
Operations Bridge Analytics

Software Version: 3.02

AQL Developer Guide

Document Release Date: August 2017
Software Release Date: August 2017

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© 2016 - 2017 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

AMD, the AMD Arrow symbol and ATI are trademarks of AdvancedMicro Devices, Inc.

Citrix® and XenDesktop® are registered trademarks of Citrix Systems, Inc. and/or onemore of its subsidiaries, andmay be registered in the United States Patent and
Trademark Office and in other countries.

Google™ andGoogleMaps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and other countries.

iPad® and iPhone® are trademarks of Apple Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft®, Windows®, Lync®, Windows NT®, Windows® XP, Windows Vista® andWindows Server® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

NVIDIA® is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and other countries.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Red Hat® is a registered trademark of Red Hat, Inc. in the United States and other countries.

SAP® is the trademark or registered trademark of SAP SE in Germany and in several other countries.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HPE Passport and to sign in. To register for an HPE Passport ID, click Register on the HPE Software Support site or click Create an
Account on the HPE Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.

Support
Visit the HPE Software Support site at: https://softwaresupport.hpe.com/.

Most of the support areas require that you register as an HPE Passport user and to sign in. Many also require a support contract. To register for an HPE Passport ID, click
Register on the HPE Support site or click Create an Account on the HPE Passport login page.

To findmore information about access levels, go to: https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

HPE Software Solutions Now accesses the Solution and Integration Portal website. This site enables you to explore HPE product solutions tomeet your business needs,
includes a full list of integrations between HPE products, as well as a listing of ITIL processes. The URL for this website is https://softwaresupport.hpe.com/km/KM01702731.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 2 of 57

https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
https://softwaresupport.hpe.com/km/KM01702731

Contents

Chapter 1: What is AQL? 5
Chapter 2: Using AQL 7
Chapter 3: AQL Syntax, Intrinsics, and Examples 8

AQL Syntax 8
Intrinsic Statistical Functions in AQL 10
AQL Query Examples 12

Chapter 4: AQL Functions and Expressions 19
Define AQL Functions 19
Create and Use AQL Functions 20
Import AQL Functions 23
Collection-specific AQL Functions 24
Generic AQL Functions 25
AQL Expressions 27
Bucket Function 30

Chapter 5: Arithmetic Expressions and Aliases 32
Using Arithmetic Expressions and Aliases in AQL 32
More about Alias Support and Alias Placement Conventions 37
Higher Order Arithmetic Involving Intrinsic Calls 38

Chapter 6: AQL for Log Data 41
Chapter 7: Troubleshooting AQL Queries 42

Introduction 42
Syntax Errors 42
Meta Data Errors 43
Semantic Errors 44
Understanding and Using the limit Parameter in an AQL Query 46

Chapter 8: Using R with AQL 47
Setting up the R Language Pack from Vertica 47
Creating the R Functions that Integrate with Operations Bridge Analytics48

Identifying the Distinct Time Series Measurements in an Input Frame
for an R function 50

Registering an R Function 52

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 3 of 57

Registering your R function with Vertica 53
Registering your R function with Operations Bridge Analytics 53

Using your R Function in an Operations Bridge Analytics Dashboard 54
Limitations 56

Send documentation feedback 57

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 4 of 57

Chapter 1: What is AQL?

The Analytics Query Language (AQL) is a hierarchical language that provides layers of abstraction on
analytic queries. The idea here is that themore abstract, the easier it is for you to write AQL in an ad
hoc fashion. The primary objective of AQL is to simplify your ad hoc query experience. This applies to
the process of building custom dashboards as well as troubleshooting problems using statistical
algorithms.

Use AQLwhen the PhrasedQuery Language (PQL) syntax is not specific enough to return the data you
need. When using AQL, you can bemore specific about the data collected. You can also filter, group,
and order the collected data in a single query.

The layers of abstraction in AQL are:

l Built-in analytics that are defined as functions that become intrinsic in AQL

l A query language to provide SQL-like access to all collections

l Functions and expressions as abstractions of queries

Note: This manual includes examples that show script usage, command line usage, command
line syntax, and file editing. If you copy and paste any examples from this manual, carefully review
the results of your paste before running a command or saving a file.

As an example of the layers of abstraction, consider the following query:

Note: When using AQL, you can search for collectedmetrics, such as cpu_util, which is shown
in the following AQL query. Metrics are collected values over time for measurements such as
system up time and CPU utilization.

from i in (oa_sysperf_global)
let interval=300
let analytic_interval=between($starttime,$endtime)
where (i.host_name like "myhost")
select moving_avg(i.cpu_util)

This query assumes a collection of systemmetrics from a predefinedOperations Bridge Analytics
collection (oa_sysperf_global) and calculates a time series of themoving average of the CPU
utilization for the system called "myhost". The time series data is collected every 300 seconds (5
minutes) and the time range is specified by the internal macros $starttime and $endtime.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 5 of 57

Note: The above example uses moving_avg, which is a built-in analytic that significantly
simplifies this transformation over standard SQL.

This query pattern is very useful for all sorts of metrics. Suppose you have other metrics and functions
and want to calculate the time series of a particular metric using a particular function r for a particular
host or hosts. In such a case, you can use a query pattern as shown above.

Operations Bridge Analytics AQL supports using query patterns to be abstracted into AQL functions.
Using the above example, suppose you want to generalize the query to generate a time series of any
metric in oa_sysperf_global using any function for any set of hosts. To generate this time series,
define an AQL function as follows:

/* Returns the moving analytic of a specific Operations Agent metric by host. Input
parameters are the host filter, metric name, and moving analytic function name. */
define oaSysperfMovingMetric(hostFilter, metric, function) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime)
let interval = $interval
where i.host_name like hostFilter
group by i.host_name
select function(i.metric)

With this function defined, the following AQL expression:

[oaSysperfMovingMetric("myhost", cpu_util, moving_avg)]

is identical to the above AQL query.

In addition, the following expression:

[oaSysperfMovingMetric("myhost", swap_util, moving_max)]

gives you the time series of themovingmaximum swap utilization on host "myhost".

The ability to define specialized AQL provides a significant 'ease-of-use' factor in using Operations
Bridge Analytics to do ad hoc analytics. Operations Bridge Analytics includes several packages of
useful AQL functions that you can see by using the OBA console.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 6 of 57

Chapter 2: Using AQL

AQL queries use a syntax similar to the ANSI Standard SQL. When using AQL, it is helpful if you have
some knowledge of databases as well as scripting or programming skills. However, it is not mandatory
to have this knowledge to get started using AQL queries.

Before you begin writing AQL queries, view the collection information that is stored in Operations
Bridge Analytics to determine the kinds of data available in your environment. You will need this
information as part of your AQL syntax. For details, seeHow to View Collection Information in the
Operations Bridge Analytics help.

You can specify an AQL query, an AQL function, or an AQL expression when adding or editing a
dashboard query pane. SeeDashboards andQuery Panes in the Operations Bridge Analytics help for
more information.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 7 of 57

Chapter 3: AQL Syntax, Intrinsics, and Examples

This chapter explains the syntax, and the intrinsic statistical functions of AQL. Additionally, query
examples are provided to help you write your own AQL queries.

l "AQL Syntax" below

l "Intrinsic Statistical Functions in AQL" on page 10

l "AQLQuery Examples" on page 12

AQL Syntax

The basic structure of an AQL query is very similar to the standard 'Structured Query Language'. An
AQL query is a sequence of clauses. The clauses that you can include depend on the type,
organization, and order of the information that you want Operations Bridge Analytics to return. It also
depends on the time range and type of analysis that you want to apply to the data.

The types of clauses supported by AQL are as follows:

l from <row variable> in <collection>

l where <relational expression>

l let <name> = <value>

l group by <list of columns>

l select <select expression>

When positioning the clauses in an AQL query, note the following:

1. The from and select clauses aremandatory. The from clausemust be the first clause and the
select clausemust be the last clause in the query.

2. All other clauses in the query can be in any order between the from and the select clauses. The
following clauses filter and group the identified collection of metrics and attributes.

Note: An attribute is a descriptor for an entity, such as host_name, that is stored in a
collection.

From Clause

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 8 of 57

The from clause defines the row variable and specifies the collection from which the rows will be
selected. For example:

from i in (oa_sysperf_global)

defines the row variable to be i and the collection (table) to select from as oa_sysperf_global.

Where Clause

The where clause is any arbitrary relational expression. The where clause specifies the criteria for
which rows are selected from the collection. The following is an example that shows one way to use
the where clause to select rows by specific criteria:

where ((i.hostinfo_dnsname like "myhost")
&& ((i.severity ilike "CRITICAL")||(i.severity ilike "WARNING")))

The where clause restricts the selected rows to be only those events for which host is "myhost" and
severity is either CRITICAL or WARNING.

Using special characters in a where clause

You can use special characters such as {, }, [,], \, or \\ embedded in a where clause filter condition
strings. You can use the followingmethods:

l Specify a double backslash (\\) to represent an embedded literal backslash (\)

l Specify a backslash followed by double quote to represent an embedded literal double quote. For
example, to represent a literal ", use \"

l Specify a double backslash (\\) followed by a curly brace to represent a literal curly brace. For
example, to represent a literal { or }, use \\{ or \\}

The following example demonstrates the use of a double backslash to represent an embedded literal
backslash. The intent of this example is to specify a filter such that host_names starting with ab\c are
returned:

where (i.host_name like "ab\\c*")

The following example demonstrates the use of an escaped double quote (\") to represent an
embedded literal double quote ("). The intent of this example is to specify a filter such that host_names
equaling ab"c are returned.

where (i.host_name == "ab\"c")

The following example demonstrates the use of double backslashes to represent embedded literal curly
braces ({ or }). The intent of this example is to specify a filter such that host_names not equaling ab
{c}d are returned.

where (i.host_name != "ab\\{c\\}d")

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 9 of 57

Let Clause

The let clause is used to define a value for a specific control variable for the query. For example, to
control the time interval of the query, use the let clause to define a value for the global control variable
analytic interval (for example, analytic_interval=between($starttime, $endtime) is where
$starttime and $endtime are UI parameters.

