Unified Correlation Analyzer
Value Pack Development Guide

Version 3.4
Edition: 1.0

—

Hewlett Packard
Enterprise

Notices

Legal notice

© Copyright 2017, Hewlett Packard Enterprise Development LP

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR
12211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HPE products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions
contained herein.

Printed in the US

Warranty

The information contained herein is subject to change without notice. The only warranties for HP products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions
contained herein.

Trademarks

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on all HP 9000
computers are Open Group UNIX 95 branded products.

Java™ is a frademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of The Open Group.

X/Open®is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the UK and other
countries.

Red Hat® is a registered trademark of the Red Hat Company.
Linux@® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Veritas™ Cluster Server is a registered trademark of Symantec Company.

Notices

Preface

Contents

Notices 2

... 1

.. 8

About this guide ... 8

AUIENCE ... 8

Software Versions... 8

Typographical Conventions 8

Associated Documents 9

R3]0] 0] o [0] S 9

ChaPLer L INTFOTUCTIONoovviiesics s bbb 11

Chapter 2 Getting started With UCA fOF EBC..........coooiiiississss s sssssssssssssssssasssans 12

2.1 Software Prerequisites 12

2.11 Operating system 12

2.1.2 Java JRE/IDK ..o 12

213 Eclipse IDE ... 13

2.14 Installing UCA for EBC and UCA for EBC Development Kit 14

2.15 Post-install environment setup 14

2151 The UCA_EBC_DEV_HOME variable 14

2.15.2 Ant configuration 14

2.16 UCA for EBC Eclipse plug-in installation instructions 15

Chapter 3 Value pack development lIfECYCIE ..o e 18

3.1 Value pack and Scenario definitions 18

311 Value Pack Definition 18

3.1.2 Scenario Definition 18

32 Life Cycle..mmmmmmmmnn 19

3.3 Creating a new UCA for EBC Value Pack 19

331 Creating a value pack project within Eclipse 20

3.3.2 Anatomy of the created project 23

3.3.3 Validation of the created project 24

3.4 Customizing the created ‘skeleton’ Value Pack project 26

34.1 Updating the scenario filters 27

34.2 Updating the correlation rules file 27

35 Generating the Value Pack kit 27

3.6 Deploying the Value Pack kit on UCA for EBC 29
3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or Linux system running UCA for EBC

SBIVET st 30

3.6.2 Deploy the Value Pack 30

36.3 Start the Value Pack on UCA for EBC Server 30

3.7 Testing the Value Pack in real-time 3l

Chapter 4 Focus on development KEY POINTS ..o ssssssssssssesssssssssessanses 33

4.1 Implementing Alarm enrichment 33

4.2 Developing the scenario rules 35

Notices 3

4.21 BASICS o 36
4.2.2 Sample rules on Alarm facts in CLOUD mode 37
4.2.3 Sample rules on Alarm events in STREAM mode 39
4.2.4 Defining and using rule templates 41
425 Introducing Java code in the rules 41
4.3 Defining your own beans 42
4.4 Executing external actions from the rules 42
4.4 Standard external actions 43

4.4.11 Writing Actions for the UMB TeMIP Mediation Adapter or for the OSS Open Mediation TeMIP
Channel Adapter 47

4.4.1.2 Writing Actions for the UMB Exec Mediation Adapter or for the OSS Open Mediation Exec

Channel Adapter 50
4.4.2 Calling services defined using Spring 51
4.4.3 Forwarding alarms to external systems 52
4.4.4 Forwarding events through UMB 58
4.5 Making useful 10gS.....mmmmmmn 60
4.6 Creating JUNIt TeStS........mmmmmmmmnn 61
4,61 Testing with alarms 62
4.6.2 Testing with events 65
4,63 State Listener 67
4.7 Injecting alarms to UCA for EBC: Alarm Collector 71
471 Normalized input 72
4.711 Sample alarms file 72
4.7.2 Command-line injector tool 72
4.73 A sample Java Alarm injector 73
4.7.31 Initializing the JNDI initial context 73
4.7.32 Configuring the jndi.properties file 73
4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic 73
4.7.34 Connect and send the message 74
4.8 Injecting events to UCA for EBC: Event Collector 74
Chapter 5 Advanced DevelopmENT FEATUIES ... 76
5.1 Spring Framework integration 76
511 Defining and using Spring Beans inside rule files using global variables 76
5.2 Using the Flag Object 79
5.3 Alarm CustomFields 79
54 Alarm Raised TimMe ... 79
5.5 Scenario specific configuration 79
5.6 Performing initialization at scenario startup 79
5.7 WUI extensions for value packs 79
5.7.1 Extending the WUI at value pack Level 80
5.7.2 Extending the WUI at Global Level 80
5.7.3 Web application extensions configuration 8l
5.7.31 Defining the URL service Path for extensions at value pack level 8l
5.7.3.2 Defining the URL service Path for extensions at global level 8l
5.7.3.3 Defining the URL parameters for extensions at value pack level 82

5.7.34 Defining the URL parameters for extensions at global level 82

Notices 4

5.7.4 Inheriting the UCA for EBC logged user and role in the extended web application 82

5.8 Configuring the GUI filter tags editor 83
5.9 Editing Filter Files with the UCA for EBC eclipse filter editor 83
5.9.1 Editing a Filter 83

59.2 Associating an Alarm File Sample to the Filter Editor 84

5.9.3 How to read the Filter editor aggregated view? 85

5.9.4 How to read the ‘passed filter’ view? 86

5.9.5 How to use the filter to create a new top-filter? 87

5.10 Persisting alarms or events using the DB forwarder feature 88
510.1 CoNCEPLS...onmvmmms 88
5.10.11 Storing alarms 88

5.10.1.2 Storing events 88

5.10.2 Getting started 89
5.10.2.1 Defining the datasource 89

5.10.2.2 Defining the DB store 90

5.10.2.3 Defining the DB forwarder 90

5.10.24 Defining the DB flow 91

510.3 EXample ... a1

5104 Advanced settings 92
5.10.4.1 Defining the SQL Session factory 92

5.10.4.2 Defining the DB Alarm DAO 92

5.10.4.3 Defining the DB Notifier 93

5.10.4.4 Defining the DB Event DAO 93

5.10.4.5 Defining the SQL Mapping interfaces 94

AppendiX A AN DUIAXMI TAIGETS.........ocvriiie s 96

APPENTIX B GIOSSANY ...ttt 97

Notices 5

List of tables

Table 1 - Software Versions........uw.. 8
Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit 12
Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit 13
Table 4 - Java helper classes for TeMIP adapter 47
Table 5 - AO directives helper classes 48
Table 6 - TT directives helper classes 49
Table 7 - Java helper classes for Exec adapter 51
Table 8 - IMS properties set for alarms being forwarded to OSS Open Mediation 57
Table 9 - Settable properties of an SQL store 90
Table 10 - Properties of a DB forwarder 90
Table 11 - Properties of a DB flow. 91
Table 12 - Properties of the MyBatis SQL session factory bean 92
Table 13 - Properties of the DB Alarm DAO 92
Table 14 - Properties of the DB Notifier 93
Table 15 - Properties of the DB Event DAO 93

Table 16 - GlOSSArY ... 97

Notices 6
List of figures

Figure 1 - UCA for EBC Eclipse plug-in: INStAllation STEP L. s 15
Figure 2 - UCA for EBC Eclipse plug-in: INStallation SLEP 2. s 16
Figure 3 - UCA for EBC Eclipse plug-in: INSTallation SLEP 3. s 17
Figure 4 — The UCA for EBC SCeNario COMPONENTS ... 18
Figure 5 - The 5 steps to create @ UCA fOr EBC VAIUE PACK...........mmmmmmmmmmmmmnn 19
Figure 6 - Value pack project Creation WiZard STEPL.........mmmmmmnmns s, 21
Figure 7 - Value pack project Creation Wizard STEPZ.......ummmmmmmmmmmmmmm s s osssomssns 22
FIGUIE 8 = CIEALET VAIUB PACK ... 23
Figure 9 - Folder structure of the Created PrOJECT ... ———————————————————————————————————————., 24
Figure 10 - Running JUnit tests on the created project in EClPSE IDE.....oummmmmmmmmmmmsmm o 25
Figure 11 - JUnit tests results on the created project in EClIPSE IDE ... 26
Figure 12 - Running JUnit tests on the created project at the command-ling USING ANL......mmmmmmmmmm——nn 26
Figure 13 - JUnit tests results on the created project viewed using & Weh DrOWSET ..., 26
Figure 14 - The default “catch all” project’s filterS.XmMI file s —————— ————————————————.————————————. 27
Figure 15 - Building the kit of your customized VAlUE PACK. ... 28
Figure 16 - The kit of your CUSEOMIZEA VAIUE PACK..........mmmmmmmmmnmm0nnmn, 29
Figure 17 - Contents of the ZIP file of your cUStOMIZEd VAIUE PACK ..., 29
Figure 18 - Defining AlarmForwarder beans in the CONEXEXMI e ... —— ——————————— 54
Figure 19 - Defining AlarmForwarder globals in the ValuePackConfigurationXml file ... 55
Figure 20 - Declaring the use of an AlarmForwarder global variable in @ rUIE file.......wmmmmm—————— 56
Figure 21 - Using an AlarmForwarder global variable to write Alarms t0 an XML fil.......ummmmmmmmmmmmmmmmsns 57
Figure 22 - Defining mediationEventForwarder bean in the CONtEXEXMI FIlE ... ———— 59
FIQUIE 23 - SCENANIO I0QGET EXAMPE .. 0 61
Figure 24 - JUNIt tests reSUltS fOr YOUF VAIUE PACK ... s 71
Figure 25 - UCA fOr EBC AlAIMN COIBCTION .o 72
Figure 26 - The default project’s empty CONTEXTXMI FIlE o ———————— .. —————————.——————————————. 76

Notices 7

Figure 27 - The “Low Level Event Filtering” Value Pack’s context.xml file 77
Figure 28 - Defining global variables in the ValuePackConfiguration.xml file 77
Figure 29 - Defining global variables in rules files 78
Figure 30 - Using global variables in rules files 78
Figure 31 — AlarmDao Java interface 94

Figure 32 - EventDao Java interface 94

Preface 8

Preface

About this guide

This guide provides an overview of the Unified Correlated Analyzer for Event Based Correlation product and describes
how to create Value Packs to target customer specific use cases.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also referred in this document as UCA for EBC)
Product Version: 34

Kit Version; 3.4

Audience

Here are some recommendations based on possible reader profiles:

e Solution Developers and integrators
e Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless otherwise specified.
The software versions referred to in this document are as follows:

Table 1 - Software versions

Product Version Supported Operating systems
UCA for Event Based Correlation e HP-UX 1131 for Itanium
Server Version 34 e Red Hat Enterprise Linux Server release 6x & 7.X
UCA for Event Based Channel e HP-UX 1131 for Itanium
Adapter 34 e Red Hat Enterprise Linux Server release 6.x & 7.x
UCA for Event Based Correlation e Windows XP / Vista 64 bits
Software Development Kit Version 34 e Windows Server 2012
e Windows 7 64 bits

Typographical Conventions

Courier Font

e Source code and examples of file contents.
e Commands that you enter on the screen.
e Pathnames

e Keyboard key names

Preface 9
[talic Text;

e Filenames, programs and parameters.
e The names of other documents referenced in this manual.

Bold Text;

e Tointroduce new terms and to emphasize important words,

Associated Documents

The following documents contain useful reference information:

[R1] Unified Correlation Analyzer for Event Based Correlation - Installation Guide

[R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide

[R3] Unified Correlation Analyzer for Event Based Correlation — Administration, Configuration and Troubleshooting Guide
[R4] Unified Correlation Analyzer for Event Based Correlation - Value Pack Examples

[R5] 0SS Open Mediation V7.2 - Reference Guide

[R6] OSS Open Mediation V7.2 - Installation and Configuration Guide

[R7] Unified Correlation Analyzer for Event Based Correlation - User Interface Guide

[R8] Unified Correlation Analyzer for Event Based Correlation - Topology Extension

[R9] Unified Correlation Analyzer for Event Based Correlation IM - User Guide

Support

Please visit our HPE Software Support Online Web site at https.//softwaresupport.hpe.com/ for contact information, and
details about HP Enterprise Software products, services, and support.

The Software support area of the Software Web site includes the following:

e Downloadable documentation.

https://softwaresupport.hpe.com/

Troubleshooting information.
Patches and updates.
Problem reporting.

Training information.

Support program information.

Preface 10

Introduction 11

Chapter1
Introduction

This guide explains how to create a new correlation project, how to package it and deploy it on a Unified Correlated
Analyzer for Event Based Correlation (UCA for EBC) Server in just a few minutes.

After validating some pre-requisites and installing both UCA for EBC (runtime) and UCA for EBC Development Kit
products, the following chapters will dive into the development of UCA for EBC Value Packs and explain how to create
new scenarios, how to develop alarm/event correlation rules based on samples and how to customize UCA for EBC.

Throughout this document, we use the { UCA EBC HOME } environment variable to reference the root directory
(“static” part) of UCA for EBC. The default value for the $ {UCA EBC HOME } environment variable is /opt /UCA-
EBC.The $ {UCA EBC HOME} environment variable thus references the /opt /UCA-EBC directory unless UCA for
EBC “static” part has been installed in an alternate directory.

We also use ${UCA EBC DATA} environment variable to reference the data directory (“variable” part) of UCA for
EBC. The default value for the $ {UCA EBC DATA} environment variable is /var/opt/UCA-EBC. The
${UCA EBC DATA} environment variable thus references the /var/opt/UCA-EBC directory unless UCA for
EBC “variable” part has been installed in an alternate directory.

Since UCA-EBC V20, the s {UCA EBC DATA} directory may contain multiple instances of UCA-EBC. In this
document, we will use the value $ { UCA EBC INSTANCE } for referring to

${UCA EBC DATA}/instances/<instance-name> directory. Atinstallation, asingle <instance-
name>is configured: default.

Getting started with UCA for EBC 12

Chapter 2
Getting started with UCA for EBC

2.1 Software Prerequisites

2.1.1 Operating system

To know on which OS you can use the Development Toolkit, refer to [R1] Unified Correlation Analyzer for Event Based
Correlation - Installation Guide

2.1.2 Java JRE/JDK

The following table lists the Java JRE'/JDK pre-requisites for UCA for EBC Development Kit:

Table 2 - Java JRE/JDK Prerequisites for UCA for EBC Development Kit

Software Version Supported

Java JDK 1.6.0 or later Yes

Java JDK 1.7.0 or later Yes and Recommended
Java JDK 1.8.0 or later No

You can check whether Java is already installed on your system and which version of the Java JRE/JDK is installed by
issuing the following commands:

On Windows XP, Windows Vista, Windows 7, and Windows Server 2012:

To check if you already have Java installed, open a command-line (Run... -> cmd.exe) and type:
C:\> java -version

You should get an output similar to the following:

java version "1.6.0 17"
Java (TM) SE Runtime Environment (build 1.6.0 17-b04)
Java HotSpot (TM) Client VM (build 14.3-b01, mixed mode, sharing)

Alternatively to using the command-line, you can check if you already have Java installed by going to the Control Panel
and selecting the Java icon. In the Java tab, you will find information on the Java version installed on your system.

The latest JDK package for Windows XP, Windows Vista, Windows 7, and Windows Server 2012 can be downloaded (for
free) from www.hp.com/go/java

On Linux:

! Java 16 JRE is enough for using the UCA for EBC Development Kit. However the JDK comes with some useful debugging tools
(jconsole, jvisualvm, etc..) that may prove helpful for troubleshooting. It is therefore recommended to install the JDK.

http://www.hp.com/go/java

Getting started with UCA for EBC 13
To check if Java is already installed:
$ rpm —ga | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an output similar to the following (here
16.0 and 1.7.0 are installed).

java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.e16.x86 64
java-1.6.0-openjdk-devel-1.6.0.0-1.41.1.10.4.c16.x86 64
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6 3.x86 64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1. el6_3 x86 64

You can also download (for free) the latest Java packages (HotSpot Java VM) from Oracle from
http://java.com/en/download/manual jsp. If this is installed (usually under /usr/java), you should get an output similar to
the following:

jdk-1.7.0_75-fcs.x86_64

2.1.3 Eclipse IDE

The UCA for EBC Development Kit has been designed for an easy integration with the Eclipse Integrated Development
Environment (IDE) tool.

Before starting the development of any UCA for EBC value pack, it is necessary to download and install the Eclipse ™
application development environment.

The following table lists the Eclipse IDE pre-requisites for UCA for EBC Development Kit:

Table 3 - Eclipse IDE Prerequisites for UCA for EBC Development Kit

Software Version
Eclipse IDE 3.7 (Indigo) or higher

The minimum version of Eclipse IDE required by the UCA for EBC Development Kit is version 34 but we recommended
Eclipse IDE version 3.7 (Indigo) or higher.

If you already have Eclipse IDE installed on your system, you can either use this version with the UCA for EBC
Development Kit (provided this version complies with the version requirement: version 3.4 or higher) or you can install a
new version of Eclipse IDE.

If you want to install Eclipse IDE, please go to the following URL for downloading Eclipse IDE:
http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Neon 4.6.
We recommend you to download either (other choices may also be valid):

o Eclipse IDE for Java Developers, or
o Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE depending on whether you have a 32-
bit or 64-bit operating system.

http://java.com/en/download/manual.jsp
http://www.eclipse.org/downloads/

Getting started with UCA for EBC 14

2.1.4 Installing UCA for EBC and UCA for EBC Development Kit

Detailed information on how to install UCA for EBC and UCA for EBC Development Kit is provided in the [Rl] unified
Correlation Analyzer for Event Based Correlation - Installation Guide

2.1.5 Post-install environment setup

2.1.5.1 The UCA _EBC DEV_HOME variable

The UCA for EBC Development Kit installation procedure adds the $ {UCA EBC DEV_HOME} environment variable
to your user environment.

This variable is necessary for various development phases of a UCA for EBC value pack development, especially the build
and packaging phases.

To verify that this variable is correctly set after the UCA for EBC Development Kit has been installed, please follow the
instructions below.

On Windows:

Open a command-line (Run... -> cmd.exe) and type:
C:\> echo $UCA EBC DEV_HOME$%

You should get an output similar to the following:

C:\UCA-EBC-DEV\3.4\

NOTE: On Windows 7, you should log out and log back in again for the new environment variable to be taken into
account after installation of the UCA for EBC Development Kit.

On Linux:
Open a terminal window and type:

$ echo ${UCA EBC DEV HOME}
You should get an output similar to the following:

/opt/UCA-EBC-DEV

NOTE: On Linux this variable must be manually set in the user’s environment, as specified in the UCA for EBC
Installation Guide.

2.1.5.2 Ant configuration

The UCA for EBC value pack packaging is based on the use of the Apache Ant tool. This tool requires a specific version
and specific settings. Be sure to use the Apache Ant tool provided with UCA for EBC in the
$UCA_EBC_DEV_HOMES$\3pp\ant directory (${UCA_EBC_DEV_HOME}/3pp/ant on Linux).

Be sure that you don’t have the ANT_HOME environment variable sef to the path of another version of Apache Anf,
which would create conflicts with the version of Apache Ant in the 3pp\ant \bin folder. If you do, you should either
clear the ANT HOME environment variable:

Getting started with UCA for EBC 15
C:\> set ANT HOME=
Or set it to the directory of the Apache Ant version that comes with the UCA for EBC development kit:

C:\> set ANT HOME=%UCA EBC_DEV_HOME%\3pp\ant

SANT HOME/bin/ant -version
Apache Ant (TM) version 1.8.2 compiled on December 20 2010

The delivered Apache Ant version that comes with the UCA for EBC development kit is:

SANT HOME/bin/ant -version
Apache Ant (TM) version 1.8.2 compiled on December 20 2010

2.1.6 UCA for EBC Eclipse plug-in installation instructions

The UCA for EBC Development Kit delivers an Eclipse plug-in that eases UCA for EBC value pack project creation under
Eclipse.

This plugin is delivered in the

$UCA _EBC DEV_HOMES%\eclipseplugin\ucaEbcEclipsePluginSite-3.3.1l-assembly.zip
file.

The installation of this plug-in is made as follows:

From the Eclipse ‘Help” menu, choose ‘Install new software’ and then click on the button.

Select the UCA for EBC eclipse plug-in ZIP file using the button and give it the name “UCA for EBC plug-in” as
shown in the picture below:

2 Tnstal W SR>
Available Software

Select a site or enter the location of a site. ::Jl___

Work with: type or select a site -

Find more software by working with the "Available Software Sites” preferences,

type filter text
Mame « Version
[[] @ There is no site selected. = Add Repository &J
Name: UCA for EBC plugin Local..
) | ocetion: e /UCA-EBC-DEV ecipseplugn/ucaEcEcipelu i .
E L
Select All | [Deselect Al
L | N R
3
- \2) 0K] [Cancel]
Show enly the latest versions of available software [Hide items that are already installed
Group items by categery What is already installed?

"] Show only software applicable to target environment
[T Centact all update sites during install te find required software

N
@ < Back Next > Finish

Figure 1 - UCA for EBC Eclipse plug-in: Installation step 1

Then click on the @ button.

Getting started with UCA for EBC 16

The screen should then display the archive content as follow:

= Install - == ﬁ
Available Software

Check the items that you wish to install. :) =
Work with:

UCA EBC Plugin - jarfile:/C:/UCA-EBC-DEV/eclipseplugin/ucaEbcEclipsePluginSite-3.1.3-assembly.zip!/ = Add...

Find more software by working with the "Available Software Sites” preferences.

type filter text

Name Version
4[]0 UCA EBC plugins
@ UCA EBC eclipse project builder plugin 313
Qﬁ UCA EBC Filter File Generator plugin 313

SelectAll | | Deselect Al 2 items selected

Details

»

Show only the latest versions of available software Hide items that are already installed

Group items by category What is already installed?

["] show only software applicable to target environment

["] Contact all update sites during install to find required software

Figure 2 - UCA for EBC Eclipse plug-in: Installation step 2

Check the “UCA EBC plugins” checkbox, uncheck the “Contact all update sites..”, and then click on the button.

The following screen is displayed:

Getting started with UCA for EBC 17

2 instal ol)
Install Details |
Review the items to be installed. :):
Name Version Id
§* UCA EBC eclipse project builder plugin 313 ucaEbcProjectBuilderFeatur...
§ UCA EBC Filter File Generator plugin 313 ucaEbcFilterGeneratorfeatu...

Size: Unknown

Details

@) [< Back ” Next > Finish

Figure 3 - UCA for EBC Eclipse plug-in: Installation step 3
Click on the button for installing the plug-ins after accepting the license terms.

