
Cloud Service Automation Page 1
Topology Components Guide

Cloud Service Automation

Topology Components Guide

Software version: 4.80

Document release date: January 2017

Software release date: January 2017

Cloud Service Automation Page 2
Topology Components Guide

Contents
Concepts overview ... 4

Component overview .. 5

Component characteristics ... 5

Component operations.. 5

Component Properties .. 5

Relationships to other components ... 6

CSA content sources .. 9

Component sources .. 9

OO Content ... 9

Chef content ... 13

Unique lifecycle operations ... 14

Scalable groups .. 14

Capabilities ... 15

Lifecycle operations .. 15

Component modification scenarios ... 16

Topology-related procedures .. 18

Import OO flows .. 18

Create a new parameter mapping .. 19

Create a custom component ... 21

Add workflow .. 22

Configure input parameters .. 22

Import properties ... 24

Chef setup .. 25

Creating Topology Designs with CloudSlang Content .. 30

Troubleshooting .. 31

OO .. 31

Chef components .. 31

SSH IP validation issues ... 31

Modifiable properties... 31

Terminology .. 33

Send documentation feedback ... 36

Legal notices .. 36

Warranty .. 36

Restricted rights legend ... 36

Copyright notice ... 36

Trademark notices .. 36

Documentation updates ... 36

Cloud Service Automation Page 3
Topology Components Guide

Support .. 36

Cloud Service Automation Page 4
Topology Components Guide

Concepts overview
HPE Cloud Service Automation (CSA) automates and substantially speeds up many IT tasks, such as provisioning VMs, installing
software, or registering users. With the CSA Topology Designer you can design scalable, complex cloud topology. CSA integrates with
various infrastructure providers, such as Helion OpenStack, VMware, Amazon, and Chef, and many enterprise products, such as HPE
SiteScope (SiteScope) and HPE Server Automation (SA).

CSA design components execute the set of IT tasks required for infrastructure or platform provisioning using a simple lifecycle: deploy,
manage, and undeploy. In addition, CSA can import design components from supported providers. For example, in the case of a Chef
provider, CSA can import Chef cookbooks into CSA design components. Imported components are then modeled into a declarative
topology design.

Each topology design consists of components connected by relationships. Components represent the final shape of the deployment,
and the relationships represent the dependencies between the components. The designer user declares what should be done, and,
based on the design, CSA performs the necessary actions. The sequence of the tasks is automatically computed, based on designed
dependencies among components.

Once a topology design is created, CSA generates a proper execution plan consisting of the tasks required to get the design deployed.
CSA uses Operations Orchestration (OO) to process the execution plan, which is represented by an OO master-flow. The OO master-
flow consists of steps representing the deployment of each component. The details behind each individual component can be
customized with your specific business logic.

Important: A component is built from a set of flows. These flows implement the component operations. At a minimum, there must be a
flow for deployment or provisioning. The following graphic shows examples of flows.

Cloud Service Automation Page 5
Topology Components Guide

CSA works with content of various types, including CSA out-of-the-box components. These are infrastructure components (like server
or network) that can be provisioned by VMware vCenter, Amazon EC2, or Helion OpenStack.

Besides the out-of-the-box components, CSA can load content from other systems, representing this content as components, and then
use these imported components in topology designs. Currently, OO flows, SA policies, and Chef cookbooks are supported.

Component overview
The imported content is represented as components in CSA. Components are parameterized with input properties and have
relationships to other components. In addition, the components go through a lifecycle during operation execution, which can generate
values for output properties and optionally provide additional operations, called public actions, which can be requested by Subscribers.

Component characteristics
Components can be changed unless:

• They are server-capability components or Helion OpenStack components, which are read-only.
• They are already used in a design. If so, changes are restricted to the following:

o Component name, description, and icon.
o Component tag.
o Non-required properties, non-required relationships, custom non-lifecycle operations (public actions).

Other changes related to required properties, relationships, and lifecycle actions are not allowed once the component is used in a
design.

Component operations
Note: Use caution when configuring operation-parameter mapping. If you map something incorrectly, an erroneous value might be
passed, and your deployment will fail.

There are several ways to get a value for an operation-input parameter:

Name Description

Not mapped The operation parameter automatically gets no value. This is an invalid state for a
lifecycle operation (for example, Deploy, Undeploy). All parameters must be mapped.
However, in the case of a public action, the Not Mapped parameter is a valid option
and results in a value prompt during execution.

Component Property The operation parameter is filled using the component property value (preferred).

Constant Value The operation parameter value is a constant.

Multiple Properties A value for the operation parameter is combined from multiple places. This is a kind of
recursion, so another level of mapping resides here.

Operation Parameter This option should not be used as it has not been fully implemented.

Provider Property The operation parameter uses a property defined on the provider instance used for
provisioning.

Relationship Target Property A property defined on another component connected via a relationship is used for the
operation parameter. In case the selected relationship is not in place, the property with
the same name (if present on the component) is used. The behavior is the same as
Component Property mapping. A fallback mechanism is used to map this parameter to
a property with the same name on the component itself, if that property is present in the
component.

Component Properties
A new component automatically has a set of input and output properties matching those of the input and output OO flow. These
properties allow the component to be an OO-flow or Chef-deployment cookbook wrapper.

Cloud Service Automation Page 6
Topology Components Guide

Components have the following groups of properties:

• Properties related to the resource provider, such as service endpoint and credentials for Amazon EC2.
• Properties related to other components, such as the IP address of the server used for installation.
• Properties parameterizing the component.

Note: When a component has a defined relationship, you do not need to define a property for an input parameter in that
component, if the parameter value originates from the property on another component. See Relationships to other components
for more information.

• Properties specified by users in the Edit Property screen:

A component property is either required or optional, visible or hidden in the Designer, modifiable, or has a default value. Selected
property types and set string properties can be configured as confidential data that is consumer and designer visible. Confidential data
properties are not visible in plain text and will be in the MPP portal. Designer-visible properties will make this property visible and
editable in the topology designer GUI.

Note: All values are passed to the OO master flow during provisioning. Passwords are obfuscated in OO, but out-of-the-box
components already have password obfuscation implemented.

Relationships to other components
A component usually works with other components in deployments that are more complicated than the deployment of a single server.
Topology designs capture the component dependencies and connections using the concept of relationships.

