
WinRunner
Testing Terminal Emulator Applications

Version 4.0

®

Testing Terminal Emulator Applications

© Copyright 1994 - 1997 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of
Mercury Interactive Corporation, and may not be copied, reproduced, or used in any way without the
express permission in writing of Mercury Interactive. Information in this document is subject to
change without notice and does not represent a commitment on the part of Mercury Interactive.

Patents pending

XRunner, WinRunner, and LoadRunner are registered trademarks of Mercury Interactive Corporation.
TestDirector, TestSuite, Visual Testing, SMARTest, RapidTest, TSL and Context Sensitive are trademarks
of Mercury Interactive Corporation.

This document also contains Registered Trademarks, Trademarks and Service Marks that are owned by
their respective companies or organizations. Mercury Interactive Corporation disclaims any
responsibility for specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
470 Potrero Avenue
Sunnyvale, CA 94086
Tel. (408) 523-9900
Fax. (408) 523-9911

WRTEUG4.04/01

Table of Contents

Chapter 1: Introduction ..1
About Testing Terminal Emulator Applications1
Recording Test Scripts ...2
Synchronizing Test Execution...3
Checking Your Application...3
Context Sensitive Testing with WinRunner\TE4
Learning the Application with BMS Files..4
Analyzing Results ..4
Using Default Command Softkeys ..5
Typographical Conventions..6

Chapter 2: Synchronizing Test Execution...9
About Synchronizing Tests..9
Waiting for a Response from the Host ..10
Waiting for a Specific String..10
Waiting for a Specific Field ...11
Setting the Synchronization Time ..11

Chapter 3: Checking Text..15
About Checking Text...15
Setting Text Checkpoints While Recording ..16
Setting Checkpoints Automatically ..17
Using Filters When Checking Text ...19
Reading Text from the Screen ...23
Searching for Text ...23

Chapter 4: Checking GUI Objects ...25
About GUI Checkpoints ..25
Checking Selected Objects in an Application Screen26
Checking All Fields in a Screen with Default Checks27
Screen Checks dialog box..28
Field Checks dialog box...28
iii

WinRunner Testing Terminal Emulator Applications
Chapter 5: Context Sensitive Testing with WinRunner/TE31
About Context Sensitive Testing...31
Physical Descriptions ..33
Logical Names ...34
Object Classes for Terminal Emulators ...34
Attributes ...35
Changing the Way User Operations Are Recorded.............................36

Chapter 6: Learning the Application with BMS Files..........................39
About Learning the Application with BMS Files.................................39
Learning the Application the First Time...40
Relearning the Application ...40

Chapter 7: Analyzing Results of Text Checkpoints.............................45
About Viewing Test Results ...45
Viewing Results of a Text Checkpoint ..45
Viewing Differences ..47
Filtering Text Comparison Results ..47

Index ..49
iv

1
Introduction

Welcome to WinRunner/TE, Mercury Interactive’s automated software
testing tool for terminal emulators. You can use WinRunner/TE to test
mainframe, AS/400, and VAX/HP/UNIX applications running on 3270,
5250, and VT100 protocol terminal emulators, respectively.

This chapter describes:

➤ Recording test scripts

➤ Synchronizing test execution

➤ Checking your application

➤ Context Sensitive Testing with WinRunner\TE

➤ Learning the Application with BMS Files

➤ Analyzing Results of Text Checkpoints

➤ Using default command softkeys

About Testing Terminal Emulator Applications

When you use WinRunner/TE, you work in WinRunner’s Context Sensitive
recording mode. In this mode, WinRunner/TE records the operations you
perform in the context of the screens, fields, and PF keys of your mainframe,
AS/400, or VT100 application.

As you work with your application, WinRunner inserts TSL statements
representing your actions into a test script. Among these statements are the
checkpoints that define the success criteria for your test.
1

WinRunner Testing Terminal Emulator Applications
WinRunner/TE distinguishes between the window of the terminal emulator
and screens in the host application. For the purposes of testing, the terminal
emulator window, usually referred to here as “window,” consists of the
frame and menus of the terminal emulator itself. This window remains
constant throughout each terminal emulator session.

The screen refers to the area of the window in which the application
appears. Each time the host responds to user input to the application, the
screen changes.

This guide explains how to use WinRunner/TE to test mainframe, AS/400,
and VT100 applications running on terminal emulators. We recommend
you read the WinRunner User’s Guide before you read this guide. This will
give you an overview of how to use WinRunner to test your application, and
an explanation of WinRunner terms.

Recording Test Scripts

A test script consists of statements coded in Mercury’s Test Script Language
(TSL). These statements are generated automatically in Record mode, in
response to AUT input. You can also program them manually. You can mix
recorded and programmed statements in the same test script.

The following is a sample of a recorded WinRunner/TE test script. The user
presses the Enter key in the first screen of an application. WinRunner waits
for the screen to change, and the user types the name “Minnie” in the
appropriate field. The recorded statements show how WinRunner ensures
that input is directed to the correct window. The comment (#) lines describe
the statements.

Activate the Terminal Emulator window
win_activate ("RUMBA - DEMO");

Press the Enter key
TE_send_key (TE_ENTER);

Wait for the next screen to refresh
TE_wait_sync();

Direct input to the Logon screen
set_window("LOGON");
2

Introduction
Type in the user id (“Minnie”)
TE_edit_field("USERID","Minnie");

Additional information on TSL is contained in the TSL Online Reference. You
access the TSL Online Reference from the Help menu. You can also display
information on any TSL function, in WinRunner, by placing the cursor on
the function and pressing the Shift and F1 keys. The information is
displayed in a Help window.

Synchronizing Test Execution

The tests that you create with WinRunner/TE run reliably every time.
During a test run, execution is delayed until the application is ready to
receive new input from the host. Synchronization points are recorded
automatically. You can also add synchronization points through recording
or programming. For more information, refer to Chapter 2, “Synchronizing
Test Execution.”

Checking Your Application

WinRunner verifies the behavior of your application by comparing the
expected results, captured when you created your test, to the actual results
when you ran the test in Verify mode.