The following message appears during the installation. This is a normal message as the provided jar files are signed.

= Selection Needed @

Da you trust these certificates?

Hewlett Packard; OSS; CMS

"
SelectAll | [Deselect Al
Hewlett Packard; OSS; CMS
Hewlett Packard; OSS; CMS
@) I oK l [Cancel

Select the listed Certificated and Click |OK] to continue the installation.

The plug-in installation requires a restart of your Eclipse IDE environment. Please restart eclipse before any attempt to
create a UCA for EBC project.

Value pack development lifecycle 18

Chapter 3 Value pack development lifecycle

3.1 Value pack and Scenario definitions

3.1.1 Value Pack Definition

Creating a Value Pack can be seen as implementing a “Correlation” bundle for managing a special correlation use case.
The following are example of such correlation use cases:

e alow Level Filtering use case
o adomain-specific correlation use case like IP MPLS or L2 Metro Ethernet
e asimple ‘operator’ use case that groups/correlates alarms based on specific rules

A Value Pack is a “functional container” that contains one or more scenarios, each scenario implementing a part of the
whole correlation use case targeted by the Value Pack.

Scenarios can be cascaded so that the output of one scenario can be the input of another scenario.

NOTE:
For additional information about Value Pack and Scenario configuration parameters, please refer to: [R2] Unified

Correlation Analyzer for Event Based Correlation - Reference Guide

3.1.2 Scenario Definition

A scenario is fully defined by implementing the following steps:

Defining the properties of the scenario
Defining the filter of the scenario (this will determine what type of alarms will enter the scenario)

Implementing Alarm enrichment processing (optional)
Implementing scenario rules

@ NOTE:

The first two steps “Scenario definition file” and “Filter definition file” are described in the following document: [R2]
Unified Correlation Analyzer for Event Based Correlation - Reference Guide

Scenario

4

Figure 4 - The UCA for EBC Scenario Components

Value pack development lifecycle 19

3.2 Life Cycle

The process of creating a UCA for EBC Value Pack is described by the following figure:

Manual update
(filters,
scenarios, rules,

Deployment of
the Value Pack

Figure 5 - The 5 steps to create a UCA for EBC Value Pack
For step 1“Create a new UCA for EBC Value Pack project”, use the UCA for EBC project builder eclipse plug-in.

Step 2 “Update the UCA for EBC Value Pack project” is the main step when creating new UCA for EBC Value Packs. This
part is explained in details in the next paragraphs and sections.

Step 3 “Develop correlation rules” is also a main step when creating new UCA for EBC Value Packs.

Step 4 is performed automatically using Apache Ant. The build. xml file has all necessary targets to compile, test, and
generate a ZIP file for your Value Pack.

Step 5 involves copying your Value Pack zip file to the $ {UCA EBC_INSTANCE}/valuepacks folder ona UCA
for EBC Server, as mentioned in Chapter 2 “Getting started with UCA for EBC” of this document.

Developing correlation features involves creating one or more correlation scenarios for your Value Pack, each scenario
using its own filter and implementing its own rules.

3.3 Creating a new UCA for EBC Value Pack

UCA for EBC can be seen as an application container in which so called UCA for EBC “Value Packs" are deployed.

A Value Pack represents a set of features (scenarios) that are grouped together to implement one or more correlation use
cases.

Value pack development lifecycle 20

A UCA for EBC value pack thus includes for example: event filtering, event based rules, customized java code and possibly
configuration files for each of these scenarios.

3.3.1 Creating a value pack project within Eclipse

The UCA for EBC eclipse plug-in provides a project creation wizard allowing the creation of a new value pack project in
just a few clicks and dialog boxes.

This wizard can be launched from the eclipse main toolbar by clicking on the UCA/EBC icon:

L — — — T e—
= Plug-in Devel t - uca- = rt-dev-kit- xml - Eclipse Platfo -
= Plug-in Development - uciexpert.’uca expert-dev-kit parflt:fpom xml __Eclipse Platform

—

File Edit Source Mavigate Search Bggiect Run Window Help

- Q-G HEG- BEOE S

I~ ~ 29
E] Package Explorer &1 %F’Iug—ins

Or from the Eclipse “New Project” Menu as follow:

F bl
= New Project — S |
Select a wizard =

Create a new project resource

Wizards:
type filter text

» [~ Google -
. = Guvnor
4 = Java
2% Java Project
& Java Project from Existing Ant Buildfile
» = Javabcript

. = jBPM
» = Plug-in Development 3
Y
<'A = UCAEBC
& New UCAEBC Project
]
]
@ < Back Next > Finish i
]

This launches the UCA EBC value pack wizard:

Value pack development lifecycle 21

ré @&1

Create a UCA EBC Valuepack Project

Create a UCA-EBC valuepack project in the workspace or in an external location

Project name:
myEclipseProject

Value pack

Mame: myValuepack Version: 1.0

Location
@ Create new project in workspace

_) Create new project in:

Ch\Users\URAGO\workspace\myEclipseProject Browse

UCA SDK Location

Directory: CA\UCA-EBC-DEWY

'i?j' [< Back “ Mext >] Finish

Figure 6 - Value pack project creation wizard Stepl
From this panel you can set the project and value pack configuration:

e On the first line you must enter the name of the eclipse project to be created.

e Onthe second line you need to give the value pack name and its version

e Then the ‘location’ panel allows specifying the location of the created project. It can be in the current workspace
or in an external directory of your choice.

e Finally the UCA SDK Location allows specifying the home directory of the UCA for EBC Development kit. The
default value is obtained from the $UCA EBC_DEV_HOME$ environment variable.

Then Click on the button for getting the next wizard step.
This is the scenario panel configuration. Note that the project creation wizard allows creating a single initial scenario per

value pack. The creation of additional scenarios for a given value pack must be done manually by editing the various
value pack configuration files.

Value pack development lifecycle 22

- E [|
Create a UCA EBC Valuepack Project
Create a UCA EBC 5cenario

Scenaric name:
scenaricl

Scenaric package: (e.g. com.example.myvaluepack)

com.hp.example.myValuepack
filters

filter file name: filters.xml

Rule file
Rule file name: (e.g. myfile.drl) rules.drl
Rules Description: scenariol rules

Use templated rules

'(?;' < Back lext > [Finish] | Cancel |

Figure 7 - Value pack project creation wizard Step?2

At this step you can set the scenario parameters;

e On the first line you must enter the scenario name.

¢ On the second line you need to give the scenario package name. This package name will be used for all the
scenario’s java source code files.

e Inthe filter panel you have to enter the name of the filter file for this scenario. As this is an XML file, the ‘xml’
suffix is mandatory.

e Then the rule panel allows you specifying the rule file name (and a description) and also specify if this scenario
will use femplate rules file or not (this is done by checking the ‘Use femplate rule’ box.

Then Click on the button for creating the Project.

This project creation wizard execution leads to the creation of an Eclipse project skeleton. It exhibits a basic correlation

scenario that can compile and unit test successfully. From this example, developers can extend it to build their own Value
Packs.

r

Value pack development lifecycle 23

= Java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
O- & $-0-AU- HG-
[# Package Explorer &3 = c;p| - =08
a2 myEclipseProject|
4 [sre/mainfjava
4 £} myValuepack
> [J] scenariol.java
4 [sre/main/resources
> {2 valuepack.conf
4 {2 valuepack.scenariol

St Fras
LI~ &=~

1X] Alarms.xml
%] filtersxml
"E] rules.drl
a4 [sroftest/java
a4 £ myValuepack
> [J] scenariol Test.java
a [sreftest/resources
> {2 bmk
> 2 myValuepack
X logdjxrml
uca-ebe.properties
» [UCAEBCresources
[. = Referenced Libraries
> B JRE Systemn Library [jref]
(= lib
> |22 sre
(= target
& Buildaml

[Problems 2
0 items

Description

2§ Signinto Google.. = 7% myEclipseProject

o S
BE®S - H-F - M 5 (Java) ”
=8 EE Qutline &2 =g
=
An outline is not available.,
@ Javadoc E-E') Declaration | &l Console ¢ -~ = O
° Resource Path Location T
T} 3

Figure 8 - Created Value pack

NOTES:

For creating “fopology based” Value Pack project, please refer to [R8] Unified Correlation Analyzer for Event Based

Correlation - Topology Extension

For creatfing “Inference Machine”, “Problem Detection”, “Topology State Propagator” Value Pack projects, please
refer to [R9] Unified Correlation Analyzer for Event Based Correlation IM — User Guide

3.3.2 Anatomy of the created project

Using Eclipse IDE, you can browse through the different directories that compose the created “Skeleton” project.

Please see below for a glimpse at the folder structure of the created project:

Value pack development lifecycle 24

-
= Java - Eclipse Platform I

File Edit Source Refactor Mavigate Search Project Run Window Help
D~ & HB~0~Q~ FHE-~

=S 5 - - - -

[# Package Explorer 2

4 |24 myEclipseProject

E o

4 @ src/main/java
a4 £ myValuepack
» [1] scenariol java
4 [src/main/resources
a i valuepack.conf
|X] contextxml
%] ValuePackCeonfiguration.xml
4 2 valuepack.scenariol
|X] Alarms.xml
(%] filtersxml
9 rules.drl
4 [sro/test/java
4 £ myValuepack
- [J] scenariolTestjava
4 [src/test/resources
» 2 bmk
a4 HL myValuepack
%] main-context.oml
%] scenaric] Test-context.xml
|X] log4jxml
uca-ebc.properties
» [UCAEBCresources
: =, Referenced Libraries
> B JRE System Library [jre6]
(= lib
. [src
(= target
& Buildaml

2§ Signin to Google.. = ¥ myEclipseProject

[l eRB3

SR- I

B I Resource

[m

o

| — —_——

Figure 9 - Folder structure of the created project

The created “Skeleton” project also comes with an Apache Ant build.xml file that is used for building and packaging the

value pack outside of the Eclipse IDE.

3.3.3 Validation of the created project

The created project contains predefined test classes that automatically load/compiles the value pack resources (scenario

definitions, filters and rules files) and validate them (at least syntactically).

JUnit tests can be run either directly from eclipse, by right-clicking on the test package and choosing “Run As > JUnit

Test” as shown in the following screen shot:

=

Value pack development lifecycle 25

[T o —— NS R

File Edit Source Refactor Mavigate Search Project Run Window Help
O-rE-BE& Q- €@ H-0-4u- HE- BEBC ¥~ = [ava | (25 Resource
._} . alow L4 - - |
<fp|e'vmﬁ =8 EEOutImeSE =8
a 1= myEclipseProject -
» & sre/mainfjava An outline is not available.
[src/main/resources
a [srcftest/java
a | myValuenackl
b [3 s Mew »
a (2 src/test/ GoInto
& HS bmk
& B2y Open in New Window
[%] n Open Type Hierarchy F4
s Show In Alt+Shift+W »
%] logd;
uca- Copy Ctrl+C
& [UCAERC % Copy Qualified Name
> B Refereng o g Ctrl+V
&> = JRE Syst
= lib ¥ Delete Delete
b = sre % Remove frem Context Ctrl+Alt+Shift+ Down
target
% oo | Buidpatn >
‘ Source Alt+Shift+5 b
Refactor Alt+Shift+T »
gig Import...
Ly Export.
References 3
Declarations 3
qgh Refresh F5
Assign Working Sets...
. » ¥ =0
Run As v | E 1Java Applet Alt+Shift+X, A L i
Debug As v | [0 2lava Application Alt+Shift+X,)
Profile As »| Ju 3 JUnit Test Alt-Shift+X, T path focation
Uedlies Run Configurations...
Team 3
Compare With 3
Restore from Local History.. mn 3
9,
24 Signin to Goo, Properties Alt+Enter

Figure 10 - Running JUnit tests on the created project in Eclipse IDE

In which case the test results can be seen directly in Eclipse IDE:

,

e b

File Edit Mavigate Search Project Run Window Help

vErEE S Q- & H-0-Q- BHEr EBO I~ & [Java | [t5 Resource

o 5] v ® -

[# Package Explorer | gfu JUnit &2 =0 = O/ 5= Outline 22 =0
Finished after 9.346 seconds = F I

e @'—E‘ % o = E - An outline is not available.
Runs: 171 B Errors: 0 B Failures: 0
Hic] myValuepack.scenariol Test [Runner: JUnit 4] (4.013 5)
=08

Ej Problems (@ Javadoc ﬂ% Declaration

<terminated> myValuepack [JUnit] C:\Program Files\Java\jref\bin\javaw.exe (Jun 13, 2012 11:03:33 AM)

= %% GoEE =i

= Failure Trace

-

& ¥
Jun 13, 2812 11:83:49 AM org.apache.activemq.broker.TransportConnector stop
INFO: Connector tcp://localhast:61666 Stopped

Jun 13, 2812 11:83:49 AM org.apache.activemq.broker.BrokerService stop

INFO: ActiveMQ IMS Message Broker (localhost, ID:URAGO2-62229-1339578223317-8:¢
Jun 13, 2812 11:83:49 AM org.springframework. jmx. support.ConnectorServerFactory
INFO: Stopping IMX connector server: javax.management.remote.rmi.RMIConnectorSe
Jun 13, 2812 11:83:49 AM org.springframework.remoting.rmi.RmiRegistryFactoryBes
INFO: Unexporting RMI registry

Jun 13, 2812 11:83:49 AM com.hp.uca.expert.scenario.internal.ScenarioImpl run
INFO: Scenaric Thread : Stop requested

Jun 13, 2812 11:83:49 AM com.hp.uca.expert.scenario.internal.ScenarioImpl run
INFO: Scenario Thread : STOPPED

Jun 13, 2812 11:83:49 AM org.springframework. jmx.export.MBeanExporter destroy
INFO: Unregistering IMX-exposed beans on shutdown

Jun 13, 2812 11:83:49 AM myValuepack.scenariolTest tearDownAfterClass

INFO: ~-- [END] -- myValuepack.scenariolTest

m

Signin to Goegle... = ¥

Value pack development lifecycle 26

Figure 11 - JUnit tests results on the created project in Eclipse IDE

Or from the command line by executing the Apache Ant tool and selecting the “test” Ant target (You need to run the “ant
test” command from the root directory of your project workspace) as shown in the following screen shot:

-

B Administrator: Command Prompt |££Iihj

C:\UserssURAGOSruntime—Eclipsefipplication~smyEclipseProject>ant test
Buildfile: C:“Users“URAGONruntime—EclipseApplication™myEclipseProject build.xml

compile—tests:
[mkdir] Created dir: C:\Users\URAGO“runtime—Eclipsefipplication“myEclipseProjectstarget wp—build-dirstest
[javac] Compiling 1 source file to C:~Users~URAGONruntime—EclipsefApplication~myEclipseProject target wp-build-dirstest

test:
[mkdir] Created dir:
[nkdir] Created dir SURAGOSruntime—Eclipsefipplication“myEclipseProjectstargetswp—huild-dirsreportssjunit
Imkdir] Cleated dir:z C: 3 me—EclipsefipplicationsmyEc lipseProjectstargetswp—build-dirsreportssjunitreport
[junit] i
[junit] Tests run: 1. gy A, Time elapsed: 9.436 sec
[junitreport] Proce g RﬂGO\lunt1me—Ecllp;eﬂpp11cat1on\myEcllpgePloJect\talget\up build-dirsreportssjunitreport\TESTS-Te
ztBuites.xml to G:v 31.,\URHGO\HppData\Local\Temp\n|.11126124815
[junitreport] Loading stylesheet jar:file:~-C: UCA-EBC-DEU.3pprant/libs/ant—junit.jar? /org-/apache tools/antstaskdefs-optional/junit/xs
1l/junit—frames.xsl
[junitreport] Transform time: 338ms
[junitreport] Deleting: C:sUsers URAGO~AppData~LocalsTempsnull261248156
[copy]l Copying 13 files to C:xUserssURAGONruntime—Eclipsefipplication‘myEclipseProjectsreportssjunit 2012061311687

BUILD SUCCESSFUL
fTotal time: 14 seconds

| C:\UsersSURAGOSNruntime—Eclipsefipplication“myEclipseProject>
-

Figure 12 - Running JUnit tests on the created project at the command-line using Ant

In which case the results can be shown in your preferred Web browser by opening the index htmil file in the
target\vp-build-dir\reports\junitreport directory of your project workspace:

o
-
Unit Test Results. \ L g
C O filey//C;/Users/URAGO/runtime-EclipseApplication/myEclipseProject/target/vp-build-dir/reports/junitreport/index.html | A
@ Extending Ecl” se- .. mbaron.ftp-develop... §_ EclipseZone - Gettin... Flexible Project Stru... Help - Eclipse Platfo... N Jersey - Classloader L. [dev pointers
Ha| Cette page est en | anglais ~ | Voulez-vous |a traduire ¢ | Traduire | | Non | | Ne jamais traduire les pages rédigées en anglais Options =
Home Unit Test Results.
| Packages Designed for uze with JUnit and Ant.
| my\aluepack Summary
| Tests Failures Errors Success rate Time
! 1 0 o 100.00% 9.436
| Mote: failures are anticipated and checked for with assertions while errors are unanticipated.
Classes
| Packages
| scenariclTest
Name Tests Errors Failures Time(s) Time Stamp Host
my\aluspack 1 0 0 8.436 2012-06- URAGOZ2

13T09:07:06

Figure 13 - JUnit tests results on the created project viewed using a Web browser

3.4 Customizing the created ‘skeleton’ Value Pack project

The project generated by the UCA for EBC project builder eclipse plug-in provides a simple scenario implementing some
basic alarm statistics that is just here for validating the project structure.

Of course you have to turn the created ‘skeleton’ project into your new Correlation-project value pack. For this you have
to customize:

Value pack development lifecycle 27

The Value Pack configuration files
The scenario filter file

The scenario rule files

The associated Java code files

FEBI NOTE:

For additional information about Value Pack and Scenario configuration parameters, please refer to: [R2] Unified
Correlation Analyzer for Event Based Correlation - Reference Guide

3.4.1 Updating the scenario filters

There is afilter file named £ilters.xml thatis associated with the scenario of the created value pack.

The goal of this file is to define the passing filter for Alarms that will be consumed by the current scenario. Then, all
alarms entering UCA for EBC will be evaluated against the filter file of each scenario, to decide if they should be
forwarded to the scenario or not.

If the properties of an alarm match the passing filter(s) defined in the filters file then the alarm is forwarded to the
scenario. On the other hand, if the properties of an alarm don’t match the passing filter(s) of the filters file then the alarm
is not forwarded to the scenario.

The default generated filter allows any alarm to be forwarded to the scenario.

¥ filters-filexml &3
1 «<?xml version="1.0" encoding="UTF-8" 7[>
2= <«<filters xmlns="http://hp.com/uca/expert/filter">
<topFilter name="test">
<allCond
<str rStatement>

uex.*</fie ue>
9 <!—— Or another example of filter (for filtering on the BOX class)
<fieldValue>BOX .*</fieldValue>

Figure 14 - The default “catch all” project’s filters.xml file

@ NOTES:

Please refer to: [R2] unified Correlation Analyzer for Event Based Correlation -
Reference Guidefor a full description of the Filter file syntax.
Refer to section 5.9 of this document for a description on how to use the UCA-EBC eclipse filter editor.

3.4.2 Updating the correlation rules file

By default, the generated rules file defines a single rule implementing a basic statistic use case. This rule is just for
demoing and testing. It is just an example, which must be changed to something relevant.

3.5 Generating the Value Pack kit

Once your project has been updated, it is necessary to generate the kit associated with it so that it can be deployed on
UCA for EBC (this is the packaging phase). To do this, you just need to execute the following commands:

C:\> cd <Project Base>

Value pack development lifecycle 28

C:\> ant all

B Administrator: Command Prompt a | = | [E] ||

C:\UsersrSordetd\Documents:EclipsesHelios 3.6 SR2\Workspace\Default My-Correlation-projectrant all
Buildfile: C:\Users“\SordetJ\Documents:EclipsesHelios 3.6 S5R2“MorkspacesDefault My-Correlation—projectsbuild.xml

EEVH
[delete] Deleting directory C:\Users\SordetJ\Documents:\EclipsesHelios 3.6 SR2“\MorkspacesDefault:\My-Correlation-projec
ttarget wp-huild-dir

dir.check:
compile-including—generated:

compile—src:

[mkdir] Created dir: C:\Users\SordetJ“Documents“Eclipse‘Helios 3.6 SR2\Workspace:\Default \My—Correlation—projectstarg
ets\vp-huild-dirsclasses

[javac] Compiling 1 source file to G:“Users:SordetJ“Documents:\EclipsesHelios 3.6 SRZ\Workspace>Default\My-Correlatio
n—projectstarget \vp-build-dirsclasses

: C:\UserssSordetJNDocuments\EclipsesHelios 3.6 SR2\Workspace\Default“\My—-Correlation-projectstarg
et \vp-huild-dirstest
[javac] Compiling 2 source files to C:\Users’\SordetJ\Documents\Eclipse:Helios 3.6 SRE2\Uorkspace:Default\My-Correlati
on—projectitarget wp-huild-dirstest

test:

[mkdir] Created dir: C:\lUsers\SordetJ\Documents:Eclipse\Helios 3.6 SR2\Workspace:Default\My—Correlation—projecti\targ
et \vp-huild-dir\reports

[mkdir] Created dir: C:zlUsers\SordetJ\DocumenterEclipsesHelios 3.6 SR2\WorkspacerDefault\My—-Correlation—projecti\targ
et up-huild-dir\reportsijunit

[mkdir] Created dir: C:\Users\SordetJ“Documents“Eclipse‘Helios 3.6 SR2\Workspace:\Default \My—Correlation—projectstarg
et up-huild-dirsreportsijunitreport

[junit] Running com.hp.uca.expert.vp.skeleton.SkeletonTemplateTest

[junit] Tests vun: 1, Failures: B, Errors: B, Time elapsed: 11,194 sec

[junit] Running com.hp.uca.expert.vp.skeleton.8keletonTest

[junit] Tests »un: 1, Failures: @, Errors: B, Time elapsed: 18,733 sec
[junitreport] Processing C:zUsers\SordetJ Documents“Eclipse‘\Helios 3.6 SR2\Workspace:\Default My—Correlation—projectstarg
et up-huild-dirsreportssjunitreportn\TESTS-TestSuites.xml to C:\Users\SordetJ“\AppDatasLocalsTempsnulli4B6580334
[junitreport] Loading stylesheet jar:file:/C:-/UCA-EBC-DEU/3pp-sant/lib/ant—junit.jar!/orgsapache/tools/ant/taskdefs optio
nal/junit/xsl/junit-frames.xsl
[junitreport] Transform time: 836ms
[junitreport] Deleting: C::\Users:SordetJ\AppDatarLocalsTempsnulli4B6588334

[copy] Copying 15 files to C:\Users“\SordetJ“Documents:\Eclipse‘Helios 3.6 SR2\WorkspacesDefault\My-Correlation-proje
ctsreportssjunit 2011126061638

jar:
[jar] Building jar: GisUsersnSordetJ“Documents:EclipsesHelios 3.6 SR2\WorkspacesDefault\My—Correlation-projectitar
getswp-build-dir\My—Correlation-project-1ib-1.@. jar

pre-kit:

[copy] Copying 11 files to C:\Users\SordetJ“Documents:\Eclipse:Helios 3.6 SR2\Workspace:Default:\My—Correlation—proje
ct\targetsup-build-dirsvpsdeploysMy-Correlation—project-1.