Cloud Service Automation Page 7
Topology Components Guide

A relationship has several functions:

• Denotes dependency between two components in a topology design.
• Specifies the order of component realization during provisioning, which is driven by dependencies represented by the

relationship.
• Defines property values that can be passed from one component to another along the relationship. Relationships are oriented

from a source component to a target component. The orientation is important because it marks a dependency of the source
component on the target component. If Component A has a relationship to Component B with the arrow pointing to
Component B, it implies that Component A depends on Component B and will be realized after Component B is realized.

Passing values between components

The common example of a relationship is a piece of software installed on a server. MySQL component realized by a Chef cookbook
has a relationship hostedOn that targets Server capability. During the provisioning, the MySQL reads the server IP address using the
hostedOn relationship.

At provisioning time, CSA first resolves dependencies between components, then creates the server, and lastly creates the database.
During database creation, the server IP address is required so CSA can run the Chef cookbook for MySQL installation. The Deploy
lifecycle operation runs provisioning, taking nodeIpAddress as one of the inputs. The value is captured using the relationship from the
vCenter Server output property, which is already provisioned. The following formula describes how the IP address value used
during MySQL deployment is retrieved from the target of the hostedOn relationship (vCenter Server).

MySQL.Deploy.nodeIpAddress = MySQL.hostedOn.ipAddress

The value that is passed is configured in the component editor. You can edit an operation and configure the parameter mapping in the
Implementation section.

Cloud Service Automation Page 8
Topology Components Guide

Sometimes a value must be passed along with multiple relationships. For example, in a two-tier LAMP design, My PHP App needs to
know the ipAddress of the application-layer server, so that My PHP App can be installed on the application layer. My PHP App also
needs to know the ipAddress of the database-layer server, so that the application can connect to MySQL. In both cases, the
ipAddress flows along two relationships.

Since My PHP_App is originally a Chef component, it has a target server with a direct, hostedOn, defined relationship.

The My PApp Chef component has a direct hostedOn defined relationship that targets the Server. The relationship can be used for
ipAddress mapping. However, you must manually replace the hostedOn relationship with the webserver relationship that targets
Apache.

A Chef component accepts the Server properties using the hostedOn relationship. After the component is provisioned, output property
values are set including (original input) values for nodeName and nodeIpAddress properties.

For Chef components, the nodeName and nodeIpAddress properties can be passed along a chain of multiple related components
where each consumes output from the preceding one. In symbolic notation this configuration looks like this:

MyPhpApp.dbIpAddress = MyPhpApp.database.nodeIpAddress = MySqlDb.hostedOn.ipAddress

When using OO components, a value has to be referenced using multiple relationships or multi-hop mapping:

MyPhpApp.databaseIpAddress = MyPhpApp.database.hostedOn.ipAddress

You cannot configure this type of parameter mapping using the UI editor, as only single relationships are supported. However, you can
use the public REST-full API for topology-component management to configure multi-relationship mapping. Once configured, the
mapping works well on the backend.

The example below shows part of the PUT request JSON body used for a component update, giving the value flows and the webServer
and hostedOn relationships. The red text shows notation for the multi-hop mapping:

...
"mapping" : {
 "input" : {
 ...
 "nodeIPAddress" : "@PROPERTY:{urn\\:x-hp\\:2013\\:software\\:ccue\\:designer\\:topology-
metamodel\\:chef}webServer7638f7c8-a4c1-478d-aaad-3844def94428.hostedOn_410ebb81-93a0-4c2e-b9c7-
1f63b56b5ecf.ipAddress",
 ...
 },
 "output" : {
 ...
 }

Cloud Service Automation Page 9
Topology Components Guide

CSA content sources
This section describes the various content sources for CSA.

These instructions are for developers who develop and import content into CSA.

Component sources
CSA topology designs include components from the following sources:

Component Description

Out-of-the-box (OOTB) Content Content that is present in CSA after installation (VMware vCenter, Amazon EC2,
Helion OpenStack components).

Operations Orchestration (OO) OO links automated tasks to flows, then CSA wraps the result of a flow execution as
a component, which can be used as a building block for more complex designs.
CSA uses OO in several ways:

• As a process executor for sequenced designs.
• As a process executor for topology designs, where the OO master-flow is

the implementation of the design execution plan.
• As a component import source, where new topology components can be

imported from existing OO flows.

Server Automation (SA) SA provides complete automated lifecycle-management for enterprise servers using
software policies, providing a scalable, heterogeneous solution across physical and
virtual servers (including VM templates).
SA policies can be used in CSA for application deployment on infrastructure
provisioned by VMware vCenter. The software policies are wrapped into CSA
components, which can be used in a topology design. During fulfillment of the
design, SA deploys the associated policies on the infrastructure. For more
information about importing SA components, see the Import Components topic in
the CSA Management Console online help.

Chef Chef is an automation framework that deploys servers and applications to any
physical, virtual, or cloud location. Chef operates with cookbooks consisting of
recipes.
CSA leverages Chef cookbooks for installation of software on top of infrastructure,
provisioned by providers such as VMware vCenter or Amazon EC2. The Chef
cookbooks can be wrapped into CSA components that can be used for a topology-
design composition.

OO Content
This section describes standard and custom OO content.

CSA automatically imports OO flows as components, then forms complex topology designs.

CSA – OO Integration

CSA must be configured to communicate with a running OO server (and vice versa) so that its out-of-the-box components can integrate
with OO as needed.

To configure OO for CSA, log into the OO Central web interface to create an admin user:

Username: admin

Password: cloud

Roles: ADMINISTRATOR

Cloud Service Automation Page 10
Topology Components Guide

Standard content and non-standard content

Standard content is content that conforms to the naming and structure conventions detailed in this section. Non-standard OO content is
called custom content and does not have to conform. In standard content, flows representing a component must be placed in the same
folder, and their paths must be stored in the content pack or OO server. For example:

Library > Integrations > HPE > Cloud Service Automation > Components > $ProviderTypeName > $ComponentType >
$Version > @Flows

The master flow content-pack path (<Install Dir>\jboss-as\standalone\tmp\e2e-flows) is located in the csa.properties file
and is configurable.

The values beginning with the dollar sign ($) are placeholders for the provider type name, the component type, and the version. The
@Flows value represents a list of individual flows in the folder. Optionally, there can be a sub-flow folder to gather additional entities
used in the flows.

Provider types

CSA includes both custom-provider types and out-of-the-box (OOTB) provider types.