You can use two different kinds of checkpoints to verify your application:

Text Checkpoints

You use Text checkpoints in order to compare on-screen text according to its
physical location on the screen. WinRunner/TE can capture the entire screen of
the active terminal emulator window, or only the portion of the screen that
you specify. For more information, refer to Chapter 3, “Checking Text.”

GUI Checkpoints

GUI checkpoints let you compare information about the screens and fields
in your application interface in terms of the objects rather than their on-screen
location during recording. You can check a screen’s label, the number and
3

WinRunner Testing Terminal Emulator Applications
type of fields it contains, and attributes such as its color. For more
information, refer to Chapter 4, “Checking GUI Objects.”

Context Sensitive Testing with WinRunner\TE

WinRunner/TE records your operations in terms of the objects on which
you operate (such as screens and fields), and the type of operation you
perform (such as pressing PF keys or typing in fields). Each object has a
defined set of properties that determine its behavior and appearance.
WinRunner/TE learns these properties and uses them to identify an locate
GUI objects during a test run. For more information, refer to Chapter 5,
“Context Sensitive Testing with WinRunner/TE.”

Learning the Application with BMS Files

Before you can begin Context Sensitive testing, WinRunner/TE must learn
the properties of each object in your application. If you are testing a 3270
mainframe application, you can learn your application directly from a BMS
file containing descriptions of the screens and fields in your application. For
more information, refer to Chapter 6, “Learning the Application with BMS
Files.”

Analyzing Results

After you execute a test, you can view a report of all the major events that
occurred during the test run in order to determine its success or failure. You
can view the expected and actual results through the WinRunner Report
window.

If a mismatch is detected during a verification run, you can also view a file
showing the differences between the expected and actual results. For more
information, Chapter 7, “Analyzing Results of Text Checkpoints.”
4

Introduction
Using Default Command Softkeys

Several WinRunner/TE commands can be activated using softkeys.
WinRunner/TE reads input from softkeys even when the WinRunner/TE
window is not the active window on your screen, or when it is minimized.

The default softkey configurations for WinRunner/TE are described in the
tables below.

WinRunner Terminal Emulator Softkeys

The following table shows the softkeys that are unique to this version of
WinRunner. These softkeys are for operations relating to mainframe
application windows only.

Standard WinRunner Softkeys

The following table shows the default softkeys for standard WinRunner
functions. Note that the default configurations for these softkeys are unique
to WinRunner/TE.

Command Softkey for 3270 Softkey for 5250 Softkey for VT100

CHECK PARTIAL
TEXT

PgDown Left Ctrl+F3 Left Ctrl+F3

CHECK TEXT PgUp Left Ctrl+F1 Left Ctrl+F1

GET TEXT Left Ctrl+End Left Ctrl+F5 Left Ctrl+F8

EXCLUDE FILTER Left Alt+PgDown Left Ctrl+F6 Left Ctrl+F6

INCLUDE FILTER Right Alt+PgDown Left Ctrl+F7 Left Ctrl+F7

WAIT STRING End Left Ctrl+F4 Left Ctrl+F4

WAIT SYNC Left Ctrl+PgDown Left Ctrl+F2 Left Ctrl+F2

Command Softkey for 3270 Softkey for 5250 Softkey for VT100

RUN FROM ARROW Left Ctrl+ 7 Left Ctrl+ 7 Left Ctrl+ 7

CHECK GUI Right Ctrl+2 Right Ctrl+2 Right Ctrl+2

CHECK BITMAP AREA Left Ctrl+2 Left Ctrl+2 Left Ctrl+2

CHECK BITMAP Left Ctrl+PgUp Right Ctrl+0 Right Ctrl+0
5

WinRunner Testing Terminal Emulator Applications
Softkey assignments are configurable. If the application you are testing uses
one of the default softkeys preconfigured for WinRunner/TE, you can
redefine the softkey by modifying the wrun.ini configuration file. For details,
refer to the WinRunner User’s Guide.

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements
of the functions that are to be typed in literally.

Italics Italic text indicates variable names.

INSERT FUNCTION FROM
LIST

Left Alt+7 Left Alt+7 Left Alt+7

MARK LOCATOR Right Ctrl+6 Right Ctrl+6 Right Ctrl+6

OBJECT INSERT
FUNCTION

Left Alt+8 Left Alt+8 Left Alt+8

PAUSE PAUSE PAUSE PAUSE

GET TEXT AREA Left Ctrl+1 Left Ctrl+1 Left Ctrl+1

RECORD Scroll Lock Left Alt+2 Scroll Lock

RUN FROM TOP Left Ctrl+5 Left Ctrl+5 Left Ctrl+5

STEP Left Ctrl+6 Left Ctrl+6 Left Ctrl+6

STEP INTO Left Ctrl+8 Left Ctrl+8 Left Ctrl+8

STEP TO CURSOR Left Ctrl+F9 Left Ctrl+F9 Left Ctrl+F9

STOP Left Ctrl+3 Left Ctrl+3 Left Ctrl+3

WAIT BITMAP AREA Left Ctrl+4 Left Ctrl+4 Left Ctrl+4

WAIT BITMAP Left Ctrl+0 Left Ctrl+0 Left Ctrl+0

GUI CHECK LIST Right Ctrl+F12 Right Ctrl+F12 Right Ctrl+F12

GET TEXT OBJECT Left Ctrl+9 Left Ctrl+9 Left Ctrl+9

Command Softkey for 3270 Softkey for 5250 Softkey for VT100
6

Introduction
Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items
of the same format may be included. In a program
example, three dots are used to indicate lines of a
program that were intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.
7

WinRunner Testing Terminal Emulator Applications
8

2
Synchronizing Test Execution

WinRunner/TE provides complete synchronization between the host and
the application under test (AUT) during test execution. Synchronization
ensures that test execution is delayed until the application is ready to
receive new input. This prevents incidental differences in host response
time from affecting successive test runs.

This chapter describes:

➤ Waiting for a response from the host

➤ Waiting for a specific string

➤ Waiting for a specific field

➤ Setting the synchronization time

About Synchronizing Tests

When using a terminal emulator, many factors can affect the speed of
operation and therefore interfere with test execution. Host response time
varies with load on the system. The screen refresh rate of your terminal can
also vary. WinRunner/TE provides different types of synchronization points
to pace test execution with the system. These points are inserted into the
test script automatically, or by either programming or recording.
9

WinRunner Testing Terminal Emulator Applications
Waiting for a Response from the Host

In recording, WinRunner/TE automatically generates the following
statement each time the terminal emulator waits for a response from the
host:

TE_wait_sync ();

During a test run, this statement ensures that test execution is delayed until
the host responds and the new screen is completely redrawn.

