
Server Automation
Software Version: 10.51

Developer Guide

Document Release Date: February, 2017
Software Release Date: November, 2016



Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted rights legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 2000-2016 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HPE Passport and to sign in. To register for an HPE Passport ID, click Register on the HPE Software Support site or click Create an
Account on the HPE Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.

Support
Visit the HPE Software Support site at: https://softwaresupport.hpe.com.

This website provides contact information and details about the products, services, and support that HPE Software offers.

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support website to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HPE Support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HPE Passport user and to sign in. Many also require a support contract. To register for an HPE Passport ID, click
Register on the HPE Support site or click Create an Account on the HPE Passport login page.

To findmore information about access levels, go to: https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

HPE Software Solutions Now accesses the HPESW Solution and Integration Portal website. This site enables you to explore HPE Product Solutions tomeet your business
needs, includes a full list of Integrations between HPE Products, as well as a listing of ITIL Processes. The URL for this website is https://softwaresupport.hpe.com/.

Developer Guide

HPE Server Automation (10.51) Page 2 of 325

https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
https://softwaresupport.hpe.com/


Contents
Introduction 13
Server Automation Platform 14

Overview of the Server Automation Platform 14
Components 15
Benefits of the SA Platform 21
SA Platform API design 23

Services 23
Objects in the API 24
Exceptions 25
Event Cache 25
Searches 26
Security 26
API Documentation and the Twister 27
Constant field values 27

Supported clients 28
Platform Developer Guide examples 28

SA CLI methods 29
Method invocation 29
Security 30
Mapping between API and SA CLI methods 30
Differences between SA CLI methods and Unix commands 30
SA CLI method tutorial 31
Format specifiers 36

Position of format specifiers 37
Default format specifiers 38
Examples of ID format specifier 38
Structure format specifier syntax 39
Examples of structure format specifier 39
Examples of directory format specifier 42

Value representation 42

Developer Guide

HPE Server Automation (10.51) Page 3 of 325



SA objects in the OGFS 42
Object attributes 43
Custom attributes 43
Primitive values 44
Arrays 45

SA CLI method parameters and return values 46
Method context and the self parameter 46
Passing arguments on the command-line 47
Specifying the type of a parameter 48
Complex objects and arrays as parameters 48
Overloaded methods 48
Return values 49
Exit status 49

Search filters and SA CLI methods 50
Search syntax 50
Search examples 51
Finding servers 51
Finding other objects 53
Searchable attributes and valid operators 54

Sample scripts 54
create_custom_field.sh 55
create_device_group.sh 56
create_folder.sh 58
remediate_policy.sh 59
remove_custom_field.sh 61
schedule_audit_task.sh 62

Getting usage information on SA CLI methods 63
Listing services 63
Finding a service in the API documentation 64
Listing the methods of a service 64
Listing the parameters of a method 64
Getting information about a value object 65
Determining if an attribute can be modified 65
Determining if an attribute can be used in a filter query 66

Python API access with Pytwist 66

Developer Guide

HPE Server Automation (10.51) Page 4 of 325



Setup for Pytwist 67
Pytwist examples 67
Virtualization Pytwist examples 72
Pytwist details 80

Automation Platform Extensions (APX) 82
Creating an APX 83
Program APXs 84
Web APXs 85
APX user roles 85
APX permissions 86

Permission escalation 87
APX structure 88

File structure 88
OGFS integration 88
APX interfaces - Defining categories of APX extensions 89
Implementing an interface 90
RightClickToRun interface 91
CoreAffinity interface 92
Using the Interface API 93

apxtool command 93
Syntax of apxtool 93
Using short and long command options 94
Creating a new APX - apxtool new 95
Usage 95
Deleting an APX - apxtool delete 96
Usage 96
Exporting an APX from SA - apxtool export 97
Usage 97
Importing an APX into SA - apxtool import 98
Usage 98
Querying APX information - apxtool query 99
Usage 99
Setting the current version of an APX - apxtool setcurrent 101
Usage 101
Error handling 102

Developer Guide

HPE Server Automation (10.51) Page 5 of 325



APX files 102
APX configuration file - apx.cfg 103
APX permissions escalation configuration file - apx.perm 104
No escalation 105
All permissions 105
With escalation 105

Showing the progress of an APX 105
apxprogress command 106
Syntax of apxprogress 106
Example shell script that uses apxprogress 106
Viewing APX progress 107

Tutorial: Creating a Web application APX 107
Tutorial prerequisites 108
Setting permissions and creating the tutorial folder 108
Creating a new web application 109
Importing the new web application into SA 111
Running the new web application 111
Modifying the web application 113
Running the modified web application 114

Tutorial: Creating a program APX 114
Tutorial prerequisites 114
Setting permissions and creating the tutorial folder 115
Creating a new program APX 115
Importing the new APX into SA 117
Running the new APX 118
Modifying the APX 119
Running the modified APX 120
Viewing the APX progress in the Twister interface 120

Agent Tools 123
Installation requirements 124
Installation 124
Upgrading Agent Tools 125
Agent Tools scripts 126
Sample Agent Tool scripts 128

Microsoft Windows PowerShell - SA integration 129

Developer Guide

HPE Server Automation (10.51) Page 6 of 325



Windows PowerShell integration with SA 130
Integrated PowerShell/SA cmdlets 130
Installation requirements 131
Installation 131
Microsoft Windows PowerShell integration with SA features 132
Sample sessions 133

Java RMI clients 146
Setup for Java RMI clients 147
Sample Java RMI 147
Possible issue on Windows 149

Web Services clients 149
Programming language bindings provided in this release 150
URLs for service locations and WSDLs 150
Security for Web Services clients 151
Overloaded operations 151
Java interface support 151
Unsupported data types 151
Invoke setDirtyAtrributes when creating or updating VOs 152
Compatibility with SA Web Services API 2.2 153
Perl Web Services clients 153

Required software for Perl clients 153
Running the Perl demo program 154
Sample Perl code 155
Construction of Perl objects for Web Services 158

C# Web Services clients 161
Required software for C# clients 161
Obtaining the C# client stubs 162
Building the C# demo program 162
Running the C# demo program 163
Sample C# code 164
Password security with C# 166

Pluggable checks 167
Setup for pluggable checks 167
Pluggable check tutorial 168
Audit and remediation 175

Developer Guide

HPE Server Automation (10.51) Page 7 of 325



Creating a pluggable check 177
Creating the audit policy 185
Document Type Definition (DTD) for config.xml file 186

Search filter syntax 193
Filter grammar 193

Rebuilding the Apache HTTP server and PHP 195
Extending the APX HTTP environment 195

Application Configuration 199
Managing XML configuration files 199

Example: Travel manager application and XML configuration file 200
Contents of the Travel Manager mysql.xml file 201
Contents of the Travel Manager mysql.xml DTD-based XML file 201

Non-DTD XML configuration templates 202
Non-DTD XML configuration template for mysql.xml 202

DTD-based XML configuration templates 203
XML-DTD configuration template for mysql.xml 204

Customize XML DTD element display 204
Explicit versus positional display settings 205

Add positional custom display settings 206
Add explicit custom display settings 206
Customize how elements display in the SA Client 207

XML configuration template settings 208
CML primer 210

Terminology 210
CML basic concepts 211
Combining tags on one line 214
Use case 1 - Simple Key=Value configuration file 214

Using the Replace instruction 214
Final CML template 217
Resulting value set 217

Use case 2 - Repeating values in the configuration file 218
Using the Loop instruction tag 218
Final CML 221
Resulting value set 221

Use case 3 - Complex repeating values in the configuration file 221

Developer Guide

HPE Server Automation (10.51) Page 8 of 325



Final CML 222
Resulting value set 222

Partial templates 223
CML Reference 223

Configuration templates 224
CML overview 225

Structure of CML tags 225
Required CML tags 226

Example CML template for /etc/hosts 228
CML tag types 228

Comment Tag: @# and @## 229
Replace Tag: @ 230
Instruction Tags: @! 231
Block (or Group) Tag: @[@...@]@ 232
Loop Tag: @* 235

Example 2 237
Loop Target Tag: @. 237
Conditional Tag: @? 238
DTD Tag: @~ 239

CML type attributes 241
The ip type 244

Syntax 246
Description 246
Syntax 246

CML range attributes 247
! & , – Logical operators 247
n< n<= <n <=n =n – Comparison specifiers 248
" – String literal specifier 249
r" – Regular expression specifier 249

CML global option attributes 250
The @!filename-key attribute 250
The @!filename-default attribute 250
The @!full-template and @!partial-template attributes 251
The @!timeout attribute 251
The @!unix-newlines and @!windows-newlines attributes 252

Developer Guide

HPE Server Automation (10.51) Page 9 of 325



CML regular option attributes 252
The @! unordered-lines and @!ordered-lines attributes 252
The unordered-elements and ordered-elements attributes 253
The relaxed-whitespace and strict-whitespace attributes 254
The required-whitespace and optional-whitespace attributes 254
The missing-values-are-null and missing-values-are-error attributes 255
The case-insensitive-keywords and case-sensitive-keywords
attributes 255
The reluctant attribute 256
The required and optional attributes 256
The skip-lines-without-values and show-lines-without-values
attributes 257
The skip-groups-without-values and show-groups-without-values
attributes 258
The sequence-append, sequence-replace and sequence-prepend
attributes 258
The not-primary-field and primary-field attributes 259
The namespace attribute 260
The boolean-no-format attribute 260
The boolean-yes-format attribute 261
The delimiter attribute 261
The line-comment attributes 262
The sequence-delimiter attribute 263
The field-delimiter attribute 264
The line-continuation attribute 265

Use DTD tags in CML 266
Example of DTD tags 266

Sequence aggregation 267
Sequence replace 268
Sequence append 269
Sequence prepend 271

XML Tutorial 1 - Creating a non-DTD XML configuration template 273
Sample non-DTD XML mysql.xml file 274
1. Creating an XML configuration template 274
2. Adding XML settings 275

Developer Guide

HPE Server Automation (10.51) Page 10 of 325



3. Creating an application configuration to contain the template 276
4. Attaching the Application Configuration to a managed server 277
5. Configuring Application Configuration settings for the server 278
6. Editing values and pushing the configuration 279

XML Tutorial 2 - Creating an XML-DTD configuration template 280
Sample Travel Manager DTD-based XML file: mysql.xml 280
Sample Travel Manager XML DTD file: mysql.dtd 281
1. Creating XML-DTD template in a text editor 281
2. Adding custom settings for element descriptions in the Value Set
Editor 282
3. Importing the XML-DTD configuration file 284
4. Creating an Application Configuration object 285
5. Attaching the Application Configuration to a managed server 286
6. Importing values from the configuration file 287
7. Editing values and push the configuration 288

CML Tutorial 1 - Creating an Application Configuration for a simple web
app server 289

1. Determining the configuration files to be managed 289
2. Creating a template for the configuration file 289
3. Creating an Application Configuration object 291
4. Adding the template file to the Application Configuration object 292
5. Attaching the Application Configuration object to servers 292
7. Comparing the actual configuration files with the configuration
template 298
8. Pushing configuration changes to the server 299

CML Tutorial 2 - Creating a template of a web server configuration file 300
1. Analyzing the native configuration file and documentation 301
2. Creating a CML comment block 301
3. Creating CML setup instructions 302
4. Defining the [Options] section — Opening blocks 303
5. Defining the [AllowExtensions] section - Closing a block by opening
a new block 307
6. Defining the [DenyExtensions] section 309
7. Defining the [AllowVerbs] and [DenyVerbs] sections 310
8. Defining the [DenyHeaders] section 310

Developer Guide

HPE Server Automation (10.51) Page 11 of 325



9. Defining the [DenyURLSequences] section 312
10. Defining the [RequestLimits] section 313
11. Placing the template in an Application Configuration 315
Sample UrlScan.ini file 315
Complete url_scan_ini.tpl CML template 322

Send documentation feedback 325

Developer Guide

HPE Server Automation (10.51) Page 12 of 325



Introduction
This section provides information Server Automation Platform and Application configuration file:

l "Server Automation Platform" on the next page

l "Application Configuration " on page 199

Developer Guide
Introduction

HPE Server Automation (10.51) Page 13 of 325



Server Automation Platform
The Server Automation Platform is a set of APIs and a runtime environment that facilitate the
integration and extension of SA. The Server Automation Platform APIs expose core services such as
audit compliance, Windows patchmanagement, andOS provisioning. The runtime environment
executes Global Shell scripts that can access the Global File System (OGFS).

This topic provides information about the following:

l "Overview of the Server Automation Platform" below

l "SA Platform API design" on page 23

l "Supported clients" on page 28

l "SA CLI methods" on page 29

l "Python API access with Pytwist" on page 66

l "Automation Platform Extensions (APX)" on page 82

l "Agent Tools" on page 123

l "Microsoft Windows PowerShell - SA integration" on page 129

l "Java RMI clients" on page 146

l "Web Services clients" on page 149

l "Pluggable checks" on page 167

l "Search filter syntax" on page 193

l "Rebuilding the Apache HTTP server and PHP" on page 195

Overview of the Server Automation
Platform
Using the Server Automation Platform, you can perform the following tasks:

l Build new automation applications and extend SA to improve IT productivity and comply with your
IT policies.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 14 of 325



l Exchange information with other IT systems, such as existingmonitoring, trouble ticketing, billing,
and virtualization technology.

l Use the SA Model Repository to store and organize critical IT information about operations,
environment, and assets.

l Automate themanagement of a wide range of applications and operating systems.

l Incorporate existing Unix andWindows scripts with SA, enabling the scripts to run in a secure,
audited environment.

This topic provides an overview on the components and benefits of the Server Automation Platform:

l "Components" below

l "Benefits of the SA Platform" on page 21

Components
The following figure displays themajor elements of the Server Automation Platform.

Server Automation Platform components

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 15 of 325



As the above figure shows, the platform comprises the following five key elements. Each of these
elements is discussed inmore detail in subsequent sections.

l "Automation applications" below

l "SA runtime environment" on the next page

l "SA Platform resources" on page 18

l "SA Management Network" on page 20

l "SA Managed Devices" on page 21

Automation applications

As in the figure above, the Automation Applications are at the top of the stack. These are the
applications users write on top of the platform.

Automation applications can either be SA-Hosted Applications, which run in the SA Runtime
Environment, or as standalone applications that run in a completely independent context. Standalone
applications access the platform remotely throughWeb Services calls.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 16 of 325



Simple applications can be written as simple Unix shell scripts in minutes. More complex
applications—such as integration with an existing source control or ticketing system—can take a little
longer andmight involve Python or Microsoft .NET or Java coding. In either case, the platform is
designed as a language-independent system easily adopted by a wide variety of developers.

SA runtime environment

Next down the platform stack is the SA Runtime Environment, which provides a set of powerful, out-of-
the box runtime services and a corresponding language-independent programmingmodel. SA-Hosted
Applications run in the SA Runtime Environment.

The core of the runtime environment consists of two components that organize and provide access to
all managed devices in a familiar Linux/Unix shell file-and-directory paradigm:

l Global Shell:

TheGlobal Shell is a command-line interface to the Global File System (OGFS). The command-line
interface is exposed through a Linux shell such as bash that runs in a terminal window. TheOGFS
unifies the SA datamodel and the contents of managed servers—including files—into a single,
virtual file system.

l Global File System:

TheOGFS represents objects in the platform datamodel (such as facilities, customers, and device
groups) and information available on platform managed devices (such as the configuration setting
on amanaged network device or the file system of amanaged server) as a hierarchical structure of
file directories and text files. For example, in the OGFS, the /opsw/Customer directory contains
details about customer objects and the /opsw/Server directory has information about managed
servers. The /opsw/Server directory also contains subdirectories that reflect the contents (such
as file systems and registries) of themanaged servers.

This file-and-directory paradigm allows administrators familiar with shell scripting to easily write
scripts which perform the same task across different servers by iterating through the directories that
represent servers. Behind the scenes, the Global File System securely delivers and executes any
logic in the script to eachmanaged server.

The contents of devices can be accessed through theGlobal File System, a virtual file system that
represents all devices managed by SA and Network Automation (NA). Given the necessary
security authorizations, both end users and automation applications can navigate through the
OGFS to the file systems of remote servers. OnWindows servers, administrators can also access
the registry, II metabase, and COM+ objects.

SA Command Line Interface

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 17 of 325



The SA Command Line Interface (CLI) provides system administrators and platform automation
applications a way to invoke automation tasks such as provisioning software, patching devices, or
running audits from the command line. A rich syntax allows users to represent rich object types as input
or receive them as output from CLI invocations.

The CLI itself is actually programmatically generated on top of the platform API, discussed in the next
section. The advantage of this is that as soon as developers add a new API to the platform API, a
corresponding CLI method is automatically available for it. In other words, there is no lag time between
the availability of new features in the product and the availability of the corresponding CLI methods in
the platform.

SA Platform API

The SA Platform API is theWin32 API of SA: It defines a set of application programming interfaces to
get and set values as well as perform actions. The SA user interfaces, including the SA Client and the
SA Command Line Interfaces (CLI), are all built on top of the SA Platform API. The API includes
libraries for Java RMI clients andWSDLs for SOAP-basedWeb Services clients. WithWeb Services
support, programmers can create clients in popular languages such as Perl, C#, and Python.

SA Platform resources

SA Platform Resources sit beneath the SA Runtime Environment and give developers access to a rich
set of objects and actions which they can re-use andmanipulate in their own applications.

l Inventory Model

The Inventory Model provides all the information gathered by the SA about eachmanaged devices
such as make, manufacturer, CPU, operating system, installed software, and so on. Inventory
information is made available through the SA API and also appears as files (in the attr
subdirectories) in the Global File System. The Inventory Model includes objects such as Servers
and Network Devices.

Administrators can extend the data associated with inventory objects. For example, if users want to
store a picture of the device or a lease expiration date or the ID of a UPS the device is plugged into,
the platform makes it easy to add those attributes to each device record. Users can then add,
delete, and work with those attributes just as they would the attributes that come out of the box.

l Security Model

The Security Model allows developers to leverage the built-in SA authentication and authorization
security systems.

All clients of the platform—management applications, scripts, as well as the end-user interfaces
provided by SA are controlled by the same security framework.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 18 of 325



The security administrator— not the developer— creates user roles and grants permissions.
Developers can re-use all of these user roles and permissions in the context of their own
applications. For example, network administrators can write a shell script and share it with other
network administrators with the confidence that those network administrators can only run that
script on network devices they are authorized tomanage and no others.

The authorizationmechanism controls access at several levels: the types of tasks users can
perform, the servers and network devices accessed by the tasks, and the SA objects (such as
software policies).

l Environment Model

The Environment Model defines the overall business context in which devices live. In general,
devices belong to one or more customers, are located in a particular facility, and belong to one or
more groups. The platform makes each of these objects —Customers Facilities, Device Groups,
and others — available to application developers.

As with inventory objects, environment objects can easily be extended. This makes it easy, for
example, to define attributes such as the SNMP trap receiver used in a particular data center or
printers only available in a particular facility, or Apache configurations used by only a particular
business unit.

l Policy Model

The Policy Model gives developers access to all the best practices defined in SA. Policies describe
the desired state on a server or network device. For example, a patch policy describes the patches
that should be on a server, a software policy describes what software should be on a server, and so
on.

Subject matter experts define these policies which can be used by any authorized system
administrator to audit devices to discover whether what’s actually on a device differs from what
should be on the device. Programmers have access to this complete library of policies to use in
their own applications.

Software policies are organized into folders which can define security boundaries. In other words,
applications will be able to access only those software policies they are permitted to access based
on their user permissions.

l Package Repository

The Package Repository gives developers access to all the software and patches stored in SA.
These include operating system builds, operating system patches, middleware, agents, and any
other pieces of software that users have uploaded into SA.

l Event Repository

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 19 of 325



The Event Repository houses the digitally signed audit trails that the SA generates when actions
are performed, either through the user interface or programmatically with the platform. As with other
platform objects, these events are available programmatically.

l Automation Actions

Automation Actions allow developers to programmatically launch any of the actions that SA can
perform onmanaged devices, ranging from running an audit to provisioning software to applying the
latest OS patch.

The platform provides access to the same features available to end-users in the SA Client. These
features include tasks such as installing patches, provisioning operating systems, and installing
and removing software policies. In fact, the SA Client calls the same APIs that are exposed
programmatically through the SA Runtime Environment.

l Remote Access

Remote Access gives developers programmatic access to themanaged device’s file system (in the
case of servers) and execution environment (in the case of all devices). Developers can easily write
applications which check for the existence of a file or particular software package, run operating
system commands to check disk usage, or run system scripts to perform routinemaintenance
tasks.

SA Management Network

TheManagement Network is a powerful combination of technologies which enable developers to
securely access any device under management. TheManagement Network delivers several key
services:

l Connectivity: Allows the platform (and thus automation applications) to reach any managed
device.

l Security: Includes SSL/TLS-based encryption, authentication, andmessage integrity.

l Address space virtualization: Enables the platform to locate servers across multiple overlapping
IP address spaces. Most complex enterprise networks havemultiple private IP address spaces.

l Availability: Allows system architectures to define redundant paths to any givenmanaged device
so that devices can still be reached despite failures in any given network path.

l Caching: Enables servers to download software and patches from a nearby server rather than a
distant server, saving both time and network connectivity charges.

l Bandwidth throttling: Lets system architectures determine how much bandwidth SA and any SA
applications can consume as it traverses the network to a particular device.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 20 of 325



l Least cost routing: Allows system designers to set up rules governing which paths to use to reach
a particular device tominimize network connectivity costs.

SA Managed Devices

At the bottom of the platform stack are the actual devices under management. The platform manages
over 65 server OS versions and over 35 different network device vendors with thousands of device
models/versions supported out of the box.

The list of supported devices is constantly being updated. Platform developers and script writers
benefit directly from this device list since their automation applications can consistently reach an ever
growing list of managed devices in the same, familiar platform programming environment.

Benefits of the SA Platform
The SA Platform has the following key benefits.

l "Powerful security" below

l "Rich services" on the next page

l "Easily accessible to a broad spectrum of programmers" on the next page

Powerful security

The platform delivers the following comprehensive security mechanisms so developers don’t have to
worry about providing them in their own applications.

l Secure communication channels: End-to-end communication from the automation applications
out to themanaged devices is encrypted and authenticated.

l Role-based access control: The platform respects the role-based access controls built into the
SA so developers can easily share their applications with the con.dence that they will run just on
those devices that an administrator has been granted access to.

l Digitally signed audit trail: After an automation application runs, the platform generates a digitally
signed audit trail capturing who ran the application, the time of the application execution, and the
devices on which the application ran.

l Comprehensive reach The platform provides comprehensive reach across all devices so system
administrators and developers don’t have to worry about how to get to a device:

l Market-leading platform coverage: Supported devices include over 65 server OS versions and
more than 1,000 network devices.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 21 of 325



l In any physical location: The devices can be located anywhere in the world whether in amajor
data center or a retail store or a satellite of.ce.

l In any IP address space: The devices can belong to any IP address space, as the platform
supports multiple overlapping IP address spaces.

l In DMZs: Devices can be located in DMZs or other difficult-to-access network spaces without
requiring the developer or system administrator to worry about the details of reaching the device (for
example, through a bastion host).

Rich services

The platform exposes practically all the relevant data and actions in the underlying automation system:

l Rich data out-of-the-box: Developers have easy access to a rich set of data generated in part by
the platform itself (such as device inventory data and facility information) and in part by users
interacting with the platform (such as device groups customers, best practices policies, and
uploaded software, patches, and scripts). Developers can easily write applications to read and write
this data.

l Extensible data store: Developers can easily extend the native platform objects to include their
own data. Device inventory models can be extended to include attributes the platform does not
natively discover. Customer and facility objects can be extended to include attributes that should
guide the provisioning or auditing of devices related to that customer.

l Automation tasks: The platform exposes nearly all the capabilities of the underlying automation
systems to developers: patching, provisioning, auditing, and others. This enables developers
writing complex work flows that spanmultiple systems to simply call these actions from the context
of an automation application.

Easily accessible to a broad spectrum of programmers

The platform is explicitly designed to appeal to a broad range of developers ranging from Unix shell and
Visual Basic script writers to Perl and Python programmers to enterprise .NET or Java programmers.
The platform’s Runtime Services layer makes most platform objects available in a file-and-directory
paradigm andmost platform services available from a command-line interface (the SA CLI). This
allows system administrators used to writing shell scripts to instantly use the platform without having
to learn a new programming language and tool. They can get started with their favorite text editor, a
familiar Unix shell, and then quickly develop scripts.

For more complicated applications and integration with existing systems, system programmers can
use whatever programming tools and languages that haveWeb Services bindings.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 22 of 325



SA Platform API design
The Platform API is defined by Java interfaces and organized into Java packages. To support a variety
of client languages and remote access protocols, the API follows a function-oriented, call-by-value
model.

l "Services" below

l "Objects in the API" on the next page

l "Exceptions" on page 25

l "Event Cache" on page 25

l "Searches" on page 26

l "Security" on page 26

l "API Documentation and the Twister" on page 27

l "Constant field values" on page 27

Services
In the Platform API, a service encapsulates a set of related functions. Each service is specified by a
Java interface with a name ending in Service, such as ServerService, FolderService, and
JobService.

Services are the entry points into the API. To access the API, clients invoke themethods defined by
the server interface. For example, to retrieve a list of software installed on amanaged server, a client
invokes the getInstalledSoftwaremethod of the ServerService interface. Examples of other
ServerServicemethods are checkDuplex, setPrimaryInterface, and changeCustomer.

The SA Platform API contains over 70 services – toomany to describe here. The following table lists a
few of the services that youmay want to try out first. For a full list of services, in a browser go to the
URL shown in "API Documentation and the Twister" on page 27.

Service name Some of the operations provided by this service

AuditTaskService Create, get, and run audit tasks.

ConfigurationService Create application configurations, get the software policies using an

Partial list of services of the SA API

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 23 of 325



Service name Some of the operations provided by this service

application configuration.

DeviceGroupService Create device groups, assign devices to groups, get members of groups,
set dynamic rules.

EventCacheService Trigger actions such as updating a client-side cache of value objects. See
"Event Cache" on the next page.

FolderService Create folders, get children of folders, set customers of folders, move
folders.

InstallProfileService Create, get, and update OS installation profiles.

JobService Get progress and results of jobs, cancel jobs, update job schedules.

NasConnectionService Get host names of NA servers, run commands on NA servers.

NetworkDeviceService Get information such as families, names, models, and types, according to
specified search filters.

SequenceService Create, get, and runOS sequences to install operating systems on
servers.

ServerService Get information about servers, reconcile (remediate) policies on servers
(install software), get and set custom fields and attributes, execute OS
sequences (install OS).

SoftwarePolicyService Create software policies, assign policies to servers, get contents of
policies, remediate (reconcile) policies with servers.

SolPatchService Install and uninstall Solaris patches, add policy overrides.

VirtualColumnService Manage custom fields and custom attributes.

WindowsPatchService Install and uninstall Windows patches, add policy overrides.

Partial list of services of the SA API, continued

Objects in the API
Although the SA Platform API is function-oriented, its design enables clients to create object-oriented
libraries. TheSA datamodel includes objects such as servers, folders, and customers. These are
persistent objects; that is, they are stored in theModel Repository. In the API, these objects have the
following items:

l A service that defines the object’s behavior. For example, themethods of the ServerService
specify the behavior of amanaged server object.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 24 of 325



l An object (identity) reference that represents an instance of a persistent object. For example,
ServerRef is a reference that uniquely identifies amanaged server. In the ServerService, the first
parameter of most methods is ServerRef, which identifies themanaged server operated on by the
method. The Id attribute of a ServerRef is the primary key of the server object stored in theModel
Repository.

l One ormore value objects (VOs) that represent the datamembers (attributes, fields) of a persistent
object. For example, ServerVO contains attributes such as agentVersion and loopbackIP. The
attributes of ServerHardwareVO include manufacturer, model, and assetTag. Most attributes
cannot be changed by client applications. If an attribute can be changed, then the API
documentation for the setter method includes “Field can be set by clients.”

For performance reasons, update operations on persistent objects are coarse-grained. The update
method of ServerService, for example, accepts the entire ServerVO as an argument, not individual
attributes.

Exceptions
All of the API exceptions that are specific to SA are derived from one of the following exceptions:

OpswareException - Thrownwhen an application-level error occurs, such as when an end-user enters
an illegal value that is passed along to amethod. Typically, the client application can recover from this
type of exception. Examples of exceptions derived from OpswareException are NotFoundException,
NotInFolderException, and JobNotScheduledException.

OpswareSystemException - Thrownwhen an error occurs within SA. Usually, the SA Administrator
must resolve the problem before the client application can run.

The following exceptions are related to security:

AuthenticationException - Thrownwhen an invalid SA user name or password is specified.

AuthorizationException - Thrownwhen the user does not have permission to perform an operation
or access an object. For more information on permissions, see the SA 10.51 Administration Guide.

Event Cache
Some client applications need to keep local copies of SA objects. Accessed by clients through the
EventCacheService, the cache contains events that describe themost recent changemade to SA
objects. Clients can periodically poll the cache to check whether objects have been created, updated,

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 25 of 325



or deleted. The cachemaintains events over a configured sliding window of time. By default, events for
themost recent two hours aremaintained. To change the sliding window size, edit theWeb Services
Data Access Engine configuration file, as described in the Server Automation Administration Guide on
the HPE SSO portal.

Searches
The searchmechanism of the SA Platform API retrieves object references according to the attributes
(fields) of value objects. For example, the getServerRefsmethod searches by attributes of the
ServerVO value object. The getServerRefsmethod has the following signature:

public ServerRef[] getServerRefs(Filter filter)...

Each get*Refsmethod accepts the filter parameter, an object that specifies the search criteria. A
filter parameter with a simple expression has the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see "Filter grammar" on page 193.)

The following examples are filter parameters for the getServerRefsmethod:

ServerVO.hostName = "d04.example.com"
ServerVO.model BEGINS_WITH "POWER"
ServerVO.use IN "UNKNOWN" "PRODUCTION"

Complex expressions are allowed, for example:

(ServerVO.model BEGINS_WITH "POWER") AND (ServerVO.use = "UNKNOWN")

Not every attribute of a value object can be specified in a filter parameter. For example,
ServerVO.state is allowed in a filter parameter, but ServerVO.OsFlavor is not. To find out which
attributes are allowed, locate the value object in the API documentation and look for the comment,
“Field can be used in a filter query.”

Security
Users of the SA Platform must be authenticated and authorized to invokemethods on the SA
Automation Platform API. To connect to SA, a client supplies an SA user name and password
(authentication). To invokemethods, the SA user must belong to a user group with the necessary
permissions (authorization). These permissions restrict not only the types of operations that users can
perform, but also limit access to the servers and network devices used in the operations.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 26 of 325



Before application clients can run on the platform, the SA Administrator must specify the required users
and permissions with the CommandCenter. For instructions, see the "User Group and Setup" section
in the SA 10.51 Administration Guide. For information about security-related exceptions, see
"Exceptions" on page 25.

Communication between clients and SA is encrypted. ForWeb Services clients, the request and
response SOAP messages (which implement the operation calls) are encrypted using SSL over HTTP
(HTTPS).

API Documentation and the Twister
SA includes API documentation (Javadocs) that describe the SA Platform API. To access the API
documentation, specify the following URL in a browser:

https://<SA_core_host>/twister

The <SA_core_host> is the IP address or host name of the SA core server running the Command
Center component.

The Twister is a program that lets you invoke API methods, one at a time, from within a browser. For
example, to invoke the ServerService.getServerVO method, perform the following steps:

1. Open the API documentation in a browser.

2. In the All Classes pane, select com.opsware.server.

3. In the com.opsware.server pane, select ServerService.

4. In themain pane, scroll down to the getServerVOmethod.

5. Click Try It for the getServerVOmethod.

6. Enter your SA user name and password.

7. In the Twister pane for ServerService.getServerVO, enter the ID of amanaged server in the oid
field.

8. Click Go. The Twister pane displays the attributes of the ServerVO object returned.

Constant field values
Some of the API’s value objects (VOs) have fields with values defined as constants. For example,
JobInfoVO has a status field that can have a value defined by constants such as STATUS_ACTIVE,
STATUS_PENDING, and so forth. The API specifies constants as Java static final fields, but the

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 27 of 325



WSDLs generated from the API do not define the constants. To view the definitions for constants, in
the API documentation, go to the Constant Field Values page:

https://<SA_core_host>/twister/docs/constant-values.html

For example, the Constant Field Values page defines STATUS_ACTIVE as the integer 1.

Supported clients
The SA platform supports programmers with different skills, from system administrators who write
shell scripts to .NET and Java programmers familiar with the latest tools and technologies. All
supported clients call the same set of methods, which are organized into the services of the SA
Platform. A developer can create the following types of clients that call methods in the SA Platform
API:

l SA Command-Line Interface (CLI): Launched from Global Shell sessions, shell scripts can
access the SA Platform API by invoking the CLI methods, which are executable programs in the
OGFS. Each CLI method corresponds to amethod in the API.

l Web Services: Using SOAP over HTTPS, these clients send requests to SA and get responses
back. TheWeb Services operations (defined inWSDLs) correspond to themethods in the API.
Developers can writeWeb Services clients in popular languages such as Perl and C#.

l Java RMI: These clients invoke remote Java objects from other Java virtual machines.

l Pytwist: These Python programs can run on an SA Core or managed servers.

TheWeb Services and Java RMI clients can run on servers different than the SA Core or managed
servers. The CLI methods execute in a Global Shell session on the core server where the OGFS is
installed.

Platform Developer Guide examples
ThePlatform Developer Guide examples file is a ZIP archive containing sample codes for illustrating
different techniques for developing software that makes use of the API provided by Server Automation.
The ZIP file contains the sample codes provided in this document along with other referred samples.

You can download thePlatform Developer Guide examples ZIP archive from
https://softwaresupport.hpe.com/km/KM00417670. The zip file is also bundled with theAll Manuals
Download SA 10.5 archive available on the support site.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 28 of 325

https://softwaresupport.hpe.com/km/KM00417670


SA CLI methods
End-users access SA through the SA Client. At times, advanced users need to access SA in a
command-line environment to perform bulk operations or repetitive tasks onmultiple servers. In SA, the
command-line environment consists of the Global Shell (OGSH), Global File System (OGFS), and SA
Command-Line Interface (CLI) methods.

To perform SA operations from the command line, you invoke the SA CLI methods from within an
OGSH session. An SA CLI method is an executable in the OGFS that corresponds to amethod in the
SA API. When you run an SA CLI method, the underlying API method is invoked.

To understand this section, you should be familiar with the OGSH and theOGFS. For more information,
see the OGSH in the Server Automation Using Guide on the HPE SSO portal.

For information on the oupload and odownload commands, see the OCLI 1.0 in the Server Automation
Using Guide on the HPE SSO portal.

Method invocation
As shown in the following figure, when you invoke an SA CLI method in anOGSH session, the
following operations occur:

1. TheOGSH parses the command and parameters you entered to determine the API method.

2. TheOGSH invokes the underlying API method.

3. An authorization check verifies that the user has permission to perform this operation. SA then
performs the operation.

4. The API method passes the results back to the SA CLI method.

5. The SA CLI method writes the return value to the stdout of the OGSH session. If an exception
was thrown, the SA CLI method returns a non-zero status.

Overview of an SA CLI method invocation

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 29 of 325



Security
SA CLI methods use the same authentication and authorizationmechanisms as the SA Client. When
you start an OGSH session, SA authenticates your SA user. When you run an SA CLI method,
authorization is performed. To run an SA CLI method successfully, your SA user must belong to a
group that has the required permissions. For more information on security, see the Server Automation
Administration Guide on the HPE SSO portal.

Mapping between API and SA CLI methods
TheOGFS represents SA objects as directory structures, object attributes as text files, and API
methods as executables. These executables are the SA CLI methods. Every SA CLI methodmatches
an underlying API method. Themethod name, parameters, and return value are the same for both types
of methods.

For example, the setCustomer API method has the following Java signature:

public void setCustomer(ServerRef self,

CustomerRef customer)...

In the OGFS, the corresponding SA CLI method has the following syntax:

setCustomer self:i=server-id customer:i=customer-id

Note that the parameter names, self and customer, are the same in both languages. (The :i
notations are called format specifiers, which are discussed later in this section.) In this example, the
return type is void, so the SA CLI method does not write the result to the stdout. For information on
how SA CLI methods return strings that represent objects, see "Return values " on page 49.

Differences between SA CLI methods and

Unix commands
Although you can run both Unix commands and SA CLI methods in the OGSH, SA CLI methods differ
in several ways:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 30 of 325



l Unlikemany Unix commands, SA CLI methods do not read data from stdin. Therefore, you cannot
insert an SA CLI method within a group of commands connected by pipes (|). (However, SA CLI
methods do write to stdout.)

l Most Unix commands accept parameters as flags and values (for example,
ls -l /usr). With SA CLI methods, command-line parameters are name-value pairs, joined by
equal signs.

l Unix commands are text based: They accept and return data as strings. In contrast, SA CLI
methods can accept and return complex objects.

l With SA CLI methods, you can specify the format of the parameter and return values. Unix
commands do not have an equivalent feature.

SA CLI method tutorial
This topic introduces you to the SA CLI methods with examples you can try in your own environment.
After completing this tutorial, you should be able to run SA CLI methods, examine the self file of an SA
object, and create a script that invokes SA CLI methods onmultiple servers.

Before starting the tutorial, you need the following capabilities:

l You can log on to the SA Client.

l Your SA user has Read & Write permissions on at least onemanaged server. Typically assigned by
a security administrator, permissions are discussed in the Server Automation Administration Guide
on the HPE SSO portal.

l Your SA user has all OGSH permissions on the samemanaged server. For information on these
permissions, see the “aaa Utility” section in the Server Automation Using Guide on the HPE SSO
portal.

l You are familiar with the OGSH and theOGFS. If these features are new to you, before proceeding
with this tutorial, see the Global Shell section inthe Server Automation Using Guide on the HPE
SSO portal.

The example commands in this tutorial operate on aWindows server named abc.example.com. This
server belongs to a server group named All Windows Servers. When trying out these commands,
substitute abc.example.comwith the host name of themanaged server you have permission to
access.

1. Open anOGSH session.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 31 of 325



You can open aGlobal Shell session from within the SA Client. From theActionsmenu, select
Global Shell. You can also open anOGSH session from a terminal client running on your
desktop. For instructions, seeOpening aGlobal Shell Session section in the Server Automation
Using Guide on the HPE SSO portal.

2. List the SA CLI methods for a server.

The method subdirectory of a specific server contains executable files—themethods you can run
for that server. The following example lists the SA CLI methods for the abc.example.com server:

$ cd /opsw/Server/@/abc.example.com/method
$ ls -1
addDeviceGroups
attachPolicies
attachVirtualColumn
checkDuplex
clearCustAttrs
...

Thesemethods have instance context – they act on a specific server instance (in this case,
abc.example.com). The server instance can be inferred from the path of themethod. Methods
with static context are discussed in step 5.

3. Run an SA CLI method without parameters.

To display the public server groups that abc.example.com belongs to, invoke the
getDeviceGroupsmethod:

$ cd /opsw/Server/@/abc.example.com/method
$ ./getDeviceGroups
Accounting App
All Windows Servers
Visalia Vendors

4. Run amethod with a parameter.

Command-line parameters for methods are indicated by name-value pairs, separated by white
space characters. In the following invocation of setCustomer, the parameter name is customer
and the value is 20039. The :i at the end of the parameter name is an ID format specifier, which is
discussed in a later step.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 32 of 325



The followingmethod invocation changes the customer of the abc.example.com server from
Opsware to C39. The ID of customer C39 is 20039.

$ cd /opsw/Server/@/abc.example.com
$ cat attr/customer ; echo
Opsware
$ method/setCustomer customer:i=20039
$ cat attr/customer ; echo
C39

5. List the static context methods for managed servers.

Static context methods reside under the /opsw/api directory. Thesemethods are not limited to a
specific instance of an object.

To list the static methods for servers, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method

$ ls

Themethods listed are the same as those displayed in step 2.

6. Run amethod with the self parameter.

This step invokes getDeviceGroups as a static context method. Unlike the instance context
method shown in step 3, the static context method requires the self parameter to identify the
server instance.
For example, suppose that the abc.example.com server has an ID of 530039. To list the groups of
this server, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$ ./getDeviceGroups self:i=530039
Accounting App
All Windows Servers
Visalia Vendors

Compare this invocation of getDeviceGroupswith the invocation in step 3 that demonstrates
instance context. Both invocations run the same underlyingmethod in the API and return the same
results.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 33 of 325



7. Examine the self file of a server.

Within SA, eachmanaged server is an object. However, OGFS is a file system, not an object
model. The self file provides access to various representations of an SA object. These
representations are the ID, name, and structure.

The default representation for a server is its name. For example, to display the name of a server,
enter the following commands:

$ cd /opsw/Server/@/abc.example.com
$ cat self ; echo
abc.example.com

If you know the ID of a server, you can get the name from the self file, as in the following
example:

$ cat /opsw/.Server.ID/530039/self ; echo
abc.example.com

8. Indicate an ID format specifier on a self file.

To select a particular representation of the self file, enter a period, then the file name, followed by
the format specifier. For example, the following cat command includes the format specifier (:i) to
display the server ID:

$ cd /opsw/Server/@/abc.example.com
$ cat .self:i ; echo
com.opsware.server.ServerRef:530039

This output shows that the ID of abc.example.com is 530039. The
com.opsware.server.ServerRef is the class name of a server reference, the corresponding
object in the SA API.

Note: The leading period is required with format specifiers on files andmethod return values,
but is not indicated with method parameters.

9. Indicate the structure format specifier.

The structure format specifier (:s) indicates the attributes of a complex object. The attributes are
displayed as name-value pairs, all enclosed in curly braces. Structure formats are used to specify

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 34 of 325



method parameters on the command-line that are complex objects. For an examplemethod call,
see "Complex objects and arrays as parameters" on page 48.

The following example displays abc.example.comwith the structure format:

$ cd /opsw/Server/@/abc.example.com
$ cat .self:s ; echo
{
managementIP="192.168.8.217"
modifiedBy="spujare"
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1149012848000
origin="ASSIMILATED"
osSPVersion="SP4"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1150673874000
osFlavor="Windows 2000 Advanced Server"
. . .

The attributes of a server are also represented by the files in the attr directory, for example:

$ pwd
/opsw/Server/@/abc.example.com
$ cat attr/osFlavor ; echo
Windows 2000 Advanced Server

10. Create a script that invokes an SA CLI method.

The example script shown in this step iterates through the servers of the public server group
named All Windows Servers. On each server, the script runs the getCommCheckTime SA CLI
method.

First, return to your home directory in the OGFS:

$ cd
$ cd public/bin

Next, run the vi editor:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 35 of 325



$ vi

In vi, insert the following lines to create a bash script:

#!/bin/bash
# iterate_time.sh

METHOD_DIR="/opsw/api/com/opsware/server/ServerService/method"
GROUP_NAME="All Windows Servers"
cd "/opsw/Group/Public/$GROUP_NAME/@/Server"

for SERVER_NAME in *
do
SERVER_ID=`cat $SERVER_NAME/.self:i`
echo $SERVER_NAME
$METHOD_DIR/getCommCheckTime self:i=$SERVER_ID
echo
echo
done

Save the file in vi, naming it iterate_time.sh. Quit vi.