Custom provider-type names

The custom provider-type name must be:

• All uppercase with separating underscores, for example, CUSTOM_PROVIDER_TYPE.
• Used as the folder name for standard content.
• Available in the Provider Management area of the CSA Console, as the following figure shows:

Component type names

The component type name:

• Uses the placeholder $ComponentType.
• Is used as the folder name that appears in the flow path for the standard content (editable in the component).
• Should be a descriptive name, such as OpenStackServer, to differentiate the components and avoid naming conflicts.

Note: The provider-type parent folder does not affect the component name. In the following example, the component type
name is OpenStackServer:

Library > Integrations > Hewlett-Packard > Cloud Service Automation > OPENSTACK -> Server ->
1.0

Versions

CSA allows you to import versioned standard content, but does not provide component version-management capabilities. A component
is created with a version matching the leaf folder in the flow path.

Note: The component name and version provide a unique identification – you cannot import multiple components with the same name
and version number, regardless of the related provider type.

Flows

Flows must be placed in the version folder.

Individual flow names:

• Are used automatically as an operation name in the new component.
• Is important for recognition of the lifecycle phase related to the operation.
• Must have an input property defined in the LIFECYCLE_PHASE constant, which consists of meta information not related to the flow

logic, and marks the flow’s purpose as it relates to the component lifecycle.

Cloud Service Automation Page 11
Topology Components Guide

Note: Every OO flow that is used as an action in a component must have both success () and failure () outcome indicators.

The operation lifecycle phase has duplicate indicators, so the flow-name prefix and the LIFECYCLE_PHASE input-property value must be
set as follows:

Flow Flow-name prefix LIFECYCLE_PHASE value

Deployment Deploy or Create deploying

Undeployment Undeploy or Delete undeploying

Modification Modify modifying

Undo a successful modification Unmodify unmodifying

Handle a failure during deployment Deploy failure handler deploying_failure

Handle a failure during undeployment Undeploy failure handler undeploying_failure

Handle a failure during modification Modify Failure modifying_failure

Custom public action executable on a
deployed instance

Deployed deployed

Input and output properties

The OO server automatically wraps all flows with a result output property. This property holds contextual messages, for example,
detailed information about failure.

HPE suggests that you define flow outputs as explicitly as output properties.

Note: You no longer have to declare the output parameter response to your flow to indicate the outcome of an OO flow execution, but
some of the OOTB components still use the property.

The Topology Components screen shows available properties and displays an icon () next to the property if the flow has requested
previous values.

You can modify properties on an active subscription. CSA passes previous property values to modified OO flows by request, defining
an additional flow input with a prev_ prefix. For example, if the modification OO flow defines an input of memorySize and requires its
previous value, you must also define an input of prev_memorySize.

Cloud Service Automation Page 12
Topology Components Guide

Important: Only the un-prefixed flow inputs are displayed in the Properties field. The modification operation uses the prev_ OO flow
inputs and displays them in the Input Parameter Mappings section. Do not edit these inputs.

A component’s modify flow places modification-status information, error codes, and other information in the modifyReturnValue
output field. The modify failure flow receives this information in the modifyFailureValue input field, enabling the flow to correct
errors in the modify flow intelligently. This sequence is particularly useful in complex, multi-step flows, where failures can occur at any
step.

IMPORTANT: CSA automatically handles field mapping of fields that are already set on the OO flows. Do not modify these fields in the
Component Editor.

Property names

You can create property names in input or output mode using topology components. Property names have the following characteristics:

• Any legal identifier.

• Maximum of 255 Unicode letters and digits.

• Begin with a character.

• Prohibited characters: _ (underscore) and . (dot) (using these characters can cause issues during property-value propagation
from CSA to OO flows).

The OO content is imported into CSA and then encapsulated into components. These components can be used in topology designs,
but require manual adjustment and fine tuning.

All CSA components have properties, operations and relationships.

Property values are the inputs that parameterize the component realization. Properties can also hold results from the realization that will
be displayed or even used by other components.

There are two kinds of operations:

• Lifecycle operations, which are coupled with component deployment and undeployment.

• Custom operations, which can be exposed as public actions that a Subscriber can execute in the Marketplace Portal.

Relationships to other components can express both optional and required dependencies. During provisioning, a component can use
the outputs of components upon which it is dependent.

Since the component is made of OO flows, each OO flow is represented by one component operation.

Cloud Service Automation Page 13
Topology Components Guide

See Import OO flows for more information.

Parameter Mapping

You can use predefined mapping or create a new mapping. Most of the components need input values for realization. These values
come from user input through component properties, related components, or from the provider instance that is used for the realization.

To create a new parameter mapping to import components, see Create a new parameter mapping.

OO Import Limitations

The standard content import works seamlessly. Custom content (which may not follow the best practices for content) can be imported
but has some limitations.

OO Operations

Among the OO entities, there are flows and low-level operations. The OO operations are only building blocks that should be
used as part of flows. Unlike OO flows, OO operations cannot be imported as CSA components.

Single Flow Operations

An imported component operation invokes an OO flow when the component is provisioned as part of topology design
provisioning. Each operation is linked to, and can invoke, just one OO flow.

Chef content
Chef is an automation framework that deploys servers and applications to a physical, virtual, or cloud location. Chef contains
cookbooks, which are folders that contain related recipes (installation scripts).

CSA uses Chef cookbooks to install software on top of infrastructure provisioned by providers such as VMware vCenter or Amazon
EC2. Chef cookbooks are automatically encapsulated into CSA components, which can be used for topology-design composition. CSA
communicates with Chef using public REST-full APIs, collects information about each cookbook selected for import, and creates a
component based on the information collected.

You can define a design in the CSA Topology Designer. The Designer allows service developers to associate Chef components with
the infrastructure components on which the Chef components will be provisioned.

The following figure shows CSA-Chef integration.

1. CSA provisions the server infrastructure used to host the Chef software.

2. CSA connects to the Chef host machine through SSH and invokes the knife command located there to bootstrap the infrastructure
machine (such as vCenter VM). A user account, on the Chef host, must have access to the Chef configuration files, keys, and
executables.

3. On the Chef host machine, the knife bootstrap and knife node run_list commands are invoked to put the infrastructure
machine under Chef management and to select cookbooks to install the requested software.