You can also use the let clause to override dashboard pane parameters. For example, it can override
the limit setting that controls the number of results. The default for Limit is 100 and let Limit = 50
will override the Limit dashboard pane parameter that is set to return only 50 results.

Group By

The group by clause organizes the results in the query based on the column or columns specified in
the group by clause. For example group by i.hostname displays the results of the query in distinct
groups by the host name attribute.

Note: You can specify multiple columns in the group by clause, so that the results are
organized primarily by the first column, then by the second column, and so on.

Select Clause

The select clause explicitly specifies the values to be selected for the query results. If you specify
only the row variable, all columns are selected by the query.

Examples:
select i

Selects all columns in the table.

select i.hostname, i.timestamp, i.state, i.category, i.title

Selects only the hostname, timestamp, state, category, and title attributes from the table.

Intrinsic Statistical Functions in AQL

Operations Bridge Analytics provides a set of analytic functions to analyze themetrics, topology,
inventory, and event data that it collects.

Overall Aggregate (Summary) Functions Provided by Operations Bridge Analytics

The following table shows descriptions of the overall aggregate (summary) analytic functions provided
by Operations Bridge Analytics.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 10 of 57

Analytic Function
Type Description

aggregate_avg Identifies the average value for themetric or metrics selected.

aggregate_min Identifies theminimum value for themetric or metrics selected.

aggregate_max Identifies themaximum value for themetric or metrics selected.

aggregate_total Identifies the total value or cumulative sum for themetric or metrics
selected.

aggregate_count Computes the total count of rows with values of an attribute or total count of
all rows in a collection table.

aggregate_
distinct_count

Computes the total count of distinct values of an attribute.

Descriptions of Overall Aggregate (Summary) Functions Provided by Operations Bridge
Analytics

Moving Aggregates (Time Series) Functions Provided by Operations Bridge Analytics

The following table shows descriptions of themoving aggregate (time series) functions provided by
Operations Bridge Analytics.

Function Description

moving_avg Computes the average values at each time interval within the specified time window
for one or moremetrics.

moving_min Computes theminimum values at each time interval within the specified time window
for one or moremetrics.

moving_max Computes themaximum values at each time interval within the specified time
window for one or moremetrics.

moving_
total

Computes the totals at each time interval within the specified time window for one or
moremetrics.

moving_
count

Computes the total counts of rows with values of an attribute or total count of all rows
within a collection table at each time interval within the specified time window.

moving_
distinct_
count

Computes the total counts of distinct values of an attribute at each time interval within
the specified time window.

Descriptions of Moving Aggregate (Time Series) Functions Provided by Operations Bridge
Analytics

Analytic Statistical Functions applied to Overall Aggregate and Moving Aggregate Functions

The following table describes the analytic statistical functions provided by Operations Bridge Analytics.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 11 of 57

Function Description

bottomN Computes the lowest N values in the expressions; returns the bottomN values with their
associated rank.

inverse_
pctile

Calculates the inverse percentile distribution values for the set of values in the
expression.

For example, if you specify 50 as the <pctile> value, inverse_pctile finds the 50th
percentile value (or median value) for the data in the expression.

pctile Calculates the percentile rank value for the values in the expressions.

For example, if you specify 75 as the <pctile> value, pctile returns all values greater
than the 75th percentile value for the data in the expression.

rank Calculates the overall rank for all values in the expression, where the results include an
integer (indicating rank) for each value along with the value itself.

topN Uses the rank (descending order) analytic function to identify the highest N values.

Operations Bridge Analytics returns the top N values with their associated rank.

Note:

l If you do not specify N value in an AQL query, Operations Bridge Analytics
displays the top five values.

l The topN analytic function is not permitted in the where clause.

Descriptions of Analytic Statistical Functions applied to Overall Aggregate and Moving
Aggregate Functions

AQL Query Examples

Return the average CPU utilization and CPU run queue size

The following AQL query returns the average CPU utilization and CPU run queue size for each host
matching the filter criteria.

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_avg(i.cpu_util), aggregate_avg(i.cpu_run_queue)

Return the average for each of the metrics collected by the oa_sysperf_global collection

The following AQL query returns the average for eachmetric collected by the oa_sysperf_global
collection for each host matching the filter criteria:

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 12 of 57

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_avg(i)

Return the maximum, minimum, and average values for CPU utilization and CPU run queue
size

The following AQL query returns themaximum, minimum, and average for CPU utilization and CPU run
queue size for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_min(i.cpu_util),
aggregate_max(i.cpu_util),
aggregate_max(i.cpu_util),
aggregate_min(i.cpu_run_queue),
aggregate_max(i.cpu_run_queue),
aggregate_avg(i.cpu_run_queue)

Return the minimum, maximum, and average for each of the metrics collected by the oa_
sysperf_global collection

The following AQL query returns theminimum, maximum and average for each of themetrics collected
by the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com") group by i.host_name
select aggregate_min(i), aggregate_max(i), aggregate_avg(i)

Return Summary Information on Events (Example AQL Queries)

Note: Each example queries data from the omi_events_omievents collection. This collection
uses Operations Manager i (OMi) to collect OMi events. Each example queries data for only the
hosts in the mydomain.com domain.

Return the total count of OMi events for a specified host and severity combination

The following AQL query calculates the total count of OMi events for each host and severity
combinations matching the filter criteria: "

from i in (omi_events_omievents)
let analytic_interval= between($starttime, $endtime)
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 13 of 57

ilike "CRITI*") || (i.severity
ilike "WARN*")))
group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the total count of OMi events for a specified host and severity combination and for
which the event count exceeds 100

The following AQL query does the same as the previous AQL query, except that it returns the counts for
only those host name and severity combinations for which the event count exceeds 100:

from i in (omi_events_omievents)
let analytic_interval= between($starttime, $endtime)
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike "CRITI*"
) || (i.severity
ilike "WARN*")) && (aggregate_count(i) > 100))
group by i.hostinfo_dnsname, i.severity select aggregate_count(i)

Return the number of distinct applications monitored by Business Process Monitor (BPM) per
location

Note: The following AQL query uses the bpm_application_performance collection. This
collection uses Business Process Monitor (BPM) to gather application performance information.

The following AQL query calculates the number of distinct applications monitored by BPM on a location
by location basis:

from i in (bpm_application_performance)
let analytic_interval = between($starttime, $endtime)
group by i.location
select aggregate_distinct_count(i.application)

Return the total count of distinct database instances reporting Oracle metrics

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns a distinct count of database instances reporting Oracle metrics:

from i in (oa_oraperf_graph)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*mydomain.com")
group by i.host_name select aggregate_distinct_count(i.db_instance_name)

Return the moving average CPU utilization and CPU run queue size

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 14 of 57

Note: Each example queries data from the oa_sysperf_global collection. This collection uses
Performance Agent to collect systemmetrics. Each example queries data for only the hosts in the
mydomain.com domain.

The following AQL query returns themoving average CPU utilization and CPU run queue size for each
host matching the filter criteria.

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com") group by i.host_name
select moving_avg(i.cpu_util), moving_avg(i.cpu_run_queue)

Return the moving average for each of the metrics collected by the oa_sysperf_global
collection

The following AQL query returns themoving average for each of themetrics collected by the oa_
sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com")
group by i.host_name
select moving_avg(i)

Return the moving maximum, minimum, and average values for CPU utilization and CPU run
queue size

The following AQL query returns themovingmaximum, minimum, and average for CPU utilization and
CPU run queue size for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval
where (i.host_name like "*.mydomain.com") group by i.host_name
select moving_min(i.cpu_util),
moving_max(i.cpu_util), moving_max(i.cpu_util), moving_min
(i.cpu_run_queue), moving_max(i.cpu_run_queue),
moving_avg(i.cpu_run_queue)

Return the moving minimum, maximum, and average for each of the metrics collected by the
oa_sysperf_global collection

The following AQL query returns themovingminimum, maximum and average for each of themetrics
collected by the oa_sysperf_global collection for each host matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime) let interval=$interval

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 15 of 57

where (i.host_name like "*.mydomain.com")
group by i.host_name
select moving_min(i), moving_max(i), moving_avg(i)

Note: Each of the following examples queries data from the omi_events_omievents collection.
This collection uses Operations Manager i (OMi) to collect OMi events. Each example queries data
for only the hosts in the mydomain.com domain.

Return the moving total count of OMi events for a specified host and severity combination

The following AQL query calculates themoving total count of OMi events for each host and severity
combinations matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval=between($starttime,$endtime) let interval=$interval
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike
"CRITI*") || (i.severity
ilike "WARN*")))
group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving total count of OMi events for a specified host and severity combination and
for which the event count exceeds 100

The following AQL query does the same as the previous AQL query, the difference being that it returns
themoving counts for only those host name and severity combinations at only those intervals at which
the event count exceeds 100:

from i in (omi_events_omievents)
let analytic_interval=between($starttime,$endtime) let interval=$interval
where ((i.hostinfo_dnsname like "*mydomain.com") && ((i.severity ilike
"CRITI*") || (i.severity
ilike "WARN*")) && (moving_count(i) > 100))
group by i.hostinfo_dnsname, i.severity select moving_count(i)

Return the moving number of distinct applications monitored by Business Process Monitor
(BPM) per location.