Change the permissions of iterate_time.sh with chmod, and then run it:

$ chmod 755 iterate_time.sh
$ ./iterate_time.sh
abc.example.com
2006/06/20 16:46:56.000
. . .

Format specifiers
Format specifiers indicate how values are displayed or interpreted in the SA CLI environment. You can
apply a format specifier to amethod parameter, a method return type, the self file, and an object
attribute. To indicate a format specifier, append a colon followed by one of the letters shown in the
following table.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 36 of 325



If a format specifier is indicated for a file or amethod return value, a periodmust precede the file or
method name. For method return values that have format specifiers, the leading period is not included.

Format
specifier Description Valid object types

Allowed as
method
parameter?

:n Name: A string identifying the object.
Unique names are preferred, but not
required. For objects that do not have a
name, this representation is the same as
the ID representation.

SA objects Yes. If the
name is
ambiguous, an
error occurs.

:i ID: A format that uniquely identifies the
object type and its SA ID. Also known as
an object reference.

SA objects;
Dates
(java.util.
Calendar) objects

Yes. If the
type is clear
from the
context, the
typemay be
omitted.

:s Structure: A compact representation
intended for specifying complex values on
the command-line. Attributes are enclosed
in curly braces.

Any complex object Yes

:d Directory: Represents an attribute as a
directory in the OGFS.

Any complex object that is
an attribute. This
representation cannot be
used for method
parameters or return
values.

No

Summary of format specifiers

Position of format specifiers
A format specifier immediately follows the item it affects. For files, a format specifier follows the file
name. In the following example, note the leading period:

cat .self:s

When applied to amethod return type, a format specifier follows themethod name. The following
invocation displays the IDs of the groups returned:

./.getDeviceGroups:i

Withmethod parameters, a format specifier follows the parameter name and precedes the equal sign,
as in the following example:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 37 of 325



./setCustomer self:i=9977 customer:i=239

A method parameter with a format specifier does not have a leading period.

Default format specifiers
Every value or object has a default format specifier. For example, the name format specifier is the
default for the osVersion attribute. The following two cat commands generate the same output:

cd /opsw/Server/@/d04.example.com/attr
cat osVersion
cat .osVersion:n

The name format specifier is the default for SA objects stored in theModel Repository, such as servers
and customers. The structure format specifier is the default for other complex objects.

Examples of ID format specifier
The next example displays the ID of the facility that the d04.example.com server belongs to:

cd /opsw/Server/@/d04.example.com/attr
cat .facility:i ; echo

(The preceding echo command is optional. It generates a new-line character, whichmakes the output
easier to read. The semicolon separates bash statements entered on the same line.)

The output of a value with the ID format specifier is prefixed by the Java class name. For example, if
the facility value has an ID of 39, then the previous cat command displays the following output:

com.opsware.locality.FacilityRef:39

The following invocation of the getDeviceGroupsmethod lists the IDs of the public server groups that
d04.example.com belongs to:

cd /opsw/Server/@/d04.example.com/method
./.getDeviceGroups:i

Formore ID format examples, see "The self file" on page 44.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 38 of 325



Structure format specifier syntax
The structure format represents complex objects, which can contain various attributes. Youmight use
this format to specify amethod parameter that is a complex object. For examples, see "Complex
objects and arrays as parameters" on page 48.

The structure format is a series of name-value pairs, separated by white space characters, enclosed in
curly braces. Each name-value pair represents an attribute. The structure format has the following
syntax:

{ name-1=value-1 name-2=value-2 . . . }

Here’s a simple example:

{ version=10.1.3 isCurrent=true }

Any white space character can be used as a delimiter:

{
version=10.1.3
isCurrent=true

}

Attributes can be specified as structures, enabling the representation of nested objects. In the following
example, the versionDesc attribute is represented as a structure:

{
program=agent
versionDesc={

version=10.1.3
isCurrent=true
comment="Latest version"
}

}

To specify an array within a structure, repeat the attribute name. The following structure contains an
array named steps that has three elements with the values 33, 14, and 28.

{ moduleName="Some Initiator" steps=33 steps=14 steps=28 }

Examples of structure format specifier
The following example specifies the structure format for the facility attribute:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 39 of 325



cd /opsw/Server/@/d04.example.com/attr
cat .facility:s

This cat command generates the following output. Note that customers is an array, which contains an
element for every customer associated with this facility.

{
modifiedBy="192.168.9.246"
customers="Customer Independent"
customers="Not Assigned"
customers="Opsware Inc."
customers="Acme Inc."
. . .
ontogeny="PROD"
createdBy=
status="ACTIVE"
createdDt=-1
realms="Transitional"
realms="C39"
realms="C39-agents"
modifiedDt=1146528752000
name="C39"
displayName="C39"

}

The following invocation of getDeviceGroups indicates the structure format specifier for the return
value:

cd /opsw/Server/@/d04.example.com/method
./.getDeviceGroups:s

This call to getDeviceGroups displays the following output. Because d04.example.com belongs to
two server groups, the output includes two structures. In each structure, the devices array has
elements for the servers belonging to that group.

{
dynamic=true
devices="m302-w2k-vm1.dev.example.com"
devices="d04.example.com"
. . .
status="ACTIVE"
34 Chapter 2
public=true
fullName="Device Groups Public All Windows Servers"
description="test"
createdDt=-1
modifiedDt=1142019861000
parent="Public"

}

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 40 of 325



{
dynamic=true
devices="opsware-nibwp.build.example.com"
devices="glengarriff.snv1.dev.example.com"
devices="millstreet"
. . .
fullName="Device Groups Public z_testsrvgroup"
. . .

}

The structure format specifier is the default for methods that retrieve value objects (VOs). For example,
the following two calls to getServerVO are equivalent:

cd /opsw/Server/@/d04.example.com/method
./.getServerVO:s./getServerVO

In this example, getServerVO displays the following output:

{
managementIP="192.168.198.93"
modifiedBy=
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1145308867000
origin="ASSIMILATED"
osSPVersion="RTM"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1147678609000
osFlavor="Windows Server 2003, Standard Edition"
peerIP="192.168.198.93"
modifiedDt=1145308868000
. . .
serialNumber="HVKZS51"

}

This structure represents the ServerVO class of the SA API. Every attribute in this structure
corresponds to a file in the attr directory. In the next example, the getServerVO and cat commands
both display the value of the serialNumber attribute of a server:

cd /opsw/Server/@/d04.example.com
./method/getServerVO | grep serialNumber
cat attr/serialNumber ; echo

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 41 of 325



Examples of directory format specifier
The following command changes the current working directory to the customer associated with the
server d04.example.com:

cd /opsw/Server/@/d04.example.com/attr/.customer:d

The next command lists the name of this customer:

cat /opsw/Server/@/d04.example.com/attr/\
.customer:d/attr/name

The directory specifier can be used only in command arguments that require directory names. The
following cat command fails because it attempts to display a directory:

cat /opsw/Server/@/d04.example.com/attr/.customer:d # WRONG!

However, the next command is legal:

ls /opsw/Server/@/d04.example.com/attr/.customer:d

Value representation
Because they run in a shell environment (the OGSH), SA CLI methods accept and return data as
strings. However, the underlying API methods can accept and return other data types, such as
numbers, Booleans, and objects. The sections that follow describe how theOGFS and SA CLI
methods represent non-string data types.

SA objects in the OGFS
The SA datamodel includes objects such as servers, server groups, customers, and facilities. In the
OGFS, these objects are represented as directory structures:

/opsw/Customer
/opsw/Facility
/opsw/Group
/opsw/Library
/opsw/Realm
/opsw/Server
. . .

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 42 of 325



The preceding list is not complete. To see the full list, enter ls /opsw.

Object attributes
The attributes of an SA object are represented by text files in the attr subdirectory. The name of each
file matches the name of the attribute. The contents of a file reveals the value of the attribute.

For example, the /opsw/Server/@/buzz.example.com/attr directory contains the following files:

agentVersion
codeset
createdBy
createdDt
customer
defaultGw
36 Chapter 2
description
discoveredDate
facility
hostName
locale
lockInfo
loopbackIP
managementIP
manufacturer
. . .

To display themanagement IP address of the buzz.example.com server, enter the following
commands:

cd /opsw/Server/@/buzz.example.com/attr
cat managementIP ; echo

Custom attributes
Custom attributes are name-value pairs that you can assign to SA objects such as servers. In the
OGFS, custom attributes are represented as text files in the CustAttr subdirectory. You can create
custom attributes in anOGSH session by creating new text files under CustAttr. The following
example creates a custom attribute named MyGreeting, with a value of hello there, on the
buzz.example.com server:

cd /opsw/Server/@/buzz.example.com/CustAttr
echo -n "hello there" > MyGreeting

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 43 of 325



Formore examples, see the “Managing Custom Attributes” section in the SA 10.51 User Guide.

The self file
The self file resides in the directory of an SA object such as a server or customer. This file provides
access to various representations of the current object, depending on the format specifier. For details,
see "Format specifiers" on page 36.

To list the ID of the buzz.example.com server, enter the following commands:

cd /opsw/Server/@/buzz.example.com
cat .self:i ; echo

For a server, the default format specifier is the name. The following commands display the same
output:

cat self ; echo
cat .self:n ; echo

The next command lists the attributes of a server in the structure format:

cat .self:s

Primitive values
The following table indicates how primitive values are converted between the API and their string
representations in SA CLI methods. Except for Dates, primitive values do not support format
specifiers. Dates support ID format specifiers.

Primitive
type Java equivalent Output from SA CLI method

Input to SA CLI
methods

String java.lang.
String

Character string, presented in the
encoding of the current session.

Character string,
converted to Unicode
from the current session
encoding.

Number byte, short,
int, long,
float, double;
and their object
equivalents

Decimal format, not localized.
Scientific notation for very large or
small values.

Examples -
Decimal: 101, 512.34,
-104
Hex: 0x1F32, 0x2e40
Octal: 0543

Conversion between primitive types and SA CLI Methods

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 44 of 325



Primitive
type Java equivalent Output from SA CLI method

Input to SA CLI
methods

Scientific: 4.3E4,
6.532e-9, 1.945e+02

Boolean boolean,
Boolean

true or false The string “true” and all
mixed-case variants
evaluate to true. All
other values evaluate to
false.

Binary
data

byte[], Byte[] Binary string. No conversion from
session encoding.

Binary string. No
conversion to session
encoding.

Date java.util.
Calendar

Date value. By default, presented in
this format:
YYYY/MM/DD HH:MM:SS.mmm
The time is presented in UTC. If an ID
format specifier is indicated, the value
is presented as the number of
milliseconds since the epoch, in UTC.

Same as output.

Conversion between primitive types and SA CLI Methods, continued

Arrays
The representation of array objects depends on whether they are standalone (an array attribute file or a
method return value) or contained in the structure of a complex object.

First, standalone array objects are presented according the underlying type, separated by new-line
characters. Within an array element, a new-line character is escaped by \n and a back slash by \\.

Array values can be output or input using any representation supported by the underlying type. For
example, by default, the getDeviceGroupsmethod lists the groups as names:

All Windows Servers
Servers in Austin
Testing Pool

If you indicate the ID format specifier, (.getDeviceGroups:i) themethod displays the IDs of the
groups:

com.opsware.device.DeviceGroupRef:15960039
com.opsware.device.DeviceGroupRef:10390039
com.opsware.device.DeviceGroupRef:17380039

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 45 of 325



Second, an array contained in the structure of a complex object is represented as a set of name-value
pairs, using the attribute as the name. The attribute appears multiple times, once for each element in
the array. The order in which the attributes appear determine the order of the elements in the array. The
following example shows a structure that contains two attributes, a string called subject and a three-
element array of numbers called ranks:

{ subject=”my favorites” ranks=17 ranks=44 ranks=24 }

Arrays can also be represented by directories. Within an array directory, each array element has a
corresponding file (for primitive types) or subdirectory (for complex types). The name of each entry is
the index number of the array element, starting with zero.

For an array that is the attribute of a complex object, you shouldmodify the array by editing its attribute
file. This action completely replaces the array with the contents of the edited file.

For an array containing elements that are complex objects, you shouldmodify the array by changing its
directory representation. To change an element value, edit the element file. For example, suppose you
have an array with five string elements. The ls command lists the elements as follows:

0 1 2 3 4

The following command changes the value of the third element:

echo -n "My new value" > 2

SA CLI method parameters and return values
This section discusses the details of method context (instance or static), parameter usage, return
values, and exit status.

Method context and the self parameter
In the OGFS, amethod resides in multiple locations. The location of amethod is related to its context,
which is either instance or static.

Themethod with instance context resides in method directory of a specific SA object. Themethod
invocation does not require the self parameter. The instance of the object affected by themethod is
implied by themethod location. The following example changes the customer of the d04.example.com
server:

cd /opsw/Server/@/d04.example.com/method
./setCustomer customer:i=9

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 46 of 325



A method with static context resides in a single location under /opsw/api. Themethod invocation
requires the self parameter to identify the instance affected by themethod. In the following static
context example, self:i specifies the ID of themanaged server:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomer self:i=230054 customer:i=9

Passing arguments on the command-line
The command-line arguments are specified as name-value pairs, joined by the equal sign (=). The
name-value pairs are separated by one or more white space characters, typically spaces. The names
on the command-linematch the parameter names of the corresponding Javamethod in the SA API.

For example, in the SA API, the setCustomFieldmethod has the following definition:

public void setCustomField(CustomFieldReference self,
java.lang.String fieldName, java.lang.String strValue)...

The following SA CLI method example assigns a value to a custom field of the server with ID 3670039:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomField self:i=3670039 \
fieldName="Service Agreement" strValue="Gold"

Writer’s Note: check the above command by running it (TBD)

As described in the previous section, amethod with an instance context does not require the self
parameter. The following setCustomField example is equivalent to the preceding example:

cd /opsw/.Server.ID/3670039
./setCustomField \
fieldName="Service Agreement" strValue="Gold"

You can specify the command-line arguments in any order. The following two SA CLI method
invocations are equivalent:

./setCustomField fieldName="My Stuff" strValue="abc"

./setCustomField strValue="abc" fieldName="My Stuff"

To specify a null value for a parameter, either omit the parameter or insert a white space after the equal
sign. In the following examples, the value of myParam is null:

./someMethod myField="more info" myParam= anotherParam=9834

./someMethod myField="more info" anotherParam=9834

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 47 of 325



Specifying the type of a parameter
If a method has an abstract type for a parameter, youmust specify the concrete type as well as the
value. In the following example, the com.opsware.folder.FolderRef type is required:

cd /opsw/api/com/opsware/folder/FolderService/method
./remove self:i="com.opsware.folder.FolderRef:730555"

If you do not specify the concrete type, the following error message is displayed:

Object type type-name is abstract. Specify a concrete sub-type.

Complex objects and arrays as parameters
To pass an argument that is a complex object, enclose the object’s attributes in curly braces, as shown
in "Structure format specifier syntax " on page 39.

The following example creates a public server group named AllMine. The createmethod has a single
parameter, pattern, which encloses the parent and shortName attributes in curly braces. In this
example, getPublicRoot returns 2340555, the ID of the top public group.

cd /opsw/api/com/opsware/device/DeviceGroupService/method
./.getPublicRoot:i ; echo
./create “pattern={ parent:i=2340555 shortName=’AllMine’ }”

Specify array parameters by repeating the parameter name, once for each array element. For example,
the following invocation of the assignmethod specifies the first two elements in the array parameter
named policies:

cd /opsw/api/com/opsware/swmgmt
cd SoftwarePolicyService/method
./attachPolicies self:i=4220039 \
policies:i=4400335 policies:i=4400942

Overloaded methods
A Javamethod name is overloaded if multiple methods in the same class have the same name but
different parameter lists. With overloaded SA CLI methods, the argument names on the command-line
indicate whichmethod to invoke. The setCustomFieldmethod, for example, is overloaded to support

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 48 of 325



the setting of different data types. The following two commands invoke different versions of the
method:

./setCustomField \
fieldName="Service Agreement" strValue="Gold"
./setCustomField \
fieldName=hmp longValue=2245

Return values
If the API method underlying an SA CLI method returns a value, then the SA CLI method outputs the
value to stdout. As with Unix commands, you can redirect amethod’s stdout to a file or assign it to an
environment variable.

To change the representation of the return value, insert a leading period and append a format specifier
to themethod name. The following example returns server references as IDs, instead of the default
names:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i

If you indicate a format specifier that is incompatible with themethod’s return type, the file system
responds with an error.

Exit status
Like Unix shell commands, SA CLI methods use the exit status ($?) to indicate the result of the call. An
exit status of zero indicates success; a non-zero indicates an error. SA CLI methods output error
messages to stderr.

Exit
status Category Description

0 Success Themethod completed successfully.

1 Command-
Line Parse
Error

The command-line for themethod call is malformed and could not be parsed
into a set of options (--option[=value]) and parameter values (param=value).

2 Parameter
Parse Error

The parameter values could not be parsed into the object types required by
the API.

Exit status codes for SA CLI methods

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 49 of 325



Exit
status Category Description

3 API Usage
Error

The call failed because of a usage error, such as an invalid parameter value.

4 Access
Error

The user does not have permission to perform the operation.

5 Other Error An error occurred other than those indicated by exit statuses 1- 4.

Exit status codes for SA CLI methods, continued

For example, the following bash script checks the exit status of the getDeviceGroupsmethod:

#!/bin/bash

cd /opsw/Server/@/toro.snv1.corp.example.com/method
./getDeviceGroups
cmnd_exit_status=$?
if [ $cmnd_exit_status -eq 0 ]
then

echo "The command was successful."
else

echo "The command failed."
echo "Exit status = " $cmnd_exit_status

fi

An SA CLI method invokes an underlying API method. If the API method throws an exception, the SA
CLI method returns a non-zero exit status. When debugging amethod call, youmight find it helpful to
view information about a thrown exception. The
/sys/last-exception file in the OGFS contains the stack trace of an exception thrown by themost
recent API call. After this file has been read, the system discards the file contents.

Search filters and SA CLI methods
Many methods in the SA API accept object references as parameters. To retrieve object references
based on search criteria, you invokemethods such as findServerRefs and findJobRefs. For
example, you can invoke findServerRefs to search for all servers that have example.com in the
hostname attribute.

Search syntax
Methods such as findServerRefs have the following syntax:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 50 of 325



findobjectRefs filter=’[object-type:]expression’

The filter parameter includes an expression, which specifies the search criteria. You enclose an
expression in either parentheses or curly brackets. A simple expression has the following syntax:

value-object.attribute operator value

This syntax is simplified. For the full definition, see "Filter grammar" on page 193.

Search examples
Most of the SA object types have associated finder methods. This section shows how to use just a few
of them. To see how searches are used with other SA CLI methods, see "Sample scripts" on page 54.

Finding servers
Find servers with host names containing example.com:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS example.com }’

Find servers with a use attribute value of either UNKNOWN or PRODUCTION:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’{ ServerVO.use IN “UNKNOWN” “PRODUCTION” }’

The following bash script shows how to search for servers, save their IDs in a temporary file, and then
specify each ID as the parameter of another method invocation. This script displays the public groups
that each Linux server belongs to.

#!/bin/bash

TMPFILE=/tmp/server-list.txt

rm -f $TMPFILE

cd /opsw/api/com/opsware/server/ServerService/method

./.findServerRefs:i \

filter='{ ServerVO.osVersion CONTAINS Linux }' > $TMPFILE

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 51 of 325



for ID in `cat "$TMPFILE"`

do

echo Server ID: $ID

./getDeviceGroups self:i=$ID

echo

done

Finding jobs
The examples in this section return the IDs of jobs such as server audits or policy remediations.

Find the jobs that have completed successfully:

cd /opsw/api/com/opsware/job/JobService/method

./.findJobRefs:i filter='job:{ job_status = "SUCCESS" }'

(For a list of allowed values of job_status, see “Job Approval Integration” in the SA 10.51 Integration
Guide.)

Find the jobs that have completed successfully or with warning:

cd /opsw/api/com/opsware/job/JobService/method

./.findJobRefs:i \

filter='job:{ job_status IN "SUCCESS" "WARNING" }'

Find the jobs that have been started today:

cd /opsw/api/com/opsware/job/JobService/method

./.findJobRefs:i \

filter='job:{ JobInfoVO.startDate IS_TODAY "" }'

Find all server audit jobs:

cd /opsw/api/com/opsware/job/JobService/method

./findJobRefs \

filter='job:{ JobInfoVO.description = "Server Audit" }'

Find the jobs that have run on the server with the ID 280039:

cd /opsw/api/com/opsware/job/JobService/method

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 52 of 325



./.findJobRefs:i filter='job:{ job_device_id = "280039" }'

Find today’s jobs that have failed:

cd /opsw/api/com/opsware/job/JobService/method

./.findJobRefs:i \

filter='job:{ (( JobInfoVO.startDate IS_TODAY "" ) \

& ( job_status = "FAILURE" )) }'

Finding other objects
This section has examples that search for software policies and packages.

Find the software policies created by the SA user jdoe:

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method

./.findSoftwarePolicyRefs:i \

filter=’{ SoftwarePolicyVO.createdBy CONTAINS jdoe }’

Find theMSIs with ismtool for theWindows 2003 platforms:

cd /opsw/api/com/opsware/pkg/UnitService/method

./.findUnitRefs:i \

filter='software_unit:{ ((UnitVO.unitType = "MSI") \

& ( UnitVO.name contains "ismtool" ) \

& ( software_platform_name = "Windows 2003" )) }'

Find the Solaris patches named 117170-01:

cd /opsw/api/com/opsware/pkg/solaris/SolPatchService/method

./.findSolPatchRefs:i filter='{name = 117170-01}'

Find the folder with the name that includes the string Test and with a parent folder named My Stuff.

cd /opsw/api/com/opsware/folder/FolderService/method

./.findFolders:s \

filter='( ( FolderVO.name CONTAINS "Test" ) \

& (folder_parent_name = "My Stuff" ) )'

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 53 of 325



Searchable attributes and valid operators
Not every attribute of a value object can be specified in a search filter. For example, you can search on
ServerVO.use but not on ServerVO.OsFlavor.

To find out which attributes are searchable for a given object type, invoke the
getSearchableAttributes method. The following example lists the attributes of
ServerVO that can be specified in a search expression:

cd /opsw/api/com/opsware/search/SearchService/method

./getSearchableAttributes searchableType=device

The searchableType parameter indicates the object type. To determine the allowed values for
searchableType, enter the following commands:

cd /opsw/api/com/opsware/search/SearchService/method

./getSearchableTypes

To find out which operators are valid for an attribute, invoke the getSearchableAttributeOperators
method. The following example lists valid operators (such as CONTAINS and IN) for the attribute
ServerVO.hostname:

cd /opsw/api/com/opsware/search/SearchService/method

./getSearchableAttributeOperators searchableType=device \

searchableAttribute=ServerVO.hostname

Sample scripts
This section has code listings for simple bash scripts that invoke a variety of SA CLI methods. These
scripts demonstrate how to pass method parameters on the command-line, including complex objects
and the self parameter. If you decide to copy and paste these example scripts, you will need to
change some of the hard-coded object names, such as the d04.example.com server. For tutorial
instructions on creating and running scripts within the OGFS, see "SA CLI method tutorial" on page 31.

The script "remediate_policy.sh" on page 59 creates a software policy, adds a package to the policy,
and in the last line, installs the package on amanaged server by invoking the startFullRemediateNow
method.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 54 of 325



create_custom_field.sh
This script creates a custom field (virtual column), named TestFieldA attaches the field to all servers,
and then sets the value of the field on a single server. Until it is attached, the custom field does not
appear in the SA Client. You can create custom fields for servers, device groups, or software policies.
To create a custom field, your SA user must belong to a user group with theManage Virtual Columns
permission.

Unlike a custom attribute, a custom field applies to all instances of a type. For an example that creates
a custom attribute in the OGFS, seeManaging custom attributes in the Server Automation Using Guide
on the HPE SSO portal.

The create_custom_field.sh script has the following code:

#!/bin/bash

# create_custom_field.sh

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

# Create a virtual column.

# Remember the name because you cannot search for the

# displayName.

./create vo=’{ name=TestFieldA type=SHORT_STRING \

displayName="Test Field A" }’

column_id=‘./.findVirtualColumn:i name=TestFieldA‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

# Attach the column to all servers.

# All servers will have this custom field.

./attachVirtualColumn virtualColumn:i=$column_id

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 55 of 325



# Get the ID of the server named d04.example.com

devices_id=‘./.findServerRefs:i \

filter=\

’device:{ ServerVO.hostname CONTAINS "d04.example.com" }’‘

echo --- devices_id = $devices_id

# Set the value of the custom field (virtual column) for

# a specific server.

./setCustomField self:i=$devices_id fieldName=TestFieldA \

strValue="This is something."

create_device_group.sh
This script creates a static device group and adds a server to the group. Next, the script creates a
dynamic group, sets a rule on the group, and refreshes themembership of the group. The last
statement of the script lists the devices that belong to the dynamic group.

Here is the script’s code:

#!/bin/bash

# create_device_group.sh

cd /opsw/api/com/opsware/device/DeviceGroupService/method

# Get the ID of the public root group (top of hierarchy).

public_root=‘./.getPublicRoot:i‘

# Create a public static group.

./create "vo={ parent:i=$public_root shortName=’Test Group A’ }"

# Get the ID of the group just created.

group_id=‘./.findDeviceGroupRefs:i \

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 56 of 325



filter=’{ DeviceGroupVO.shortName = "Test Group A" }’ ‘

echo --- group_id = $group_id

cd /opsw/api/com/opsware/server/ServerService/method

# Get the ID of the server named d04.example.com

devices_id=‘./.findServerRefs:i \

filter=\

’device:{ ServerVO.hostname CONTAINS "d04.example.com" }’‘

echo --- devices_id = $devices_id

cd /opsw/api/com/opsware/device/DeviceGroupService/method

# Add a server to the device group.

./addDevices \

self:i=$group_id devices:i=$devices_id

# Create a dynamic device group.

./create \

"vo={ parent:i=$public_root \

shortName=’Test Dyn B’ dynamic=true }"

# Get the ID of the device group.

dynamic_group_id=‘./.findDeviceGroupRefs:i \

filter=’{ DeviceGroupVO.shortName = "Test Dyn B" }’ ‘

echo --- dynamic_group_id = $dynamic_group_id

# Set the rule so that this group contains servers with

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 57 of 325



# hostnames containing the string example.com.

# The rule parameter has the same syntax as the filter

# parameter of the find methods.

./setDynamicRule self:i=$dynamic_group_id \

rule=’device:{ ServerVO.hostname CONTAINS example.com }’

# By default, membership in dynamic device groups is refreshed

# once

# an hour, so force the refresh now.

./refreshMembership selves:i=$dynamic_group_id now=true

# Display the names of the devices that belong to the group.

echo --- Devices in group:

./getDevices selves:i=$dynamic_group_id

create_folder.sh
This script creates a folder named /Test 1, lists the folders under the root (/) folder, and then creates
the subfolder /Test 1/Test 2. After creating these folders, you can view them under the Library in the
navigation pane of the SA Client.

Here is the code for this script:

#!/bin/bash

# create_folder.sh

cd /opsw/api/com/opsware/folder/FolderService/method

# Get the ID of the root (top) folder.

root_id=`./.getRoot:i`

# Create a new folder under the root folder.

./create vo="{ name='Test 1' folder:i=$root_id }"

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 58 of 325



# Display the names of the folders under the root folder.

./getChildren self:i=$root_id

# Get the ID of the folder "/Test 1"

folder_id=`./.getFolderRef:i path="Test 1"`

# Create a subfolder.

./create vo="{ name='Test 2' folder:i=$folder_id }"

# Get the ID of the folder "/Test 1/Test 2"

folder_id=`./.getFolderRef:i path="Test 1" path="Test 2"`

echo folder_id = $folder_id

remediate_policy.sh
This script creates a software policy named TestPolicyA in an existing folder named Test 2, adds a
package containing ismtool to the policy, attaches the policy to a single server (not a group), and then
remediates the server. The remediation action launches a job that installs the package onto the server.
You can check the progress and results of the job in the SA Client. For examples that search for jobs
with SA CLI methods, see "Finding jobs" on page 52.

In this script, in the createmethod of the SoftwarePolicyService, the value of the platforms
parameter is hard-coded. In most of these example scripts, hard-coding is avoided by searching for an
object by name. In the case of platforms, searching by the name attribute is difficult because if differs
from the displayName attribute, which is exposed in the SA Client but is not searchable. The easiest
way to find a platform ID is by going to the twister and running the
PlatformService.findPlatformRefsmethod with no parameters.

The updatemethod in this script hard-codes the ID of softwarePolicyItems, an object that can be
difficult to search for by name if the Software Repository contains many packages with similar names.
One way to get the ID is to run the SA Client, search for Software by fields such as File Name and
Operating System, open the package located by the search, and note the SA ID in the properties view
of the package.

In the following listing, the updatemethod has a bad line break. If you copy this code, edit the script so
that the vo parameter is on a single line.

Here is the source code for the remediate_policy.sh script:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 59 of 325



#!/bin/bash

# remediate_policy.sh

# Get the ID of the folder where the policy will reside.

cd /opsw/api/com/opsware/folder/FolderService/method

folder_id=`./.findFolders:i filter='{ FolderVO.name = "Test 2" }'`

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method

# Create a software policy named TestPolicyA.

# This policy resides in the folder located in the preceding findFolders

# call.

# The platform for this policy is Windows 2008 (ID 160076)

./create vo="{ platforms:i=160076 name="TestPolicyA" \

folder:i=$folder_id lifecycle=AVAILABLE }"

policy_id=`./.findSoftwarePolicyRefs:i \

filter='{ SoftwarePolicyVO.name = "TestPolicyA" }'`

echo --- policy_id = $policy_id

# Call the update method to add a package to the software policy.

# The package ID for the "ismtool" msi installer is 4010001.

# Note that "force = true" is required.

./update self:i=$policy_id force=true \

vo='{ softwarePolicyItems:i=com.opsware.pkg.windows.MSIRef:4010001 }'

cd /opsw/api/com/opsware/server/ServerService/method

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 60 of 325



# Get the ID of the server named d04.opsware.com

devices_id=`./.findServerRefs:i \

filter='device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }'`

echo --- devices_id = $devices_id

# Attach the policy to a single server (not a group).

./attachPolicies self:i=$devices_id \

policies:i=$policy_id

# Remediate the server to install the package in the policy.

job_id=`./.startFullRemediateNow:i self:i=$devices_id`

echo --- job_id = $job_id

remove_custom_field.sh
Although not common in an operational environment, removing custom fields is sometimes necessary
in a testing environment. Note that a custom field must be unattached before it can be removed.

Here is the code for remove_custom_field.sh:

#!/bin/bash

# remove_custom_field.sh

if [ ! -n "$1" ]

then

echo "Usage: ‘basename $0‘ <name>"

echo "Example: ‘basename $0‘ hmp"

exit

fi

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 61 of 325



column_id=‘./.findVirtualColumn:i name=$1‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

# Column must be detached before it can be removed.

./detachVirtualColumn virtualColumn:i=$column_id

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

# Remove the virtual column.

./remove self:i=$column_id

schedule_audit_task.sh
This script starts an audit task, scheduling it for a future date. With SA CLI methods, date parameters
are specified with the following syntax:

YYYY/MM/DD HH:MM:SS.sss

Themethod that launches the task, startAudit, returns the ID of the job that performs the audit. For
examples that search for jobs with SA CLI methods, see "Finding jobs" on page 52.

Here is the code for schedule_audit_task.sh:

#!/bin/bash

# schedule_audit_task.sh

cd /opsw/api/com/opsware/compliance/sco/AuditTaskService/method

# Get the ID of the audit task to schedule.

audit_task_id=`./.findAuditTask:i \

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 62 of 325



filter='audit_task:{ (( AuditTaskVO.name BEGINS_WITH "HW check" ) \

& ( AuditTaskVO.createdBy = "gsmith" )) }'`

echo --- audit_task_id = $audit_task_id

# Schedule the audit task for Oct. 16, 2013.

# In the startDate parameter, note that the last delimiter for the time

# is a period, not a colon.

job_id=`./.startAudit:i self:i=$audit_task_id

schedule:s='{ startDate="2013/10/16 00:00:00.000" }' \

notification:s='{ onFailureOwner="sjones@opsware.com" \

onFailureRecipients="jdoe@opsware.com" \

onSuccessOwner="sjones@opsware.com" \

onSuccessRecipients="jdoe@opsware.com" }'`

echo --- job_id = $job_id

Getting usage information on SA CLI

methods
In a future release, the SA CLI methods will display usage information. Until then, you can get the
necessary information from the API documentation or the OGFS with the techniques described in the
following sections.

Listing services
The SA API methods are organized into services. To find out what services are available for SA CLI
methods, enter the following commands in anOGSH session:

cd /opsw/api/com/opsware

find . -name "*Service"

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 63 of 325



To list the services in the API documentation, specify the following URL in your browser:

https://occ_host:1032

The occ_host is the IP address or host name of the core server running the CommandCenter
component.

Finding a service in the API documentation
The path of the service in the OGFS maps to the Java package name in the API documentation. For
example, in the OGFS, the ServerServicemethods appear in the following directory:

/opsw/api/com/opsware/server

In the API documentation, the following interface defines thesemethods:

com.opsware.server.ServerService

Listing the methods of a service
In the OGFS, you can list the contents of the method directory of a service, For example, to display the
method names of the ServerService, enter the following command:

ls /opsw/api/com/opsware/server/ServerService/method

In the API documentation, perform the following steps to view themethods of ServerService:

In the upper left pane, select com.opsware.server.

In the lower left pane, select ServerService.

In themain pane, scroll down to view themethods.

Listing the parameters of a method
In the API documentation, perform the steps described in the preceding section. In theMethod Detail
section of the service interface page, view the parameters and return types. For more information about
method parameters, see "Passing arguments on the command-line" on page 47.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 64 of 325



Getting information about a value object
The API documentation shows that some servicemethods pass or return value objects (VOs), which
contain datamembers (attributes). For example, the ServerService.getServerVOmethod returns a
ServerVO object. To find out what attributes ServerVO contains, perform the following steps:

In the API documentation, select the ServerVO link. You can find the this link in several places:

l Themethod signature for getServerVO

l The list of classes (lower left pane) for com.opsware.server

l On the Index page. A link to the Index page is at the top of themain pane of the API documentation.

l On the ServerVO page, note the getter and setter methods. Each getter-setter pair corresponds to
an attribute contained in the value object. For example, getCustomer and setCustomer indicate
that ServerVO contains an attribute named customer.

Determining if an attribute can be modified
Only a few object attributes can bemodified by client applications. To find out if an attribute can be
modified, perform the following steps:

1. In the API documentation, go to the value object page, as described in the preceding section.

2. In theMethod Detail section of the setter method, look for “Field can be set by clients.”

For SA objects represented in the OGFS, such as servers and customers, you can determine which
attributes aremodifiable by checking the access types of the files in the attr directory. The files that
have read-write (rw) access types correspond tomodifiable attributes. For example, to list the
modifiable attributes of a server, enter the following commands:

cd /opsw/Server/@/server-name/attr

ls -l | grep rw

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 65 of 325



Determining if an attribute can be used in a filter

query
To find out if an attribute of a value object can be used in a filter query (a search), perform the following
steps:

1. In the API documentation, go to the value object page.

2. In theMethod Detail section of the getter method that corresponds to the attribute, look for the
string, “Field can be used in a filter query.”

From within anOGSH session, to find out if an attribute can be searched on, follow the techniques
described in "Searchable attributes and valid operators" on page 54.

Python API access with Pytwist
Pytwist is a set of Python libraries that provide access to the SA API frommanaged servers and
custom extensions. (The twist is the internal name for theWeb Services Data Access Engine.) For
managed servers, you can set up Python scripts that call SA APIs through Pytwist so that end users
can invoke the scripts as DSEs or ISM controls. Created by HPE SA Professional Services, custom
extensions are Python scripts that run in the Command Engine (way). Pytwist enables custom
extensions to access recent additions to the SA datamodel, such as folders and software policies,
which are not accessible from Command Engine scripts.

This topic is intended for developers and consultants who are already familiar with the SA datamodel,
custom extensions, Agents, and the Python programming language.

Following topics are discussed in this section:

l "Setup for Pytwist" on the next page

l "Pytwist examples" on the next page

l "Virtualization Pytwist examples" on page 72

l "Pytwist details" on page 80

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 66 of 325



Setup for Pytwist
Before trying out the examples in this section, make sure that your environment meets the following
setup requirements, as detailed in the following sections.

l "Supported platforms for Pytwist" below

l "Access requirements for Pytwist" below

l "Installing Pytwist libraries" below

Supported platforms for Pytwist

Pytwist is supported onmanaged servers and core servers. For a list of operating systems supported
for these servers.

Pytwist relies on Python version 2.7.10, the version used by SA Agents and custom extensions.

UnlikeWeb Services and Java RMI clients, a Pytwist client relies on internal SA libraries. If your client
program needs to access the SA API from a server that is not amanaged or core server, then use a
Web Services or Java RMI client, not Pytwist.

Access requirements for Pytwist

Pytwist needs to access port 1032 of the core server running theWeb Services Data Access Engine.
By default, the engine listens on port 1032.

Installing Pytwist libraries

The pytwist libraries need not be installed as they are part of the agent libraries.

Pytwist examples
The Python code examples in this section show how to get information frommanaged servers, create
folders, and remediate software policies. Each Pytwist example performs the following operations:

1. Import the packages.

When importing objects of the SA API name space, such as Filter, the path includes the Java
package name, preceded by pytwist. Here are the import statements for the get_server_
info.py example:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 67 of 325



import sys
from pytwist import *
from pytwist.com.opsware.search import Filter

2. Create the TwistServer object:
ts = twistserver.TwistServer()

See "TwistServer method syntax" on page 80 for information about themethod’s arguments.

3. Get a reference to the service.

The Python package name of the service is the same as the Java package name, but without the
leading opsware.com. For example, the Java com.opsware.server.ServerService package
maps to the Pytwist server.ServerService:

serverservice = ts.server.ServerService

4. Invoke the SA API methods of the service:
filter = Filter()
. . .
servers = serverservice.findServerRefs(filter)
. . .
for server in servers: vo = serverservice.getServerVO(server)
. . .

get_server_info.py

This script searches for all managed servers with host names containing the command-line argument.
The searchmethod, findServerRefs, returns an array of references to server persistent objects. For
each reference, the getServerVOmethod returns the value object (VO), which is the data
representation that holds the server’s attributes. Here is the code for the get_server_info.py script:

#!/opt/opsware/agent/bin/python
# get_server_info.py

# Search for servers by partial hostname.

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter

# Check for the command-line argument.
if len(sys.argv) < 2:

print "You must specify part of the hostname as the search target."

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 68 of 325



print "Example: " + sys.argv[0] + " " + "opsware.com"
sys.exit(2)

# Construct a search filter.
filter = Filter()
filter.expression = 'device_hostname *=* "%s" ' % (sys.argv[1])

# Create a TwistServer object.
ts = twistserver.TwistServer()

# Get a reference to ServerService.
serverservice = ts.server.ServerService

# Perform the search, returning a tuple of references.
servers = serverservice.findServerRefs(filter)

if len(servers) < 1:
print "No matching servers found"
sys.exit(3)

# For each server found, get the server’s value object (VO)
# and print some of the VO’s attributes.
for server in servers:

vo = serverservice.getServerVO(server)
print "Name: " + vo.name
print "Management IP: " + vo.managementIP
print "OS Version: " + vo.osVersion

create_folder.py

This script creates a folder named /TestA/TestB by invoking the createPathmethod. Note that the
path parameter of createPath does not contain slashes. Each string element in path indicates a level
in the folder. Next, the script retrieves and prints the names of all folders directly below the root folder.
The listing for the create_folder.py script follows:

#!/opt/opsware/agent/bin/python
# create_folder.py

# Create a folder in SA.

import sys
from pytwist import *

# Create a TwistServer object.
ts = twistserver.TwistServer()

# Get a reference to FolderService.
folderservice = ts.folder.FolderService

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 69 of 325



# Get a reference to the root folder.
rootfolder = folderservice.getRoot()
# Construct the path of the new folder.
path = 'TestA', 'TestB'

# Create the folder /TestA/TestB relative to the root.
folderservice.createPath(rootfolder, path)

# Get the child folders of the root folder.
rootchildren = folderservice.getChildren(rootfolder,
'com.opsware.folder.FolderRef')

# Print the names of the child folders.
for child in rootchildren:

vo = folderservice.getFolderVO(child)
print vo.name

remediate_policy.py

This script creates a software policy, attaches it to a server, and then remediates the policy. Several
names are hard-coded in the script: the platform, server, and parent folder. Optionally, you can specify
the policy name on the command-line, which is convenient if you run the script multiple times. The
platform of the software policy must match the OS of the packages contained in the policy. Therefore, if
you change the hard-coded platform name, then you also change the name in
unitfilter.expression.

The following listing has several bad line breaks. If you copy this code, be sure to fix the bad line breaks
before running it. The comment lines beginning with "NOTE" point out the bad line breaks.

#!/opt/opsware/agent/bin/python
# remediate_policy.py

# Create, attach, and remediate a software policy.

import sys
from pytwist import *
from pytwist.com.opsware.search import Filter
from pytwist.com.opsware.swmgmt import SoftwarePolicyVO

# Initialize the names used by this script.
foldername = 'TestB'
platformname = 'Windows 2003'
servername = 'd04.example.com'
# If a command-line argument is specified,
# use it as the policy name
if len(sys.argv) == 2:

policyname = sys.argv[1]
else:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 70 of 325



policyname = 'TestPolicyA'

# Create a TwistServer object.
ts = twistserver.TwistServer()
ts.authenticate("SAUser", "SAPassword")

# Get the references to the services used by this script.
folderservice = ts.folder.FolderService
swpolicyservice = ts.swmgmt.SoftwarePolicyService
serverservice = ts.server.ServerService
unitservice = ts.pkg.UnitService
platformservice = ts.device.PlatformService

# Search for the folder that will contain the policy.
folderfilter = Filter()
folderfilter.expression = 'FolderVO.name = %s' % foldername
folderrefs = folderservice.findFolderRefs(folderfilter)
if len(folderrefs) == 1:

parent = folderrefs[0]
elif len(folderrefs) < 1:

print "No matching folders found."
sys.exit(2)

else:
print "Non-unique folder name: " + foldername
sys.exit(3)

# Search for the reference to the platform "Windows Server 2003."
platformfilter = Filter()
platformfilter.objectType = 'platform'
# Because the platform name contains spaces,
# it’s enclosed in double quotes
# NOTE: The following code line has a bad line break.
# The assignment statement should be on a single line.
platformfilter.expression = 'platform_name = "%s"' % platformname
platformrefs = platformservice.findPlatformRefs(platformfilter)

if len(platformrefs) == 0:
print "No matching platforms found."
sys.exit(4)

# Search for the references to some software packages.
unitfilter = Filter()
unitfilter.objectType = 'software_unit'
# NOTE: The following code line has a bad line break.
# The assignment statement should be on a single line.
unitfilter.expression = '((UnitVO.unitType = "MSI") & ( UnitVO.name contains
"ismtool" ) & ( software_platform_name = "Windows 2003" ))'
unitrefs = unitservice.findUnitRefs(unitfilter)

# Create a value object for the new software policy.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 71 of 325



vo = SoftwarePolicyVO()
vo.name = policyname
vo.folder = parent
vo.platforms = platformrefs
vo.softwarePolicyItems = unitrefs

# Create the software policy.
swpolicyvo = swpolicyservice.create(vo)

# Search by hostname for the reference to a managed server.
serverfilter = Filter()
serverfilter.objectType = 'server'
# NOTE: The following code line has a bad line break.
# The assignment statement should be on a single line.
serverfilter.expression = 'ServerVO.hostname = %s' % servername
serverrefs = serverservice.findServerRefs(serverfilter)

if len(serverrefs) == 0:
print "No matching servers found."
sys.exit(5)

# Create an array that has a reference to the
# newly created policy.
swpolicyrefs = [1]
swpolicyrefs[0] = swpolicyvo.ref

# Attach the software policy to the server.
swpolicyservice.attachToPolicies(swpolicyrefs, serverrefs)

# Remediate the policy and the server.
# NOTE: The following code line has a bad line break.
# The assignment statement should be on a single line.
jobref = swpolicyservice.startRemediateNow(swpolicyrefs, serverrefs)
print "The remediation job ID is %d" % jobref.id

Virtualization Pytwist examples
This topic provides examples ("createVM_WithOSBP.py" below and "deployVM.py " on page 77) of
creating and deploying virtual machines (VMs) using SA API. For more examples about Virtualization,
see the Server Automation Using Guide on the HPE SSO portal.

createVM_WithOSBP.py

This basic example creates a VM on a VMware vCenter using CD boot with static IP configuration.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 72 of 325



All properties have not been set in these examples. Please refer to API documentation (javadocs) to
understand and set the properties for your use case.