[copyl Copying 1 file to G:\Users\SordetJ\Documents:\Eclipse“Helios 3.6 SR2:\Workspace:Default\My—Correlation—-project
“target wp-build-dirswprdeploysMy—Correlation—-project-1.8\1ih

[copy] Copying 2 files to C::Users:SordetJ\Documents\Eclipse:Helios 3.6 SR2\UWorkspaceDefault:My-Correlation—projec
titarget wp-build-dir\wpsdeploys\Hy—Correlat ion—project—1.85\1ih

kit:

[zip] Building zip: C:iNUsers\SordetJ\Documents:\EclipsesHelios 3.6 SR2\Workspace\Default\My—Correlation-projectitar
getswp-build-dirsvp\Hy-Correlation—project—vp-1.8.zip

package:
all:
BUILD SUCCESSFUL

Total time: 28 seconds
C:\UserssSordetd\Documents:EclipsesHelios 3.6 SR2\Workspace\Default My-Correlation-project’>

Figure 15 - Building the kit of your customized Value Pack

The kit of the project is then generated in the target/vp-build-dir/vp directory of the <Project Base>
directory as a zip file called <my valuepack name>-vp-<my valuepack version>.zip:

Value pack development lifecycle 29

@'__/"' <« target » vp-build-dir » vp »

- | 3 | | Search

‘ Organize = £

Folders v | Name

, Workspace) deploy
J Default
. .metadata
J My-Correlation-project
J lib

J logs

m

. reports
| src
| target
J classes
J log
J vp-build-dir
) classes
. reports
) test

| vp

g My-Correlation-project-vp-1.0.zip

Type Size
File Folder

WinRAR ZIP archive 36 KB

I 3

2 items

M Computer

Figure 16 - The kit of your customized Value Pack

The ZIP file of your customized Value Pack contains the following information;

The Configuration (conf /) directory that contains;

o The Value Pack Spring beans file: context . xm1
o The Value Pack configuration file: valuePackConfiguration.xml

The Library (1ib/) directory that contains;

o The JAR file of the Value Pack containing the compiled Java code that you developed for your Value

Pack in addition to the rules files
o Any custom JAR files that you need to run this

o Thefilters file(s)

Value Pack

The Scenario (<your-scenario-name>/) directory that contains:

o The external parameters file(s), if your Value Pack contains rules files that are template-based

o The rule file(s)

$ unzip -1 target/vp-build-dir/vp/myVPl-vp-1.0.zip

Archive: target/vp-build-dir/vp/myVP1l
Length Date Time Name

0 05-30-2013 17:46 myVP1-1.

0 05-30-2013 17:46 myVP1-1.

0 05-30-2013 17:46 myVP1-1.

0 05-30-2013 17:46 myVP1-1.

2726 05-30-2013 17:46 myVP1-1.

1100 05-30-2013 17:46 myVP1-1.

6423 05-30-2013 17:46 myVP1-1.

2596 05-30-2013 17:46 myVP1-1.

626 05-30-2013 17:46 myVP1-1.

420 05-30-2013 17:46 myVP1-1.

3299 05-30-2013 17:46 myVP1-1.

17190 11 files

-vp-1.0.zip

0/

0/conf/

0/1ib/

0/myScenariol/
0/conf/ValuePackConfiguration.xml
0/conf/context.xml
0/1ib/myVP1-1ib-1.0.jar
0/myScenariol/Alarms.xml
0/myScenariol/filters.xml
0/myScenariol/filtersTags.xml
0/myScenariol/rules.drl

Figure 17 - Contents of the ZIP file of your customized Value Pack

3.6 Deploying the Value Pack kit on UCA for EBC

To deploy your value pack in the UCA server, the following three steps are necessary:

Value pack development lifecycle 30

e |nstall the Value Pack ZIP file on UCA for EBC Server
o Deploy the Value Pack on UCA for EBC Server
e Start the Value Pack on UCA for EBC Server

3.6.1 Install the Value Pack package (ZIP file) on an HP Itanium or Linux
system running UCA for EBC Server

Copy your Value Pack package (the ZIP file located at. target/vp/<my value pack name>vp-<my
value pack version>.zip)tothe ${UCA EBC INSTANCE}/valuepacks directory onthe UCA for

EBC system

For example:

$ cp target/vp-build-dir/vp/myVPl-vp-1.0.zip
${UCA EBC DATA}/instances/default/valuepacks/

@ NOTE:

Alternatively, you use UCA-EBC GUI to upload your Value Pack directly on UCA for EBC system without the need of

logging into it (just need to log in as admin in GUI application).
Please refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

3.6.2 Deploy the Value Pack

To deploy the Value Pack in the $ {UCA EBC_ INSTANCE}/deploy directory, use the “--deploy” option of the uca-
ebc-admin administration tool (executed as uca user).

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --deploy -vpn <my value pack name> -vpv <my value pack

version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC

UCA for EBC Data directory set to: /var/opt/UCA-EBC

INFO - Value Pack name: <my value pack name> version: <my value pack version> has
been successfully deployed

INFO - Exiting...

@ NOTE:

Alternatively, you can also deploy the value pack from the UCA for EBC GUI.
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

3.6.3 Start the Value Pack on UCA for EBC Server

Two different ways are available to you to start value packs deployed on UCA for EBC depending on whether UCA for
EBC is started or not.

You can check whether UCA for EBC is running or not by issuing the following command:
> ${UCA EBC HOME}/bin/uca-ebc show

If UCA for EBC is stopped, restarting UCA for EBC will load all value packs deployed in the
${UCA EBC_ INSTANCE}/deploy folderincluding your value pack.

Value pack development lifecycle 31

If UCA for EBC is running, use the “--start” option of the uca-ebc-admin administration tool (executed as uca user) to
start your value pack:

> cd ${UCA _EBC HOME}/bin
> uca-ebc-admin --start -vpn <my value pack name> -vpv <my value pack
version>

You should get an output similar to the following:

UCA for EBC Home directory set to: /opt/UCA-EBC
UCA for EBC Data directory set to: /var/opt/UCA-EBC
INFO - Exiting...

FEBI NOTE:

Alternatively, you can also start the value pack from the UCA for EBC GUI.
Refer to [R7] Unified Correlation Analyzer for Event Based Correlation — User Interface Guide

You can get the list of running value packs on UCA for EBC using the “--list” option of the uca-ebc-admin command-line
administration tool.

> cd ${UCA EBC HOME}/bin
> uca-ebc-admin --1list

@ NOTE:

For additional information about the uca-ebc-admin command-line administration tool, please refer to: [R3] Unified
Correlation Analyzer for Event Based Correlation — Administration, Configuration and Troubleshooting Guide

3.7 Testing the Value Pack in real-time

Now that both UCA for EBC and your value pack are up and running, the UCA for EBC application implements the
‘Statistic circuit’ correlation package and is ready to listen to incoming alarms.

In order to provide an easy way to test the global solution, a simple tool is provided that lets you inject a set of alarms
(defined in a XML file) into UCA for EBC.

As the action provided in the properties file is to “log” information to a log file (in “append” mode), it is easily possible to
test the circuit in real-time.

Asample Alarms . xml input file containing sample alarms to use with your value pack is provided in the
${UCA_EBC INSTANCE}/deploy/<your value pack name>-<your value pack
version>/skeleton folder. The output log file named output . xml is located in the $ {UCA EBC HOME }

root folder.

Following is an example of the uca-ebc-injector command-line tool used to inject Alarms into UCA for EBC in order to
test your Value Pack in real conditions:

>${UCA EBC HOME}/bin/uca-ebc-injector -file
${UCA EBC_INSTANCE}/deploy/skeleton-project-1.0/mypackage/Alarms.xml
>tail -f ${UCA EBC_HOME}/output.xml &

You should get an output similar to the following:

##4# STATISTICAL ALARM: 2 Alarms received ###

Value pack development lifecycle 32

NOTE:
For additional information about the uca-ebc-injector command-line tool, please refer to: [R3] Unified Correlation
Analyzer for Event Based Correlation — Administration, Configuration and Troubleshooting Guide

Focus on development key points 33

Chapter 4 Focus on development key points

4.1 Implementing Alarm enrichment

Alarm enrichment processing is called by the UCA for EBC framework after the alarm passed the scenario filters and
before it is inserted in the scenario Working Memory.

The enrichment is implemented by performing the following steps:

Step 1. Extend the UCA Java class com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle

@ LifeCycle @ LifeCycleExtensioninterface @AIarmLa’feCycIeEx?ensa’on WorkingMemoryAccessdilowed

‘t\ A %7

@ AlarmLife Cycle

@ AlarmLifeCycle{Scenario scenario)

@ Event enrichmentBeforeFilter(Event event)

@ Event doFilter(Event event)

@ Event enrichmentAfterFiter(Event evert)

@ void doLifecycleProcessing(Event inData)

@ Event onAlarmCreationProcess(Alarm alarm)

@ Event onAlarmDeletionProcess(AlarmDeletion alarm)

@ Event onAlarmStateChangeProcess{AlarmStateChange alarm)

@ Event onAlarmattribute’/alueChangeProcess(AlarmAttribute’alueChange alarm)

@ boolean onUpdateSpecificFieldsFromAttribute’alueChange AlarmAttribute’/alueChange alarmAttribute’alueChange, Event alarminWorkingMemery)
@ boolean onUpdateSpecificFieldsFromStateChange(AlarmStateChange alarmStateChange, Event alarminWorkingMemory)
@ boolean onUpdateSpecificFieldsFromAlarm{Alarm newAlarm, Event alarminyWorkingMemaory)

And override the following methods:

e onAlarmCreationProcess (Alarm alarm):toextend alarm creation objects

e onAlarmDeletionProcess (AlarmDeletion alarm):toextend alarm deletion objects

e onAlarmStateChangeProcess (AlarmStateChange alarm):to extend alarm state change
objects

e onAlarmAttributeValueChangeProcess (AlarmAttributeValueChange alarm):to
extend alarm attribute value change objects

Example of AlarmLifeCycle Extension:

package com.hp.uca.ebc.enrichmentexample;

import org.slf4dj.Logger;
import org.slf4dj.LoggerFactory;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmCommon;

import com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycle;

import
com.hp.uca.expert.lifecycle.alarm.AlarmLifeCycleExtensionWorkingMemoryAccessA
llowed;

import com.hp.uca.expert.lifecycle.common.LifeCycleExtensionInterface;

import com.hp.uca.expert.scenario.Scenario;

public class ExtendedLifeCycle extends AlarmLifeCycle implements
LifeCycleExtensionInterface,
AlarmLifeCycleExtensionWorkingMemoryAccessAllowed {

private static Logger log = LoggerFactory
.getlLogger (ExtendedLifeCycle.class) ;

Focus on development key points 34

In this example, the enrichment is performed only in the case of an alarm creation event.

Step 2. Declare the ExtendedLifeCycle class at the scenario definition Level:

This is done by using the <customLifeCycleClass> in the Scenario Definition section of the
ValuepackConfiguration.xml file

Example:

Step3: Extend the Alarm object if necessary

Focus on development key points 35

In order to ease the rule writing, it may be easier to store the enrichment information in some dedicated alarm object
attributes.

In such case the Alarm objects (Alarm, AlarmDeletion, AlarmAttributeValueChange and AlarmStateChange) can be
extended.

Example of Alarm extension:

4.2 Developing the scenario rules

Rules files are files containing correlation rules interpreted by the Drools inference engine of the scenario.

Focus on development key points 36

The Drool Expert engine used in UCA for EBC has its own rule language. The rule file content must comply with this
language.

Please refer to Drools Expert guide, Chapter 5 “The Rule Language” for a description of the language:
http://www.jboss.org/drools/documentation

qj; IMPORTANT:

Drools keywords for inserting, updating, and deleting objects in Working Memory (i.e. insert, update, retract)
MUST NOT be used directly when developing UCA-EBC rules. This is for working memory integrity, and due to
the locking mechanism implemented within the UCA-EBC framework.

o Instead of using insert (myObject) directly, you should use

theScenario.getSession () .insert (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession().insert (myObject)

from Java code

o Instead of using update (myObject) directly, you should use
theScenario.getSession () .update (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession () .update (myObject)
from Java code

e Instead of using retract (myObject) directly, you should use

theScenario.getSession () .retract (myObject) from Drools files or
ScenarioThreadLocal.getScenario().getSession().retract (myObject

) from Java code
The ScenarioThreadLocal classislocated inthe com. hp.uca.expert.scenario package.
Also, all timer based keywords should be avoided: duration, timer, calendar.

On top of the basic rule language syntax, additional operators are available to deal with time constraints:
Temporal operator; see Drools Fusion guide, Chapter 2.4. Temporal Reasoning
Sliding Time Window Feature: see Drools Fusion guide, Chapter 2.6. Sliding Time Window

See https//docsboss.org/drools/release/5.6.0. Final/drools-fusion-docs/html_single/ for more information on how to
create rules that deal with time constraints.

@ NOTE: To use the sliding time window feature, objects in working memory must be declared as Event (and not as
Fact).

Please see Drools Fusion guide, Chapter 2.1. “Events semantics” at URL
https.//docs.jboss.org/drools/release/5.6.0 Final/drools-fusion-docs/html_single/ for more information on what
events are compared to facts and how to declare them.

4.2.1 Basics

Any rules file contains one or multiple rules, and has a “drl’ extension.

Here are the different parts composing a rule file:

package package-name
imports

globals

functions

queries

http://www.jboss.org/drools/documentation
https://docs.jboss.org/drools/release/5.6.0.Final/drools-fusion-docs/html_single/
https://docs.jboss.org/drools/release/5.6.0.Final/drools-fusion-docs/html_single/

Focus on development key points 37

rules
Package
The package name is optional, but it is recommended to partition your rules in different packages for clarity.
Imports

The “imports” part, allows you to import Java classes that can be used in the Action Or Condition parts of arule.

q:]> IMPORTANT:

In UCA for EBC, importing the Alarm Java class (com.hp.ucaexpertalarm.Alarm) is necessary in order to be able
to use alarm attributes in rule conditions.

Globals

The "globals” part is used to define variables that have a global scope (across rules). The global variables have to be
initialized by the application.

Functions

Functions let you define functions that let you avoid repeating the same lines of code over the entire rules file.
Queries

UCA for EBC does not currently provide support for queries.

Rules

The rules define the behaviour of the expert system.

Please refer to Drools Expert guide, for a full description of rule files:
https.//docs.jboss.org/drools/release/5.6.0.Final/drools-expert-docs/html_single/

4.2.2 Sample rules on Alarm facts in CLOUD mode

In CLOUD mode, the UCA for EBC system inserts Alarm facts in Working Memory and these facts remain infinitely in
working memory unless they are specifically removed in the rules (using the retract statement). This retract statement is
generally done in the right end side part of rules.

UCA for EBC contains an Alarm Java class (com. hp.uca.expert.alarm.Alarm) which represents a “generic”
Alarm as a fact. Rules can rely on attributes and services of the Alarm object. For instance, testing a specific value of an
attribute in the condition part or setting a specific attribute of the Alarm in the action part.

To use the CLOUD mode, the scenario processing mode must be set to “CLOUD” in the
ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
name="myValuepackName" version="myValuepackVersion">
<scenarios>
<scenario name="myScenario">
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>WATCHDOG</fireAllRulesPolicy>
<globals>

https://docs.jboss.org/drools/release/5.6.0.Final/drools-expert-docs/html_single/

Focus on development key points 38

</globals>
<processingMode>CLOUD</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</
filename>
<name>myRules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>
</valuePackConfiguration>

Here is a simple example that identifies “Similar alarms” (i.e. Alarms that have the same alarm type, managed object and
probable cause as another Alarm). This example illustrates a case where the UCA for EBC engine is in CLOUD processing
mode.

The rule file called myScenarioRules.drl contfains a rule, the “Similar Alarm” rule, which performs the following
processing:

When an alarm ‘a” is found in Working Memory (with a severity different from ‘clear) and if there is another not cleared
(severity different from ‘clear) alarm (this '=a) with the same attribute values for the
originatingManageEntity,alarmType and probableCause properties then display a text.

package scenario.sample;

import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

rule "Similar Alarm"
when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(
this != a &&
perceivedSeverity != PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &&
alarmType == a.alarmType &&
probableCause == a.probableCause)

then
System.out.println ("Executing: "+drools.getRule () .getName ())
System.out.println(al.getIdentifier() + “similar to “+
a.getIdentifier());
end

(EI:]’ IMPORTANT:

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the
Alarm class as a Fact in the “declare” section of the rules file is not mandatory however. By default, if they are
not declared at all, objects are understood to be Facts in Working Memory.

Another rule, the “Clear Alarm” rule focuses on cleared alarms:

rule "Clear Alarm"
when
a: Alarm(perceivedSeverity != PerceivedSeverity.CLEAR)
al: Alarm(
perceivedSeverity == PerceivedSeverity.CLEAR &&
originatingManagedEntity == a.originatingManagedEntity &é&
alarmType == a.alarmType &&
probableCause == a.probableCause &&
timeInMilliseconds > a.timeInMilliseconds)

Focus on development key points 39

then
System.out.println ("Executing: “+drools.getRule () .getName ()) ;
System.out.println(al.getIdentifier() + " clears "+
a.getIdentifier()):;
end

@ NOTE: The drools object in the sample rule code above is a predefined Drools java object that you can use in the
Action part of a rule to get information on the rule itself among other things. In our example, the method
drools.getRule () .getName (), called from arule's Action part, returns the name of the rule. See
https://docsjboss.org/drools/release/5.6.0.Final/drools-expert-docs/html_single/ for more information on the drools

predefined object.

4.2.3 Sample rules on Alarm events in STREAM mode

In STREAM mode, UCA for EBC inserts Alarm events in Working Memory only for a period of time. After that, Alarm
events are automatically removed from working memory.

To use the STREAM mode, the scenario processing mode must be set to “STREAM” in the
ValuePackConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
name="myValuepackName" version="myValuepackVersion">
<scenarios>
<scenario name="myScenario">
<filterFile>${uca.home}/myValuePack/myScenario/myScenario-
filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>

<filename>file:${uca.home}/myValuePack/myScenario/myScenarioRules.drl</

filename>

<name>myRules</name>

<ruleFileType>DRL</ruleFileType>

</rulesFile>
</rulesFiles>
</scenario>
</scenarios>

</valuePackConfiguration>

qj; IMPORTANT:

Importing the Alarm Java class (com.hp.uca.expert.alarm.Alarm) is necessary. Declaring the
Alarm class as an Event in the “declare” section of the rules file is also mandatory.

By default, if they are not declared at all, objects are understood to be Facts in Working Memory. So, declaring
Alarms as Events is mandatory.

Please see Drools Fusion guide, Chapter 2.1. “Events semantics” at URL

http://docs jboss.org/drools/release/5.6.0.Final/drools-fusion-docs/html/ch02.html#d0e184, for more
information on what events are compared to facts and how to declare them.

import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

https://docs.jboss.org/drools/release/5.6.0.Final/drools-expert-docs/html_single/
http://docs.jboss.org/drools/release/5.6.0.Final/drools-fusion-docs/html/ch02.html#d0e184

Focus on development key points 40

declare Alarm
@role(event)
@timestamp (timeInMilliseconds)
@expires(30m)

end

The above “Alarm” declaration specifies that:

o Alarms should be treated as Events in Working Memory, not Facts

o The timelnMilliseconds attribute (i.e. the EventTime attribute of the Alarm) is used as the timestamp of the
Alarm instead of the time when the Alarm Event is actually inserted into working memory, which is the default
timestamp for Events in Working Memory. The timestamp of the Alarm Event plays a role when time constraints

are used in rules,
o Alarm Events expiration time is 30 minutes: the Alarm Events will be removed from working memory

automatically after 30 minutes.

Generally, rules in STREAM mode are used to identify patterns of Events (Events that occurs in a specific order) during a
specific time window.

The “Store not cleared Alarm” rule is an example of such a rule in STREAM mode. It performs the following rules:;

When an alarm ‘a” is in Working Memory (an alarm on a “BOX” item with a severity different from ‘clear) and if there are
no other alarms (matching specific criterias) received within 2 seconds of alarm ‘a’ then the Additionalinformation
aftribute of alarm ‘a"is updated

rule "Store not cleared Alarm"

when
a: Alarm(originatingManagedEntity matches "BOX .*" &&
perceivedSeverity != PerceivedSeverity.CLEAR)
not Alarm(originatingManagedEntity == a.originatingManagedEntity
&&
perceivedSeverity == PerceivedSeverity.CLEAR &&
this after[O0s, 2s] a)
then

System.out.println ("Executing rule:
"t+drools.getRule () .getName () +" on " + a.getAdditionalText());

// Add the correlation time and rule name in the Additional
Information Field of the alarm

Date now=new Date() ;

SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd HH:mm:ss
zzz yyyy",

Locale.FRENCH) ;

a.setAdditionalInformation ("correlated by rule:

"t+drools.getRule () .getName ()
+" at " +sdf.format (now)) ;

// Store the alarm
acmeActionManager.doDummyAction (a) ;
end

@ NOTE: The JBoss Drools documentation contains a lot of other examples of rules in both STREAM (Drools Fusion)
and CLOUD (Drools Expert) modes. As writing the correlations rules is the major undertaking of creating a
correlation project, it is highly recommended to constantly refer to the Drools documentation when writing Rules.
Please see http://www.jboss.org/drools/documentation for documentation on how to write rules for Drools Expert

and Drools Fusion.

http://www.jboss.org/drools/documentation

Focus on development key points 41

4.2.4 Defining and using rule templates

For information about rule templates, please refer to: [R2] Unified Correlation Analyzer for Event Based Correlation -
Reference Guide

4.2.5 Introducing Java code in the rules

Drools rules files natively support Java code in the consequence part of the rules (after the “then” keyword). All you have
to do is import the packages/classes that you need in the import section of the rules files and then write Java code
referencing these classes.