Note: The following AQL query uses the bpm_application_performance collection. This
collection uses Business Process Monitor (BPM) to gather application performance information.

The following AQL query calculates themoving number of distinct applications monitored by BPM on a
location by location basis.

from i in (bpm_application_performance)
let analytic_interval = between($starttime, $endtime) let interval = $interval

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 16 of 57

group by i.location
select moving_distinct_count(i.application)

Return the moving total count of distinct database instances reporting Oracle metrics.

Note: The following AQL query uses the oa_oraperf_graph collection. The oa_oraperf_graph
collection uses Operations Smart Plug-in for Oracle to gather Oracle performance information.

The following AQL query returns moving total counts of the distinct database instances reporting
Oracle metrics:

from i in (oa_oraperf_graph)
let analytic_interval= between($starttime,$endtime) let interval = $interval where
(i.host_name like"*mydomain.com")
group by i.host_name
select moving_distinct_count(i.db_instance_name)

Return the percentile distribution of overall cpu utilization by host

The following AQL query determines the hosts and their overall aggregate average values of CPU
utilization along with the percentile rank for the value among the overall aggregate average values for all
hosts matching the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where(i.host_name like "*.mydomain.com")
group by i.host_name select pctile(aggregate_avg(i.cpu_util))

Note: The following example queries data from the omi_events_omievents collection. This
collection uses Operations Manager i (OMi) to collect OMi events. Each example queries data for
only the hosts in the mydomain.com domain.

Return the percentile distribution of event count by host

The following AQL query determines the hosts and their overall aggregate count of events along with
percentile ranks of the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval= between($starttime,$endtime)
where(i.hostinfo_dnsname like "*.mydomain.com")
group by i.hostinfo_dnsname
select pctile(aggregate_count(i))

Note: The following example queries data from the bpm_application_performance collection.
This collection uses Business Process Monitor (BPM) to gather application performance

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 17 of 57

information.

Return the Top N Values (Example AQL Queries)

Tip: You can use these examples to assist you in constructing AQL queries that use the bottomN
analytic function.

The following examples use the topN analytic function to return the top n values for sets of data
returned by the overall aggregate andmoving aggregate analytic functions.

Note: The following examples query data from the oa_sysperf_global collection. This collection
uses Operations Agent to collect systemmetrics. Each example queries data for only the hosts in
the mydomain.com domain.

Return the top five hosts and their overall aggregate average values of CPU utilization. This
query also returns the associated relative ranks.

The following AQL query determines the top five hosts and their overall aggregate average values of
CPU utilization among the overall aggregate average values and relative ranks for all hosts matching
the filter criteria:

from i in (oa_sysperf_global)
let analytic_interval= between($starttime,$endtime)
where (i.host_name like "*.mydomain.com")
group by i.host_name
select topN(aggregate_avg(i.cpu_util),5)

Return the top 10 hosts with the highest overall aggregate count of events

The following AQL query determines the top 10 hosts with the highest overall aggregate count of events
among the overall aggregate event count values for all hosts matching the filter criteria:

from i in (omi_events_omievents)
let analytic_interval= between($starttime,$endtime)
where (i.hostinfo_dnsname like "*.mydomain.com")
group by i.hostinfo_dnsname
select topN(aggregate_count(i), 10)

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 18 of 57

Chapter 4: AQL Functions and Expressions

The information in this section explains how you can use the AQL functions and expressions to define
and name frequently used AQL queries for reuse.

This chapter contains the following topics:
Define AQL Functions 19

Create and Use AQL Functions 20

Import AQL Functions 23

Collection-specific AQL Functions 24

Generic AQL Functions 25

AQL Expressions 27

Bucket Function 30

Define AQL Functions

By default, Operations Bridge Analytics provides several AQL functions to assist you with creating
AQL queries, AQL functions, and associated dashboards. The concepts in this guide will help you write
your own AQL functions using a text editor.

You can write your own AQL functions using a text editor, then import these functions into Operations
Bridge Analytics. Each text file that you create can contain any number of AQL functions. A set of AQL
functions that reside in a single file is known as an AQLmodule.

Tip: Use the bpm_functions.aqlmodule as an example. This AQLmodule contains several AQL
functions that can be used as a template to create your own AQL function. They reside in the
$OPSA_HOME/inventory/lib/hp/aql directory.

You can also view these AQL functions when you use theAdd A Query Pane option from an
Operations Bridge Analytics dashboard. SeeDashboards andQuery Panes in theOperations Bridge
Analytics Help for more information.

Note: To view the AQL query associated with each AQL function provided by Operations Bridge
Analytics, check the .aql files in the $OPSA_HOME/inventory/lib/hp/aql directory or use the
opsa-aqlmodule- manager.sh command.

When creating AQL functions that can be imported, note the following:

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 19 of 57

l The comment preceding each AQL function is displayed as the description for the AQL function
selected as shown in the following example:

l As a best practice, name your file using an .aql extension.

l As a best practice, use the validate option in the opsa-aql-module-manager.sh script to ensure
your module will import.

l As a best practice, place your file in the $OPSA_HOME/inventory/lib/user/aql directory before it
is imported. This helps to ensure that the file is not overwritten when upgrading to a new Operations
Bridge Analytics version.

l Tomake your AQL functions available to your user community, use the opsa-aql-
modulemanager.sh script. This script imports the AQL functions defined in your module into the
Operations Bridge Analytics database andmakes them available to your user community by
default. See the opsa-aqlmodule- manager.sh reference page (or the Linux man page) for more
information.

Create and Use AQL Functions

When building AQL queries, you can also define AQL functions or expressions. AQL functions can be
used in place of an associated AQL query. AQL functions are a convenient way of defining and naming

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 20 of 57

frequently used AQL queries for reuse. When you define an AQL function, youmust name the AQL
function, define its arguments and the associated AQL query as well as the argument values to pass to
that AQL query. You can define your AQL functions using a text editor and then import them in
Operations Bridge Analytics.

To select an AQL Function provided by Operations Bridge Analytics, use theAdd a Query Pane
feature from anOperations Bridge Analytics dashboard. SeeDashboards andQuery Panesin the
Operations Bridge Analytics help for more information.

To create an AQL function use the following syntax:

define <AQL function name>(argument_1, argument_2,...argument_n)=<AQL query syntax>

Arguments are those values that are passed to the associated AQL function. Any value that is used in
the AQL query is known as a parameter. For example, the name of a host might be a valid parameter for
an AQL query.

To use an AQL function use the following syntax:

[<AQL function name>(value for argument_1, value for argument_2,...value for
argument_n)]

The brackets ([]) aremandatory.

Note the following:

l You can create AQL functions using a text editor.

l Tomake the AQL functions available to your user community, import the AQL functions using the
opsa-aql-import.sh script.

l The arguments that can be passed to an AQL function include any parameter included in an AQL
query.

Name of the
AQL Function Description Example

AQL_function_
name

Name of the AQL function.

Tip: Use a name that will help you to remember the
AQL function purpose. Alphanumeric characters and
underscore (_) are permitted. Spaces and other
special characters (~ ! @ # $ % ^ &; * () + -) are not
permitted.

cpu_threshold

argument_n The nth argument to be passed to the associated AQL
query.

percent

AQL Function Syntax

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 21 of 57

Name of the
AQL Function Description Example

You can enter any number of arguments.

Note: In this example, percent is used to identify the
CPU utilization percent threshold.

AQL_query_
syntax

Syntax for the AQL query to which the AQL function is
associated. See the next table for more detail.

Note: When an AQL function is used, each argument
value provided is passed to the associated AQL query.
See the bold text in the example.

from i in (oa_sysperf_
global)

let analytic_
interval=between
($starttime,$endtime)

where (aggregate_
avg(i.cpu_util >
percent)

group by i.host_name

select i.host_name,
aggregate_avg
(i.cpu_util)

AQL Function Syntax, continued

The following table provides more details about the AQL_query_syntax example shown in the previous
table.

define cpu_threshold(percent) = from i in (oa_sysperf_global)

let analytic_interval=between($starttime,$endtime)

where (aggregate_avg(i.cpu_util) > percent)

group by i.host_name

select i.host_name, aggregate_avg(i.cpu_util)

Syntax for the AQL_query_syntax Example

To use the cpu_threshold AQL function to return a list of all the hosts where the average CPU
utilization exceeds 80 percent, include the following parameter values: [cpu_threshold(0.8)]

The following AQL function selects the host name that matches the value of argument name. The
query returns the following information for themost recent number of OMi events that originated from
the host selected:

l host name (hostinfo_dsname)

l timestamp

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 22 of 57

l message title

l severity

define host_events (name,number) = from i in (omi_events_omievents)

where (i.hostinfo_dnsname like name)

let analytic_interval = between($starttime,$endtime)

let offset = 0

let limit = number

select i.hostinfo_dnsname, i.timestamp, i.title, i.severity

To use the host_events AQL function to return a list of themost recent 50 events for all hosts in the
"enterprise.com" domain, include the following argument values:

[host_events("enterprise.com", 50)]

Import AQL Functions

Use the opsa-aql-module-manager.sh script to manage the AQL functions that you create. When using
the opsa-aql-module-manager.sh script, note the following:

l Youmust specify the tenant name for which the AQL functions should be available.

l Youmust use file names that identify the types of AQL functions contained in each file.

l Youmust define the <module_name> in the first line of each file; for example: module <my_new_
module>;

l Youmust validate, list, and delete modules using themodule name.

Use the opsa-aql-module-manager.sh script to perform the following tasks:

Validate the AQL functions included in n module file

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -v <file_name>

Note: The opsa-aql-module-manager.sh script does not currently detect some syntax errors, such
as unbound variables referenced within the body of an AQL function. Take extra care when
creating and editing your AQL functions.