#!/opt/opsware/agent/bin/python
from pytwist import twistserver
from pytwist.com.opsware.locality import CustomerRef, RealmRef
from pytwist.com.opsware.osprov import OSBuildPlanRef
from pytwist.com.opsware.pkg import UnknownPkgRef
from pytwist.com.opsware.v12n import AdapterIPSettings, V12nHypervisorRef, \

V12nHypervisorService, V12nInventoryFolderRef, V12nResourcePoolRef, \
V12nResourcePoolRef, V12nVIManagerService, VirtualCpuConfig,

VirtualDevice, \
VirtualDeviceChangeConfig, VirtualDeviceTypeConstant,

VirtualHardwareConfigSpec, \
VirtualMemoryConfig, VirtualServerCDProvisioningSpec,

VirtualServerComputeSpec, \
VirtualServerConfigSpec, VirtualServerCreateSpec,

VirtualStorageDeviceConstant, \
VirtualStorageDeviceHWConfig

from pytwist.com.opsware.v12n.vmware import V12nDatastoreRef, \
VmwareVirtualInterfaceBacking, VmwareVirtualNicHWConfig, \
VmwareVirtualServerDetails, VmwareVirtualServerStorageSpec, \
VmwareVirtualStorageFileBacking

import time

# This is a bare bones example of creating a Virtual Machine on a VMware
# vCenter while booting from CD with Static IP configuration. It also
# provisions the Virtual Machine with the give OS Build Plan. For more
# detailed information please refer to the java doc. All the properties have
# not been set in the example below, please review the java doc to understand
# and set the properties for your use case.

# This method constructs the create specification to create the Virtual
# Machine and provision it.
def constructCreateSpec():

# Construct VmwareVirtualServerDetails
detail = VmwareVirtualServerDetails()
# Virtual Machine Name
detail.name = "Test VM"
# Description for the Virtual Machine
detail.description = "Sample test create VM"
# This is the key for the guest operating system that will installed on
# the Virtual Machine.
# V12nVIManagerService.getGuestOSList() provides the supported list for
# the given V12n Manager and hypervisor.
detail.guestId = "rhel6Guest"

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 73 of 325



# This is folder where the VM will reside in you can see the list of
# folders at V12nInventoryFolderService.findV12nInventoryFolderRefs() it
# is the inventory location of the Virtual Machine
folder = V12nInventoryFolderRef(2020001)
detail.inventoryFolderRef = folder

# Configure the number of Virtual processors on the Virtual Machine
cpuConfig = VirtualCpuConfig()
cpuConfig.virtualCpuCount = 1

# Configure the Memory for the Virtual Machine
memoryConfig = VirtualMemoryConfig()
memoryConfig.size = 1024*1024*1024

# Configure NICs
# Construct the virtual device of type network i.e a NIC
virtualNetworkDevice = VirtualDevice()
virtualNetworkDevice.type = VirtualDeviceTypeConstant.NETWORK
# A unique identifier for the virtual device
virtualNetworkDevice.key = "4001"
backingNetwork = VmwareVirtualInterfaceBacking()
# This is the port group that the nic will be assigned to
backingNetwork.portGroup = "VLAN 625"

hwConfigNetwork = VmwareVirtualNicHWConfig()
# The kind of network adapter to use, other options are listed in
# VmwareVirtualNicHWConfig
hwConfigNetwork.adapterType = VmwareVirtualNicHWConfig.E1000
hwConfigNetwork.macAddressIsDynamic = True

virtualNetworkDevice.hwConfig = hwConfigNetwork
virtualNetworkDevice.backingInfo = backingNetwork
virtualNetworkDevice.connected = True
virtualNetworkDevice.startConnected = True

# Configure Hard Disk
virtualDiskDevice = VirtualDevice()
virtualDiskDevice.type = VirtualDeviceTypeConstant.STORAGE

backingStorage = VmwareVirtualStorageFileBacking()

# This is Ref for the data store on the hypervisor where the VM will be
# hosted. The list of datastores associated with the Hypervisors are
# listed at V12nHypervisorService.getV12nHypervisorVO() under storage
# config
dataStoreRef = V12nDatastoreRef(90001)
backingStorage.datastore = dataStoreRef
backingStorage.lazyAllocation = True

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 74 of 325



hwConfigStorage = VirtualStorageDeviceHWConfig()
hwConfigStorage.capacity = 10*1024*1024*1024
hwConfigStorage.usageType =

VirtualStorageDeviceConstant.USAGE_TYPE_DISK_DRIVE

virtualDiskDevice.hwConfig = hwConfigStorage
virtualDiskDevice.backingInfo = backingStorage

# Add both the virtual devices to be created, i.e. the hard disk and the
# nic
virtualDvcs_toAdd = []
virtualDvcs_toAdd.append(virtualNetworkDevice)
virtualDvcs_toAdd.append(virtualDiskDevice)
deviceChange = VirtualDeviceChangeConfig()
deviceChange.addList = virtualDvcs_toAdd

# Finalize the Config Spec
configSpec = VirtualServerConfigSpec()
configSpec.detail = detail
configSpec.virtualHardware = VirtualHardwareConfigSpec()
configSpec.virtualHardware.cpuConfig = cpuConfig
configSpec.virtualHardware.memoryConfig = memoryConfig
configSpec.virtualHardware.deviceChange = deviceChange

# Constructing the Compute Spec
computeSpec = VirtualServerComputeSpec()
# This is the hypervisor hosting the VM
hypervisorRef = V12nHypervisorRef(2030001)
computeSpec.computeProviderRef = hypervisorRef
# This is resource pool on the hypervisor/cluster that the VM belongs to
# It can be retrieved by using hypervisorVO.children or the Cluster
# children
resourcePool = V12nResourcePoolRef(2040001)
computeSpec.resourcePoolRef = resourcePool

storageSpec = VmwareVirtualServerStorageSpec()
storageSpec.datastore = dataStoreRef

# This example deals with provisioning a VM through CD boot and with
# static IP configuration. The example deals setting the boot ISO and
# network information to be used.
# All the information for this is contained in the
# VirtualServerCDProvisioningSpec

# Set all the network information
gateways =[]
gw ="192.168.135.33"
gateways.append(gw)

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 75 of 325



dnsServers =[]
dnsServer = "192.168.2.13"
dnsServers.append(dnsServer)

interfaces =[]
interface = AdapterIPSettings()

# Construct the network interface
interface.useDHCP=False
# Note this is the virtual device we have created above, we use the same
# device key to indicate to provisioning which virtual device is to be
# used for provisioning
interface.virtualDeviceKey="4001"
interface.gateways=gateways
interface.ipAddress="192.168.135.45"
interface.netmask="255.255.255.224"
interface.dnsServerList=dnsServers

interfaces.append(interface)

# This is the boot ISO Ref that will be used to get the server into
# maintenance mode
# The name and the id need to match the packages on the core.
# Use the UnitService.findUnitRefs() to find the boot ISO's
bootISORef = UnknownPkgRef(5340001)
bootISORef.name="HPSA_linux_boot_cd.iso"
# The realm assigned to the Virtual Machine will be the realm of the
# Virtualization Service
realmRef = RealmRef(30001)
# The OS Build Plan that needs be run on the Virtual Machine after the VM
# has been created.
osbpRef = OSBuildPlanRef(580001)

provisioningSpec = VirtualServerCDProvisioningSpec()

provisioningSpec.bootISORef = bootISORef
provisioningSpec.interfaces = interfaces
provisioningSpec.realmRef = realmRef
provisioningSpec.oSBuildPlanRef = osbpRef

# Finally put together all the information to be set on the Create
# Specification
createSpec = VirtualServerCreateSpec()
createSpec.configSpec = configSpec
createSpec.computeSpec = computeSpec
createSpec.storageSpec = storageSpec

createSpec.provisioningSpec = provisioningSpec

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 76 of 325



#Set the customer to be associated with the Virtual Machine
customer = CustomerRef(9)
createSpec.setCustomerRef(customer)
return createSpec

def createVirtualMachine():
twist = twistserver.TwistServer()
twist.authenticate("hp", "opsware")
vmService = twist.v12n.V12nVirtualServerService
createSpec = constructCreateSpec()
jobRef = vmService.startCreate(createSpec,4*60*60,"Sample create

VM",None, None)

createVirtualMachine()

deployVM.py

This basic example shows how to deploy a VM from a VM template on VMware vCenter and customize
the guest OS of the deployed VM.

All properties have not been set in these examples. Please refer to API documentation (javadocs) to
understand and set the properties for your use case.

#!/opt/opsware/agent/bin/python
from pytwist import twistserver
from pytwist.com.opsware.locality import CustomerRef, RealmRef
from pytwist.com.opsware.osprov import OSBuildPlanRef
from pytwist.com.opsware.pkg import UnknownPkgRef
from pytwist.com.opsware.v12n import AdapterIPSettings, V12nHypervisorRef, \

V12nHypervisorService, V12nInventoryFolderRef, V12nResourcePoolRef, \
V12nResourcePoolRef, V12nVIManagerService, VirtualCpuConfig,

VirtualDevice, \
VirtualDeviceChangeConfig, VirtualDeviceTypeConstant,

VirtualHardwareConfigSpec, \
VirtualMemoryConfig, VirtualServerCDProvisioningSpec,

VirtualServerComputeSpec, \
VirtualServerConfigSpec, VirtualServerCreateSpec,

VirtualStorageDeviceConstant, \
VirtualStorageDeviceHWConfig, V12nVirtualServerTemplateRef, \
VirtualServerCloneSpec, VirtualServerGuestCustomizationSpec

from pytwist.com.opsware.v12n.vmware import V12nDatastoreRef, \
VmwareVirtualInterfaceBacking, VmwareVirtualNicHWConfig, \
VmwareVirtualServerDetails, VmwareVirtualServerStorageSpec, \
VmwareVirtualStorageFileBacking

import time

# This is a bare bones example of deploying a Template VMware vCenter. It
# deploys the template and then guest customizes the deployed Virtual Machine.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 77 of 325



# For more detailed information please refer to the java doc. All the
# properties have not been set in the example below, please review the java
# doc to understand and set the properties for your use case.

# This method constructs the deploy specification to deploy the Template and
# customizes it.
def constructDeploySpec(sourceTemplateVO):

# Construct the Deploy Spec
clonespec = VirtualServerCloneSpec()

clonespec.computeSpec = VirtualServerComputeSpec()
# This is the hypervisor hosting the VM
targetHypervisorRef = V12nHypervisorRef(2030001)
clonespec.computeSpec.computeProviderRef = targetHypervisorRef

computeSpec = VirtualServerComputeSpec()
# This is the resource pool on the hypervisor/cluster that the VM belongs to
# It can be retrieved by using hypervisorVO.children or the Cluster
# children
targetResourcePoolRef = V12nResourcePoolRef(2040001)
computeSpec.resourcePoolRef = targetResourcePoolRef
clonespec.computeSpec.resourcePoolRef = targetResourcePoolRef

storageSpec = VmwareVirtualServerStorageSpec()
dataStoreRef = V12nDatastoreRef(90001)
storageSpec.datastore = dataStoreRef
clonespec.storageSpec = storageSpec
# Construct VmwareVirtualServerDetails
detail = VmwareVirtualServerDetails()
# Virtual Machine Name
detail.name = "Test Deploy VM"
# Description for the Virtual Machine
detail.description = "Sample Deploy create VM"

# This is the folder where the VM will reside in. You can see the list of
# folders at V12nInventoryFolderService.findV12nInventoryFolderRefs(). It
# is the inventory location of the Virtual Machine
targetFolderRef = V12nInventoryFolderRef(2020001)
detail.inventoryFolderRef = targetFolderRef
configSpec = VirtualServerConfigSpec()
configSpec.detail = detail
clonespec.configSpec=configSpec

# Create the Guest Customization Spec, this is needed to customized the
# deployed VM so that it does not use the network settings and host name
# of the source template
# In this example all the interfaces are set to DHCP but you can
# customize each of the interfaces by either providing static or DHCP

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 78 of 325



# configuration details
interfaces = createInterfaces(sourceTemplateVO)
# The realm assigned to the Virtual Machine will be the realm of the
# Virtualization Service
realmRef = RealmRef(30001)
clonespec.guestCustomizationSpec =

createGuestCustomizationSpec("testDeployVM",realmRef,interfaces)
clonespec.setPowerOn(True)
# Set the customer to be associated with the Virtual Machine
customerRef = CustomerRef(9)
clonespec.customerRef = customerRef
return clonespec

def createGuestCustomizationSpec(newVmNameVal,realmRef,interfaces):
gcSpec = VirtualServerGuestCustomizationSpec()
gcSpec.computerName = newVmNameVal
gcSpec.interfaces = interfaces
gcSpec.realmRef = realmRef
return gcSpec

def createInterfaces(virtualServerVO):
interfaces = []
virtualDevices = virtualServerVO.virtualHardware.deviceList
vNICs = [vd for vd in virtualDevices if vd.type ==

VirtualDeviceTypeConstant.NETWORK]
for vNIC in vNICs:

intf = AdapterIPSettings()
intf.useDHCP = True
intf.hardwareAddress = vNIC.hwConfig.macAddress
intf.virtualDeviceKey = vNIC.key
interfaces.append(intf)

return interfaces

def deployVirtualMachine():
twist = twistserver.TwistServer()
twist.authenticate("hp", "opsware")
vmTemplateService = twist.v12n.V12nVirtualServerTemplateService
vmService = twist.v12n.V12nVirtualServerBaseService
sourceTemplateRef = V12nVirtualServerTemplateRef(1520001)
sourceTemplateVO =

vmService.getV12nVirtualServerBaseVO(sourceTemplateRef)
deploySpec = constructDeploySpec(sourceTemplateVO)
jobRef =

vmTemplateService.startDeploy(sourceTemplateRef,deploySpec,30*60,"Sample
Deploy VM",None, None);

deployVirtualMachine()

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 79 of 325



Pytwist details
This topic describes the behavior and syntax that is specific to Pytwist:

l "Authenticationmodes" below

l "TwistServer method syntax" below

l "Error handling" on the next page

l "Mapping Java package names and data types to Pytwist" on the next page

Authentication modes

The authenticationmode of a Pytwist client is important because it affects the SA features and the
resources that the client can access. A Pytwist client can run in one of the followingmodes:

l Authenticated: The client has called the authenticate(username, password)method on a
TwistServer object. After calling the authenticatemethod, the client is authorized as the SA user
specified by the username parameter, much like an end user who logs onto the SA Client.

l Not Authenticated: The client has not called the TwistServer.authenticatemethod. On a
managed server, the client is authenticated as if it is the device that controls the Agent certificate.
When used within a custom extension, a non-authenticated Pytwist client needs access to the
Command Engine certificate. For more information on custom extensions and certificates, contact
your technical support representative.

TwistServer method syntax

The TwistServermethod configures the connection from the client to theWeb Services Data Access
Engine. (For sample invocations, see "Pytwist examples" on page 67.) All of the arguments of
TwistServer are optional. The following table lists the default values for the arguments.

Argument Description Default

host The hostname to connect to. twist

port The port number to connect to. 1032

secure Whether to use https for the connection. Allowed
values: 1 (true) or 0 (false).

1

ctx The SSL context for the connection. None. (See also "Authentication
modes" above.)

Arguments of the TwistServer method

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 80 of 325



When the TwistServer object is created, the client does not establish a connection with the server.
Therefore, if a connectivity problem occurs, it is not encountered until the client calls authenticate or
an SA API method.

Error handling

If the TwistServer.authenticatemethod or an SA API method encounters a problem, a Python
exception is raised. You can catch these exceptions in an except clause, as in the following example:

# Create the TwistServer object.
ts = twistserver.TwistServer(’localhost’)
# Authenticate by passing an SA user name and password.
try:

ts.authenticate(’jdoe’, ’secretpass’)
except:

print "Authentication failed."
sys.exit(2)

Mapping Java package names and data types to Pytwist

The Pytwist interface is for Python, but the SA API is written in Java. Because of the differences
between two programming languages a Pytwist client must follow themapping rules described in this
section.

In the SA API documentation, Java package names begin with com.opsware. When specifying the
package name in Pytwist, insert pytwist at the beginning, for example:

from pytwist.com.opsware.compliance.sco import *

The SA API documentation specifies method parameters and return values as Java data types. The
following table shows how tomap the Java data types to Python for the API method invocations in
Pytwist.

Java data
type in SA
API Python data type in Pytwist

Boolean An integer 1 for true or the integer 0 for false.

Object[]
(object
array)

As input parameters to API method calls, object arrays can be either Python tuples or
lists. As output from API method calls, object arrays are returned as Python tuples.

Map Dictionary

Date A long data type representing the number of milliseconds since epoch (midnight on
January 1, 1970).

Mapping data types from Java to Python

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 81 of 325



Automation Platform Extensions (APX)
This topic describes how to create andmanage Automation Platform Extensions (APX), commonly just
called extensions. APXs provide a framework that allows anyone familiar with script-based
programming tools such as shell scripts, Python, Perl, and PHP, to extend the functionality of SA and
create applications that are tightly integrated into SA. SA provides two types of APXs:

l Program APXs (also calledScript APXs) run in the Global File System (OGFS) and can use all of
the OGFS functionality. You can use typical programming practices to leverage the SA API and
access a core’s Managed Servers to implement new custom functionality. For example, you could
write an APX that gathers BIOS information frommanaged servers and populates custom fields
using shell commands. See "Program APXs" on page 84.

l Web APXs allow you to create a web-based application, where either an Apache 2.x process or a
CGI/PHP script is called using GET or POST URL. Web APXs can contain static web resources
such as images, and can employ CGI or PHP for dynamic content generation. See "Web APXs" on
page 85.

APXs allow you to access data about your managed environment and share and process that data with
web applications, scripts, programs and other applications. Below are some of the benefits of APXs:

l Listed in the SA Library and can be used from the SA Client.

l Uniquely identified andmanaged through versioning.

l Secure because they take full advantage of SA’s security model. When needed, APXs can
securely and temporarily escalate a user’s permissions beyond the normal defaults during the APX
session.

l Scalable within and across SA cores.

l You can schedule them to be pushed automatically to servers.

l Auditable.

l Able to persist through an upgrade of the SA platform. APXs do not have to be rewritten after an
upgrade.

For information on using APX extensions, see the Running Extensions to SA section in the SA 10.51
User Guide. See also the SA Global Shell section in the SA 10.51 User Guide because you can also
run APX extensions from the SA Global Shell.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 82 of 325



Creating an APX
The following diagram shows the basic steps to creating an APX and the corresponding commands to
use. For a tutorial on how to create a web APX, see "Tutorial: Creating aWeb application APX" on page
107. For a tutorial on how to create a program APX, see "Tutorial: Creating a program APX" on page
114.

Creating an APX

1. To create a new APX, use the apxtool new command. This command creates a set of template
files you can edit to create your own APX.

You can optionally register your new APX with the apxtool new command. Registering your APX
reserves the name of your APX in SA. If you do not register your APX at this step, you can register
it with the apxtool import command in step 3 below.

See "apxtool command" on page 93.

2. After creating APX template files, develop your APX code by modifying the template files created
by the apxtool new command and possibly adding your own files. You can test your APX code to
make sure it is running correctly.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 83 of 325



3. When your APX code is tested, youmust import it into SA with the apxtool import command.

4. Run your APX either from the SA Client or from theGlobal Shell command line.

o From the SA Client: Select Library > By Type tab > Extensions > Program. Select an APX.
Select theActions > Run menu.

o From theGlobal Shell command line: Open theGlobal Shell from the SA Client by selecting the
Tools > Global Shell menu. Run your APX by entering the command:
/opsw/apx/bin/<APX name>

Formore information, see Running Extensions to SA and the SA Global Shell sections in the
Server Automation Using Guide on the HPE SSO portal.

To create an APX extension that is intended to run on VMware ESXi servers, the APX extensionmust
communicate with the ESXi server remotely using its web services interface. For more information on
VMware ESXi servers, see the Virtual Server Management section in the Server Automation Using
Guide on the HPE SSO portal.

Program APXs
Program APXs, also called Script APXs, are similar to shell commands and are implemented as OGFS
server scripts. You can invoke them from theOGFS command line and pass input arguments to them
using STDIN or command-line arguments. Their output goes to STDOUT and STDERR.

Program APXs are executed inside aGlobal Shell (OGSH) session and have access to all OGSH
features permissible to the user who invokes the APX. This includes rosh, CLI, OGFS, andmore. You
can write Program APXs using any script-based tool, such as shell script, Python, Perl, and so on.

You can invoke Program APXs from theOGSH command prompt. Typically, Program APXs are
executed synchronously, meaning the shell prompt does not return until the Program APX returns.
APXs cannot be scheduled as recurring jobs in either the twister or in OGFS.

Program APXs are located in the OGFS directory /opsw/apx/bin.

During an interactive OGSH session, a user only sees those Program APXs in /opsw/apx/bin that they
have permission to execute. Attempting to invoke a Program APX for which a user has no execution
permission results in a File Not Found error from the shell.

A Program APX can also be invoked by otherWeb APXs or Program APXs. For example, a CGI
program or PHP script from aWeb APX can invoke a Program APX.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 84 of 325



Web APXs
WebAPXs are implemented using CGI programs or PHP scripts. These CGI programs and PHP
scripts are executed inside a user-specific OGSH session. They may access SA facilities such as
rosh, the SA API, CLI, or any commands allowable from within anOGSH session. Web APXs are
served by a built-in Apache web server with a PHP module enabled.

You can access Web APXs in two ways: using a stand-alone web browser such as Internet Explorer or
Firefox, or from the SA Client. Microsoft ActiveX is not supported.

Invoking aWeb APX from a stand-aloneWeb browser the first time will trigger a login dialog that
requires verification of the SA user credentials. Invoking aWeb APX from the SA Client does not
require additional login. Web APXs can be used to build user Interfaces for custom customer
applications.

To launch APXs usingMicrosoft Internet Explorer versions 6 and 7 onWindows Server 2003, 2008 and
2012 with Enhanced Security Configuration enabled, the SA Client URLmust first be added to Internet
Explorer’s trusted site list.

APX user roles
There are three general roles of APX users as shown in the following table:

User role Description

End User Runs APXs. This user typically does not have permission tomodify an APX or see
its content.

APX
Developer

Creates and publishes APXs. This class of users can import and export APXs, and
canmodify APX content.

APX
Administrator

Determines APXs users are permitted to run. These users assign executable
permission to run an APX by managing folder permissions. APX Administrators
may not have permission tomodify the APX itself, but can have the permission to
view APX content in order to determine which APXs tomake executable.

APX user roles

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 85 of 325



APX permissions
APXs requires that you have the SA Client Feature permissionManage Extensions. A user group can
be given one of the permissions:

l Manage Extensions: Read

l Manage Extensions: Read & Write

l Manage Extensions: None

APX feature permissions

These feature permissions apply only to APX developers and administrators, they do not apply to those
users who only need to run APXs.

l Read permission grants the ability to display the APX source contents or to export (download) the
APX source archives.

l Read & Write permission grants the ability to modify the contents of an APX in addition to read
access.

l None permission denies all access to the APX source.

In addition to the SA Client FeatureManage Extensions permission, folder permissions (list, read,
write, execute) must be used to determine which APXs a user has access to.

Permission Description

List Permission to list the system’s APXs.

Read Permission to view APX contents.

Write Permission tomodify APX content and to import and export APXs.

Execute Permission to run APXs and view APX properties.

APX permissions

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 86 of 325



The following table shows amatrix of how permissions are determined based on the combination of the
Manage Extensions feature permissions and folder permissions.

Folder Permission:

Manage Extensions Permission:

Read Read & Write None

List List APXs List APXs List APXs

Read Export APXs Export APXs List APXs

Write Export APXs Import, export APXs List APXs

Execute Run APXs Run APXs Run APXs

APX permission matrix

Like other SA features, you can grant a user access to an APX and specify to whichmanaged servers
and/or policies the user can apply the APX.

If a user attempts to access aWeb APX for which he does not have execution permission, theWeb
browser will receive an HTTP 403 Forbidden return code.

For more information on SA permissions, see the Server Automation Administration Guide on the HPE
SSO portal.

Permission escalation
When executing an APX, the user has only the privileges to access resources and operations granted
in SA. However, in some cases, it will be necessary to temporarily grant the user escalated
permissions, privileges beyond the SA privileges, while executing an APX. You can explicitly grant
certain privileges to users, over-and-above their default SA privileges, on a temporary basis while
running an APX. Permission escalation is transparent to the user running the APX.

For example, youmay want a user to be able to run a BIOS information gathering application on a
managed server, but the user does not have the permissions granted to do so. You can write an APX
for a user without the privileges required to run the BIOS gathering application that temporarily grants
that user the required privileges. The user’s privileges return to the default after the APX ends its run.

Privilege escalation is specified in the file apx.perm file. For more information, see "APX permissions
escalation configuration file - apx.perm" on page 104.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 87 of 325



APX structure
An APX has the following attributes:

l APX type: Either Program APX (also called Script APX) orWeb APX.

l APX unique name: This is the full name of the APX that must be unique. For example,
com.hpe.sa.RestartMyApp.

l APX display name: This is usually a shorter name than the APX unique name. For example,
RestartMyApp.

l APX version: You canmaintain multiple versions of your APX by setting a version string or you
can let SA manage versions for you automatically. The APX version can be a simple number such
as version 1, 2, 3, and so on, or it can be any alphanumeric string.

See "Importing an APX into SA - apxtool import" on page 98 and "Setting the current version of an APX
- apxtool setcurrent" on page 101 for more information.

File structure
To SA, an APX is just a set of files and directories that conform to the contract of the APX type
(Program APX orWeb APX) such that the APX runtime can properly execute it. For example, aWeb
APX may need an index.html file or an index.php file. A Program APX may require a shell command
with the same name as the APX.

For more information on the files in an APX, see "APX files" on page 102.

OGFS integration
The APX infrastructure depends on theOGFS tomanage user sessions and to expose various parts of
the APX in the SA file system. The following sections describe how APX is integrated into the OGFS
and its various applications.

APX Executable Directory

Program APXs are treated as executable programs in the Global Shell, OGSH. These APXs are
exposed as an executable command in the OGSH. This allows a shell user to invoke the APX as if
running a shell command.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 88 of 325



The APX executable directory has the following format:

/opsw/apx/bin/{apx_name}

where apx_name is the name of the APX. Running apx_name in /opsw/apx/bin/{apx_name}invokes
the current version of apx_name.

APX Runtime Directory

The APX Runtime directory is used by the APX runtime to support execution of an APX. The APX
Runtime directory must have access to the APX source. In addition, users who have developer
privileges and have read permission to an APX can also access the APX. The APX Runtime directory
is not available for non-APX developers in the Global Shell.

The APX Runtime directory references the source of the current version of an APX. It has the format:

/opsw/apx/runtime/{apx_type}/{apx_name}

where apx_type can be script or web.

APX interfaces - Defining categories of APX

extensions
APX interfaces enable you to create named categories of APXs and to find all the APXs of a given
category. An interface is the name of the category. For example, you could create a category of APXs
that all take a certain set of input parameters and produces a certain type of output data. Or you could
create a category of APXs that all perform a specific set of operations.

You can also create an APX or an external application that gets the names of all APXs of the desired
category and executes them. Or the APX or application could just present the list of APXs of the
desired category and let the user select one to execute.

An APX interface is a name that defines an informal contract between the caller of an APX and the
APX.

l An APX that defines an interface name creates a category of APX with that name.

l An APX that implements an interface declares itself to be an APX of that category.

A sample interface

SA provides an interface namedRightClickToRun. This interface defines a category of APX that takes
one or more devices as input parameters and runs against those devices. In addition, the SA Client
displays all APXs that implement this interface in theActions > Run Extensionmenu, which allows

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 89 of 325



users to select one or more devices and run these APXs against the selected devices. For more
information on this interface, see "RightClickToRun interface" on the next page.

Defining an interface

An APX interface defines the name of a category of APXs. All APXs that implement the interface
belong to the category andmust adhere to the conventions of the interface. To create a new category,
youmake your APX “define” the interface.

Tomake your APX define an interface, perform the following steps:

1. Create the APX with the apxtool new command. For details on this command, see "Creating a
new APX - apxtool new" on page 95.

2. Locate the files of your new APX and open the file named interfaces in a text editor. The
interfaces file is located in the APX-INF directory of your APX directory.

3. At the end of the interfaces file, add three lines for:
o The name of the interface section in the file. This is the unique name of the interface.

o The display name of the interface.

o A description of the interface.

For example, the following shows the interface section name, the display name and the
description of the interface named “com.hpe.sa.MyNewInterface”:

[com.hpe.sa.MyNewInterface]
name=MyNewInterface
description=”This is a simple interface for testing purposes.”

4. Save your changes and close the file.

5. Import your modified APX into SA with the apxtool import command. For details on this
command, see "Importing an APX into SA - apxtool import" on page 98.

To upgrade an existing APX to define an interface youmust create the interfaces file and add your
interfaces as described above.

Implementing an interface
An APX interface specifies a category of APX that adheres to the conventions of the interface. To
specify that your APX belongs to a category, youmake your APX “implement” the interface. Tomake
your APX implement an interface, perform the following steps.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 90 of 325



1. Create the APX with the apxtool new command. For details on this command, see "Creating a
new APX - apxtool new" on page 95.

2. Locate the files of your new APX and open the file named apx.cfg in a text editor.

3. Locate the section in your apx.cfg file that discusses the “Implementing” section. This section
briefly describes how to specify the interfaces that your APX implements.

4. Locate the following lines in the file apx.cfg:

[Implementing]
interfaces=

5. Modify the interfaces= line and add the name of your interface at the end of the line. For
example, if your APX implements the interface named “com.hpe.sa.MyNewInterface”, the
apx.cfg file would contain the following lines:

[Implementing]
interfaces=com.hpe.sa.MyNewInterface

To implement more than one interface, add them to the interfaces line separated by colon, as
follows:

[Implementing]
interfaces=com.hpe.sa.MyNewInterface:com.hpe.sa.AnotherInterface

6. Save your changes and close the file apx.cfg.

7. Import your modified APX into SA with the apxtool import command. For details on this
command, see "Importing an APX into SA - apxtool import" on page 98.

Youmust set the current version of the APX to see the implemented interfaces when viewing the APX
in the SA Client or with the apxtool query command. For more information, see "Setting the current
version of an APX - apxtool setcurrent" on page 101.

To upgrade an existing APX to use an interface youmust add your interfaces to your existing apx.cfg
file as described above.

RightClickToRun interface
SA provides an interface you can use with your APXs named
com.hpe.client.server.RightClickToRun. This interface works only with program APXs, not with
web APXs. Use this interface when you want your APX to do all of the following:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 91 of 325



l Take one or more devices as input parameters to the APX. APXs that implement this interfacemust
take “-d <device id>” as an input argument.

l Appear in theActions > Run Extension >Select Extension... window.

l Appear in theActions > Run Extensionmenu of the SA Client. APXs appear in this menu after
they have been run once using theActions > Run Extension >Select Extension...menu.

To execute an APX from theActions > Run Extensionmenu, the user must have execute permission
on the APX. Any APX the user does not have permission to execute will not appear under this menu
item. For information on permissions, see the Server Automation Administration Guide on the HPE
SSO portal.

The RightClickToRun interface lets users select one or more devices in the SA Client and run your
APX against those devices.

When you select theActions > Run Extension menu item, the SA Client displays all of the program
APXs that implement the interface com.hpe.client.server.RightClickToRun. When you select an APX,
it is run against all the selected servers. The APX will be invoked once for each selected server.

For instructions onmaking your APX implement this interface, see "Implementing an interface" on page
90. For details on using an APX that implements this interface, see the Running SA Extensions section
in the Server Automation Using Guide on the HPE SSO portal.

CoreAffinity interface
SA provides an interface that you can use with your APXs named ‘com.hpe.client.server.CoreAffinity’.
You can use this interface when you want to run your APX in CoreAffinity mode.

CoreAffinity mode only applies when you have amesh with at least two SA cores. When this mode is
enabled for each target server, the APX is executed on the SA core to which this target server is
registered, regardless of where the actual job was started.

For example:

l You have amesh with two cores, core A and core B

l You start an APX job from core A on two target servers MA (registered to core A) andMB
(registered to core B)

In core affinity mode this job runs the APX for MA on core A andMB on core B. If CoreAffinity is
disabled then both executions will be done on core A (because that is where the job started).

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 92 of 325



For instructions onmaking your APX implement CoreAffinity interface, see "Implementing an interface"
on page 90.

Using the Interface API
You can use the SA API to integrate your own applications with SA and APXs. Your application can
determine all the APXs that implement a particular interface by using the interface named
APXInterfaceService in the package named com.opsware.apx in the SA API. "API Documentation and
the Twister" on page 27 on using the SA API.

apxtool command
Use the apxtool command in anOGFS session to create andmanage APXs. The apxtool command is
available in the Global Shell in the directory /opsw/bin/apxtool.

For a tutorial on how to use the apxtool to create a web APX, see "Tutorial: Creating aWeb application
APX" on page 107.

Syntax of apxtool
Invoke the APX tool from theOGFS command line as follows:

apxtool [-h | --help] {function} arguments

To obtain a complete list of commands and arguments supported by the APX tool, run apxtool from an
OGSH command line with no arguments.

The APX Tool supports the followingmajor functions:

Function Usage

new Creates a new APX source directory and a new set of template files in the OGFS.
Optionally registers the APX into SA. Registering assigns an APX ID andmakes the
name of your APX available to others (with appropriate permissions) using SA. See
"Creating a new APX - apxtool new" on page 95 for more information.

import Imports your APX files into the SA Library and creates a new version of your APX.
Optionally registers the APX into SA. Registering assigns an APX ID andmakes the
name of your APX available to others (with appropriate permissions) using SA. See

APX tool functions

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 93 of 325



Function Usage

"Importing an APX into SA - apxtool import" on page 98 for more information.

setcurrent Sets the current version of an APX in the SA Library. You can havemultiple versions
of an APX in SA, but only the current version can be executed. See "Setting the
current version of an APX - apxtool setcurrent" on page 101 for more information.

query Displays information about an APX. See "Querying APX information - apxtool query"
on page 99 for more information.

export Copies all of an APXs files from the SA Library to a separate set of files.

delete Deletes an APX from the SA Library.

APX tool functions, continued

Using short and long command options
Most of the options to the apxtool command accept a short form or a long form.

l The short form is a single hyphen and a character, for example, “-t“ and “-v”.

l The long format is two hyphens followed by a word, for example, “--type“ and “--view“.

Some options require an argument following the option. For example, “-t webapp“ and “-t details“.
Arguments can be specified in one of four formats, which are all equivalent. To illustrate, the following
commands are equivalent and produce the same results:

apxtool query -t webapp
apxtool query -twebapp
apxtool query -tw
apxtool query --type webapp
apxtool query --type=webapp

Some options only require typing aminimum number of characters, enough to identify the option
argument. For example, in the query function, the --view option requires argument “list“, “details“,
“versions“. The following commands produce the same result:

apxtool query --view=details
apxtool query --view=d
apxtool query -vdetails
apxtool query -vd

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 94 of 325



Creating a new APX - apxtool new
You can use the APX tool to create a new APX and optionally register the name of the APX into SA.
This command creates a set of template files for an APX that you canmodify. For information on the
files that make up an APX, see "APX files" on page 102.

Usage
apxtool new [options] {src_dir}

where the src_dir argument specifies the directory where the template files of the new APX are to be
created. If this argument is omitted, the template files are placed into the current directory.

The following table lists the options for creating a new APX:

Option Usage

-h, --help Show this helpmessage and exit.

-t <type>

--type=<type>

(Required) The APX type. Valid values are: script or webapp.
For example, -ts for script APX, -tw for web APX. (A script APX is
also known as a program APX.)

-u <unique name>

--uniquename=<unique
name>

(Required) The unique name of the APX. A unique name is a dot
separated name that conforms to file system format. It must have
at least one dot. Valid characters are: [a-zA-Z0-9_.].

Example:
com.hpe.sa.security.scan_ports

-n <name>

--name=<name>

(Optional) The display name of the APX in a folder. If a name is not
specified, but a unique name is specified, the last part of the APX
unique name is used as the display name. Note that this name
must be unique within the specified folder.

For example, if the unique namewere com.hpe.sa.MyWebExt, the
default display namewould beMyWebExt.

-d <description>

--
description=<description>

(Required) A brief description of an APX. If the description is a
filenamewith the extension .txt, the file is assumed to be a text file
and its content is used as the APX description.

-r (Optional) Registers the name of the APX into the system. If you

Options for apxtool new

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 95 of 325



Option Usage

--register specify this option, youmust also specify -f or --folder.

If you do not specify -r and -f with apxtool new, youmust use -f
with apxtool import.

-f <path>

--folder=<path>

(Optional) The SA folder path where the APX will be registered.
This can be a full path, partial path, absolute path, or relative path,
as long as it can uniquely identify a specific folder. This option is
only needed if -r or --register is used.

If you do not specify -r and -f with apxtool new, youmust use -f
with apxtool import.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

Options for apxtool new, continued

Deleting an APX - apxtool delete
You can use the APX tool to delete an existing APX from the SA library.

Usage
apxtool delete [options]

The following table lists the options for deleting an APX:

Option Usage

-h

--help

Show this helpmessage and exit.

-t <type>

--type=<type>

(Required) APX type. Valid values are: script or webapp. For example -
ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>

--
uniquename=<unique_

(Optional) The unique name of the APX. A unique name is a dot separated
name that conforms to file system format. It must have at least one dot.
Valid characters are: [a-zA-Z0-9_.].

Options for apxtool delete

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 96 of 325



Option Usage

name> Example:
com.hpe.sa.security.scan_ports

-n <name>, --
name=<name>

(Optional) APX display name in a folder.

-f <path>, --
folder=<path>

(Optional) SA folder path. Path can be a full path, partial path, absolute, or
relative, as long as it can uniquely identify a specific folder.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

Options for apxtool delete, continued

Exporting an APX from SA - apxtool export
You can use the APX tool to export an APX. Export downloads a specific version of an APX source
archive file and places the files into a directory or into a .zip archive file.

Usage
apxtool export [options] {target_dir}

where the argument target_dir is the directory into which the APX source archive file is copied or into
which the APX source archive content is expanded, depending on whether or not the --archive option is
specified. If omitted, the current directory is used.

The following table lists the options for exporting an APX.

Option Usage

-h, --help Show this helpmessage and exit.

-t <type>, --
type=<type>

(Required) APX type. Valid values are: script or webapp. For example,
-ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>,
--
uniquename=<unique_
name>

(Optional) The unique name of the APX. A unique name is a dot
separated name that conforms to file system format. It must have at least
one dot. Valid characters are:
[a-zA-Z0-9_.].

Options for apxtool export

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 97 of 325



Option Usage

Example:
com.hpe.sa.security.scan_ports

-n <name>, --
name=<name>

(Optional) APX display name in a folder.

-f <path>, --
folder=<path>

(Optional) SA folder path. Path can be a full path, partial path, absolute,
or relative, as long as it can uniquely identify a specific folder.

-v v<ersion_string>,
--version=<version_
string>

(Optional) This option specifies which APX version to download. If
omitted, the current version is downloaded.

-a, --archive If specified, export the APX source in its original source archive as a ZIP
or JAR file.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

Options for apxtool export, continued

Importing an APX into SA - apxtool import
You can use the APX Tool to import APXs. Import publishes a new version of an APX and optionally
sets this version as the current version. If the APX was has not been registered yet, this command also
registers the APX.

Only the current version of an APX can be run. If you do not set the current version, the APX will not be
runnable. You can set the current version with either apxtool import or with apxtool setcurrent.
See "Setting the current version of an APX - apxtool setcurrent" on page 101 for more information.

Usage
apxtool import [options] {apx_src}

where apx_src can be an archived APX source file with extension .zip or .jar or it can be the name of a
directory containing the APX files to be published. apx_src may be a relative or absolute path. If
omitted, the current directory is used. The specified directory or archive file must contain the directory
APX-INF.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 98 of 325



The following table lists the options that are available when importing an APX:

Option Usage

-h, --help Show this helpmessage and exit.

-c, --setcurrent If specified, set the newly published version as the current version of an APX.

--
version=<version_
string>

The new version of this APX. This optionmust not be used if version_string is
already specified in apx.cfg. If no version is specified, one will be assigned
automatically.

-f <path>, --
folder=<path>

(Optional) SA folder path. Path can be a full path, partial path, absolute, or
relative, as long as it can uniquely identify a specific folder.

If you did not specify -r and -f with apxtool new, youmust use -r with
apxtool import.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

Options for apxtool import

Querying APX information - apxtool query
You can use the APX Tool to get and view APX information. You can specify additional options to limit
resulting APXs. Multiple occurrences of the same option form a logical OR expression. If nomatching
result is found, this command returns exit code 100.

Usage
apxtool query [options]

The following table lists the options that are available when querying APX information:

Option Usage

-h, --help Show this helpmessage and exit.

-v <view>, --
view=<view>

(Optional) Select one of the predefined views of the query results.
Choices are list (default), details, and versions.

-v list is a single line representation of APX basic information
presented in tabular format.

Options for apxtool query

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 99 of 325



Option Usage

-v details is a multiple line representation of APX information.

-v versions lists all APX versions. You would only need to specify
enough characters for the view type; for example, -vd, is the same as -v
details. If the
versions layout is selected, the query must result in a single APX object.

-t <type>, --
type=<type>

(Optional) Specifies the type of APX to display. Valid values are: script or
webapp or interface. The default is to display all types.

-t script displays all script APXs.

-t webapp displays all web APXs.

-t interface displays all APXs that define one or more interfaces.

