

Codar

Software Version: 1.80

High Availability Guide

Document Release Date: January 2017 Software Release Date: January 2017

Legal Notices

Warranty

The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license

Copyright Notice

© 2015 - 2017 Hewlett Packard Enterprise Development LP

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

The OpenStack® Word Mark and the Square O Design, together or apart, are trademarks or registered trademarks of OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates

The title page of this document contains the following identifying information:

- Software Version number, which indicates the software version.
- Document Release Date, which changes each time the document is updated.
- Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HP Passport and to sign in. To register for an HP Passport ID, click **Register** on the Software Support site or click **Create an Account** on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your sales representative for details.

Support

Visit the software support site at: https://softwaresupport.hpe.com.

Hewlett Packard Enterprise software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by using the support website to:

- Search for knowledge documents of interest
- Submit and track support cases and enhancement requests
- Download software patches
- Manage support contracts
- Look up HPE support contacts
- Review information about available services
- Enter into discussions with other software customers
- Research and register for software training

Most of the support areas require that you register as an HP Passport user and to sign in. Many also require a support contract. To register for an HP Passport ID, click **Register** on the support site or click **Create an Account** on the HP Passport login page.

 $To find \ more \ information \ about \ access \ levels, go \ to: \ https://softwaresupport.hpe.com/web/softwaresupport/access-levels.$

HPE Codar (1.80) Page 2 of 48

Contents

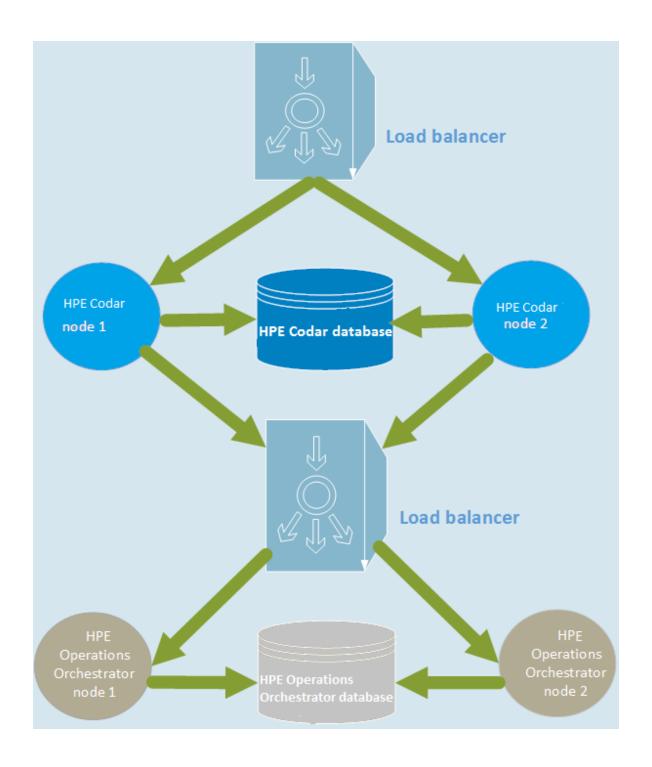
Overview	5
Guidelines for configuring in a clustered environment	7
Configuring the load balancer node	8
Installing the load balancer	8
Configuring the load balancer	8
Generating the certificate	8
Starting the load balancer	9
Configuring the Apache load balancer node	10
Upgrading the Apache load balancer node	10
Installing the Apache HTTP Web Server	10
Configuring the Apache HTTP Server as a load balancer	
Start the Apache load balancer node	
Generate a certificate	12
Configure the Apache HTTP Server	13
Configuring the Codar node	15
Installing Codar	15
Configuring Codar	16
Edit properties	17
Enable JNDI	19
Request for a software license	20
Configure JBoss	21
Configure a secure connection	24
Configure the Identity Management component	26
Reconfigure the Codar service	28
Configure the TCP communication channel on JGroups	29
Configure Single Sign-On	
Workflow Designer Configuration - SSO	
Identify the node running the Codar background services	
Share filesystem resources	

HPE Codar (1.80) Page 3 of 48

Configuring Codar to use a shared filesystem to store images on Linux	.35
Configuring Codar to use a shared filesystem to store images on Microsoft	
Windows	.36
Installing and configuring Operations Orchestration	37
Configuring Codar in HA mode using an embedded instance of Operations	
Orchestration	37
Validate the JBoss cluster configuration	42
Configure common tasks	44
Starting Codar	44
Stopping Codar	44
Start the Apache load balancer node	44
Stop the Apache load balancer node	45
Launch Codar	45
Glossary	47

Overview

High availability (HA) refers to the process of keeping a computer system up and running continuously over a long period of time so that irrespective of the outside environment, the computer system continues to run without any disruptions.


HPE Codar uses JBoss clustering technology to enable you to configure an active/active (high-availability) cluster. Clustering enables you to run Codar on several parallel servers called *nodes*. Cluster configuration improves performance on systems that handle high transaction volumes or large numbers of concurrent users. In addition to handling higher user loads and providing greater scalability, the cluster configuration supports server failover features.

Web requests to Codar are load balanced among the nodes in the cluster. Increasing the number of nodes in the cluster improves web request transaction throughput. Increasing the number of nodes in the cluster also improves the response time by Codar fulfillment services to a high volume of concurrent deployment requests.

Because clustering distributes the workload across different nodes, if any node fails, Codar remains accessible through other nodes in the cluster. You can continue to improve HPE throughput by simply adding nodes to the cluster. If a node shuts down, activities such as email notifications that are scheduled to run on that node are automatically transferred to another available node. This server failover feature helps ensure that Codar remains operational. Unsaved changes on a node that shuts down are lost and are not transferred to an available node. Users who log on to Codar after a node shuts down see only changes that were saved on that node.

Codar uses a load balancer to distribute requests among any number of nodes. The load balancer (internal or external) listens for HTTP/S requests from standard interface clients and forwards them to one of the nodes. Nodes are transparent to users and users access only the URL to the load balancer.

HPE Codar (1.80) Page 5 of 48

HPE Codar (1.80) Page 6 of 48

Guidelines for configuring in a clustered environment

The following guidelines must be considered when configuring a clustered environment:

- It is recommended that you install and configure the nodes in the order presented in this guide.
 There are some tasks that are dependent on this order (such as generating certificates and importing them).
 - Install and configure the load balancer node first. Follow the manufacturer's recommendations to install and configure the load balancer.
- The system time among all nodes in the cluster must be synchronized. If the time is not synchronized, users may experience problems such as not being able to log in to Codar.
- Codar must be installed in the same directory on all nodes. Some file locations are hard coded in the configuration files and if these file locations do not match among nodes, Codar fails to start.

HPE Codar (1.80) Page 7 of 48

Configuring the load balancer node

Install and configure the load balancer on the load balancer node before setting up the Codar cluster configured for HA.