To generate the TE_wait_sync statement in your test script during
recording, press the WAIT SYNC softkey.

Waiting for a Specific String

Using the TE_wait_string function, you can instruct WinRunner to wait for
a specific string to appear on the screen before continuing test execution.
You can specify an area of the screen, or WinRunner can search the entire
screen for the string.

To record a TE_wait_string statement in your test script:

 1 During recording, press the WAIT STRING softkey. WinRunner is minimized to
an icon and a dialog box displays instructions for capturing the string.

 2 Enclose the text you want WinRunner to look for during test execution in a
rectangle: press and hold down the left mouse button and drag the mouse
until the rectangle encloses the desired area.

 3 To capture the string, click the right mouse button. WinRunner is restored
and a TE_wait_string statement with the following syntax is inserted into
your test script:

TE_wait_string (string, [start_column, start_row, end_column, end_row],
 [timeout]);

The string parameter is the text enclosed in the rectangle. If the text you
captured exceeds one line, string includes the first line only. The start_column
and start_row parameters indicate the column/row at which the captured
text starts. The end_column and end_row parameters represent the column
10

Synchronizing Test Execution
and row, respectively, at which the text ends. The timeout parameter is the
number of seconds that WinRunner waits for the specified string to appear
before continuing test execution.

The example that follows shows the statement recorded when the text of a
menu option is captured using the WAIT STRING softkey:

TE_wait_string ("Open the mail", 8, 4, 20, 4, 60);

The first parameter, “Open the mail”, is the string that WinRunner searches
the screen for; WinRunner will look for this string in row 4, columns 8
through 20. The default timeout is 60 seconds.

When you program this statement, you can eliminate the coordinates. In
this case, WinRunner searches the entire screen for the specified string. You
can also change or eliminate the timeout parameter. If there is no timeout
parameter, then the system timeout is used.

Waiting for a Specific Field

Using the TE_wait_field function, you can instruct WinRunner to wait for a
specific field to appear on the screen before continuing test execution.
When the field appears, WinRunner resumes test execution. The syntax for
this function is:

TE_wait_field (field_logical_name, content, timeout);

The field_logical_name parameter is the name of the field that WinRunner
will wait for. The content parameter is the string contained in the field. The
timeout is the number of seconds that WinRunner waits for the specified
field to appear before continuing test execution.

Setting the Synchronization Time

Two factors that can affect proper test execution are the response time of the
host and the screen refresh rate of your terminal. The following functions
allow you to configure WinRunner to handle these variations.
11

WinRunner Testing Terminal Emulator Applications
Changing the Screen Refresh Time

The TE_set_refresh_time function determines how long WinRunner waits
for the screen to refresh after the host has responded.

The syntax for this function is:

TE_set_refresh_time (time);

The default time is 1 second. You can increase this if needed to ensure that
WinRunner waits until the screen is completely redrawn before continuing
test execution.

Changing the Timeout

The TE_set_timeout function determines the maximum amount of time
that WinRunner waits for a response from the host before continuing test
execution.

This statement has the following syntax:

TE_set_timeout (timeout);

The default timeout is 60 seconds. You can modify this if needed.

Setting the System Synchronization Time

The TE_set_sync_time function determines the minimum number of
seconds that WinRunner waits for the host to respond. WinRunner uses this
information to determine that synchronization has been achieved before
continuing test execution.

This statement has the following syntax:

TE_set_sync_time (time);

Getting the System Synchronization Time

The TE_get_sync_time function returns the minimum number of seconds
that WinRunner will wait for the host to respond. WinRunner uses this
information in order to determine that synchronization has been achieved
before continuing test execution.
12

Synchronizing Test Execution
This statement has the following syntax:

TE_get_sync_time (time);
13

WinRunner Testing Terminal Emulator Applications
14

3
Checking Text

You can use WinRunner/TE to check the text in the screen of your
mainframe, AS/400, or VAX/HP/UNIX application.

This chapter describes:

➤ Setting text checkpoints while recording

➤ Setting checkpoints automatically

➤ Using filters when checking text

➤ Reading text from the screen

➤ Searching for text

About Checking Text

WinRunner/TE provides different methods of checking the text in your host
application screen. You can:

➤ capture all or part of the screen contents while recording a test

➤ instruct WinRunner/TE to automatically capture all or part of the screen
contents of the active terminal emulator window

While creating a test, you indicate the text that you want to check.
WinRunner inserts a checkpoint in the script, captures the specified text,
and stores it in the expected results directory (exp) of the test. When you run
the test, WinRunner recaptures the text and compares it to the expected text
captured earlier. You can view both the expected and the actual test results.
In the case of a mismatch, you can also view any differences between them.
15

WinRunner Testing Terminal Emulator Applications
You can also use WinRunner to read text from a selected portion of the
screen and store it in a variable. The screen coordinates of the text you
indicated are inserted into the test script. You could use this feature, for
example, to change the logical flow of a test run during test execution
according to the text found in the indicated area.

Setting Text Checkpoints While Recording

You can capture the entire contents of the terminal emulator window for
comparison. Alternatively, you can select a specific portion of the screen for
text capture. All captured text is stored as ASCII text. You can view these files
through the WinRunner Report window.

Checking a Full Screen

Use a full-screen text checkpoint to capture the entire contents of the active
terminal emulator window.

To capture the contents of the screen:

 1 During recording, make sure that the terminal emulator window you want
to check is active.

 2 Press the CHECK TEXT softkey. A TE_check_text statement is recorded in your
test script.

The entire contents of the active terminal emulator window are captured
(even if not all of the text is visible in the window). A TE_check_text
statement such as the following is inserted into the test script:

TE_check_text ("Trm1");

The default name that WinRunner assigns to the first incidence of a full-
screen text checkpoint in a test script is called Trm1. The text is stored as an
ASCII file in the expected results directory of the test.