Import an AQL Module

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 23 of 57

Enter the following command: opsa-aql-module-manager.sh -t <tenant_name> -i <file_name>

When importing AQL functions, note the following:

l After importing your AQL functions, all functions are available to the user community in the
specified tenant.

l To replace or redefine AQL functions, youmust make the appropriate changes to the .aql module,
and then re-import the file.

List all AQL modules that have been imported into Operations Bridge Analytics

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l modules

List the AQL functions contained in a module that has been imported into Operations Bridge
Analytics

Run the following command: opsa-aql-module-manager.sh -t <tenant_name> -l <module_name>

See the opsa-aql-module-manager.sh reference page (or the Linux man page) for more information.

Collection-specific AQL Functions

Additional functionality is added to Operations Bridge Analytics by using content packs. A content pack
consists of the following:

l A collection or collections.

l AQL functions to analyze one or more of the new collections.

l Dashboards to present the analytics for the new collection or collections.

AQL functions that are specific to a particular collection are usually specialized for certain types of
metrics and analytics. They provide a very easy way for the user to ad hoc analysis on the data. The
following examples show Oracle-specific AQL functions.

/* Returns the top N of an aggregate analytic on an Operations Oracle SPI metric. Input
parameters are the host filter, database instance filter, metric name, aggregate analytic, and N.
*/
define oaOraperfTopNAggregateMetric
(hostFilter,instanceFilter,metric,aggregate_analytic,N) =
from i in (oa_oraperf_graph)
let analytic_interval = between($starttime, $endtime)
let interval=$interval
let aggregate_playback=$aggregate_playback_flag

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 24 of 57

where ((i.host_name like hostFilter) && (i.db_instance_name like instanceFilter
))
group by i.host_name, i.db_instance_name
select topN(aggregate_analytic(i.metric), N);

/* Returns the aggregate analytic above a specified threshold on an Operations Oracle SPI
metric. Input parameters are the host filter, database instance filter, metric name, aggregate
analytic, and threshold percentage. */
define oaOraperfAggregateMetricAbovePctile
(hostFilter,instanceFilter,metric,aggregate_analytic,upper_limit_pctile) = from i in
(oa_oraperf_graph)
let analytic_interval = between($starttime, $endtime)
let interval=$interval let aggregate_playback=$aggregate_playback_flag
where (((i.host_name like hostFilter) && (i.db_instance_name like
instanceFilter)) && (aggregate_analytic(i.metric) > inverse_pctile(aggregate_
analytic(i.metric), upper_limit_pctile)))
group by i.host_name, i.db_instance_name
select aggregate_analytic(i.metric);

Generic AQL Functions

Generic functions aremore generalized and can be used on any type of collection. There are three
primary generic functions:

l metricQuery

l metricQueryLets

l attributeQuery

The generic functions aremostly templates or shorthands for composing a complete query. These
functions are used by PQL in the process of generating the AQL for dashboard panes. They are concise
and hence frequently used in the out-of-box dashboards.

metricQuery takes four parameters using the following syntax:

metricQuery(<table name>, {<where clause>), {<group by>}, {<select>})

metricQuery (as the name suggests) is intended as a generalized approach to formulate a query on
metrics that yields either time series metric data or aggregatedmetric data.

Note: The '{' delimiters are used instead of normal '(' to group the clauses.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 25 of 57

An example AQL expression use of metricQuery is:

[metricQuery(oa_sysperf_global, {(i.host_name ilike "*")}, {i.host_name}, {moving_
avg(i.active_processes), moving_avg(i.cpu_util)}]

(that is, select time series data of active_processes and cpu_utilization for all hosts in the oa_
sysperf_global collection).

metricQueryLets Permits AQL users to define the lets clause, overwriting the default let clauses
that comewith the metricQuery function.

The following syntax shows AQL users how to use the metricQueryLets function: [metricQueryLets
(<collection name>, {<list of lets>}, {<where clause>}, {<group by>}, {<select
list>})]

Example: [metricQueryLets(oa_sysperf_global, {let interval = $interval let
aggregate_playback = $aggregate_playback_flag let analytic_interval = between
($starttime,$endtime)}, { (i.host_name ilike "10.10.10.71")}, {i.host_name},
{moving_avg(i.active_processes)})]

Using the above example, the result will be identical to using the metricQuery function without the
lets clauseswhile adding value as follows:

[metricQueryLets(oa_sysperf_global, {let interval = 300 let aggregate_playback =
$aggregate_playback_flag let analytic_interval = between($starttime,$endtime)}, {
(i.host_name ilike "10.10.10.71")}, {i.host_name}, {moving_avg(i.active_
processes)})]

In the previous example, you force AQL to use a 300 second interval instead of the default value.

attributeQuery takes three parameters using the following syntax:

attributeQuery(<table name>, {<where clause>), {<select>})

attributeQuery is intended as a generalized approach to formulate a query on attributes that yields
single or aggregated attribute data.

Note: The '{' delimiters are used instead of normal '(' to group the clauses.

An example AQL expression use of attributeQuery is:

[attributeQuery(oneview_rest_inventory, {(i.category_name == "enclosures")},
{i.name}]

(that is, select the name of all enclosures from the oneview_rest_inventory collection).

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 26 of 57

AQL Expressions

AQL expressions includemultiple AQL functions. Use AQL expressions when you want the results of
multiple queries to be combined into a single query pane in a dashboard.

You can use AQL functions in an AQL expression in any of the following ways:

Use a single AQL function

Syntax: [<aql_function_invocation>]

Concatenate multiple AQL functions

Concatenatingmultiple AQL functions enables you to concatenate the results from each AQL function
as if they were run individually.

Syntax: [<aql_function1>,<aql_function2>, ….<aql_functionn>]

The following AQL function returns the concatenation of the results from the following:

l moving averages of CPU utilization

l moving distinct count of host names monitored by the Operations Agent

[oaSysperfMovingMetric("*.mydomain.com", cpu_util, moving_avg),
oaSysperfHostsMovingCount("*.mydomain.com")]

/* Returns the moving aggregation analytic function results for the specified metric. Input
parameters are host filter, metric, and analytic function. */
define oaSysperfMovingMetric(hostFilter, metric, moving_analytic) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime, $endtime) let interval = $interval
where i.host_name like hostFilter
group by i.host_name
select moving_analytic(i.metric);

/* Returns moving distinct count of hosts being monitored by the Operations Agent. Input
parameter is the host filter. */
define oaSysperfHostsMovingCount(hostFilter) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime)
let interval = $interval where i.host_name like hostFilter
select moving_distinct_count(i.host_name);

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 27 of 57

Use multiple AQL functions so that the results from one AQL function is an input filter for
another AQL function

This type of AQL expression is known as an AQL composition.

Syntax: [do <target_function> filter by <filter_function> with <filter_criteria>]

<target_function> is the AQL function to run.
<filter_function> is the AQL function used to filter the results.
<filter_criteria> is the criteria to use for filtering the results of target function. The syntax of
<filter_criteria> is:
(<filter_criteria_element1>, <filter_criteria_element2>, ….)

Each <filter_criteria_element> specifies ametric or attribute column namewith its associated
collection. Values for the column name specifiedmust be returned in the target_function and
filter_Function results.

Note: All of the filter criteria elements must bemet to successfully filter the target function results.

The syntax for any filter criteria element is:

<target_function_name>.<target_function_resultcolumn> == <filter_function_
name>.<filter_function_resultcolumn>

The <target_function_resultcolumn> can be any of the expected result columns from the results of
<target_function>.

<target_function_name> is the name of the target function.

Similarly, <filter_function_resultcolumn> can be any of the expected result columns from the
results of <filter_function>. The <filter_function_name> is the name of the filter function.

The following example AQL expression returns the moving_avg, moving_max, and moving min of CPU
utilization for the top five hosts with the highest aggregate_avg cpu_util values.

[do oaSysperfMovingMetricAvgMaxMin("*", cpu_util) filter by
oaSysperfTopNAggregateMetric ("*.mydomain.com",cpu_util,aggregate_avg,5) with
(oaSysperfMovingMetricAvgMaxMin.host_name== oaSysperfTopNAggregateMetric.host_
name)]

/* Returns the moving average, maximum, and minimum values of a specific metric by host.
Input parameters are the host filter and the metric. */
define oaSysperfMovingMetricAvgMaxMin(hostFilter, metric) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime,$endtime) let interval = $interval
where i.host_name like hostFilter

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 28 of 57

group by i.host_name
select moving_avg(i.metric), moving_max(i.metric), moving_min(i.metric);

/* Returns the topN of a moving aggregate analytic function on a metric. Input parameters are
the host filter, metric, moving aggregate analytic function, and N. */
define oaSysperfTopNMovingMetric(hostFilter, metric, moving_analytic, N) =
from i in (oa_sysperf_global)
let analytic_interval = between($starttime, $endtime) let interval = $interval
where i.host_name like hostFilter group by i.host_name
select topN(moving_analytic(i.metric), N);

The following AQL expression returns the aggregate_avg CPU utilization for all server nodes in the
Operations Bridge Analytics topology. These servers include the database server nodes. This example
uses topology data to filter and returnmetric analysis for important entities in your topology:

[do oaSysperfAggregateMetric("*",cpu_util,aggregate_avg) filter by opsaNodes()
with (
oaSysperfAggregateMetric.host_name== opsaNodes.opsa_server_name,
oaSysperfAggregateMetric.host_name== opsaNodes.collector_server_name,
oaSysperfAggregateMetric.host_name== opsaNodes.logger_server_name,
oaSysperfAggregateMetric.host_name== opsaNodes.vertica_node
)]