- Install the load balancer
- 2. Configure the load balancer
- 3. Generate the SSL certificate required on the Codar node
- 4. Start the load balancer node

Installing the load balancer

Install and configure the load balancer following the manufacturer's recommendations. Refer to the manufacturer's documentation for more information.

Configuring the load balancer

The load balancer must be configured to balance the workload among the nodes in the Codar/JBoss cluster.

Configure the load balancer following the manufacturer's recommendations (refer to the manufacturer's documentation for more information) with the following exceptions:

- By default, Codar supports secure connections using TLSv1.2, and to enable support for TLSv1.2, you must configure the load balancer. Codar configuration can be manually changed to support TLSv1.1 or TLSv1.0, to work with older load balancers or other HTTPS clients that do not support TLSv1.2. However, it is not recommended to enable TLSv1.1 or TLSv1.0 for security reasons.
- The load balancer ProxyTimeOut value should be set to a higher value than the default value. For more details see the Codar Troubleshooting Guide.

Generating the certificate

If you are configuring a secure connection (using a protocol such as TLS) to communicate from the load balancer to the Codar nodes, you need to generate the load balancer's certificate (referred to as load_balancer.crt). Copy this certificate to the <codar_home>\jboss-as\standalone\configuration

HPE Codar (1.80) Page 8 of 48

(for Windows) or the < codar_home>/jboss-as/standalone/configuration (for Linux) directory on the Codar nodes.

Note: When configuring Codar, if you want to refer to the load balancer system by its IP address instead of its fully-qualified domain name (FQDN), you must generate the certificate with the Subject Alt attribute set to the IP address of the load balancer system.

Starting the load balancer

You can start the load balancer now (following the manufacturer's recommendations) or after configuring the Codar cluster.

HPE Codar (1.80) Page 9 of 48

Configuring the Apache load balancer node

This section describes how to upgrade, install, configure, and start the applications needed to set up the Apache load balancer node in an Codar cluster configured for high availability. The Apache load balancer node comprises the Apache HTTP Web Server configured as a load balancer. It proxies web requests into the Codar cluster.

If you are using a load balancer other than Apache, see "Configuring the load balancer node" on page 8.

Upgrading the Apache load balancer node

To upgrade the Apache load balancer node, perform the following steps:

- 1. Stop the Apache load balancer on the Codar node.
- Uninstall existing Apache applications from the Codar node following the manufacturer's recommendations.
- 3. Follow the instructions below to install and configure the Apache load balancer node on the Codar node. You are upgrading the Codar node because this is the node that is associated with the Codar software license. You can continue to use this software license after the upgrade.

Installing the Apache HTTP Web Server

To install the Apache HTTP Server on the Apache load balancer node, do the following:

- Install the supported version of the Apache HTTP Server (including SSL) from apache.org (http://www.apache.org/).
 - For Microsoft Windows systems, after navigating to the mirror site, the 32-bit Windows installer is available in the httpd/binaries/win32 directory.
 - See the *Codar Support Matrix* for the supported version of the Apache HTTP Server. The *Codar Support Matrix* can be downloaded from the HPE Software Support Web site at http://h20230.www2.hp.com/selfsolve/manuals/ (this site requires that you register with HPE Passport).
- 2. Verify that the following modules exist in the <codar_home>\Apache2.2\modules directory (for Microsoft Windows) or the /etc/httpd/modules directory (for Linux):

HPE Codar (1.80) Page 10 of 48

- mod_authz_host.so
- o mod headers.so
- mod_log_config.so
- mod_proxy.so
- mod_proxy_balancer.so
- mod_proxy_connect.so
- o mod_proxy_http.so
- o mod_rewrite.so
- o mod_ssl.so

Configuring the Apache HTTP Server as a load balancer

Complete the tasks in the following sections to configure the Apache load balancer node.

- 1. "Generate a certificate" on the next page
- 2. "Configure the Apache HTTP Server" on page 13

Start the Apache load balancer node

To start the Apache load balancer node on Linux systems, open a command prompt and type service httpd start.

To start the Apache load balancer node on Microsoft Windows systems, do the following:

- Navigate to the Services screen (Control Panel > Administrative Tools > Services).
- 2. Right-click the Apache2.2 service and select Start.

HPE Codar (1.80) Page 11 of 48

Generate a certificate

If you will be using a secure protocol such as TLS to communicate from the Apache load balancer node to the Codar node, you need to generate the Apache load balancer node's certificate (in this document, it will be referred to as apache_csa.crt).

1. Generate the certificate and private key. For a test environment, you can create a self-signed certificate and key using the following command:

For Microsoft Windows:

```
"<codar_home>\Apache2.2\openss1" req -x509 -days 365 -sha 256 -newkey rsa:2048
-nodes -keyout <codar_home>\Apache2.2\conf\apache_csa.key -out <codar_
home>\Apache2.2\conf\apache_csa.crt -config <codar_
home>\Apache2.2\conf\openss1.cnf -subj /O=HP/OU=HP/CN=<apache_load_balancer_
host name>
```

For Linux:

```
openssl req -new -x509 -days 365 -sha256 -newkey rsa:2048 -nodes -keyout /etc/httpd/conf/apache_csa.key -out /etc/httpd/conf/apache_csa.crt -config /etc/httpd/conf/openssl.cnf -subj /O=HP/OU=HP/CN=<apache_load_balancer_host_name>
```

For detailed instructions on how to create certificates, refer to the Apache documentation ((http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#aboutcerts).

Copy the certificate file (apache_csa.crt) to the <codar_home>\jbossas\
 standalone\configuration directory (for Microsoft Windows) or the <codar_home>/jbossas/
 standalone/configuration directory (for Linux) on the Codar nodes.

HPE Codar (1.80) Page 12 of 48

Configure the Apache HTTP Server

1. Create a virtual host file for the Codar nodes. In the <codar_home>\Apache2.2\conf\extra directory (for Microsoft Windows) or the /etc/httpd/conf.d directory (for Linux), create a file named csa.conf that contains the following content:

```
Listen 8443
<VirtualHost default :8443>
ServerName [APACHE LOAD BALANCER HOSTNAME]
ErrorLog /etc/httpd/logs/csa_error.log
TransferLog /etc/httpd/logs/csa_access.log
SSLEngine on
SSLProtocol all TLSv1
SSLCertificateFile /etc/httpd/conf/apache csa.crt
SSLCertificateKeyFile /etc/httpd/conf/apache_csa.key
<Proxy *>
Order deny, allow
Allow from all
</Proxy>
RewriteEngine On
RewriteCond %{THE_REQUEST} \ (.*)//+(.*)\ [NC]
RewriteRule .* %1/%2 [R=301,L]
Header add Set-Cookie "CSA ROUTEID=.%{BALANCER WORKER ROUTE}e; path=/"
env=BALANCER ROUTE CHANGED
<Proxy balancer://csacluster/>
BalancerMember http://[CSA_NODE1_HOSTNAME]:8081 route=csa1
BalancerMember http://[CSA NODE2 HOSTNAME]:8081 route=csa2
BalancerMember http://[CSA_NODE3_HOSTNAME]:8081 route=csa3
ProxySet stickysession=CSA_ROUTEID
</Proxy>
ProxyPass / balancer://csacluster/
ProxyPassReverse / balancer://csacluster/
</VirtualHost>
```