For example, apxtool query -ts displays all the script APXs.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>
--
uniquename=<unique_
name>

(Optional) The unique name of the APX. A unique name is a dot separated
name that conforms to file system format. It must have at least one dot.
Valid characters are: [a-zA-Z0-9_.].

Example:
com.hpe.sa.security.scan_ports

-n <name>, --
name=<name>

(Optional) APX display name in a folder.

-f <path>, --
folder=<path>

(Optional) SA folder path. Path can be a full path, partial path, absolute, or
relative, as long as it can uniquely identify a specific folder.

--current (Optional) if specified, only query APX objects that have a current version
set.

--format=<format_
string>

(Optional) This advanced option allows you to specify custom display
formatting for an APX listing.

format_string is a string containing embedded tag names that are
substituted with values at display time. Tag names must have a format of
%(tag_name).

Use the format string “__show_tags__” to display a list of all the
supported tag names.

--csv (Optional) Displays the output in comma-separated values format. Ignored
if the --format option is specified.

-Q, --quiet (Optional) Suppresses extraneous output messages.

Options for apxtool query, continued

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 100 of 325



Setting the current version of an APX - apxtool

setcurrent
You can use the APX tool to set an APX version as the current version.

Only the current version of an APX can be run. If you do not set the current version, the APX will not be
runnable. You can set the current version with either apxtool import or with apxtool setcurrent.
See "Importing an APX into SA - apxtool import" on page 98 for more information.

Usage
apxtool setcurrent [options] {version_str}

where the argument version_str is required to uniquely identify an existing version of an APX.

The following table lists the options that are available when setting an APX version:

Option Usage

-h, --help Show this helpmessage and exit.

-t <type>, --
type=<type>

(Required) APX type. Valid values are: script, webapp. For example, -
ts for script.

--id=<APX id> (Optional) The object identifier of the desired APX.

-u <unique_name>,
--
uniquename=<unique_
name>

(Optional) APX unique name. A unique name is a dot separated name that
conforms to file system format.It must have at least one dot. Valid
characters are
[a-zA-Z0-9_.].

Example:
com.hpe.sa.security.scan_ports

-n <name>, --
name=<name>

(Optional) APX display name in a folder.

-f <path>, --
folder=<path>

(Optional) SA folder path. Path can be a full path, partial path, absolute, or
relative, as long as it can uniquely identify a specific folder.

-Q, --quiet (Optional) Suppresses output messages.

-F, --force (Optional) Suppresses confirmation prompts.

Options for apxtool setcurrent

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 101 of 325



Error handling
The APX tool command conforms to the standard POSIX convention and returns 0 on success and a
non-zero value for other errors. The APX tool sends normal output to STDOUT and errors and warnings
to STDERR. When an error occurs, the APX tool typically returns a descriptivemessage to STDERR.

Error conditions are typically categorized as shown in the following table:

Return Code Description

0 Success

1 Syntax or usage error

2 Permission related error

3 User canceled operation

4 Runtime error

APX Tool Error Conditions

Theremay be other undocumented exit codes. The only guarantee is that if the exit code is 0, the
command completed its operation successfully.

APX files
This section describes the template files created when you run the apxtool new command. The
following table summarizes these files. The sections below describe some of the files in more detail.

File name Description

apx.cfg APX configuration file, contains metadata that fully describes the APX. See
"APX configuration file - apx.cfg" on the next page for more information.

apx.perm APX permissions file, specifies permission escalation rules. See "APX
permissions escalation configuration file - apx.perm" on page 104 for more
information.

description.txt Text description of the APX. Specified with the apxtool new -d option. See
"Creating a new APX - apxtool new" on page 95 for more information.

interfaces APX interface definition file. Specifies the interfaces the APX defines or
implements. See "APX interfaces - Defining categories of APX extensions" on

APX files

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 102 of 325



File name Description

page 89 for more information.

usage.txt Text description of how to use the APX.

run.sh For program APXs only, this file contains the executable code of the APX. This
file contains the functionality of the program APX. For an example, see
"Tutorial: Creating a program APX" on page 114 for more information.

index.php For web APXs only, this file contains the PHP source code for the web APX.
This file contains the functionality of the web APX. For an example, see
"Tutorial: Creating aWeb application APX" on page 107 for more information.

APX files, continued

APX configuration file - apx.cfg
All APXs regardless of typemust have a configuration file named apx.cfg. The apxtool new
command creates a template of this file for you tomodify. This file contains metadata that fully
describes the APX. The apx.cfg uses a “key=value” format to define the properties of the APX. Multiple
lines are joined together with a line continuation character, “\“.

The "APX configuration file attributes" below table describes common attributes for all APXs. APX type
specific attributes are described in the corresponding APX type functional specifications. Note that
some of the attributes may be extracted from the apx.cfg configuration file andmanaged in SA. For
modifiable attributes such as the description, subsequent updates of the apx.cfg file will update the
SA managed data accordingly.

To see an example apx.cfg file, run the apxtool new command and open the files it creates.

Attribute Modifiable? Description

type No The type of the APX, whichmust be either webapp or script. (Script
APXs are also known as Program APXs.) Once created, you cannot
change the APX type.

name Yes This is the APX display name andmay contain multi-byte characters.
This name can be changed at any time. This namewill be listed in the
SA Client APX folders.

unique_name No The unique name of the APX. This namewill be used as the file name
for the APX as it appears in the OGFS. This name together with the
type forms a key that uniquely identifies an APX. Once created, the
name cannot be changed. Since this name is used in the file system,
it must conform to the file system naming specification. Generally,

APX configuration file attributes

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 103 of 325



Attribute Modifiable? Description

this name should be in ASCII.

version Yes The version string representing the current version of the APX. If the
value begins with the string “auto:”, then SA will automatically
manage the versions using an integer incremented for each new
version.

description Yes A text description of what the APX does. You can alternatively use
the file description.txt instead of this attribute.

usage Yes A text description describing how to use the APX. You can
alternatively use the file usage.txt instead of this attribute.

interfaces Yes One ormore interfaces the APX implements. Separatemultiple
interfaces with a colon (:) character.

command Yes The executable file the APX is to run when it is invoked.

APX configuration file attributes, continued

APX permissions escalation configuration file -

apx.perm
Use the file apx.perm to specify permission escalation rules. If this file does not exist, or if it contains
no escalation permissions, the APX will run with the user's default permissions.

When a new APX is created using the APX Tool’s New command, it generates certain default files,
including a default apx.perm file, which by default has no escalation permissions defined. The default
file does contain some commented out examples which an APX developer can use as templates.

There are three ways to specify escalations, described below.

l "No escalation" on the next page

l "All permissions" on the next page

l "With escalation" on the next page

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 104 of 325



No escalation
The escalations attribute is not specified. The APX runtime uses the current user privilege to execute
an APX. If an APX invokes privileged operation which a user does not have, APX execution will
terminate with an error.

All permissions
This is a special privilege that temporarily grants all operation permissions to a user. It is intended for
development or demo use only. This is a useful tool for speedy proof of concept, or demo, without
worrying fine grain permission tuning. It is a poor choice for a production environment due to its lack of
security.

To grant all permissions, edit file apx.perm with amacro that matches all features with wildcard
characters. For example:

use_feature(name=”*”)

With escalation
Specify a list of predefined common operations in the apx.perm file. When executing the APX, the APX
runtime temporarily grants these permissions to the APX. SA has a comprehensive list of feature and
resource permissions. To simplify the task of escalating related feature, one can use wildcard
characters to match groups of related features. For example:

@use_feature(name=”Application.*”)

Showing the progress of an APX
You can use the apxprogress command in your program APX to provide information about the
progress of your APX. This is useful for program APXs that run for a long period of time when you want
to give the user status on the progress of your APX.

You can use a web APX as a front-end to the program APX and display the progress in the web APX.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 105 of 325



apxprogress command
Use the apxprogress command to define the number of steps in the execution of a program APX and
to record when each step has completed. This lets users of the APX know how far the APX has
progressed and how much is remaining.

Syntax of apxprogress
apxprogress {option}...

Option Description

-i <total
number of
steps>

Specifies the total number of steps the APX takes to run. Use this option once at
the beginning of the APX to specify the total number of steps the APX will take.

You can use this optionmultiple times in an APX to increase the number steps.
Each use increments the total number of steps by the specified value.

-c <current
step>

Specifies the current step number. Call apxprogresswith this option after each
step in the APX code has completed.

-m <message> Specifies a text message describing the status of the APX.

-a <data> Specifies additional information the APX canmake available about itself.

-d Indicates debugmode. Displays the output of the command to stdout for
debugging purposes.

-h Displays help information about the apxprogress command.

Options to the apxprogress command

Example shell script that uses apxprogress
The following shell script is part of a program APX that uses the apxprogress command. The APX
defines a total of 100 steps and announces its current progress 100 times. Each time it also provides a
message that includes the step number.

#!/bin/sh
######################################################################
# A simple shell script for a program APX that displays progress
# about itself.
# Author: <name>

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 106 of 325



######################################################################
echo "This is a simple APX that uses apxprogress."
totalsteps=100
apxprogress -i $totalsteps -c 1
for i in `seq $totalsteps`; do
apxprogress -c $i -m "APX is running, working on step $i" -d
sleep 10
done

Viewing APX progress
You can use the SA API method JobService.getProgress()to access the progress information
about a running APX that calls the apxprogress command. For an example showing this method, see
"Viewing the APX progress in the Twister interface" on page 120, which is part of the "Tutorial: Creating
a program APX" on page 114.

Tutorial: Creating a Web application APX
This tutorial demonstrates how to create, publish, and run a simple web application APX named
mywebapp.

Running the default version of the APX created during this tutorial displays the output of the PHP
command, phpinfo. Later the tutorial shows you how tomodify the PHP code so that it displays a list
of managed servers. Because the tutorial provides the source code, prior knowledge of PHP is not
required.

Complete the following tasks in order.

1. "Setting permissions and creating the tutorial folder" on the next page

2. "Creating a new web application" on page 109

3. "Importing the new web application into SA" on page 111

4. "Running the new web application" on page 111

5. "Modifying the web application" on page 113

6. "Running themodified web application" on page 114

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 107 of 325



Tutorial prerequisites
To complete this tutorial, youmust have the following capabilities and environment:

l The ability to log on to SA as admin or as another member of theSuper Administrators group.
Logging on as admin enables you to set permissions.

l The ability to log on to SA as a user who belongs to theAdvanced Users group.

l Advanced users have permission to create and run the web application. In the example commands
shown in this tutorial, the name of this user is jdoe.

l An understanding of how to set client feature permissions in the SA Client.

l Formore information about permissions, see the "User andGroup Setup" section in the the SA
10.51 Administration Guide.

l An understanding of how to create folders in the SA Client

l For details on folders, see the SA 10.51 User Guide.

l An understanding of how to open aGlobal Shell session.

l An understanding of basic Unix commands such as ls and cd.

l Experience developing web applications that run on HTTP servers.

Setting permissions and creating the tutorial folder

1. Log on to the SA Client as amember of theAdvanced Users group and create the following folder
in the SA Library:

/Dev/MyApp

Later in the tutorial, you will upload a web application into theMyApp folder. In the non-tutorial
environment, the name of this folder is arbitrary. You can create or choose any other folder to
contain your web applications.

2. Exit the SA Client.

3. Log on to the SA Client as admin and open the Folder Properties of the MyApp folder.

4. On thePermissions tab of Folder Properties, make sure that theAdvancedUsers group has
the following permissions:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 108 of 325



o List Contents of Folder

o ReadObjects Within Folder

o Write Objects Within Folder

o Execute Objects Within Folder

5. Exit the SA Client.

Creating a new web application

1. Open aGlobal Shell session as an SA user who belongs to the Advanced Users group.

2. In your core’s OGFS home directory, create a directory named mywebapp and then change to that
directory:

$ mkdir mywebapp
$ cd mywebapp

The web application files will be stored in the mywebapp directory.

3. Using the apxtool new command, create the directory structure and default files for the web
application as shown below.

$ pwd
/home/jdoe/mywebapp
$ ls
$
$ apxtool new -tw -d "This is my first app." \
-u com.hpe.sa.jdoe.mywebapp
Create source directory /home/jdoe/mywebapp/com.hpe.sa.jdoe.mywebapp? Y/N y
Info: Successfully created APX 'mywebapp' source directory:
/home/jdoe/mywebapp.

The -tw option indicates that the APX type is a web application, -d specifies a description, and -u
specifies a unique name for the application.

For more information about the apxtool new command options, see the online help:
$ apxtool new -h

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 109 of 325



4. Change directories into the new directory created by the apxtool new command and list the files
there.

$ pwd
/home/jdoe/mywebapp
$ cd com.hpe.sa.jdoe.mywebapp
$ ls
APX-INF cgi-bin css images index.php
$ ls -R
.:
APX-INF cgi-bin css images index.php
./APX-INF:
apx.cfg apx.perm description.txt interfaces usage.txt
./cgi-bin:
./css:
hp_sa.css
./images:

5. Display the contents of the default index.php file:

$ cat index.php
<?php
// Show information about PHP
phpinfo();
?>

As with other web applications, you can replace the index.php file with an index.html file.
However, this tutorial uses the index.php file, which you will modify in a later section.

6. Examine some of the files in the APX-INF directory. For more information, see "APX files" on page
102.

The APX-INF directory contains information that is specific to APX web applications. As shown by
the following cat command, the description.txt file holds the text you specified with the -d
option of apxtool new.

$ ls APX-INF/
description.txt apx.cfg apx.perm usage.txt
$ cat APX-INF/description.txt
This is my first app $

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 110 of 325



The following grep command shows some of the properties in apx.cfg, the APX configuration
file. The values for type and uniquename result from the -t and -u options of the apxtool new
command. For details on the APX configuration file, see "APX configuration file - apx.cfg" on page
103.

$ grep "=" APX-INF/apx.cfg
type=webapp
name=mywebapp
unique_name=com.hpe.sa.jdoe.mywebapp

Importing the new web application into SA
Importing the web application performs the following actions:

l Installs the web application on an HTTP server within SA.

l Copies the web application to a folder that appears in the SA Library and in the Global Shell.

l Assigns a version number to the web application.

Enter the apxtool import command and respond to the prompts with y, as shown below. The -f
option specifies the folder in the SA Library where the web application will be stored. The -c option sets
the current version of the web application.

$ pwd
/home/jdoe/mywebapp/com.hpe.sa.jdoe.mywebapp
$
$ apxtool import -f "/Dev/MyApp" -c
APX source is not specified.
Do you want to publish current directory: /home/jdoe/mywebapp/
com.hpe.sa.jdoe.mywebapp? Y/N y
APX with unique name 'com.hpe.sa.jdoe.mywebapp' does not exist.
Register it into the system? Y/N y
Info: Successfully registered APX 'mywebapp' (310001) in folder ‘/Dev/
MyApp’.
Info: Successfully published a new version '1' for APX 'mywebapp'.
Info: Successfully set APX 'mywebapp'(310001) current version as '1'.

Running the new web application
Now that you have published the web application, you are ready to run it from the SA Client, just as an
end-user would.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 111 of 325



1. Log on to the SA Client as a user who belongs to theAdvanced Users group.

2. Select the Library tab and the By Type tab.

3. Navigate to theExtensions > Web node where you should see the mywebapp extension.

If you do not see mywebapp, make sure that you have the necessary permissions as described in
"Setting permissions and creating the tutorial folder" on page 108.

4. To run the web application, select mywebapp. and select theActions > Runmenu.

The following figure appears. The web application displays the information generated by the
phpinfo statement of the index.php file.

Web Application Version 1

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 112 of 325



Modifying the web application
Running the default index.php file is a good way to check your development environment, but it does
not take advantage of SA functionality. In this section, youmodify the index.php file so that it lists the
names of servers managed by SA.

1. In the Global Shell session, locate the index.php file of the web application.

$ cd /home/jdoe/mywebapp/com.hpe.sa.jdoe.mywebapp
$ ls
APX-INF cgi-bin css images index.php

2. Open the index.php file in a text editor such as vi.

3. Replace the contents of index.phpwith the following lines:

<html>
<head>
<title>Servers</title>
</head>
<body>
<p>List of servers:</p>
<?php
passthru("ls /opsw/Server/@");
?>
</body>
</html>

The passthru statement above runs the ls command and passes stdout (without reinflates)
back to the web page. The ls command lists the names of your managed servers as they appear
in the OGFS.

4. Save the index.php file and exit the text editor.

5. Publish themodified web application.

The following apxtool import command sets the current version to 2. The -F option suppresses
the confirmation prompts.

$ apxtool import -f "/home/jdoe/mywebapp/com.hpe.sa.jdoe.mywebapp" \
-c --version=2 -F

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 113 of 325



Info: Successfully published a new version '2' for APX 'mywebapp'
Info: Successfully set APX 'mywebapp'(310001) current version as '2'.

Running the modified web application

1. In the SA Client, use theView> Refreshmenu to refresh the view of your web extensions, which
should now contain version 2 of mywebapp.

2. Select mywebapp and select theActions > Runmenu. The output should be similar to theWeb
Application Version 1 except it displays the output of the PHP passthru statement and theOGSH
ls statement, which lists all your managed servers. Note that the passthru statement removes
the line feeds that separate the server names returned by the ls command.

Tutorial: Creating a program APX
This tutorial demonstrates how to create, publish, and run a simple program APX namedmyshellapp
that runs a simple shell script. Later the tutorial shows you how tomodify the shell script to call the
apxprogress command and provide progress information. Because the tutorial provides the source
code, prior knowledge of shell programming is not required.

Complete the following tasks in order.

l "Setting permissions and creating the tutorial folder" on the next page

l "Creating a new program APX" on the next page

l "Importing the new APX into SA" on page 117

l "Running the new APX" on page 118

l "Modifying the APX" on page 119

l "Running themodified APX" on page 120

l "Viewing the APX progress in the Twister interface" on page 120

Tutorial prerequisites
To complete this tutorial, youmust have the following capabilities and environment:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 114 of 325



l The ability to log on to SA as admin or as another member of theSuper Administrators group.
Logging on as admin enables you to set permissions.

l The ability to log on to SA as a user who belongs to theAdvanced Users group.

l Advanced users have permission to create and run the web application. In the example commands
shown in this tutorial, the name of this user is jdoe.

l An understanding of how to set client feature permissions in the SA Client.

l Formore information about permissions, see the "User andGroup Setup section" in the SA 10.51
Administration Guide.

l An understanding of how to create folders in the SA Client

l For details on folders, see the SA 10.51 User Guide.

l An understanding of how to open aGlobal Shell (OGSH) session and use theGlobal Shell.

l An understanding of basic Unix commands such as ls and cd.

Setting permissions and creating the tutorial folder

1. Log on to the SA Client as admin and open the Folder Properties of the MyApp folder.

2. On thePermissions tab of Folder Properties, make sure that theAdvancedUsers group has
the following permissions:
o List Contents of Folder

o ReadObjects Within Folder

o Write Objects Within Folder

o Execute Objects Within Folder

3. Exit the SA Client.

Creating a new program APX

1. Open aGlobal Shell session as an SA user who belongs to the Advanced Users group.

2. In your core’s OGFS home directory, create a directory named myshellapp and then change to
that directory:

$ mkdir myshellapp

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 115 of 325



$ cd myshellapp

The program APX files will be stored in the myshellapp directory.

3. Using the apxtool new command, create the directory structure and default files for the program
APX as shown below.

$ pwd
/home/jdoe/myshellapp
$ ls
$
$ apxtool new -ts -d "This is my first program APX." \
-u com.hpe.sa.jdoe.myshellapp

Create source directory under
‘/home/jdoe/myshellapp/com.hpe.sa.jdoe.myshellapp’ for APX ‘myshellapp’? Y/N y
Info: Successfully created source directory
‘/home/jdoe/myshellapp/com.hpe.sa.jdoe.myshellapp for APX ‘myshellapp’.

The -ts option indicates that the APX type is a program APX (also called a script APX), -d
specifies a description, and -u specifies a unique name for the application.

For more information about the apxtool new command options, see the online help:
$ apxtool new -h

4. List the files created by the apxtool new command:

$ pwd
/home/jdoe/mywebapp
$ ls
com.hpe.sa.jdoe.myshellapp
$ cd com.hpe.sa.jdoe.myshellapp
$ pwd
/home/jdoe/myshellapp/com.hpe.sa.jdoe.myshellapp
$ ls -R
.:
APX-INF run.sh
./APX-INF:
apx.cfg apx.perm description.txt interfaces usage.txt

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 116 of 325



5. Display the contents of the default run.sh file:

$ cat run.sh
#!/bin/sh

######################################################################
# APX myshellapp
#
# Created by: jdoe
#
######################################################################
echo "This is APX myshellapp"

6. Examine some of the files in the APX-INF directory. For more information on these files see "APX
files" on page 102.

The APX-INF directory contains information that is specific to APXs. As shown by the following
cat command, the description.txt file holds the text you specified with the -d option of
apxtool new.
$ ls APX-INF/
apx.cfg apx.perm description.txt interfaces usage.txt
$ cat APX-INF/description.txt
This is my first program APX.$

The following grep command shows some of the properties in apx.cfg, the APX configuration
file. The values for type and uniquename result from the -t and -u options of the apxtool new
command. For details on the APX configuration file, see "APX configuration file - apx.cfg" on page
103.

$ grep "=" APX-INF/apx.cfg
type=script
name=myshellapp
unique_name=com.hpe.sa.jdoe.myshellapp
command=run.sh

Importing the new APX into SA
Importing the APX performs the following actions:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 117 of 325



l Copies the APX to a folder that appears in the SA Library.

l Assigns a version number to the APX.

Enter the apxtool import command and respond to the prompts with y, as shown below. The -f
option specifies the folder in the SA Library where the web application will be stored. The -c option sets
the current version of the web application.

$ pwd
/home/jdoe/myshellapp/com.hpe.sa.jdoe.myshellapp
$
$ apxtool import -f "/Dev/MyApp" -c
APX source is not specified.
Do you want to publish current directory: /home/jdoe/myshellapp/
com.hpe.sa.jdoe.myshellapp? Y/N y
APX with unique name 'com.hpe.sa.jdoe.myshellapp' does not exist.
Register it into the system? Y/N y
Info: Successfully registered APX 'myshellapp' (20001).
Info: Successfully published a new version '1' for APX 'myshellapp'
Info: Successfully set APX 'myshellapp'(20001) current version as '1'.

Now that you have published the APX, you are ready to run it from the SA Client, just as another SA
user would.

Running the new APX
Now that you have published the APX, you are ready to run it from the SA Client.

1. Log on to the SA Client as a user who belongs to theAdvanced Users group.

2. In the navigation pane, select the Library tab, then the By Type tab.

3. Open the Extensions node and select the Program node. This displays all the program APXs in the
SA Library. You should see your APX there. If you do not see myshellapp, make sure that you
have the necessary permissions as described in "Setting permissions and creating the tutorial
folder" on page 115.

4. Select your APX.

5. Select theActions > Runmenu item. This displays the Run Program Extension wizard.

6. Select the Next button.

7. Select the Start Job button.

8. When your APX finishes, select the status indicator to display details.

9. Select the Close button.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 118 of 325



Modifying the APX
In this section, youmodify the run.sh file and add calls to the apxprogress command to provide
progress information.

1. In the Global Shell session, locate the run.sh file of the APX.

$ cd /home/jdoe/myshellapp/com.hpe.sa.jdoe.myshellapp
$ ls
APX-INF run.sh

2. Open the run.sh file in a text editor such as vi.

3. Replace the contents of run.shwith the following lines:

echo "This is a simple APX that uses apxprogress."

totalsteps=100

apxprogress -i $totalsteps -c 1

for i in `seq $totalsteps`; do

apxprogress -c $i -m "myshellapx is running, working on step $i" #-d

sleep 10

done

These apxprogress commands specify that the APX has 100 steps and it calls apxprogress 100
times, once for each step, waiting ten seconds between calls. For more information, see "Showing
the progress of an APX" on page 105.

For debugging, you can change “#-d” to “-d” and run the shell script manually to display the output
from the apxprogress commands on stdout.

4. Save the run.sh file and exit the text editor.

5. Publish themodified APX.

The following apxtool import command loads the new version of the APX and sets the current
version to 2. The -F option suppresses the confirmation prompts.

$ apxtool import -f "/home/jdoe/myshellapp" \

-c --version=2 -F

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 119 of 325



Info: Successfully published a new version '2' for APX 'myshellapp'

Info: Successfully set APX 'myshellapp'(20001) current version as '2'.

Running the modified APX
Now that you havemodified and republished the APX, run it from the SA Client as before.

1. In the SA Client, use theView >Refreshmenu to refresh the view of the program extensions,
which should now show version 2 of myshellapp.

2. Select your APX.

3. Select theActions > Runmenu item. This displays the Run Program Extension wizard.

4. Select Next.

5. Select Start Job.

Viewing the APX progress in the Twister interface
The apxprogress commands report the progress of the running APX. You can obtain this progress
information by calling the API method JobService.getProgress(). This section shows you how to
run this method from the Twister interface. For more information on the Twister interface to the SA API,
see "API Documentation and the Twister" on page 27.

1. In the SA Client, select the Jobs and Sessions tab.

2. Locate your APX in the list of jobs.

3. Note the Job ID number of your APX job. You will use this in a later step.

4. Run the SA Twist interface by entering the following URL into a web browser:

https://<core_host>:1032

where <core_host> is the IP address or host name of your SA core server. This displays the Twist
interface to the SA API in the web browser.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 120 of 325



5. Select the “Twister” link. This displays the Twister interface to the SA API where you can get
complete information about API interfaces, packages andmethods and where you can run
methods.

6. Locate and select the JobService interface, which is in the com.opsware.job package.

7. Scroll down and locate the getProgress()method.

8. Select the Try It button just above the getProgress()method.

9. Enter your SA credentials.

10. Select Login.

11. In the “id” field, enter the job number of your running APX, from step 3 above.

12. Select Go. This calls the getProgress()method and displays the current progress information
about your APX from the apxprogress command, as shown below. Notice that the total number of
steps is 100 and the number of completed steps is 94 in this snapshot. For more information on the
output from the getProgress()method, see the Javadocs documentation by selecting the

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 121 of 325



getProgress()method in the navigation pane of the Twister web browser.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 122 of 325



Agent Tools
Agent Tools is a suite of shell scripts, batch files, and Python scripts specifically designed to retrieve
andmodify information about Managed Servers. The information is retrieved from andmodified in the
SA database.

Using the scripts, you can retrieve andmodify such data as custom fields, customer assignments,
custom attributes, andmore. Given this ability, you can automatemany procedures that in the past had
to be accomplished on a server-by-server basis.

In addition, you can incorporate the information the scripts retrieve into customized scripts of your own
design. Since information such as customer assignment and custom attributes varies frommanaged
server to managed server, the ability to retrieve and use this information on-the-fly in customized
scripts can be very useful.

For example:

l Youmay have a script that handles post-installation configuration for a certain application that must
be able to discover the Facility name in which the server is registered. Agent Tools provides a script
to get the Facility name and insert it into your post-installation script without manual intervention.

l When installing amonitoring agent, a post-installation script must modify a configuration file to
include the IP address of themonitoring server in that particular facility. Agent Tools provides a
script to discover themonitoring server’s IP address by reading a custom attribute on the Core so
that it can be inserted into the configuration file.

l A DSE can be written to retrieve the EEPROM version frommany servers and store that
information as a custom attribute or custom field.

Some other uses of Agent Tools scripts include:

l Gathering information from an SA Core during software installation for use in configuration.

l Storingmetadata frommanaged servers in the SA database while executing a DSE, Global Shell
script, or software installation.

l Retrieving custom attribute information for Managed Servers.

Following topics are discussed in this section:

l "Installation requirements" on the next page

l "Installation" on the next page

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 123 of 325



l "Upgrading Agent Tools" on the next page

l "Agent Tools scripts" on page 126

l "Sample Agent Tool scripts" on page 128

Installation requirements
The Agent Tools suite has the following requirements:

Operating System support

Agent Tools supports the operating systems supported by the SA Managed Servers. For a list of
supported operating systems, See the Server Automation Install Guide.

Security, access control, and authentication

Agent Tools must be run as the root user on UNIX/Linux systems or as theAdministrator onWindows
systems. Agent Tools use the Server Agent's certificate to connect to theWeb Services Data Access
Engine (twist) which is pyTwist’s default behavior, and is granted the privileges that theWeb Services
Data Access Engine gives to the Agent. This typically applies to read/write privileges on the server
from which Agent Tools is run, therefore, no user authentication is required.

An exception is the set_customer script. Youmust have read access to a customer to be able to
associate a server with that customer. Agent certificates do not have read access to other customers,
therefore the user must authenticate when running this script.

Running Agent Tools scripts onWindows is not supported when UAC (User Access Control) is
enabled.

Other requirements

l Access privileges to pyTwist

l Access privileges to the SA API

l Installed Python 2.4 (shipped with the Server Agent)

Installation
Agent Tools is installed in the Core during the normal HPE SA Installer Core installation process.
However, youmust also install Agent Tools on your Managed Servers tomake it available on those

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 124 of 325



servers. This section describes that process.

Agent Tools is installed onManaged Servers as a set of executable scripts. Depending on your
operating system, these will be shell or batch scripts and Python scripts which are called by the shell
and batch scripts. You can run these scripts from amanaged server to retrieve andmodify information
in the SA Core. These scripts can be runmanually or called from package installation scripts, DSEs,
Global Shell scripts, and so on.

Agent Tools is included as part of the Python SA API Access (pyTwist) software policy. This policy is
located in the directory:

/Opsware/Tools/Python Opsware API Access

Manually installing Agent Tools

To install Agent Tools on aManaged Server:

1. Launch the SA Client.

2. Go to theManaged Servers list and select theManaged Server(s) on which you want to install
Agent Tools.

3. Right click and select Install Software.

4. Select thePython Opsware API Access software Policy.

5. The Software Policy installation wizard will guide you through the rest of the process.

Installing Agent Tools when installing an Agent

Alternatively, you can specify the Python SA API Access software Policy ID and specify that it be
remediated during Agent installation. For information about Agent installation, see Administer.

Upgrading Agent Tools
Since Agent Tools is provided as a software policy (part of the pyTwist software policy), you can
upgrade to newer versions of Agent Tools by performing a remediation after upgrading the core.

When the SA core is upgraded, the Python SA API Access software policy is also updated; any old
versions of Agent Tools are removed and new versions are attached to the policy. After the SA Core
upgrade (during which Agent Tools will be automatically upgraded as part of the core upgrade), you can
then upgrade Agent Tools on theManaged Servers by performing the following tasks:

1. Select themanaged servers that have had Agent Tools installed. You can see a list of the servers
and groups attached to the Python SA API Access software policy by opening the policy itself.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 125 of 325



2. Right click on the selected servers and chooseRemediate.

3. Select thePython Opsware API Access software policy.

4. The old versions of the pyTwist and Agent Tools packages are removed, and the new versions are
installed.

Data migration

Since Agent Tools keeps no persistent data on themanaged server, there's no requirement for data
migration or preservation.

Agent Tools scripts
Usage

<scriptname>.py|bat|sh --arguments

Script Function

get_all_
cust_
attr

Retrieves all custom attributes for a server record.

Usage: get_all_cust_attr.py [--localonly]
[--mode=python|shell|pretty]

Themode determines the format for the output (such as Python dictionary, shell
statements, etc.). Pretty is the default.

Note: Shell mode does not work when there aremulti-line custom attributes.

get_
cust_
attr

Retrieves the value of a single custom attribute.

Usage:
get_cust_attr.py [--localonly] <custom attribute name>

set_
cust_
attr

Sets the value of a single custom attribute on the server.

Usage: set_cust_attr.py
<custom attribute name>
<custom attribute value>|--valuefile
<path to file with value in it>

del_
cust_
attr

Deletes a custom attribute from the server's record in the database.

Usage: del_cust_attr.py <custom attribute name>

get_ Retrieves the value of a single custom field.

Agent Tool scripts

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 126 of 325



Script Function

cust_
field

Usage: get_cust_field.py <custom field name>

set_
cust_
field

Sets the value of a single custom field on the server.

Usage: set_cust_field.py <custom field name> <custom field value>|--valuefile
<path to file with value in it>

get_
customer

Retrieves the customer name that the server is associated with.

Usage: ./get_customer.py

set_
customer

Sets the customer name that the server is associated with.

Usage: set_customer.py <customer name>

get_
facility

Retrieves the name of the Facility that the server is associated with.

Usage: ./get_facility.py

get_info Prints out all fields for a server (in a format similar to the server's info file in OGSH).

Usage: get_info.py

get_
history

Prints out server specific events.

Usage:
get_history.py --startdate <start date in seconds since epoch>

[--enddate <end date in seconds since epoch>]

[--username <SAS user name>] [--password <SAS password>]

sub_
text_
file

Reads in a text file, looks in the file for tokens/parameters, replaces them with the value
of custom attributes, and prints the amended file to stdout. See below for more info on
the expected file format.

Usage: sub_text_file.py [--localonly] <path to file with tokens in it>

Agent Tool scripts, continued

Formatting for the sub_text_file script

Text files passed to the sub_text_file script can have any content, however, the script looks for any
lines with two@ characters and will treat the string between and including the@ character pairs as a
token. You can have a single@ character on a line, it will be ignored, however a second@ character
on the same line will cause any text between the two@ characters to be treated as a token.

The tokens are replaced with the value of the custom attribute specified between the@ signs. For
example, the string@dns_server@, is replaced with the value of the custom attribute dns_server. If
this custom attribute does not exist or its value is empty, the token is replaced with an empty string.

Take a text file that contains the entry:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 127 of 325



IP: @monitoring_server_ip@

The script will output will look similar to the following:

IP: 82.159.202.117

Where IP is the value retrieved by monitoring_server_ip.

Output

The sub_text_file script outputs to stdout. You can redirect the output to a file if needed. You can
also use a .template file stored in your zip file to format the output. For example:

$AGENTTOOLSPATH/sub_text_file.sh petstore_config.template > petstore_config.cfg

Sample Agent Tool scripts
The following are simple examples of using Agent Tools scripts.

UNIX/Linux

This example puts amessage containing the name of the facility in theMessage of the Day (MOTD)
that users see when they log into the UNIX server.

. /etc/opt/opsware/pytwist/pytwist.conf
facility_name=`$AGENTTOOLSPATH/get_facility.sh`
echo "You have connected to a server in the $facility_name facility. For hardware
information on this server as stored in Opsware, run $AGENTTOOLSPATH/get_info.sh."
> /etc/motd

Windows

This Windows example puts a text file on all users' desktops with information about the server.

call "C:\Program Files\Common Files\Opsware\etc\pytwist\
pytwist_conf.bat"

call"%AGENTTOOLSPATH%\get_info.bat" > "%SYSTEMDRIVE%\Documents and Settings\All
Users\Desktop\server_info_from_Opsware.txt"

1. Do not hard code the path to Agent Tools Instead youmust do the following:

Source the PyTwist configuration file:

UNIX:
./etc/opt/opsware/pytwist/pytwist.conf

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 128 of 325



Windows:
call
C:\Program Files\Common Files\Opsware\etc\pytwist
\pytwist_conf.bat

2. Use the environment variable:

UNIX:
$AGENTTOOLSPATH

Windows:
%AGENTTOOLSPATH%

Using this method will prevent errors in your scripts should the path to Agent Tools change in
future.

Microsoft Windows PowerShell - SA
integration
Windows PowerShell is an extensible command shell for system administrators and programmers,
integrated with Microsoft’s .Net 2.0 Framework Class Library. It uses the .NET common language
runtime and the .NET Framework, and accepts and returns .NET objects. This enhances the tools and
methods available to manage and configure of Windows.

Windows PowerShell provides numerous cmdlets, which are built into the shell and provide a wide
range of functionality. Cmdlets can be used individually or in combination to perform more complex
tasks.

Windows PowerShell not only enables access to a computer’s file system, PowerShell Providers allow
you to access data stores like the registry and digital signature certificate stores. A Provider is a
softwaremodule that provides a uniform interface between a service and a data source.

Before you attempt to use theWindows PowerShell with SA, it is assumed that you are familiar with
and comfortable usingMicrosoft Windows PowerShell. If you need background or instruction in using
PowerShell, see http://www.microsoft.com.

Caution: Because the included cmdlets canmodify data on your managed servers, it is important
that you have a solid understanding of Windows PowerShell and its use.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 129 of 325



Windows PowerShell integration with SA
SA provides initial integration with Microsoft Windows PowerShell onmanaged servers running
Windows. PowerShell is available from SA user interfaces and SA data is available from within the
standard PowerShell environment or from within any PowerShell Runspace. A PowerShell Runspace
is a hosting environment for the PowerShell runtime system.

The following PowerShell cmdlets are available with SA:

l Get-SASServer

l Set-SASServer

l Get-SASJob

SA also includes a PowerShell SAS Provider (a component that provides access to the objects in an
SA core in a PowerShell environment).

The following topics are discussed in this section:

l "Windows PowerShell integration with SA" above

l "Integrated PowerShell/SA cmdlets" below

l "Installation requirements" on the next page

l "Installation" on the next page

l "Microsoft Windows PowerShell integration with SA features" on page 132

l "Sample sessions" on page 133

Integrated PowerShell/SA cmdlets
The lists below and describes the integrated PowerShell/SA cmdlets included with SA.

Cmdlet Description Arguments

Get-
SASServer

Retrieves server data from specified
server(s)

-Credential <PSCredential>

-Core <Hostname|IPAddress>

-Name < ListOfHostnameFragments>

PowerShell cmdlets

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 130 of 325



Cmdlet Description Arguments

|

-Id <ListOfServerIDs>

Get-SASJob Retrieves data for specified jobs -Credential <PSCredential>

-Core <Hostname|IPAddress>

-JobFilter <ListOfJobIDs>

Set-
SASServer

Retrieves a list of managed servers -Credential <PSCredential>

-Core <Hostname|IPAddress>

-Server <ServerVO>

PowerShell cmdlets, continued

Caution: If the target core is running aminimum protocol version of TLSv1.x, the Powershell
version (the bound underlying .NET Framework version) must support it. For more information see,
https://msdn.microsoft.com/en-us/library/system.net.securityprotocoltype(v=vs.110).aspx.

Installation requirements
AnMSI installer package containing the cmdlets and PowerShell SA Provider assemblies,
configuration and setup files for installation on a System Administrator's Windows desktop.

Operating System support

l Windows Server 2003

l Windows Server 2008

l Windows Server 2008 R2 x64

l Windows Server 2012

Installation
To implement Microsoft Windows PowerShell/SA integration, youmust perform the following tasks:

l Locate theMicrosoft Windows PowerShell/SA Connector MSI package in the OCC
Library>Software Policies.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 131 of 325

https://msdn.microsoft.com/en-us/library/system.net.securityprotocoltype(v=vs.110).aspx


l Run theMSI to install the assemblies that define the SA-specific cmdlets and SA Provider. The file
readme.rtf provides last minute information. TheMicrosoft Windows PowerShell initialization
script, profile.ps1 (similar to .bashrc) and a set of sample PowerShell scripts that show how to use
PowerShell in an SA environment are also installed.

By default, theMSI installs the connector into C:\Program Files\Opsware\PsSas.

The file, SAS-WSAPI.ps1, describes accessing theWS-API directly from PowerShell, without the need
for cmdlets.

Microsoft Windows PowerShell integration

with SA features
Microsoft Windows PowerShell is available as an option in the following areas:

l "Remote access tomanaged servers" below

l "Audit and snapshots rules" below

l "DSE script integration" on the next page

Remote access to managed servers

From the SA Client, you can open a remote PowerShell session for any managed server (not available
for a group of servers), as you would when opening a remote terminal.

1. Launch the SA Client.

2. From the Navigation pane, select Devices>All Managed Servers.

3. Select aManaged Server and open it.

In the Device Explorer window, from theActionsmenu, select Launch Remote PowerShell.

You cannot run a script that containsWMI calls while logged in to a remote PowerShell session. If you
try to run a script containingWMI call, you will get an Access Denied error, even if you are amember of
a group with the necessary permissions to run that script.

Audit and snapshots rules

Microsoft PowerShell is integrated with SA auditing. While configuring a custom script rule, Microsoft
PowerShell scripts are now an option along with batch, Python 2 and Visual Basic. For details about
audit, see the Server Automation Administration Guide on the HPE SSO portal.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 132 of 325



DSE script integration

ForManaged Servers, you can set up PowerShell scripts that call SA APIs using Pytwist so that end
users can invoke the scripts as DSEs or ISM controls. For more information about writing scripts that
invoke Pytwist APIs, see "Python API access with Pytwist" on page 66.

Sample sessions
This section provides four scenarios that demonstrate usingWindows PowerShell/ SA integration.

l "Scenario 1" below demonstrates extractingmanaged server data from an SA Core, modifying it,
and writing it back to the core.

l "Scenario 2" on page 138 demonstrates exporting SA managed server data to an Excel spreadsheet
usingWindows PowerShell/SA integration.

l "Scenario 3" on page 140 demonstrates mounting the SA core as aWindows PowerShell PSdrive
and navigating around the virtual file system.

l "Scenario 4" on page 144 demonstrates listing all the types of SA objects available to aWindows
PowerShell environment.

Scenario 1

Authenticating to an SA Core, obtaining data about amanaged server, modifying the data, and writing
the data back to the SA Core.

1. Open a PowerShell prompt from the desktop icon.

2. Store the SA Core credentials securely in a PowerShell shell variable. See the following figure.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 133 of 325



Storing the SA Credentials in a PowerShell variable

3. Using the Get-SasServer cmdlet, you can retrieve the SA record representing a server as shown
in the following figure.

Using the Get-SasServer cmdlet

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 134 of 325



The returned object is stored in a shell variable.

TheGet-SasServer cmdlet takes a parameter to identify the Core from which the server data is to
be retrieved, a parameter to supply credentials to the core for the operation, identifying and
authenticating the user account in whose identity the operation is to be attempted, and a
parameter to identify the server being requested.

More information on theGet-SasServer cmdlet arguments or the arguments for any cmdlet can be
obtained by using the PowerShell Get-Help base cmdlet, for example:

Get-Help Get-SasServer -detailed

4. You can now examine the properties of the returned object by entering the name of the shell
variable. See the following figure.

Examining SA Server properties

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 135 of 325



5. List the object’s properties, the types of the properties and themethods that can be called on the
object from a PowerShell script as shown in following figure.

Listing an object’s properties

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 136 of 325



6. You canmodify the object’s Description attribute inWindows PowerShell, then call the Set-
SasServer cmdlet and pass themodified ServerVO object to the cmdlet. This cmdlet will take the
ServerVO object and update themanaged server record in the SA Core. The Set-SasServer
cmdlet takes parameters that identify the SA Core to which the updated data is to be written and
credentials identifying the SA user account under whose identity the operation is executed.

At the end of the update operation, the updated ServerVO is returned toWindows PowerShell and
the properties are displayed at the prompt as shown in the following figure.

Modifying an object’s description

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 137 of 325



Scenario 2

This scenario demonstrates retrieving all managed server data from the SA Core and displaying it in
Microsoft Excel.

1. Use the Get-SasServer cmdlet to retrieve ServerVOs for each Linux andWindows managed
server from the SA Core. In the session below, the -name parameter is used to supply a list of
namematching filters, for example, -name linux,win, to the SA Core.

