range Queries
	Taxonomy: Principles, Creation and Validation
	What Is a Taxonomy?
	Taxonomy Types
	Validation of Values
	Types of keyValues
	Taxonomy API
	Predeployed Taxonomies
	WSM Taxonomies

	Registry Console Reference
	Register/Create Account
	Register
	Login

	Registry Console Overview
	User Profile
	Create and Manage Groups
	Manage Group Membership
	Favorite Taxonomies

	Browsing
	Define Filter
	Define Query

	Searching
	Find Business
	Find Business by Categories
	Find Business by Identifier
	Find Business by Discovery URL
	Find Services
	Find Binding
	Find tModel
	Direct Get
	Find WSDL
	Find XSD

	Publishing
	Publishing a Business
	Publishing a Service
	Publishing a Binding Template
	Publishing a tModel
	Publishing Assertions
	Publishing Subscriptions
	Publish Custody Transfer
	Publishing WSDL Documents
	Publish XSD

	Signer Tool
	Starting the Signer
	Main Screen
	Sign
	Validation
	Remove Signatures
	Publish Changes
	Signer Configuration

	Chapter 4: Administrator's Guide
	Registry Management
	Accessing Registry Management
	Account Management
	Create Account
	Edit Account
	Delete Account

	Group Management
	Create and Manage Groups
	Manage Group Membership

	Permissions
	Accessing Permission Management
	Add Permission
	Editing and Deleting Permissions
	Assigning Administrator's Permission

	Taxonomy Management
	Finding Taxonomies
	Uploading Taxonomies
	Downloading Taxonomies
	Deleting Taxonomies

	Replication Management
	Master Registry Setup
	Slave Registry Setup

	Replacing UDDI Keys
	Registry Statistics
	Management of Configuration - User Interface
	Current Configurations and Their History
	Named Collections of Configuration

	Registry Configuration
	Core Config
	Database
	Security
	Account
	Group
	Subscription
	Node

	Configuration in Database
	Registry Console Configuration
	Web Interface Configuration
	Paging Configuration

	Permissions: Principles
	Permissions Definitions
	ApiUserPermission
	ApiManagerPermission

	HPE SOA Registry Foundation Permission Rules
	Setting Permissions
	Permissions and User Roles
	ApiManagerPermission Reference

	PStore Tool
	Commands
	Options
	PStore Tool - GUI Version

	SSL Tool
	SSL Tool Examples
	Associating an SSL client identity with a registry client

	Chapter 5: Developer's Guide
	Mapping of Resources
	WSDL
	WSDL PortTypes
	WSDL Bindings
	WSDL Service
	Use Cases

	XML
	XSD
	XSLT

	Client-Side Development
	UDDI APIs
	Principles To Use UDDI API
	UDDI Version 1
	UDDI Version 2
	UDDI Version 3
	UDDI Version 3 Extension

	Advanced APIs
	Validation
	SOAP
	Java

	Taxonomy
	Data Structures
	Operations
	Persistence Format
	WSDL
	API Endpoint
	Java
	Taxonomy 5.5 Extension

	Category
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Administration Utilities
	Operations
	WSDL
	API Endpoint
	Java

	Replication
	Operations
	WSDL
	API Endpoint
	Java

	Statistics
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	WSDL Publishing
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	XSD Publishing
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Inquiry UI
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Security APIs
	Accounts
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Group
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Permission
	Data Structures
	Operations
	WSDL
	API Endpoint
	Java

	Registry Client
	Client Package
	JARs on the Client Classpath
	HPE SOA Registry Foundation Runtime
	UDDI API Client v1
	UDDI API Client v2
	UDDI API Client v3
	UDDI API Client v3 ext X
	Account Client
	Admin Utilities Client
	Category Client v3
	Group Client
	Permission Client
	Replication Client v3
	Statistics Client
	Taxonomy Client v3
	UDDI Custody Client v3
	UDDI Subscription Client v3
	UDDI Subscription Listener Client v3
	UDDI Validate Values Client v1
	UDDI Validate Values v2
	UDDI Value Set Caching Client v3
	UDDI Value Set Validation Client v3
	WSDL2UDDI Client v2
	WSDL2UDDI Client v3
	Resources publishing (XSD) Client
	Classpath Examples

	Client Authentication
	Example Client

	Server-Side Development
	Accessing Backend APIs
	Custom Registry Modules
	Accessing Registry APIs
	Custom Module Sample

	Interceptors
	Creating and Deploying Interceptors
	Logging Interceptor Sample
	Request Counter Interceptor Sample

	Writing a Custom Validation Service
	Deploying Validation Service
	External Validation Service
	Sample File

	Writing a Subscription Notification Service
	Sample Files

	Systinet Web Framework
	Architecture Description
	Directory Structure
	Framework Configuration
	syswf JSP Tag Library
	Typical Customization Tasks

	UDDI From Developer Tools
	UDDI From MS Visual Studio

	How to Debug
	SOAPSpy Tool
	Running SOAPSpy
	Using SOAPSpy
	SOAP Request Tab
	How to Run Clients Using SOAPSpy

	Logging

	Chapter 6: Demos
	Basic Demos
	UDDI v1
	Inquiry v1
	Publishing v1

	UDDI v2
	Inquiry v2
	Publishing v2

	UDDI v3
	Inquiry v3

	Advanced Demos
	Advanced Inquiry - Range Queries
	Custody
	Subscription
	Validation
	Taxonomy

	Security Demos
	Account
	Group
	Permission
	ACL

	Resources Demos
	WSDL2UDDI v2
	WSDL2UDDI v3
	XSD2UDDI

	Send documentation feedback