2. Edit the <codar_home>\Apache2.2\conf\httpd.conf (for Microsoft Windows) /etc/httpd/conf/httpd.conf file (for Linux systems):

HPE Codar (1.80) Page 13 of 48

a. Add or update the list of modules that are loaded to include the following modules:

Microsoft Windows	Linux
LoadModule authz_host_module modules\mod_authz_host.so LoadModule headers_module modules\mod_headers.so LoadModule log_config_module modules\mod_log_config.so LoadModule proxy_module modules\mod_ proxy.so LoadModule proxy_balancer_module	LoadModule authz_host_module modules/mod_authz_host.so LoadModule headers_module modules/mod_headers.so LoadModule log_config_module modules/mod_log_config.so LoadModule proxy_module modules/mod_ proxy.so LoadModule proxy_balancer_module
modules\mod_proxy_balancer.so LoadModule proxy_connect_module modules\mod_proxy_connect.so LoadModule proxy_http_module modules\mod_proxy_http.so LoadModule rewrite_module modules\mod_rewrite.so LoadModule ssl_module modules\mod_ ssl.so	modules/mod_proxy_balancer.so LoadModule proxy_connect_module modules/mod_proxy_connect.so LoadModule proxy_http_module modules/mod_proxy_http.so LoadModule rewrite_module modules/mod_rewrite.so LoadModule ssl_module modules/mod_ ssl.so

b. Add the following line:

For Microsoft Windows:

Include conf\extra\csa.conf

For Linux:

Include conf.d/*.conf

HPE Codar (1.80) Page 14 of 48

Configuring the Codar node

This chapter describes how to install, upgrade, and configure an Codar node in an Codar cluster configured for HA (for example, codar_node1, codar_node2, or codar_node3).

The Codar node consists of:

- Codar
- Identity Management component

To configure the Codar node, do the following:

- 1. Install Codar
- 2. ConfigureCodar

Installing Codar

Install Codar on each Codar node as described in the *Codar Installation Guide* with the following exceptions:

- You must install the same version of Codar on each node.
- Install Codar in the same location in which you installed or will install Codar on all Codar nodes.
- Install the Codar database components and create the database schema for one and only one of the Codar nodes. HPE recommends that you create the schema when you install Codar on the first Codar node. Then, you do not need to create the schema when you install Codar on the other nodes.

Note: All Codar nodes must connect to the same database schema. However, you only need to create the database schema once.

- You can only use the installer to install sample content on the node on which database components
 have been installed and the database schema has been created. On the other nodes in the cluster,
 use the HPE Cloud Content Capsule Installer to install the sample content after the database
 schema has been created. Refer to the Cloud Service Automation Content Installation Guide for
 more information.
- If you are installing an external (existing) standalone instance of Operations Orchestration, HPE
 recommends that you install HPE Operations Orchestration in its own cluster configured for HA.
 Refer to the Operations Orchestration documentation for more information.

HPE Codar (1.80) Page 15 of 48

When installing Codar, if you have selected to install an embedded version of Operations Orchestration, perform the steps in the "Installing and configuring Operations Orchestration" on page 37 chapter.

 You must configure a secure protocol connection (such as TLS) between Operations Orchestration and all Codar nodes.

Configuring Codar

Complete the following tasks to configure Codar on each Codar node:

- 1. "Edit properties" on the next page
- 2. "Enable JNDI" on page 19
- 3. "Request for a software license" on page 20
- 4. "Configure JBoss" on page 21
- 5. "Configure a secure connection" on page 24
- 6. "Configure the Identity Management component" on page 26
- 7. "Reconfigure the Codar service" on page 28
- 8. "Configure Single Sign-On" on page 31
- 9. "Share filesystem resources" on page 35

HPE Codar (1.80) Page 16 of 48

Edit properties

Update property values to route requests to the Codar node through the load balancer node and set the mode in which Codar is running as follows:

- Edit the <codar_home>\jboss-as\standalone\deployments\csa.war\WEB-INF\classes\csa.properties (in Windows) or <codar_home>/jbossas/standalone/deployments/csa.war/WEB-INF/classes/csa.properties (in Linux) file as follows:
 - a. Set the following properties:

```
csa.provider.hostname=<load_balancer_host_name>
csa.provider.port=<load_balancer_codar_port>
csa.provider.rest.protocol=https
deploymentMode=clustered
For example:
csa.provider.hostname=load_balancer.xyz.com
csa.provider.port=8443
csa.provider.rest.protocol=https
deploymentMode=clustered
```

Note: If you set the csa.provider.hostname attribute to the IP address of the system on which the load balancer is installed, the Subject Alt Name attribute of the load balancer's certificate that has been imported into Codar's keystore must also be set to the IP address of the system on which the load balancer is installed. If the load balancer's certificate does not contain the Subject Alt Name attribute or it is not set to the IP address of the system on which the load balancer is installed, you must regenerate and re-import the load balancer's certificate with the Subject Alt Name attribute set to the IP address of the system on which the load balancer is installed.

b. Add and set the following property:

```
csa.provider.ip=[LOAD BALANCER IP ADDR]
```

2. Edit the <codar_home>/jboss-as/standalone/deployments/csa.war/WEB-INF/classes/swagger.properties (for Linux) or <codar_home>\jbossas\standalone\deployments\csa.war\WEB-INF\classes\swagger.properties and set the following property:

HPE Codar (1.80) Page 17 of 48

documentation.services.basePath=https://<load_balancer_host_name>:[load_ balancer_port]/csa/rest

For example, documentation.services.basePath=https://load_ balancer.xyz.com:8443/csa/rest

HPE Codar (1.80) Page 18 of 48

Enable JNDI

Enable the Java Naming and Directory Interface (JNDI):

 Open the <codar_home>\jbossas\standalone\deployments\csa.war\WEBINF\applicationContext.xml (for Microsoft Windows) or <codar_home>/jbossas/standalone/deployments/csa.war/WEBINF/applicationContext.xml (for Linux) file in a text editor.

2. Locate the START HA Mode Configuration comment and uncomment following content:

```
<jee:jndi-lookup id="channelGroup"
jndi-name="java:jboss/clustering/group/server"
expected-type="org.wildfly.clustering.group.Group"/>
```

- 3. If you modified the channel group, update the value of the <code>jndi-name</code> attribute to the new group name.
- 4. Save and close the file.

HPE Codar (1.80) Page 19 of 48

Request for a software license

Codar requires a software license. Licensing is based on the number of operating system instances (OSIs) being used in current, active subscriptions.

After the initial installation, when you log in to the Cloud Service Management Console, a temporary 90-day trial license is activated. Once the trial license expires, you are limited to 25 OSIs. If you created more than 25 OSIs during the trial period, you cannot create any additional OSIs. You can add more licenses at any time to increase your OSI capacity.