The Get-SasServer cmdlet returns an array of ServerVOs that is, in this example, 14 items in
length. You can index into this array to examine any one of the ServerVO objects. See the
following figure.

Using the Get-SasServer cmdlet with a name filter

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 138 of 325



2. Now you can format the ServerVO data as HTML and save to a temporary file. The temporary file
is created in the TEMP directory. In a PowerShell session, to get the value of the%TEMP%
environment variable, enter $env:temp. See the following figure.

Converting ServerVO Data to HTML and saving to a temporary file

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 139 of 325



3. Using the New-Object baseWindows PowerShell cmdlet you can launchMicrosoft Excel, then
create a new workbook inside this instance of Excel, and populate the workbook from the contents
of the temporary file. Finally, set the running Excel instance to be visible. This will cause Excel to
come to the foreground. Now you can sort the data by date, column value, etc., to determine, for
example, the date on which each server came under management in the Core. See the following
figure.
Using the New-Object cmdlet to launch Microsoft Excel

Scenario 3

This scenario demonstrates mounting the SA Core as aWindows PowerShell PSDrive, navigating to
the SA Jobs folder and retrieving its contents.

1. Mount the SA Core as aWindows PowerShell PSDrive. PowerShell allows different data stores or
repositories to be navigated as if they were a file system. In this scenario, youmount the SA Core,
specifically themanaged environment data store, as if it were a drive namedOPSWorld. The
windows PowerShell base system then calls the PowerShell SAS Provider, -PSProvider
OpswareSas, whenever data is read from or written to this virtual file system—or when the file
system is navigated by a client. See the following figure.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 140 of 325



Mounting the SA Core as a Windows PowerShell PSDrive

2. Change directory to the newly mounted drive and obtain a directory listing. dir is a PowerShell
alias for the Get-ChildItem cmdlet. See the following figure.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 141 of 325



DIR as an alias for the Get-Child cmdlet

3. Change directory to the Jobs folder, get a directory listing, and save the directory listing as a shell
variable. This shell variable will contain an array of JobInfoVO objects from the Core into which
you can index.

Save a Directory Listing as a PowerShell variable

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 142 of 325



4. Change directory to the C: drive and remove theOPSWorld PSDrive.

Removing the OPSWorld PSDrive

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 143 of 325



Scenario 4

This scenario describes examining all the types of SA objects available inside theWindows
PowerShell environment.

1. Locate the .NET assembly containing the PowerShell SAS Provider and cmdlets. See the
following figure.

Locating the .NET Assembly containing the PowerShell SAS Provider and cmdlets

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 144 of 325



2. Using .NET Reflection, load the .NET assembly and examine the loaded types. This displays all
the SA types that are available for use in theWindows PowerShell environment. See the following
figure.

Loading the .NET Assembly and examining the types

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 145 of 325



3. Create an instance of a NetworkDeviceVO. This is a nascent NetworkDeviceVO, showing all of
the attributes of a network device available for scripting, reporting etc. in the PowerShell
environment. See the following figure.

Creating an Instance of a NetworkDeviceVO

Java RMI clients
A Java Remote Invocation (RMI) client can call themethods of the SA API from a server that has
network access to the SA core. The server running the client does not have to be an SA core or
managed server. When it connects to the core, the client specifies an SA user name and password,
much like an end user logging on with the SA Client. The group that the user belongs to determines
which SA resources and tasks are available to the client.

This topic is intended for software developers who are familiar with SA fundamentals and the Java
programming language.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 146 of 325



Setup for Java RMI clients
Before developing Java RMI clients for the SA API, perform the following steps:

1. Install an SA core in a development environment. Do not use a production core.

2. Obtain a development server where you will build and run the Java RMI client.

3. On the development server, install the Java SE 7 SDK.

4. Verify that the development server has a network connection to the SA core server that runs the
OCC component.

5. Download the opswclient.jar file from the SA core server to your development server. The
opswclient.jar file contains the Java RMI stubs for the SA API. You include the
opswclient.jar in the classpath option when compiling and running Java RMI clients.

6. To download opswclient.jar do one of the following:
a. Specify the following URL, where occ_host is the core server running the OCC component:

https://occ_host/twister/opswclient.jar

b. Go to the following directory: /opt/opsware/twist/extlib/client.

You also need the spinclient-latest.jar and the opsware_common-latest.jar files. These files
can be obtained from a running SA Core in:

/opt/opsware/twist/lib/

Youmust also add these .jar files to the classpath parameter when compiling and running these
examples.

Sample Java RMI
This section describes a simple Java RMI client named GetServerInfo.

The GetServerInfo client searches for managed servers by full or partial host name, which you
specify as a command-line argument. For eachmanaged server found, the client prints out the server’s
name, management IP address, andOS version.

The GetServerInfo client performs the following steps:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 147 of 325



1. Connects to SA:
// Set the JNDI provider
client.setJNDIProvider( "https" , host , ( short ) 1032 , null, newString[] { 
OPSWARE_CA_CRT_PATH } , null ) ;
// Force a reconnection
client.getContext( true ) ;
// Set and authenticate the user
client.setAPIUser( new APIUserImpl(username , password)) ;

2. Gets a reference to the ServerService interface:
serverSvc = (ServerService)OpswareClient.getService
(ServerService.class);

3. Invokes methods on ServerService:
ServerRef[] serverRefs = serverSvc.findServerRefs(filter);
. . .
ServerVO[] serverVOs = serverSvc.getServerVOs(serverRefs);
. . .
System.out.println(serverVOs[i].getName());

Compiling and running the GetServerInfo example

Before compiling and running the example, perform the following tasks:

1. Obtain the opsware_common-latest.jar, spinclient-latest.jar andopswclient.jar files,
as described in "Setup for Java RMI clients" on the previous page.

2. Download the ZIP file that contains the demo program GetServerInfo.java file. For information
about downloading the demo file, see "Platform Developer Guide examples" on page 28.

3. To compile the client, specify the opsware_common-latest.jar, spinclient-latest.jar and
opswclient.jar files for the classpath parameter:

javac -classpath :path/opswclient.jar:path/opsware_common-
latest.jar:path/spinclient-latest.jar GetServerInfo.java

4. To run the client, enter the following command, where target is the full or partial name of a server
managed by SA. Note: the Java classpath separator for windows is ";".
java -classpath .:path/opswclient.jar:path/opsware_common-
latest.jar:path/spinclient-latest.jar \GetServerInfo [options]    target

In the following example, GetServerInfo connects to SA on host c44 (where the OCC core
component runs) and port 443. The program displays information for managed servers with

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 148 of 325



hostnames that contain the string opsw.

java -classpath .:/home/jdoe/opswclient.jar:/home/jdoe/opsware_common-
latest.jar:/home/jdoe/spinclient-latest.jar \GetServerInfo --host
c44.dev.example.com --port 443 opsw

5. Respond to the prompts for the SA user name and password. The SA user must have read
permissions for the servers that match the target specified on the command line.

Possible issue on Windows
The SA Java RMI Client, opswclient.jar, might not work onWindows if your SA certificates are using
an SHA-224 signature algorithm. This is caused by the following JDK change: Remove SHA224 from
the default support list if SunMSCAPI enabled.
Workaround: Disable the SunMSCAPI security provider. This restores support for SHA-224 in the
JDK. To disable the SunMSCAPI provider either:

l edit <JRE_HOME>/lib/security/java.security and comment out the line that defines the
SunMSCAPI provider OR

l disable the SunMSCAPI provider programatically by using the
java.security.Security.removeProvider()method.

Web Services clients
The SA API supports Web Services, a programming environment built on open industry standards such

as SOAP (Simple Object Access Protocol) andWSDL (Web Services Definition Language). You can
createWeb Services clients in a variety of programming languages such as Perl and C# (as shown
later in this section) or withWeb Services-enabled development environments such as Microsoft
Visual Studio .NET.

This topic is intended for software developers who are familiar with SA fundamentals andWeb
Services development.

l "Programming language bindings provided in this release" on the next page

l "URLs for service locations andWSDLs" on the next page

l "Security forWeb Services clients" on page 151

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 149 of 325

https://bugs.openjdk.java.net/browse/JDK-8147977
https://bugs.openjdk.java.net/browse/JDK-8147977


l "Overloaded operations" on the next page

l "Java interface support" on the next page

l "Unsupported data types" on the next page

l "Invoke setDirtyAtrributes when creating or updating VOs" on page 152

l "Compatibility with SA Web Services API 2.2" on page 153

Programming language bindings provided in

this release
This release of SA includes Web Services client stubs for C#. Web Services clients written in Perl do
not require client stubs.

This release does not includeWeb Services client stubs for Java or Python. However, Java clients can
access the SA API through RMI and Python clients through Pytwist, as described in the preceding
sections.

URLs for service locations and WSDLs
Clients access theWeb Services at URLs with the following syntax, where host is the server running
the OCC core component and port is for the HTTPS proxy. (The default proxy port is 443). The
packageName corresponds to the Java library that the service belongs to.

https://host:port/osapi/packageName/WebServiceName

TheWSDL files are at URLs with the following syntax:

https://host:port/osapi/packageName/WebServiceName?WSDL

For example, the following URLs point to the FolderService location andWSDL:

https://occ.c38.example.com:443/osapi/com/opsware/folder/FolderService

https://occ.c39.example.com:443/osapi/com/opsware/folder/FolderService?wsdl

The SOAP binding style is RPC (Remote Procedure Call) and the transport protocol is HTTPS.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 150 of 325



Security for Web Services clients
Like other clients of the SA API, Web Services clients must be authenticated and authorized to perform
operations in SA. Communication between clients and theWeb Services component in the SA core is
encrypted. Access is restricted to HTTPS clients through the HTTPS proxy port of the OCC core
component. (The default port is 443.)

Overloaded operations
The SA API has overloaded operations, but theWSDL 2.0 specifications do not support overloading.
An overloaded operation in the SA API is exposed by theWeb Service as a single operation.

Java interface support
The SA API uses Java interfaces, but Web Services does not support interfaces. As a workaround, the
WSDL files map interfaces to xsd:anyType. For clients coded in object-oriented programming
languages such as C#, if an API method returns an interface, the return typemust be cast to a concrete
class. Arrays of interfaces are converted to Object[]; specific types of the array members are
preserved through serialization/deserialization. For a C# code example, see "Handle interface return
types" on page 164.

Unsupported data types
The following data types are used by the SA API but are not supported by SOAP:

java.util.Properties
com.opsware.common.ModifiableMap
com.opsware.acm.ValueSet
com.opsware.swmgmt.PolicyOverrideFilter

Methods omitted fromWeb Services

The following SA API methods use unsupported data types as parameters or return types. As a result,
they are not exposed as operations in theWeb Services.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 151 of 325



com.opsware.custattr.CustomAttribute.getCustAttrs
com.opsware.custattr.CustomAttribute.setCustAttrs
com.opsware.custattr.CustomField.getCustomFields
com.opsware.custattr.CustomField.setCustomFields
com.opsware.pkg.Patch.getPolicyOverrideRefs

Partial support for java.util.Map

Axis converts java.util.Map to apachesoap:Map, which is a collection of key-value pairs. With .NET,
this conversion does not work. C# clients, for example, will receive an empty array of key-value pairs.
However, this conversion does work with Soap::Lite in Perl. Therefore, SA API methods that use
java.util.Map are available as operations in theWeb Services.

The followingmethods use java.util.Map as parameters or return types:

com.opsware.acm.GroupConfigurable.getApplicationInstances
com.opsware.acm.ServerConfigurable.getCustAttrsWithRC
com.opsware.compliance.sco.CMLSnapshot.getValueSet
com.opsware.compliance.sco.CMLSnapshot.setValueSet
com.opsware.compliance.sco.SnapshotResultService.remediateCMLSnapshot
com.opsware.custattr.VirtualColumnVO.getConfigInfo
com.opsware.custattr.VirtualColumnVO.setConfigInfo

Methods in VOs with unsupported data types

The followingmethods of VOs use unsupported data types as parameters or return types:

com.opsware.acm.ApplicationInstanceVO.getValueset
com.opsware.acm.ApplicationInstanceVO.setValueset
com.opsware.acm.ConfigurableVO.getValueset
com.opsware.acm.ConfigurableVO.setValueset
com.opsware.virtualization.VirtualConfigNode.getProperties
com.opsware.virtualization.VirtualConfigNode.setProperties
com.opsware.virtualization.VirtualServerConfig.getProperties
com.opsware.virtualization.VirtualServerConfig.setProperties

Invoke setDirtyAtrributes when creating or

updating VOs
WebServices clients must invoke setDirtyAttributes before invoking a create or updatemethod
on a service. The setDirtyAttributesmethod explicitly themarks the attributes (fields) of a VO that

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 152 of 325



need to be set by the create or update invocation. The attribute names specified by
setDirtyAttributes are case sensitive.

For example, to modify the description attribute of a FolderVO object, the following code invokes
setDirtyAttributes before it invokes update:

// fs is FolderService
FolderVO folderVO = fs.getFolderVO(folderRef);
folderVO.setDescription("credit card processing");
folderVO.setDirtyAttributes(new String[]{"description"});
fs.update(folderRef, folderVO, true, true);

Invoking setDirtyAttributes is required forWeb Services clients because of the way Axis
deserializes XML objects from XML. If setDirtyAttributes is not invoked, Axis calls setters on all
attributes of the VO, including read-only attributes, resulting in a ReadOnlyException.

Compatibility with SA Web Services API 2.2
The SAWeb Services API 2.2 is not compatible with the SA API described in this guide. Themethod
signatures, services, WSDLs, and port bindings are not the same. If you are creating new Web
Services clients, be sure to use the SA API, not the SAWeb Services API 2.2.

Perl Web Services clients
This section contains step-by-step instructions and sample code for creating Perl Web Services clients
that access the SA API.

l "Required software for Perl clients" below

l "Running the Perl demo program" on the next page

l "Sample Perl code" on page 155

l "Construction of Perl objects forWeb Services" on page 158

Required software for Perl clients
Your development environment must have the following Perl modules:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 153 of 325



l Crypt-SSLeay-0.57

l IO-Socket-SSL-1.31

l Net-SSLeay-1.35

l HTML-Parser-3.64

l MIME-Base64-3.08

l URI-1.40

l libwww-perl-5.833

l SOAP-Lite-0.710

Depending on your Perl version, newer versions of thesemodules could be required.

Caution: If the "500 SSL negotiation failed:" error persists, thenOpenSSL needs to be
updated to version 1.0.1 or higher. For the RHEL family, OpenSSL needs to be updated to version
1.0.1e-30 or higher.

Running the Perl demo program
To run the demo program, perform the following steps:

1. From the support site, obtain theSA_Platform_Developer_Guide_examples.zip file bundled
with theAll Manuals Download SA 10.5 folder.

2. Obtain the demo program uapisample.pl file from SA_Platform_Developer_Guide_
examples.zip\SA_Platform_Developer_Guide_examples\api_examples\web_
services\perl.

3. Edit the uapisample.pl file, changing the hard-coded values for host, username, password, and
object IDs such as serverID.

4. Run uapisample.pl.

5. If you receive a "Certificate Verify Failed" error, you should uncomment the following line
from the sample file and provide a valid path to the certificate file:

#$ENV{HTTPS_CA_FILE} = "path_to/opsware-ca.crt";

You can find the certificate file from an SA Core in:

/var/opt/opsware/crypto/twist/opsware-ca.crt

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 154 of 325



Sample Perl code
The following code snippets are from uapisample.pl, a Perl program contained in the ZIP file you
downloaded previously.

Set up the Service URI

# Construct the URI for the service.
#
my $username = "integration";
my $password = "integration";
my $protocol = "https";
my $host = "occ.c38.dev.example.com";
my $port = "443";
my $contextUri = "osapi/com/opsware/";
my $folderServiceName = "folder/FolderService";
my $folderUri = "http://www.example.com/" . $contextUri .
$folderServiceName;
# Create a proxy to the FolderService.
#
my $folderProxy = $protocol . "://" . $username . ":" . $password . "@" .
$host . ":" . $port . "/" . $contextUri . $folderServiceName;

Initiate a new service

my $folderPort = SOAP::Lite
-> uri($folderUri)
-> proxy($folderProxy);

Invoke a servicemethod

my $root = $folderPort->getRoot()->result();
print 'Got root folder: ' . $root->{'name'} . "\n";
# Alternative:
my $root = $folderPort->SOAP::getRoot();
print 'Got root folder: ' . $root->{'name'} . "\n";

Get a VO

$rootVO = $folderPort->getFolderVO(SOAP::Data->name('self')
->value(\SOAP::Data->name('id')->type('long')->value(0)))
->result();
# The preceding call to getFolderVO does not pass a FolderRef
# parameter. If a method such as FolderService.remove accepts a
# FolderRef parameter, use the following code:
#
my $folderToBeRemoved = SOAP::Data->name('self')
->attr({ 'xmlns:ns_fs' => 'http://folder.example.com/FolderService'}) -

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 155 of 325



>type('ns_fs:FolderRef')->value(\SOAP::Data->name('id')->type('long') -
>value(123456));
$folderPort->remove($folderToBeRemoved);
# To see the Perl representation of the returned VO, you can use
# the Dumper method. This will help you understand how to
# construct the dirty attributes of a VO for a create or update
# method.
#
use Data::Dumper;
print Dumper($folderVO);

Get an array

# Construct $folder, the FolderRef before getting the array.
#
my $folder = SOAP::Data->name('self') ->attr({ 'xmlns:ns_fs' => 'http://
folder.example.com'}) ->type('ns_fs:FolderRef')->value(\SOAP::Data-
>name('id')->type('long') ->value($root->{'id'}));
# The getChildren method returns an array of FNodeReference
# objects.
#
my $children = $folderPort->getChildren($folder, SOAP::Data->name('type')-
>type('string')->value(''))->result();
foreach $child (@{$children}){
print 'Get child: ' . $child->{'name'} . "\n";
}

Construct an object array

# For a function that takes an object array as a parameter,
# such the getVOs method, take the following approach:
# First, construct the Array object elements individually
# and put them in an array.
#
my @refs = [];
foreach my $ref (@{$myRefs}){

# Assume myRefs was returned from a previous
# Web Services call.

my $object = SOAP::Data->name('FacilityRef')
->value(\SOAP::Data->name('id')

->type('long')
->value($ref->{'id'}

)
)->attr({ 'xmlns:facility' => 'http://locality.example.com'})
->type('facility:FacilityRef');

push @refs, $object;
}
# Second, construct an Array Object and put the array in it.
#
my $selves = SOAP::Data->name("selves" =>\SOAP::Data->name("element" => @refs)-

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 156 of 325



>type("facility:FacilityRef"))
->attr({ 'xmlns:facility' => 'http://locality.example.com'})
->type("facility:ArrayOfFacilityRef");

Update or create a VO

# This example updates the description attribute of a ServerVO.
#
my $serverID = 40038;
my $server = SOAP::Data->name('self')->value(\SOAP::Data->name('id')-
>type('long')->value($serverID));
# Don’t forget to set dirtyAttributes for the attributes
# you want to update. You also need dirtyAttributes for
# create methods that pass a VO.
#
my @dirtyAttrs = ('description');
my $serverVO = SOAP::Data->name('vo') ->attr({ 'xmlns:ns_ss' => 'http://
server.example.com'}) ->value(\SOAP::Data->value( SOAP::Data-
>name('description')->value('PERL_UPDATE_DESC')->type('string'), SOAP::Data-
>name('logChange')->value('false')->type('boolean'), SOAP::Data-
>name('dirtyAttributes' => \SOAP::Data->name("element" => @dirtyAttrs)-
>type("string")) ->type("ns_ss:ArrayOf_soapenc_string"), ));
my $force = SOAP::Data->name('force')->value('true')->type('boolean');
my $refetch = SOAP::Data->name('refetch')->value('true')->type('boolean');
# Call the update method.
#
print 'Invoking method serverWSPort.update...', "\n";
my $updatedServerVO = $serverWSPort->update(

$server,
$serverVO,
$force,
$refetch)->result();

print "New description: ", $updatedServerVO->{'description'}, "\n";

Handle SOAP faults

# Make sure that you turn off on_fault subroutine in the
# "use SOAP::Lite ..." statement.
#
# The fault member of a SOAP return will be set if the Web
# Service call throws an exception.
# The following code tries to get a folder that does not exist:
#
my $testVO = $folderPort->getFolderVO(SOAP::Data->name('self') -
>value(\SOAP::Data->name('id')->type('long')->value(123456)));
if($testVO->fault){

print $testVO->faultstring . "\n";
# This will print the error msg.
print "ExceptionName: " . getExceptionName($testVO) . "\n"; # A

NotFoundException should be displayed here

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 157 of 325



# The code that deals with the error goes here....
}
. . .
# The following subroutine extracts the exception name from the
# returned faultdetail.
#
sub getExceptionName {

my $fault = shift; #get the fault object
if($fault->faultdetail->{'fault'}){

return ref($fault->faultdetail->{'fault'});
}

}
. . .
# As shown in the preceding code, it’s easier to handle SOAP
# faults if you execute functions like this:
#
# my $data = $port->function(...);
# Not like this:
# $port->SOAP::function(...);
# $port->function(...)->result;

Construction of Perl objects for Web Services
Before calling aWeb Services operation, a Perl client must set up the data structures that are required
for the input parameters. The information you need for setting up the data structures is in the API
documentation (javadocs) and the service’s WSDL file. The Perl code example in this section shows
how to construct the input parameter for the getServerVO operation. The step-by-step instructions after
the code show where to get the information about the input parameter from the API documentation and
theWSDL file.

Source code for calling getServerVO

The following Perl code sets up the input parameter self and then calls the getServerVO operation.
This call retrieves the VO (value object) for themanaged server of ID 12345.

# Create a top-level SOAP::Data object
#
$self = SOAP::Data->name(’self’)
# The namespace corresponds to the schema of the data type
# of the SOAP:Data object. The name chosen (ns_ss) is
# arbitrary.
#
$self->attr({’xmlns:ns_ss =>
’http://server.example.com/ServerService’});
# Specify the type (ServerRef) for the parameter self, using the
# name of the namespace from the preceding statement.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 158 of 325



#
$self->type(’ns_ss:ServerRef’);
# Create the value for the parameter. The value is a pointer
# to a SOAP::Data object. The number 12345 is the SA ID of a managed server.
#
my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);
# From the self object, point to the value.
#
$self->value(\$id);
# Finally, call getServerVO:
#
my $data = $serverPort->getServerVO($self);
if($data->fault){

# Handle exceptions here ...
}
else{

my $serverVO = $data->result;
}
. . .

Location of information for getServerVO setup

To get the information needed to write the code for the call to getServerVO, perform the following
steps:

1. In a browser, go to the API documentation (javadocs) at the following URL:

https://occ_host:1032/twister/docs/index.html

The occ_host is the IP address or host name of the core server running the CommandCenter
component. (For instructions on invokingmethods with the Twister, see "API Documentation and
the Twister" on page 27.)

2. Examine the API documentation to determine the input parameters and return value of themethod.

The getServerVOmethod is defined in the interface com.opsware.server.ServerService. In
the followingmethod signature, note that getServerVO accepts a ServerRef as a parameter and
returns a ServerVO:

public ServerVO getServerVO(ServerRef self)
throws java.rmi.RemoteException,

NotFoundException,
AuthorizationException

3. In a browser, specify the following URL to open theWSDL file for the ServerService:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 159 of 325



https://occ_host/osapi/com/opsware/server/ServerService?wsdl

4. In theWSDL file, locate the namespace for the ServerService:

<schema targetNamespace="http://server.example.com"
xmlns="http://www.w3.org/2001/XMLSchema">

The following Perl statement (from the code listed previously) specifies the namespace:
$self->attr({’xmlns:ns_ss =>
’http://server.example.com/ServerService’});

5. In theWSDL file, locate the getServerVO operation and note the input message name
getServerVORequest.

<wsdl:operation name="getServerVO" parameterOrder="self">
<wsdl:input message="impl:getServerVORequest" name="getServerVORequest"/>
<wsdl:output message="impl:getServerVOResponse" name="getServerVOResponse"/

>
<wsdl:fault message="impl:NotFoundException" name="NotFoundException"/>
<wsdl:fault message="impl:AuthorizationException"

name="AuthorizationException"/>
</wsdl:operation>

6. In theWSDL file, locate the getServerVORequestmessage:

<wsdl:message name="getServerVORequest">
<wsdl:part name="self" type="impl:ServerRef"/>

</wsdl:message>

The getServerVORequestmessage element defines the name (self) and type (ServerRef) of the
input parameter of getServerVO. The following Perl statement specifies ServerRef:
$self->type(’ns_ss:ServerRef’);

7. In theWSDL file, locate the complexType for ServerRef:

<complexType name="ServerRef">
<complexContent>

<extension base="tns1:ObjRef">
<sequence>

<element name="secureResourceTypeName" nillable="true"
type="soapenc:string"/>

</sequence>
</extension>

</complexContent>
</complexType>

Note that ServerRef extends ObjRef.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 160 of 325



8. In theWSDL file, locate the complexType for ObjRef:

<complexType abstract="true" name="ObjRef">
<sequence>

<element name="id" type="xsd:long"/>
<element name="idAsLong" nillable="true" type="soapenc:long"/>
<element name="name" nillable="true" type="soapenc:string"/>

</sequence>
</complexType>

In ObjRef, note the name (id) and type (long). These data types are specified in the following Perl
statement:

my $id = SOAP::Data->name(’id’)->type(’long’)->value(12345);

C#Web Services clients
This section contains step-by-step instructions and sample code for creating C#Web Services clients
that access the SA API.

l "Required software for C# clients" below

l "Obtaining the C# client stubs" on the next page

l "Building the C# demo program" on the next page

l "Running the C# demo program" on page 163

l "Sample C# code" on page 164

l "Password security with C#" on page 166

Required software for C# clients
To develop C#Web Services clients, your development environment must have the following software:

l Microsoft .NET Framework SDK version 1.1

l C# client stubs for SA API

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 161 of 325



Obtaining the C# client stubs
SA provides a stub file for each service, for example, FolderService.cs. All stubs have the same
namespace: OpswareWebServices. In addition to the stubs, SA provides shared.cs, the file that
contains shared classes such as ServerRef.

To obtain a ZIP file containing the C# stubs, specify the following URL, where occ_host is the core
server running the OCC component:

https://occ_host:1032/twister/opswcsharpclient.zip

The constants defined in services and objects are not defined in the C# stubs. To get information about
the constants, use the API documentation (javadocs), as described in "Constant field values" on page
27.

Building the C# demo program
To build the demo program:

1. From the support site, obtain theSA_Platform_Developer_Guide_examples.zip file bundled
with theAll Manuals Download SA 10.5 folder. For information about downloading the demo file
see, "Platform Developer Guide examples" on page 28.

TheSA_Platform_Developer_Guide_examples.zip contains the following demo program files
at the SA_Platform_Developer_Guide_examples\api_examples\web_services\csharp
location:

o App.config - Application settings

o WebServicesDemo.cs - Client code that invokes servicemethods

o MyCertificateValidation.cs - Certificate validation class

2. Create the following directory:
C:\wsapi

3. From the Visual Studio 2008 Start Page, select New Project and create a project with the following
values:
o Project Type: Visual C# Projects

o Template: Console Application

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 162 of 325



o Name: WSAPIDemo

o Location: C:\wsapi

This action creates the new directory C:\wsapi\WSAPIDemo, which contains some files.

4. In the new project, delete the default program and AssemblyInfo.cs from the list of objects.

5. Copy the files you obtained in step 1 into the C:\wsapi\WSAPIDemo directory.

6. Download the client stubs from the URL specified in "Obtaining the C# client stubs" on the
previous page.

7. Copy the C# client stubs into the C:\wsapi\WSAPIDemo directory.

8. Add the files copied in the preceding two steps to theWSAPIDemo project:
o In Visual Studio, from the Project menu, select Add Existing Item.

o Browse to the directory C:\wsapi\WSAPIDemo, and select all the demo files (.cs and .config).

9. Add a reference to System.Web.Services.dll:
o In Visual Studio, from the Project menu, select Add Reference.

o Under the .NET tag, browse to Component with Name: System.Web.Services.dll.

o Click System.Web.Services.dll, click Select, and then click OK.

10. If you used a different template when creating the project, youmight need to add references to
System, System.XML, and System.Data. Check the Project References to determine if you need
to add these references.

11. In the App.config file, change the values for username, password, host, and the hardcoded
object IDs such as serverID.

12. In Visual Studio, from the Build menu, select BuildWSAPIDemo.

Caution: If the target core is running aminimum protocol version of TLSv1.x, the Powershell
version (the bound underlying .NET Framework version) must support it. For more information see,
https://msdn.microsoft.com/en-us/library/system.net.securityprotocoltype(v=vs.110).aspx

Also, it must be explicitly enabled from the C# application.

Code sample: System.Net.ServicePointManager.SecurityProtocol |=
System.Net.SecurityProtocolType.Tls12 | System.Net.SecurityProtocolType.Tls11;"

Running the C# demo program
To run the demo program:

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 163 of 325

https://msdn.microsoft.com/en-us/library/system.net.securityprotocoltype(v=vs.110).aspx


1. Open the Visual Studio 2008 command prompt:

Start > All Programs > Microsoft Visual Studio 2008 >
Visual Studio Tools > Visual Studio 2008 Command Prompt

2. Change the directory to:

C:\wsapi\WSAPIDemo\bin\Debug

3. Enter the following command:

WSAPIDemo.exe

Sample C# code
The following code snippets are from WebServicesDemo.cs, a C# program contained in the Zip file you
downloaded previously.

Set up certificate handling

# This setup is required just once for the client.
#
ServicePointManager.CertificatePolicy = new MyCertificateValidation();

Assign the URL prefix

# This is the URL prefix for all services.
#
wsdlUrlPrefix = protocol + "://" + host + ":" + port + "/" + contextUri + "/";

Initiate the service

FolderService fs = new FolderService();
fs.Url = wsdlUrlPrefix + "com.opsware.folder/FolderService";

Invoke servicemethods

FolderRef root = fs.getRoot();
FolderVO vo = fs.getFolderVO(root);

Handle interface return types

# In the API, FolderVO.getMembers returns an array of
# FNodeReference interfaces, but Web Services does not support
# interfaces. In the C# stub, the return type of

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 164 of 325



# FolderVO.members is Object[]. If a returned Object type will
# be used as a parameter that must be a specific type, then you
# must cast it to that type. For example, the following code
# casts elements of the returned array to FolderRef as
# appropriate.
#
Object[] members = vo.members;
for(int i=0;i<members.Length;i++)
{
Console.WriteLine("Got object: " + members[i].GetType().FullName + " --> " +
((ObjRef)members[i]).name);

if(members[i] is FolderRef) {
Console.WriteLine("I am a FolderRef: " +
((FolderRef)members[i]).name);
}

}

Update or create a VO

# When updating a VO, the changed attributes must be set in
# dirtyAttributes. (The VO passed to a create method has
# the same requirement.)
#
# Note: If you update a VO that was returned from a service
# method invocation, such as getFolderVO, then you must
# set the logChange attribute of the VO to false:
# vo.logChange = false;
#
# The following code changes the name of a folder.
#
Console.WriteLine("Changing name from " + vo.name +
" to yo_csharp.");
vo.name = "yo_csharp";
vo.dirtyAttributes = new String[]{"name"};
# Manually set dirty fields being changed.
#
vo = fs.update(folder, vo, true, true);
Console.WriteLine("Folder name changed to: " + vo.name);

Handle exceptions

# .NET converts Web Services faults into SoapExceptions
# without trying to deserialize them into application
# exceptions first. As a result, your code cannot catch
# application exceptions. As a workaround, the C# stubs
# provided by SA include SOAPExceptionParser,
# a class that enables you to get information from
# SOAPExceptions. The following code shows how to get the

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 165 of 325



# exception name and error message by calling the getDetail
# method of SOAPExceptionParser.
#
try{
// Try to get a non-existent folder here.
} catch(SoapException e){

SoapExceptionDetail detail =
SoapExceptionParser.getDetail(e);
Console.WriteLine("SoapExceptionDetail.name: " +
detail.exceptionName);
Console.WriteLine("SoapExceptionDetail.msg: " +
detail.message);

...
}

Password security with C#
The FolderServicemethod reads the user and password pair from the file App.config. The following
shows an example of this method.

User user = new User();
user.username = "user";
user.password = "password";
FolderService fs = new FolderService();
fs.Url = wsdlUrlPrefix + "com.opsware.folder/FolderService";
fs.user = user;

If you do not want to store the password in clear text in the App.config file, you can use the SecureUser
class to encrypt the password. The SecureUser class uses the C# SecureString in .NET 2.0.
Passwords are stored encrypted in a SecureString. Furthermore, the getPassword() method is only
visible internally. SecureUser is a static class, so you only need to set your user name and password
once or each time you switch users.

Each service retrieves the user name and password from SecureUser first and then its user member
variable and then App.config, for backward compatibility. SecureUser takes either a String or a
SecureString for the password. In either case, clients are responsible to clean up the password variable
passed to the SecureUser.setUser() method.

At some point the password will need to be converted to a regular C# string in memory, which will only
get freed when the next garbage collection occurs. Using SecureUser will only ensure internal
password storage is secure.

The following example shows how to set the user name and password securely.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 166 of 325



SecureString passwd = new SecureString();
passwd.AppendChar('p');
passwd.AppendChar('a');
passwd.AppendChar('s');
passwd.AppendChar('s');
passwd.AppendChar('w');
passwd.AppendChar('d');
SecureUser.setUser("username", passwd); // that's it, no need to set up user
for each service.
passwd.Dispose(); // resets passwd and frees up memory so no copy remains from
caller.

Pluggable checks
The SA Audit and Remediation feature enables you to define andmonitor the compliance information
for SA managed servers. Because compliance standards are continuously evolving, SA lets you create
specialized custom checks and policies, and extend those provided with SA. A pluggable check is an
audit rule, which belongs to one or more audit policies. You create a pluggable check in a command-line
environment, upload the check, and then add it to an audit policy with the SA Client.

This section is intended for software developers who are familiar with XML and with the Audit and
Remediation feature of SA.

l "Setup for pluggable checks" below

l "Pluggable check tutorial" on the next page

l "Audit and remediation " on page 175

l "Creating a pluggable check " on page 177

l "Creating the audit policy " on page 185

l "Document Type Definition (DTD) for config.xml file" on page 186

Setup for pluggable checks
Before developing pluggable checks:

1. Install an SA core in a development environment. Do not use a production core.

2. On a server that has an installed Agent, install OCLI 1.0. For information on theOCLI 1.0, see
Use.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 167 of 325



Pluggable check tutorial
This tutorial shows how to create a pluggable check namedHelloWorld Check. This simple check
verifies that the /var/tmp/helloworld file exists on a Unix managed server. If the file does not exist,
the remediation script of the pluggable check creates the file.

To develop the HelloWorld check:

1. Follow the instructions in "Setup for pluggable checks" on the previous page. The server where
you install OCLI 1.0 will be the development server for this tutorial.

2. The HelloWorld Check example code is included with the ZIP file that contains the API code
examples.

3. Unzip the file you downloaded in the preceding step and verify that the pluggable_
checks/helloworld directory contains the following files:
o config.xml

o gethelloworld.py

o sethelloworld.py

The HelloWorld check is made up of these three files. The config.xml file is a configuration
file. The gethelloworld.py Python script performs the audit. The sethelloworld.py Python
script performs the remediation. In the following steps, you package these files into a ZIP file
and then import the ZIP file into SA.

4. On your development server, copy the unzipped helloworld files to a working directory, for
example:

cd /home/jdoe/dev
mkdir helloworld
cd helloworld
cp unzip_dest/pluggable_checks/helloworld/* .

5. Obtain a Globally Unique ID (GUID). Each pluggable check requires a GUID. You can acquire a
valid GUID by using one of the following techniques:
o Log on to web sites such as the following:

http://kruithof.xs4all.nl/uuid/uuidgen

o Download the freeWindows tool guidgen from:
http://www.microsoft.com/downloads/details.aspx?FamilyID=94551F58-484F-4A8C-

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 168 of 325



BB39-ADB270833AFC&displaylang=en

If you programmatically create your GUIDs, then your code should conform to RFC4122
(http://www.ietf.org/rfc/rfc4122.txt).

6. With a text editor, insert the GUID in the config.xml file, for example:

<checkGUID>6c7ed38c-d8d6-11db-8314-0800200c9a66</checkGUID>

This is the only element in config.xml that you need tomodify for this tutorial.

7. In the text editor, save config.xmlwith the change youmade for the GUID.

Keep the text editor open. Throughout this tutorial, you will examine various elements in
config.xml to learn how they map to the Python scripts and the SA Client display fields of the
HelloWorld Check.

8. In the config.xml file, note the following elements, which are related to the audit (get) and
remediation (set) scripts of the HelloWorld Check:

<!-- The name of the script that performs the check. -->
<checkGetScriptName>gethelloworld.py</checkGetScriptName>

<!-- The name of the script that remediates the audit. -->
<checkSetScriptName>sethelloworld.py</checkSetScriptName>

<!-- The exit code of the gethelloworld.py script will be checked.-->
<checkReturnType>EXITCODE</checkReturnType>

<!-- A string argument is passed to gethelloworld.py. -->
<checkGetArgumentType>STRING</checkGetArgumentType>

<!-- The default argument for gethelloworld.py is the name of the file the
script is checking for. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>

<!-- If the helloworld file exists, the exit code of gethelloworld.py is 0.
-->
<checkSuccessExitCodeValue>0</checkSuccessExitCodeValue>
<!-- If the helloworld file does not exist, the exit code of
gethelloworld.py is 1. -->
<checkSuccessExitCodeValue>1</checkSuccessExitCodeValue>

9. Examine the gethelloworld.py script, which performs the audit by checking for the existence of

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 169 of 325



the file /var/tmp/helloworld. You do not need to edit this script for this tutorial. Later in this
tutorial (step 30, when you run the audit in the SA Client, this script executes on amanaged
server.

The /var/tmp/helloworld string is the default argument of the script, as indicated by the value of
<checkGetArgumentDefaultValue> in config.xml. The script’s exit code (result) corresponds to
the values specified for <checkSuccessExitCodes>.

Here is the source code for the gethelloworld.py script:

import sys
import os
import string
if __name__ == "__main__":

if len(sys.argv) != 2:
sys.stderr.write("No argument found! Please enter a

file name!\n")
sys.exit(220)

filename = sys.argv[1]
if os.path.isfile(filename) or os.path.isdir(filename):

result = 0
else:

result = 1
sys.stderr.write("Debugging: Found result %s\n"
% result)
sys.stdout.write("%s\n" % result)
sys.exit(result)

10. Next, examine the remediation script sethelloworld.py, which creates the
/var/tmp/helloworld file. This script runs on amanaged server if you decide to remediate the
audit in step 35. Do not change the script for this tutorial.

The source code for sethelloworld.py follows:

import sys
import os
import string
if __name__ == "__main__":

if len(sys.argv) != 2:

sys.stderr.write("No argument found!
Please enter a file name!\n")

sys.exit(220)
filename = sys.argv[1]
if os.path.isfile(filename) or os.path.isdir(filename):

# Do nothing because the file already exists.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 170 of 325



pass
else:

try:
fd = open(filename, "w")
fd.write(" ")
fd.close()

except:
sys.stderr.write("Could not open file %s for

writing!\n" % filename)
sys.exit(220)

# Exit successfully with a 0 exit code.
sys.stderr.write("Successfully created file\n")
sys.exit(0)

11. Package the HelloWorld Check.

To package the HelloWorld pluggable check, archive the contents of the working directory into a
single ZIP file, for example:

cd /home/jdoe/dev/helloworld
zip ../helloworld.zip *

12. Verify that the ZIP file contains the two Python scripts and the config.xml file by entering the
following unzip command:

unzip -t ../helloworld.zip
testing: config.xml OK
testing: gethelloworld.py OK
testing: sethelloworld.py OK
No errors detected in compressed data of ../helloworld.zip.

13. Import the pluggable check into SA with the oupload command of OCLI 1.0:

oupload -C"Customer Independent" \
-t"Server Configuration Check" \
--forceoverwrite --old -O"SunOS 5.8" ../helloworld.zip

Note: The platform option (-O) is SunOS 5.8 for all Unix and Linux checks. ForWindows
checks, the platform option is Windows 2003.

If oupload does not run successfully, make sure that you have installed the correct version of
OCLI 1.0, set the PATH environment variable correctly, and included the login file in your
environment. For details on these requirements, see the OCLI 1.0 in the Using

14. Open the SA Client.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 171 of 325



In the next few steps, you create a new audit, adding to it the HelloWorld Check you imported with
the oupload command.

15. From the Toolsmenu, select Update Cache.

16. From the Navigation pane, select Library> By Type> Audits and Remediation > Audits>
Unix.

17. From theActionsmenu, select New.

18. In the Audit Window, in the Name field of the Properties pane, enter HelloWorld Audit.

19. In the Views pane, In the Views pane, select Rules > Compliance Checks.

20. Click theAdd button , and then click File System.

The Content pane should list the HelloWorld Check under Available for Audit, as shown in the
following figure:

HelloWorld check in the rules for a file system

21. In the config.xml file, note the following elements, which are related to the information displayed.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 172 of 325



<!-- The check name is the rule name shown in the SA Client. -->
<checkName>HelloWorld Check</checkName>

<!-- The category corresponds to the rule hierarchy displayed by the SA
Client. -->
<checkCategory>File System|My Custom Checks</checkCategory>

In the Audit Window of the SA Client, under Available for Audit, select HelloWorld Check and click
the plus sign.

The Content pane should list the details for HelloWorld Check, as shown in the following figure.

HelloWorld check rule details

22. In the config.xml file, examine the following elements, which are related to the information
displayed under the "HelloWorld check rule details" above figure:

<!-- The following value appears under Description in the Rule Details of
the SA Client. -->
<checkDefaultDescription>
Check that /var/tmp/helloworld exists.
</checkDefaultDescription>

<!-- The following element corresponds to the Test ID in the SA Client. -->
<checkTestID>helloworld 1</checkTestID>

<!-- This label is under Input Values in the SA Client. -->
<checkGetArgumentDefaultLabel>File Name
</checkGetArgumentDefaultLabel>

<!-- The default argument to the gethelloworld.py script also appears

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 173 of 325



under Input Values in the SA Client. -->
<checkGetArgumentDefaultValue>/var/tmp/helloworld
</checkGetArgumentDefaultValue>

23. In the Views pane of the SA Client, select Targets.

24. In the following steps you add a target server to HelloWorld Audit. In later steps, the
gethelloworld.py and sethelloworld.py scripts will run on the target server.

25. In the Contents pane, click Add.

26. In the Select Server window, drill down to a server and click OK.

27.
In the Audit window, select File> Save.

At this point, the HelloWorld Audit contains the HelloWorld Check (rule) and is associated with a
target server.

28. In the Audit window, from theActionsmenu, select Run Audit.

29. Step through the windows of the Run Audit task.

30. In the Run Audit window, click Start Job.
This action launches the job that runs the gethelloworld.py script on the target server.

31. After the job has completed, click View Results.

32. In the Views pane of the Audit Result window, select Policy Rules (1).

33. In the Content pane of the Audit Result window, open HelloWorld Check.

The Difference Details window should appear, as shown in the following figure.