Cloud Service Automation Page 14
Topology Components Guide

4. CSA connects to the Chef host machine through SSH and opens another connection to the server created in step 1 to execute the
chef-client script. The nested SSH call uses infrastructure-machine credentials in the topology design. CSA uses passwords
and private keys for authentication. The chef-client script runs the installation script from the cookbook to install the software
on the machine.

Cookbooks

Chef uses cookbooks that contain recipes, which are Ruby scripts automating the installation and configuration of software pieces, such
as databases and application servers. During the import, Chef cookbooks are encapsulated into CSA components, which can be used
for topology-design composition.

Imported Chef components are not bound to the original Chef instance in any way. So a design containing Chef components can be
provisioned using any other compatible Chef server, as long as the required cookbooks are in place.

CSA communicates with the Chef server using public REST-full APIs, collects information about each cookbook selected for import,
and creates a component based on the information collected. This information is presented to the user through the Component Import
Wizard.

For more information on how to set up Chef to work with CSA, see Chef Setup.

Modification of Chef components

A Chef component is modifiable during the Modify Subscription operation, provided that the Chef component’s cookbook is idempotent
(written in a manner that the same cookbook can be applied more than once). When a Chef component is embraced by importing a
Chef cookbook, CSA assigns the default recipe to both the Modify lifecycle phase and the Deploying phase. Therefore, the same
cookbook is used for both initial deployment and subsequent modification requests.

Unique lifecycle operations
CSA defines the following lifecycle operations:

• Deploy
• Deploy Failure Handler
• Modify
• Unmodify
• Modify Failure Handler
• Undeploy
• Undeploy Failure Handler

A component can have a single lifecycle operation of each type; for example, a single Deploy operation. So, when an operation is set to
Deploy, any other operation that was previously configured as Deploy will have its lifecycle operation unset.

See Create a custom component, Add workflow, Configure input parameters, and Import properties for more information on component
procedures.

Scalable groups
Use managed groups to add components within the topology design and to create scalable stacks of components during remediations
when resources are scarce. For example, VMs can be added when CPU utilization increases past a defined threshold. The Instance
Count group property indicates the number of instances of provisioned groups.

The following graphic shows how a unit of three identical components increases the number of provisioned instances of each
component by scaling a stack up by 1, and increasing the Instance Count property value by 1.

Cloud Service Automation Page 15
Topology Components Guide

Scalable groups do not support:
• Nested groups.
• Components belonging to more than one scalable group.
• Relationships between a scaling group and a component.

Capabilities
CSA topology components do not form a hierarchy (with the exception of Helion OpenStack components). Instead, CSA uses
capabilities. A capability is a tag indicating what a component does. Capabilities can have properties and relationships.

CSA provides out-of-the-box capabilities (server, platform, database server, application server, and web server). The following table
lists each type of capability and its properties:

Capability Properties

Server ipAddress, hostname, username, password, privateKey, and instanceId.
Note: If a server component is used at design time, decide which authentication provisioning method should
be used. For example, if you use username + password, by default CSA uses the privateKey field unless
the field is empty.

Chef hostedOn, which is automatically created after importing content, and is used to obtain server properties for
the component deployment.

Lifecycle operations
Provisioned CSA components, including topology components, go through lifecycle states and operations.

Stages

The following topology-component states are displayed in the CSA Operations Console (Management Console) and in the Marketplace
Portal:

• Green boxes – stable success states
• Red boxes – stable failure states
• Faded gray and pink boxes – execution states (transition to the next state is triggered once the execution is finished)
• Yellow boxes – transitions from a stable state trigger when a component operation is explicitly invoked
• Other transitions automatically triggered.

Cloud Service Automation Page 16
Topology Components Guide

Component modification scenarios

Scenario one: Successful modifications

A successful Modify operation should return a response of success.

Note: Typically, Modify component operations are successful.

Scenario two: Successful modifications followed by a failed modification

If the Modify operation for a particular component fails, its corresponding Modify Failure Handler is invoked. The Modify Failure Handler
provides an opportunity for cleanup. The modifyReturnValue output from the Modify operation feeds into the
modifyFailureValue input of the Modify Failure Handler. Information must to be communicated from the Modify operation to its
corresponding Modify Failure Handler to provide additional contextual information about where the failure occurred. The nature of the
failure is modify action so that the Modify Failure Handler can do intelligent cleanup.

On the successful completion of the Modify Failure Handler, a rollback of previously deployed components is initiated by calling the
Unmodify handler. When all previously modified components are successfully unmodified, these components move back to the
Deployed state, while the component that failed (Component 3 in the picture below) is set to Modifying Failure.

Additionally, the options selected when Modify Subscription was initiated are reverted if the rollback is successful. Subscribers are free
to make different selections while resubmitting their previously failed modification request.

The Modify Failure Handler operation must always set the value of response parameter to failure. In the example below, the failure
response indicates that the modification failed for Component 3. A successful Unmodify operation returns a response of noop,
indicating that the rollback for that component was successful. A failed Unmodify operation returns a response of failure.

Failures may occur while executing the Modify Failure operation or Unmodify operations, as the following examples show.

Cloud Service Automation Page 17
Topology Components Guide

Component 1

MODIFY
success

Component 2

MODIFY

Component 3

MODIFY
success

failure

Component 3

MODIFY FAILURE

Component 4

MODIFY
success

Modification Failure
No Rollback

failure

A rollback is either not initiated or stopped as soon as a Modify Failure Handler or an Unmodify operation fails. In both these scenarios,
the Subscriber may not change options that were previously selected for a subsequent resubmission. The Operator might have to
intervene.

The following lifecycle operations can be defined on a component:
• Deploy – triggered when a new request is submitted.
• Deploy Failure Handler – triggered when a deploy request fails.
• Undeploy – triggered when an existing subscription is canceled.
• Undeploy Failure Handler – triggered when an undeploy operation fails.

Note: Failure to deploy or undeploy automatically invokes the corresponding failure handlers.

• Modify – triggered when a request to modify a previously deployed subscription is made. When the modification operation is
successful, the component moves back to the Deployed state.

• Modify Failure Handler – triggered as a result of a modification failure, and operates on the component whose modify-action
request failed.

• Unmodify – triggered after a Modify Failure Handler request. This operation rolls back all the operations executed so far in the
order in which they occurred, achieves a clean rollback of the modification transition, and reverts the components to the state prior
to the modification attempt. However, if the un-modification is not successful, the component’s properties are retained and the
Consumer can resubmit the last modification. Resubmitting the last modification might result in failure, so the Operator might have
to intervene.