When you run the test, WinRunner compares the text currently displayed
on the screen with the expected text captured earlier (the contents of the file
Trm1, stored in the expected results directory). In the event of a mismatch,
WinRunner captures the actual text and generates a difference file that
16

Checking Text
shows the discrepancy between the expected and the actual results. Both
files are stored in the current verification results directory.

Checking a Partial Screen

Use partial text checkpoint when you want to capture only part of the text
on the screen.

To capture text in an area of the screen:

 1 Press the CHECK PARTIAL TEXT softkey. WinRunner is minimized to an icon
and a dialog box displays instructions for capturing the text.

 2 Enclose the text to be captured within a rectangle. Press and hold down the
left mouse button and drag the mouse until the rectangle encloses the
desired area.

 3 Click the right mouse button: WinRunner is restored and a TE_check_text
statement such as the following is inserted in the test script:

TE_check_text ("Prt1", 51, 13, 60, 13);

The example shows the statement recorded when the text in line 13,
columns 51 through 60 is captured. The default file name "Prt1" indicates
the first incidence of captured partial text in any test script.

For more information on TE_check_text, refer to TSL Online Reference.

Setting Checkpoints Automatically

You can instruct WinRunner/TE to capture the contents of the active
terminal emulator window each time a new screen appears. The three main
options for automatic text checkpoints are:

➤ Check full screen

➤ Check partial screen

➤ Check partial screen using the previous “check partial screen” coordinates
17

WinRunner Testing Terminal Emulator Applications
Checking Full Screens

When full screen automatic text check is active, all of the text in the active
window is captured each time a new screen is displayed.

To activate full screen automatic text check, execute the following statement
in your test script:

TE_set_auto_verify (ON);

Each time a new text screen is displayed in the window, a TE_check_text
statement like the following is automatically inserted into the test script.

TE_check_text ("Trm1");

To deactivate automatic text check, execute the following statement:

TE_set_auto_verify (OFF);

Checking Partial Screens

When partial screen automatic text check is active, the text in the specified
area of the active window is captured each time a new screen appears.

To activate partial screen automatic text check, program and execute a
statement with the following syntax in your test script:

TE_set_auto_verify (ON, start_column, start_row, end_column, end_row);

ON activates automatic check; start_column indicates the column at which
the captured text starts; start_row indicates the row at which the captured
text starts; and end_column and end_row represent the column and row,
respectively, at which the text ends.

The example below shows the statement you would execute to
automatically check the text in columns 22 through 31, rows 10 through 14.

TE_set_auto_verify (ON, 22, 10, 31, 14);

Each time a new screen appears in the window, a TE_check_text statement
similar to the following is automatically inserted into the test script.

TE_check_text ("Prt1", 22, 10, 31, 14);
18

Checking Text
To deactivate automatic partial text check, execute the following statement:

TE_set_auto_verify (OFF);

Checking Partial Screens Using Previous Coordinates

When you choose the first/last partial text option, the coordinates for the
partial screen automatic check are taken from a previous TE_check_text
statement in the test run.

To activate first/last partial screen automatic text check, execute a statement
with the following syntax in your test script:

TE_set_auto_verify (ON, FIRST|LAST);

If you use the FIRST parameter, the coordinates for the automatic partial
screen check will be taken from the first TE_check_text statement in the
test run. If you use the LAST parameter, the coordinates will be taken from
the last TE_check_text statement in the test run. The coordinates are
updated during the test run with each TE_check_text statement.

Note that if there is no TE_check_text statement in the test script, then the
entire screen is captured.

To deactivate first/last partial screen automatic text check, execute the
following statement in your test script:

TE_set_auto_verify (OFF);

Using Filters When Checking Text

WinRunner lets you use filters to include or exclude regions of a terminal
emulator window when checking text. In cases where you do not want to
check an entire window, you can define parts of the window that will be
filtered during the comparison. You can use two types of filters: exclude and
include.
19

WinRunner Testing Terminal Emulator Applications
Exclude and Include Filters

An exclude filter defines the area to be ignored during the comparison. For
example, you can create an exclude filter on a region of a window
containing the current date and time.

An include filter is used in combination with an exclude filter. In the
diagram below, the white areas are included in the comparison and the
shaded area is excluded. This is achieved by defining an exclude filter and
then defining a smaller include filter on top of it. The result is a “ring” that
is excluded from comparison.

Note that when you combine exclude and include filters, the order in which
the filters are activated in the test script determines the actual area of
interest. For example, if an exclude filter that fully or partially overlaps an
include filter is activated after the include filter, the overlapped region is
excluded from the area of interest.

AUT window

Exclude filter

AUT window with exclude filter

AUT window

Exclude filter

Include filter

AUT window with exclude filter
and include filter
20

Checking Text
Note: You can set up to 256 filters using TE_set_filter.

Creating Filters

You use the EXCLUDE FILTER and INCLUDE FILTER softkeys to create a filter
during recording.

To create a filter by recording:

 1 During recording, press the appropriate softkey (FILTER EXCLUDE or FILTER
INCLUDE). WinRunner is minimized to an icon and a dialog box displays
instructions for defining the filter area.

 2 Enclose the area to be filtered inside a rectangle. Press and hold down the
left mouse button and drag the mouse until the rectangle encloses the
desired area.

 3 To record the filter, click the right button.

WinRunner is restored. The filter is added to the test’s db directory and a
TE_set_filter statement is inserted into your test script.

The following example shows what WinRunner records when an exclude
filter is defined on row 23, columns 1 through 30 of the active terminal
emulator window.

TE_set_filter ("Filter0",1, 23, 30, 23, EXCLUDE);

When a TE_set_filter statement is executed during a test run, the filter is
activated. For more information on TE_set_filter, refer to TSL Online
Reference.

Deactivating and Deleting Filters

When you deactivate an existing filter, it remains in the test’s db directory
but is inactive for the test. To deactivate a filter, execute a statement with
the following syntax in your test script:

TE_reset_filter (filter_name);
21

WinRunner Testing Terminal Emulator Applications
You can also define the filter to be deactivated using its coordinates and
type, instead of its name. Execute a statement with the following syntax:

TE_reset_filter (start_column, start_row, end_column, end_row,
EXCLUDE || INCLUDE);

To deactivate all active filters, execute the following statement:

TE_reset_all_filters();

To delete a filter from the test database, execute a statement with the
following syntax in your test script:

TE_delete_filter (filter_name);

Creating and Activating Filters Separately

In some cases you may wish to create a filter and store it in the test’s db
directory for later use. Use the create_filter function to create a filter;
activate it by executing a TE_set_filter statement containing only the name
of the filter.