HelloWorld check difference details

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 174 of 325



34. In the config.xml file, note the following elements, which are related to the information displayed
in the "HelloWorld check difference details" on the previous page figure:

<!-- The following value appears as the Policy Value in the Difference
Details window. -->
<checkSuccessExitCodeDefaultDisplayName>
File exists</checkSuccessExitCodeDefaultDisplayName>

<!-- The next value appears as the Actual Value in the same window. -->
<checkSuccessExitCodeDefaultDisplayName>
File does not exist</checkSuccessExitCodeDefaultDisplayName>

35. If you want to create /var/tmp/helloworld on the target server, on the Differences Window,
click Remediate.

This action runs the sethelloworld.py script. For more information, see the Server Automation
Administration Guide on the HPE SSO portal.

Audit and remediation
Sarbanes-Oxley (SoX), Information Technology Infrastructure Library (ITIL), and ISO20000make it
urgent to keep server configurations in compliance. The SA Audit and Remediation feature offers you a
well-organized set of policies to help you address compliance issues. A graphical interfacemakes it

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 175 of 325



easy for you to select and run audits against specified servers, and see how well they comply with
professional standards.

Audit and Remediation also simplifies system administration. For example, youmight monitor a class
of servers that run a home grown application built by your team, such as a database server or
middleware application. As you configure andmonitor the servers that run the application, you keep a
list that tracks the ideal state of the configuration. Such a list might include file, directory, and network
share permissions.

You can create an audit that defines these configurations, then audit the servers after installing the
application. The audit results will confirm whether or not the application is installed and has been
configured successfully according to your criteria. If the configuration is non-compliant, you can create
an ad-hoc audit to troubleshoot the problem. When the audit results indicate an error, you can remediate
the server to match your ideal configuration. To ensure that the configuration change works in
production, you can set the audit to run on a configurable schedule and have a notification sent upon
completion.

Showing a window for selecting an audit, the following figure includes the following callouts:

l Callout A: Any category listed in the Views panel may have SA non-modifiable capabilities, or
modifiable pluggable checks.

l Callout B: This points to the SA capabilities for dealing withWindows services.

l Callout C: This lists pluggable checks for working withWindows Services.

Windows Services audit rule

Each check evaluates one rule. Several checks can be bundled together into a policy.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 176 of 325



The SA Audit and Remediation feature comes with many out-of-the-box checks. You can runmost
audits by selecting the desired check. The choice of audits grows continuously as developers design,
code, test, and addmore checks to the system through the HPE Live Network. These checks are
imported as complete policies.

However, since every business has unique challenges and unique resources, youmay need to
determine compliance against a set of criteria not available for auditing within the SA Audit and
Remediation framework. For this reason, the system provides a way to create your own custom
pluggable checks.

The Audit and Remediation feature evaluates, by specific rules, the compliance state of servers under
SA management. This feature can also remediate the servers that do not match the desired
configuration state as defined in the rules. These rules include various server parameters, registry
values, file permissions, application configurations, file existence, COM+ objects, andmore.

In theWindows environment, web server rules can also be specified with application configuration,
which is based upon theMicrosoft Internet Information Services (IIS)Web server configuration file,
UrlScan.ini. SA can compare partial or full values from specific configuration files, select the desired
elements from the file, andmake sure that these values or configuration file entries exist. For more
information, see the Application Configuration.

SA includes many predesigned audit rules. Each defines a desired state of configuration for a server or
server groups. Some rules are value-based, providing a comparator ( <, >, ==, !=, contains, etc.), a
value or set of values, and one or more checks, which spell out the underlying code used to evaluate
the state of the audited item or items. The comparison data determines compliance or non-compliance.
A rule may also contain remediation values if the check supports remediation.

A rule consists of a single check. You can create new functionality by using custom content objects in
the form of pluggable checks. You can also bundle related pluggable checks into audit policies for
convenience.

Creating a pluggable check
A pluggable check is code that is downloaded to themanaged server or servers and is executed by the
Audit and Remediation framework. You can use checks to extend the native Audit and Remediation
properties and to provide additional specialized functionality. Each pluggable check includes a
customized config.xml file and at least one script that compares the audited feature against values
specified in the config.xml file. A pluggable check may also include a script that sets specified
variables in the audited server to the value specified in the config.xml file. You can write pluggable
check scripts in Python, Visual Basic Scripting (VBS), BAT, or shell script. A pluggable check is
packaged as a zip archive.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 177 of 325



Most of the CIS checks are direct translations of the CIS benchmarks. More information can be found
at http://www.cisecurity.org.

Most types of checks fall into one of the following categories:

l Windows Registry checks

l Unix Services checks

l User checks, whichmay use password or shadow file information

Guidelines for pluggable checks

To simplify server maintenance, adhere to the following guidelines:

l When creating a new pluggable check, pay special attention to the names. Describe the purpose of
the check, and replace spaces with an underscore. For example, Users_Without_Password_
Expiration is self-explanatory. This will help you to find a check quickly when a server acquires
several hundred or more checks.

l Write a generic check. This enables you to easily create additional checks of the same execution
type with only a few lines of code change. For example, for most CIS2k3Windows Service
Checks, you can change a single line of code to create a new check for a new service.

l When naming the audit (get) and remediation (set) scripts, remove the spaces or underscores from
the directory name, and prefix with get or set, as appropriate. For example,
getUsersWithoutPasswordExpiration.sh is a good name for an audit file. Be consistent on this,
even if you think your custom check will not be used by anyone else.

l Pay attention to error checking. Remember that unexpected return values might report an audit as
non-compliant when a script failure occurs. Trap the unexpected error or exception, and write out
information about it to stdout or stderr to simplify troubleshooting.

l Convert most checks to a simple binary case of True or False when possible.

l Always try to handle not only the specific benchmark case, but also its counterpart. For example,
you can easily create a “Disable Service X,” pluggable check at the same time that you create an
“Enable Service X” and reusemost of the code. This can be useful if you decide later to test for the
opposite condition.

l Use the standard exit codes defined by the framework whenever possible. These are:

EXIT_FAILURE=220

EXIT_ERR_USAGE=221

EXIT_ERR_INVALID_OS=222

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 178 of 325



l When returning disabled or enabled in a Boolean type check, return 0 for disabled, 1 for enabled.

l Package each pluggable check as a ZIP archive. A single file system directory contains the files
listed in the following table.

File Name Description

config.xml (Required) The XML configuration file defining how this pluggable check
executes, returns, and ultimately reports compliance or non-compliance.

getName. {py
| sh | BAT |
vbs}

(Required) The audit script, written in Python, VBS, BAT, or shell, that
evaluates the audited object, and returns text and exit codes according to the
config.xml definitions.

setName. {py
| sh | BAT |
vbs}

(Optional) The remediation script, written in Python, VBS, BAT, or shell, that
remediates the condition checked by the audit script.

Additional Code,
Scripts, or
Libraries

(Optional) Helper and supplementary scripts used by either the audit or
remediation scripts.

Pluggable check contents

The file names for the audit and remediation scripts do not need to begin with get and set, but this
convention simplifies file maintenance.

The following example shows a directory structure for a pluggable check:

./check_name/

./check_name/config.xml

./check_name/getcheckname.py

./check_name/setcheckname.py

Development process for pluggable checks

The following figure shows an overview for the development process, which takes place in a command-
line environment.

Development process

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 179 of 325



Pluggable check configuration (config.xml)

The config.xml file is a specification file for the pluggable check that contains elements to control how
this check appears in the SA Client, default values, value types for comparison, and the category of the
check. For example, the following element in the config.xml file determines the pluggable check’s rule
category in the SA Client:

<checkCategory>Windows Services</checkCategory>

Standard categories, each indicated with its own icon, include hardware, software, operating systems,
users and groups, file systems, andmore, as shown in the following figure.

Pluggable check categories in the rule hierarchy

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 180 of 325



The following listing shows the template for the config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE checkConfiguration SYSTEM "check.dtd">
<checkConfiguration version="1.0">
<checkName>$CHECKNAME</checkName>
<checkGUID>$CHECKGUID</checkGUID>
<checkDefaultDescription>$CHECKDESCRIPTION</checkDefaultDescription>
<checkRemediationDefaultDescription> $CHECKREMEDIATIONDESCRIPTION </
checkRemediationDefaultDescription>
<checkGetScriptName>$GETSCRIPTNAME</checkGetScriptName>
<checkGetScriptType>PY</checkGetScriptType><!-- Or SH for shell, BAT for Bat,

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 181 of 325



VBS for Visual Basic -->
<checkSetScriptName>$SETSCRIPTNAME</checkSetScriptName><!-- Optional -->
<checkSetScriptType>PY</checkSetScriptType><!-- Optional -->
<checkVersion>32b.0-1.0</checkVersion>
<checkReturnType>$RETURNTYPE</checkReturnType> <!-- EXITCODE, STRING, or
NUMBER -->
<checkTestIDs>
<checkTestID>$CHECKTESTID</checkTestID> <!-- Optional -->
</checkTestIDs>
<checkPlatformTypes>
<checkPlatform>$PLATFORMTYPE</checkPlatform> <!-- Currently Unix or Windows --
>
</checkPlatformTypes>
<checkCategories>
<checkCategory>$CATEGORY</checkCategory> <!-- Top-level GUI category -->
</checkCategories>
<checkGetArguments> <!-- All arguments are optional -->
<checkGetArgument>
<checkGetArgumentType>$GETARGTYPE</checkGetArgumentType> <!-- STRING or NUMBER
-->

<checkGetArgumentDefaultLabel>$GETDEFAULTLABEL</
checkGetArgumentDefaultLabel>

<checkGetArgumentDefaultDescription>$GETDEFAULTDESCRIPTION</
checkGetArgumentDefaultDescription>

<checkGetArgumentDefaultValue>$GETDEFAULTVALUE</
checkGetArgumentDefaultValue>

</checkGetArgument>
</checkGetArguments>
<checkSetArguments> <!-- Also optional -->
<checkSetArgument>
<checkSetArgumentType>$SETARGTYPE</checkSetArgumentType>

<checkSetArgumentDefaultLabel>$SETDEFAULTLABEL</
checkSetArgumentDefaultLabel>

<checkSetArgumentDefaultDescription>$SETDEFAULTDESCRIPTION</
checkSetArgumentDefaultDescription>

<checkSetArgumentDefaultValue>$SETDEFAULTVALUE</
checkSetArgumentDefaultValue>
</checkSetArgument>
</checkSetArguments>
<checkSuccessExitCodes> <!-- Only for EXITCODE type checks, generally at least
two entries -->

<checkSuccessExitCode>
<checkSuccessExitCodeValue>$EXITCODEVALUE</checkSuccessExitCodeValue>

<checkSuccessExitCodeDefaultDescription>$EXITCODEDESCRIPTION
</checkSuccessExitCodeDefaultDescription>

<checkSuccessExitCodeDefaultDisplayName>$EXITCODEDISPLAYNAME
</checkSuccessExitCodeDefaultDisplayName>

</checkSuccessExitCode>
</checkSuccessExitCodes>

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 182 of 325



</checkConfiguration>

Formore details, see "Document Type Definition (DTD) for config.xml file" on page 186.

Audit (get) scripts

You can design the audit script, also known as the get script, to obtain a value from amanaged server.
The script is executed with optional parameters, as specified in the config.xml file. If the script is
running an EXITCODE check, the result of the script is compared to the exit codes specified in the
config.xml file. For STRING and NUMBER return type checks, the result is compared to what is
written to STDOUT.

An audit script has a set of pre-defined return codes. You can define additional return codes in the
check config.xml file.

The audit script may display informational messages. Thesemessages are useful when
troubleshooting an audit script failure. Review the following sample Python audit script:

Remediation (set) scripts

You can design the remediation script, also known as the set script, to enact a change on themanaged
server that would cause the audit script to return success when completed. The script is executed with
optional parameters, as specified in the check config.xml file.

These set scripts are optional, and can vary in character from being very similar to their counterpart get
scripts to entirely different (and longer).

From a shell standpoint, there is nothing special in the script itself, other than the return codes being
used. Most checks display some debug output or informationmessages. This is not normally seen by
users, except in the event of a script failure, where themessages are useful for troubleshooting
purposes.

As a standard practice, always include at least one parameter to the set script. Also, remember to
modify the config.xml file so that it displays nicely in the SA Client when adding a set script to an
already existing check.

Make sure your remediation scripts exit with exit code 0 to indicate success. All other exit codes will
indicate failure of the remediation operation.

Review the following sample Python set script.

import sys
import os
import string
if __name__ == "__main__":
# If there are set arguments they will be loaded into
# sys.argv
# Enter the desired set code here. Stdout may be used for

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 183 of 325



# debugging.
# Uses exitcode 0 for success, and all other values for
# failure.
# enter condition where set script if successful. for this
# example, use ‘if 1’
if 1:

sys.exit(0)
else:

sys.exit(-1)

Other code for pluggable checks

Pluggable checks may also contain code other than the get or set scripts. Libraries, executables or
additional scripts can be added to the check, so their set or get scripts can utilize these upon execution.

You can also include additional code in the ZIP file.

Zipping up pluggable checks

After you have created the config.xml file, the audit (get) script, and the optional remediation (set)
script, create a ZIP archive containing these files. The following shell history shows the creation
process in a UNIX environment.

# ls
check_name
# cd check_name
# zip ../checkname.zip *
adding: config.xml
adding: getcheckname.py
adding: setcheckname.py
# unzip -t ../checkname.zip
testing: config.xml OK
testing: getcheckname.py OK
testing: setcheckname.py OK
No errors detected in compressed data of ../checkname.zip.

Importing pluggable checks

Import a pluggable check into an SA core or mesh using the OCLI 1.0 utility, which is documented in
the SA Content Utilities. The following shell history provides an example of the import process for
Linux:

# cp checkname.zip /var/tmp/checks
# cd /var/tmp/checks
# cp opsware_32.a.692.0-upload/disk001/packages/Linux/3AS/ocli-32a.2.0.5-
linux-3AS .
# chmod 755 ocli-32a.2.0.5-linux-3AS
# ./ocli-32a.2.0.5-linux-3AS
# . ./ocli/login.sh
# export PATH=/opt/opsware/bin:$PATH

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 184 of 325



# oupload -C"Customer Independent" -t"Server Configuration Check" --
forceoverwrite --old -O"SunOS 5.8" your_Pluggable_check.zip

The oupload command uses "SunOS 5.8" to specify that the check falls into the generic Unix category
in the SA Client. To specify a check for theWindows category, use "Windows 2003."

Creating the audit policy
The audit policy creation procedure is illustrated in figure below:

Procedure for creating an audit policy

Creating an audit policy

Audit policies consist of rules. Each rule consists of one or more checks, which can include the user-
created pluggable check. Audit policies and rules are displayed, created and edited in the SA Client.
The following figure shows a list of the audit rules available on amodel system.

List of audit rules

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 185 of 325



For detailed information on creating an audit policy, see the Server Automation Administration Guide on
the HPE SSO portal.

Exporting the audit policy

Tomove a new audit policy to other SA cores, export it from one and import it to another using the
DCMLExchange Tool (DET) command-line utility. Use this tool to populate a newly-installed SA core
with content, such as policies, from an existing core. For detailed instructions on this procedure, see
the Server Automation Administration Guide on the HPE SSO portal.

Document Type Definition (DTD) for

config.xml file
This file governs SA Client display names and descriptions, default values, comparisons to be
performed upon values returned by the check code, the category of the SA Client displaying these
values, andmore.

Two elements in the default config.xml file, checkGetArguments and checkSetArguments, are used
to pass data values to the scripts at execution time. If your programmable check does not require any
arguments, delete these elements from your config.xml file.

The following DTD for config.xml is dynamically generated by SA:

<!ELEMENT checkConfiguration (checkName, checkGUID, checkDefaultDescription,
checkRemediationDefaultDescription?, checkGetScriptName?,
checkGetScriptType?, checkSetScriptName?, checkSetScriptType?, checkVersion,
checkAllowRemediationOnFailure?, checkReturnType, checkTestIDs?,
checkPlatformTypes, checkExclusivePlatforms?, checkExcludePlatforms?,
checkCategories, checkGetArguments?, checkSetArguments?,
checkComparisonDefaults?, checkCompareValidValues?, checkSuccessExitCodes?)>
<!ATTLIST checkConfiguration version CDATA #REQUIRED>
<!ELEMENT checkName (#PCDATA)>
<!ELEMENT checkGUID (#PCDATA)>
<!ELEMENT checkDefaultDescription (#PCDATA)>
<!ELEMENT checkRemediationDefaultDescription (#PCDATA)>
<!ELEMENT checkGetScriptName (#PCDATA)>
<!ELEMENT checkGetScriptType (#PCDATA)>
<!ELEMENT checkSetScriptName (#PCDATA)>
<!ELEMENT checkSetScriptType (#PCDATA)>
<!ELEMENT checkVersion (#PCDATA)>
<!ELEMENT checkAllowRemediationOnFailure (#PCDATA)>
<!ELEMENT checkReturnType (#PCDATA)>
<!ELEMENT checkTestIDs (checkTestID+)>
<!ELEMENT checkTestID (#PCDATA)>

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 186 of 325



<!ELEMENT checkPlatformTypes (checkPlatform+)>
<!ELEMENT checkPlatform (#PCDATA)>
<!ELEMENT checkExclusivePlatforms (checkExclusivePlatform+)>
<!ELEMENT checkExclusivePlatform (#PCDATA)>
<!ELEMENT checkExcludePlatforms (checkExcludePlatform+)>
<!ELEMENT checkExcludePlatform (#PCDATA)>
<!ELEMENT checkCategories (checkCategory+)>
<!ELEMENT checkCategory (#PCDATA)>
<!ELEMENT checkGetArguments (checkGetArgument+)>
<!ELEMENT checkGetArgument (checkGetArgumentType,
checkGetArgumentDefaultLabel, checkGetArgumentDefaultDescription,
checkGetArgumentDefaultValue?, checkGetArgumentValidValues?)>
<!ELEMENT checkGetArgumentType (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultLabel (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkGetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkGetArgumentValidValues (checkGetArgumentValidValue+)>
<!ELEMENT checkGetArgumentValidValue (checkGetArgumentValidValueItem,
checkGetArgumentValidValueDisplayName)>
<!ELEMENT checkGetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkGetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSetArguments (checkSetArgument+)>
<!ELEMENT checkSetArgument (checkSetArgumentType,
checkSetArgumentDefaultLabel, checkSetArgumentDefaultDescription,
checkSetArgumentDefaultValue?, checkSetArgumentValidValues?)>
<!ATTLIST checkSetArgument populateFromRule CDATA #IMPLIED>
<!ELEMENT checkSetArgumentType (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultLabel (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultDescription (#PCDATA)>
<!ELEMENT checkSetArgumentDefaultValue (#PCDATA)>
<!ELEMENT checkSetArgumentValidValues (checkSetArgumentValidValue+)>
<!ELEMENT checkSetArgumentValidValue (checkSetArgumentValidValueItem,
checkSetArgumentValidValueDisplayName)>
<!ELEMENT checkSetArgumentValidValueItem (#PCDATA)>
<!ELEMENT checkSetArgumentValidValueDisplayName (#PCDATA)>
<!ELEMENT checkComparisonDefaults (checkComparisonDefaultOperator?,
checkComparisonDefaultValues)>
<!ELEMENT checkComparisonDefaultOperator (#PCDATA)>
<!ATTLIST checkComparisonDefaultOperator not CDATA #IMPLIED>
<!ATTLIST checkComparisonDefaultOperator caseInsensitive CDATA #IMPLIED>
<!ELEMENT checkComparisonDefaultValues (checkComparisonDefaultValue+)>
<!ELEMENT checkComparisonDefaultValue (checkComparisonDefaultValueItem,
checkComparisonDefaultValueDisplayName)>
<!ELEMENT checkComparisonDefaultValueItem (#PCDATA)>
<!ELEMENT checkComparisonDefaultValueDisplayName (#PCDATA)>
<!ELEMENT checkCompareValidValues (checkCompareValidValue+)>
<!ELEMENT checkCompareValidValue (checkCompareValidValueItem,
checkCompareValidValueDisplayName)>
<!ELEMENT checkCompareValidValueItem (#PCDATA)>

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 187 of 325



<!ELEMENT checkCompareValidValueDisplayName (#PCDATA)>
<!ELEMENT checkSuccessExitCodes (checkSuccessExitCode+)>
<!ELEMENT checkSuccessExitCode (checkSuccessExitCodeValue,
checkSuccessExitCodeDefaultDescription,
checkSuccessExitCodeDefaultDisplayName)>
<!ELEMENT checkSuccessExitCodeValue (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDescription (#PCDATA)>
<!ELEMENT checkSuccessExitCodeDefaultDisplayName (#PCDATA)>

The following table describes the elements of the config.xml DTD.

Elements Attributes

checkConfiguration version Set to 1.0, only change if the Audit and
Remediation framework requires it.

checkName The English name that displays in the SA
Client for the check/rule.

checkGUID A standard GUID, for example,

9500A4AE-EE9E-4383-87F2-
BAD7DDC26C59

can be generated using the “guidgen”
Windows utility, downloaded from aweb site,
or by other means.

TheGUID MUST be unique or the pluggable
check will fail on upload to core. Once a
check is uploaded with its uniqueGUID, you
MUST NOT change theGUID or it will fail on
re-upload with a "Database Unique
Constraint Error" until you delete the original.
Checks are uniquely identified by GUID, but
for upload are solely identified by their name
(of the zip file).

checkDefaultDescription Displays in the SA Client description box.
Honors hard carriage returns and HTML.
With HTML, the HTML tags need to be
converted with &lt; and &gt;.

checkRemediationDefaultDescription Displays in the SA Client under the
Remediation section of the check/rule.

checkGetScriptName The file name for the get script, for example,
getUsersWithoutPasswordExpiration.sh.

DTD Elements and Attributes

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 188 of 325



Elements Attributes

checkGetScriptType The type of code determines the interpreter to
be run. Get and set scripts may be types:
SH, VBS, PY, BAT.

checkSetScriptName The file name for the remediation script.

checkSetScriptType The type of code determines interpreter to be
run. Set (remediation) scripts may be of
types SH, VBS, PY, BA.

checkVersion This is based on SA and framework build
number, such as 32b.0-1.0.

checkAllowRemediationOnFailure Some scripts may fail during the get phase,
but youmay be able to correct this condition
via the remediation script. This allows
remediation to be performed even in the
event of a script failure. For example, if the
non-existence of a registry key is undefined,
you can create and set it in your set code.

checkReturnType Permissible values are EXITCODE,
STRING, or NUMBER:

EXITCODE—Standard script return via
Wscript.Quit(), exit, return, etc.

NUMBER—Audit and Remediation
framework will grab from stdout and interpret
it as numeric type.

STRING—Audit and Remediation
framework will grab from stdout and interpret
as a string type.

checkTestIDs List of test IDs.

checkTestID Used to display the CIS, MSFT, NSA or
other Policy standard nomenclature, for
example, CIS-RHEL 8.4. This is a free form
field, and displays in the SA Client, so be
consistent in naming it to correspond with the
TON Content.

checkPlatformTypes List of valid platform types for a check.

checkPlatform WINDOWS | UNIX (or both as individual
elements)

DTD Elements and Attributes, continued

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 189 of 325



Elements Attributes

checkExclusivePlatforms List of exclusive platforms. Audit and
Remediation currently separates things by
Windows or Unix by default, but real world
standards as well as limitations and/or
differences across operating systems do not
make this always desirable. You can limit
Audit and Remediation to any platform
specified by a platform ID retrieved from the
spin.

This parameter may refer to one of the
supported operating systems listed in the SA
Supported Platforms documentation.

checkExclusivePlatform Individual platform ID.

checkExcludePlatforms List of excluded platforms. If the
PlatformType claims UNIX, you can supply
platform IDs to exclude from the UNIX set
(all Linux + all Unixes).

checkExcludePlatform Individual platform ID

checkCategory This is the SA Client Category that a check
displays in. Currently, a check can only
display in a single category. If a category
does not exist, it will be created upon upload.
The following standard categories for existing
checks should be used where possible:

Event Logging
File System
Operating System
Operating System|Domain Controller (sub-
category)
Operating System|Network (sub-category)
Registry
Services
Users andGroups

checkGetArgument
(checkGetArgumentType,
checkGetArgumentDefaultLabel,
checkGetArgumentDefaultDescription,
checkGetArgumentDefaultValue?,
checkGetArgumentValidValues?)>

Specifies parameters to the get script.

checkGetArgumentType NUMBER | STRING

DTD Elements and Attributes, continued

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 190 of 325



Elements Attributes

checkGetArgumentDefaultLabel SA Clienttag next to the input box or drop-
down.

checkGetArgumentDefaultDescription Hover text with further explanation.

checkGetArgumentDefaultValue Default value for this get parameters.

checkGetArgumentValidValue
(checkGetArgumentValidValueItem,
checkGetArgumentValidValueDisplayName

checkGetArgumentValidValueItem
(#PCDATA)>

checkGetArgumentValidValueDisplayName
(#PCDATA)>

checkGetArgumentValidValues
(checkGetArgumentValidValue+)

(Optional) Useful for limiting the parameters
for example to 0/disable and 1/enable.

checkSetArguments (checkSetArgument+) checkSetArgument
(checkSetArgumentType,
checkSetArgumentDefaultLabel,
checkSetArgumentDefaultDescription,
checkSetArgumentDefaultValue?,
checkSetArgumentValidValues?)

setArgument elements are identical to the
GetArguments, but for the remediation/set
script if it exists.

The exception is:

checkSetArgument populateFromRule— the
set parameter default should or should not
populate itself from the rule data, versus if
any default values were supplied in
config.xml. Generally, this is always set to
true.

checkSetArgumentType NUMBER | STRING

checkSetArgumentDefaultLabel SA Clienttag next to the input box or drop-
down.

checkSetArgumentDefaultDescription Hover text with further explanation.

checkSetArgumentDefaultValue Default value for this set parameter.

checkSetArgumentValidValues
(checkSetArgumentValidValue+)

checkSetArgumentValidValue
(checkSetArgumentValidValue Item,

checkSetArgumentValidValueItem
(#PCDATA)>

DTD Elements and Attributes, continued

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 191 of 325



Elements Attributes

checkSetArgumentValidValue
DisplayName)>

checkSetArgumentValidValueDisplayName
(#PCDATA)>
checkSetArgumentValidValueItem
(#PCDATA)>
checkSetArgumentValidValueDisplayName
(#PCDATA)>

checkSetArgumentValidValue Item (Optional) Useful for limiting the parameters
for example to 0/disable and 1/enable.

checkSetArgumentValidValueDisplayName

<!ELEMENT checkComparisonDefaults
(checkComparisonDefaultOperator?,
checkComparisonDefaultValues)>

checkComparisonDefaultOperator not —
negation of operator specified, TRUE |
FALSE

checkComparisonDefaultOperator
caseInsensitive— only valid for STRING
types.

<!ELEMENT
checkComparisonDefaultOperator
(#PCDATA)>

List of default values for comparator. Useful
for field or development outside the TON
build framework.

checkComparisonDefaultValues
(checkComparisonDefaultValue+)

checkComparisonDefaultValue
(checkComparisonDefaultValueItem,
checkComparisonDefaultValueDisplayNam
e).

checkComparisonDefaultValueIte Value for default, passed to code.

checkComparisonDefaultValueDisplayNam
e

Display name for the value, seen in the SA
Client.

checkCompareValidValues
(checkCompareValidValue+)>

checkCompareValidValue
(checkCompareValidValueItem,
checkCompareValidValueDisplayName)>

checkCompareValidValueItem (#PCDATA)>

checkCompareValidValueDisplayName
(#PCDATA)>

checkSuccessExitCodes
(checkSuccessExitCode+)
checkSuccessExitCode
(checkSuccessExitCodeValue,

For a checkReturnType of EXITCODE, you
must define the valid values for proper script
operation, which generally include both the
compliant and non-compliant expected

DTD Elements and Attributes, continued

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 192 of 325



Elements Attributes

checkSuccessExitCodeDefaultDescriptio
n,
checkSuccessExitCodeDefaultDisplayNam
e)>

values. Anything returned other than a value
specified here will be seen as a script failure,
which is shown differently in the SA Client,
as well as in reporting.

checkSuccessExitCodeValue Value for script completion, for example, 0
(for disabled typically).

checkSuccessExitCodeDefaultDescriptio
n

Hover text for the DisplayName/Value.

checkSuccessExitCodeDefaultDisplayNam
e

Value or text shown to user for this value, for
example, Disabled.

DTD Elements and Attributes, continued

Search filter syntax

Filter grammar
A search filter is a parameter for methods such as findServerRefs. The expression in a search filter
enables you to get references to SA objects (such as servers and folders) according to the values of the
object attributes. The formal syntax for a search filter follows:

<filter> ::= (<expression-junction>)+
<expression-junction> ::= <expression-list-open> <junction>
(<expression>)+ <expression-list-close>
<expression> ::= <expression-open> <attribute> <general-delimiter> <operator>
<general-delimiter> <value-list> <expression-close>

<attribute> ::= <resource_field>
<vo_member> ::= <text>
<resource_field> ::= <text>
<value-list> ::= (<double-quote> <text> <double-quote>)* |
(<number>)*
<text> ::= [a-z] [A-Z] [0-9]
<number> ::= [0-9] [.]

<junction> ::= <union-junction> | <intersect-junction>
<union-junction> ::= ‘|’
<intersect-junction ::= ‘&’
<expression-list-open> ::= ‘(‘
<expression-list-close> ::= ‘)’

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 193 of 325



<expression-open> ::= ‘(‘ | ‘{‘
<expression-close> ::= ‘(‘ | ‘}’
<general-delimiter> ::= <whitespace>
<whitespace> ::= ‘ ‘
<double-quote> ::= ‘”’
<escape-character> ::= ‘\’
<operator> ::= <equal_to> |...| <contains_or_above>

Valid operators for the preceding line:

<equal_to> ::= ‘=’ | ‘EQUAL_TO’
<not_equal_to> ::= ‘!=’ | ‘<>’ | ‘NOT_EQUAL_TO’
<in> ::= ‘=’ | ‘IN’
<not_in> ::= ‘!=’ | ‘<>’ | ‘NOT_IN’
<greater_than> ::= ‘>’ | ‘GREATER_THAN’
<less_than> ::= ‘<‘ | ‘LESS_THAN’
<greater_than_or_equal> ::= ‘>=’ | ‘GREATER_THAN_OR_EQUAL’
<less_than_or_equal> ::= ‘<=’ | ‘LESS_THAN_OR_EQUAL’
<begins_with> ::= ‘=*’ | ‘BEGINS_WITH’
<ends_with> ::= ‘*=’ | ‘ENDS_WITH’
<contains> ::= ‘*=*’ | ‘CONTAINS’
<not_contains> ::= ‘*<>*’ | ‘NOT_CONTAINS’
<in_or_below> ::= ‘IN_OR_BELOW’
<in_or_above> ::= ‘IN_OR_ABOVE’
<between> ::= ‘BETWEEN’
<not_between> ::= ‘NOT_BETWEEN’
<not_begins_with> ::= ‘NOT_BEGINS_WITH’
<not_ends_with> ::= ‘NOT_ENDS_WITH’
<is_today> ::= ‘IS_TODAY’
<is_not_today> ::= ‘IS_NOT_TODAY’
<within_last_days> ::= ‘WITHIN_LAST_DAYS’
<within_last_months> ::= ‘WITHIN_LAST_MONTHS’
<within_next_days> ::= ‘WITHIN_NEXT_DAYS’
<within_next_months> ::= ‘WITHIN_NEXT_MONTHS’
<not_within_last_days> ::= ‘NOT_WITHIN_LAST_DAYS’
<not_within_last_months>::= ‘NOT_WITHIN_LAST_MONTHS’
<not_within_next_days> ::= ‘NOT_WITHIN_NEXT_DAYS’
<not_within_next_months>::= ‘NOT_WITHIN_NEXT_MONTHS’
<contains_or_below> ::= ‘CONTAINS_OR_BELOW’
<contains_or_above> ::= ‘CONTAINS_OR_ABOVE’

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 194 of 325



Rebuilding the Apache HTTP server and
PHP
This topic describes how to rebuild the Apache HTTP server and PHP and replace them in SA. SA
includes an Apache HTTP server and PHP so this information is only needed if you need to use a
different version of the Apache HTTP server or if you need to compile extra libraries or modules into
PHP.

SA uses the Apache HTTP server and PHP for web Automation Platform Extensions (APX). For more
information, see "Automation Platform Extensions (APX)" on page 82.

Extending the APX HTTP environment
This section describes how you can extend the APX HTTP environment by rebuilding the Apache
HTTP server and PHP.

Note: Youmust perform these tasks after all core upgrades.

If you have aMultimaster Mesh, these tasks must be performed on each slice in all cores. For more
information on slice component bundles, see the Server Automation Administration Guide on the HPE
SSO portal.

Rebuilding PHP

1. Perform the following tasks to rebuild PHP.

Download the PHP source from http://www.php.net/.

2. Put the source in a directory on the server where apxproxy is installed, typically under
/opt/opsware/apxproxy.

3. Enter the following commands, replacing the version number if you downloaded a different version
of PHP.

mkdir /build ; cp php-4.4.8.tar.gz /build; cd /build
gzip -dc php-4.4.8.tar.gz | tar xvf -
cd php-4.4.8
./configure --prefix=/opt/opsware/apxphp

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 195 of 325



--with-pear=/opt/opsware/apxphp/lib/pear
--with-config-file-path=/opt/opsware/apxphp/lib
--with-apxs2=/opt/opsware/apxhttpd/bin/apxs <any other options you>
make clean
make

4. Backup your old copy of libphp4.so:

cp /opt/opsware/apxhttpd/modules/libphp4.so
/opt/opsware/apxhttpd/modules/libphp4.so.backup

5. Copy the new libphp4.so file to the apxhhtps directory:

cp libs/libphp4.so /opt/opsware/apxhttpd/modules/libphp4.so

6. Ensure that the complete reference library exists in the tool.list:

ldd ./libs/libphp4.so

For each entry in the output ensure that the file exists in
/etc/opt/opsware/ogfs/tool.list.

If an entry does not exist, add it.

7. Backup the apxphp folder:

mv /opt/opsware/apxphp /opt/opsware/apxphp.orig

8. Install PHP:

make install

9. Reload and relink the OGFS tomake sure anything you added to
/etc/opt/opsware/ogfs/tools.list shows up in the OGFS:

/opt/opsware/ogfs/tools/rewink && /opt/opsware/ogfs/
tools/reload

10. Restart apxproxy:

/etc/opt/opsware/startup/apxproxy restart

Rebuilding Apache

Perform the following tasks to rebuild the Apache HTTP server.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 196 of 325



1. Download the source code for the Apache HTTP server from http://httpd.apache.org/.

2. Put the source in a directory on the server that hosts the slice component bundle. For more
information on slice component bundles, see the Server Automation Administration Guide on the
HPE SSO portal.

3. Enter the following commands, replacing the version number if you downloaded a different version
of httpd.

mkdir /build; cp httpd-2.2.8.tar.gz /build; cd /build
gzip -dc httpd-2.2.8.tar.gz | tar xf -
cd httpd-2.2.8
./configure --prefix=/opt/opsware/apxhttpd <any other options you want>.

SA currently uses:
--enable-mods-shared="actions alias auth_basic auth_digest authn_file authz_
user cgi deflate dir dumpio env expires headers ident logio log_config mime
negotiation rewrite userdir vhost_alias imagemap status"
--disable-dav
--with-port=8021
--with-expat=builtin
--without-pgsql

(OnSunOS only) Enter this command:

perl -pi -e 's/#define HAVE_GETADDRINFO 1/#undef HAVE_GETADDRINFO/g'
./srclib/apr/include/arch/unix/apr_private.h
make

4. Make a backup of the apxhttp directory:

mv /opt/opsware/apxhttpd /opt/opsware/apxhttpd.orig

5. Install Apache:
make install

6. Reload and relink the new files into the OGFS:

/opt/opsware/ogfs/tools/rewink && /opt/opsware/ogfs/tools/reload

7. The HTTPD and the .so files in themodules directory may reference external libraries. These
libraries must be visible (or winked in) to the OGFS.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 197 of 325



Log in to the OGFS and run LDD on /opt/opsware/apxhttpd/bin/httpd and any .so file in
/opt/opsware/apxhttpd/modules and ensure that all the files listed there exist in the OGFS. If
they do not, add the files to /etc/opt/opsware/ogfs/tool.list (outside the OGFS) and then re-
run step 6 until all files are available to /opt/opsware/apxhttpd/bin/httpd.

8. Youmust now rebuild PHP. See "Rebuilding PHP" on page 195.

Developer Guide
Server Automation Platform

HPE Server Automation (10.51) Page 198 of 325



Application Configuration
The section describes how tomanage and create a template of a configuration file:

l "Managing XML configuration files" below

l "CML primer" on page 210

l "CMLReference" on page 223

l "XML Tutorial 1 - Creating a non-DTD XML configuration template" on page 273

l "XML Tutorial 2 - Creating an XML-DTD configuration template" on page 280

l "CML Tutorial 1 - Creating an Application Configuration for a simple web app server" on page 289

l "CML Tutorial 2 - Creating a template of a web server configuration file" on page 300

Managing XML configuration files
With SA you canmanage XML configuration files from a central location and propagate changes across
multiple servers in your data center. You can create, edit, and store configuration file values to ensure
that the XML configuration files on your managed servers are correct. You canmanage XML files that
use a DTD as well as XML files that do not.

This section discusses how XML configuration templates are structured so you canmanage generic
(non-DTD) XML files, as well as XML files that reference a DTD. Since XML is well-structured, SA
needs only aminimum amount of information to be able tomodel andmanage XML-based configuration
files.

Tomanage XML configuration files you first need to create a template file for your XML configuration
file. After creating the template, youmust add it to an application configuration object so you can
manage, edit, andmake changes to the native configuration files onmanaged servers.

Configuration files

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 199 of 325



The following section describes a simple XML file and shows how to create an application configuration
for a non-DTD based XML file and one for a DTD-based XML file.

Also see the following examples:

l "XML Tutorial 1 - Creating a non-DTD XML configuration template" on page 273.

l "XML Tutorial 2 - Creating an XML-DTD configuration template" on page 280.

Example: Travel manager application and

XML configuration file
This section describes an example web application that uses a simple XML file to control its
configuration and shows how to create an application configuration tomanage that file.

Travel Manager is a web application designed to help peoplemanage their travel by performing such
tasks as booking hotels, rental cars, tracking expenses, and so on. Travel Manager uses theMySQL
Relational DatabaseManagement System (RDMS) as the repository for user data and some of the
application’s configuration data.

Since the Travel Manager is designed to be deployed over many different networks, each with a
different database server, it is important to provide flexibility in the information used to connect to the
MySQL server. The application is designed to retrieve connection information from an XML
configuration file, mysql.xml.

With application configurations, you can set the configuration file values necessary for accessing the
local MySQL database. For example, the user name and password used to open a connection to the
databasemay be different for each installation of the Travel Manager application. Modifications to
these values can bemade to the configuration file without requiring a recompilation of the Travel
Manager application code.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 200 of 325



Only four values in the file mysql.xml are required for the Travel Manager to be able to connect to the
local MySQL database, each of which is represented as an element in the application’s XML file:

l Host: Host name of the server on which theMySQLRDMS has been installed.

l Name: Name of the database on the host server.

l User: User name credentials used to open a connection to the database.

l Password: Password necessary to open a connection to the database.

Contents of the Travel Manager mysql.xml file
The following is an example of the Travel Manager mysql.xml configuration file:

<?xml version="1.0" ?>

<db-config>

<db-host>localhost</db-host>

<db-name>wrightevents</db-name>

<db-user>root</db-user>

<db-password>hp-pass</db-password>

</db-config>

Contents of the Travel Manager mysql.xml DTD-

based XML file
The following is an example of the Travel Manager mysql.xml configuration file that references a DTD:

<?xml version="1.0"?>
<!DOCTYPE db-config PUBLIC "-//Williams Events//Travel Manager//EN" "mysql2.dtd">
<db-config>

<db-host>localhost</db-host>
<db-name>wrightevents</db-name>
<db-user>root</db-user>
<db-password>hp-pass</db-password>

</db-config>

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 201 of 325



Non-DTD XML configuration templates
You can create a non-DTD based XML configuration template written as a single XML comment with
three pieces of required information that enables the template to extract and store values from a target
XML file:

l ACM-NAMESPACE: Defines the location where values read from the target XML file on themanaged
server will be stored in the database. The name spacemust be unique and the pathmust start with
a forward slash (/).

l ACM-FILENAME-DEFAULT: Defines the default absolute path of the target XML configuration file on
themanaged server.

l ACM-FILENAME-KEY: Defines the location in the name space where the target XML configuration file
namewill be stored.

When you set a configuration template’s properties to use XML syntax, the labels displayed in the
value set editor are the same as the tag names for the each corresponding element inside the XML file.

For a full list of template settings for XML templates, see "XML configuration template settings" on
page 208.

For information on setting the parser syntax to XML for a configuration template, see Creating a
configuration template.

Non-DTDXML configuration template for mysql.xml
The following example shows the XML configuration template based on the mysql.xml file. The
template file is named to mysql.tpl to indicate it is a template file.

<!--

ACM-NAMESPACE = /TravelManager/

ACM-FILENAME-KEY = /files/TravelManager

ACM-FILENAME-DEFAULT = /var/www/html/we/mysql.xml

ACM-TIMEOUT = 1

-->

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 202 of 325



This example shows that the XML configuration template references the target XML file
(/var/www/html/we/mysql.xml), so it can be parsed by the application configuration parser, and its
values read and stored in the SA Library.

The mysql.tpl configuration template contains the following required information:

l ACM-NAMESPACE: Defines the location where values read from the mysql.xml file on themanaged
server will be stored in the database. The name spacemust be unique and the pathmust start with
a forward slash (/).

l ACM-FILENAME-DEFAULT: Defines the default absolute path of the mysql.xml file on themanaged
server.

l ACM-FILENAME-KEY: Defines the location in name space where the mysql.xml file namewill stored.

l ACM-TIMEOUT: (Optional) Represents the number of minutes that are added to the configuration
template’s default timeout value of tenminutes during a push.

The default timeout value for an entire application configuration is tenminutes plus the timeout for each
configuration template inside the application configuration. So if this template were the only template
inside an application configuration (which has a tenminute timeout), and this value is set to 1, the
overall timeout value for the entire application configuration when pushed would be elevenminutes.

DTD-based XML configuration templates
An XML-DTD configuration template is actually just an XMLDTD with some application configuration
options defined in the comments. Since the DTD standard defines the syntax and layout of an XML file,
there is no need to redefine that syntax in another language.

For DTD-based XML files, XML-DTD configuration templates require the same three basic attributes
required for a generic XML file— ACM-NAMESPACE, ACM-FILENAME-DEFAULT, and ACM-FILENAME-
KEY — plus three other attributes:

l ACM-DOCTYPE: Defines the name of the root element in the XML file. The root element follows the
opening <!DOCTYPE declaration found in the target XML configuration file.

l ACM-DOCTYPE-SYSTEM-ID: Defines the name of the associated DTD file on themanaged server.
This value is typically found in the XML configuration file as the SYSTEM attribute in the
DOCTYPE element.

l ACM-DOCTYPE-PUBLIC-ID: Defines a string that represents a public identifier of the XML document.
This value is typically found in the XML configuration file as the PUBLICID attribute of a DOCTYPE
element.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 203 of 325



For a complete list of all XML configuration file attributes, see "XML configuration template settings" on
page 208.