Note: During modification of a service instance, the modify action is invoked on all the components in the service instance, regardless
of whether or not the modification request attempted to change component property values. However, the modify operation is passed
with the previous value and the new value for the modifiable properties, so a Component Developer can decide whether any
modification should be performed by comparing the two values (previous and new) and request a noop response, if no change was
made to the component. Check whether the underlying resource currently exists before trying to modify or unmodify that resource.

Cloud Service Automation Page 18
Topology Components Guide

The following graphic illustrates these topology operations:

Define a lifecycle operation

To define a lifecycle operation, edit the component, select an operation, and select the appropriate value from the dropdown menu.

Note: Lifecycle operations are automatically recognized if the component has been created using a Chef cookbook or standard OO
content.

Topology-related procedures
This section contains procedures you should follow to set up CSA topology.

Import OO flows
To import OO flows:

1. In the Cloud Service Management Console, navigate to Designs > Topology > Components.

2. In the left panel:
a. Choose to sort By Tag.
b. In the All Components section, select the top-level component. In this example, Chef Recipes.

3. In the right panel, click the subcomponent that will be the flow recipient. In this example, Tomcat Application Server.

Cloud Service Automation Page 19
Topology Components Guide

4. In the subcomponent screen, click Operations.
5. On the right side of the screen, click Import.

The Import Topology Component Operation screen is displayed.

6. Select the flows to import and click Next.
7. Make sure the chosen flows appear in the list.
8. To add more flows, click Previous.
9. To accept the flows, click Import. The flows appear on the screen.
10. To add more flows, click Import again.

You can define additional content operations using the Import button.

Create a new parameter mapping
To create a new parameter mapping for the purpose of component import:

1. In the Cloud Service Management Console, navigate to Designs > Topology > Components.
2. Select a component.
3. Click Operations.
4. Click your operations Action Menu (), and choose Edit.

Cloud Service Automation Page 20
Topology Components Guide

5. In the Edit Operations screen, select Parameters.
6. In the Input Parameters Mapping section, identify the provider related to the provider instance.
7. In the parameter Action Menu, choose Edit.

8. In the Edit Parameter Mapping screen, add mapping entries corresponding to a map of a component property to a provider
property.
For example, add the Default VMware vCenter Parameter Mapping maps-provider properties to flow input properties as
follows:

Flow Input Parameter Provider Property

datacenterName DATACENTERNAME

vCenterHost HOST

vCenterPassword PASSWORD

vCenterPort PORT

Cloud Service Automation Page 21
Topology Components Guide

vCenterProtocol PROTOCOL

vCenterURI URI

vCenterUsername USERNAME

Note that provider properties come from the provider service-access point information configured during resource-provider
configuration (for example, HOST, PASSWORD, or URI). Additional properties (for example, DATACENTERNAME) must be
manually defined as a property on the resource provider using the Properties tab in the Resource Provider configuration area.
In the case of standard content import, one or more components are created and all use the selected parameter mapping.

9. Click Finish to create your new component.
Depending on whether the component has been created using standard or custom content, a different level of configuration
will been done automatically. Typically, a few more adjustments are required to make the component fully operational.

Create a custom component
Custom components import workflow that does not follow standards. The component can be associated with out-of-the-box or custom
resource providers.

To create a custom component:

1. In the Cloud Service Management Console, navigate to Designs > Topology > Components.

2. In the Topology Components screen, click the Action Menu and choose Create Component.

3. In the Create Topology Component dialog box, enter a:

a. Name.
b. Description.
c. Version.
d. Functional type:

i. Concrete
If you make this choice, choose a provider type from the list.

ii. Capability
e. Provider type.

4. Click Create.
Note: The properties are imported automatically when the workflow is imported.

Cloud Service Automation Page 22
Topology Components Guide

Add workflow
To add workflow to a new component:

1. In the Cloud Service Management Console, navigate to Designs > Topology > Components.
2. In the components section, select your new component.
3. Click the Operations tab.
4. On the right side, click Import.

The Import Topology Component Operation screen is displayed.

5. Choose workflows to import to your new component.
6. Click Next.
7. Click Import.

Configure input parameters
To configure input parameters for your new component:

1. In the Cloud Service Management Console, navigate to Designs > Topology > Components.
2. Click the Operations tab.
3. Choose an operation, then choose Edit from its Action Menu.

Cloud Service Automation Page 23
Topology Components Guide

4. In the Edit Operations screen, select Parameters.
5. To add a parameter, click its Action Menu and choose Edit. The Edit Parameter Mapping screen is displayed.

6. If the parameter is required, check the Required box.
7. Choose a mapping type. See the CSA online help for more information about mapping types.
8. Click Save.

Note: The values for the resource provider properties HOST, PASSWORD, PORT, PROTOCOL, and USERNAME are
common to all resource providers, and are retrieved and set at run time.

Cloud Service Automation Page 24
Topology Components Guide

Import properties
This example shows how to import for OO properties.

1. In the Topology Components screen, click a component.
2. Select the Properties tab.

3. Choose a property, then select Edit from its Action Menu.

Cloud Service Automation Page 25
Topology Components Guide

4. In the Edit Properties screen, set the properties for your register service.
5. Click Save.

Chef setup
This section describes how to install and configure Chef to work with CSA.

Prerequisites

You must comply with a number of prerequisites before you install and configure Chef.

Note: For the most recent compatibility information, see the CSA Support Matrix.

1. Make sure you comply with supported configurations:

Software Supported versions Notes

CSA Server OS Windows 2008 and 2012 See the CSA 4.2 Support Matrix

CSA Version CSA 4.2 See the CSA 4.2 Installation Guide

Chef server OS Ubuntu 12.04 LTS See Install the Chef server for additional
software requirements

Chef server software Open-source Chef server, Version 11.01 Hosted and Enterprise Chef are not supported

Nodes provisioned by CSA
and used with Chef

Ubuntu and RHEL/CentOS 6.X Add SSH (by default, SSH is not installed on
Ubuntu)

2. Install an Ubuntu Server 12.04 or later server.
3. Configure the Ubuntu server as follows:

a. Fully-qualified domain name that can be recognized by the domain-name system (DNS).
b. Same NTP time reference and time zone as the CSA server.
c. Network connection to CSA-provisioned machines to install required software.