/* Returns the results of the overall aggregate analytic function applied to the specified metric.
Input parameters are host filter, metric, and overall aggregate analytic function. */
define oaSysperfAggregateMetric(hostFilter,metric,aggregate_analytic) =
from i in (oa_sysperf_global) let analytic_interval = between($starttime, $endtime)
where i.host_name like hostFilter
group by i.host_name
select aggregate_analytic(i.metric);

/* Returns the host names of Operations Bridge Analytics application servers, logger servers,
collector servers, and vertica nodes in an Operations Bridge Analytics deployment */
define opsaNodes() = from i in (opsa_topology) select i.opsa_server_name, i.logger_
server_name, i.collector_server_name, i.vertica_node;

/*Compares SiteScope response times with OA performance metrics*/

[do metricQuery({oa_sysperf_global}, {1==1}, {i.host_name,i.cpu_util}, {moving_avg
(i.cpu_util), moving_avg(i.disk_byte_rate)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.host_name == topoQuery.host_name), do metricQuery({sitescope_
urlmonitor_metrics}, {1==1},{i.target_name},{moving_avg(i.roundtrip_time_

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 29 of 57

milliseconds)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.target_name == topoQuery.host_name), do metricQuery({sitescope_
ping_metrics}, {1==1},{i.target_name},{i.target_name,moving_avg(i.round_trip_
time)})
filter by topoQuery(custom_topology_nodegroup,{(i.service_name ilike "*")},
{i.service_name,i.group_name,i.host_name})
with (metricQuery.target_name == topoQuery.host_name)]

Bucket Function

The bucket function is used to group the counts of items in a data set that fall into partitions. For
example, for overall cpu_utilization of a set of hosts, youmay want to see how many fall into the 0-10
percent, 10-20 percent, and so on.

The parameters to the bucket function are:

l AQL expression – This is the AQL query that yields the data set to partition.

l numbuckets (optional) – This is an integer to define the number of partitions.

l min and max (optional) – These two numbers specify the range of values to partition.

l aliasforbucketmemberscount (optional) – This is a label to provide ameaningful name for the
count of items in each partition.

Consider the following example use case of the bucket function:

[bucket[metricQuery(oneview_rabbitmq_metrics,{i.category=="server-hardware"},
{i.resource_uri},{aggregate_avg(i.cpu_utilization)})]
(numbuckets=5,min=0,max=100,aliasforbucketmemberscount="Number Of Servers")]

l numbuckets: Change the value of this parameter to the number of partitions that you want to
display. The default value is 5 if you do not assign a value.

l min: Change the value of this optional parameter to theminimum data value you want partitioned.
min is an optional parameter. If you use this parameter, youmust use it along with the max
parameter for this parameter to function correctly.

l max: Change the value of this optional parameter to themaximum data value you want partitioned.
max is an optional parameter. If you use it, youmust use it along with the min parameter for this

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 30 of 57

parameter to function correctly.

Note: If you do not specify the min and max parameters, the range (min/max) is automatically
calculated and the entire range of values is partitioned into buckets.

l Aliasforbucketmemberscount: Change the value of this optional parameter if you need a
meaningful name for the count of items in each partition. If this parameter is not specified, then the
"bucketmemberscount" string is used as the label.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 31 of 57

Chapter 5: Arithmetic Expressions and Aliases

This chapter explains how you can use expressions and aliases in AQL.

l "Using Arithmetic Expressions and Aliases in AQL" below

l "More about Alias Support and Alias Placement Conventions" on page 37

l "Higher Order Arithmetic Involving Intrinsic Calls" on page 38

Using Arithmetic Expressions and Aliases in AQL

Operations Bridge Analytics collections contain multiple attribute andmultiple metric columns. When
creating Operations Bridge Analytics dashboards, it is helpful to combinemultiple metric columns using
arithmetic expressions and query the expression instead of the individual metric columns. You can also
combine columns and another constant in an arithmetic expression, then query the expression instead
of the individual metric columns. You can also invoke statistical intrinsic functions such as moving_
avg. moving_max, moving_min, moving_total, aggregate_avg, aggregate_max, aggregate_min,
aggregate_total, pctile, topN, rank, and others on such arithmetic expressions.

AQL provides you a naming or aliasing facility that makes it convenient to use arithmetic expressions.
You can specify a custom name or alias for your arbitrary arithmetic expressions.

This s chapter describes how AQL enables you to use arithmetic expressions and aliases.

Arithmetic Expressions and Alias Support in Language Core

AQL supports the following arithmetic operators: unary negative (unary -), addition (+), subtraction (-),
multiplication (*), and division (/). You can construct complex arithmetic expressions by using these
operators.

You can also use higher order AQL intrinsic analytic functions such as moving_avg. moving_max,
moving_min, moving_total, aggregate_avg, aggregate_max, aggregate_min, aggregate_total,
pctile, topN, rank, and others on such arithmetic expressions.

AQL permits you to specify aliases using the 'as' keyword. This is useful for providingmeaningful
names to arithmetic expressions. Aliases used in AQL impact the resulting OBA console labels on
dashboards.

You can also use aliases with any measurement or dimension expression in AQL statements
regardless of whether an arithmetic expression is used or not.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 32 of 57

Arithmetic expressions and aliases are permitted in select clause selectors and filtering relational
expressions involving predicates in an AQL statement's where clause. You can also use aliases with
dimension expressions used in an AQL statement's group by clause.

The following is an example of a raw AQL statement to query a raw metric arithmetic expression:

from i in (foo_collection) let analytic_interval=between($starttime,$endtime)
select i.host_name, i.cpu_util_fraction*100 as "cpu util in %"

The above example illustrates the use of an arithmetic expression involving a * operator, a constant
(100), and the column cpu_util_fractionmetric to come up with amoremeaningful cpu utilization in
the percentage column at query time.

The following example demonstrates the use of an arithmetic expression involving twometric columns,
cpu_util and mem_util along with the subsequent invocation of the moving_max intrinsic on the
resulting expression.

from i in (oa_sysperf_global)
let analytic_interval=between($starttime,$endtime) let interval=$interval
group by i.host_name
select moving_max(i.cpu_util*i.mem_util/100 as "foo coeff")

The following example shows the use of an arithmetic expression as a filtering condition in the where
clause predicate.

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval
where i.host_name == "foo.bar.com" && moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff") >= 1.0
group by i.host_name
select moving_avg(i.cpu_util*i.mem_util/100 as "foo coeff")

The following example illustrates the use of a higher order intrinsic topN on an aggregate_avg of an
arithmetic expression. Also note the use of the "foo hosts" alias to give a custom name to a group by a
dimension or attribute host_name.

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval
let aggregate_playback=$aggregate_playback_flag
group by i.host_name as "my hostname column"
select topN(aggregate_avg(i.cpu_util*i.mem_util/100 as "foo coeff"))

The following example demonstrates the use of the ("host count") alias for a non- arithmetic expression
measurement selected in an AQL:

from i in oa_sysperf_global
let analytic_interval=between($starttime,$endtime) let interval=$interval

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 33 of 57

group by i.source
select moving_distinct_count(i.host_name) as "host count"

Arithmetic Expressions and Aliases in AQL Functions

Arithmetic expressions and aliases are also allowed in parameters to AQL functions. Such AQL
function parameters include those representing parts of select clauses and where clauses.
Additionally, aliases can be specified for group by attributes or dimensions in parameters representing
parts of group by clause.

AQL functions support arithmetic expressions and aliases in the following two ways:

l Aliased arithmetic expressions can be parts of parameters enclosed in {} function parameter start
and endmarkers as shown in the bold text in the following example:

[metricQuery(oneview_rabbitmq_metrics,{i.resource_category=="server-hardware"},
{i.resource_uri},{moving_avg(i.average_power/i.power_capacity as "power
coefficient")}]

In the above example, you pass the full arithmetic expression and its alias as a function parameter
enclosed within the {} markers for AQL function parameters.

Similarly, you can use arithmetic expressions as operands to influence the where clause filter
conditions or predicates as shown in the bold text in the following example:

[metricQuery(oneview_rabbitmq_metrics,{(i.resource_category=="server-hardware")
&& (aggregate_avg(i.average_power/i.power_capacity as "power coefficient" >
0.5))}, {i.resource_uri},{aggregate_avg(i.average_power/i.power_capacity as
"power coefficient")}]

In the above example, you set up a filter to fetch only those average power coefficients that are
greater than 0.5.

The following is an example of invoking an AQL function to compute the topN of aggregate_avg of
ametric arithmetic expression:

[metricQuery(oa_sysperf_global,{},{i.host_name},{topN(agreggate_avg(i.cpu_
util*i.mem_util/100 as "foo coeff"))})]

The following is an example of using an arithmetic expression as a filtering condition in a where
clause predicate:

[metricQuery(oa_sysperf_global,
{i.host_name == "foo.bar.com" && moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff") >= 1.0}, {i.host_name}, {moving_avg(i.cpu_util*i.mem_util/100 as "foo
coeff"))})]

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 34 of 57

Although the above examples are using the generic metricQuery() AQL function, similar approaches
apply to user defined custom AQL functions.

l Parts of aliased arithmetic expressions can be passed as AQL function parameters.