XML-DTD configuration template for mysql.xml
The following is an example of the configuration template created for the Travel Manager DTD-based
XML file.

<!--
ACM-FILENAME-KEY = /files/TravelManager
ACM-FILENAME-DEFAULT = /var/www/html/we/mysql.xml
ACM-NAMESPACE = /TravelManager/
ACM-TIMEOUT = 1
ACM-DOCTYPE = db-config
ACM-DOCTYPE-SYSTEM-ID = mysql.dtd
ACM-DOCTYPE-PUBLIC-ID = -//Williams Events//Travel Manager//EN
-->
<!ELEMENT db-config (db-host,db-name,db-user,db-password)>
<!ELEMENT db-host (#PCDATA)>
<!ELEMENT db-name (#PCDATA)>
<!ELEMENT db-user (#PCDATA)>
<!ELEMENT db-password (#PCDATA)>

In this example, the DOCTYPE attributes reference specific XML and DTD information that enables
the parser to extract information from both the DTD file and the referenced XML file.

Specifically, the DTD-based XML configuration templates must contain the following information:

l ACM-DOCTYPE: The root node of the targeted XML file. For mysql.xml, the root node is dbconfig.

l ACM-DOCTYPE-SYSTEM-ID: The name of the DTD file being targeted by the configuration template.
In the example of mysql.xml, the DTD being used is named mysql.dtd.

l ACM-DOCTYPE-SYSTEM-ID: The public ID of the XML file.

Customize XML DTD element display
There are two optional settings you can add to your XML-DTD configuration template that allow you to
customize how elements from the target XML-DTD configuration file are displayed in the value set
editor in the SA Client. The ACM-PRINTABLE and ACM-DESCRIPTION optional settings allow you to
control the names of elements as they appear in the SA Client:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 204 of 325



l ACM-PRINTABLE: Defines the label for each element from the XML file that is displayed in the value
set editor when the XML-DTD template is shown in the SA Client.

l ACM-DESCRIPTION: Defines mouse-over text when a user moves amouse pointer over the field
defined in ACM-PRINTABLE in the value set editor in the SA Client.

Explicit versus positional display settings
You can set the printable and description values for attributes and elements inside the XML-DTD
configuration template in either of two ways: positionally or explicitly.

l With positional definitions, ACM-PRINTABLE and ACM-DESCRIPTION are inserted directly after the
element or attribute they are describing inside the XML-DTD configuration template.

l With explicit definitions, ACM-PRINTABLE and ACM-DESCRIPTION can be defined anywhere in the
template.

<!ELEMENT db-config (db-host,db-name,db-user,db-password)>
<!--
ACM-PRINTABLE = database configuration
ACM-DESCRIPTION = The db-config element specifies the data structure that contains
the information needed to connect to a database.
-->

<!ELEMENT db-host (#PCDATA)>
<!--
ACM-PRINTABLE = database hostname
ACM-DESCRIPTION = The db-host element specifies the name of the host computer (the
server) on which the database engine is running.
-->

<!ELEMENT db-name (#PCDATA)>
<!--
ACM-PRINTABLE = database name
ACM-DESCRIPTION = The db-name element specifies the name of the database.
-->

<!ELEMENT db-user (#PCDATA)>
<!--
ACM-PRINTABLE = database user
ACM-DESCRIPTION = The db-user element specifies the user identification used to
connect to the database.
-->

<!ELEMENT db-password (#PCDATA)>
<!--

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 205 of 325



ACM-PRINTABLE = database password
ACM-DESCRIPTION = The db-password element specifies the password used to connect to
the database.
-->

Add positional custom display settings
The positional method for adding element tables andmouse-over text to an XML template is to add a
comment immediately after the element or attribute definition you want to define, and in that comment
set the ACM-PRINTABLE and ACM-DESCRIPTION values. In other words, for either XML elements or
attributes, you can specify a label and amouse-over description for the label directly.

In the following example, each XML element from mysql.xml defines a ACM-PRINTABLE and ACM-
DESCRIPTION setting immediately after each element in the XML-DTD template.

Add explicit custom display settings
The explicit method for adding settings to an XML-DTD template allows you to define ACM-PRINTABLE
and ACM-DESCRIPTION values anywhere in the configuration template by specifying the element name
with the ACM-ELEMENT tag and optionally the attribute namewith the ACM-ATTRIBUTE tag.

For this method the ACM-ELEMENT tag is required, even when defining printable and description values
for attributes, because attributes are always associated with specific elements.

Once you have set the ACM-ELEMENT and the ACM-ATTRIBUTE tags, you can also set the ACM-
DESCRIPTION and ACM-PRINTABLE tags within the same comment block. You should only use one
definition per comment-block. In other words, define a ACM-PRINTABLE and ACM-DESCRIPTION for a
single element, and then start a new comment block for the next element.

The ACM-ELEMENT tag and ACM-ATTRIBUTE tag (when applicable) should be defined before the ACM-
PRINTABLE and ACM-DESCRIPTION tags.

For example, to customize the mysql.tpl template, you would construct the template as follows:

<!--
ACM-TIMEOUT = 1
ACM-FILENAME-KEY = /files/TravelManager
ACM-FILENAME-DEFAULT = /var/www/html/we/mysql2.xml
ACM-NAMESPACE = /TravelManager/
ACM-DOCTYPE = db-config
ACM-DOCTYPE-SYSTEM-ID = mysql.dtd
ACM-DOCTYPE-PUBLIC-ID = -//Williams Events//Travel Manager//EN
-->

<!ELEMENT db-config (db-host,db-name,db-user,db-password)>

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 206 of 325



<!ELEMENT db-host (#PCDATA)>
<!ELEMENT db-name (#PCDATA)>
<!ELEMENT db-user (#PCDATA)>
<!ELEMENT db-password (#PCDATA)>

<!--
ACM-ELEMENT = db-config
ACM-PRINTABLE = database configuration
ACM-DESCRIPTION = The db-config element specifies the data structure that contains
the information needed to connect to a database.
-->

<!--
ACM-ELEMENT = db-host
ACM-PRINTABLE = database hostname
ACM-DESCRIPTION = The db-host element specifies the name of the host computer (the
server) on which the database engine is running.
-->

<!--
ACM-ELEMENT = db-name
ACM-PRINTABLE = database name
ACM-DESCRIPTION = The db-name element specifies the name of the database.
-->

<!--
ACM-ELEMENT = db-user
ACM-PRINTABLE = database user
ACM-DESCRIPTION = The db-user element specifies the user identification used to
connect to the database.
-->

<!--
ACM-ELEMENT = db-password
ACM-PRINTABLE = database password
ACM-DESCRIPTION = The db-password element specifies the password used to connect to
the database.
-->

Customize how elements display in the SA Client
In both cases, whether you add these attributes positionally or explicitly, the end result is the same: the
value set editor displays the element names (defined in ACM-PRINTABLE) and themouse-over text
(defined in ACM-DESCRIPTION) in the SA Client, as shown in the following figure.

Custom element names and mouse-over text

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 207 of 325



XML configuration template settings
The following table describes all the XML settings available when you create a generic or DTD-based
XML configuration template. The list indicates if the setting is required or optional and whether or not it
applies only to XML-DTD templates.

Attribute Description

ACM-FILENAME-KEY=<key>

Required; no default value.

filename-key identifies a path to the key in a value set that
contains the name of the file being generated.

ACM-FILENAME-
DEFAULT=<filename>

Required; no default value.

filename-default identifies the default file name returned if
there is no file name in the value set.

ACM-NAMESPACE=<string> namespace identifies a location where XML elements are stored in
the database.

XML and XML-DTD template settings

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 208 of 325



Attribute Description

Required; no default value.

ACM-TIMEOUT=<integer>

Optional; (default value is 0)

timeout represents the number of minutes that are added to the
application configuration’s total timeout.

A valid timeout is any integer from 0-999 inclusive.

The timeouts of all the configuration templates in an application
configuration are added together and that number is added to the
default timeout of tenminutes for configurations, which is the final
timeout value for the entire configuration.

Note that any pre- or post-installation scripts in the application
configuration that run longer than tenminutes will time out and
cancel the entire push job.

ACM-DOCTYPE = <string>

Required; no default value.

XML-DTD templates only.

doctype represents the name of the root element in an XML file.
This is in the DOCTYPE tag at the beginning of the XML file.

ACM-DOCTYPE-SYSTEM-ID
= <string>

Required; no default value.

XML-DTD templates only.

system-id represents the system ID of the DTD file that is the
basis of the configuration template. This value is in the DOCTYPE
tag at the beginning of the XML file.

ACM-DOCTYPE-PUBLIC-ID
= <string>

Required; no default value.

XML-DTD templates only.

public-id represents the public ID of the XML file parsed with the
configuration template. This value is in the DOCTYPE tag at the
beginning of the XML file DTD options.

ACM-ELEMENT=<element
name>

Optional

XML-DTD templates only.

element sets the element that the current options describe. This
option defaults to whatever element or attribute comes before this
section in the DTD file.

ACM-ATTRIBUTE=<attribute
name>

Optional

XML-DTD templates only.

attribute sets the attribute that the current options describe.
This option is ignored if no attribute is set. This attribute defaults to
whatever element or attribute comes before this section in the file.

ACM-
PRINTABLE=<printable>

printable sets the printable value for the element or attribute in
the SA Client. This value appears in the value set editor to the left
of the field. This is usually set to something short and descriptive.

XML and XML-DTD template settings, continued

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 209 of 325



Attribute Description

Optional

XML-DTD templates only.

ACM-
DESCRIPTION=<description>

Optional

XML-DTD templates only.

description sets the description for the current element or
attribute to be displayed in the SA Client. This value displays when
youmouse over the name or value fields in the value set editor.
Use this to describe the purpose of the field in the value set editor
as well as the valid values for this field.

XML and XML-DTD template settings, continued

CML primer
This section introduces theConfiguration Modeling Language, CML. For complete details on CML
see "CMLReference" on page 223. See also "CML Tutorial 1 - Creating an Application Configuration
for a simple web app server" on page 289 and "CML Tutorial 2 - Creating a template of a web server
configuration file" on page 300.

SA manages configuration files by creating a configuration template that it uses to:

l Model the syntax of the configuration file.

l Extract the values from the configuration file and store them as a value set in the SA database.
Once those values are stored, you can use the SA Client to manage those values.

l Create a new configuration file from the value set.

l Push the new configuration file to your servers.

l Audit the configuration files on your servers to ensure compliance.

Terminology
l Configuration File - The file to bemanaged by SA.

l Value Set - The data values from configuration files that can vary from server to server. Values in a
value set are stored in the SA database in “key = value” format.

l Name Space - The structure of how value sets are stored in the SA database.

l Configuration Template - A model of your configuration file written in CML.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 210 of 325



l Configuration Modeling Language (CML) - The set of instruction tags that are used tomodel a
configuration file in a configuration template.

l Instruction or Tag - The key words and characters that define the action to be taken. All
instructions start and end with the “@” character. The terms “instruction” and “tag” can be used
interchangeably.

l Application Configuration Object - A container of configuration templates that, when combined
with a value set, generates a configuration file that is then “pushed” to your managed servers. This
can also contain scripts that are executed as part of the push operation.

CML basic concepts
CML, ConfigurationModeling Language, models the syntax of a configuration file. You use CML to
create a configuration template, which is amodel of the target configuration file. To do this, it is
usually best to obtain the documentation for the target configuration file so you can understand the valid
values and ranges in the configuration file and determine the best way tomodel it.

Configuration templates work best when the entire configuration file is modeled by CML. However, it is
possible to only write CML for some of the lines in a configuration file. This is called a partial template
and is discussed at "Partial templates" on page 223.

Required CML instruction tags

The following three CML instructions (also called CML tags) are required in any configuration template.

l namespace defines the key where the value set data is stored in the SA database. See "Namespace
tag" below.

l filename-key defines the key where the target configuration file name is stored in the SA
database. See "Filename-key tag" on the next page.

l filename-default specifies the default name of the target configuration file. See "Filename-
default tag" on page 213.

All other tags are optional and are used tomodel the contents of the specific configuration file. For
complete details on CML, see "CMLReference" on page 223. For details on these three required tags,
see "CML global option attributes" on page 250.

Namespace tag

The namespace instruction defines the key where value sets are stored in the SA database.

Syntax:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 211 of 325



@!namespace=<path>@

where <path> is a string similar to a directory path that defines the key where value sets are stored in
the SA database.

Example:

@!namespace=/example/namespace/@

This example sets the base name space for all other instructions in this template to
“/example/namespace/”. That is, all values in the value set will be stored at the key
“/example/namespace/” unless specified otherwise.

Description:

The namespace instruction specifies the key in the key/valuemapping for the values in the value set. It
is an arbitrary string and can be anything except a number. This instruction determines the key where
the values in the value set are stored in the SA database. The Replace tag (and other tags) in the
configuration file use the name space key to obtain values from the SA database.

The namespace valuemust be absolute. Subsequent values can have relative or absolute path names.

l Absolute names are the full path name starting with a “/” character. These names do not use the
value specified in the namespace instruction. For example, any valuematching the following tag:

@/testval@

would get stored in the value set under the key “/testval”.

l Relative names get appended to the value specified in the namespace instruction tag. For example,
any valuematching the following tag:

@testval@

would get stored in the value set under the key “/example/namespace/testval”.

Note that any named tag that is part of a loop requires a dot “.” in front of the name, and that tags name
space gets appended to the current loop's name space. For example: @.testval@

Filename-key tag

The filename-key instruction specifies the key where the target configuration file name gets stored in
the SA database.

Syntax:

@!filename-key=<path>@’

where <path> is an arbitrary string similar to a directory path that defines the key where configuration
file name is stored in the SA database.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 212 of 325



Examples:

@!filename-key=/files/example@

This example specifies that the file namewill be stored in the SA database with the key
“/files/example”. Note that because the <path> value starts with a “/” character, it is an absolute path.

@!filename-key=files/example@

This example specifies a relative path because the value does not start with a “/” character. If it were
combined with the previous namespace example, the configuration file namewould be stored at
/example/namespace/files/example”.

Description:

The filename-key instruction specifies the key that will be used to store the target configuration file
name in the SA database. For example, when you set the “Filename” field for a template in the SA
Client, that file namewill be stored under the key “/files/example” in the value set. Note that the
filename-key is not a file system path, but just a key that can be written similar to a path.

This can be very handy for pre and post scripts that need to know the name of the configuration file
before or after it has been pushed to the target servers. For example, if you have a post script that
needs to add a line to the end of the configuration file after it has been pushed, it might look something
like this:

echo “#end of the file” >> @/files/example@

Filename-default tag

Syntax:

@!filename-default=<file>@

where <file> is the directory path and file name of the target configuration file in the file system of your
managed servers. This is where the generated configuration file will be pushed on to your managed
servers.

Example:

@!filename-default=/etc/hosts@

This example specifies that the target configuration file is /etc/hosts. This value is stored in the SA
database with the key specified in the Filename-key instruction.

Description:

The filename-default instruction specifies the standard file system path of the target configuration file.
This value is the default file name and directory and is stored under the key specified by the filename-
key instruction. It is the default value in the "Filename" field in the SA Client.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 213 of 325



Combining tags on one line
You can combinemultiple instruction tags into one instruction by separating the instructions by
semicolons and only using a single exclamation point at the beginning as follows:

@!namespace=/example/namespace/;filename-key=/files/example;
filename-default=/etc/example@

This can be handy, since this one line included in any file makes it a valid CML template, assuming of
course, that all other CML tags are correctly formed.

Use case 1 - Simple Key=Value configuration

file
The simplest type of configuration file has one or more Key = Value entries as in the following example:

Port = 1280
IPAddress = 192.168.0.1
ServerName = server01

In this configuration file, types and descriptions are easy to figure out.

Using the Replace instruction
Towrite a template for this configuration file, use a CML tag to represent where the value exists and
where it will be stored in the value set name space. The tag for this is the Replace tag.

The replace tag is composed of several fields and, as with all tags in the CML language, it begins and
ends with the “@” symbol and the fields are separated by semicolons. The form looks something like
this:

@ <name> ; [type] ; [range] ; [option] ; [option] … @

Of all the fields, only the <name> field is required. So themost basic CML that could represent the
configuration file above would be:

@!namespace=/example/namespace/@
@!filename-key=/files/example@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 214 of 325



@!filename-default=/etc/example@
Port = @port@
IPAddress = @ipaddress@
ServerName = @servername@

This specifies that the value for the port number will be stored in the SA database at the key
“/example/namespace/port”. The IP address will be stored at the key “/example/namespace/ipaddress”
and the server name at the key “/example/namespace/servername”.

This would technically work, but you would bemissing a lot of the field validation and error checking
available that prevents entering invalid data such as “someport” for the port, for example.

The <name> field in the Replace instruction tag

If the <name> field is relative (that is, it does not start with a “/” or a “.”) it gets appended to the current
name space and becomes part of the key used to store the value read from the SA database by this
tag.

If the name is absolute (that is, it starts with a “/”) it is the entire key and the value gets stored under this
key.

Finally, if the name starts with a dot “.”, it will be appended to the name space of whatever loop it is a
part of. With very few exceptions, every tag inside a loop should start with a dot, “.”.

The <type> field in the Replace instruction tag

The <type> field lets you assign certain predefined ranges and error checking to different values, based
on well-known types. For the full list of types, see "CML type attributes" on page 241. For this
configuration file, use the predefined types “port,” “ip” and “hostname” for the separate entries, as
follows:

@!namespace=/example/namespace/@
@!filename-key=/files/example@
@!filename-default=/etc/example@
Port = @port;port@
IPAddress = @ipaddress;ip@
ServerName = @servername;hostname@

Adding these types restricts the values and provides validation and error checking.

You can also use the replace tag to represent a sequence of repeating values by prepending “ordered-”
or “unordered-” and appending “-set” or “-list”. More on this in the next example.

The default for this field is “string”, which will match anything.

The <range> field in the Replace instruction tag

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 215 of 325



The <range> field allows you to set the allowable range for the values. You can set either integer
ranges or string ranges. Integer ranges are valid for any type that consists of strictly integers, string
ranges are valid for all other types.

Ranges can be combined with logical OR by using a comma, “,”. Ranges can be combined with logical
AND by using the ampersand character, “&”. The “!” character negates the range.

Keep inmind that the specified ranges will be used when reading in a configuration file as well as when
accepting values from the SA Client. If you have a configuration file that has a value outside of the
ranges you set in the template, then an error will be given when parsing that file. Specify the valid
ranges based on the documentation for the configuration file.

Integer ranges

Integer ranges can only use the < and the = symbols to specify “less than” or “greater than” ranges.
Specify the position of the number used in the comparison as follows:

Range condition Symbols to use

Greater than n<

Greater than or equal n<=

Less than <n

Less than or equal <=n

Equal =n

Specifying integer ranges

For example, if the ports in the configuration file can only be between 1024 and 2048 inclusive, you
would add the ranges to the tag like this:

Port = @port;port;1024<=&<=2048@

String ranges

String ranges can be a list of valid strings surrounded by quotes and a list of regular expressions
starting with the characters r” and ending with a quote. For example, if the ServerName field can only
be anything starting with the word “server”, you would want to add the ranges to the servername tag like
this:

ServerName = @servername;hostname;r"server.*”@

The [option] fields in the Replace instruction tag

Youmay append as many options as you need to the tag. Everything after the third semicolon is
considered an option and every option is separated by semicolons.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 216 of 325



For example, if the IPAddress line in the configuration file is optional and not required tomake the
configuration file valid, and the IP address could stop at a forward-slash, you could add the option like
this:

IPAddress = @ipaddress;ip;;optional;delimiter="/"@

This wouldmatch the following entry:

IPAddress = 192.168.0.1

It would alsomatch the following entry:

IPAddress = 192.168.0.2/

Notice that the range field is left empty. Any fields you want to leave as default must still be
represented if you want to fill in any later fields. For instance, the following two lines are valid:

@ipaddress@

@ipaddress;;;optional@

However, the following is not valid because the field “optional” will be interpreted as the <type> field
rather than as an option and will result in an error.

@ipaddress;optional@

Final CML template
After all the types, options and ranges are set, the CML template should look something like this:

@!namespace=/example/namespace/@
@!filename-key=/files/example@
@!filename-default=/etc/example@
Port = @port;port;1024<=&<=2048@
IPAddress = @ipaddress;ip;;optional;delimiter="/"@
ServerName = @servername;hostname;r"server.*"@

Resulting value set
Using the above configuration template to read in the example target configuration file from above will
result in the following value set stored in the SA database:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 217 of 325



/example/namespace/port = 1280
/example/namespace/ipaddress = 192.168.0.1
/example/namespace/servername = server01

As you can see, the keys in the name space are a combination of the template's name space
(/example/namespace) and each individual tag's name, since they all use relative names.

Use case 2 - Repeating values in the

configuration file
It is possible you will encounter a configuration file that will be nothing but a list of values; for example,
a file that contains only a list of user names that have write access to a directory. The format of this file
could look something like this:

admin;
user1;
user2;

The repeating lines in this file call for more than the replace tag described in the previous example. The
most basic CML that couldmatch this configuration file is the following loop instruction:

@!namespace=/wuserlist/namespace/@
@!filename-key=/wuserlistfile/example@
@!filename-default=/etc/wusers.txt@
@*users@
@.@

Using the Loop instruction tag
The Loop instruction is used when a set of values may appear multiple times in a configuration file. The
default behavior of the loop instruction is to loop over the line of CML directly after it, though this can be
modified to loop over multiple lines or within a single line.

The form looks something like this:

@ [group level] * <name> ; [ "ordered" | "unordered" ] - [type] - ["set" | "list" ]
; [range] ; [option] ; [option] … @

You'll notice some differences and similarities between this tag and the Replace tag in the previous
section. The following sections describe each of the options on the Loop tag.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 218 of 325



<group level> field

For this example configuration file, group level is not important and it will be discussed later. For now
just know that it is used to determine what specific section to loop over, whether within a single line or
over multiple lines.

For this example, leave the group level blank which indicates that this loop tag will only iterate over the
CML line directly below it.

Instruction type specifier Field, *

The “*” is an instruction type specifier. It signifies what type of instruction this is, in this case, a Loop
instruction. The Replace instruction is the default instruction type since it is so common, therefore it
does not have an instruction type specifier.

<name> field

The same <name> field rules apply to this tag as to the replace tag. To review, see "The <name> field in
the Replace instruction tag" on page 215. Any named tag that is part of this loop will need a “.” (dot) in
front of the name, and that tag’s namespace gets appended to this loop’s namespace. Likewise, if this
loop were a part of another loop, it would need a “.” in front of the name.

This example will use the name “users” as follows:

@*users@

[type] field

The [type] field for the Loop tag is different from the Replace tag’s [type] field in twomajor ways. (To
review, see "The <type> field in the Replace instruction tag" on page 215.)

l Ordered vs. Unordered and Set vs. List

The basic types include all the same types as the Replace tag, but since this will be a repeating
sequence of values, information about the sequence needs to be specified. This information is
included in this modified [type] field by prepending “ordered” or “unordered”, followed by a dash, and
appending a dash followed by “set” or “list” to the type.
o Prepending “ordered” specifies that the order of the values will be preserved.

o Prepending “unordered” specifies that the values can be in any order.

o Appending “set” specifies that the values must be unique.

o Appending “list” specifies that the values can be repeating.

While this is optional for the Replace tag, the ordered or unordered option and set or list option is
required for the Loop tag.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 219 of 325



For this example, the data is unordered so “set” should be appended, as there would be no
reason to order an access list or to have repeating values.

l Namespace Type
This type is unique to the Loop tag. If the section you are going to be iterating over contains more
than one value, then you need to use the name space type.

The default type for this tag is “unordered-string-list”.

For this example the default value would work, but it would be better to specify the type to be “user”.
Assuming an unordered set, the resulting tag would look like this:

@*users;unordered-user-set@

[range] field

Ranges are the same as in the Replace tag for every type except the name space type. Since the name
space type iterates over several different tags that may have their own ranges, no range should be
used.

Since this example uses the “user” type, it can also use a range. For example, if the documentation for
this configuration file were to say that “root” is not a valid user, you could set the range to be valid for
anything except root as follows:

@*users;unordered-user-set;!"root;"@

[option] field

TheOption field is the same as the Replace tag's option field. To review, see "The [option] fields in the
Replace instruction tag" on page 216.

For this example, we can eliminate the “;” from the user names by setting semicolon as the field
delimiter and including it in the line we are iterating over to eliminate it from the value that is read in, as
follows:

@*users;unordered-user-set;!"root";field-delimiter-is-semicolon@
@.@;

Loop target tag

The loop target tag looks like the following:

@.@

Its only purpose is to signify the position of the loop value, which is where the data will be placed in the
resulting configuration file.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 220 of 325



Final CML
After all the types, options and ranges are set, the CML template should look something like this:

@!namespace=/wuserlist/namespace/@
@!filename-key=/wuserlistfile/example@
@!filename-default=/etc/wusers.txt@
@*users;unordered-user-set;!"root";field-delimiter-is-semicolon@
@.@;

Resulting value set
Every value that gets read in will need to be stored in the value set under a unique key. To handle
sequences, CMLwill append a unique number on to the name space starting at 1 and incrementing for
each additional iteration.

The resulting value set for the example configuration file using the CML above will look like the
following:

/example/namespace/users/1 = admin
/example/namespace/users/2 = user1
/example/namespace/users/3 = user2

Use case 3 - Complex repeating values in the

configuration file
This examplemodels the /etc/hosts file, which is a list of IP addresses followed by a list of host names
like this:

127.0.0.1 localhost
192.168.0.1 server1 server1.domain.com
192.168.0.2 server2 server2.domain.com

This example is similar to the previous example, except that this example iterates over amore complex
line. The best way to think about this is by first modeling the single instance of the line using CML
Replace instructions like this:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 221 of 325



@ip-addr;ip@ @sname;unordered-hostname-set@

This line defines two replace instructions, one for the IP address and one for the server name.

Notice that the “ip-addr” replace tag specifies the data type as “ip” because it must be an IP address.

The “sname” replace tag is typed as an “unordered-hostname-set”. This means that it canmatch a list
of host names and it will store them along with the corresponding IP address. This is similar to how the
Loop tag works and the values get stored in the sameway.

This CML is for one iteration. The next step encloses it in a loop. To do this, use the name space loop,
since it is iterating over more than one value on each line, and prepend a “.” to the names of the tags in
the loop, as follows:

@*entries;unordered-namespace-set@
@.ip-addr;ip@ @.sname;unordered-hostname-set@

The Loop tag (indicated by the@* characters) defines a loop. The “unordered-hostname-set” indicates
that the data are host names, the host names can be in any order, and the values must be unique.

The “.” characters added before the “ip-addr” and “sname” strings in the Replace instruction indicate that
these are the target of the Loop instruction.

Final CML
Adding the above loop and replace CML to the required name space and file lines gives the following.

@!namespace=/example/namespace/@
@!filename-key=/files/example@
@!filename-default=/etc/hosts@
@*entries;unordered-namespace-set@
@.ip-addr;ip@ @sname;unordered-hostname-set@

Resulting value set
Below are the values that will be stored in the SA database if the entries in the sample file are read in
using the SA Client.

/example/namespace/entries1/ip-addr = 127.0.0.1
/example/namespace/entries1/sname/1 = localhost
/example/namespace/entries2/ip-addr = 192.168.0.1
/example/namespace/entries2/sname/1 = server1
/example/namespace/entries2/sname/2 = server1.domain.com

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 222 of 325



/example/namespace/entries3/ip-addr = 192.168.0.2
/example/namespace/entries3/sname/1 = server2
/example/namespace/entries3/sname/2 = server2.domain.com

Partial templates
While it is best to model the entire configuration file, you can use partial templates tomodel only part of
a configuration file. To create a partial template, youmust have a copy of the full configuration file on a
server for the template to read. And youmust use the Preserve Format option to preserve the rest of the
file.

The following shows a simple configuration file.

UserName = alice
Password = pass
HomeDir = /home/alice

Tomanage only the home directory line, use the @!partial-template instruction andmodel only the
line you want to manage. The template would look like this:

@!namespace=/example/@
@!filename-key=/files/example@
@!filename-default=/usr/example@
@!partial-template@
HomeDir = @homedir;dir@

Formore information on the Preserve Format setting, see Set Values in the Value Set Editor. See also
"The@!full-template and@!partial-template attributes" on page 251.

CML Reference
The Configuration Modeling Language (CML) is used to create a template of a configuration file
so it can bemanaged from SA. A CML template is a separate file you create that models the format of
the configuration file so the variable values in the configuration file can be set to different values for
different sets of servers.

The template file contains data, directives and definitions so that an actual configuration file can be
generated from the template and a set of values.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 223 of 325



CML defines a two-way transform: it specifies how tomove values from a configuration file to a value
set in the SA database, and it specifies how data from a value set is merged with the template to create
a properly formatted configuration file that can be pushed to amanaged server.

You also write scripts using CML that are run when pushing configurations tomanaged servers. For
more information, see About Running Scripts with Application Configurations.

CML Template

XML Configuration Files

SA can alsomanage XML configuration files. For more information on using XML configuration
templates, see "Managing XML configuration files" on page 199.

Configuration templates
A configuration template is a “templatized” version of an actual configuration file whose values have
been turned into variables. Using the SA Client, you can define a template’s value sets, save them to
the SA database, and then propagate those values to a real configuration file on amanaged server.

Value sets are stored on the SA database. Storing all values in the SA database allows you tomanage
configuration values from a central location and ensures configuration consistency across applications
in your data center.

Once the template version of the configuration file has been created and added to an application
configuration object and you have created a value set for the template, you can push those values to
configuration files onmanaged servers.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 224 of 325



CML overview
A configuration template consists of a series of CML tags. Each tag represents either an instruction to
the CML parser how to interpret the text in the configuration file or a placeholder that identifies the
location of a value in the configuration file and how tomap it into a value set.

Keep inmind that the configuration template contains no values. It only defines how values aremoved
between the value set in the SA database and the configuration file instances on themanaged servers.
For more information, see About Value Sets.

Template files containing CML are typically namedwith “.tpl” as the file extension, but this file
extension is not required.

Structure of CML tags
The basic building blocks of a CML tag is as follows:

@{level}{tagtype}{source};{type};{range};{option};...;{option}@

Note:
Neither whitespace nor ‘@’ can appear inside a CML tag. The ‘@’ symbol can be escaped by
prepending it with another ‘@’.

The following rules apply to all CML tag:

l All CML tags start and ends with the@ symbol.

l Semicolons (;) mark placeholders for omitted attributes. For example, the following shows two
omitted attributes between the@name attribute and the optional@ attribute:

@name;;;optional@

l If attributes to the right of a semicolon are empty, then semicolons are optional. For example:
@name@

l {level} - The block level is an integer that specifies the nesting level of the block. The level also
determines whether the block spans multiple lines or is part of a single line. If the level is between 1
and 99 it is amulti-line block. If it is above 101, it is a block within a line. Each block open tag closes
all previous blocks that have an equal or greater level.

Do not use level 100 because level 100 is reserved.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 225 of 325



l {tagtype} - CML defines the tag types listed below. Each type is an instruction to the CML parser.
For complete details, see "CML tag types" on page 228.
o Comment Tags: @# and@## ... #@ - Define comments in the template.

o Replace Tag: @ - Defines how to replace a variable with a value from the value set.

o Instruction Tag: @! - Gives an instruction to the CML parser.

o Block Tags: @[@...@]@ - Create a new scope.

o Loop Tag: @* - Creates a loop over multiple similar values.

o Loop Target Tag: @. - Ends a loop.

o Conditional Tag: @?

o DTD Tag: @~ - Defines

l {source} - Defines a key where the value is stored in the value set. Absolute path names start with
a “/” character. Relative path names do not start with a “/” and are concatenated to the name space
key value defined by the @!namespace instruction.

l {type} - Defines the data type of the value required by the configuration file and the corresponding
value in the value set. For example, int for integer, string, boolean, IP-address, and so forth. You
can also specify ordered and unordered lists and sets.

l {range} - Defines additional restrictions on data values for better error checking.

l {option} - Defines additional parameters you can specify to modify the behavior of the CML tag.

Required CML tags
Every CML file must define its name space and the default file name of the configuration file the
templatemodels using the following CML tags:

l @!namespace defines the name space for the template. All values in the value set used by the
template will be stored in the SA database at the key defined by the @!namespace tag. For more
information, see "Define the Namespace with the@!namespace CML Tag" on the next page.

l @!filename-key defines a specific key where the default file namewill be stored in the SA
database. This key can either be a separate name space or it can be appended to the name space
defined by the @!namespace tag. For more information, see "Defining the default configuration file
namewith the@!filename-key and@!filename-default CML tags" on the next page.

l @!filename-default defines the directory and name of the configuration file beingmodeled by the
template. This value can bemodified by the value set. For more information, see "Defining the

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 226 of 325



default configuration file namewith the@!filename-key and@!filename-default CML tags" on the
next page.

Define the Namespace with the @!namespace CML Tag

The name space in a CML template file defines a unique key value where data is stored in the
database. The name space value is represented as a path name and looks like a directory path name in
a file system, or a URI in a web browser’s location bar. Use the namespace tag to define the name
space.

The path names for individual values can be either absolute or relative. An absolute path name start
with “/” and is the complete representation of the location of the value in the value set. A path name that
does not start with a “/” is a relative path name; its value will be appended to the current value of the
name space.

The namespace tag is required.

All key names in CML templates must be ASCII. Other fields and text can be either ASCII or non-
ASCII text.

Below is an example of a namespace tag in a CML template:

@!namespace=/security/@

Defining the default configuration file name with the @!filename-key and @!filename-default
CML tags

Each templatemust define the default configuration file name that will be used when pushing the
generated configuration file to a server. This file name can be overridden by the value sets. Use the
filename-default tag to define the default file name.

Youmust also specify a unique key where the default file namewill be stored in the SA database. This
key can be combined with the name space to generate a unique storage location for the default file
name. The key defines a name space is represented as a path name. Use the filename-key tag to
define the key value.

The filename-default and filename-key tags are required.

All key names in CML templates must be ASCII. Other fields and text can be either ASCII or non-
ASCII text.

The following example CML specifies that they key value “/files/hosts” will be used to store the default
file name in the SA database. It also specifies that the default file name for the generated configuration
file will be “/etc/hosts”.

@!filename-key="/files/hosts"@
@!filename-default="/etc/hosts"@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 227 of 325



You can also combine CML tags on one line as follows:

@!filename-key="/files/hosts";filename-default="/etc/hosts"@

Example CML template for /etc/hosts
The following is an example of a CML template that models a typical /etc/hosts file.

@#############################################
#                                            #
# /etc/hosts (multiplatform)                 #
# Version 2.0                                #
# Joe Author (joe_author@your_company.com)   #
#                                            #
#############################################@
@!namespace=/system/dns/@
@!filename-key="/files/hosts";filename-default="/etc/hosts"@
@!unordered-lines;missing-values-are-error@
@!relaxed-whitespace@
@!sequence-delimiter-is-whitespace@
@!line-comment="#"@
@~host/.ip
type = ip
printable = IP address
description = This is an IP address
@
@~host/.hostnames
type = unordered-hostname-set
printable = Hostnames
description = A set of hostnames
@
@1*host;unordered-namespace-set;;sequence-append@
@.ip@ .hostnames@
@1]@

CML tag types
The following are themain CML tags. These are described in detail below.

l "Comment Tag: @# and@##" on the next page

l "Replace Tag: @" on page 230

l "Instruction Tags: @!" on page 231

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 228 of 325



l "Block (or Group) Tag: @[@...@]@" on page 232

l "Loop Tag: @*" on page 235

l "Loop Target Tag: @." on page 237

l "Conditional Tag: @?" on page 238

l "DTD Tag: @~" on page 239

Comment Tag:@# and@##
This tag defines a comment in the CML template file. You can define one line comments or multiple line
comments.

Syntax

@# <one line comment>

Or:

@## <comments spanning multiple lines>
  <comments spanning multiple lines>
  <comments spanning multiple lines> #@

Description

The comment tag can be used to insert comments anywhere in your CML file.

As a best practice, use the comment tag at the beginning of a CML template to create a header
describing the template, such as the name of the template, the configuration file the template is based
on, the purpose of the template, the author, the date, and so on.

Attributes

None.

Examples

The following is a one line comment:

@# This comment ends at the end of this line.

The following is amultiple line comment:

@##

This comment spans

   multiple lines.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 229 of 325



#@

The following is also amultiple line comment:

@########################################################
# /etc/hosts (multiplatform) #
# $Id: hosts.tpl 8650 2006-06-05 05:28:03Z joe_author $ 
#########################################################@

Replace Tag:@
This tag replaces text in the template file with a value from the value set.

Syntax

@{source}[;[{type}][;[{range}[;{option}[;{option}]...]]]]@

Description

The replace tag replaces the tag in a CML line with the data from the specified location in the name
space. It is an indicator that the text in this location is data, and it also specifies details about how that
data should be stored and validated. The source name is the index key where the data is found in the
value set. The other fields of the replacement tag specify details about how the data should be stored
and validated.

The replace tag is the only tag that is not indicated by a special character following the “@” character.
The only required element in a replace tag is the source. All other elements are optional.

Attributes

l Source: The source attribute is the key used to store and access the value in the value set. If the
source attribute is relative (that is, it does not start with a “/” or a “.”) it gets appended to the current
name space and becomes part of the key used to store the value read by this tag. If the name is
absolute (that is, it starts with a “/”) it is the key, and the value gets stored under this key.

l The only required element in a replace tag is the source. All other elements are optional. If the name
starts with a “.”, it will be appended to the name space of the loop it is a part of. Tags inside a loop
typically start with a “.”.

l Type: The type attribute specifies the type of the replace tag, which applies certain predefined
restrictions and error checking to different values. The default type for replace tags is “string”.

l The available types are described at "CML type attributes" on page 241.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 230 of 325



l Range: The range attribute allows you to set the range of valued values. (Keep inmind that all
ranges will be used when reading in a file as well as when accepting values from a user.) If you have
a configuration file that has a value outside of the specified ranges, then an error will occur when
parsing that file.

l Ranges are described at "CML range attributes" on page 247.

l Options: The option attributes modify the behavior of the tag. Multiple options can be appended to
the end of most tags, separated by semicolons. Everything after the third semicolon is considered
an option. Options can also be used as instruction tags.

Options are described at "CML global option attributes" on page 250 and "CML regular option attributes"
on page 252.

Example 1

Title=@main_title@

In this example, main_titlewill extract the string that follows “Title=“ text in the configuration file,
and store it at key location /main_title in the value set.

Or if you are performing a push, main_titlewill extract the value stored from location
/main_title from the value set, and push it after the string “Title=“ text in the configuration file.

Example 2

Port = @port;port;1024<=&<=2048@
IPAddress = @ipaddress;ip;;optional;delimiter=”/”@
ServerName = @servername;hostname;”localhost”,r”server.*”@

Instruction Tags:@!
This tag specifies parser actions. For a list of available instructions, see "CML global option attributes"
on page 250 and "CML regular option attributes" on page 252.

Syntax

@!{option}[[;{option}]...]@

Description

The instruction tag sets options that will be used at parse time. For example, defining the name space,
whether a list is sorted, ordered, or unordered, how the parser should interpret whitespace, acceptable
delimiters, defining comment characters, and so on.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 231 of 325



The only attributes used by an instruction tag are options. One or more option can appear in one
instruction tag. Multiple options are separated by semicolons. To understand how any particular
instruction tag affects the parser, refer to the descriptions of the embedded options.

Attribute

Only option attributes are used with an instruction tag.

Options: The option attributes in an instruction tag define the behavior of the tag. Multiple options can
be appended to the end of most tags, separated by semicolons. Many options are toggles of other
options. When an option from one of these toggling groups appears in a block, no other option from that
group should appear in the same block.

Options are described at "CML global option attributes" on page 250and "CML regular option attributes"
on page 252.

Example 1

The following instruction tag tells the CML parser that whitespace in the template will bematched by
any combination of tabs and spaces.

@!relaxed-whitespace@

Example 2

The two options in the following instruction tag tell the CML parser the relative order of lines in the
configuration file is not important to mapping values from those lines with the value set and it is not an
error if values in the value set are not matched by text in the configuration file.

@!unordered-lines;missing-values-are-null@

Example 3

@!namespace=/test/@
@!filename-key="/test";filename-default="/tmp/test.txt"@
@!optional-whitespace@
@!boolean-yes-format="1";boolean-no-format="0"@
@!line-comment-is-semicolon@
@!unordered-lines@

Block (or Group) Tag:@[@...@]@
The Block tag is sometimes also referred to as the Group tag. This tag creates a block or group of
related tags and lets you nest groups of related tags.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 232 of 325



Syntax

The block tag can have either single line syntax or multiple line syntax.

Single line syntax for the block tag is as follows (with literal strings quoted):

"@" [{level}] "[" [ ";" {option}[ ";" {option}]...] "@" {CML statements} "@"
[{level}] "]@"

Multiple line syntax for the group tag is as follows:

"@" {level} "[" [ ";" {option}[ ";" {option}]...] "@"
{CML statements}
"@" {level} "]@"

@[{level}][ [;{option}[;{option}]...]@ {set of CML tags}@[{level}]]@

@[{level}][ [;{option}[;{option}]...]@

{set of CML tags}

@[{level}]]@

The level is an integer that determines whether the block spans multiple lines or is part of a single line.
If the level is between 1 and 99 it is amultiline block. If it is greater than 101, it is a block within a line.
Do not use level 100 because it is reserved.

Each block can be ended explicitly or implicitly. To end a block explicitly, use an end block tag with the
level number. For example, the following tag explicitly closes a level 3 block: @3]@.

To end a block implicitly, use an end block tag with a lower level number to end an enclosing block, or
define a new block with a lower level. Each block open tag will close all previous blocks that have an
equal or greater level.

Description

The block tag allows you to group related tags and nest groups of tags. With a block, you can define
separate parsing rules for each section of a configuration file.

You can nest blocks within other blocks using a higher number for the level. Any subsequent tag with a
level value will close all open levels of equal or great value. The block close tag, @]@, is not required.

The opening block tag can include option attributes. Those attributes only affect the tags inside the
block at the level declared by the opening tag. Contrast that with instruction tags that appear inside the
block: those instruction tags affect the behavior of the current level and any nested blocks.

By using blocks, you can specify unique options for each separate section of the configuration file. For
example, youmight have a section of a configuration file where the values for True and False are
defined as “1” and “0”, respectively. In another section in the same file, you could define values for True

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 233 of 325



and False as “T” and “F”. Use the block tag to separate the two different ways of defining True and
False.

Another example could be if in one section of a configuration file a specific number of spaces are
important, while in another section any number of spaces is acceptable. You can use the block tag to
indicate where the number of spaces differ.

Attributes

No name, type, or range attributes are used with block tags.

l Level: The block level is an integer that specifies the nesting level of the block. The level also
determines whether the block spans multiple lines or is part of a single line. If the level is between 1
and 99 it is amulti-line block. If it is above 101, it is a block within a line. Each block open tag closes
all previous blocks that have an equal or greater level.