4. Install the following utilities:
a. apt-get install sshpass
b. apt-get install netcat

5. Create a required user account (chef-integr).
CSA uses this account to:
a. Initiate ssh connections.
b. Access the knife tool and the tool’s configuration file, key, and executables.
c. Connect to the Chef server public API to list cookbooks.
Note: User does not need to be root or sudoer.

Install the Chef server

IMPORTANT: Install the Chef client and Chef server on the same Ubuntu server.

To install the Chef server on the Ubuntu server:

1. Access the open-source Chef installation: http://getchef.com/chef/install/
2. Install the downloaded package:

sudo dpkg -i chef-server*.deb
3. Configure the Chef server:

sudo chef-server-ctl reconfigure
4. Check Chef server status:

chef-server-ctl status
5. Connect to the Chef server online:

a. Access the server:
https://<chefservername>
b. Use these initial credentials: admin / p@ssw0rd1.
c. Enter a new password in the Message field.

IMPORTANT: Do not create a new user on the Chef server at this point in the installation.

http://getchef.com/chef/install/

Cloud Service Automation Page 26
Topology Components Guide

Install Chef client

1. Access the Chef client-installation package: http://www.getchef.com/chef/install.
2. Install the package:

sudo dpkg -i chef_*.deb
3. Configure knife:

sudo knife configure –i
4. In the screens that follow, accept default values except in the following:

a. Enter Chef server URL (FQDN): https://mychefserver.com
b. Choose any new user name and password for the chefuser account. A private key for the new user is automatically
generated.
Note: You will need to use these credentials again.

5. Check that the new user appears in the Chef-server web interface, in the Users tab.

6. The configure command creates a .chef/knife.rb file containing all configuration. Change the .chef owner to the system
user that is the integration user in CSA. Grant the knife tool executable rights to this user.

7. To add a proxy configuration (optional), open the .chef/knife.rb file and add the following line anywhere in the file:

bootstrap_proxy 'http://your.proxy:8080'

Import and upload Chef cookbooks

To install common cookbooks:

1. Download the cookbook from the Chef site (usually a *.tar.gz file):
knife cookbook site download apache2

2. Download other cookbooks that have a mutual dependency on your downloaded cookbook.
If you skip this step, you might encounter errors. If that occurs, download the missing cookbook and upload it using the knife
command.
To upload the cookbook to a server, use the following command: knife cookbook upload apache2 -o cookbooks

3. Create subdirectory cookbooks.
4. Unzip the downloaded file into a subdirectory cookbook file.

Create a vCenter template

This section explains the process of creating and configuring a VMware vCenter template for use in a Chef environment. If you use
Amazon for server provisioning, you must rely on templates provided by Amazon (however, configuration often works seamlessly in an
Amazon environment). Chef cookbooks will be installed on server components that are provisioned by CSA using VM templates.

To create a vCenter template:

1. Create a standard VM machine in the vCenter client wizard.

2. Install the OS (recommended OSs are CentOS and Ubuntu) on vCenter or AWS.

3. Set up the proxy:

a. If the machine is behind a proxy, add these lines to the .bashrc file in the root home directory:
export ftp_proxy=http://your.proxy:8080/
export http_proxy=http:// your.proxy:8080/
export https_proxy=http:// your.proxy:8080/
export no_proxy=localhost,127.0.0.1

b. In the file /etc/yum.conf add this line to set up the proxy for yum:

proxy=http://your.proxy:8080
4. Install perl and wget:

Yum install perl
Yum install wget

5. Set up the proxy for wget in the file /etc/wgetrc:
https_proxy = http://your.proxy:8080/
http_proxy = http://your.proxy:8080/
ftp_proxy = http://your.proxy:8080/

6. Disable or configure the firewall:
/etc/init.d/iptables save
/etc/init.d/iptables stop
chkconfig iptables off

http://www.getchef.com/chef/install
https://mychefserver.com/
http://your.proxy:8080/

Cloud Service Automation Page 27
Topology Components Guide

7. Shutdown the VM.
8. Right-click the VM and select Template > Convert to Template.
9. Click Save.

You can also set proxies, and install and configure yum/apt-get and wget.

Note: Currently, Chef components on virtual machines are only supported on Linux templates. Theoretically, any Linux template should
work if it provides the required tools and satisfies cookbook requirements.

Recipes in a cookbook

When a new component is created from a cookbook, CSA always uses the default recipe as the component implementation.

To use a non-default recipe, open the component’s Deploy operation and change the value of the chefRecipeName parameter. The
value can be any valid run-list expression cookbook[@version][::recipe].

For example:

• mysql

• mysql::client

• mysql@4.0.20

• mysql@4.0.20::client

Different recipes from the same cookbook or multiple versions of one cookbook can coexist in CSA as separate components. Clone the
component first, then change the recipe values for individual copies.

CSA will be unable to recognize how a cookbook’s recipes and attributes should be used unless they are properly defined in the Chef
cookbook’s metadata.rb file.

Customization Specification

Create a customization specification in the vCenter client, and specify the network setup, hostname convention, IP address, and name
of the provisioned VMs. This configuration ensures that machines you create can be accessed from CSA and Chef servers. For more
configuration and customization information, see VMware documentation.

The Chef provider in CSA

The Chef server must be registered as a resource provider in CSA.

1. In the Cloud Service Management Console, click Providers.
2. Click Chef FTC (for example).
3. Click the Properties tab.

Cloud Service Automation Page 28
Topology Components Guide

4. Click chefClient (client/user name configured on the Chef server, and used for access to the Chef API), then choose Edit
from its Action Menu.

5. In the Edit Resource Provider screen enter a:
a. Display name.
b. Description.
c. Service Access Point (Chef-server end point (default port is 443), for example: https://<hostname>:[port])
d. User ID (the system-user account that exists on the Chef server machine (for example, chef-integr), and that

connects to the machine using SSH.
e. Password (corresponding to the User ID).

6. Click Save.
7. Click chefClientKey (private key associated with the chefClient), then choose Edit from its Action Menu.
8. Repeat steps 4 and 5.

Note: The client name and key values are collected when a new user is created on the server. However, you can substitute the user
created during Chef client configuration, or you can manually create a new user using the Chef-server UI.

Content Source

You can load Chef cookbooks from the Chef server, and configure Chef-server instances as resource providers in the Import
Components screen.