When you request a software license, typically you supply the IP address of the system on which Codar is installed. However, in a clustered environment, use the IP address of the load balancer when requesting a software license. Install the license on only one node in the clustered environment. For more information on managing software licenses, refer to the Codar Configuration Guide. For information on how to view, add, or delete a license, refer to the Codar online Help.

HPE Codar (1.80) Page 20 of 48

Configure JBoss

Configure JBoss for use in an Codar clustered environment:

- Open the <codar_home>/jboss-as/standalone/configuration/standalone-full-ha.xml (for Linux) or <codar_home>\jboss-as\standalone\configuration\standalone-full-ha.xml (for Windows) file in a text editor.
- Locate the <server xmlns="urn:jboss:domain:2.2"> property and configure a unique name for the node. For example, locate <server xmlns="urn:jboss:domain:2.2" name="CHANGE_ME!!"> and set the name to [Codar_Node_Name].
- 3. Update the JGroups subsystem default stack from udp to tcp:

```
<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="udp">
For example,
<subsystem xmlns="urn:jboss:domain:jgroups:2.0" default-stack="tcp">
```

4. Locate the TCP stack and replace <protocol type="MPING" socket-binding="jgroups-mping"/> with:

where

[LIST_OF_INITIAL_HOSTS] is a comma-separated list of nodes (IP address and port) that define the cluster. It is recommended that all known nodes in the controller cluster are listed. Other nodes that are not listed may join the cluster and you can remove a node from the list at any time. However, at least one initial host (a node in the list of initial hosts) must be running in order for other nodes (that are not included in this list) to join the cluster. The more the initial hosts listed means that there is a greater chance an initial host is running so that an unlisted node may join the cluster (if no initial hosts are running, no unlisted nodes may join the cluster). Once the cluster is running, if you update the list of initial hosts, you must restart all nodes in the cluster. The following are examples of a list of three initial hosts: [codar_node1_ip_address][7600], [codar_node2_ip_address][7600], [codar_node3_ip_address][7600]

HPE Codar (1.80) Page 21 of 48

```
or 111.222.333.444[7600],111.222.333.445[7600],111.222.333.446[7600]
```

[NUMBER_OF_INITIAL_HOSTS] is the number of initial hosts specified in the cluster.

For example:

A TCP-based channel may be less efficient than its UDP counterpart as the size of the cluster increases beyond four to six nodes.

5. In the TCP stack, replace:

6. Update the messaging subsystem password. Change

```
<cluster-password>${jboss.messaging.cluster.password:CHANGE ME!!}</cluster-
password>
```

to

```
<cluster-password>password</cluster-password>
```

7. Locate the transactions subsystem and configure the node identifier for the <core-environment> property (set the node identifier to the unique node name you configured in step 2. Locate

```
<subsystem xmlns="urn:jboss:domain:transactions:2.0">
     <core-environment>
```

and add set the node identifier to <codar_node_name>. For example:

8. Add the node's IP address to the public interface. Locate <interface name="public"> and add

HPE Codar (1.80) Page 22 of 48

the IP address of the Codar node. For example:

```
<interface name="public">
     <inet-address value="${jboss.bind.address:<codar_node_ip_address>}"/>
</interface>
```

HPE Codar (1.80) Page 23 of 48

Configure a secure connection

Configure a secure connection (using a protocol such as TLS) on the Codar node for communication from the load balancer node and between each node in the Codar cluster.

Note: Codar recommends secure connections using the TLSv1.2 protocol. If you are integrating with an application and are using secure connections, you must configure the application to use the TLSv1.2 protocol with Codar.

You can also set up connections using TLSv1.1 or TLSv1.0 by manually changing the Codar configurations. However, it is not recommended for security reasons.

- 1. To configure a secure connection between Codar and the load balancer node:
 - a. If you have not already done so, copy the certificate from the load balancer node (load_balancer.crt) to the <codar_home>/jboss-as/standalone/configuration directory.
 - b. Import the certificate into the JVM on the Codar node using the following command:

For Linux:

```
<codar_jre_home>/bin/keytool -importcert -file <codar_home>/jboss-as/
standalone/configuration/load_balancer.crt -alias load_balancer_codar
-keystore <codar_jre_home>/lib/security/cacerts
```

For Windows:

```
<codar_jre_home>\bin\keytool -importcert -file <codar_home>\jboss-as\
standalone\configuration\load_balancer.crt -alias load_balancer_codar
-keystore <codar_jre_home>\lib\security\cacerts
```

- 2. Copy and import the certificate of each Codar node to every other Codar node in the cluster:
 - a. Copy the certificate of each Codar node to every other Codar node in the cluster. The certificate file on each Codar node is <codar_

```
home>\jbossas\standalone\configuration\jboss.crt (in Microsoft Windows) or <codar_home>/jbossas/standalone/configuration/jboss.crt (in Linux).
```

For example, copy the certificates from codar_node2 and codar_node3 to codar_node1 to the directory C:\Codar-Certificates. Rename the certificate files with unique names, such as jboss-codar_node2.crt and jboss-codar_node3.crt.

b. Import each certificate into the JVM of that Codar node. For example, on codar_node1, run the following commands:

For Linux:

HPE Codar (1.80) Page 24 of 48

```
<codar_jre_home>/bin/keytool -importcert -file /tmp/Codar-
Certificates/jboss-codar_ node2.crt -alias codar_node2 -keystore <codar_jre_
home>/lib/security/cacerts
```

<codar_jre_home>/bin/keytool -importcert -file /tmp/CodarCertificates/jboss-codar_ node3.crt -alias codar_node3 -keystore <codar_jre_
home>/lib/security/cacerts

For Windows:

```
"<codar_jre>\bin\keytool" -importcert -file C:\Codar-Certificates\jboss-
codar_ node2.crt -alias codar_node2 -keystore "<codar_
jre>\lib\security\cacerts"
```

"<codar_jre>\bin\keytool" -importcert -file C:\Codar-Certificates\jbosscodar_ node3.crt -alias codar_node3 -keystore "<codar_
jre>\lib\security\cacerts"

HPE Codar (1.80) Page 25 of 48

Configure the Identity Management component

Complete the tasks in this section to configure the Identity Management component on the Codar node.

```
    Add the following content in the <codar_home>/jboss-as/standalone/deployments/idm-

  service.war/WEB-INF/spring/applicationContext.properties (in Linux) or the <codar_
  home>\/jboss-as\standalone\deployments\idm-service.war\WEB-
  INF\spring\applicationContext.properties (in Windows) file:
  idm.csa.hostname = <load_balancer_host_name>
  idm.csa.port = <load_balancer_codar_port_number>
  # Properties for CSA Auditing Server
  idm.csa.audit.hostname = <load_balancer_host_name>"/>
  idm.csa.audit.port = <load_balancer_codar_port_number>"/>
  For example:
  idm.csa.hostname = load_balancer.xyz.com
  idm.csa.port = 8443
  # Properties for CSA Auditing Server
  idm.csa.audit.hostname = load balancer.xyz.com"/>
```