For example, you declare the java.util.Date classin the rules file:

template header
timeslot

package com.hp.uca.expert.vp.llef.grouping;

#list any import classes here.
import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import com.hp.uca.expert.example.hibernate.AlarmDao;

import java.text.SimpleDateFormat;
import java.util.Date;

import java.util.Locale;

import java.util.ArrayList;

import java.util.Iterator;

import com.hp.uca.expert.scenario.ScenarioPublic;

import com.hp.uca.common.trace.LogHelper;

import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here

global AlarmDao alarmDAO;
global ScenarioPublic theScenario;

Then you can create and use java.util.Date objectsin the consequence part (after the “then” keyword) of your
rules:

// Description: find a root cause and the associated symptoms in a given time

window
// Constraints:
// - the root cause is not cleared during the time window

template "Update Root Cause with Symptoms no clearance received"
rule "Update Root Cause with Symptoms no clearance received"

when

then
LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName () , rootAlarm.getOriginatingManagedEntity () +" - "+
rootAlarm.getAdditionalText ()) ;

// Add the correlation time and rule name in the Additional
Information Field of the alarm
Date now=new Date () ;

Focus on development key points 42

SimpleDateFormat sdf = new SimpleDateFormat ("EEE MMM dd HH:mm:ss

zzz yyyy",
Locale.FRENCH) ;

String addInfo="correlated by rule: "+drools.getRule () .getName ()
+" at " +sdf.format (now) + "\nAssociated sympthoms:\n";

The java.util.Date objects that you create are not stored in Working Memory unless you do so explicitly using
the “insert” statement.

FEBI NOTE: For more information, please see the Drools documentation: http://www.jboss.org/drools/documentation

4.3 Defining your own beans

Spring beans (corresponding to the external Java services that you want to use) are defined in the context . xm1 of
your Value Pack.

Here below is an example of a bean named “dbForwarder” that is relevant for forwarding alarms into an SQL data store.

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder">
<property name="alarmDao" ref="alarmDao" />
</bean>

You can define any bean in this file.

In order to retrieve the Java instance of that bean object, you will need to use following API in your value pack:

Scenario.getValuePack () .getApplicationContext ()
In order to retrieve the Spring ApplicationContext that will allow you to retrieve your bean.

With above example, typical code would have been:

return (JDBCAlarmForwarder) theScenario.getValuePack ()
.getApplicationContext () .getBean ("dbForwarder") ;

4.4 Executing external actions from the rules

External actions in rules are basically any action that either uses UMB framework services, or OSS Open Mediation
framework services or external Java services.

There are three categories of external actions that will be described in the following sections:

o Standard external actions: these actions use the Action class, defined by the UCA for EBC framework, to
execute actions on the Unified Mediation Bus framework (i.e. execute actions on any application connected to
the UMB framework using a mediation adapter) or on the legacy OSS Open Mediation framework (i.e. execute
actions on any application connected to the OSS Open Mediation framework using a Channel Adapter)

o Calling services defined using Spring: Spring beans are defined in the context . xm1 of your Value Pack
and global variables that reference these Spring beans are defined in your scenario(s) and used in your rule
file(s).

o Forwarding alarms or events to external systems: Alarm and Event forwarders are defined using Spring beans
and used from the rules to forward alarms or events to files, IMS queues/topics, the UMB framework, the OSS
Open Mediation framework, or any database that has a JDBC interface

http://www.jboss.org/drools/documentation

Focus on development key points 43

4.4.1 Standard external actions

Standard external actions are defined as actions that are to be executed by the UMB framework of by the OSS Open
Mediation framework.

The UCA for EBC framework defines a Java class named Action that you can use to perform standard external actions in
rules, like for example executing a shell script or a TeMIP directive on a TeMIP director.

In order to be able to use the methods of the Action class, you have to import the class in the “import” part of the rule file:

package com.hp.uca.expert.action;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT CLEARED,
CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT ACKNOWLEDGED,
ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT HANDLED,

HANDLED, CLOSED

import com.hp.uca.mediation.action.client.Action;

import com.hp.uca.mediation.action.jaxws.ActionResponseltem;
import java.util.ArrayList;

Then you can create Action objects in the “then” part of a rule as described in the example below:

Display properties of any new alarm

rule "Any Not Acknowledged Alarm (Action)"
when
a: Alarm(operatorState == OperatorState.NOT ACKNOWLEDGED)
then
System.out.println (" [RULE " + drools.getRule () .getName () + "] Found not
acknowledged alarm: identifier = " + a.getIdentifier() + ":");
System.out.println (a.toFormattedString()) ;

// Acknowledging the Alarm

Action action = new Action ("TeMIP AO Directives localhost ");
action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier()):;

action.addCommand ("UserId", "UCA Expert");
theScenario.addAction (action); // Associate the action with the scenario
System.out.println ("Executing synchronous ACKNOWLEDGE directive on

alarm: " + a.getlIdentifier()):;
action.executeSync () ;
System.out.println ("Done:") ;
System.out.println (" - ActionId = " + action.getActionId()):;
System.out.println (" - ActionStatus = " + action.getActionStatus());
System.out.println (" - ActionStatusExplanation = " +
action.getActionStatusExplanation()) ;
if (laction.getListActionResponseltem() .isEmpty ()) {
System.out.println (" - ActionResponseltems = ");

// Loop through all action response items
for (ActionResponseltem item
action.getListActionResponseltem()) {
if (!item.getOutput () .getEntry().isEmpty()) {
// Loop through all output entries
for (ActionResponseltem.Output.Entry entry
item.getOutput () .getEntry()) {

Focus on development key points 44

System.out.println (" => " 4
entry.getKey() + " = " + entry.getValue());
}
}

}
}
else {

System.out.println (" - ActionResponseltems = none");
}
System.out.println (" - RawText = " + action.getRawTextAsString());

end

If you use the new UMB mediation layer then you have two options to create the new Action object in the source code
of your rule;

e Either using the ActionReference parameter:

Action action = new Action ("TeMIP AO Directives localhost");

The value of this parameter must match an Action Reference defined in
${UCA EBC INSTANCE}/conf/ActionRegistry.xml file

e Orusing the targetAdapter and targetActionName parameters:

The value of these parameters must match a couple targetAdapter / targetActionName couple defined in
${UCA EBC INSTANCE}/conf/ActionRegistry.xml file

If you use the legacy OSS Open Mediation (NOM) layer then you also have two options to create the new Action object
in the source code of your rule:

e Either using the ActionReference parameter:

Action action = new Action("TeMIP AO Directives localhostNOM");

The value of this parameter must match an Action Reference defined in
${UCA EBC INSTANCE}/conf/ActionRegistry.xml file

e Orusing the NMS Name, Service Name, Mvp Name and Mvp Version parameters:

The Mvp Name and Version must match a Mediation Value Pack MvpName and MvpVersion attributes in the
${UCA _EBC_ INSTANCE}/conf/ActionRegistry.xml file

Here’s the content of a sample ActionRegistry.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="temip"
MvpVersion="1.0"

url=http://localhost:26700/uca/mediation/action/ActionService?WSDL
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="TeMIP AO Directives localhostNOM">
<ServiceName>aoDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

</Action>

<Action actionReference="TeMIP TT Directives localhostNOM">
<ServiceName>ttDirective</ServiceName>
<NmsName>localTeMIP</NmsName>

Focus on development key points 45

</Action>
<Action actionReference="TeMIP FlowManagementNOM">
<ServiceName>subscriptionManagement</ServiceName>
<NmsName>localTeMIP</NmsName>
</Action>
</MediationValuePack>

<MediationValuePack MvpName="exec"

MvpVersion="1.0"
url=http://localhost:26700/uca/mediation/action/ActionService?WSDL
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="Exec localhost">
<ServiceName>commandsExecution</ServiceName>
<NmsName>localhost</NmsName>
</Action>
</MediationValuePack>

<!-- UMB Actions -->
<UMBActions>
<UMBAction actionReference="TeMIP AO Directives localhost"
targetAdapterName="TeMIP" targetActionName="AOAction"/>

<UMBAction actionReference="TeMIP TT Directives localhost"
targetAdapterName="TeMIP" targetActionName="TTAction"/>

<UMBAction
actionReference="TeMIP Passthrough Directives localhost"
targetAdapterName="TeMIP" targetActionName="PassthroughAction"/>
</UMBActions>

</ActionRegistryXML>

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide for more information on how to
use the Action class or configure the ActionRegistry.xml file.

Please refer to [R6] 0SS Open Mediation V7.2 - Installation and Configuration Guide for more information on how to configure
0SS Open Mediation V7.2 to support the execution of Actions.

Once you have created an Action object, you can specify the parameters that will define what action to perform, in the
following example a TeMIP directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA Expert");

Using the addCommand () method you can specify the key/value pairs to use as parameters to the Action object.
These parameters depend on the type of Action to perform,

For acknowledging a TeMIP Alarm, you need to specify the key/value pairs as shown above: specifying the UserId of
the user acknowledging the alarm is optional, just like in TeMIP.

Then, you need to associate the Action to the current Scenario so that the Action can be properly processed:
theScenario.addAction (action) ;

Then, you need to execute the Action. Both synchronous and asynchronous actions are possible. Only one of the
following lines of code is necessary, depending on whether you want to execute a synchronous or asynchronous action:

action.executeSync () ;
action.executeAsync (AODirectiveKey.ENTITY NAME) ;

Focus on development key points 46

Synchronous actions are “blocking”. The action.executeSync () call will block the execution of the rule until the
action is completed. The whole rule engine for the scenario is blocked while the action is being executed.

Asynchronous actions are “non blocking”. This is the reason why they are the recommended method for executing
actions. The action.executeAsync (..) call doesn’t block the execution of the rule, The rules continue to be
executed.

There’s a mandatory parameter to the action.executeAsync (..) method the synchronizationKey.
This key indicates the name of the action command key that will be used to synchronize asynchronous actions so that the
order of asynchronous actions referring to the same action command key/value pair is preserved.

The synchronizationKey parameter enables you to preserve some kind of order among all the asynchronous
actions triggered by your rules. By default (if you specify Action.NO SYNCHRONIZATION KEY asthe
synchronization key) there is no order. All asynchronous actions are executed in parallel by a pool of threads. There is no
guarantee that the asynchronous actions will be executed in the order in which they were requested.

If you do not need asynchronous actions to be executed in any specific order, then you can use
Action.NO SYNCHRONIZATION KEY asthe synchronization key when calling the
action.executeAsync (..) method.

On the other hand, if you need all asynchronous actions to be executed in the order they are requested, you need to use
a command key (specified with the action.addCommand (key, value) method) that has the same value for
all asynchronous actions as the synchronization key.

If you need only groups of asynchronous actions to be executed in the order they are requested, you need to use a
command key (specified with the action.addCommand (key, value) method) that has the same value for all
asynchronous actions of the same group as the synchronization key.

For example, for executing TeMIP AQ Directives you can use the AODirectiveKey .ENTITY NAME as
synchronization key:

Action action = new Action (“TeMIP AO Directives localhost”);
action.addCommand (AODirectiveKey.DIRECTIVE NAME, AODirective.SET);
action.addCommand (AODirectiveKey.ENTITY NAME, “OPERATION CONTEXT OC1l
ALARM OBJECT 1557) ;

action.addCommand (AODirectiveKey.ADDITIONAL TEXT, “my text”);
theScenario.addAction (action)

action.executeAsync (AODirectiveKey.ENTITY NAME) ;

In the example above, as long as you execute TeMIP AO Directives using the
action.executeAsync (AODirectiveKey.ENTITY NAME) syntax all TeMIP AO Directives actions on
the same entity will be executed in the order that they are called.

If you do not want to use the synchronization key feature, you can pass null or
Action.NO SYNCHRONIZATION KEY totheexecuteAsync (..) method:

action.executeAsync (Action.NO SYNCHRONIZATION KEY) ;

NOTE: For more information on synchronous and asynchronous actions (including how to use synchronization keys
for asynchronous actions), please refer to: [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide.

Focus on development key points 47

Once the action has been performed on the Network Management System the result of the execution of the action can
be retrieved using the following methods:

action.getActionStatus () ;
action.getActionStatusExplanation () ;

Other methods of the Action class provide even more detailed information on the result of the execution of the action.
See the Java Documentation for the Action class for more information.

4.4.1.1 Writing Actions for the UMB TeMIP Mediation Adapter or for the OSS Open
Mediation TeMIP Channel Adapter

The delivered value pack examples come witha 1ib/ directory containing the TeMIP mapper jar file:
lib/uca-mediation-temip-mvp-mapper-keys-3.4.jar

This will allow you to benefit from java classes that have been designed to help you write rules that execute TeMIP Alarm

Obiject (AO) directives or TeMIP Trouble Ticket (TT) directives (provided the TeMIP mediation adapter (UMB) or

channel adapter (NOM) is deployed).

To do so, the first step is to add the following import statement in your rules file:

import com.hp.uca.temip.mvp.mapper.*;

Below is the list of classes that you can use to help you write rules (all AO classes are defined in the
com.hp.uca.temip.mvp.aodirective.mapper package while TT classes are defined in the
com.hp.uca.temip.mvp.ttdirective.mapper package).

There are 2 sets of classes. The first set contains classes that define constants that should be used in the “key” part when
using the Action.addCommand (key, value) method:

Table 4 - Java helper classes for TeMIP adapter

Class name Class description

AODirectiveKeyin Contains string constants that list all the possible values
com.hp.uca.temip.mvp.a | for keys when using the

odirective.mapper Action.addCommand (key, value) methodon
package AO Directives

TTDirectiveKeyin Contains string constants that list all the possible values
com.hp.uca.temip.mvp.t | for keys when using the

tdirective.mapper Action.addCommand (key, value) methodon
package TT Directives

The most important constant in the AODirectiveKey class is the AODirectiveKey.DIRECTIVE NAME (or
the TTDirectiveKey.DIRECTIVE NAME inthe TTDirectiveKey class depending on whether you want
to execute AO or TT directives).

Using this constant, you can define the name of the TeMIP Alarm Object (or Trouble Ticket) directive that you wish to
execute:

Action action = new Action (“TeMIP AO Directives localhost”);
action.addCommand (AODirectiveKey.DIRECTIVE NAME, AODirective.SET);

Focus on development key points 48

theScenario.addAction (action) ;

action.executeAsync (AODirectiveKey.ENTITY NAME) ;

The other constants define the names of AO (or TT) Directive parameters or attributes that you can use. For example:

Action action = new Action (“TeMIP AO Directives localhost”);
action.addCommand (AODirectiveKey.DIRECTIVE NAME, AODirective.SET);
action.addCommand(AODirectiveKey.ENTITYiNAME, “OPERATION7CONTEXT OoC1l
ALARM OBJECT 1557) ;

action.addCommand (AODirectiveKey.ADDITIONAL TEXT, “my text”);
theScenario.addAction (action) ;

action.executeSync () ;

The second set contains classes that define constants that should be used in the “value” part when using the
Action.addCommand(key, value) method.

Below is the list of such classes for Alarm Object directives (besides the AODi rectiveKey class that is explained
above):

Table 5 - AO directives helper classes

Class name Class description

AlarmClassType Contains string constants that list all the possible values
for the Alarm_Class attribute (of the SET directive for
example). These constants should be used in the value
part when using the ActionaddCommand(key, value)
method

AlarmObjectProblemStatus Contains string constants that list all the possible values
for the Problem_Status attribute (of the DUMP or SET
directives for example)

AlarmObjectState Contains string constants that list all the possible values
for the State attribute (of the DUMP or SET directives for
example) and the Previous_State attribute (of the SET
directive for example)

AlarmOriginType Contains string constants that list all the possible values
for the Alarm_Origin attribute (of the SET directive for
example)

AlarmType Contains string constants that list all the possible values

for the Alarm_Type attribute (of the CREATE, DUMP or
SET directives for example)

AODirective Contains string constants that list all the possible values
for Alarm Object directive names (ACKNOWLEDGE,
ADDPARENT, ARCHIVE, ... for example)

AutomaticOperationsSeverity Contains string constants that list all the possible values
for the Automatic_Terminate_On_Close attribute (of the
SET directive for example)

Focus on development key points 49

DeleteCondition

Contains string constants that list all the possible values
for the State attribute (of the DELETE directive for
example)

EntityScope

Contains string constants that list all the possible values
for the entityScope attribute (of any directive)

EventID

Contains string constants that list all the possible values
for the EventID attribute (of the GETEVENT directive for
example)

Partition

Contains string constants that list all the possible values
for the Partition attribute (of any directive)

ProbableCause

Contains string constants that list all the possible values
for the Probable_Cause attribute (of the CREATE, DUMP
or SET directives for example)

SecurityAlarmCause

Contains string constants that list all the possible values
for the Security_Alarm_Cause attribute (of the CREATE,
DUMP or SET directives for example)

Severity

Contains string constants that list all the possible values
for the Severity (of the ARCHIVE directive for example),
Perceived Severity (of the CREATE, DELETE, DUMP, or
SET directives for example), or Original_Severity (of the
SET directive for example) attributes

SummarizeScope

Contains string constants that list all the possible values
for the Scope attribute (of the DUMP directive for
example)

TrendIndication

Contains string constants that list all the possible values
for the Trend_Indication attribute (of the CREATE or
SET directives for example)

Below is the list of such classes for Trouble Ticket (TT_SERVER) directives (besides the TTDirectiveKey class that

is explained above):

Table 6 - TT directives helper classes

Class name

Class description

Attributeld

Contains string constants that list all the possible values for
the Attributeld attribute (of the SHOW directive). These
constants should be used in the value part when using the
Action.addCommand(key, value) method

AutoResponseType

Contains string constants that list all the possible values for
the Type attribute (of the ASSOCIATETT, CANCELTT,
CLOSETT, CREATETT or DISSOCIATETT directives)

Partition

Contains string constants that list all the possible values for
the Partition attribute (of any directive)

Focus on development key points 50

RegisterOperationType Contains string constants that list all the possible values for
the Operation attribute (of the REGISTER directive)

TTDirective Contains string constants that list all the possible values for
Trouble Ticket directive names (ASSOCIATETT,
CANCELTT, CLEARALL, CLOSETT, CREATE ... for example)

The most important class in this set is the AODirective class (or the TTDirective class of Trouble Ticket directives) that
lists all possible Alarm Object directive names (ACKNOWLEDGE, ADDPARENT, ARCHIVE, ... for example):

Action action = new Action (“TeMIP AO Directives localhost”);
action.addCommand (AODirectiveKey.DIRECTIVE NAME, AODirective.SET);

theScenario.addAction (action) ;

action.executeAsync (AODirectiveKey.ENTITY NAME) ;

The other classes contain constants that define the list of possible value for AO Directive (or TT Directive) parameters or
attributes.

Action action = new Action (“TeMIP AO Directives localhost”);
action.addCommand (AODirectiveKey.DIRECTIVE NAME, AODirective.SET);
action.addCommand (AODirectiveKey.ENTITY NAME, “OPERATION CONTEXT OC1l
ALARM_OBJECT 1557) ;

action.addCommand (AODirectiveKey.TREND INDICATION,
TrendIndication.LESSSEVERE) ;

action.addCommand (AODirectiveKey.PROBABLE CAUSE, ProbableCause.LOSSOFSIGNAL) ;
theScenario.addAction (action) ;

action.executeSync () ;

You can use Eclipse IDE's automatic completion feature (the keyboard shortcut for this feature is: CTRL+<Space>) to
discover the constants defined in each of the classes mentioned above.

4.4.1.2 Writing Actions for the UMB Exec Mediation Adapter or for the OSS Open
Mediation Exec Channel Adapter

The delivered value pack examples come with a lib directory containing the exec mapper jar file:
lib/uca-mediation-exec-mvp-mapper-keys-3.4.jar

To create an Exec Action for the UMB Exec adapter of for the OSS Open Mediation Exec adapter, you must first add the
following import statement in your rule file:

import com.hp.uca.exec.mvp.mapper.*;

This will allow you to benefit from java classes that have been designed to help you write rules that execute
command/executables/shell scripts (provided the Exec mediation adapter (UMB) channel adapter (OSS Open Mediation)
is deployed).

Below is the list of classes that you can use to help you write rules (all classes are defined in the
com.hp.uca.exec.mvp.mapper package):

Focus on development key points 51

Table 7 - Java helper classes for Exec adapter

Class name Class description

ExecActionKey | Contains string constants that list all the possible values for keys
when using the Action.addCommand (key, value)
method

Here's an example of the ExecActionKey class use:

Action action = new Action("Exec localhost");
action.addCommand (ExecActionKey.COMMAND, "ping") ;
action.addCommand (ExecActionKey.ARGUMENT, "127.0.0.1");

theScenario.addAction (action) ;

action.executeSync () ;

4.4.2 Calling services defined using Spring

Sometimes the actions performed in the THEN part of rules will be calls to nonstandard Java package services such as
Hibernate, JMS... These services generally need to be initialized and the Spring configuration file of the Value Pack,
context.xml,isoneway to doit.

In order to be able to use these services from Drools rules files, Drools global variables need to be defined that reference
the Spring beans defined in the contextxml file of the value pack.

Any service defined using Spring can be “refrieved” in any rule file using the “global” keyword.
Below is an excerpt from the Drools Expert documentation that explains the concept of global variables:

[..] With global you define global variables. They are used to make
application objects available to the rules. Typically, they are used to
provide data or services that the rules use, especially application services
used in rule consequences, and to return data from the rules, like 1logs or
values added in rule consequences, or for the rules to interact with the
application, doing callbacks. Globals are not inserted into the Working
Memory, and therefore a global should never be used to establish conditions
in rules except when it has a constant immutable value. The engine cannot be
notified about value changes of globals and does not track their changes.
Incorrect use of globals in constraints may yield surprising results -
surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of
the same type and all of them will reference the same global value. [..]

Please refer to the [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide for more information about
the Spring Framework integration with UCA for EBC.

First, in order to be able to use Spring beans in rules files, the Spring beans must be declared in the context. xm1 file
of the Value Pack. Then global variable entries must be defined for each Spring bean in the
ValuePackConfiguration.xml file as shown below:

<?xml version="1.0" encoding="UTF-8"?2>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
name="_ PROJECT NAME " version="_PROJECT VERSION ">
<scenarios>

Focus on development key points 52

<scenario name="Grouping-Scenario">

<filterFile>src/main/resources/com/hp/uca/expert/vp/llef/grouping/group
ing-filter.xml</filterFile>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>alarmDAO</key>
<value>alarmDAO</value>
</global>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/com/hp/uca/expert/vp/llef/grouping/
grouping-template.drl</filename>
<name>grouping</name>

<paramsFilename>file:./src/main/resources/com/hp/uca/expert/vp/llef/gro

uping/grouping-params.xml</paramsFilename>
<ruleFileType>XDRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>
</scenarios>

</valuePackConfiguration>

The <globals> XML tag inthe ValuePackConfiguration.xml file definesa list (i.e. a Java map) of beans
that will be available in your rules file(s) as global variables.