To access the Import Components screen:

1. Navigate to Designs > Topology > Components in the CSA Console.
2. Click Chef from the left panel.
3. Click the Properties tab.
4. Choose Import Component from the Chef Action Menu.

Cloud Service Automation Page 29
Topology Components Guide

5. In the Import Topology Component screen, choose an Import Source.
6. Select a Chef cookbook to import, then click Next.
7. Specify an image and tag (optional).
8. Click Next.

9. Review the Summary screen. To make changes, click Previous.
10. To import the components, click Import.

A cookbook version is displayed in parentheses after the name. The cookbook version is used as part of the new component name, so
that multiple cookbook versions can be imported as different components. The cookbook version is not translated into the component
version. The component version is automatically set to version 1 and auto-incremented when the cookbook is imported repeatedly.

If you configure multiple Chef-resource providers, one must be selected.

Cloud Service Automation Page 30
Topology Components Guide

Creating Topology Designs with CloudSlang Content

Currently there is no support for hybrid Cloud Slang-AFL flows in any combination.

The following procedure provides information on creating topology designs with CloudSlang content.

Pre-requisites:

Ensure cloudslang content is available in OO studio.

1. Ensure to get the Cloudslang flow path from the web designer studio that is required to be used as a component in CSA along
with the inputs and values for the same.

2. Navigate to the OO studio and import the HPE Solutions Content Pack.
3. Create a workflow using "/HPE Solutions [1.10.0]/Library/Integrations/Hewlett-Packard/Operations

Orchestration/10.x/Dynamically Launch Flow" operation.

4. Expose the following properties:

centralFlowPath, runname, inputs, values, and delimiter and ensure to set loglevel as "STANDARD" or "EXTENDED".
Following is a table with sample values for each attribute:

Attribute Sample Value

centralFlowPath Library/OOProject/CloudSlangFlow1

runName CloudSlang1

loglevel EXTENDED

5. Create a topology based component in CSA using the above flow and expose the mentioned properties.
6. Enter the actual values of the CloudSlang content flow as required, when the topology design is using this above component.

Cloud Service Automation Page 31
Topology Components Guide

Troubleshooting

OO
CSA provides a test-run feature for topology designs, whose results include event details and links to the OO master-flow execution log.
To test a component, use it in a design and test the entire design.

For a deeper level of debugging, use the OO studio, and load master flows that are generated when a test run is performed in CSA.
These master flows are for provisioning a service, modifying a service, or de-provisioning a service. The content jar file for the
generated master flows is saved in the folder: <CSA_INSTALLDIR>\jboss-as\standalone\tmp\e2e-flows.

Chef components
During Chef provisioning, CSA triggers the cookbooks execution only, and communicates issues to the user. For more detailed
information on debugging, connect to the provisioned machine as the node managed by Chef and invoke the Chef client directly.

Possible debugging issues include:

• Connectivity – connections to the following are required:
o CSA (and OO) connection to the Chef host
o CSA connection to the infrastructure provider used for machine provisioning
o CSA (and OO) connection to the provisioned machine
o Chef host connection to the provisioned machine

• The cookbook does not work well on the operating system installed on the provisioned machine. For example, the cookbook works
for a specific Linux distribution only.

The amount of fine tuning depends on the nature of the imported content and user requirements. For example, components often need
relationship definition, lifecycle configuration for operations, or operation parameter mapping.

SSH IP validation issues
When server provisioning uses a limited set of IP addresses, SSH prohibits access if identity conflicts occur when a new VM uses the
same IP address that a deleted VM used.

To resolve this, set the following option values in /etc/ssh/ssh_config:
CheckHostIP no
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

Modifiable properties
During service creation or service modification, designers must explicitly mark as modifiable the topology-based service design
properties. Modifiable properties must have a corresponding prev_ input parameter in the underlying Modify flow.

In the vCenter example below, cpuCount is marked modifiable, but the designer did not choose to mark memorySize (which also
qualifies) as modifiable). Other properties in the example (such as vmTemplateReference) are not marked modifiable because they
do not have a corresponding prev_ input parameter. Properties on various profiles can also be marked as modifiable during service
creation and modification.

Cloud Service Automation Page 32
Topology Components Guide

Cloud Service Automation Page 33
Topology Components Guide

Terminology
The following terms are used in this document.

Capability

A capability is a special type of component that supports properties and relationships (but does not support operations or
characteristics). When a concrete component supports a capability, the concrete component inherits the capability's relationships and
must provide property mappings from the concrete component properties to the capability properties. Capabilities can be the target of
relationships configured on a component. Capabilities can be included in a design, but for such a design to be successfully provisioned,
another design must exist that contains a concrete component supporting the capability.

Chef cookbook

A Chef cookbook is a collection of grouped Chef recipes.

Chef recipe

A Chef recipe explains how Chef configures and manages server applications and utilities (such as MySQL).

Component (in Topology Designer)

A component represents one service-design element required to realize a service subscription. CSA provides a number of out-of-the-
box components you can use for creating topology designs.

Component Properties (in Topology Designer)

Component properties provide a base set of attributes that can be used and edited when creating components in a service design.
They represent configuration settings to be applied to the component during service-design provisioning. The value defined for a
component property is the default value exposed in the service design.

Component Types

A base set of attributes that can be used and edited when creating service components in a service design.

Content (standard versus custom)

Content can be imported from OO as standard content or custom content. Standard content must follow specific directory and naming
conventions to infer the provider type, component name, and version of a created component (with the flow and subflows located under
a Provider Type Name / Component Name / Version directory). Custom content requires the user to specify the provider type
and component name at import time.

Cloud Service Automation

Cloud Service Automation (CSA) is a unique platform that orchestrates the deployment of computer and infrastructure resources and of
complex multi-tier application architectures. CSA integrates and leverages the strengths of several datacenter management and
automation products, adding resource management, service offering design, and a customer portal to create a comprehensive service
automation solution. The CSA subscription, service design and resource utilization capabilities address three key challenges:

The CSA Marketplace Portal provides a customer interface for requesting new cloud services and for monitoring and managing existing
services, with subscription pricing to meet your business requirements.

The CSA graphical service design and content portability tools simplify developing, leveraging, and sharing an array of service offerings
that can be tailored to your customers’ needs.

The CSA lifecycle framework and resource utilization features ease the complexity of mapping your cloud fulfillment infrastructure into
reusable, automated resource offerings for on-time and on-budget delivery.