HPE Codar (1.80) Page 26 of 48

```
idm.csa.audit.port = 8443"/>
```

2. Update the values of the host name and port to the [LOAD_BALANCER_HOSTNAME] and [LOAD_BALANCER_Codar_HTTPS_PORT] in the applicationContext-security.xml file:

NOTE: It is not required in Codar 1.80 to update the above mentioned parameters such as hostname and port. These values are fetched from csa.properties file.

```
<beans:bean id="idmConfig"</pre>
class="com.hp.ccue.identity.rp.IdentityServiceConfig">
<beans:property name="protocol" value="#{systemEnvironment[CSA IDM PROVIDER</pre>
PROTOCOL]?: 'https'}"/>
<beans:property name="hostname" value="#{systemEnvironment[CSA_IDM_PROVIDER_</pre>
HOSTNAME]?: '${csa.provider.hostname}'}"/>
<beans:property name="port" value="#{systemEnvironment[CSA_IDM_PROVIDER_PORT]?:</pre>
${csa.provider.port}}"/>
<beans:property name="servicePath" value="idm-service"/>
<beans:property name="integrationAcctUserName" value="idmTransportUser"/>
<beans:property name="integrationAcctPassword" value="#{systemEnvironment[CSA</pre>
SECURITY_IDM_TRANSPORT_USER_PASSWORD] == null ?
'${securityIdmTransportUserPassword}' : securityHelper.decrypt
(systemEnvironment[CSA SECURITY IDM TRANSPORT USER PASSWORD])}"/>
<beans:property name="defaultTenant" value="#{systemEnvironment[CSA ORG NAME</pre>
IDENTIFIER] ?: '${csa.orgName.identifier}'}"/>
</beans:bean>
```

Uncomment the following line in the <codar_home>\jboss-

```
as\standalone\deployments\csa.war\WEB-INF\applicationContext.xml (for Windows) or 
<codar_home>/jboss-as/standalone/deployments/csa.war/WEB-
INF/applicationContext.xml (for Linux) file:
<jee:jndi-lookup id="channelGroup" jndi-
name="java:jboss/clustering/group/server" expected-
type="org.wildfly.clustering.group.Group"/>
```

HPE Codar (1.80) Page 27 of 48

Reconfigure the Codar service

Reconfigure the Codar service to start, restart, and stop Codar using the standalone-fullha.xml configuration file.

Caution: You must stop the Codar service before reconfiguring it.

- 1. Open a command prompt.
- 2. Stop the Codar service by running the service codar stop command.
- Edit the <codar_home>/scripts/csa_env.conf (for Linux) or the <codar_home>\bin\service.bat (for Windows) file:

For Linux:

- a. Locate the Toggle below two lines to run Codar in HA mode comment.
- b. Below this comment, comment out the export CSA_DEPLOY_MODE=standalone.sh # Standalone Mode line:

```
#export CSA_DEPLOY_MODE=standalone.sh # Standalone Mode
```

c. Uncomment the export CSA_DEPLOY_MODE="standalone.sh -c standalone-full-ha.xml -u [MULTICAST_ADDRESS]" # HA Mode line.

where [MULTICAST_ADDRESS] is the UDP multicast address used by the JGroups subsystem on JBoss for communication between nodes. The JGroups subsystem establishes the cluster and manages membership of nodes in the cluster. Multicast addresses fall in the range between 224.0.0.0 and 239.255.255.255 (for example, 230.0.0.4). All nodes in a cluster must use the same multicast address. If you are configuring more than one cluster in your domain, use a different multicast address for each cluster.

If the environment that you are using to set up the cluster does not support multicast messaging, the JGroups subsystem can be configured to use multiple TCP unicast messages. See "Configure the TCP Communication Channel on JGroups" below for more information. If you use multiple TCP unicast messages, do not specify the -u [MULTICAST_ADDRESS] option in the csa_env.conf file.

For Windows:

- a. Locate the two occurrences of standalone.bat.
- b. Insert the -c standalone-full-ha.xml command line option into the call standalone.bat> .r.lock >> run.log 2>&1 command line.
- 4. Start the Codar service by running the service codar start command.

HPE Codar (1.80) Page 28 of 48

Configure the TCP communication channel on JGroups

JBoss uses JGroups for communication between nodes in order to establish the cluster and manage membership of nodes in the cluster. By default, the JGroups subsystem on JBoss is configured to communicate through IP multicast messages using UDP. If the environment that you are using to set up the cluster does not support multicast messaging, the JGroups subsystem may alternatively be configured to use multiple TCP unicast messages.

To configure the TCP communication channel on JGroups, perform the following steps:

- Open the <codar_home>/jboss-as/standalone/configuration/standalone-full-ha.xml (in Linux) or <codar_home>\jboss-as\standalone\configuration\standalone-full-ha.xml (in Windows) file in an editor.
- 2. Update the JGroups subsystem default stack from udp to tcp. Change:

```
<subsystem xmlns="urn:jboss:domain:jgroups:1.1" default-stack="udp">
to
<subsystem xmlns="urn:jboss:domain:jgroups:1.1" default-stack="tcp">
```

Locate the TCP stack and replace <protocol socket-binding="jgroups-mping" type="MPING"/> with:

where

- [LIST_OF_INITIAL_HOSTS] is a comma-separated list of hosts (IP address and port) that define the cluster. At least one initial host must be running in order for other nodes (that are not included in the list of initial hosts) to join the cluster. Once the cluster is running, if you update the list of initial hosts, all nodes in the cluster must be restarted. The following are examples of a list of two initial hosts: [Codar_NODE1_IP_ADDR][7600],[Codar_NODE2_IP_ADDR][7600] or 111.222.333.444[7600],111.222.333.445[7600]
- [NUMBER_OF_INITIAL_HOSTS] is the number of initial hosts specified in the cluster.

HPE Codar (1.80) Page 29 of 48

For example,

A TCP-based channel may be less efficient than its UDP counterpart as the size of the cluster increases beyond four to six nodes.

4. Add the node's IP address to the public interface. Locate:

<inet-address value="111.222.333.444"/>

```
<interface name="public">
Add the IP address [Codar_NODE1_IP_ADDR]. For example:
<interface name="public">
```

</interface>

5. Reconfigure the Codar service. In the <codar_home>/scripts/csa_env.conf (for Linux) or the <codar_home>\bin\service.bat (for Windows) file:

For Linux:

- a. Locate the Toggle below two lines to run Codar in HA mode comment.
- b. Comment out export CSA_DEPLOY_MODE=standalone.sh # Standalone Mode.
- c. Add export CSA_DEPLOY_MODE="standalone.sh -c standalone-full-ha.xml" # HA Mode.

Note: You do not need to specify the -u [MULTICAST ADDRESS] option.

For Windows:

- a. Locate the two occurrences of standalone.bat
- b. Replace call standalone.bat > .r.lock >> run.log 2>&1 with call standalone.bat
 -c standalone-full-ha.xml > .r.lock >> run.log 2>&1.