The following piece of code illustrates the use of external Java libraries from rule files;

package com.hp.uca.expert.example.hibernate;
#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

impor€:25£:££:£;;2expert.example.hibernatezgiggéiggz::>
/Aﬁﬂgjt = any global variabres-here
Java class global AlarmDao alarmDAO;

import Definition of
template "Root Cause without Symptom" alobal variables
rule "Root Cause without Symptom"
when
then
orore the root camss ali_m/‘ External action
alarmbRAQ.save (fatherAlarm) ; .
using global
variahle

4.4.3 Forwarding alarms to external systems

A common use case is when you want to forward alarms being processed by a scenario to external systems/applications.

You might want to create an XML file containing some alarms that you want to export from the scenario so that you can
import these alarms on an external system/application.

Focus on development key points 53

Alternatively, if the external system/application that you want to export alarms to has a JMS queue/topic that can be used
to import alarms, then you might want to export alarms directly to this JMS queue/topic.

Finally, if the external system/application is accessible from OSS Open Mediation V7.2 via a specific Channel Adapter, then
you might want to export the alarms directly to the OSS Open Mediation V7.2 bus. If the external system/application has a
UMB mediation adapter, then you can export the alarms or events through UMB as explained in section 4.4.4 Forwarding

events through UMB.

The UCA for EBC framework defines standard classes that enable you forwarding Alarm objects (or collections thereof)
located in Drools Working Memory or that have been defined in the rules of a scenario to either a file, a JMS queue/topic
or OSS Open Mediation V7.2,

The following Java classes are part of the UCA for EBC framework:

e To forward alarms to a file:
com.hp.uca.expert.alarm.FileAlarmForwarder
e To forward alarms to a JMS queue/topic. com.hp.uca.expert.alarm.JMSAlarmForwarder

e To forward alarms to OSS Open Mediation V7.2;
com.hp.uca.expert.alarm.OpenMediationAlarmForwarder

e To persist alarms into a DB store:;
com.hp.uca.expert.alarm.JDBCAlarmForwarder

Please refer to UCA for EBC Javadoc for complete information on these classes. The Javadoc for UCA for EBC is located
at ${UCA EBC DEV HOME}/apidoc

One way to forward alarms is to define an AlarmForwarder (either FileAlarmForwarder, IMSAlarmForwarder,
OpenMediationAlarmForwarder or JDBCAlarmForwarder) bean in the Spring configuration file of the scenario
(context.xml).

NOTE: Please note that the recommended way for defining alarm forwarders is to define them in the Spring
configuration file of the scenario: context . xm1.

A Thread is associated with each alarm forwarder (either FileAlarmForwarder, IMSAlarmForwarder,
OpenMediationAlarmForwarder, or JDBCAlarmForwarder). This thread is automatically started when the associated
AlarmForwarder object is created. If the AlarmForwarder has been created using the recommended method (in the
Spring configuration file of the scenario: context . xm1) then the associated thread will be automatically stopped
when the bean associated with the alarm forwarder is destroyed. Otherwise you need to use the requestStop()
method to explicitly stop the thread associated with the alarm forwarder when you don't need it anymore.

The thread associated with an alarm forwarder provides compression to improve performance. Alarms may not be
forwarded right away. They are accumulated in a queue for the duration of the compression period (by default 1
second) so that they can be forwarded as a batch of alarms at the end of the compression period (by default every
second). You can change the value of the compression period using the setCompressionPeriod(long) method. If you
set the compression period to O milliseconds, no compression will be performed.

Here's an example of defining such a bean in the context . xm1 file of a scenario:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:p="http://www.springframework.org/schema/p"

xmlns:context="http://www.springframework.org/schema/context"
xmlns:amg="http://activemqg.apache.org/schema/core"

xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="http://www.springframework.org/schema/beans

Focus on development key points 54

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-
jms.xsd
http://activemqg.apache.org/schema/core
http://activemqg.apache.org/schema/core/activemg-
core.xsd">

<context:annotation-config />

<bean name="forwardedAlarmsFile" class="java.io.File">
<constructor-arg index="0"><value>forwarded-
alarms.xml</value></constructor-arg><!-- String pathname -->
</bean>

<bean name="fileAlarmForwarder"
class="com.hp.uca.expert.alarm.FileAlarmForwarder" depends-
on="forwardedAlarmsFile">
<constructor-arg index="0"><ref

bean="forwardedAlarmsFile"/></constructor-arg><!-- File file -->
<constructor-arg index="1"><value>false</value></constructor-
arg><!-- boolean overwrite -->
</bean>

<bean name="jmsAlarmForwarder"
class="com.hp.uca.expert.alarm.JMSAlarmForwarder">
<constructor-arg
index="0"><value>vm://localhost?broker.persistent=false</value></constructor-
arg><!-- String brokerURL -->
<constructor-arg
index="1"><value>jms.alarm.forwarder.test.queue</value></constructor-arg><!--
String destinationName -->
<constructor-arg index="2"><value>true</value></constructor-
arg><!-- boolean isQueue -->
</bean>

<bean name="openMediationAlarmForwarder"
class="com.hp.uca.expert.alarm.OpenMediationAlarmForwarder">
<constructor-arg index="0"><value>UCA-
EBC remotesystem</value></constructor-arg><!-- String actionReference -->
<constructor-arg index="1"><value>Alarm Flow from UCA
EBC</value></constructor-arg><!-- String alarmFlowName -->
</bean>
</beans>

Figure 18 - Defining AlarmForwarder beans in the context.xml file

The highlighted portion of the context . xm1 file shows the definition of a FileAlarmForwarder bean that will be used
in the rule files of a scenario to forward alarms to an XML file.

Once the context . xml file has been properly set up, you need to define global variable entries in the
ValuePackConfiguration.xml file for each Spring bean that you want to access from the rules as shown
below:

<?xml version="1.0" encoding="UTF-8"?2>
<valuePackConfiguration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
name="_ PROJECT NAME " version="_ PROJECT VERSION ">

<scenarios>
<scenario name="alarmforwarder">

Focus on development key points 55

<filterFile>src/main/resources/valuepack/alarmforwarder/filters.xml</filterFi
le>
<fireAllRulesPolicy>EACH ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>fileAlarmForwarder</key>
<value>fileAlarmForwarder</value>
</global>
<global>
<key>jmsAlarmForwarder</key>
<value>jmsAlarmForwarder</value>
</global>
<global>
<key>openMediationAlarmForwarder</key>
<value>openMediationAlarmForwarder</value>
</global>
</globals>
<processingMode>STREAM</processingMode>
<rulesFiles>
<rulesFile>
<filename>file:./src/main/resources/valuepack/alarmforwarder/alarmforwa
rder.drl</filename>
<name>alarmforwarder rules</name>
<ruleFileType>DRL</ruleFileType>
</rulesFile>
</rulesFiles>
</scenario>

</scenarios>
</valuePackConfiguration>

Figure 19 - Defining AlarmForwarder globals in the ValuePackConfiguration.xml file

The highlighted portion of the ValuePackConfiguration.xml file shows the definition of a fileAlarmForwarder
global variable referencing the fileAlarmForwarder Spring bean defined in the context . xm1 file that will be used in
the rule files of a scenario to forward alarms to an XML file.

Once the ValuePackConfiguration.xml file has been properly set up, you need to make some modifications
to the rule files where you want to use the fileAlarmForwarder global variable:

Import the proper Java class:

e com.hp.uca.expert.alarm.FileAlarmForwarder foraFileAlarmForwarder

e com.hp.uca.expert.alarm.JMSAlarmForwarder fora JMSAlarmForwarder

e com.hp.uca.expert.alarm.OpenMediationAlarmForwarder foran
OpenMediationAlarmForwarder

Declare the global variables (defined in the ValuePackConfiguration. xml file) that you want to use in the rule
file

Below is an example of how to import the proper Java class, and declare the global variables that you want to use:

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.alarm.AlarmDeletion;

import com.hp.uca.expert.alarm.AlarmStateChange;

import com.hp.uca.expert.alarm.AlarmAttributeValueChange;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;
import java.util.ArraylList;

Focus on development key points 56

import com.hp.uca.expert.scenario.Scenario;
import com.hp.uca.common.trace.LogHelper;
import com.hp.uca.expert.flag.Flag;

import com.hp.uca.expert.testmaterial.AbstractJunitIntegrationTest;

import com.hp.uca.expert.alarm.FileAlarmForwarder;
import com.hp.uca.expert.alarm.JMSAlarmForwarder;
import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role (event)
@timestamp (timeInMilliseconds)
@expires(30m)

end

Figure 20 - Declaring the use of an AlarmForwarder global variable in a rule file

import com.hp.uca.expert.alarm.FileAlarmForwarder;
import com.hp.uca.expert.alarm.JMSAlarmForwarder;
import com.hp.uca.expert.alarm.OpenMediationAlarmForwarder;

#declare any global variables here

global Scenario theScenario;

global FileAlarmForwarder fileAlarmForwarder;

global JMSAlarmForwarder jmsAlarmForwarder;

global OpenMediationAlarmForwarder openMediationAlarmForwarder;

declare Alarm
@role (event)
@timestamp (timeInMilliseconds)
@expires (30m)

end

Forward any alarm received
rule "Forward any alarm received"
no-loop
when
Salarm : Alarm()
then

Once the proper Java classes have been imported and the global variables declared, you can just use global variable to
write Alarms (or collections of Alarms) to an XML file (the one specified in the context . xm1 file):

LogHelper.enter (theScenario.getLogger (), drools.getRule () .getName())

// Forward the alarm to a file, jms queue/topic or 0SS Open Mediation

fileAlarmForwarder.write ($Salarm) ;

// Forward the alarm to a jms queue or topic
jmsAlarmForwarder.write ($Salarm) ;

// Forward the alarm to 0SS Open Mediation
openMediationAlarmForwarder.write (Salarm) ;

// Retract the alarm

theScenario.getLogger () .info ("Retracting: \n"+
Salarm.toFormattedString()) ;
theScenario.getSession () .retract (Salarm) ;

LogHelper.exit (theScenario.getLogger (), drools.getRule ()
end

.getName ()) ;

Focus on development key points 57

Figure 21 - Using an AlarmForwarder global variable to write Alarms to an XML file

The XML file generated by the FileAlarmForwarder is fully compatible with the XML schema for UCA for EBC Alarms
defined at $ {UCA EBC_DEV_HOME}/lib/schemas/uca-expert-alarm.xsd. For example, the
generated XML file containing the alarms can be used as input to the $ {UCA EBC HOME} /bin/uca-ebc-
injector command-line tool.

The JMSAlarmForwarder on the other hand can be used to forward alarms directly to a JMS queue/topic, for example the
Alarm input queue of a UCA for EBC server (which is implemented as a JMS Topic). You can use the following values to
forward alarms to a UCA for EBC alarm input queue:

o brokerURL: JMSAlarmForwarder DEFAULT_UCA_EBC BROKER_URL (the value of this constant is
“tcp://localhost:61666™)

o destinationName: JMSAlarmForwarder DEFAULT_UCA EBC_ALARMS_TOPIC_NAME (the value of this constant
is “com.hp.uca.ebc.alarms™

e isQueue: false (because the UCA for EBC alarm input queue is in fact a JMS topic, not a JMS queue)

Finally the OpenMediationAlarmForwarder can be used to forward alarms to OSS Open Mediation V7.2. In order to use an
OpenMediationAlarmForwarder, you must first create an action reference in the

${UCA EBC INSTANCE}/conf/ActionRegistry.xml file that will define how to connect to the UCA for
EBC Channel Adapter on OSS Open Mediation V7.2, and how to reach the Channel Adapter of the system/application that
you target.

Below is an example of an action reference defined inthe ActionRegistry.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack MvpName="ApplicationX" MvpVersion="1.1"

url="http://localhost:26700/uca/mediation/action/ActionService?WSDL"
brokerURL="failover://tcp://localhost:10000">

<Action actionReference="ApplicationX remotesystem">
<ServiceName>applicationX-1.1</ServiceName>
<NmsName>remotesystem</NmsName>
</Action>
</MediationValuePack>
</ActionRegistryXML>

In the sample ActionRegistry.xml file above, an action reference has been defined for an “ApplicationX”
application on a remote system connected to OSS Open Mediation V7.2 via an ApplicationX Channel Adapter
(ApplicationX is a fictitious application).

The brokerURL attribute must match the URL of the ActiveMQ broker defined for the OSS Open Mediation V7.2 that you
target. The hostname in the URL must match the hostname of the system where OSS Open Mediation V7.2 is installed. By
default the port number used for the ActiveMQ broker on OSS Open Mediation V7.2 container instance O is 10000.

To verify what port number is used for your OSS Open Mediation V7.2 container instance, please check the value of the
activemg.port property in the /var/opt/openmediation-V71/containers/instance-<instance
number>/conf/servicemix.properties file

The following JMS properties will be set for the alarms being forwarded to OSS Open Mediation V7.2, These properties
can be used by consumer Channel Adapters to filter the alarms that they're interested in among all alarms pushed by

various Channel Adapters to the OSS Open Mediation V7.2 alarms JMS topic:

Table 8 - JMS properties set for alarms being forwarded to OSS Open Mediation

Focus on development key points 58

JMS Property Name Value

NOMOriginalProvider set to the value of ${caname} in UCA EBC CA

NOMOriginalProviderEndpoint “UCA EBC version on hostname”

NOMOriginalProviderPort not set

NOMOriginalProviderHost set to the value of ${nom_hostname} in UCA
EBC CA

NOMOriginalProviderContainerlnstan set to the value of ${sys.nom_instance_number}

ceNumber in UCA EBC CA

NOMType setto
"http.//hp.com/openmediation/alarms/2011/08"
in UCA EBC CA

NOMActionMessageType not set (this is not an action message, this is an
alarm message)

NOMActionEntityHint not set (this is not an action message, this is an
alarm message)

NOMActionNameHint not set (this is not an action message, this is an
alarm message)

NOMFinalConsumer the value of the “serviceName” attribute of the
action reference (in the ActionRegistry.xml file)
associated with the

OpenMediationAlarmForwarder object

NOMFinalConsumerEndpoint ‘mvpName mvpVersion on nmsName', where
the names in italics are XML entities/attributes
of the action reference (in the
ActionRegistry.xml file) associated with the
OpenMediationAlarmForwarder object

NOMFinalConsumerPort "alarmFlowName" associated with the
OpenMediationAlarmForwarder object or "UCA
EBC Alarms" by default. You can set the
FlowName attribute when you create the
OpenMediationAlarmForwarder object

NOMFinalConsumerHost the value of the "nmsName" XML entity of the
action reference (in the ActionRegistry.xml file)
associated with the
OpenMediationAlarmForwarder object

NOMPFinalConsumerConstainerinstan not set
ceNumber

4.4.4 Forwarding events through UMB

One of the roles of the value packs is to forward correlation results (whatever their types: Events, Trouble tickets, alarms..)
to some other applications.

From a scenario this is done by using an UMBForwarder object that makes the link between the scenario and the UCA-
EBC flow service as defined inthe AdapterConfiguration.xml file.

Focus on development key points 59

An UMBEventForwarder object can be easily created by requesting its creation from the value pack’s Spring context
(context.xml in the valuepack configuration directory).

Here is an example of UMBEventForwarder creation:

<bean name="mediationEventForwarder"
class="com.hp.uca.expert.event.UMBEventForwarder">

<constructor-arg index="0">
<value>UcaStaticEventForwarderFlow</value>

</constructor-arg>
</bean>

Figure 22 - Defining mediationEventForwarder bean in the context.xml file

The UMBEventForwarder object is created with an argument which is the name of the static flow as it is define in the
UCA-EBC AdapterConfiguration.xml file

Then from a rule file, this UMBEventForwarder object can be used as follow:

1. Define the object in the rule file ‘global section’
2. Use the UMBEventForwarder push() method to forward an event to the bus.

Example of rule forwarding an event to the bus;

package com.hp.uca.expert.vp.alarmforwarder;

#list any import classes

import
import
import
import
import
import
import
import
import

com.hp.uca.expert.
com.hp.uca.expert.
com.hp.uca.expert.

com.hp.uca.expert
java.util.ArrayList;

com.
com.
com.
com.

hp.
hp.
hp.
hp.

uca.
uca.
uca.
uca.

expert
common
expert
expert

here.

event.EventForwarder;
event.Event;
x733alarm.PerceivedSeverity;
.util.MessageFileHandler;

.scenario.Scenario;

.trace.LogHelper;

.flag.Flag;
.testmaterial.AbstractJunitIntegrationTest;

#declare any global variables here
global Scenario theScenario;
global EventForwarder mediationEventForwarder;

Forward any event received
rule "Forward any event received"
no-loop

Sevent.

end

when

Sevent

then

Event

0

LogHelper.enter (theScenario.getLogger (), drools.getRule () .getName())

// Forward the event to ne new Mediation
mediationEventForwarder.push (Sevent) ;

// Retract the event

theScenario.getLogger () .info ("Retracting: \n"+
toFormattedString()) ;
theScenario.getSession () .retract (Sevent) ;

LogHelper.exit (theScenario.getlLogger (), drools.getRule () .getName()) ;

Then the UCA adapter must declare itself as provider of a static flow with a name corresponding to the name passed as
parameter of the declaration of the mediationEventsForwarder bean:

Focus on development key points 60

Defining static flows

For static Flows the collectorClass must be set to:
com.hp.uca.expert.mediation.adapter.UcaStaticCollector

No flow parameters need to be defined.

Here is an example of Static Flow Service definitions for UCA-EBC:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="UCA-EBC" version="1.0" xmlns="http://hp.com/umb/config">
<flowServices>
<flow name="UcaStaticEventForwarderFlow" type="Static"
collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCollector">
</flow>
</flowServices>
</adapter>

And then any remote application can consume the events forwarded by the UCA VP by consuming the flow. For that the
AdapterConfiguration.xml of the UMB mediation adapter of the remote application should look like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="myRemoteApp" version="1.0" xmlns="http://hp.com/umb/config">
<autoConsumers>
<autoConsumer consumerIdentifier="myRemoteApp"
targetAdapterName="UCA-EBC"
targetFlowName="UcaStaticEventForwarderFlow"

messageConsumerClass="com.acme.foo.umb.adapter.UcakEventConsumer" />

</autoConsumers>
</adapter>

4.5 Making useful logs

The UCA for EBC product provides an advanced logging mechanism that is able to trace specific rule processing for each
Scenario.

The UCA for EBC Administration GUI fully supports this logging mechanism.

NOTE: For more information on how to troubleshoot scenarios using the UCA for EBC Administration GUI, please
see: [R7] Unified Correlation Analyzer for Event Based Correlation - User Interface Guide, chapter Troubleshooting UCA for
event based Correlation

To take benefits from this mechanism, the rule developer must use the logger provided by the UCA for EBC framework
for each scenario by calling the following method:

e theScenario.getLogger () from Drools files
e ScenarioThreadLocal.getScenario () .getLogger () fromJava code

The ScenarioThreadLocal classislocated inthe com. hp.uca.expert.scenario package.
The getLogger () method provides access to a standard org. apache. 1og4;j . Logger object. Consequently,

all standard log4j ZLogger methods are available to better qualify the level of information needed (for example
info (), debug (), warn(),etc.).

Focus on development key points 61

The following piece of code demonstrates how to use the UCA for EBC scenario logger to log messages from a Drools
rule file:

package com.hp.uca.expert.vp.sample;

#list any import classes here.

import com.hp.uca.expert.alarm.Alarm;

import com.hp.uca.expert.x733alarm.CustomFields;
import com.hp.uca.expert.x733alarm.CustomField;
import com.hp.uca.expert.x733alarm.PerceivedSeverity;

import com.hp.uca.expert.x733alarm.NetworkState; // NOT CLEARED,
CLEARED

import com.hp.uca.expert.x733alarm.OperatorState; // NOT ACKNOWLEDGED,
ACKNOWLEDGED, TERMINATED

import com.hp.uca.expert.x733alarm.ProblemState; // NOT HANDLED,

HANDLED, CLOSED
import com.hp.uca.expert.scenario.Scenario;
import com.hp.uca.common.trace.LogHelper;

#declare any global variables here
global Scenario theScenario;

rule "Any new Acknowledged Alarm"
when
a: Alarm(operatorState == OperatorState.ACKNOWLEDGED)
then
LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName ()) ;

theScenario.getlLogger () .info (" [RULE " + drools.getRule() .getName () + "]
Found new acknowledged alarm: identifier = " + a.getlIdentifier()+ ":");
theScenario.getlLogger () .debug(a.toFormattedString()) ;

LogHelper.exit (theScenario.getLogger (), drools.getRule () .getName ()) ;
end

rule "Any new Terminated Alarm"
when
a: Alarm(operatorState == OperatorState.TERMINATED)
then
LogHelper.enter (theScenario.getLogger (),
drools.getRule () .getName()) ;

theScenario.getlLogger () .info (" [RULE " + drools.getRule() .getName () + "]
Found new terminated alarm: identifier = " + a.getlIdentifier() + ":");

theScenario.getlLogger () .debug(a.toFormattedString()) ;

LogHelper.exit (theScenario.getLogger (), drools.getRule () .getName ())
end

Figure 23 - Scenario logger example

@ NOTE: Please refer to Chapter “Scenario Loggers”in the [R2] Unified Correlation Analyzer for Event Based Correlation -
Reference Guide for more information on how to use Scenario Loggers.

4.6 Creating JUnit Tests

Developing Value Packs involves creating correlation rules and writing code. In any case, it is highly recommended to unit
test your rules and code.

Focus on development key points 62

To help you in that regard, the ‘skeleton’ project (the project created with the UCA Eclipse plug-in) provides you with a
template of a JUnit test (based on JUnit 4.11) along with the complete infrastructure to compile, run and generate reports
for unit tests.

The following JUnit test is a good starting point to create new unit tests:

Itis a JUnit 4.11 test that also supports Java and Spring framework annotations: using @RunWith and @Configuration
annotations automatically loads the associated Spring configuration file (called <test file name>-
context.xml)

The template JUnit test class that we provide extends the AbstractJunitintegrationTest class. This class is part of the
UCA for EBC framework. It implements the Spring framework ApplicationContextAware interface, and thus provides
access to the Spring beans (Java objects) defined in the Spring configuration file(called <test file name>-
context.xml). You can easily retrieve any Spring bean defined in the Spring configuration file by using the
getApplicationContext().getBean(String name) method from any JUnit test class that extends the
AbstractJunitintegrationTest class.