Cloud Service Automation Page 34
Topology Components Guide

Cloud Service Management Console

Software that provides a CSA design and administration interface. The Cloud Service Management Console supports the following user
roles: Administrator, Consumer Service Administrator, Resource Supply Manager, Service Designer, and Service Operations Manager.

Marketplace Portal

Software that delivers cloud services to subscribers (customers) by providing one or more service catalogs per organization. The
Marketplace Portal is integrated into and shipped with CSA. The Marketplace Portal supports the following user roles: Consumer
Organization Administrator, Consumer Organization Administrator, and Service Consumer.

Operations Orchestration

Operations Orchestration (OO) is a software product that coordinates communication between integrated products and managed
devices. Customized OO flows are essential to implementing the CSA service lifecycle.

Operations Orchestration Flow

A run-book automation workflow composed of operations, subflows, and integrations that implement a discrete action. Flows are
synchronized with CSA, and presented as actions, which can be directly attached to components. Operations Orchestration flows are
created, modified, and saved using Operations Orchestration Studio. CSA includes a set of sample Operation Orchestration flows used
by CSA’s sample service designs.

Server Automation

Server Automation (SA) is full-scale, virtual-server management automation software that delivers security, provisioning, policy
management, deployment, and server compliance.

Lifecycle (in Topology Designer)

Each Topology component goes through a lifecycle transition: create, modify, and finally destroy (when not needed by the service
anymore). These transitions throughout the life of the component are called the lifecycle phase.

Lifecycle Operations (in Topology Designer)

A topology component goes through various lifecycle phases: for example, Deploy, Modify, Un-deploy. Operations executed on these
Lifecycle Phases are called Lifecycle Operations.

Parameter Mapping (in CSA)

Each Topology component defines a set of actions and each action typically declares a set of input parameters. A parameter mapping
is defined to specify how the value should be passed for those input parameters when the action is executed. For example, value of an
input parameter may be mapped to a component's property by creating a parameter mapping. In that case the value of the property is
passed as the value of the input parameter when the action is executed.

Properties (modifiable properties)

Properties provide a base set of attributes that can be used and edited when creating components in a service design. They represent
configuration settings to be applied to the component during service design provisioning. The value defined for a component property is
the default value exposed in the service design.

Relationship

Relationships in topology designs define dependencies between components and also impact how a design is provisioned. For
example, imported Chef components require a Server in order to be provisioned. Therefore, all imported Chef components are created
with an Outgoing relationship to the Server capability, ensuring that a Server is provisioned before the Chef component.

Cloud Service Automation Page 35
Topology Components Guide

Resource Provider

A management platform that provides either Infrastructure-as-a-Service (IaaS) or Software-as-a-Service (SaaS) to the cloud. For
example, a provider of Matrix Operating Environment services provisions infrastructure and basic applications, while a provider of
SiteScope services monitors applications.

Topology Design

Topology designs specify components, relationships, and properties. In contrast to sequenced designs, which more explicitly define the
provisioning order and the sequence of actions that will run, topology designs are declarative in nature and do not include explicit
actions or sequencing. The provisioning sequence is inferred by the relationships that exist between components in a topology design.
Use topology designs for Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)
deployments that are enabled using Chef, SA, and OO flow-based components.

Each topology design component binds to a single provider for fulfillment automation. Topology designs delegate component lifecycle
provisioning to providers.

Cloud Service Automation Page 36
Topology Components Guide

Send documentation feedback
If you have comments about this document, you can send them to clouddocs@hpe.com.

Legal notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard
Enterprise shall not be liable for technical or editorial errors or omissions contained herein. The information contained herein is subject
to change without notice.

Restricted rights legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s standard commercial license.

Copyright notice
© Copyright 2017 Hewlett Packard Enterprise Development Company, L.P.

Trademark notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks of OpenStack
Foundation in the United States and other countries, and are used with the OpenStack Foundation’s permission.

Documentation updates
The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to the following URL and sign-in or
register: http://hpe.com/software/csa.

Select Manuals from the Dashboard menu to view all available documentation. Use the search and filter functions to find
documentation, whitepapers, and other information sources.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your Hewlett Packard
Enterprise sales representative for details.

Support
Visit the Hewlett Packard Enterprise Software Support Online web site athttps://www.hpe.com/us/en/support.html.

mailto:clouddocs@hpe.com
http://hpe.com/software/csa
https://www.hpe.com/us/en/support.html

	Topology Components Guide
	Contents
	Concepts overview
	Component overview
	Component characteristics
	Component operations
	Component Properties
	Relationships to other components
	Passing values between components

	CSA content sources
	Component sources
	OO Content
	CSA – OO Integration
	Standard content and non-standard content
	Provider types
	Custom provider-type names
	Component type names

	Versions
	Flows
	Input and output properties
	Property names
	Parameter Mapping
	OO Import Limitations
	OO Operations
	Single Flow Operations

	Chef content
	Cookbooks
	Modification of Chef components

	Unique lifecycle operations
	Scalable groups
	Capabilities
	Lifecycle operations
	Stages

	Component modification scenarios
	Scenario one: Successful modifications
	Scenario two: Successful modifications followed by a failed modification
	Define a lifecycle operation

	Topology-related procedures
	Import OO flows
	Create a new parameter mapping
	Create a custom component
	Add workflow
	Configure input parameters
	Import properties
	Chef setup
	Prerequisites
	Install the Chef server
	Install Chef client
	Import and upload Chef cookbooks
	Create a vCenter template
	Recipes in a cookbook
	Customization Specification
	The Chef provider in CSA
	Content Source

	Creating Topology Designs with CloudSlang Content

	Troubleshooting
	OO
	Chef components
	SSH IP validation issues
	Modifiable properties

	Terminology
	Capability
	Chef cookbook
	Chef recipe
	Component (in Topology Designer)
	Component Properties (in Topology Designer)
	Component Types
	Content (standard versus custom)
	Cloud Service Automation
	Cloud Service Management Console
	Marketplace Portal
	Operations Orchestration
	Operations Orchestration Flow
	Server Automation
	Lifecycle (in Topology Designer)
	Lifecycle Operations (in Topology Designer)
	Parameter Mapping (in CSA)
	Properties (modifiable properties)
	Relationship
	Resource Provider
	Topology Design

	Send documentation feedback
	Legal notices
	Warranty
	Restricted rights legend
	Copyright notice
	Trademark notices
	Documentation updates
	Support