Note: You do not need to specify the -u [MULTICAST_ADDRESS] option.

HPE Codar (1.80) Page 30 of 48

Configure Single Sign-On

If you have integrated Hewlett Packard Enterprise Single Sign-On between Codar and another application (such as Operations Orchestration), you must configure SSO on the Codar node:

 Open the <codar_home>/jbossas/standalone/deployments/csa.war/WEBINF/hpssoConfiguration.xml (for Linux) or <codar_home>/jbossas/standalone/deployments/csa.war/WEBINF/hpssoConfiguration.xml (for Windows) file in a text editor.

2. Locate the following content:

3. Replace [CSA_NODE_HOSTNAME] and [CSA_NODE_PORT] with the load balancer host name and the virtual host port for the Codar nodes. For example:

4. Locate the initString value in the crypto element. The initString setting for Codar must be the same value for all nodes in the cluster and any applications (such as Operations Orchestration) that are integrated with Single Sign-On. Copy the initString value to the other nodes in the cluster and configure any applications that are integrated with Single Sign-On. The initString value represents a secret key and must be treated as such in your environment.

HPE Codar (1.80) Page 31 of 48

Workflow Designer Configuration - SSO

 Open the <codar_home>/jboss-as/standalone/deployments/idm-service.war/WEB-INF/hpssoConfig.xml file on first Codar node in text editor and locate the initString value in crypto element.

Example:

```
ccrypto initString="2kDcHB@eOHrHcAGeArIPr7TNfuivOpKqjj29SwKOQIoI"
cipherType="symmetricBlockCipher" engineName="AES"

paddingMode="CBC" keySize="256" encodingMode="Base64Url"
algorithmPaddingName="PKCS7Padding" checkIntegrity="disabled"

cryptoSource="lw" directKeyEncoded="false" directKeyEncoding="Hex"
jcePbeAlgorithmName="PBEWithHmacSHA1"

jcePbeMacAlgorithmName="PBEWithHmacSHA1" macAlgorithmName="SHA1"
macKeySize="256" macPbeCount="20" macType="hmac"
pbeCount="20" pbeDigestAlgorithm="SHA1"/>

If not already done, copy this initString to <codar_home>/jboss-
as/standalone/deployments/idm-service.war/WEB-INF/hpssoConfig.xml of all other Codar nodes.
```

Create encrypted version of initString with encrypt-password script. When prompted for password, provide the initString to the script:

```
sh# cd $<codar_home>/workflow-designer/designer/bin
sh# ./encrypt_password
Password (typing will be hidden):
Confirm password (typing will be hidden):
{ENCRYPTED}xxts33/07Dtyz0iZ3eOQhzFVuqXvZ7KK6wDNm1A4E5+byAx1DZ+1HzwNRPvLgqXf
sh#
```

- 2. Edit the file <codar_home>/workflow-designer/designer/var/securitysecured.properties on every Codar node.
- 3. Add/Edit the lwsso.initString property with the encrypted initString from encrypt-password sript:

```
#This is for limit the size of single CP upload, default 200MB
upload.max.fileSize.limit = 209715200
#This is for limit the number of parallel CP creation
```

HPE Codar (1.80) Page 32 of 48

```
max.parallel.cp.creation = 30

#This is for limit the number of parallel CP upload

max.parallel.cp.upload = 50

is.secured.cookie = true

lwsso.initString = {ENCRYPTED}

xxts33/07Dtyz0iZ3eOQhzFVuqXvZ7KK6wDNm1A4E5+byAx1DZ+1HzwNRPvLgqXf
```

4. Edit file <codar_home>/workflow-designer/designer/tomcat/conf/server.xml on every Codar node. Locate Engine element and add jvmRoute property with unique node name for every workflow-designer node:

Restart workflow-designer on every node using command: <codar_home>/workflow-designer/designer/bin/designer restart

HPE Codar (1.80) Page 33 of 48

Identify the node running the Codar background services

While Web requests can be serviced by any node in the cluster, Codar background services run on a single node in the cluster. The cluster automatically picks a provider for these services. The cluster also ensures that a new provider is selected if an existing one becomes unavailable (for example, when a node crashes).

To identify the provider for background services in the cluster, on each node:

- 1. Stop Codar by running the service codar stop command.
- 2. Edit the standalone.xml file. Add following lines to enable INFO-level logging for com.hp.csa.ha.CSAHASingletonService in the logging subsystem:

```
<logger category="com.hp.csa.ha.CSAHASingletonService">
<level name="INFO"/>
</logger>
```

3. Start Codar by running the service codar start command.

After you start individual nodes and they join the cluster, you must notice the Codar HA Singleton Service started message on this node, in one (and only one) server.log. The log file corresponding to the other nodes in the cluster must not display this message. If you notice this message in multiple log files, consider switching to the TCP channel for JGroups communication. If the node that is selected as the provider goes down, you must immediately see this statement in another log file in the cluster.

HPE Codar (1.80) Page 34 of 48

Share filesystem resources

Configure Codar to share filesystem resources to free up disk space (this task is optional). Static filesystem resources, such as images or JSP files, can be stored on one system and shared by all nodes in the cluster. The following example shows how to share the images directory that is installed with each instance of Codar.

Codar provides images that are stored in an images directory (for example, csa.war/images). From the Cloud Service Management Console, you may also upload images which are saved to the same images directory. You can store these images on a shared filesystem on a network and the images on this single shared filesystem can be used by all nodes in the cluster.

Configuring Codar to use a shared filesystem to store images on Linux

To configure Codar to use a shared filesystem to store images on Linux systems, perform the following steps:

- 1. Move the contents of the csa.war/images directory to the shared location. For example, move the files to //<SharedFilesystem>/Codar/Images
- 2. On the Codar node, log in as root.
- Delete the <codar_home>/jboss-as/standalone/deployments/csa.war/images directory if it exists.
- 4. Create a credentials file to store the shared filesystem user login information. For example, create /etc/.win-mnt-cred and add the following lines:

```
username=<SharedFilesystemUser>
password=<SharedFilesystemPassword>
```

- 5. Change the permissions of the credentials file by typing chmod 600 /etc/.win-mnt-cred.
- 6. Edit /etc/fstab by adding the following line:

```
//<SharedFilesystem>/CodarImages $Codar_HOME/jboss-as/
standalone/deployments/csa.war/images cifs credentials=
/etc/.win-mnt-cred,iocharset=utf8,file_mode=0777,dir_mode=0777,
uid=codaruser,gid=csagrp 0 0
```

7. Mount the shared filesystem by typing mount -a.

HPE Codar (1.80) Page 35 of 48

Configuring Codar to use a shared filesystem to store images on Microsoft Windows

To configure Codar to use a shared filesystem to store images on Windows systems, perform the following steps:

- HPE recommends that you run the Codar service as a non-administrative user. If you run the Codar service as a non-administrator user, the examples in this section assume that you have created the CodarUser.
- 2. On a remote system, create a directory or folder that will contain the shared files and share the folder. For example, if you create a folder named C:\Codar\images on the remote system, in a command prompt on the remote system, type net share Codar_images=C:\Codar\images.
- 3. Copy the <codar_home>\jboss-as\standalone\deployments\csa.war\images directory from one of the Codar nodes to the shared folder on the remote system.
- 4. Delete the \csa.war\images directory from each Codarr node.
- 5. On each Codar node, create a symbolic link to the shared folder. For example, from a command prompt, type the following commands:

mklink /d <codar_home>\jboss-as\standalone\deployments\csa.war\images
\\<SharedFilesystem>\Codar images

Note: If you configured a non-administrator user to start and stop the Codar service (for example, CodarUser), you must create the symbolic link as this user.