For example, you can create a custom function that takes twometric columns of a collection, then
computes an aggregate_avg of the product of the columns.

define
getProductAverages(metric1,metric2,aliasforhost,aliasforproduct) =
from i in (foo_collection)
let analytic_interval=between($starttime,$endtime) let interval=$interval
let aggregate_playback=$aggregate_playback_flag
group by i.host_name as aliasforhost
select aggregate_avg(i.metric1*i.metric2 as aliasforproduct)

An example invocation for the above custom function could look like the following:

[getProductAverages(cpu_util, mem_util, myhost, myproduct)]

Arithmetic Expressions and Aliases in AQL Concatenations and do filter by expressions

You can construct AQL concatenation or AQL do filter by expressions by using AQL functions with
parameters having aliased arithmetic expressions or by the simple use of aliases on non-arithmetic
expressions.

The following is an example of AQL concatenation with arithmetic expressions and the simple use of an
alias on non-arithmetic expressions:

[metricQuery(oa_sysperf_global, {i.source like "HP*"}, {i.source}, {moving_
distinct_count(i.host_name) as "HP* host count"}),
metricQuery(oa_sysperf_global, {i.source like "HPACollector*"}, {i.source},
{moving_distinct_count(i.host_name) as "HPACollector* host count"})]

As another example, suppose you create the following AQL and expect to see two lines displayed in
the resulting dashboard, but Operations Bridge Analytics displays only one line:

[metricQuery({bpm_application_performance}, {i.transaction_response_time >50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time}),
metricQuery({bpm_application_performance}, {i.transaction_response_time <50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time})]

To resolve this issue, use aliases as shown in the following AQL to obtain the two lines you expected:

[metricQuery({bpm_application_performance}, {i.transaction_response_time >50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time as

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 35 of 57

"above 50"}),
metricQuery({bpm_application_performance}, {i.transaction_response_time <50 &&
i.application ilike "ART*"}, {i.application}, {i.transaction_response_time as
"below 50"})]

The following is an example of an AQL do filter by expression with arithmetic expressions in a do
function. This example assumes that you have used theOperations Bridge Analytics topology manager
to create a node group service topology named service1:

[do metricQuery(oa_sysperf_global,{},{i.host_name },{moving_avg(i.cpu_util*i.mem_
util/100 as "foo coeff")}) filter by topoQuery(custom_topology_nodegroup,
{i.service_name == "service1"},{i.service_name,i.host_name}) with
(metricQuery.host_name==topoQuery.host_name)]

You can create an AQL do filter by expression with aliased dimensions used in a with clause of a do
filter by expressions as shown in the following examples:

Example 1:

[do metricQuery(oa_sysperf_global,{},{i.host_name as "bar host" },{moving_avg
(i.cpu_util)})
filter by
topoQuery(custom_topology_nodegroup,{i.service_name == "mynodegroupservice"},
{i.service_name,i.host_name as "foo host"})
with (metricQuery."bar host" == topoQuery."foo host")]

Note the use of aliases in the do function and the filter function, and the corresponding use of aliases in
the with clause.

Example 2:

[do metricQuery(oa_sysperf_global,{},{i.host_name},{moving_avg(i.cpu_util)})
filter by
topoQuery(custom_topology_nodegroup,{i.service_name == "mynodegroupservice"},
{i.service_name,i.host_name as "foo host"})
with (metricQuery.host_name==topoQuery."foo host")]

Note the use of the alias in the filter function alone and the corresponding with clause specification in
terms of only the alias in the filter function.

In general, if you specify an alias for an attribute or dimensions in either a do function or a filter function,
then use the same attributes in a with clause, make sure you use the corresponding aliases to develop
the with clause.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 36 of 57

More about Alias Support and Alias Placement

Conventions

AQL supports the following character sets in aliases:

l Alphanumeric characters.

l Special characters: space, _ (underscore), - (hyphen), %, #, $,!.

l Using surrounding double quotes ("") for aliases containing embedded spaces.

Note: AQL supports amaximum of 128 characters in an alias.

Alias Placement Conventions for Arithmetic Expressions

You can either place the alias at the innermost arithmetic expression, the outermost measurement
expression, or anywhere in between.

Here are a few examples to illustrate these alias placement conventions for arithmetic expressions.

The following AQL example queries the top 20 hosts demonstrating the highest CPU utilization
percentage aggregate averages. Note the specification of alias at the inner most expression level
shown in bold font.

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")
group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100 as "cpu util percent"), 20)

In the above example, the OBA console displays cpu util percent (Aggregate Avg) as the label for
thesemeasurements.

You can rewrite this example as follows for the OBA console to display cpu util percent agg avg as
the label for themeasurement, (note the specification of alias at the inner aggregate_avg intrinsic
invocation level):

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 37 of 57

group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100) as "cpu util percent agg avg",
20)

You can specify the alias at the outermost level as shown in the following example:

from i in (foo_collection) let analytic_interval=between($starttime,$endtime) let
interval=$interval
let aggregate_playback=$aggregate_playback_flag
where (i.host_name like "*")
group by i.host_name
select topN(aggregate_avg(i.cpu_util_fraction*100), 20) as "topn cpu util percent
agg avg"

For consistency with how Operations Bridge Analytics treats cases of non-arithmetic expressions
without aliases specified, it is recommended that you use aliases for arithmetic expressions at the
innermost level to identify themetric arithmetic expression.

Higher Order Arithmetic Involving Intrinsic Calls

This section describes a capability in AQL that enables you to initiate higher order arithmetic
expressions among intrinsic calls and constants. This capability, when exercised, enables you to fulfill
vector arithmetic use cases if you consider the results of individual intrinsic calls as result vectors. This
is especially relevant for cases where the intrinsic call is such that a vector of values at multiple
timestamps (time series) is returned as results. For example, youmight first want to calculate the
moving_total of failed calls, then calculate a moving_total of all calls, and finally calculate a time
series that represents the fraction of all calls that failed at different times. For these use cases, it is
possible to use the intrinsic calls in higher order arithmetic expressions involving one or more intrinsic
calls, constants, or both.

Just as AQL supports arithmetic operators in the basic collection column, constant arithmetic
expressions, or both, AQL supports the following arithmetic operators in higher order arithmetic
expressions too: unary negative (unary -), addition (+), subtraction (-), multiplication (*), and division (/).
You can construct arbitrarily complex arithmetic expressions using these operators and one or more
intrinsic calls or constants.

Similarly, AQL permits you to specify aliases using the 'as' keyword for such higher order arithmetic
expressions thus providingmeaningful names to these higher order arithmetic expressions.

These higher order arithmetic expressions and their aliases are permitted in select clause selectors
and filtering relational expressions involving predicates in an AQL statement's where clause.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 38 of 57

The following example shows a raw AQL statement that queries the higher order arithmetic expression:

from i in (foo_call_collection) let interval = $interval
let analytic_interval=between($starttime,$endtime)
select i.region,
topN((moving_total(i.num_calls) - moving_total(i.num_completed_calls)) / moving_
total(i.num_calls) * 100 as "Failed Call %")

The example shown above illustrates the use of a higher order arithmetic expression that accomplishes
the failed call percentage calculation described in the first few paragraphs of this section. It computes
the following:

l Themoving total intrinsic of all calls (the num_calls column) for each distinct region attribute value
in the foo_call_collection.

l Themoving total of completed calls (the num_completed_calls column) for each distinct region.

l The vector coefficient of this difference vector and themoving total of the num_calls vector for
each distinct region.

Apart from this, it also:

l Multiplies the resulting coefficient by 100 to obtain the failed call % vector showing a trend of failed
calls % over time for each distinct region attribute value in the foo_call_collection.

l Performs a topN intrinsic for this % vector expression to get the top intervals for each region.

You can visualize the result of the computation done in this example on anOperations Bridge Analytics
visualization, such as a bar chart, to understand the top intervals with the highest failed call
percentages.

You can also use basic arithmetic expressions involvingmultiple columns of a collection as arguments
to any intrinsic call that is, in turn, involved in a higher order arithmetic expression involving other
intrinsic calls. The following example illustrates this aspect of these higher order expressions:

from i in (foo_call_collection) let interval = $interval
let analytic_interval=between($starttime,$endtime)
select i.region,
topN((moving_total(i.num_calls-i.num_calls_to_ignore as effective_num_calls) -
moving_total(i.num_completed_calls)) / moving_total(i.num_calls-i.num_calls_to_
ignore as effective_num_calls) * 100 as "Failed Call %")

In the above example, it first deducts a hypothetical column that provides a to-be-ignored call count
from the overall total calls, then evaluates themoving total intrinsic on the difference before feeding that
difference to the rest of the higher order arithmetic expression for the failed call %.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 39 of 57

Such higher order arithmetic expressions are also permitted in parameters supplied to AQL functions.
Such AQL function parameters include those representing parts of select clauses and where clauses.

The following example illustrates invoking the same failed call % example by using an AQL function:

[metricQuery(foo_call_collection,{},{},{region, topN((moving_total(i.num_calls) -
moving_total(i.num_completed_calls)) / moving_total(i.num_calls) * 100 as "Failed
Call %")})]

Similarly, you can construct an AQL do filter by using expressions or AQL concatenation expressions
by using AQL functions with parameters having aliased higher order arithmetic expressions.

The following is an example of an AQL do filter by expression with higher order arithmetic expressions
in a do function. This example assumes that you have used theOperations Bridge Analytics topology
manager to create a node group service topology named service1:

[do metricQuery(oa_sysperf_global,{},{i.host_name },{moving_avg(i.cpu_
util)/aggregate_distinct_count(i.sourceid) * 100 as "foo coeff")}) filter by
topoQuery(custom_topology_nodegroup,{i.service_name == "service1"},{i.service_
name,i.host_name}) with (metricQuery.host_name==topoQuery.host_name)]

This example calculates the resultant time series vector that is a result of evaluating the coefficient of
CPU utilizationmoving average time series vector and flat aggregate count (a scalar) of distinct
sources per host for all hosts defined to be part of service service1.