In JUnit 4.11, any method that represents a unit test needs to have the @Test annotation before the definition of the
method.

Itis mandatory to define a junit. framework.Test suite) method so that tests can be found in the Apache
Ant project of your Value Pack. Defining the following method allows for automatic retrieval of all tests defined in the unit
test class:

// Way to run tests via ANT Junit
public static junit.framework.Test suite() {
return new JUnit4TestAdapter (SkeletonTest.class);

}

4.6.1 Testing with alarms

When designing Junits, it is a good practice to test alarms expected lifecycle, using different AlarmListener assigned with
the different alarms identifier to be tested, for.

e alarminsertion (waitingForAlarmInsertion)
e alarm update (waitingForAlarmUpdate)
e alarm retraction (waitingForAlarmRetract)

Other good practice is to test different objects values with assertEquals, assertNull, assertNotNull
and others methods furnished with the Junit library. Also, the number of Groups in memory can be tested by comparing it
with the result of calling the method getGroupsFromWorkingMemory () and the number of Alarms in memory
by calling the getAlarmsFromWorkingMemory ().

By comparing the historical engine events with a benchmark, you can easily check the whole test result with the expected
one.

In the following code you can find a template JUnit test class using some of the methods described above:

package com.hp.uca.expert.vp.skeleton;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import junit.framework.JUnit4TestAdapter;

import org.slf4j.Logger;
import org.slf4dj.LoggerFactory;

Focus on development key points 63

Focus on development key points 64

Focus on development key points 65

4.6.2 Testing with events

If the Value Pack to be tested is expected to handle events, other than alarms, the JUnit tests will also be extending the
AbstractJunitintegrationTest class.

The difference between sending alarms and sending events (non-alarms) is illustrated below.

The format of events listed in the EVENTS_FILE is described below:

Here is an example with a events belonging to a class of events named Temperature:

Focus on development key points 66

ifier><ns2:eventTime>01</ns2:eventTime><ns2:targetValuePack>MyVP</ns2:targetV
aluePack><ns3:value>100</ns3:value></temperature>]]></eventString>

</EventBoxBase>

</Events>
Note that alarm events could also be sent encapsulated in EventBoxBase containers.

The Spring configuration file associated with the events test file (called <test file name>-context.xml)
must contain the following elements

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:amg="http://activemqg.apache.org/schema/core"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-
jms.xsd
http://activemqg.apache.org/schema/core
http://activemqg.apache.org/schema/core/activemg-
core.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-
util-2.5.xsd">

<context:annotation-config />

<!-- TImport main application context -->
<import resource="classpath:/main-context.xml"/>

<bean id="vpBootstrap"
class="com.hp.uca.expert.testmaterial.ValuePackTestBootsrap">
<property name="configurationFile"
value="src/test/resources/com/hp/uca/expert/ft/collector/event/ValuePackConfi
guration.xml" />
</bean>

<!-- JMS Producer Configuration -->

<bean id="jmsProducerConnectionFactory"
class="org.springframework.jms.connection.SingleConnectionFactory"
depends-on="broker"
p:targetConnectionFactory-ref="jmsFactory" />

<bean id="jmsEventProducerTemplate"
class="org.springframework.jms.core.JmsTemplate"
p:connectionFactory-ref="jmsProducerConnectionFactory"
p:defaultDestination-ref="destinationEvent" />

<bean id="jmsEventProducer"
class="com.hp.uca.expert.testmaterial.EventBoxMessageProducerSpring" >
<property name="template" ref="jmsEventProducerTemplate"/>
</bean>

<!-- ActiveMQ Destination -->

Focus on development key points 67

<amg:topic id="destinationEvent" physicalName="com.hp.uca.ebc.events" />

<jms:listener-container container-type="default"
destination-type="topic" connection-
factory="jmsConsumerConnectionFactory"
acknowledge="auto">
<jms:listener id="T-EventCollector"
destination="com.hp.uca.ebc.events" ref="eventBoxMessagingListener" />
</jms:listener-container>

<bean id="eventBoxMessagingListener"
class="com.hp.uca.expert.collector.event.EventCollector">
<property name="helper" ref="eventHelper" />

</bean>

<bean id="eventHelper"
class="com.hp.uca.expert.event.marshal.EventMarshallingHelper">
</bean>
</beans>

4.6.3 State Listener

Since V3.2, when using the topology extension for developing for value packs as well as for developing Inference Machine
or Topology State Propagator Value Packs, another listener was introduced for testing States lifecycle: the StateListener.
In the same way as for testing alarms, the StateListener can be used in Junits for checking:

e stateinsertion (waitingForStateInsertion)
e state update (waitingForStateUpdate)
e state retraction (waitingForStateRetract)

Also, as seen for Groups, the number of PropagationGroups in memory is given by the method:

getPropagationGroupsFromWorkingMemory () ;

In the following code you can find a template JUnit test class using the states checking:

package ft.tsp;
import static org.junit.Assert.assertEquals;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

import Jjunit.framework.JUnitd4TestAdapter;

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.neo4dj.loader.csv.Loader;

import org.neo4dj.loader.csv.Report;

import org.neo4j.loader.csv.utils.TmpDir;

import org.slf4j.Logger;

import org.slf4dj.LoggerFactory;

import org.springframework.test.annotation.DirtiesContext;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import com.hp.uca.common.misc.Constants;
import com.hp.uca.expert.alarm.Alarm;

Focus on development key points 68

Focus on development key points 69

Focus on development key points 70

Focus on development key points 71

NOTE: The AbstractJunitintegrationTest test utility class has been developed and is provided as part of the UCA
for EBC Development Kit. A JavaDoc documentation is provided for this class. Please refer to the Java
Documentation of the com hp.uca.experttestmaterial package for full explanations.

Using the Apache Ant build.xml file provided in the example project (Skeleton) project (or projects created with the
UCA eclipse plugin) allows you to automatically compile, run the tests and generate the test reports (using the “test” Ant
target).

NOTE: The buildxml Ant file on runs Test Classes that have a name ended by ‘Test’. All other classes will not be
executed when launching the ‘test’ target. It is therefore highly recommended to name all test classes with a name
ending with ‘Test java’.

JUnit test reports in HTML format are available in the target/reports/junitreport folder of your Value
Pack:

{8 ava - e/ C/UCA-£8C-DEV/My Comeltion Project/target/reports/junitreporindex htmi - Ec
[Fie Edt Nagate Search Project Run Window Help
O-Podh $-0-Q- HE- S~ Lri WEr - o (TTwa) <2 va e

1| ¥ *VahsePackConfigurationaml | G Unit Test Resulte, 53

- file://C:-/UCA-EBC-DEV/My Cormelation Project/target/reports/junitreport/indexhtm! - >

Home Unit Test Results.
Packages Designed for use with JUnt and Aot

Summary
& logs M« v | (rests Failures Errors Success rate Time

2 2 0 100.00% 18.689
Classes Note: failures are anticipated and checked for with assertions while errors are unanticipated.

Packages
repor Name Tests Errors Failures Time(s) Time Stamp Host

som.ba.uca.expert.vR.skeleton 2 o ° 18.685 2011-05- PMASSEL
26T12:36:43

2§ 5ign into Google... 17 fiee///C:/UCA-EBC-DEV/ My 5200 2 get/repe el

Figure 24 - JUnit tests results for your Value Pack

4.7 Injecting alarms to UCA for EBC: Alarm Collector

The Alarm Collector is the UCA for EBC internal component responsible for collecting alarms from outside UCA for EBC in
order to feed them to the scenarios of the Value Packs deployed on UCA for EBC.

The Alarm Collector is implemented as a JMS Topic that is registered using JNDI so that other applications can get
access to it to post alarms that will feed UCA for EBC Value Packs, as shown below:

Focus on development key points 72

P
Alarm
Collector

\ /
~ o - -
Normalized XML event format

Figure 25 - UCA for EBC alarm collection

_— e = = = ——
—

4.7.1 Normalized input

The UCA for EBC Alarm Collector defines a normalized alarm XML format based on the X.733 standard alarm format.
Only alarms that comply with this format will be processed.

4.7.1.1 Sample alarms file

Below is a sample XML file that contains alarms in the X.733 alarm format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>1</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>MINOR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

<AlarmCreationInterface>
<sourceldentifier>src</sourceldentifier>
<identifier>2</identifier>
<originatingManagedEntity>BOX Bl</originatingManagedEntity>
<alarmType>COMMUNICATIONS ALARM</alarmType>
<probableCause>Fire</probableCause>
<perceivedSeverity>CLEAR</perceivedSeverity>
<alarmRaisedTime>2009-09-16T12:00:00.000+02:00</alarmRaisedTime>

</AlarmCreationInterface>

</Alarms>

4.7.2 Command-line injector tool

UCA for EBC provides a tool to send alarms described in a simple XML File containing X.733 alarms to the UCA for EBC
Alarm Collector.

This tool is located in the $ {UCA EBC_HOME} /bin folder. Itis called uca-ebc-injector.

Focus on development key points 73

This tool will inject alarms contained in an XML £ 1e into the input alarm queue (implemented as a JMS Topic) of a local
or remote UCA for EBC Server instance.

Some samples of such an XML file containing alarms to be fed to UCA for EBC are located in the
${uCcA EBC DEV HOME}/vp-examples folder.

NOTE: For more information on the uca-ebc-injector command-line tool, please refer to the [R3] Unified Correlation
Analyzer for Event Based Correlation — Administration, Configuration and Troubleshooting Guide

4.7.3 A sample Java Alarm injector

The following chapters describe how you can create your own sample Java Alarm injector application that can connect to
UCA for EBC Alarm Collector JMS Topic to post Alarms to UCA for EBC.

4.7.3.1 Initializing the JNDI initial context

In order to create a sample Java Alarm injector, you must first initialize the JNDI context that will be used to retrieve the
JMS Topic of the UCA for EBC Alarm Collector;

Context jndiContext = null;
/*
* Create a JNDI API InitialContext object
“f
try {
jndiContext = new InitialContext () ;
} catch (NamingException e) {

System.out.println ("Could not create JNDI API context: " +
e.toString());

System.exit (1) ;
}

Please note that the jndi.properties file must be provided in the classpath of your sample Java Alarm injector.

4.7.3.2 Configuring the jndi.properties file

Here is the content of a sample jndi.properties file to be used by your sample Java Alarm injector.

java.naming.factory.initial =
org.apache.activemg.jndi.ActiveMQInitialContextFactory
topic.uca-ebc-alarms = com.hp.uca.ebc.alarms

use the following property to configure the default connector
java.naming.provider.url =tcp\://localhost\:61666

The topic.uca-ebc-alarms property is used to record the name the UCA for EBC Alarm Collector JMS topic:
com.hp.uca.ebc.alarms.

The java.naming.provider.url property can be configured to match the hostname and port number of UCA for EBC JNDI
service.

4.7.3.3 Looking up the UCA for EBC Alarm Collector JMS topic

Once the JNDI context is initialized, the codes in your sample Java Alarm injector shall first lookup for the JNDI
connection factory, and then retrieve the UCA for EBC Alarm Collector JMS topic by looking up its name:;

Focus on development key points 74

ConnectionFactory connectionFactory = null;
Destination destination = null;

/*
* Look up connection factory and destination.
=/
try {

connectionFactory = (ConnectionFactory) jndiContext

.lookup ("ConnectionFactory") ;

destination = (Destination) jndiContext.lookup ("uca-ebc-alarms");
} catch (NamingException e) {

System.out.println ("JNDI API lookup failed: " + e);

System.exit (1) ;
}

4.7.3.4 Connect and send the message

With the connectionFactory retrieved, you then need to create the connection, then the session, and finally the producer:

Connection connection = null;
MessageProducer producer = null;

try {
connection = connectionFactory.createConnection () ;
session = connection.createSession(false, Session.AUTO ACKNOWLEDGE) ;
producer = session.createProducer (destination) ;
TextMessage message = session.createTextMessage() ;

StringBuffer buf = new StringBuffer();
buf.append ("<?xml version=\"1.0\" encoding=\"UTF-8\"
standalone=\"yes\"?>") ;
buf.append ("<Alarms>") ;
buf.append ("<AlarmCreationInterface>") ;
buf.append ("<sourceldentifier>src</sourceldentifier>");
buf.append ("<identifier>12301</identifier>");
buf.
append ("<originatingManagedEntityClass>BOX</originatingManagedEntityClass>") ;
buf.append ("<originatingManagedEntity>BOX Bl</originatingManagedEntity>") ;
buf.append ("<alarmType>COMMUNICATIONS ALARM</alarmType>") ;
buf.append ("<probableCause>Fire</probableCause>") ;
buf.append ("<perceivedSeverity>MAJOR</perceivedSeverity>") ;
buf.append("<alarmRaisedTime>2009-09-
16T12:00:00.000+02:00</alarmRaisedTime>") ;
buf.append ("</AlarmCreationInterface>");
buf.append ("</Alarms>") ;
message.setText (buf.toString()) ;
System.out.println ("Sending message: " + message.getText ());
producer.send (message) ;
} catch (JMSException e) {

System.out.println ("Exception occurred: " + e);
} finally {
if (connection != null) {

try {

connection.close () ;
} catch (JMSException e) {
}

By now you should have a functioning sample Java Alarm injector.

4.8 Injecting events to UCA for EBC: Event Collector

The Event Collector is the UCA for EBC internal component responsible for collecting events from outside UCA for EBC in
order to feed them to the scenarios of the Value Packs deployed on UCA for EBC.

Focus on development key points 75

The Event Collector is implemented as a JMS Topic that is registered using JNDI so that other applications can get access
to it to post events that will feed UCA for EBC Value Packs, as shown in Figure 25.

For more information about the CLI used to send events to UCA for EBC,

please refer to [R3] HP UCA for Event Based Correlation - Administration, Configuration
and Troubleshooting Guide

Advanced Development features

Chapter 5 Advanced Development features

76

5.1 Spring Framework integration

A Spring Framework context . xm1 file is provided inthe src/main/resources/valuepack/conf
folder. This file is defined for the whole “skeleton” value pack, i.e. it is common for all scenarios of the value pack.

All the Spring beans defined in this file will be available to each rule file of each scenario of the value pack.

By default the context . xml1 file is empty:.

%] contextaml &3 =0

<?xml version="1.0" encoding="UTF-8"?> -

© <[xmlns="http://¥wv.springframevork.org/schema/beans"
xmlns:xsi="http://www.v3.org/2001/¥MLSchema-instance” xmlns:jms="http://www.springframevork.org/schema/,

xmlns:p="http://www.springframevork.org/schema/p" xmlns:context="http://www.springframevork.org/schema/

xmlns:amq="http://activemqg.apache.org/schema/core" xmlns:util="http://wwv.springframevork.org/schema/ut.

xsiischemalocation="http://vw¥,.springframsverk.org/schema/beans
http://wvv.springframevork.org/schema/beans/spring-beans.xsd
http://wvw.springframevork.org/sc. a/context
http://wvw.springframevork.org/schema/context/spring-context.xsd
http://wwv.springframevork.org/schema/jms
attp://vvv.springframevork.org/schema/jms/spring-jms.xsd
nttp://activemqg.apache.org/schema/core
http://activemq.apache.org/schema/core/activemg-core. xsd"s

<context:annotation-config />

) </beans>

1 n b

Design | Source
Figure 26 - The default project’s empty context.xml file

You can define any number of Spring beans in the context . xm1 file. These beans will be accessible from within the
rules files through global variables defined in your rules files provided you follow the instructions explained in the
following sections.

5.1.1 Defining and using Spring Beans inside rule files using global
variables

The Spring “dependency injection” framework is useful for defining global variables (already initialized) in rules files. In a

normal Drools environment, this is done through some Java code. As UCA hides the Drools session object, global
variables are “injected” with Spring, from a XML definition (context . xm1).

FEBI NOTE: Itis worth noting that there are 2 context . xm1 files in each value pack:

e Inthe src/main/resources/valuepack/conffolderisthe context.xml thatis used
when the value pack runs on a UCA EBC Server instance

e Inthe src/test/resources/<scenario folder name>folderisthe <scenario
name>-context . xml that is used when the value pack runs in JUnit test mode.

Please make sure to define all your Spring beans in both files, otherwise the JUnit tests might fail.

Advanced Development features 77

First you need to define your Spring beans in the context . xm1 file (the following sample file comes from the Low
Level Event Filtering value pack and is described in the “UCA for EBC Value Packs Examples” guide)

The Spring beans that you define in the contextxml file are defined at the Value Pack level, and thus are global to all
scenarios of the Value Pack:

I &3 =5

1 <?xzml version="1.0" encoding="UTF-8"7> -
2@ <beans xmlns="http://wwv.springframevork.org/schema/beans"
xmlns:xsi="http://www.v3.0rg/2001/XNLSchens ~instance" xmlns:ims="http://¥ew.springframsvork.org/schems/,

4 smlns:p="http://wwv.springframevork.org/schema/p" xmlns:context="http://¥wv.springframevork.org/schema/
5 xmlns:amg="Attp://activemq.apache.org/schema/core” xmlns:util="rttp://w¥¥.springframevork.org/scnema/ut.
6 xsi:schemalocatil nttp://www. spring . org/schema/beans

nttp://vv¥w. springframevork.org/scnsma/beans/spring-beans.xsd
http://www. springframeverk.org/schema/context

http://vww. springframevork. org/schema/context/spring-context.xsd
http://www. springframeverk.org/schema/jms
http://www.springframevork. org/schema/ims/spring-jms. xsd
http://activeng.apache.org/schema/cors
http://activemg.apache.org/schema/core/activeng-core . xsd">

Shtmbeehbo oo

<pean 1o- PN TIITINERELIR]" class="com.np.uca.expert. vp. 11ef. action. AcneActionManager” />

19 </beans>

il i v

Design | Source

Figure 27 - The “Low Level Event Filtering” Value Pack’s context.xml file

In the above screenshot, we define a Spring bean called acmeActionManager. This is just an example; with any
other Spring bean, the process explained in the following paragraphs would have been the same.

Next we need to associate the Spring beans with global variables defined in your scenario. This is done in the
ValuePackConfiguration.xml file that defines the configuration for all the scenarios of your value pack.

NOTE: Although Spring beans are defined at the Value Pack level, global variables are defined at the scenario level.
If you need a Spring bean to be global to all scenarios of your Value Pack, you need to configure the Spring bean as
a global variable for each scenario of the Value Pack in the ValuePackConfiguration. xml file.

| ValuePackConfigurationxml &2 =g
1 <?xml version="1.8" encoding="UTF-8"7> + 0
2=<valuePackConfiguration xmlns="http://hp.com/uca/expert/config"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance™
a4 name="__ PROJECT _NAME " wversion="__ PROJECT VERSION ">
5 E
6% <scenarios>
7€ <scenario name="com.hp.uca.expert.vp.llef.grouping.Grouping">
8 <filterFile>src/main/resources/valuepack/grouping/grouping-filter.xml</filter

<fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>
<globals>
<global>
<key>acmeActionManager</key>

<value>acmeActionManager</value>
</global>

<processingMode>STREAM</processingMode>
17¢ <rulesFiles>
18= <rulesFile>
19 <filename>file:./src/main/resources/valuepack/grouping/grouping-templ
20 <name>Grouping Rule Set</name>
21 <paramsFilename>file:./src/main/resources/valuepack/grouping/grouping
22 <ruleFileType>XDRL</ruleFileType>
23 </rulesFile>
24 </rulesFiles>
25 </scenario>
262 <scenario name="com.hp.uca.expert.vp.llef.inactivity. Inactivity">
27 <filterFilessrc/main/resources/valuepack/inactivity/inactivity-filter.xml</fi
28 <fireAllRulesPolicy>EACH_ACCESS</fireAllRulesPolicy>
20s <globals>
30= <global>»
31 | <kev>acmeActionManager</kev> T
] m »
Design [Sourcel

Figure 28 - Defining global variables in the ValuePackConfiguration.xml file

Advanced Development features 78

When you define global variables in the ValuePackConfiguration.xml file the “key” has fo match the name
of the global variable you are defining (the name you choose must match the name of the global variable that you declare

in your rules file(s)), and the “value” has to match the name of the bean defined in the context . xml file.

The last step is to define a global variable for the Spring bean in your rules file:

4 grouping-template.drl &% =5

10 import java.util.regex.Matcher: -
11 import jawva.util.regex.Pattern;

1,

import java.text.SimpleDateFormat:
import java.util.Date;

5 import java.util.Locale;

& import java.util.Arraylist;

7 import java.util.Iterator;

2 import com.hp.uca.expert.3cenario.ScenariocPublic;

import com.hp.uca.common.trace.LogHelper:

import com.hp.uca.expert.flag.Flag:;

import com.hp.uca.expert.testmaterial.fbstractJunitIntegrationTest;

import com.hp.uca.expert.vp.llef.action.AcmelctionManager;

& #declare any global variables here

global ScenarioPublic theScenario:r
E{ global AcmelctionManager acmelctionManager;

if (symptoms!=null) {
Iterator ii=symptoms.iterator():

6 while (ii.hasNext()) {
7 Alarm a=(Rlarm)ii.next():;

Text Editor| Rete Tree

Figure 29 - Defining global variables in rules files

In the import section of your rules file, you need to add an “import” statement for the Java class of your Spring Bean:

import com.hp.uca.expert.vp.llef.action.AcmeActionManager;
Then you need to add a “global” statement creating a global variable for your Spring Bean:
global AcmeActionManager acmeActionManager;

Then you can use the global variable in your rules:

4] *grouping-template.drl &% =5

F without Symptom"
13 rule "Root Cause without Symptom"
138 when

141 perceivedSeverity != PerceivedSeverity.CLEAR,
additionalText matches "Root Cause .*")

then
LogHelper.enter (theScenario.getLogger (), drools.getRule().getName (), rootAlarm.gethdditionalText())

Add 1 Imformation Field of

-
¥

m

Locale.FRENCH) ;
rootAlarm.setAdditionalInformation ("correlated by rule: "+drools.getRule () .getName ()
+" at " +sdf.format (now)):

f Simulate a customer specific acti

stomer specific action
acmehctionManager.doDummyAction (rootAlarm) ;

/ Remove the root cause as it cannot be correlated with other symp

theScenario.getSession () .retract (rootAlarm);

‘ m »
Text Editor | Rete Tree

Figure 30 - Using global variables in rules files

Advanced Development features 79

5.2 Using the Flag Object

The UCA for EBC product provides a set of Flag Java object. These objects are useful to trigger rule execution in complex
use cases or to frigger internal processing (Synchronization, efc..).