To create a filter, execute a statement with the following syntax in your test
script:

TE_create_filter (filter_name, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE);

The filter_name can be up to 16 characters long.

To activate a filter, execute the following statement in the script:

TE_set_filter (filter_name);

The filter_name must be the name of an existing filter for the current test.
22

Checking Text
Reading Text from the Screen

Using the TE_get_text function, you can instruct WinRunner/TE to read the
text in a specified area of the screen and store it in a variable. During
recording, you use the mouse to define the area of the screen to be read. You
can also program the TE_get_text function.

To read text from the screen:

 1 Make sure that you are in recording mode and that the terminal emulator
window you want to read from is in focus.

 2 Press the GET TEXT softkey. WinRunner is minimized to an icon and a dialog
box displays instructions for capturing the string.

 3 Enclose the text to be read within a rectangle. Press and hold down the left
mouse button and drag the mouse until the rectangle encloses the desired
area.

 4 To capture the string, click the right mouse button. WinRunner is restored.
A TE_get_text statement is inserted in the test script. This statement has the
following syntax:

t = TE_get_text (x1, y1, x2, y2);

For more information on TE_get_text, refer to TSL Online Reference.

Each new line of the on-screen text that is captured is preceded by the
characters “\n” in the variable. The following example shows how two lines
of on-screen text appear in the variable t:

t = "Fill in your User ID and press Enter \n(Your password will not appear
 when you type it)"

Searching for Text

You can search for text in a terminal emulator screen using the
TE_find_text function. This function looks for a specified text string and
returns its location on the screen as an x coordinate and a y coordinate.
Using an optional parameter, you can restrict the search to a rectangular
area of the screen that you define using pairs of x, y coordinates.
23

WinRunner Testing Terminal Emulator Applications
The TE_find_text function has the following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2]);

For more information on TE_find_text, refer to TSL Online Reference.
24

4
Checking GUI Objects

WinRunner/TE sees the terminal emulator application window as a screen
containing fields. You can capture information about each screen and its
contents and store the information as a basis for comparison.

This chapter describes:

➤ Checking selected objects in an application screen

➤ Checking all fields in an application screen

➤ The Screen Checks dialog box

➤ The Field Checks dialog box

About GUI Checkpoints

WinRunner/TE enables you to compare information about the user interface
of your mainframe, AS/400, or VAX/HP/UNIX application between versions.
You can use GUI checkpoints to check the label of a screen, as well as the
number and type of fields within the screen. For example, you can check the
content, type, and location, for any field.

To create a GUI checkpoint, you select a screen or field and define the
checks you want to perform. You can use the default checks or define
custom checks. Information about the screens and fields as well as the
checks is saved in a checklist. WinRunner captures the current state of these
objects and saves this information as expected results. A GUI checkpoint is
automatically inserted into the test script. This checkpoint appears as an
obj_check_gui or win_check_gui statement.

When you run the test, WinRunner compares the current state of the
application to the expected results, the information is captured and
25

WinRunner Testing Terminal Emulator Applications
compared to the expected results. If the expected results and the current
results do not match, the GUI checkpoint fails. The results of the checkpoint
can be viewed in the WinRunner Report dialog box.

Note: The procedure for creating a checklist for fields and screen differs
slightly from those for other GUI objects. For information on checking
standard Windows objects, see the WinRunner User’s Guide.

Checking Selected Objects in an Application Screen

You can capture information about one or more fields in a screen.

To capture GUI data of selected objects for comparison:

 1 Select Check GUI > Object/Window from the Create menu. The WinRunner
window is minimized to an icon, the mouse pointer turns into a pointing
hand, and a popup window appears on the screen.

 2 Activate the screen you want to check. The Check GUI dialog box opens.

Click on the screen or field you want to check. The selected object flashes
and is inserted into a checklist according to the default check(s) for the
object class. Each object you click on is added to the checklist.

 3 Press the right mouse button to stop the add operation and restore the
mouse pointer to its original shape. The Check GUI dialog box appears on

Displays the logical name of the window.

Lets you add an object to the check list.
26

Checking GUI Objects
the screen with the default checks. To choose different checks, select the
object in the list and click the Modify button. The appropriate check dialog
box appears. For more information, see the sections “Screen Checks dialog
box” and “Field Checks dialog box.”

 4 Mark the check(s) to perform and select OK to close the checks dialog box
and return to the Check GUI dialog box.

 5 To save the checklist and close the dialog box, click the OK button.

WinRunner captures all the objects in the GUI checklist, inserts a check_gui
statement in your test script, and resumes recording.

Checking All Fields in a Screen with Default Checks

You can create a checklist containing all the fields in the selected screen.
During test execution, WinRunner compares the expected and actual results
for all the fields in the current screen as well as the default check for the
field class (field_content).

To capture all the fields in a screen:

 1 Select Check GUI > Object/Window from the Create menu. The WinRunner
window is minimized to an icon, the mouse pointer turns into a pointing
hand, and a popup window appears on the screen.

 2 Activate the screen you want to check. A popup window asks whether you
want to check all the objects in the window. Select Yes.

 3 Click on the pointing hand button. The mouse pointer turns into a pointing
hand.

 4 The Add All dialog box opens.

 5 Click OK button to add all the fields in the screen to the checklist.
WinRunner generates a new checklist containing the objects specified. This
may take several seconds.

 6 Click OK to save the checklist and close the dialog box.

 7 WinRunner captures the GUI information and stores it in the test’s expected
results directory. The WinRunner window is restored and a check_GUI
statement is inserted into the test script.
27

WinRunner Testing Terminal Emulator Applications
Screen Checks dialog box

The Screen Checks dialog box lets you modify the GUI checklist for a screen.

number of protected fields: checks the number of protected fields in the
screen (default check).

number of input fields: checks the number of unprotected fields in the
screen (default check).

label: checks the label (title) of the screen.