It is also possible to come up with a higher order arithmetic expression involving only flat aggregate
(scalars) to accomplish a complex scalar arithmetic use case. For instance, the following example
permits us to get the coefficient of aggregate total of num_calls for each country divided by the total
count of regions for each country:

[metricQuery(foo_call_collection,{},{},{country, aggregate_total(i.num_
calls)/aggregate_distinct_count(i.region) as "My Distribution Coefficient"})]

Note: Similar to using basic arithmetic expressions described in previous sections, the columns
used in the higher order arithmetic expressions involving intrinsic calls are also expected to be
from same collection.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 40 of 57

Chapter 6: AQL for Log Data

Text Search is a feature that enables you to search all logs and events and filter the results in many
ways. See Text Search in the Operations Bridge Analytics help for detailed information.

Using AQL functions such as aqlrawlog, aqlrawlogcount, and aqlrawlogarbitrary are no longer
necessary, as the Text Search feature enables you to search and filter logs in many ways.

You can use the aqllogsummary AQL function when adding a Log and Event Analytics query pane to a
custom dashboard. To do this, add a query pane with the following AQL query to a custom dashboard:
aqllogsummary(<aqllit></aqllit>, $starttime, $endtime, $problemtime)

SeeHow to Add or Edit a Query Pane in theOperations Bridge Analytics Help for more information.

The Text Search tool works with supported predefined source types, such as Operations Manager
Events as well as new source types that you add, such as tailing file. SeeAdding or Connecting
Source Types in the Operations Bridge Analytics help for detailed information.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 41 of 57

Chapter 7: Troubleshooting AQL Queries

Use the information in this section to troubleshoot your AQL queries.

This chapter contains the following topics:

l "Introduction" below

l "Syntax Errors" below

l "Meta Data Errors" on the next page

l "Semantic Errors" on page 44

l "Understanding and Using the limit Parameter in an AQL Query " on page 46

Introduction

When composing or trouble-shooting an AQL query, always decompose the query as much as possible
to isolate the problem.

Use the following guidelines to isolate the problem:

l Reduce an AQL list of queries to a single query that is causing the problem.

l Separate the do query from the filter by query if the original query is a composition.

l Simplify the where clause as much as possible to get the query to work.

l Simplify the select clause as much as possible to get the query to work.

After you reduce the query to a query that works and that returns results, begin adding the removed
portions to isolate the problem. The problem will normally become clear when you follow this process.

Syntax Errors

AQL queries report syntax errors as 'line:column' where the syntax error occurs. Suppose you created
an AQL query with a syntax error in the from clause (missing parenthesis) as follows:

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 42 of 57

After you run this AQL query, it displays the following error pane indicating the location of the syntax
error.

Meta Data Errors

AQL queries report meta data errors as a general error. Suppose you have an AQL query with a
reference to data that is not defined (type cpu_utill instead of cpu_util).

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 43 of 57

After you run this AQL query, it displays the following error pane indicating themeta data error.

Below are a few other commonmeta data errors:

l The collection does not exist

l Trying to perform numeric operations on non-metric data types

l Selecting raw metric data with no grouping or operations

Semantic Errors

There aremany potential semantic errors youmight encounter when developing an AQL query. A
semantic error means the resulting data cannot be properly rendered. For example, time-series data
cannot bemixed with attribute value data. Time-series data needs to be rendered as a line chart or heat

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 44 of 57

map and attribute values are typically rendered as a table (although they can be presented as other
charts, such as pie charts).

Suppose you have a query in which the select list is mixing time-series data and attribute value data.
Note that the moving_avg is returning time-series data and aggregate_avg is a value.

If you run the above AQL query, then only the time-series (moving_avg) data will be displayed as
shown in the following graphic; the aggregate value will not be displayed.

When working with AQL queries, the AQL queries that you develop often yields unexpected results.
The best troubleshooting technique is to decompose the query as much as possible to make sure that
parts of the query are working. The query might be returning disparate data types that cannot all be

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 45 of 57

rendered into a single pane. In such cases you can separate the decomposed query into multiple
panes.

Understanding and Using the limit Parameter in
an AQL Query

The Limit value for a dashboard controls the number of retrieved query results. You can use the Limit
parameter, which is located in the dashboards pane's Parameters tab, to override this setting. The
default value for Limit in a dashboard is 100. If you set the Limit parameter to a value of 200 in the
parameters tab, the effect is to override the Limit dashboard pane parameter, setting it to support 200
results.

The following AQL query returns the aggregate average of the CPU utilization of hosts that report
system performancemetrics:

[metricQuery(oa_sysperf_global,{i.host_name like"*mydomain.com"},{i.host_name},
{aggregate_avg(i.cpu_util)})]

Now, if you havemore than 100 distinct host instances in the Operations Bridge Analytics collected
system performancemetrics data, it is likely that the query will return only the first 100 of them with
their average CPU utilizations. To see all the host instances, click the dashboard's Parameters tab,
then adjust the Limit setting. For example, if you have 200 host instances, then setting the Limit
parameter value to 200 will force AQL to return all 200 of the hosts with their CPU utilization averages.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 46 of 57

Chapter 8: Using R with AQL

Custom analytics developers must take certain actions to register custom analytics written using R
and use them on data collected by Operations Bridge Analytics. Using Operations Bridge Analytics
2.10 or newer, you can run R functions on results from underlying basic AQL functions or expressions
that fetch entities and themeasurements. AQL functions or expressions fetch entities and the
measurements done on them based on data collected by Operations Bridge Analytics. See "AQL
Functions and Expressions" on page 19 for more information.

This chapter contains the following topics:

l "Setting up the R Language Pack from Vertica" below

l "Creating the R Functions that Integrate with Operations Bridge Analytics" on the next page

l "Registering an R Function" on page 52

l "Using your R Function in anOperations Bridge Analytics Dashboard" on page 54

l "Limitations" on page 56

Setting up the R Language Pack from Vertica

Operations Bridge Analytics uses Vertica's R language run time environment for any R function that
you register with both Operations Bridge Analytics and Vertica. It is mandatory that you have the
Vertica R Language Pack set up on each node of the Vertica cluster used by your Operations Bridge
Analytics deployment. Youmust install the following packages on each node of the Vertica cluster to
set up the Vertica R language pack:

l The compat-libgfortran package (if required in your version of Vertica).

l The three vertica-R-lang packages.

To install these packages, complete the instructions shown in theApproach 2: Operations Bridge
Analytics-Related Extensions section of theOperations Bridge Analytics Installation Guide.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 47 of 57

Creating the R Functions that Integrate with

Operations Bridge Analytics

Operations Bridge Analytics requires all R functions to conform to the Vertica R UDX framework (R
UDX). In order to have a valid R UDX, Vertica requires the following:

1. R functions must have a corresponding UDX factory function written in R. This functionmust
capture input, output frame descriptions, and descriptions of optional input parameters to the core
R function.

2. If an R function's output frame does not contain a fixed number of columns with fixed types, then
the factory functionmust specify an output type callback R function that is written by the user.
The output callback function describes the output frame structure to Vertica at runtime.

3. It is expected that a single .R file is created that contains all of the following:

a. The UDX factory R function.

b. Any optional output callback R function.

c. Any optional parameter callback R function.

d. The core R function containing the analytics logic or a wrapper function that invokes the
analytic R function. This function is basically themain entry point from AQL into custom
analytics.

All of the abovementioned pieces of codemust be present in a single .R file that is used for registering
the R function as a valid Vertica R UDX.

Operations Bridge Analytics provides some example .R files containing core R functions, their UDX
factory R functions, and output callback functions in the following location:
/opt/HP/opsa/inventory/lib/hp/r-udx-examples

See the example named MVCorr.R that attempts to do statistical correlation between pairs of time
series measurements.

The following snippet from the MVCorr.R example demonstrates the boiler plate code that must be
written to establish the contract with Vertica for the outgoing result or output frame columns. If you
want the frame columns output by specific names or want to specify specialized types for some of
these columns, youmust code the outtypecallbackR function and register the same in UDX factory
R function.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 48 of 57

mvCorrOutType<-function(x){
ret <- data.frame(datatype=rep(NA,5),lenth=rep(NA,5),scale=rep(NA,5),name=rep
(NA,5))
ret[1,4]="entity"
ret[2,4]="measurement"
ret[3,4]="correlatedentity"
ret[4,4]="correlatedmeasure"
ret[5,4]="correlationcoeff"
ret[1,1]="varchar"
ret[2,1]="varchar"
ret[3,1]="varchar"
ret[4,1]="varchar"
ret[5,1]="float"
ret[1,2]=x[2,2]
ret[3,2]=x[2,2]
ret
}

Note: Note how the input parameters are used by the mvCorrOutType callback function to
describe the output column names and types.

The names used above in the outtypecallback function are directly processed by AQL in its result
processing and sent to the dashboard pane in the OBA console.

The following snippet from the MVCorr.R example, illustrates how to write the UDX factory function:

mvCorrFactory<-function(){
list(name=mvCorr,udxtype=c("transform"),intype=c("any"), outtype=c("any"),
outtypecallback=mvCorrOutType)
}

The following snippet from the MVCorr.R example illustrates how to write themain entry point into the
custom analytics, possibly as a wrapper function:

mvCorr <- function(x){
rvs<-buildRVs(x)
rvObservations<-buildRVObservations(x,rvs)
correlationCoeffs<-buildMVCoefficients(rvObservations)
rvPairsAndCoeffs<-buildRVPairsAndCoeffs(rvs,correlationCoeffs)
rvPairsAndCoeffs
}

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 49 of 57

Identifying the Distinct Time Series Measurements in an

Input Frame for an R function

AnR function's integration with Operations Bridge Analytics currently assumes that the R function is
written so that it first identifies the time series measurements (the observations of ametric or
measurement at various equally spaced time intervals) in the Operations Bridge Analytics domain from
the input data frame that is fed to the R function at run time. The following information helps you
understand the concept of these time series variables and write R code to identify these variables in the
input frames.