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide Chapter Common Objects,
Section Flags, for more information on how to use the Flag Object.

5.3 Alarm CustomFields

Alarm CustomFields is the standard x733alarm.CustomFields object. CustomFields attributes can be used in the rules
“condition” part, whereas CustomFields methods can be called in the rules “action” part.

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide Chapter Common Objects,
Section Alarm models used in the rules, for more information on how to use the Custom Fields Object.

5.4 Alarm Raised Time

The AlarmRaisedTime field of an Alarm is using the Java type XMLGregorianCalendar, not easy to set. Hence, UCA for
EBC provides a helper to set the AlarmRaisedTime field:

setTimeInMillisecond()
That sets all the time related fields.

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide, Chapter 5.1.1.2 General
Attributes of Alarm for more information on how to deal with time fields.

5.5 Scenario specific configuration

The UCA for EBC provides a way to manage complex configuration based on XML file when the Customer Value Pack
needs a complex specific configuration.

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide for more information on how to
use the Specific Configuration, Chapter Advanced UCA for EBC features, section Scenario Specific Configuration.

5.6 Performing initialization at scenario startup

The UCA for EBC provides a way to initialize your Value Pack if it needs specific objects to be created at startup time.
This is performed be defining a Java class in your Value Pack and setting it correctly in the configuration file.

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide for more information on how to
perform initialization of customer object needed by a Value Pack.

5.7 WUI extensions for value packs

Since version 3.1 the UCA for EBC Web User Interface can be extended to host value pack’s specific web applications or
global web application

Advanced Development features 80

5.7.1 Extending the WUI at value pack Level

Any war file delivered within value pack directory tree (usually in lib subdirectory) will be loaded through the UCA for
EBC web server and visible through the Web User Interface.

When the value pack is started, the UCA for EBC Web Ul makes this web application available from a new tab if the value
packs” monitoring panel.

Example: the war file MyViebApp . war dropped in deploy/uca-topo-demo-3.2/1ib directory will lead to:

ﬁ;d, UCA for Event Based Correlation

uca-topo-demo-3.1 > Value Pack > Monitoring

~ 4 UCA-EBC:default Monitoring Config Troubleshooting @

Vv [uca-opo-demo-3.1 Value Pack : uca-topo-demo-3.1
° V&nPack e»‘-.l Scenanos are running Fiow Is disabled
@ linkdown
& performance Scenarios List
Scenario Status Status Explanation

FAm B ea ahe tanadama linbdauen A Seenarnio i< ninning

By default the UCA for EBC server binds the value pack web application at the following address:

http://localhost:8888/fullValuepackName-warFilename

For the example above this would give:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp

5.7.2 Extending the WUI at Global Level

In some cases the WUI extension is not directly linked to a specific value pack but may cover several value packs or a
functionality global to the platform.

In such case it is useful to access this webapp from the global level (UCA-EBC). This is the role of the ‘Extras’ Submenu.
The ‘Extras’ sub-menu is displayed when you have optionally put some extra war files under the
$UCA_EBC_INSTANCE/webapps directory (note the name of the directory with an ‘s’ at the end). This directory is

optional and is not created by default.

Each war file stored in this directory will be displayed by UCA for EBC Ul under the following menu:

UCA-EBC:instanceName > Extras > <name of .war file>

As in the picture below:

http://localhost:8888/fullValuepackName-warFilename
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp

Advanced Development features 81

L2

Welcome: anonymous (Observer) G0 LG 0 =

ﬁ,ﬂ,» UCA for Event Based Correlation

UCA-EBC default > Extras > myWebApp-sampie

v 4 UCA-EBC:default qﬂﬂﬁﬁiﬁi’
£ Application

B Users Sample "Hello, World"
@ e Application

£ Topology Manager

A B uca-topo-demo-3.1 %
4 This is the home page for a sample application used to illustrate

~ 1 webapp-sample-3.1-S ~ the source directory organization of a web application within
: UCA-EBC.

Note that this web application will be handled in a Jetty server
which does not support JSP pages.

To prove that they work, you can execute either of the following links:

e To a sample hello world servlet.
* To a sample bean access servlet.
* To a sample bean access through ajax.

Unfortunately the following should not work:

5.7.3 Web application extensions configuration

Some web application extensions may require some additional configuration in order for the UCA for EBC Web User
Interface to build the expected URL.

Two possible configurations are offered:;

e Defining the URL service Path
e Defining URL service parameters

5.7.3.1 Defining the URL service Path for extensions at value pack level

This is done by adding a property in the uca-ebc . properties file as shown below:
ValuepackFullname-warFileName-webapp-servicepath=your path

Example:

For the value pack: uca-topo-demo (version3.2) with a war file named myWebApp . war, please define:
uca-topo-demo-3.2-myVpWebApp-webapp-servicepath=myService

This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService

5.7.3.2 Defining the URL service Path for extensions at global level

This is done by adding a property in the uca-ebc . properties file as shown below:

warFileName-webapp-servicepath=your path

Example:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/myService

Advanced Development features 82

For the war file named myWebApp-sample . war, please define;
myWebApp-sample-webapp-servicepath=myService
This will lead to building the following URL:

http://localhost:8888/myWebApp-sample/myService

5.7.3.3 Defining the URL parameters for extensions at value pack level

This is done by adding a property in the uca-ebc . properties file as shown below:

ValuepackFullname-warFileName-webapp-parameters= coma separated list of
parameters

Example:
For the value pack: uca-topo-demo (version3.2) with a war file named myWebApp . war, please define:

uca-topo-demo-3.2-myVpWebApp-webapp-parameters=paraml=valuel, param2=value?2

This will lead to building the following URL:

http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?parami=valuel¶m2=value2#

5.7.3.4 Defining the URL parameters for extensions at global level

This is done by adding a property in the uca-ebc . properties file as shown below:
warFileName-webapp-parameters= coma separated list of parameters

Example;

For the war file named myWebApp-sample.war, please define:
myWebApp-sample-webapp-parameters=paraml=valuel, param2=value?

This will lead to building the following URL:

http://localhost:8888/myWebApp-sample/?paraml=valuel¶m2=value2#

5.7.4 Inheriting the UCA for EBC logged user and role in the extended
web application

Some web application may want to know which UCA user is logged (as well as his associated role) in order to adapt its
processing depending on the user id or the role.

This is done by using placeholders in URL parameters as follow:

e S{user} will represent the current logged user
o S{role} willrepresent this user’s role.

A typical definition would be:

http://localhost:8888/myWebApp-sample/myService
http://localhost:8888/uca-topo-demo-3.2-myVpWebApp/?param1=value1¶m2=value2

Advanced Development features 83

uca-topo-demo-3.2-myVpWebApp-webapp-servicepath=
username=$ {user},userrole=${role}

5.8 Configuring the GUI filter tags editor

If your Value Pack is processing specific filters tags, it is possible to list them in a configuration so that the WUI will use
that file to propose only those tags to be used for defining filters.

Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation - Reference Guide and [R7] UCA for Event Based

Correlation — User Interface Guide for more information on how to perform configuration to enable the GUI tags editor
feature.

5.9 Editing Filter Files with the UCA for EBC eclipse filter editor

The UCA-EBC Development Toolkit provides a specific filter editor intended to ease the development of UCA-EBC filters.

This tool is mainly a checking tool that allows testing the filter against a sample of alarms. As a result the tool gives for
each alarm, which Top-filter it passes or not, and if it passes a Top-filter, gives the associated tags (if any).

5.9.1 Editing a Filter

The UCA-EBC filter editor is available by right clicking on the Filter file as follow:

This launches the UCA-EBC filter editor.

At this stage the editor contains a single editor tab which is an XML editor allowing to edit/save the Xml Filter file:

= Java - ProblemDetection/uca-evp-pd-skeleton/pom.xml - Eclipse SDK . - T S— '
—
File Edit Mavigate Search Project Run Design Window Help
9~ O- & $-0-QU- HFG- B5 - 2 ¢ -5l
I8 Pa [Ju v [Pro 23 o Ty |5 Na = B[%] pomaml %] pomaxml %] pomaml 2
= <}==D = 1 <?xml version="1.8" encoding="UTF-8"?>
2= <project xmlns="http://maven.apache.org/Por/4.8.8" xmln:
New y» [ion="http://maven.apache.org/PON/4.8.
.8.8</modelvVersion>
pd-assembly Open =] |) _ B
o- | S TR U S S
Ed-:imp € Open With v B Ten Editor. -
> | apy CtrleC € UCAEBC FllterFlleEdgr
s cidey | XML Editor
s V
ain
ot ¥ Delete Delete | |5 System Editor
y java Remove from Context Ctrl+ Alt+ Shift+Down = In-Place Editor .
tectior
% TEsOUrces Mark as Landmark Ctrl+Alt+Shift+Up Default Editor
£y bk Move...
(= com Other.. ection
Rename... F2
=
e ft f2y Import..
> EF ECtIDHSfEICt.O!'}‘ & Export.. nx3{project.version}</evp.version>
» [alarmeligibility d-skeleton</evp.name>
> [alarmlifecycle #] Refresh F5
a [all
¥} Alarms_all_problems. Run As Y
¥} Alarms_BitError_T1.xr Debug As 3
¥} Alarms_BitError_T2.xr Profile As » jar</id>
¥} Alarms_Power_TL.xm Team v .
¥} Alarms_Power_T2.xm) ugins>
¥} Alarms_Power_T3.xm Eompasiiil ' kp-LI%-!’D .
Replace With v <groupldrorg.apache.maven.plugir
[¥j Alarms_Synch_Tlxm <artifactId>maven-dependency-plL
| ¥} Alarms_Synch_T2.xm Google 4 <executions>
17 Alarms_XmlGeneric_¢ SanTen v <execution>
¥ PDFramework_sequel <id>copy-local</id»
¥} PDFrameworkTest-cc Properties Alt+Enter Tpl;:??:generate—resource
< 1
1% ProblemDetection_all_filtersxml 2697 8/1/T 39 8 <;ca'_>copy<.-"gca'_>
¥} ProblemxmlConfig_allxml 2712 &/2/ 28 48 </goalsy
¥} ValuePackConfiguration_allxml 3251 1,/28/1 41 <configuration>
. (B basic 42 <artifactItems>
. [enrichment 43 <a'—_'_.'fac:IEeln'>

Advanced Development features 84

—— — - - v ——— ™
— Java - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK FLEIEIQ

File Edit Mavigate Search Project Run Window Help

i =] @ - @ Associate Alarms =] E] <Drools> %@ Debug
-0~ WG~ o~ 4@ O

] v s v %5 O v o v

%] pom.xml (I!I pom.xml (I!I porn.xml (@ UCA EBC Filter Editor: ProblemDetection_all_filters.xml 3 =&
Il o 1 <?xml version="1.8" encoding="UTF-8" ?» -
2 2 <filters xmlns="http://hp.com/uca/expert/filter"> |E
Ju s . .
4 <topFilter name="XmlGeneric_Synch">
I-—l\:l 5 <anyCondition tag="TeMIP TT">»
'E: 6 <allCondition>
7 <allCondition>
= 8 <stringFilterStatements
a <fieldName>roriginatingManagedEntity</fieldName>
1@ <operatorsmatches</operator>
i 11 <fieldvaluermotorola_omcr_system .* managedelement .* bssfunction .*
12 </stringFilterStatement:
13 </allCondition>
14 <anyCondition>
15 <stringFilterStatement tag="Trigger">
16 <fieldNameradditionalText</fieldName>
17 <operatorrcontains</operators
18 <fieldvalue>[116] Synchronization Loss 005 Timer Expired</fieldvValue: -
el —— | m
(ProblemDetection_all_filters.xmlJ) L}

u

= |

2§ Sign in to Google 8 nl @ @ 3 B ag

w = — — = 4

Single Tab Editor

5.9.2 Associating an Alarm File Sample to the Filter Editor

In Order to check the Filter against a set of alarms, the Xml Alarm file must be associated to the filter editor. This is done
by left clicking on the Alarm File in order to select the file and the click on the ‘Associate Alarms’ button as follow:

- — - — —]
= Java - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK - | = & = |

File Edit Mavigate Search Project Run

Asodaplems| Y- O - Q- W@ @S - £) <Drools> 35 Debug
- AR T I IR g [ASS_EMHFH’]fl|EtDthEFl‘tElEdltUl’}

I8 Pa [Juu [E5Pro &3 f‘, Tyw i Naw = 0K pomaxml (I!I pom.xml (I!I pom.xml (@ UCA EBC Filter Editor: ProblemDetection_all_fi & =0
=] <===D = 1<?xml version="1.8" encoding="UTF-8" 2> -
2 <filters xmlns="http://hp.com/uca/expert/filter"> F

| | sl 3
scripts 4 <topFilter name="XmlGeneric_Synch"> i
uca-evp-pd-assembly B 5 <anyCondition tag="TeMIP TT"» 3
uca-evp-pd-example L 6 <allCondition>
Uca-evp-pd-fuk = 7 <allCondition>
8 <stringFilterStatement>
(= logs 9 <fieldName>originatingManagedentity</fieldiame>
(& src 10 <operator>matches</operator>
I [main 11 <fieldValue>motorela_omcr_system .* managedelement .* bssfo
4 [test 12 </stringFilterStatement>
b G java 13 <fallCondition>
14 <anyCondition>
4 [y resources 15 <stringFilterStatement tag="Trigger">
> [bmk 16 <fieldName>additionalText</fieldName>
4 [com 17 <operator>contains</operator>
b Gy hp 18 <fieldValue>[116] Synchronization Loss 005 Timer Expired</i
4Gy f 19 </stringFilterStatement>
. 28 <stringFilterStatement tag="Trigger">
> Ef actionsfactory 2 <fieldName>additionalText</Fieldlame>
f b [y alarmeligibility 22 <operater>contains</operator>
b [alarmlifecycle 23 <fieldValue>[118] Remote Alarm 005 Timer Expired</fieldvall
PR 24 </stringFilterStatement>
roblemsaml 2825 9, 25 <stringFilterStatement tag="SubAlarm”>
~ z 26 <fieldName>additionalText</fieldName>
L) o 1L T 27 <operator>contains</operator>
[y Alarms_BitError_T2xml 2825 0/12/ 28 <fieldValue>[18] Link Disconnected</fieldValue>
[} Alarms_Power_Tlxml 2825 9/12/1 29 </stringFilterStatement>
¥y Alarms_Power_T2xml 2225 9/12/1 L) (stringFilterStater!ler]t tag="SubAI.lar‘m">
¥} Alarms_Power_T3xml 225 9/12/1 ;; (fleldMame)addl'flonalTex‘t(/fleldl‘lame)
L <operator>contains</operator>
[¥y Alarms_Synch_T1l.xml 3646 3/19/1 33 <fieldValue>[@] Last RSL Link Failure</fieldvalue>
¥} Alarms_Synch_T2xml 2825 2/12/1 34 </stringFilterStatement>
%) Alarms_XmlGeneric_Synch_T1.xml 35 </anyCondition>
[¥} PDFramework_sequencedTest-cor 36 </allCondition> %
[} PDFramewarkTest-contextxml 274 <] 1, | r
|7y ProblemDetection_all_filters.xml 2¢ ProblemDetection_all_filters.xm |

[#j ProblemXmiConfig alloel 2712 & E.._\ Problams(@ Javadoc (@5 Declaration (:5" Call Hierarchy (Q" Search &% El Consola] =3 Progresq =]

1%} ValuePackConfiguration_allxml 32

» & basic LR BB S

I & enrichment 12 file names matching 'uca-ebe.properties’ in 'ProblemDetection’

» [problemdefault =2 = test -
d | —— s [resources -

o Sign inte Google...

Alarms_all_problems.xml - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all

Advanced Development features 85

When the association is done, the editor turns itself into a multi-panel editor offering several edition panels:

The Filter file editor panel, allowing to edit the Filter file

The Aggregated View panel, giving an overview of the passing/blocked alarms
The Alarm file editor panel, allowing to edit the Alarm File

The Passed filter view, giving information on passed filters and tags.

As shown in the picture below:

- ~ ~— —— -
— lava - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK (e
S —

[File Edit MNavigate Search Project Run Window Help

i O~ & AsodateAlams B Q- Q- F G- @S - &) <Drools> %5 Debug
P I I |
X pomuaxml X| pomxml %] pomuxml 8 UCA EBC Filter Editor: ProblemDetection_all filtersxm| &2 =

{2 | Problem BitError . Problem_Power| XmiGeneric_Synch| Problem_Synch| New

Ju Configuration Panel
& Select the attributes you are interested in : 2
Tg [identifier || acknowledgementUserldentifier [| problemInformation [—] correlationMotificationldentifiers userText
s [originalSeverity originatinghManagedEntity additionalText [networkState [sourceldentifier
[alarmRaisedTime [specificProblem || problemState [probableCause [perceivedSeverity
| [] domain [pbAlarm [C]alarmType ["] operatorState
[SelectAll Attributes | [Generate fitter |

identifier userText originatingManagedEntity additionalText -
[T] operation_context .uca_network alarm_object 44... Khorfakkan_BSC24: BridiPPh_6185_0 motorola_omer_system kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object44... Khorfakkan_BSC24: BridiPPM_6185_0 motorola_omer_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
7] operation_context .uca_network alarm_object 85 Kharfakkan_BSC24: BridiPPM_6185_0 motorola_omer_system kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 81 Khorfakkan_BSC24: BridiPPM_6185_0: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 80 Khorfakkan_BSC24:BridiPPM_6185_0: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 181 Khorfakkan_BSC24: BridiPPM_6185_1: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
operation_context .uca_network alarm_object 180 Khorfakkan_BSC24:BridiPPM_6185_1: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED 1
operation_context .uca_network alarm_object 186 Khorfakkan_BSC24: BridiPPM_6185_1 motorola_omcr_system kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED =
| operation_context .uca_network alarm_object 280 Kherfakkan_BSC24:BridiPPM_6185_2: test meotorela_omcr_system .kivusat_test managedel... TPD_TEST Moterola 2G - Test SITED
| operation_context .uca_network alarm_object 281 Kherfakkan_BSC24: BridiPPM_6185_2: test meotorela_omcr_system .kivusat_test managedel... TPD_TEST Moterola 2G - Test SITED
I operation_context .uca_network alarm_object 278 Kherfakkan_BSC24: BridiPPM_6185 2 meotorela_omcr_system .kivusat_test managedel... TPD_TEST Moterola 2G - Test SITED
| operation_context .uca_network alarm_object 380 Kherfakkan_BSC24:BridiPPM_6185_1: to mix with.. motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED|
i operation_context .uca_network alarm_object 381 Kherfakkan_BSC24: BridiPPM_6185_1: to mix wit.. motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED|
i operation_context .uca_network alarm_object 379 Kherfakkan_B5C24: BridiPPM_6185_1 meotorela_omcr_system .kivusat_test managedel... TPD_TEST Moterola 2G - Test SITED
i operation_context .uca_network alarm_object 480 Kherfakkan_B5C24:BridiPPM_6185_4: test meotorela_omcr_system .kivusat_test managedel... TPD_TEST Moterola 2G - Test SITED
| operation_context .uca_network alarm_object 481 Kherfakkan_BSC24: BridiPPM_6185_4: test meotorela_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED 1
1 operation_context .uca_network alarm_chject 482 Khorfakkan_BS5C24: BridiPPM_5185_4 motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
i operation_context .uca_network alarm_chject 580 Khorfakkan_BSC24:BridiPPM_6185_5: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
| operation_context .uca_network alarm_cbject 581 Khorfakkan_BSC24: BridiPPM_6185_5: test motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED
| operation_context .uca_network alarm_cbject 583 Khorfakkan_B5C24: BridiPPM_5185_5 motorola_omcr_system .kivusat_test managedel... TPD_TEST Motorola 2G - Test SITED ™
| .
i @Dmnim_au_ﬁ\temm| Filter Generator | Alarms_all_problems.xml Pa;sed-F\lters-V\ewD
: o* 2§signinto Google.. = = FeRZsyBE g |

5.9.3 How to read the Filter editor aggregated view?

This view offers a panel per top filter as defined in the filter file.

You can switch from one top-filter to others by clicking on the top level panel selection:

%] pom.xml %] pormuxml || porn.ml €8 UCA EBC Filter Editor: ProblemDetection_all_filtersxml 2

=< Eroblem_BitError Problem_Power | XmlGeneric_Synch | Problem_Synch ’ew
] Configuration Pane

Select the attributes you are interested in:

i [identifier = acknowledgementUserdentifier El probleminfermation [correlationMotificationldentifiers userText

The configuration Panel area allows selecting the alarms attributes to be displayed in the Alarm table list.

Problern_BitError | Problem_Power | XmlGeneric_Synch | Problem_Synch . Mew

Configuration Panel

Select the attributes you are interested in :

[identifier =]} acknowledgementUserldentifier = prebleminformation [correlaticnMotificationldentifiers userText
[eriginalSeverity originatingManagedEntity additionalText [] networkState [sourceldentifier
|| alarmRaisedTime [specificProblem || problemState || probableCause || perceivedSeverity

[] domain [phAlarm []alarmType [] operatorState

Advanced Development features 86

The Alarm table list shows the content of the alarm file as a table. Each table row is preceded by a check box indicating if
the alarm is passing or not the given top-filter (A checked box and a green color indicate the alarm is passing the filter)

userText

Khorfakkan_BSC24: BridiPPM_6185 0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0
Khorfakkan_BSC24: BridiPPM_6185_0: test
Khorfakkan_BSC24:BridiPPM_6185_0: test
Khorfakkan_BSC24: BridiPPM_6185_1: test
Khorfakkan_BSC24:BridiPPM_6185 1: test
Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_5185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2: test
Khorfakkan_BSC24: BridiPPM_6185_2
Khorfakkan_BSC24:BridiPPM_6185_1: to mix with...
Khorfakkan_BSC24: BridiPPM_6185_1: to mix wit..
Khorfakkan_BSC24: BridiPPM_6185_1
Khorfakkan_BSC24:BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185_4: test
Khorfakkan_BSC24: BridiPPM_6185 4

identifier

operation_context .uca_network alarm_object 44... motorola_omer_system
operation_context .uca_network alarm_object 44... motorola_omer_system
operation_context .uca_network alarm_object 85
operation_context .uca_network alarm_object 81
operation_context .uca_network alarm_object 80
operation_context .uca_network alarm_object 181 motorola_omer_system
operation_context .uca_network alarm_object 180 motorola_omer_system
operation_context .uca_network alarm_object 186 motorola_omer_system
operation_context .uca_network alarm_object 280 motorola_omer_system
operation_context .uca_network alarm_object 281 motorola_omer_system
operation_context .uca_network alarm_object 278 motorola_omer_system
operation_context .uca_network alarm_object 380 motorola_omer_system
operation_context .uca_network alarm_object 381
operation_context .uca_network alarm_object 379
operation_context .uca_network alarm_object 480

operation_context .uca_network alarm_object 451 motorola_omer_system

motorela_omer_system ||
motorola_omer_system .|

motorola_omer_system .|

motorela_omer_system ||
motorola_omer_system .|

motorola_omer_system .|

originatingManagedEntity

kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...
kivusat_test managedel...

kivusat_test managedel...

additionalText

TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te
TPD_TEST Motorola 2G - Te

operation_context .uca_network alarm_object 482 motorola_omer_system .kivusat_test managedel...

operation_context .uca_network alarm_object 580 Khorfakkan_BSC24:BridiPPM_5185_5: test motorola_omer_system .kivusat_test managedel... TPD_TEST Motorola 2G - Te

5.9.4 How to read the ‘passed filter’ view?
For a selected alarm, the ‘passed filter’ view gives the list of passed top-filters and the corresponding filter tags.
The passed filter view is a 3 parts window:
e The top part is the alarm picker, it allows selecting the alarm

e The left part displays the selected alarm content
e Theright part gives the ‘passed’ top-filters and associated Tags.