Field Checks dialog box

The Field Checks dialog box lets you modify the GUI checklist for a field.

x and y: checks the x and y coordinates of the top left corner of the field,
relative to the screen origin (default checks).

length: checks the length of the field, in characters.

color: checks the color of the field.
28

Checking GUI Objects
numeric only: checks whether the field is numeric only.

protected: checks whether the field is protected.

visible: checks whether the field is visible.

attached text: checks the attached text of the field.

content: checks the content of the field (default check).
29

WinRunner Testing Terminal Emulator Applications
30

5
Context Sensitive Testing with
WinRunner/TE

You can use WinRunner’s Context Sensitive features to test mainframe,
AS/400, and VAX applications running on terminal emulators for 3270,
5250, and VT100. For general information on Context Sensitive testing with
WinRunner, see the Understanding the GUI Map section of the WinRunner
User’s Guide.

This chapter describes:

➤ Physical descriptions

➤ Logical names

➤ Object classes

➤ Attributes

➤ Changing the record methods

About Context Sensitive Testing

Context Sensitive testing ensures that non-essential changes in your
applications do not affect test execution. WinRunner/TE can handle
changes in window size between testing sessions, or modifications in the
positioning of fields in an application screen. WinRunner/TE records your
operations in terms of the objects on which you operate (such as screens
and fields), and the type of operation you perform (such as pressing PF keys
or typing in fields). It ignores the physical location of objects on the screen.

To perform Context Sensitive testing, WinRunner must uniquely identify
each object and be able to locate it in the application under test (AUT).
31

WinRunner Testing Terminal Emulator Applications
During Context Sensitive testing, WinRunner learns an accurate description
of each object as it is identified by the AUT. If you have access to the BMS
files of your application, WinRunner/TE can learn your application by
reading these files directly. Refer to Chapter 6, “Learning the Application
with BMS Files” for more information. Otherwise, WinRunner learns a
description of each object using RapidTest Script Wizard, recording, or the
GUI Map Editor. For more information on these methods, refer to the
WinRunner User’s Guide.

The description of each GUI object (called the physical description) contains a
detailed list of attributes. WinRunner places this list in a GUI file. In the test
script, WinRunner uses an intuitive logical name for each object (as it
appears in the application).

The following example illustrates the connection between the logical name
and the physical description. Assume that you record a test in which you
type your user ID in the Login screen of your application.

WinRunner/TE learns the actual description, or list of attributes, of both of
the objects you operated on:

Screen {class:mic_if_win, label:VIRTUAL MACHINE/SYSTEM
PRODUCT, mic_if_handles_windows:1}

Field {class:field, attached_text:"USERID"}

WinRunner identifies the screen as the class mic_if_win (a host application
window), and its label as VIRTUAL MACHINE/SYSTEM PRODUCT;
32

Context Sensitive Testing with WinRunner/TE
mic_if_handles_windows is an internal attribute used by WinRunner. The
USERID field is recognized as the class field with the attached text “USERID”.
In the test script, WinRunner inserts intuitive logical names for the objects.
If you start recording and type the user name “Carmen”, the script segment
might look like this:

set_window ("VIRTUAL MACHINE/SYSTEM PRODUCT");
TE_edit_field("USERID","Carmen");

When the test is run, WinRunner reads the logical name of each object from
the script and refers to its physical description in the GUI map file. It uses
this description to find the object in the AUT.

Physical Descriptions

The physical description of an object contains a list of attribute–value pairs,
as follows:

{attribute1:value1, attribute2:value2, attribute3:value3, ...}

For example, the description of the “Login” screen presented above contains
three attributes, listed below together with their values:

class: mic_if_win
label: VIRTUAL MACHINE/SYSTEM PRODUCT
mic_if_handles_windows: 1

WinRunner always learns the class attribute. This indicates the type of the
GUI object, such as the terminal emulator window, host application screen,
or field. For each class, WinRunner learns a set of default attributes. For
more information on attributes that are unique to WinRunner for terminal
emulators, see “Attributes” in this chapter. For information on other
attributes used by WinRunner, see the WinRunner User’s Guide.

Note that WinRunner learns the physical description of an object in the
context of the window in which it appears. This creates a unique physical
description for each object.
33

WinRunner Testing Terminal Emulator Applications
Logical Names

The logical name is the name WinRunner uses for objects in the test script.
Once the name is assigned, you can modify it in the GUI map file.

The logical name assigned to an object depends on the class of the object.
For example, the logical name of a window is the value of its label attribute.
The logical name of a field is the value of its attached_text attribute.

Object Classes for Terminal Emulators

WinRunner/TE identifies two types of objects for terminal emulators: screens
and fields. The screen is the application area. It changes each time input is
received from the host. Fields include unprotected fields, which can receive
input, and protected fields which contain fixed text.

WinRunner/TE also identifies the window of the terminal emulator, the
outer frame of the terminal emulator including its menus, scrollbar, and
buttons. The class attribute of this window is always mic_if_window. For
more information on this class, see the WinRunner User’s Guide.

Application screen

field

Terminal emulator window
34

Context Sensitive Testing with WinRunner/TE
Attributes

The following table shows the attributes for application screens and fields.
For a full list of attributes for all standard Windows objects, see the
WinRunner User’s Guide.

Screens

A screen can have the following attributes:

Fields

A field can have the following attributes:

Attribute Description

class The prime attribute that WinRunner uses to identify the type
of GUI object. All screens belong to the class “mic_if_win”.

label The title of the screen. If there is no title, WinRunner assigns
a unique number.

protected_fields_
number

The number of protected fields in this screen.

input_fields_
number

The number of unprotected fields in this screen.

id A number that WinRunner uses to identify the screen.

mic_if_handles_
windows

An internal attribute that WinRunner uses. The value of this
attribute is always 1.

Attribute Description

class The prime attribute that WinRunner uses to identify the type
of GUI object. All fields belong to the class “field”.

attached_text The text that is closest to the field.

protected A value that indicates whether the field is protected. This
value is “yes” if the field is protected; otherwise it is “no”.

visible A value that indicates whether the contents of the field can
be seen: 1 if they are visible, 0 if not.
35

WinRunner Testing Terminal Emulator Applications
Changing the Way User Operations Are Recorded

By default, WinRunner/TE records operations on screens, fields, and PF keys
using functions such as TE_edit_field and TE_send_key. This record
method also enables the use of GUI checkpoints, the GUI Map Editor, and
other WinRunner Context Sensitive features. The “field” method is available
for 3270 and 5250 protocol terminal emulators only.