As mentioned earlier, you can useOperations Bridge Analytics dashboard panes to invoke R functions
on an AQL function or expression that results in Operations Bridge Analytics time-series data.

At run time, an AQL function or expression is translated to Vertica SQL statements. When an R
function is invoked using AQL on top of an AQL function or expression, AQL additionally wraps these
Vertica SQL statements inside of another Vertica SQL statement involving the registered R UDX
invocation.

The inner Vertica SQL statement translated from the AQL function or expressions represents the query
that Vertica will run internally to supply the results of the same as an input data frame to the R function.

After an entity, its measurements, and their corresponding time series data are identified, each entity
andmeasurement combination could be considered a valid unique instance of a variable backed by the
time series data being the observations for the variable.

The following snippet of code from the MVCorr.R example demonstrates one way to capture the time
series measurement variables before doing either of the following:

l Supplying the pairs of such time series measurements to the core R function.

l Evaluating the correlation coefficient for determining the level of correlation between the pair of
measurement variables in question.

#
MultiVar correlation function R UDX entry point
#
mvCorr <- function(x){
rvs<-buildRVs(x)
rvObservations<-buildRVObservations(x,rvs)
correlationCoeffs<-buildMVCoefficients(rvObservations)
rvPairsAndCoeffs<-buildRVPairsAndCoeffs(rvs,correlationCoeffs)

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 50 of 57

rvPairsAndCoeffs
}
identify unique combinations of entities and measurements for which to collect
the time series observations
buildRVs<-function(x){
unique(x[,2:3])
}
#accumulate time series measurements for each combination of entity and
#measurements, thus creating the unique variables under consideration
buildRVObservations <- function(x, rvs){
nRVs <- nrow(rvs)
rvmap<-new.env(hash=TRUE,size=nRVs)
for (i in 1:nRVs){
assign(paste(rvs[i,1],rvs[i,2],sep=""),value=i,envir=rvmap)
}
rows <- nrow(x)
tsColumn <- 1
mvSamples <- array(,dim=c(nRVs,0))
ts = x[1,tsColumn]
i = 1
while (i <= rows)
{
ts = x[i,tsColumn]
colSample <- array(NA, dim=c(nRVs,1))
while ((i <= rows) && (x[i,tsColumn] == ts)){
rvkeytolookup<-paste(x[i,2],x[i,3],sep="")
if (! is.null(rvmap[[rvkeytolookup]])){
colSample[rvmap[[rvkeytolookup]]] = x[i,4]
}
i <- i + 1
}
mvSamples <- cbind(mvSamples,colSample)
}
mvSamples
}
Iterate through list of variables and invoke R core function cor to calculate
correlation coefficient between #each unique pair of variables
buildMVCoefficients <- function(multiVarSamples) {
nRandomVars <- nrow(multiVarSamples)
multiVarCorCoef <- array(0, dim=c(nRandomVars, nRandomVars))
for (i in 1:(nRandomVars-1)) {

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 51 of 57

for (j in (i+1):nRandomVars) {
multiVarCorCoef[i,j] <- cor(multiVarSamples[i,], multiVarSamples[j,], use =
"na.or.complete")
}
}
multiVarCorCoef
}
buld final results to be returned to caller of R UDX.
buildRVPairsAndCoeffs <- function(rvs,rvCoeffs) {
entity<-c()
entitymeasure<-c()
correlatedentity<-c()
correlatedentitymeasure<-c()
correlationcoefficient<-c()
for (i in 1:(nrow(rvs)-1)) {
for (j in (i+1): (nrow(rvs))) {
entity<-c(entity, as.character(rvs[i,1]))
entitymeasure<-c(entitymeasure, as.character(rvs[i,2]))
correlatedentity<-c(correlatedentity, as.character(rvs[j,1]))
correlatedentitymeasure<-c(correlatedentitymeasure, as.character(rvs[j,2]))
correlationcoefficient<-c(correlationcoefficient, rvCoeffs[i,j])
}
}
result <- data.frame
(entity,entitymeasure,correlatedentity,correlatedentitymeasure,correlationcoefficie
nt)
result
}

Registering an R Function

Youmust register a newly created R Function with both Vertica andOperations Bridge Analytics.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 52 of 57

Registering your R function with Vertica

1. Prepare the .R file so that it contains the following:

o The core R function implementing your custom analytics logic or wrapper function that actually
calls your core custom analytics.

o The Vertica R UDX factory function.

o Output type callback R function.

o Any other helper R functions used by the core R function.

2. Run the Vertica R UDX load commands to load the R function into Vertica. At this stage the R
function becomes available as a valid UDX that can be invoked from Vertica SQL.

Note: Youmust complete these steps as a valid Vertica database user who has the privileges to
run SQL commands and who can create UDX functions in the Vertica database system.

The following is an example of the pair of Vertica SQL commands required to load the example R UDX
provided in the MVCorr.R example:

create library mvCorrLib as '/home/dbadmin/functions/MVCorr.R' language 'R';
create transform function mvCorr as language 'R' name 'mvCorrFactory' library
mvCorrLib;

You can also review the Vertica documentation about how to load Vertica R UDX functions.

Registering your R function with Operations Bridge

Analytics

After the R function is loaded and available in Vertica, youmust register the R functionmodule into
Operations Bridge Analytics.

1. Create an R module specification file. The following example shows the contents of one such
module definition file that defines the R module for themulti-variate correlation R UDX function
example from the /opt/HP/opsa/inventory/lib/hp/r-udx-examples/mvCorr.R file.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 53 of 57

module MultiVariate;
/* Does multivariate correlation */
define mvCorr input(any, integer, integer) output(any);

Save the content in a text file. For example, see
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

2. Load the R module specification into OPERATIONS BRIDGE ANALYTICS by running the
following command:
/opt/HP/opsa/bin/opsa-rspec-module-manager.sh -?
You should see an output similar to the following:
OPSA_HOME is set to /opt/HP/ops

-t <tenant name> Name of Tenant (mandatory argument except when using –v
option)
-v <file> Validate File
-l modules List Summary of Loaded Modules
-l all List Contents of All Loaded Modules
-l <modulename> List Contents of Module
-i <file> Import File
-a <authorname> Specify Author for Import File
-d <modulename> Delete Module
-? This help message

For example, you could load the R module named MultiVariate previously defined in the
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec file by running the following command:

/opt/HP/opsa/bin/opsa-rspec-module-manager.sh – t opsa_default -i
/opt/HP/opsa/inventory/lib/hp/r/multivariate.rpsec

Using your R Function in an Operations Bridge

Analytics Dashboard

You can create a dashboard pane with your AQL function or expression that returns time series data
that you can visualize using anOperations Bridge Analytics line chart, heat map chart, or bar chart
elements in the OBA console.

In a dashboard pane, you can visualize the results of the AQL function by using it in the query edit box
for the pane as shown below:

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 54 of 57

The query used in the query editor for the above dashboard pane is:

[metricQuery(oa_sysperf_global,{i.host_name ilike "*<mylocation>.<mycompany>.com"},
{i.host_name}, {moving_avg(i.mem_util)})]

Now surround the AQL function call with a call to a registered R function as shown below to trigger the
invocation of the registered R function:

The query, after surrounding the AQL function call with the invocation of the registered R function,
looks as follows:
[mvCorr[metricQuery(oa_sysperf_global,{i.host_name ilike
"*<mylocation>.<mycompany>.com"},{i.host_name}, {moving_avg(i.mem_util)})]()]

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 55 of 57

Limitations

Only a table visualization of the invoked R function is supported in Operations Bridge Analytics 2.20 or
newer.

AQLDeveloper Guide

HPE Operations Bridge Analytics (3.02) Page 56 of 57

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on AQL Developer Guide (Operations Bridge Analytics 3.02)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to ovdoc-asm@hpe.com.

We appreciate your feedback!

HPE Operations Bridge Analytics (3.02) Page 57 of 57

mailto:ovdoc-asm@hpe.com?subject=Feedback on AQL Developer Guide (Operations Bridge Analytics 3.02)

	Chapter 1: What is AQL?
	Chapter 2: Using AQL
	Chapter 3: AQL Syntax, Intrinsics, and Examples
	AQL Syntax
	Intrinsic Statistical Functions in AQL
	AQL Query Examples

	Chapter 4: AQL Functions and Expressions
	Define AQL Functions
	Create and Use AQL Functions
	Import AQL Functions
	Collection-specific AQL Functions
	Generic AQL Functions
	AQL Expressions
	Bucket Function

	Chapter 5: Arithmetic Expressions and Aliases
	Using Arithmetic Expressions and Aliases in AQL
	More about Alias Support and Alias Placement Conventions
	Higher Order Arithmetic Involving Intrinsic Calls

	Chapter 6: AQL for Log Data
	Chapter 7: Troubleshooting AQL Queries
	Introduction
	Syntax Errors
	Meta Data Errors
	Semantic Errors
	Understanding and Using the limit Parameter in an AQL Query

	Chapter 8: Using R with AQL
	Setting up the R Language Pack from Vertica
	Creating the R Functions that Integrate with Operations Bridge Analytics
	Identifying the Distinct Time Series Measurements in an Input Frame for an R ...

	Registering an R Function
	Registering your R function with Vertica
	Registering your R function with Operations Bridge Analytics

	Using your R Function in an Operations Bridge Analytics Dashboard
	Limitations

	Send documentation feedback