- T
= Java - ProblemDetection/uca-evp-pd-fwk/src/test/resources/ft/all/ProblemDetection_all_filters.xml - Eclipse SDK
—
File Edit Mavigate Search Project Run Window Help
1~ @~ & AsodateAlarms - - Q@ -G~ HFE - T 1) <Drools> %5 Debug
b =N v Bl ets aow v
| X| pom.xml X pom.xml %] pomxml £ UCA EBC Filter Editor: ProblemDetection_all_filtersxml 532 =
tz | Alarm-Passed-Filters-View
Ju Please select an Alarm: operation_context .uca_network alarm_object 181 -
L]
E <7xml version="1.0" encoding="UTF-8" standalone="yes"?> * | Passing Filter Name Passing Filter Statement Tags
- < AlarmCreationinterface xmlns="http://hp.com/uca/expert/x7133Alarm"> =
<identifier> operation_context .uca_network alarm_object 181 < /identifier> Problem_BitError TeMIP TT, SubAlarm
<sourceldentifier=TeMIP EM5<sourceldentifier= KmlGeneric_Synch TeMIP TT, Subilarm
<alarmRaisedTime>2010-09-16T14:36:23.027+02:00 < /alarmRaised Time> Problem_Synch TeMIP TT, SubAlarm
I <originatingManagedEntity> motorola_omcr_system .kivusat_test managedel
<originatingManagedEntityStructure>
«classInstance instance=".kivusat_test" clazz="motorola_omer_system"/>
< classInstance instance="bssfunction_3" clazz="managedelement"/>
< classInstance instanc clazz="bssfunction"/>
<classlnstance instance="1" clazz="btssitemgr"/>
<classInstance instance="1" clazz="R5L"/>
</originatingManagedEntityStructure>
<alarmType> COMMUNICATIONS_ALARM < /alarmType>
<probableCause> CommunicationsSubsystemFailure< /probableCause> L
<perceivedSeverity> MINOR </perceivedSeverity>
<networkState> NOT_CLEARED = /networkState>
<operatorState> ACKNOWLEDGED </ operatorState>
I <problem5tate> NOT_HAMNDLED < /problem5tates
[<probleminformation> Attribute not available</problemInformation=
(<specificProblem> Attribute not available</specificProblem>
| <additionalText> TPD_TEST Metorola 2G - Test SITE DOWN - [0] Last RSL Link
<correlationMotificationIdentifiers> Attribute not available</correlationNotific
I <customFields>
<customField value="UCA Expert" name="acknowledgementUserldentifier'
< customField value="Minor" name="originalSeverity"/>
< customField value="Khorfakkan_BSC24: BridiPPM_5185_1: test” name="us
< customField value=".uca_pit_dom" name="domain"/>
|| </custormnFields>
W < /AlarmCreationInterface>
i -
4 [b “ T b
ProblemDetection_all_filters.xml | Filter Generator | Alarms_all_problems.xml | Passed-Filters-View
o¥ -:l Sign in to Google...
lirElePsyB g
L = b

Advanced Development features 87

5.9.5 How to use the filter to create a new top-filter?

The aggregate view offers the possibility to quickly create a new top-filter.
A top filter creation is a multi-step operation:

Step 1. Create a new top-filter tab. This is done by clicking on the ‘New’ tab in the top-filter selection area:

=N pom.xml 1X| pom.xml 1X] pom.xml &% UCA EBC Filter Editor. ProblemDetection_all_filtersaxml &2

Problem_BitError | Problem_Power | XmlGeneric_Synch Prohlam_Synch

Configuration Panel

Select the attributes you are interested in : 2

[identifier
[originalSeverity

m

B acknowledgementUserldentifier (| problemInformation [] correlationNotificationldentifiers userTe:
|H originatingManagedEntity |H] additionalText [7] networkState []source]

This creates a new Filter panel with a default name. This name can be changed by right clicking on the new filter tab:

3 %] pom.xml |X| pom.xml |X| pom.xml @‘ UCA EBC Filter Editor: ProblemDetection_all_filters.sxml 52 =8
-
Problem_BitError | Problem_Power | X¥mlGeneric_Synch | Problem_Synch | Filtre 5o Blew:
. . & Delete Filter 5 and dispose this tab
Configuration Panel
. Rename Filter
4

Select the attributes you are interested in:

m

= acknowledgementUserldentifier | prebleminformation [7] correlationMotificationldentifiers [] userTe
[additionalText [networkState [source

[identifier
[] originalSeverity [originatingManagedEntity

@ NOTE: a Top-filter can also be deleted by clicking on the ‘delete’ option of the same menu.

Step 2. select the alarm attributes that will play a role in the filtering in the “Configuration panel” section.

Example:

Configuration Panel

Select the attributes you are interested in : =
[identifier [] acknowledgementUserdentifier [~| problemInformation [~ correlationMotificationldentifiers [| userText

[H] originalSeverity [] originatingManagedEntity [H] additional Text [] networkState [sourceldentifier
[T]alarmRaisedTime [M specificProblem ["] problemState [] probableCause [7] perceivedSeverity
["] domain [] pbalarm []alarmType [] operatorState

r] r 3

Step 3: Inthe Alarm table, select those alarms that will pass the filter by selecting the checkbox.

identifier original5ev... additionalText specificProblem
operation_context .uca_network alarm_ocbject 44... Critical TPD_TEST Motorola 26 - Test SITE DOWRN SYNC... Attribute not available
[7] operation_context .uca_network alarm_chject 44... Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available =
operation_context .uca_network alarm_chject 85 Critical TPD_TEST Motorola 26 - Test SITE DOWRN SYNC... Attribute not available
[] operation_context .uca_network alarm_object 81 Miner TPD_TEST Motorola 2G - Test SITE DOWN - [0] L. Attribute not available
[7] operation_context .uca_network alarm_object 80 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [10] ... Attribute not available
[7] operation_context .uca_network alarm_ohject 181 Minor TPD_TEST Motorola 26 - Test SITE DOWM - [0] L... Attribute not available

Step 4: generate the new filter by clicking the “Generate Filter” button.

Advanced Development features 88

[identifier [7] acknowledgementUserldentifier [] problemInformation [] correlationNotificationIdentifiers [~] userText

[H| originalSeverity [] originatingManagedEntity [H] additionalText [] networkState [sourceldentifier
[] alarmRaisedTime [B specificProblem [] problemState [] probableCause [perceivedSeverity
[] domain [] pbAlarm [] alarmType [operatorState

I Select All Attributes ‘ lGenerate filter‘

identifier originalSev... additionalText specificProblem
operation_context .uca_network alarm_object 44... Critical TPD_TEST Motorola 2G - Test SITE DOWRN SYMNC... Attribute not available
[7] operation_context .uca_network alarm_object 44... Minor TPD_TEST Motorola 2G - Test SITE DOWRM - [0] L... Attribute not available

Step 5. Click on the filter editor view and check the generated filter. You can manually edit the generated editor in order
to make some fine tuning or changes.

Step 6: Control the result of the new filter in the “passed Filter” view

Step 7: save your changes

CAUTION: The “Generate filter” Button can be used on an already existing filter in order to modify it. However by
re-generating an existing filter, all the Tags defined in it will be lost. It is therefore not recommended to use the
“Generate filter” button on existing filters.

5.10 Persisting alarms or events using the DB forwarder feature

This chapter provides technical information about the DB forwarder feature introduced in UCA-EBC 3.1
It is intended to the UCA-EBC Value Pack developer that needs to set up that functionality within his VP.

Any DB coming with a JDBC driver can be supported by this feature. However, UCA-EBC brings 2 DBs with libraries
already part of the UCA-EBC default libraries: H2 and HyperSQL.

5.10.1 Concepts

5.10.1.1 Storing alarms

To store alarms into a DB, the well-known alarm forwarder mechanism is used. In this particular case, a JDBC alarm
forwarder is now provided to perform such actions.

Alarms that are stored into a DB follow also the same scheme of the alarms received through the mediation layer. Once
stored in the DB, they are pushed back into the dispatcher of the Value Pack using the DB flow mechanism.

So if you want to recognize them from standard alarms, you will have to define a way to do it. This can done using a
special identifier for the alarm, or by using a special custom field.

This is up to the Value Pack owner to decide which method is to be used.

5.10.1.2 Storing events

UCA-EBC (since version 3.2) brings new EventForwarder interface to handle Event objects (introduced in version 3.1 as
well).

e com.hp.uca.expert.event.EventForwarder
e com.hp.uca.expert.event.Event

Advanced Development features 89

To store such Event objects into a DB, end-user can use a JDBC event forwarder based on the same concepts as the
alarm forwarder described above.

e com.hp.uca.expert.event.JDBCEventForwarder

In the contrary of alarms, events stored into a DB do not have DB flow mechanism associated into it.

5.10.2 Getting started

To make use of the DB feature, this is just a question of configuring correctly your value pack. This is done by modifying
the VP context.xml filel

Firstly, in this file, you will have to make use of the default JDBC settings by importing the provided file from the UCA
classpath, as:

<import resource="classpath:jdbc/dependencies.xml" />

Those default settings bring mainly an AlarmDao bean (called alarmDao) and an AlarmNotifier bean (called dbNotifier).
If you do not want to use default JDBC settings, you can do so by referring to the Advanced settings section below.

Then, still in context.xml, you will have to define at minimum 2 Spring beans:;

e the datasource bean
e the DB forwarder bean

and optionally

e the DB store bean

5.10.2.1 Defining the datasource

The first thing to configure is the datasource. This is done by defining a new Spring bean. Spring offers a number of
options for configuring a data sources via data source beans.

These sources include the following:

e Data sources that use JNDI
e Data sources that use JDBC drivers
o Data sources that pool connections

Below is an example using pool connections with Apache Commons DBCP? and with a H2 database®.

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName" value="org.h2.Driver" />
<property name="url" value="jdbc:h2:~/.uca/exampleDB" />
<property name="username" value="sa" />

You can also configure JDBC settings globally for all value packs in the conf/dependencies.xml file if needed.
2You could also use "org.springframework jdbc.datasource DriverManagerDataSource" or other of your choice

¥ You could also use HyperSQL DB. For other DBs, make sure to make the requested JDBC driver as part of your value pack libraries.

Advanced Development features 90

<property name="password" value="" />

</bean>

5.10.2.2 Defining the DB store

The second thing to configure is the store used to persist alarms. Currently only a store of type SQL is supported. But still,
in prevision of managing NOSQL stores, a bean is to be defined for specifying what that store is capable of. This setting is
optional. The settable properties of an SQL store are:

Table 9 - Settable properties of an SQL store

Property Type Description Defaults
name string Defines the name of the DB
SubDOrtsCreate boolean tells if the DB can be created by the UCA- | true except for
PP EBC engine if it does not exists "voltdb’
. tells if the DB supports the SQL syntax "IF | true except for
tsIfNotExist :
SUPPOTES oFRELS boolean NOT EXISTS" at creation "hsqldb"
L tells if the DB supports definition of true except for
tsUnl tedVarCh . C .
supportsUnlimitedVarChar | boolean VARCHAR without a numeric limit "vertica"
, : "BIGINT" except for
bigInt string ;Jrl]ethgfsthe data type to use for big "oracle” that is
g "NUMBER"
tells whether or not to create indexes at | true
useIndex boolean .
DB creation

Here below is a simple example:

<bean id="dbStore" class="com.hp.uca.expert.store.sgl.SglStore">
<property name="name" value="h2" />
</bean>

5.10.2.3 Defining the DB forwarder

The next thing to configure is the DB forwarder itself, which is the thread that is going to use datasource and store
defined previously to persist alarms.

The DB forwarder has 2 main properties: alarmDao and store. All possible properties are listed below:

Table 10 - Properties of a DB forwarder

Property

alarmDao

Description
the DB Alarm DAO bean

Type
bean

store bean the DB store bean

tells what to do when inserting an alarm that
already exists in DB store (with same
identifier). If false (default value): the new
alarm is ignored. If true : the old alarm is
deleted, the new alarm is inserted.

tells whether or not to compress enqueued
alarms with same identifier, for performance
reasons, If true (default value): alarms are
compressed.

override boolean

compress boolean

Advanced Development features 91

Here below the typical configuration (The init-method is optional as the DB forwarder has an auto-start capability).

<bean id="dbForwarder" class="com.hp.uca.expert.alarm.JDBCAlarmForwarder"
init-method="start">

<property name="alarmDao" ref="alarmDao" />

<property name="store" ref="dbStore" />
</bean>

If you use a DB forwarder to forward Events instead of Alarms, you will need to configure as per example below (the

eventDao bean needs to be configured too, as specified in Advanced settings section below).

<bean id="dbForwarder" class="com.hp.uca.expert.event.JDBCEventForwarder"
init-method="start">

<property name="eventDao" ref="eventDao" />

<property name="store" ref="dbStore" />
</bean>

5.10.2.4 Defining the DB flow

To be able to receive alarms changes coming from the DB as per any other alarm coming from a mediation flow, you will
have to configure a DB flow in the ValuePackConfiguration.xml file.

The dbFlow has 2 main properties: name and dbNot i fierName. All possible properties are listed below:

Table 11 - Properties of a DB flow

Property Type Description
name string | the name of the DB flow. should be unique in case of
multiple flows
dbNotifierName string | refers to the name of the DB notifier on which to subscribe

for notifications. This is explained in Advanced Setting
section. Its default name is “dbNotifier”.
automaticStart boolean | flag indicating whether to automatically start the DB flow
when the value pack is started or not. Default=true
lastEventReceivedFirst | boolean | attribute which tells if the DB notifier will notify existing
DuringResynchronization alarms in reverse order (if true) upon resynchronization

eligibilityScope string | element that specifies a Java evaluated boolean expression
defining the eligibility of an alarm to pass through at flow
resynchronization. default is "true" meaning all alarms
present in DB are sent

sourceldentifier string | when alarm is coming through that flow, the
sourceldentifier is replaced by this value. default="DB
selfFeed boolean | flag indicating whether to dispatch alarm creation

messages generated by this value pack in standard mode
(non-resynchronization. Default=false

A default configuration could be:

<dbFlows>
<dbFlow name="exampleDbFlow" dbNotifierName="dbNotifier"™ />
</dbFlows>

5.10.3 Example

You can refer to the example part of the UCA-EBC Development Toolkit.

file:///C:/Users/AnzileC/AppData/Local/Temp/doxia_1814683111.html%23DB_notifier

Advanced Development features 92

You can find it under $ {UCA EBC DEV_HOME}/vp-examples/persistence-example

You can build this example as usual:

ant all

Specifically, you can have a look at the files in the src/main/resources/valuepack/conf folder to see how
to configure the DB feature elements (context . xml) and the DB flows (ValuePackConfiguration.xml)

5.10.4 Advanced settings

Advanced settings are optional and are only for those who do not want to use the default settings provided by the
jdbc/dependencies.xml file. You can replace the following line:

<import resource="classpath:jdbc/dependencies.xml" />

And add each of the following beans directly in the context . xm1 file of the value pack.

5.10.4.1 Defining the SQL Session factory

The SQL session factory is the MyBatis' session factory bean. It has two properties:

Table 12 - Properties of the MyBatis SQL session factory bean

Property Type | Description
dataSource bean | the datasource bean
configLocation | string | the location of the MyBatis configuration file

The default configuration is:

<bean id="sglSessionFactory"
class="org.mybatis.spring.SglSessionFactoryBean">

<property name="dataSource" ref="dataSource" />

<property name="configLocation" value="classpath:jdbc/mybatis-
config.xml"/>
</bean>

5.10.4.2 Defining the DB Alarm DAO

The DB DAO is the mapper interface used to instantiate the Java interface corresponding to the SQL commands stored in
the file defined within the MyBatis configuration file. By default, the alarms mapper interface is defined in the
jdbc/sgl-alarms-mapper . xml file,

The DB DAO has two properties.

Table 13 - Properties of the DB Alarm DAO

Property Type | Description
sqlSessionFactory | bean | the SQL session factory bean

! MyBatis is an Open Source software delivered as part of UCA-EBC 3.2 libraries.

Advanced Development features 93

mapperInterface | string | the Javainterface for the DAO, which is defaulted to the one

provided by UCA-EBC, ie.
com.hp.uca.expert.alarm.store.AlarmbDao

The DB DAOQ is in turn used to configure the DB forwarder and the DB notifier beans.

The default configuration is:

<bean id="alarmDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sglSessionFactory" ref="sglSessionFactory" />
<property name="mapperInterface"

value="com.hp.uca.expert.alarm.store.AlarmDao" />

</bean>

5.10.4.3 Defining the DB Notifier

The DB notifier is a component that listens to the DB for changes and notifies the value pack about these changes by
feeding the DBFlow.

The DB Notifier has two properties:

Table 14 - Properties of the DB Notifier

Property Type | Description
alarmbDao bean | the DB Alarm DAO bean
checkTimer | number | atimer in milliseconds representing the interval between two DB checkings for the
changes

The default configuration is:

<bean id="dbNotifier" class="com.hp.uca.expert.alarm.store.AlarmNotifier"
scope="singleton">

<property name="alarmDao" ref="alarmDao" />

<property name="checkTimer" value="1000" />
</bean>

5.10.4.4 Defining the DB Event DAO

The DB Event DAO is the mapper interface used to instantiate the Java interface corresponding to the SQL commands
stored in the file defined within the MyBatis configuration file. By default, the events mapper interface is defined in the
jdbc/sgl-events-mapper.xml file

Table 15 - Properties of the DB Event DAO

Property Type | Description
sqlSessionFactory | bean | the SQL session factory bean
mapperInterface | string | the Javainterface for the DAO, which is defaulted to the one

provided by UCA-EBC, ie.
com.hp.uca.expert.event.store.EventDao

The DB Event DAO is in turn used to configure the DB forwarder bean.

There is no default configuration available but it should be easily configurable as per below:

<bean id="eventDao" class="org.mybatis.spring.mapper.MapperFactoryBean">
<property name="sglSessionFactory" ref="sglSessionFactory" />

<property name="mapperInterface"

Advanced Development features 94

value="com.hp.uca.expert.event.store.EventDao" />

</bean>

5.10.4.5 Defining the SQL Mapping interfaces

Alarms mapper:

The alarms mapper interface is defined by default in the jdbc/sgl-alarms-mapper . xml file. This file defines

the dynamic SQL mapping of the Java interface provided:

@ AlarmDaolnterface

@ StoreDaolnterface

Ligt=StoredAlarm= getAlarmsilong since)
StoredAlarm getAlarmiString identifier)

X

%
!
%

void createStore(Store type)
void deleteStorel)

void clear &ll()

void createlndexes()

S

!
!

b a
@ AlarmDao

void remowveblarms()

void storeflarm{AlarmCreationMapper a)

void remowveblarm{ String identifier)

vaid markForDeletion{ AlarmDeletionMapper a)
void update Alarmi AttributeChangesMapper aj
List=StoredAlarm= getAlarmsMarkedAsDeleted()

vaid purgeslarmsiList=SglCondition= conditions)

Figure 31 - AlarmDao Java interface

This interface is provided by default and can be replaced if necessary, in which case the mapping interface should be

changed accordingly.

Events mapper:

The events mapper interface is defined by default in jdbc/sgl-events-mapper . xml file. This file defines the

dynamic SQL mapping of the Java interface provided:

® StoreDaolnterface

void clearAlld

void createStore(Store type)
void deleteStare

A

I
® EventDao

List=5toredEvent> getEventsilong since)

StoredEvent getEvent(5tring identifier)

void removeBEvent(String identifier)

void storeEvent(EventCreationMapper eventCreationMapper)

Figure 32 - EventDao Java interface

Advanced Development features 95

This interface is provided by default and can be replaced if necessary, in which case the mapping interface should be
changed accordingly.

Ant buildxml targets 96

Appendix A
Ant build.xml targets

The value pack examples provided with UCA for EBC come with an Ant build. xml file that can build and package the
project as described in this document.

Following is the full list of Apache Ant targets defined in the build. xml file that can be executed from the command
line using the ant tool:

eclipse command:

ant eclipse
Creates the .project and .classpath files used by eclipse when importing a project.

clean command:

ant clean
Removes all files created during the build from the build directory.

compile command:

ant compile
Compiles all Java files of the project.

test command:

ant test
Runs the Junit tests defined in the project.

package command:
ant package
Build the final, “ready to deploy” value pack ZIP file

all command:

ant all

Is equivalent to executing the following targets: “clean”, “compile”, “test” and “package”.

Glossary 97

Appendix B

Glossary
Table 16 - Glossary

Acronym Definition

DRL Drools Rule file

EBC Event Based Correlation

EVP UCA for EBC Value Pack

IDE Integrated Development Environment

Inference Engine Process that uses a Rete algorithm

JMS Java Messaging Service

JMX Java Management eXtension, used to access or process action on the UCA
for EBC product

JNDI Java Naming and Directory Interface

UCA Unified Correlation Analyzer

XML Extensible Markup Language

XSD Schema of an XML file, describing its structure

X733 Standard describing the structure of an Alarm used in telecommunication
environment

WUI Web User Interface

	R1InstallGuide
	R2ReferenceGuide
	R3AdminGuide
	R4ValuePackExamples
	R5NOMReferenceGuide
	R6NOMInstallConfigGuide
	R7GUIGuide
	R8TopologyExtension
	R9IMUserGuide
	Alarm_Enrichment
	Advanced_settings