A second record method is also available. (For VT100 terminal emulators
this is the sole record method available.) When the “position” method is
used, WinRunner/TE records keyboard and mouse input only; operations on
objects in your application are recorded as type, win_mouse_click, and
win_mouse_drag statements. Context Sensitive features are not available.

Note: The record method (field or position) is not the same as the
WinRunner record mode (Context Sensitive or Analog). Note also that
WinRunner/TE must always be in Context Sensitive record mode.

numeric_only A value that indicates whether the field is numeric. This value
is “yes” if the field is numeric; otherwise the value is “no”.

id A number that WinRunner uses to identify the field.

x The x coordinate of the top left corner of a field, relative to
the window origin.

y The y coordinate of the top left corner of a field, relative to
the window origin.

length The length of the field, in characters.

color A value indicating the color of the field. This can be 0, 1, 2, or
3, depending on the terminal emulator’s color definitions.

Attribute Description
36

Context Sensitive Testing with WinRunner/TE
You use the TE_set_record_method function to change the record method.
This function has the following syntax:

TE_set_record_method (method);

The method can be one of the following:

➤ FIELD_METHOD, or (2) (the default): enables full Context Sensitive
recording.

➤ POSITION_METHOD, or (1): keyboard and mouse input only is recorded.

Note that the current record method remains valid until you change it, even
after you exit WinRunner/TE and start it again.
37

WinRunner Testing Terminal Emulator Applications
38

6
Learning the Application with BMS Files

The Learn BMS Files feature can teach WinRunner/TE your 3270 mainframe
application by inserting information about screens and fields directly into a
GUI map file. This chapter describes:

➤ Learning the application the first time

➤ Relearning the application

About Learning the Application with BMS Files

If you have access to the BMS file of your 3270 mainframe application, you
can use the Learn BMS Files feature. This feature enables WinRunner/TE to
learn your application directly from a BMS file containing descriptions of
the screens and fields in your application. When you use Learn BMS File,
WinRunner learns these descriptions and inserts them into a GUI map file.
You can change the names or descriptions as desired, as with any other GUI
map file. You use the TSL function TE_bms2gui to learn the BMS file.

The RELEARN option lets you update the GUI map file you created earlier as
your application changes during the development cycle. An interactive user
interface guides you through the process. It helps you retain desired
modifications to the descriptions in the GUI map file while changing others
as needed.

It is recommended that you be familiar with the chapter “Chapter 5,
“Context Sensitive Testing with WinRunner/TE”” as well as the
Understanding the GUI Map section of the WinRunner User’s Guide before
you begin Learn BMS Files.
39

WinRunner Testing Terminal Emulator Applications
Learning the Application the First Time

You use the TE_bms2gui function to learn (and to relearn) your BMS file.
This function has the following syntax:

TE_bms2gui ("bms_file_name", "gui_file_name", learn_mode);

The bms_file_name parameter is the full path of the BMS file of your
application. The gui_file_name parameter is the full path of the GUI map file
in which WinRunner inserts the descriptions of the objects in your
application. If no parameter is specified, the temporary GUI map file is used.

The learn_mode parameter determines how WinRunner/TE handles the BMS
file. Use the LEARN option the first time that you learn a BMS file. Do not
perform LEARN twice for the same GUI map file. Use RELEARN when you
have made changes to your application and updated the BMS file. When
RELEARN is specified, WinRunner compares the descriptions in the current
BMS file with those in the specified GUI map file. It notifies you of any
inconsistencies and allows you to make changes as desired.

To learn the BMS files, execute the TE_bms2gui function in a WinRunner
script. In the following example, TE_bms2gui is used to teach WinRunner
object descriptions from a BMS file called Mail_app.txt and place them into
a GUI map file called Mail_1.gui:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", LEARN);

You can edit names or descriptions in the GUI map file created by
TE_bms2gui and make any other desired changes, using the GUI Map
Editor. See the WinRunner User’s Guide for more information.

Relearning the Application

You use the RELEARN option each time you want to update the GUI map
file to reflect changes in your application. RELEARN enables you to add new
screens and fields to the GUI map file while maintaining or changing the
names and descriptions that appear in the existing GUI map file, as desired.

To relearn a BMS file, you execute the TE_bms2gui function using RELEARN
as the learn_mode parameter. For example, to relearn a BMS file called
40

Learning the Application with BMS Files
Mail_app.txt into an existing GUI map file called Mail_1.gui, execute the
following statement:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", RELEARN);

As WinRunner/TE converts the BMS file into the GUI map file, it looks for
discrepancies between the BMS file learned using the LEARN option and the
current file, on which RELEARN is performed. Each time it finds a
mismatch, a dialog box appears on screen and asks your how to proceed.

In most cases, accepting the default option ensures that the intentional
changes made to your application are reflected accurately in the GUI map
file. However, WinRunner always gives you the option of changing the
name of the relevant screen or field.

The following paragraphs describe the different Relearn forms that may be
displayed during the RELEARN process and the options they provide.

Note: The forms are identical for fields and for screens, with the exception
of the word “field” or “screen” in the relevant location.
41

WinRunner Testing Terminal Emulator Applications
The Object Exists in the GUI Map File with Different Attributes

WinRunner found a screen in the BMS file with the same name as a screen
in the existing GUI map file, but with different attributes. The current name
of the screen is displayed in the list on the left side of the Relearn dialog
box. The list on the right shows all the attributes of the selected object,
according to the new BMS file. By default, WinRunner updates the GUI map
to include the new attributes.

Click OK. The following message appears: “Screen BG112AF is now changed
and gets new attributes”. Click OK.

To use a different name for the screen, select it from the list or type in
another name.

To continue the RELEARN operation without making changes, click Cancel.

To choose a new name for the object, type it in or select the name of an
existing object from the list.
42

Learning the Application with BMS Files
This Object Is Not in the Original GUI Map File

WinRunner found a field that it recognizes as a new one: no other field with
the same name or attributes exists in the GUI map file. The name of the field
is displayed in the list on the left side of the Relearn dialog box. The list on
the right shows all the attributes of the selected field, according to the new
BMS file.