- 6. On each node, do the following:
 - a. Navigate to Control Panel > Administrative Tools > Services.
 - b. Right-click on the Codar service and select **Properties**.
 - c. Click the **Log On** tab.
 - d. Select **This account**, enter the user who starts and stops the Codar service (for example, if you are running the Codar service as a non-administrator user such as CSAUser, enter .\CSAUser; if you are running the service as an administrator, enter .\Administrator), and enter the user's password.
 - e. Click OK.

HPE Codar (1.80) Page 36 of 48

Installing and configuring Operations Orchestration

Install and configure Operations Orchestration as described in the Codar Installation and Configuration Guide with the following exceptions. The Codar Installation and Configuration Guide can be downloaded from the HPE Software Support website (this site requires that you register with HPE Passport).

- 1. HPE recommends that you install Operations Orchestration in its own cluster configured for HA.
- 2. Configure SSL between Operations Orchestration and all Codar nodes.

Note: When you install Codar, Operations Orchestration is not available out-of-the-box in a cluster setup. Perform the steps in this chapter to configure Operations Orchestration in a cluster.

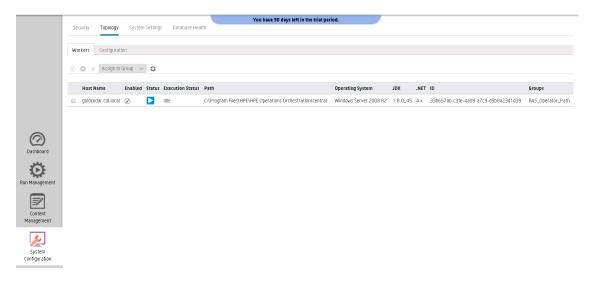
Configuring Codar in HA mode using an embedded instance of Operations Orchestration

When installing Codar, if you have selected to install an embedded version of Operations Orchestration, perform the following steps to configure Codar in HA mode using the embedded instance of Operations Orchestration:

Point all Operations Orchestration instances to a single database

Every Codar installation has an instance of Operations Orchestration installed and all these Operations Orchestration instances point to different databases. To enable HA we have to make all of the Operations Orchestration instances point to a single database manually by performing the following steps:

1. Copy the following files from one of the Operations Orchestration instances to all the other instances:


Microsoft Windows	Linux
 <installation_directory>\HPE Operations</installation_directory> Orchestration\central\conf\database.proper ties 	 <installation_directory>/HPE Operations Orchestration/central/conf/database.proper ties</installation_directory>

HPE Codar (1.80) Page 37 of 48

Microsoft Windows	Linux
 <installation_directory>\HPE Operations</installation_directory> Orchestration\central\var\security\encrypti on.properties 	 <installation_directory>/HPE Operations</installation_directory> Orchestration/central/var/security/encrypti on.properties
 <installation_directory>\HPE Operations</installation_directory> Orchestration\central\var\security\encrypti on_repository 	 <installation_directory>/HPE Operations</installation_directory> Orchestration/central/var/security/encrypti on_repository
 <installation_directory>\HPE Operations</installation_directory> Orchestration\central\var\security\key.stor e 	 <installation_directory>/HPE Operations</installation_directory> Orchestration/central/var/security/key.stor e

- 2. Delete the credentials.store file from the <installation dir>\HPE Operations
 Orchestration\central\var\security directory (in Microsoft Windows) or the <installation
 dir>\HPE Operations Orchestration/central/var/security directory (in Linux)for all
 Operations Orchestration instances except the instance from which the files were copied in step
 1.
- 3. Go to Operations Orchestration > Content Management > Configuration Items > System Properties > CODAR_REST_URI.
- 4. Click edit icon.
- 5. In the **System Property Details** dialog, enter the following in the **Override Value** field: 'https:// {Load Balancer Host name}: {Load Balancer Port Number}/csa/api'.
- 6. Restart the Operations Orchestration service for all the instances.

Each of the Operations Orchestration instances now display all the hosts with active status as shown in the following figure. In this figure, two nodes have active status.

Configure Operations Orchestration in the HA environment

HPE Codar (1.80) Page 38 of 48

After ensuring that all Operations Orchestration instances point to a single database, configure them in the HA environment by performing the following steps:

Note: Skip steps 1 to 5 if you are using the same load balancer for both Codar and Operations Orchestration.

The steps below outline the configuration for the Apache load balancer, You can use any load balancer that you want.

1. Install the Apache server and generate an SSL certificate using the following command:

```
openssl req -x509 -days 365 -newkey rsa:2048 -nodes -keyout <apache_
home>\Apache<version>\conf\apache_csa.key -out <apache_
home>\Apache<version>\conf\apache_csa.crt -config <apache_
home>\Apache<version>\conf\openssl.cnf -subj /O=HP/OU=HP/CN=<apache_load_
balancer_host_name>
```

- Copy apache_csa.crt from <apache_home>\Apache<version>\conf to the <codar_ home>\jboss-as\standalone\configuration directory.
- 3. Apply the SSL certificate on all the Codar nodes using the following command:

```
keytool -importcert -file "<codar_home>\jboss-
as\standalone\configuration\apache_csa.crt" -alias apache_csa -keystore
"<codar home>/openjre/lib/security/cacert
```

- 4. Update the httpd.conf file with the following modifications:
 - a. Verify that the following modules exist:
 - <apache_home>\Apache<version>\modules\mod_authz_host.so
 - <apache home>\Apache<version>\modules\mod headers.so
 - <apache home>\Apache<version>\modules\mod log config.so
 - <apache_home>\Apache<version>\modules\mod_proxy.so
 - <apache_home>\Apache<version>\modules\mod_proxy_balancer.so
 - <apache_home>\Apache<version>\modules\mod_proxy_connect.so
 - <apache home>\Apache<version>\modules\mod proxy http.so
 - <apache home>\Apache<version>\modules\mod rewrite.so
 - <apache_home>\Apache<version>\modules\mod_ssl.so
 - b. Add or update the list of modules to include the following modules:

HPE Codar (1.80) Page 39 of 48

- LoadModule authz_host_module modules/mod_authz_host.so
- LoadModule headers_module modules/mod_headers.so
- LoadModule log_config_module modules/mod_log_config.so
- LoadModule proxy_module modules/mod_proxy.so
- LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
- LoadModule proxy_connect_module modules/mod_proxy_connect.so
- LoadModule proxy_http_module modules/mod_proxy_http.so
- LoadModule rewrite module modules/mod rewrite.so
- LoadModule ssl_module modules/mod_ssl.so
- c. Add the Include conf/extra/00.conf and Timeout 90000 lines.
- 5. Update the <Engine defaultHost="localhost" name="Catalina" > line to include the JVM route addition: <Engine defaultHost="localhost" name="Catalina" jvmRoute="node1">

The jvmRoute node number must match the node number used when configuring the Apache load balancer.