By default, WinRunner adds the object to the GUI map file with the name
specified. The Relearn dialog box closes and the following message appears:
“WinRunner added a new field with the name “DATAOO1.”

To continue the Relearn operation without making changes, click Cancel.

To choose a new name for the object, type it in or select the name of
another screen from the list.
43

WinRunner Testing Terminal Emulator Applications
This Object Appears in the GUI Map File with a Different Name

WinRunner found a field with the same attributes as an existing field, but
with a different name. By default, WinRunner retains the original name for
the field as it appears in the GUI map. This ensures that you can replay
existing tests containing the original name for the field without changing
them.

Click OK to retain the original name for the field. The Relearn dialog box
closes and the following message appears: “WinRunner uses the existing
field ‘DATA002’”.

To use the name in the new BMS file or to select a new name, select it from
the list or type it in.
44

7
Analyzing Results of Text Checkpoints

After you execute a test, you can view a report of all the major events that
occurred during the test run in order to determine its success or failure.

This chapter describes:

➤ Viewing results of a text checkpoint

➤ Viewing differences

➤ Filtering text comparison results

About Viewing Test Results

When a test run is completed, you can view detailed test results in the
WinRunner Reports window. To open the window, select Reports from the
Tools menu or click the Reports icon. The Report window opens and
displays the results of the current test. You can view expected, debug, and
verification results in the Report window. By default, the Report window
displays the results of the most recently executed test run. For more
information, see the WinRunner User’s Guide.

Viewing Results of a Text Checkpoint

A text checkpoint compares expected and actual text in your application.
You can view the expected and actual results through the Report window. If
a mismatch is detected during a verification run, you can also view a file
showing the differences between the expected and actual results.
45

WinRunner Testing Terminal Emulator Applications
To view the results of a text checkpoint:

 1 In the test log, look for entries that list text comparisons in the Event
column.

 2 To display the results of a specific text comparison, double-click on its entry
in the log or select the entry and click the Display icon. If there is no
mismatch, the Expected results are displayed in a Notepad window.
Following a mismatch, the expected and actual results are displayed in the
WDiff utility window.

Expected results Actual results
46

Analyzing Results of Text Checkpoints
Lines in the file that contain a mismatch are highlighted. The file in the first
parameter of the file_compare function is on the left side of the window.

 3 Select File > Exit to close the window.

Viewing Differences

To see the next mismatch in the captured text, select Next Diff from the
View menu or press Tab. The window scrolls to the next highlighted line. To
see the previous difference, select Prev Diff or press the backspace key.

Filtering Text Comparison Results

You can choose to view only the lines in the captured text that contain a
mismatch. To filter text comparison results, select Hide Matching Areas from
the Options. The window shows only the highlighted parts of both captured
texts.
47

WinRunner Testing Terminal Emulator Applications
48

Index
A

Add All 27
attached_text attribute 35
Attributes 35

B

BMS Files 39

C

Check GUI form 26
check text softkey 16
Checking GUI objects 25–29
Checking Text 15–24
Checking text

full screen 16
partial screen 17

Checking text automatically 17
full screen 18
partial screen 18
using previous coordinates 19

class attribute 35
color attribute 36
Context Sensitive Testing for Mainframe

Applications 31–37

E

Exclude filter 20
exclude filter softkey 21

F

Field checks form 28
Filters 19–22

exclude 20
include 20

G

get text softkey 23
GUI Checkpoints 3

I

id attribute 35, 36
Include filter 20
include filter softkey 21
input_fields_ number attribute 35

L

label attribute 35
Learning the user interface using BMS files 39
length attribute 36
Logical names 34

M

mic_if_handles_windows attribute 35

N

numeric_only attribute 36

O

Object classes 34

P

Physical description 33
protected attribute 35
49

WinRunner Testing Terminal Emulator Applications
protected_fields_number attribute 35

R

Reading Text 23
Record method 36

S

Screen checks form 28
Scripts, test 2
Softkeys 5
Synchronizing Tests 9–13

T

TE_check_text function 16
TE_create_filter function 22
TE_find_text function 23
TE_get_text function 23
TE_reset_all_filters function 21
TE_reset_filter function 21
TE_set_auto_verify function 18
TE_set_filter function 21, 22
TE_set_record_method function 36
TE_wait_string function 10
TE_wait_sync function 10
Text Checkpoints 3
Text comparison

filtering results 47
viewing differences 47

Text, finding on screen 23
TSL 2
TSL Online reference 3

V

visible attribute 35

W

wait string softkey 10
wait sync softkey 10

X

x attribute 36

Y

y attribute 36
50

	WinRunner
	Introduction
	About Testing Terminal Emulator Applications
	Recording Test Scripts
	Synchronizing Test Execution
	Checking Your Application
	Context Sensitive Testing with WinRunner\TE
	Learning the Application with BMS Files
	Analyzing Results
	Using Default Command Softkeys
	Typographical Conventions

	Synchronizing Test Execution
	About Synchronizing Tests
	Waiting for a Response from the Host
	Waiting for a Specific String
	Waiting for a Specific Field
	Setting the Synchronization Time

	Checking Text
	About Checking Text
	Setting Text Checkpoints While Recording
	Setting Checkpoints Automatically
	Using Filters When Checking Text
	Reading Text from the Screen
	Searching for Text

	Checking GUI Objects
	About GUI Checkpoints
	Checking Selected Objects in an Application Screen...
	Checking All Fields in a Screen with Default Check...
	Screen Checks dialog box
	Field Checks dialog box

	Context Sensitive Testing with WinRunner/TE
	About Context Sensitive Testing
	Physical Descriptions
	Logical Names
	Object Classes for Terminal Emulators
	Attributes
	Changing the Way User Operations Are Recorded

	Learning the Application with BMS Files
	About Learning the Application with BMS Files
	Learning the Application the First Time
	Relearning the Application

	Analyzing Results of Text Checkpoints
	About Viewing Test Results
	Viewing Results of a Text Checkpoint
	Viewing Differences
	Filtering Text Comparison Results