6. Create a virtual host file for the Operations Orchestration nodes by creating a file named 00.conf in the <apache_home>\Apache<version>\conf\extra directory. The file must contain the following content:

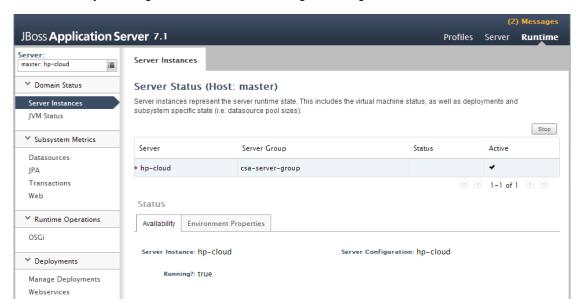
```
Listen 8585
<VirtualHost *:8585>
ProxyRequests off
ServerName [APACHE LOAD BALANCER HOSTNAME]
ServerAlias [APACHE LOAD BALANCER HOSTNAME]
<Proxy balancer://mycluster>
BalancerMember http:// [OO NODE1 HOSTNAME]:8082 route=node1
BalancerMember http:// [OO NODE2 HOSTNAME]:8082 route=node2
Order Deny, Allow
Deny from none
Allow from all
ProxySet stickysession=JSESSIONID|jsessionid scolonpathdelim=On
</Proxy>
<Location /balancer-manager>
SetHandler balancer-manager
Order deny, allow
Allow from all
</Location>
ProxyPass /balancer-manager!
ProxyPass / balancer://mycluster/ stickysession=JSESSIONID|jsessionid
scolonpathdelim=On
```

HPE Codar (1.80) Page 40 of 48

```
ProxyPassReverse / balancer://mycluster
SSLEngine On
SSLProxyEngine On
SSLProxyVerify none
SSLProxyCheckPeerCN off
SSLCipherSuite ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL
SSLCertificateFile <apache_home\Apache<version>\conf\apache_csa.crt
SSLCertificateKeyFile <apache_home\Apache<version>\conf\apache_csa.key
</VirtualHost>
```

- 7. Update the OOS_URL property of the <codar_home>\jbossas\standalone\deployments\codar.war\WEB-INF\classes\codar.properties file with the URL of the load balancer for all of the Codar nodes. For example, OOS_URL=https://<apache_ load_balancer_host_name>:8585
- Specify the URL of the Operations Orchestration load balancer on the Configuration tab in one of the Operations Orchestration instances and save it. This URL gets reflected in the other instances.

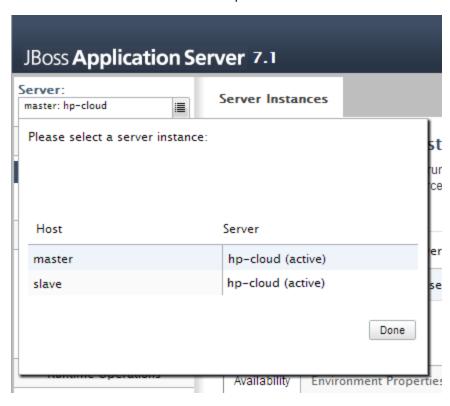
9. Restart the Operations Orchestration central service, Codar service, and the Apache service.


HPE Codar (1.80) Page 41 of 48

Validate the JBoss cluster configuration

The JBoss Application Server provides many management clients, including the Web Management Interface which can be used as a visual tool to validate the cluster setup and if the servers have been deployed on each of the nodes (for more information about additional JBoss Application Server management clients, refer to https://docs.jboss.org/author/display/AS7/Management+Clients). Connect to the Web Management Interface to validate your JBoss cluster configuration.

To connect to the Web Management Interface:


- Open http://<master_host_name>:9990/ in a browser.
- 2. Log in using the JBoss Management Users credentials (user name and password) that you created when you configured the master node using the configuration tool.

3. Click the icon next to the Server name to display a list of server instances. Both the master and

HPE Codar (1.80) Page 42 of 48

slave nodes should be listed with the "hp-cloud" server active on each host.

HPE Codar (1.80) Page 43 of 48

Configure common tasks

This chapter provides information on how to perform common tasks pertaining to Codar.

Starting Codar

Caution: If you have not already done so, reconfigure the Codar service to start and stop Codar using the standalone-full-ha.xml configuration file (you should have completed these steps when you configured the Codar node).

Starting Codar on Linux systems

To start Codar, on the server that hosts Codar, type service codar start.

Starting Codar on Windows systems

- 1. On the server that hosts Codar, navigate to Control Panel > Administrative Tools > Services.
- 2. Right-click on the Codar service and select Start.

Stopping Codar

Caution: If you have not already done so, reconfigure the Codar service to start and stop Codar using the standalone-full-ha.xml configuration file (you should have completed these steps when you configured the Codar node).

Stopping Codar on Linux systems

To stop Codar, on the server that hosts Codar, type service codar stop.

Stopping Codar on Windows systems

- 1. On the server that hosts Codar, navigate to Control Panel > Administrative Tools > Services.
- 2. Right-click on the Codar service and select **Stop**.

Start the Apache load balancer node

If you are using Apache as the load balancer, to start the Apache load balancer node, perform the following steps:

HPE Codar (1.80) Page 44 of 48

- 1. Navigate to the Services screen (Control Panel > Administrative Tools > Services).
- 2. Right-click on the Apache< version_number > service and select Start.

Stop the Apache load balancer node

To start the Apache load balancer node, perform the following steps:

- Navigate to the Services screen (Control Panel > Administrative Tools > Services).
- Right-click on the Apacheresion_numberservice and select Stop.

Launch Codar

Launch the Codar console through the load balancer by opening one of the following URLs in a supported Web browser:

- http://<load_balancer_host_name>:<load_balancer_http_port>/csa
 For example, http://load_balancer.xyz.com:8080/csa
- https://<load_balancer_host_name>:<load_balancer_http_port>/csa
 For example, https://load_balancer.xyz.com:8080/csa

HPE Codar (1.80) Page 45 of 48

High Availability Guide Configure common tasks

HPE Codar (1.80) Page 46 of 48

Glossary

M

My Term My definition

HPE Codar (1.80) Page 47 of 48

High Availability Guide Glossary

HPE Codar (1.80) Page 48 of 48