Note:
Do not use level 100 because level 100 is reserved.

l Options: The option attributes modify the behavior of the CML tags in the block. Instruction tags
within the block affect the behavior of CML tags in the current block and in nested blocks. Multiple
options can be appended to the end of most tags, separated by semicolons. Options can also be
used as instruction tags.

Options are described at "CML global option attributes" on page 250 and "CML regular option
attributes" on page 252.

Example 1

The following example creates two blocks, one block nested within the other. The first line defines the
first block, which is the outer block. The fourth line defines the second block, which is the inner block
nested within the first block. The second to last line closes the inner block. This line is optional. The
last line closes the outer block. If the second to last line were omitted, the last line would close both
blocks.

@1[@
@!ordered-lines@
[SectionOne]
@2[@
@!unordered-lines@
optionA = @section_one/option_a@
optionB = @section_one/option_b@
@2]@
@1]@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 234 of 325



Example 2

This examplemodels two sections named [Options] and [AllowVerbs] in aWindows UrlScan.ini file.
Both sections in this file contain a list of key-value pairs.

To define the first section (lines 1 through 3), you can use the block tag ([) set at two levels because
there are two kinds of data in this section: a fixed heading followed by a list of key-value pairs. The first
level block handles the text string “[Options]” while the second level block handles all of the key-value
pairs in that section.

The second section (lines 4 through 6) defines the [AllowVerbs] section. Notice that the first section is
not explicitly closed with the @2]@ and @1]@ tags as in the previous example because opening the next
level 1 section (line 4) implicitly closes the previous sections.

@1[;optional;ordered-lines@
[Options]
@2[;unordered-lines@
@1[;optional;ordered-lines@
[AllowVerbs]
@2[;unordered-lines@

Loop Tag:@*
This tag defines a processing loop. See also the "Loop Target Tag: @." on page 237.

Syntax

@[{level}]*{source}[;[{type}][;[{range}[;{option}[;{option}]...]]]] @ {target}

Description

The Loop tag is used when a set of values may appear multiple times in a configuration file. The default
behavior of the loop tag is to iterate over the line of CML directly after it, though this can bemodified to
iterate over multiple lines or within a single line.

Loops are a form of Group tag, see the Group tag for more information.

The Loop tag allows sequences (lists and sets) to be enumerated. The block associated with a loop
element will be processed for each incident of that block in an input file, and will be generated in an
output file for each incidence of that data in a value set.

The group associated with a loop element will cause a new element to be stored in the value set for
each incident of that group in a configuration file, or each incidence of that data in a value set will push a
value to the configuration file. The source attribute is the index key used tomap values in the value set.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 235 of 325



Attributes

l Level: The group level is an integer that determines whether the group spans multiple lines or is part
of a single line. If the level is between 1 and 99 it is amulti-line group. If it is above 101, it is a group
within a line. Level 100 is reserved for internal purposes. Each group open tag will close all previous
groups that have an equal or greater level.

l Source: The source attribute is the key used to access the value in the value set. If the source
attribute is relative (that is, it does not start with a “/” or a “.”) it gets appended to the current name
space and becomes part of the key used to store the value read in by this tag. If the name is
absolute (that is, it starts with a “/”) it is the key, and the value gets stored under this key. The only
required element in a loop tag is the source; everything else is optional. If the source name starts
with a “.”, it is to be appended to the name space of whatever loop it is a part of. Tags inside loops
typically start with a “.”.

l Type: The type attribute specifies the type of the replace tag, which applies certain predefined
restrictions and error checking to different values. The default type for replace tags is “string”.

For the full list of types see "CML type attributes" on page 241.

You can prepend “ordered-” or “unordered-” to the type. And you can append “-set” or “-list” to the
type.
o Prepending “ordered-” specifies that the values must be in order.

o Prepending “unordered-” specifies that the values can be in any order.

o Appending “-set” specifies that the values must be unique.

o Appending “-list” specifies that the values can be repeating.

l Range: The range attribute allows you to set the range for the values. Keep inmind that all ranges
will be used when reading in a file as well as when accepting values from a user. If you have a
configuration file that has a value outside of the specified ranges, then an error will occur when
parsing that file.

l Ranges are described at "CML range attributes" on page 247.

l Options: The options attributes modify the behavior of the tag. Multiple options can be appended to
the endmost tags, separated by semicolons. Everything after the third semicolon is considered an
option. Options can also be used as instruction tag.

Options are described at "CML global option attributes" on page 250 and "CML regular option
attributes" on page 252.

Example 1

The asterisk character indicates a loop tag. For example:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 236 of 325



@1*includegroup;ordered-namespace-set;;optional@
#BEGIN_ALTERNATE
@*.include@
#INCLUDE @.@
#END_ALTERNATE
@1]@

Example 2
@*users;unordered-user-set;!”root”;field-delimiter-is-semicolon@
@.@;

Loop Target Tag:@.
The loop target tag defines an iteration for the Loop tag. See "Loop Tag: @*" on page 235.

Syntax

@.[{source}[;[{type}][;[{range}[;{option}[;{option}]...]]]]]@

Description

The loop target tag indicates the placeholder for a value in a loop. If you consider that the loop tag
indicates the beginning of a loop, and is therefore similar to a group tag, the loop target tag is quite
similar to a replace tag.

When encountered in a group, with each loop iteration, this tag simply maps the text at current position
in the configuration file with the current value in value set. If the optional source attribute is used, the
source is appended to the name space created by the loop.

Attributes

None.

Example

The loop target tag is indicated by a period following the “@” character. For example:

@*keys;unordered-namespace-set@
@.key@ = @.value@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 237 of 325



Conditional Tag:@?
This tag defines a condition.

Syntax

@[{level}]?{source}@{text}

Description

The conditional tagmaps whether or not the text exists in the configuration file with a Boolean value in
the name space. When reading a target configuration file, if the text matches, the name space value
gets true, otherwise false. When writing to a configuration file, if the name space value is true then the
configuration files gets the text; otherwise, no text is written.

This is one of the few tags in which something outside of the tag is actually the value. Themain use of
this tag is to store a Boolean true value in a location in the name space if the text after the tag exists.

Attributes

No type, range or option attributes are used with conditional tags.

l Level: The level is an integer that determines whether the group spans multiple lines or is part of a
single line. If the level is between 1 and 99 it is amulti-line group, if it is above 101, it is a group
within a line. Level 100 is reserved for internal purposes. Each group open tag will close all previous
groups that have an equal or greater level.

l Source: The source attribute is the key used to access the Boolean value. If the source attribute is
relative (does not start with a “/” or a “.”) it gets appended to the current name space and becomes
part of the key used to store the value read in by this tag. If the name is absolute (starts with a “/”) it
*is* the key, and the value gets stored under this key.

If the source name starts with a “.”, it is to be appended to the name space of whatever loop it is a
part of. Typically a tag inside a loop should start with a “.”.

Example 1

The conditional tag is indicated by a questionmark symbol (?). For example:

@?debug@options debug

In this example, if you were importing a configuration file into a configuration template, and if the text
“options debug” exists in the configuration file, then the value at key /debugwill be set to true.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 238 of 325



If you were going to push the application configuration, if the value stored at key /debug is true, then
the text “options debug” will be pushed to the configuration file.

Example 2

For example, if a configuration file specified that an application were to be threaded based on the
existence of the key word “threaded” in the configuration file, the CMLwould look like this:

@?is_threaded@threaded

This sets the value at the name space key /is_threaded to true if the value “threaded” is in the
configuration file and to false if the value “threaded” is not in the configuration file.

DTD Tag:@~
This tag defines a DTD.

Syntax

@~{source}
[type = {type}]
[description = {description}]
[printable = {printable}]
[range = {range}]
[{option}
...]
@

Description

CML supports Document Type Definition (DTD) tags that can be used to pre-define attributes for other
CML tags. DTD’s can be used tomake the actual functional part of the CML template a little cleaner by
storing all of the characteristics of the tag in another location and just referencing the tag itself by name.

DTD definitions can be used to define any tag that has a source attribute; for example loop tags, loop
target tags, replace tags, but not tags like instruction tags or group tags (which do not have a source
attribute).

Another advantage of using DTD tags in CML is the ability to define 'PRINTABLE' and
'DESCRIPTION' values. The 'PRINTABLE' and 'DESCRIPTION' values give the user some
feedback regarding the intended purpose of the field. The string value of the DESCRIPTION attribute is
displayed when themouse cursor rolls over the field in the value set editor screen. The string value of
the Printable attribute will replace the path name in the value set editor with a easier-to-read field label.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 239 of 325



DTD tags in CML are also inherently multi-line tags. All but the first and last line can be in any order,
and all the elements here relate to the fields in a tag, except for printable and description, as those two
are valid only for DTD defined tags.

For more information on using DTD tags in your configuration templates, see "Use DTD tags in CML"
on page 266. For XML templates, see "Customize XMLDTD element display" on page 204.

Attributes

No level attribute is used with a DTD tag. The only required attribute in a DTD tag is the source;
everything else is optional. However, a DTD tag with only the name defined does nothing useful.

l Source: The source attribute is the key used to access the value. If the source attribute is relative
(does not start with a “/” or a “.”) it gets appended to the current name space and becomes part of the
key used to store the value read in by this tag. If the name is absolute (starts with a “/”) it *is* the
key, and the value gets stored under this key. If the source name starts with a “.”, it is to be
appended to the name space of whatever loop it is a part of. Typically a tag inside a loop should
start with a “.”.

l Type: The type attribute assigns certain predefined restrictions and error checking to different
values, based on well-known types. The default type for replace tags is “string”, which will match
more or less anything.

l The full list of types is available at "CML type attributes" on the next page of this document.

l DESCRIPTION: The value of the description attribute is a string that is a brief description of what
kind of value this tag represents. This attribute will be displayed as mouse-over text in the SA Client
value set editor.

l PRINTABLE: The value of the printable attribute is a string that is just a clean name for the
variable. It will be displayed in the SA Client value set editor as the name for the attribute.

l Range: The range attribute allows you to set the range for the values. You need to keep inmind that
all ranges will be used when reading in a file as well as when accepting values from a user. If you
have a configuration file that has a value outside of the ranges you set in the template, then an
exception will probably get thrownwhen parsing that file. It is best to use ranges that are correct
based on the documentation for the configuration file.

l Ranges are described fully at "CML range attributes" on page 247.

l Options: The option attributes serve tomodify or affect the behavior of the tag. Multiple options can
be appended to the endmost tags, separated by semicolons. Youmay append as many options as
you need to the tag, everything after the third semicolon is considered an option, and every option is
separated by semicolons. Options can also be used as instruction tag.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 240 of 325



Options are full described at "CML global option attributes" on page 250 and "CML regular option
attributes" on page 252.

Example

@~port
type = port
range = 1024<=&<=2048
printable = Port
description = The port used for this application. It
should be a port number between 1024 and 2048
@

CML type attributes
CML attributes define and control the semantics of a CML tag. This section defines the types you can
use in a CML template. Note that some types can bemodified to represent a sequence of repeating
values by appending “-set” or “-list” to the type. Some types can bemodified to ignore the order of a
sequence of repeating values by prepending “ordered-“ or “unordered-“ to the type.

The int type
Int is a numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;int][;[{range}][;{option}[;{option}]...]]]]@

Description

An Integer value…, -2, -1, 0, 1, 2, … (Z).

The decimal type
Decimal is a numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;decimal][;[{range}][;{option}[;{option}]...]]]]@

Description

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 241 of 325



Decimal number.

The guid type
Guid is a numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;guid][;[{range}][;{option}[;{option}]...]]]]@

Description

Globally Unique Identifier (GUID), 128-bit id.

The string type
String is a non-numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;string][;[{range}][;{option}[;{option}]...]]]]@

Description

String is the default type for all values if no other type is explicitly specified.

The quotedstring type
Quotedstring is a non-numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;quotedstring][;[{range}][;{option}[;
{option}]...]]]]@

Description

Quoted string.

The boolean type
Boolean is a non-numeric type.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 242 of 325



Syntax

@[{level}]{tag-type}[[{source}][;boolean][;[{range}][;{option}[;{option}]...]]]]@

Description

Boolean.

The duration type
Duration is a non-numeric type.

Syntax

@[{level}]{tag-type}[[{source}][;duration][;[{range}][;{option}[;{option}]...]]]]@

Description

Duration.

The ipv6 type
IPv6 is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;ipv6][;[{range}][;{option}[;{option}]...]]]]@

Description

CML supports the following two conventional forms for representing IPv6 addresses as text strings:

x:x:x:x:x:x:x:x, in which “x” represent one to four hexadecimal digits of the eight 16-bit pieces of the
IPv6 address. For example:

ABCD:EF01:2345:6789:ABCD:EF01:2345:6789

“::” in an IPv6 address indicates one or more groups of 16 bits of zeros. The “::” can appear only once in
an address. The “::” can also be used to compress leading or trailing zeros in an address. For example:

2001:DB8:0:0:8:800:200C:417A becomes 2001:DB8::8:800:200C:417A

0:0:0:0:0:0:0:1 becomes ::1

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 243 of 325



The ipv4 type
IPv4 is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;ipv4][;[{range}][;{option}[;{option}]...]]]]@

Description

IP v4 Address.

The ip type
Ip is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;ip][;[{range}][;{option}[;{option}]...]]]]@

Description

IP Address (ipv4 and ipv6).

The hostname type
Hostname is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;hostname][;[{range}][;{option}[;{option}]...]]]]@

Description

The name of a host server.

The host type
Host is a system-specific type.

Syntax

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 244 of 325



@[{level}]{tag-type}[[{source}][;host][;[{range}][;{option}[;{option}]...]]]]@

Description

Host IP Address or Hostname.

The network type
Network is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;network][;[{range}][;{option}[;{option}]...]]]]@

Description

IP v4 Network.

The port type
Port is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;port][;[{range}][;{option}[;{option}]...]]]]@

Description

TCP or UDP Port.

The user type
User is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;user][;[{range}][;{option}[;{option}]...]]]]@

Description

Username.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 245 of 325



The group type
Group is a system-specific type.

Syntax
@[{level}]{tag-type}[[{source}][;group][;[{range}][;{option}[;{option}]...]]]]@

Description
Group name.

file – system specific type

Syntax
@[{level}]{tag-type}[[{source}][;file][;[{range}][;{option}[;{option}]...]]]]@

Description

File name.

The dir type
Dir is a system-specific type.

Syntax

@[{level}]{tag-type}[[{source}][;dir][;[{range}][;{option}[;{option}]...]]]]@

Description

Directory path name.

The email type
Email is a system-specific type.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 246 of 325



Syntax

@[{level}]{tag-type}[[{source}][;email][;[{range}][;{option}[;{option}]...]]]]@

Description

Email address.

CML range attributes
CML attributes define and control the semantics of a CML tag. This section defines the possible range
attributes you can use in a CML template. For a given a CML type, range attributes allow you to define
and restrict valid values for tag, using range specifiers.

! & , – Logical operators
! – not specifier

& – and specifier

, – or specifier

Syntax

@[{level}]{tag-type}[[{source}][;[{type}][;!{range}][;{option}[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;{range}&{range}][;{option}[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;{range},{range}][;{option}[;
{option}]...]]]]@

Description

Range specifiers can bemodified by logical operators to control how input is validated. The three
available operators (in order of precedence) are: not, and, or.

l The not operator is represented with an exclamation point, and is a prefix unary operator. It negates
themeaning of the range, meaning that items that satisfy the range return false, and items that fail
to satisfy the range return true.

l The and operator is represented with an ampersand, and is an infix binary operator. It returns true if
and only if both operands return true.

l The or operator is represented with a comma, and is an infix binary operator. It returns true if and
only if either operand returns true.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 247 of 325



Whitespace is not significant when specifying ranges.

Note:
The current CML parser requires that neither whitespace nor ‘@’ appear inside a CML tag.

n< n<= <n <=n =n – Comparison specifiers
n< – greater than specifier

n<= – greater than or equal specifier

<n – less than specifier

<=n – less than or equal specifier

=n – equal specifier

Syntax

@[{level}]{tag-type}[[{source}][;[{type}][;{number}<][;{option}[;{option}]...]]]]@

@[{level}]{tag-type}[[{source}][;[{type}][;{number}<=][;{option}[;{option}]...]]]]@

@[{level}]{tag-type}[[{source}][;[{type}][;<{number}][;{option}[;{option}]...]]]]@

@[{level}]{tag-type}[[{source}][;[{type}][;<={number}][;{option}[;{option}]...]]]]@

@[{level}]{tag-type}[[{source}][;[{type}][;={number}][;{option}[;{option}]...]]]]@

Description

The available specifiers for numeric values are: greater than, greater than or equal to, less than, less
than or equal to, and equals.

A greater than specifier (n<) consists of a number, followed by an open angle bracket character. This
range is satisfied by numeric values that are greater than the specified number.

A greater than or equal to specifier (n<=) consists of a number, followed by an open angle bracket
character, followed by an equals character. This range is satisfied by numeric values that are greater
than or equal to the specified number. (Note that for a number n, n<= is equivalent to !<n, and also
equal to n<,=n, and is provided for convenience)

A less than specifier (<n) consists of an open angle bracket character, followed by a number. This
range is satisfied by numeric values that are greater than the specified number.

A less than or equal to specifier (<=n) consists of an open angle bracket character, followed by an
equals character followed by a number. This range is satisfied by numeric values that are greater than

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 248 of 325



or equal to the specified number. (Note that for a number n, <=n is equivalent to !n<, and also equal to
<n,=n, and is provided for convenience)

An equals specifier (=n) consists of an equals character, followed by a number. This range is satisfied
by numeric values that are equal to the specified number.

It is suggested that when providing two range specifiers separated by an and operator, the greater than
(or equal to) specifier precede the less than (or equal to) specifier, for example, 0<=&<256.

Whitespace is not significant when specifying ranges.

Note:
The current CML parser requires that neither whitespace nor ‘@’ appear inside a CML tag.

" – String literal specifier
Syntax

@[{level}]{tag-type}[[{source}][;[{type}][;"{string}"][;{option}[;{option}]...]]]]@

Description

A string literal specifier consists of a double quote character, followed by a string of text, followed by a
double quote character. The quoting and escaping rules follow those of the C language; that is, that
embedded quotes are escaped with a backslash, a newline is represented by \n, a tab character is
represented by \t, and a literal backslash is represented by \\. This range is satisfied by string values
that exactly match the text.

Whitespace is not significant when specifying ranges.

Note:
The current CML parser requires that neither whitespace nor ‘@’ appear inside a CML tag.

r" – Regular expression specifier
Syntax

@[{level}]{tag-type}[[{source}][;[{type}][;r"{regular expression}"][;{option}[;
{option}]...]]]]@

Description

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 249 of 325



A regular expression specifier consists of the “r” character, a double quote character, followed by a
regular expression, followed by a double quote character (“). The quoting and escaping rules follow
those of Python regular expressions, with the exception of the quote character, whichmust be escaped
with a backslash character. This range is satisfied by string values that match the regular expression.

Whitespace is not significant when specifying ranges.

Note:
The current CML parser requires that neither whitespace nor ‘@’ appear inside a CML tag.

CML global option attributes
CML attributes define and control the semantics of a CML tag. This section defines the possible global
attributes you can use in a CML template. Global options can only be used in instruction tags, and
cannot be used as option attributes in other tag types.

The@!filename-key attribute
Syntax

@!filename-key={key}@

{key} has no default value.

Description

filename-key identifies a path to the key in a value set that will contain the file name of the file being
generated during a push.

The filename-key value is a pathname. It can be written as a relative path and does not need to
begin with a slash (/).

The filename-key valuemust not end with a /. This requirement may be relaxed in later versions.

The@!filename-default attribute
Syntax

@!filename-default={filename}@

{filename} has no default value.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 250 of 325



Description

filename-default identifies the default filename that will be returned if there is no filename in the
Value Set. For example, the user may enter a filename in the Value-Set Editor, thus overriding the
filename-default value.

The@!full-template and@!partial-template

attributes
Syntax

@!full-template@

@!partial-template@

full-template is the default behavior.

Description

full-template is the default behavior and indicates that all expected data in the file must bemodeled
in the template.

partial-template indicates that unmatched data in the file should be ignored and passed directly
through to the output. This option only works with preserve-format.

The@!timeout attribute
Syntax

@!timeout={minutes}@

{minutes} default value is 1.

Description

timeout represents the number of minutes that should be added onto the Configurations total timeout.
A valid timeout is any integer from 0-999 (inclusive). The time-outs of all the templates in a
configuration get added together, and that number is added to the default timeout for configurations (10
minutes) to get the final timeout value for the entire configuration.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 251 of 325



The@!unix-newlines and@!windows-newlines

attributes
Syntax

@!unix-newlines@
@!windows-newlines@

unix-newlines is the default behavior.

Description

unix-newlines is the default behavior and indicates that the configuration file generated by this
template will have unix-style newlines (ASCII Line Feed character).

windows-newlines indicates that the configuration file generated by this template will have windows-
style newlines (ASCII Carriage Return + Line Feed combination).

CML regular option attributes
CML attributes define and control the semantics of a CML tag. This section defines the possible option
attributes you can use in a CML template. Regular options can be use either as Instruction tags or as
Option attributes in other tag types.

The@! unordered-lines and@!ordered-lines

attributes
Instruction tag syntax

@!unordered-lines@
@!ordered-lines@

unordered-lines is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;unordered-lines[;
{option}]...]]]]@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 252 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;ordered-lines[;
{option}]...]]]]@

Valid for groups.

Description

unordered-lines allows child tags of a template to appear in any order; however, position of items
within ordered sequence elements is preserved. unordered-lines is the default behavior.

ordered-lines instructs the parser that child tags of the template object (lines, loops, conditionals,
and so on) must appear in the file in the ordered they are specified in the template.

The unordered-elements and ordered-elements

attributes
Instruction tag syntax

@!unordered-elements@
@!ordered-elements@

unordered-elements is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;unordered-elements[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;ordered-elements[;
{option}]...]]]]@

Valid for groups.

Description

unordered-elements allows child tags of of the current group to appear in any order; however, position
of items within ordered sequence elements is preserved. unordered-elements is the default behavior.

ordered-elements instructs the parser that child tags of the group object (loops, conditionals,
elements, and so on) must appear in the file in the ordered they are specified in the template.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 253 of 325



The relaxed-whitespace and strict-whitespace

attributes
Instruction tag syntax

@!relaxed-whitespace@
@!strict-whitespace@

relaxed-whitespace is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;relaxed-whitespace[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;strict-whitespace[;
{option}]...]]]]@

Valid for groups.

Description

relaxed-whitespace allows whitespace in the template to bematched by any combination of tabs and
spaces. relaxed-whitespace is the default behavior.

strict-whitespace requires that whitespace in the template bematched exactly in the file.

The required-whitespace and optional-whitespace

attributes
Instruction tag syntax

@!required-whitespace@
@!optional-whitespace@

required-whitespace is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;required-whitespace[;
{option}]...]]]]@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 254 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;optional-whitespace[;
{option}]...]]]]@

Valid for groups.

Description

required-whitespace requires that whitespace in the template be in the file. optional-whitespace
makes the presence of non-significant whitespace in the file optional.

The missing-values-are-null and missing-values-

are-error attributes
Instruction tag syntax

@!missing-values-are-null@

@!missing-values-are-error@

missing-values-are-null is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;missing-values-are-null[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;missing-values-are-error[;
{option}]...]]]]@

Description

missing-values-are-null instructs that values that are not found in the file are null, and therefore not
provided in the Value Set.

missing-values-are-error throws an error if all values specified in a template are not found in a file
or Value Set.

The case-insensitive-keywords and case-

sensitive-keywords attributes
Instruction tag syntax

@!case-insensitive-keywords@
@!case-sensitive-keywords@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 255 of 325



case-insensitive-keywords is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;case-insensitive-keywords[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;case-sensitive-keywords[;
{option}]...]]]]@

Description

case-insensitive-keywordsmatch literal text in the file ignoring case. case-insensitive-keywords is
the default behavior.

case-sensitive-keywords instructs that literal text in the templatemust bematched in a case-
sensitive basis in the file.

The reluctant attribute
Instruction tag syntax

@!reluctant@

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;reluctant[;{option}]...]]]]@

Description

reluctant specifies that a specific loop or sequence will try to match as few elements as possible
from the configuration file. This is not the default behavior of loops and sequences.

The required and optional attributes
Instruction tag syntax

@!required@
@!optional@

required is the default behavior.

Using optional in an instruction tagmay have unintended consequences.

Option attribute syntax

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 256 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;required[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;optional[;{option}]...]]]]@

Description

required elements must bematched (unless nested inside optional groups). required is the default
behavior.

optional elements are optional.

Using optional as an option attribute is valid for any tag, except an instruction tag. Using optional in
an instruction tagmay have unintended consequences.

The skip-lines-without-values and show-lines-

without-values attributes
Instruction tag syntax

@!skip-lines-without-values@
@!show-lines-without-values@

skip-lines-without-values is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;skip-lines-without-values[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;show-lines-without-values[;
{option}]...]]]]@

Description

skip-lines-without-values instructs when a line has replace elements, and all values for those
elements are null, that line should be suppressed from the output. skip-lines-without-values is the
default behavior.

show-lines-without-values instructs that all lines should be shown, regardless of the presence or
absence of null values.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 257 of 325



The skip-groups-without-values and show-

groups-without-values attributes
Instruction tag syntax

@!skip-groups-without-values@
@!show-groups-without-values@

skip-groups-without-values is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;skip-groups-without-values[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;show-groups-without-values[;
{option}]...]]]]@

Description

skip-groups-without-values instructs when a group has replace elements, and all values for those
elements are null, that groups should be suppressed from the output. skip-groups-without-values
is the default behavior.

show-groups-without-values instructs that all groups should be shown, regardless of the presence
or absence of null values.

The sequence-append, sequence-replace and

sequence-prepend attributes
Instruction tag syntax

@!sequence-append@
@!sequence-replace@
@!sequence-prepend@

sequence-append is the default behavior.

Valid for loops and sequences.

Option attribute syntax

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 258 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-append[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-replace[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-prepend[;
{option}]...]]]]@

Description

sequence-append sequence elements child scopes are appended to sequence elements in parent
scopes. sequence-append is the default behavior.

sequence-replace indicates that sequence elements child scopes replace sequence elements in
parent scopes.

sequence-prepend sequence elements child scopes are prepended to sequence elements in parent
scopes.

The not-primary-field and primary-field attributes
Instruction tag syntax

@!not-primary-field@
@!primary-field@

not-primary-field is the default behavior.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;not-primary-field[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;primary-field[;
{option}]...]]]]@

Description

not-primary-field indicates this field should not be used for the purposes of identifying duplicate
items when performing list aggregation.

not-primary-field is the default behavior.

primary-field indicates this field should be used for the purposes of identifying duplicate items when
performing list aggregation.

Valid for sequence and replace tags inside a sequence.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 259 of 325



The namespace attribute
Instruction tag syntax

@!namespace={namespace}@

The default value for {namespace} is “/” (the root name space).

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;namespace={namespace}[;
{option}]...]]]]@

The default value for {namespace} is “/” (the root name space).

Description

namespace is a string that identifies the name space within which elements with unqualified names
(names without a preceding slash or period) will be stored.

The default value for {namespace} is the root name space, represented by the string “/” (forward-slash).

The name space value is a path name. It must start with a slash (/).

The boolean-no-format attribute
Instruction tag syntax

@!boolean-no-format={string}@

The default value for {string} is “no”

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;boolean-no-format={string}[;
{option}]...]]]]@

The default value for {string} is “no”

Description

boolean-no-format identifies the string that will be used tomatch false Boolean elements. Valid for
Boolean replace tags.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 260 of 325



The boolean-yes-format attribute
Instruction tag syntax

@!boolean-yes-format={string}@

The default value for {string} is “yes”

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;boolean-yes-format={string}[;
{option}]...]]]]@

The default value for {string} is “yes”

Description

boolean-yes-format and boolean-no-format identifies the strings that will be used tomatch boolean
elements. The default value for {string} is “yes”

Valid for boolean replace tags.

The delimiter attribute
whitespace-delimited
comma-delimited
semicolon-delimited
tab-delimited
quote-delimited
delimiter

Instruction tag syntax

@!whitespace-delimited@
@!comma-delimited@
@!semicolon-delimited@
@!tab-delimited@
@!quote-delimited@
@!delimiter={string}@

whitespace-delimited is the default behavior

Option attribute syntax

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 261 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;whitespace-delimited[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;comma-delimited[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;semicolon-delimited[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;tab-delimited[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;quote-delimited[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;delimiter={string}[;
{option}]...]]]]@

whitespace-delimited is the default behavior.

Description

delimiter sets the default delimiter character. If not explicitly specified, sequence-delimiter and field-
delimiter will inherit this value.

Valid for replace and sequence tags.

The line-comment attributes
line-comment-is-comma
line-comment-is-semicolon
line-comment-is-tab
line-comment-is-whitespace
line-comment

Instruction tag syntax

@!line-comment-is-comma@
@!line-comment-is-semicolon@
@!line-comment-is-tab@
@!line-comment-is-whitespace@
@!line-comment={string}@

There is no default value for {string}.

Option attribute syntax

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 262 of 325



@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-comment-is-comma[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-comment-is-semicolon[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-comment-is-tab[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-comment-is-whitespace[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-comment={string}[;
{option}]...]]]]@

There is no default value for {string}.

Description

line-comment sets the character that indicates that the remainder of the line will be parsed as a
comment.

The sequence-delimiter attribute
sequence-delimiter-is-comma
sequence-delimiter-is-semicolon
sequence-delimiter-is-tab
sequence-delimiter-is-whitespace
sequence-delimiter-is-quote
sequence-delimiter

Instruction tag syntax

@!sequence-delimiter-is-comma@
@!sequence-delimiter-is-semicolon@
@!sequence-delimiter-is-tab@
@!sequence-delimiter-is-whitespace@
@!sequence-delimiter-is-quote@
@!sequence-delimiter={string}@

By default, sequence-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter-is-comma[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter-

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 263 of 325



issemicolon[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter-is-tab[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter-is-
whitespace[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter-is-quote[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;sequence-delimiter={string}[;
{option}]...]]]]@

By default, sequence-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Description

sequence-delimiter sets the character that separates items within a sequence. By
default, sequence-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Valid for sequences.

The field-delimiter attribute
field-delimiter-is-comma
field-delimiter-is-semicolon
field-delimiter-is-tab
field-delimiter-is-eol
field-delimiter-is-whitespace
field-delimiter-is-quote
field-delimiter

Instruction tag syntax

@!field-delimiter-is-comma@
@!field-delimiter-is-semicolon@
@!field-delimiter-is-tab@
@!field-delimiter-is-whitespace@
@!field-delimiter-is-quote@
@!field-delimiter={string}@

By default, field-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 264 of 325



Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter-is-comma[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter-is-semicolon
[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter-is-tab[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter-is-whitespace
[;{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter-is-quote[;
{option}]...]]]]@
@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;field-delimiter={string}[;
{option}]...]]]]@

By default, field-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Description

field-delimiter sets a character that will be used to terminate parsing for a replace element value.
By default, field-delimiter uses the value of  delimiter. The default for the latter is whitespace-
delimited.

Valid for replace tags and sequence tags.

The line-continuation attribute
Instruction tag syntax

@!line-continuation={string}@

Option attribute syntax

@[{level}]{tag-type}[[{source}][;[{type}][;[{range}][;line-continuation={string}[;
{option}]...]]]]@

Description

line-continuation sets a character that will be used to indicate that the current line in a config file
should be wrapped to the subsequent line.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 265 of 325



Use DTD tags in CML
CML supports Document Type Definition (DTD) tags that can be used to pre-define attributes for a
CML tag. Using a DTD tag in CML allows you to change some aspects of how the template is
displayed in the SA Client. The DTD definition generally goes in the beginning of a file and the tag gets
shortened to just a name and a tag type.

Themain advantage of using DTD tags in CML is the ability to define 'printable' and 'description'
values, which are reflected in the SA Client, improving usability. DTD definitions can be used to define
any tag that has a name; for example loop tags, loop target tags, replace tags, and so on, but not tags
like instruction tags or block tags. DTD tags in CML are also inherently multi-line tags.

Example of DTD tags
Here wewill take a tag and create a DTD version of that tag. A DTD tag in CML is not that different
than a regular CML tag; it contains all the elements of a tagminus the “tag type.”

For example, in the CML tag below:

@*deny_header;unordered-string-set;;sequence-delimiter=":";optional@

this is an instance representing the following format in CML:

@<tag type><name>;<data type>;;<option1>;<option2>@

The DTD version of this takes the existing elements and reorders them as follows:

<start code block>
@~<name>
type = <data type>
description = <description>
printable = <printable>
<option1>
<option2>
...
@
@<tag type><name>@
<end code block>

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 266 of 325



As you can see, this usage also allows for the addition of two new elements: “description” and
“printable”. Defining “printable” will define themain text for this tag in the SA Client. Defining
“description” will create a description for this value in the SA Client that is viewable when youmove
your mouse pointer over the field in the value set editor in the SA Client.

Here is the same tag in full DTD format:

<start code block>
@~deny_header
type = unordered-string-set
printable = Headers to Deny
description = This is a list of headers that IIS should deny
sequence-delimiter = ":"
optional
@
@*deny_header@
<end code block>

There are a couple things to notice in the example above. In defining a value for “description,” the value
can spanmultiple lines, as long as the lines following the first line have whitespace as the first
character.

Options go on a line by themselves, where you have <option>=<value> you need to insert spaces
before and after the "=" sign.

Now, where ever you use the tag @*deny_header@, the parser will use the predefined DTD for all that
tags' information.

Redefining a DTD defined tag, @*deny_header@, by using a line like @*deny_header;unordered-
string-set@will cause the CML template to become invalid.

Note:
Note also that DTD style CML is not currently required, but is most obvious when viewing the
Application Configuration the SA Client. If you don't use DTD tags you will not see the 'printable'
and 'description' fields, instead you will only see the underlying variable name.

Sequence aggregation
Because Application Configuration values can be set across many different levels in the Application
Configuration inheritance hierarchy (also referred to as the inheritance scope), it is important that you

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 267 of 325



be able control the way multiple sequence values aremerged together when you push an Application
Configuration on to a server.

ACM allows you to control the way sequence values aremerged across inheritance scopes. This
means that you can, for example, add some values to a sequence in the Customer scope, Group
scope, and the Server scope, and all the values will bemerged together to form the final sequence.

Themanner in which sequence values aremerged is controlled by special tags in the CML template,
using three different sequencemergemodes:

l "Sequence replace " below: Sequence values frommore specific scopes completely replace those

from less specific scopes. This occurs for both sequences of sets and lists.

l "Sequence append " on the next page: For lists, values at more general scopes are appended

(placed after) to those at more specific scopes. Duplicates, if present, are not removed. For sets,

the behavior is the same, except duplicates aremerged. For lists, duplicates are identified

according to child elements marked with the primary-key tag, and thenmerged. For scalars, this is
done by simply removing duplicate values, leaving only the value from themost specific scope (the

last occurrence is themerged sequence). This is the default mode, and will be used if nothing else

is specified.

l Sequence Prepend: Works the same as append, but values at more general scopes are

prepended (placed before) to those at more specific scopes.

For example, with these two sets:

l “a, b” — At amore specific (inner) level of the inheritance scope, for example, server instance level.

l “c, d” — At amore general (outer) of the inheritance scope, for example, the server group level.

When the application configuration template is pushed onto the server, themerging results would be:

l Sequence replace: “a, b”

l Sequence append: “a, b, c, d”

l Sequence prepend: “c, d, a, b”

Sequence aggregation occurs not only between scopes, but also within a scope itself. This is evident if
there are duplicate values within a sequence of name spaces.

Sequence replace
In the Replacemergemode (CML tag “sequence-replace”), the contents of a sequence defined at a
particular scope replace those of less specific scopes, and nomerging is performed on the individual

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 268 of 325



elements of the sequence.

For example, if the sequence-replace tag has been set for a list in an configuration template CML
source, then values set for that list at the server instance level will override, or replace, those set at the
group level and at the Application Configuration default values level.

For example, if a list in an etc/hosts file was defined at the group level (outer) as the following:

/system/dns/host/1/ip           127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

And the same list was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver

If template had defined the /system/dns/host element with the sequence-replace tag, the final
results of the configuration file on the server after the push would be:

127.0.0.1 localhost mymachine.mydomain.net
10.10.10.100 mailserver

Sequence append
When the append list mergemode (CML tag “sequence-append”) is used for sequences, the values at
more general scopes are appended (placed after) those of more specific scopes. Sequence append
mode is the default mode for merging list values. If nothing is specified in the CML of the template, the
sequence append will be used.

If a list in an etc/hosts file was defined at the group level (outer) as the following:

/system/dns/host/1/ip           127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 269 of 325



And the same list was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver

Using the value sets from the above example, if the /system/dns/host element was a list with the
sequence-append tag set in the configuration template, the final results of the configuration file on the
server after the push would be:

127.0.0.1 localhost mymachine.mydomain.net
10.10.10.100 mailserver
127.0.0.1 localhost mymachine
10.10.10.10 loghost

But since it is not allowable for a hosts file to contain duplicate entries, the/system/dns/host element
will have to be flagged in the configuration template as a set rather than a list, because sets do not
allow duplicates. To avoid duplication of the list values in the example, the configuration template
author would use the Primary Key option.

Primary key option in sequence merging

When operating in appendmode on sets, new values in more specific scopes are appended to those of
less specific ones, and duplicate values aremerged with the resulting value placed in the resulting
sequence according to its position in themore specific scope.

How this affects merged sequence values depends on what kind of data is contained in the sequence:

l For elements in a sequence which are scalars, the value from themost specific scope is used. In

other words, values at the server instance level would replace the values at the group level.

l For elements which are namespace sequences, the value is obtained by applying themergemode

specified for that element (in this example, append) based uponmatching up the primary fields.

To avoid the duplication of the /system/dns/host/.ip value, the configuration template author would
use the CML primary-key option. With this option set, ACM will treat entries with the same value for
/system/dns/host/.ip as the same andmerge their contents.

In the example above, the final results of the configuration file on the server after the push would be:

127.0.0.1 localhost mymachine.mydomain.net mymachine
10.10.10.100 mailserver
10.10.10.10 loghost

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 270 of 325



Note:

Since it is possible to have a set without primary keys, if there are scalars in the sequence, then an

aggregation of all scalar values will be used as the primary key. If there are no scalars, then the

aggregation of all values in the first sequence will be used as the primary key. Although this is an

estimate, in most cases the values will bemerged effectively. To ensure that the correct values

are used as primary keys, we recommend that you always explicitly set the primary key in a

sequence.

Sequence prepend
When the prepend list mergemode (CML tag “sequence-prepend”) is used for sequences, the values
at more general scopes are prepended (placed before) those of more specific scopes.

For example, if a sequence in an etc/hosts file was defined at the group level (outer) as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

And the same sequence was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver

If the /system/dns/host element was a set with the sequence-prepend tag set in the configuration
template, the final results of the configuration file on the server after the push would be:

10.10.10.10 loghost
127.0.0.1 mymachine localhost mymachine.mydomain.net
10.10.10.100 mailserver

CML grammar

The following table describes CML grammar illustrating several types of CML tags.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 271 of 325



CML tag/element Description

replace-tag "@" source [ ";" [ type ] [ ";" [ range ] *option ] ] "@"

data-definition-tag "@~" source CRLF *def-line "@"

conditional-tag "@" [ group-level ] "?" source [ ";" [ type ] [ ";" [ range ] *option ] ] "@"

loop-tag “@" [ group-level ] "*" source [ ";" [ type ] [ ";" [ range ] *option ] ] "@"

loop-target-tag "@.@"

block-tag "@" [ group-level ] "[" *option "@"

block-termination-tag "@" [ group-level ] "]@"

line-continuation-tag "@\"

instruction-tag "@!" *option "@"

single-line-comment "@#" [ string CRLF ]

multi-line-comment "@##" *[ string / CRLF ] "#@"

def-line type-line / range-line / option-line / printable-line / desc-line

type-line "type" WSP "=" WSP type-elem CRLF

range-line "range" WSP "=" WSP range CRLF

option-line option-elem CRLF

printable-line "printable" WSP "=" WSP string CRLF

desc-line "description" WSP "=" *[ WSP string CRLF ]

group-level int

source absolute-path / relative-path / local-path

absolute-path "/" path-component* name

relative-path [ path-component* ] name

path-component ( name / sequence-id ) "/"

sequence-id int

local-path "." name

name string

type sequence / type-elem

sequence [ order "-" ] type-elem "-" sequence-elem

CML grammar

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 272 of 325



CML tag/element Description

sequence-elem "set" / "list"

type-elem "int" / "string" / "ip" / "port" / "file" / etc...

order ordered" / "unordered"

range and-range *[ "," and-range ]

and-range range-elem *[ "&" range-elem ]

range-elem numeric-range / string range

numeric-range gt-range / ge-range / lt-range / le-range / eq-range

string range string-literal / regular-exp

gr-range int ">"

ge-range int ">="

lt-range ">" int

le-range ">=" int

eq-range "=" int

string-literal <"> string <">

regular-exp "r" <"> string <">

option ";" option-elem

option-elem option-name / option-nv

option-nv option-nv

option-name string

option-value string

CML grammar, continued

XML Tutorial 1 - Creating a non-DTD
XML configuration template
This tutorial shows how to create a configuration template for a non-DTD XML configuration file. It
shows you how to create a configuration template using XML syntax, add it to an application
configuration and then attach the application configuration to amanaged server. Then you will import

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 273 of 325



values from the mysql.xml configuration file on your managed server, make changes to some of those
values, and push the new configuration file back to themanaged server.

This tutorial is based on the Travel Manager example application described at "Example: Travel
manager application and XML configuration file" on page 200.

Sample non-DTD XML mysql.xml file
Below is the contents of the XML configuration file for the travel manager application:

<?xml version="1.0" ?>
<db-config>
<db-host>localhost</db-host>
<db-name>wrightevents</db-name>
<db-user>root</db-user>
<db-password>hp-pass</db-password>

</db-config>

1. Creating an XML configuration template
Create a configuration template based on the mysql.xml configuration file using the SA Client.

1. From the SA Client navigation pane, select Library and then select the By Type tab.

2. Open the Application Configuration node, then open the Templates node. This shows all the
operating system groups.

3. Open an operating system node and select a specific operating system under one of the operating
system nodes. For this example, select the operating system of one of your servers where you
can install this application configuration.

4. From theActionsmenu, select New.

5. In the Properties view, enter the following information:
o Name: TM-MySql

o Description: This is the template for themysql.xml configuration file for the Travel Manager
application.

o Location: You can leave the default location in the SA Library of /, or select another location to
store your template file. Note that the customer setting of the folder containing the template
must include the customer setting of the application configuration object. Otherwise the

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 274 of 325



template will not be included in the list of available templates. For more information on folder
settings, see the “Folder Permissions” section in the SA 10.51 Administration Guide.

o Version: 0.1.

o Type: Template file

o Parser Syntax: XML Syntax

o OS: Select all the operating systems that the configuration template can be installed on.

o Select File > Save.

6. Keep the Template window open for the next task.

2. Adding XML settings
Since the XML configuration file mysql.xml provides most of the structural settings needed to parse the
file’s contents, an XML configuration template in SA only requires three pieces of information in an XML
comment: ACM-NAMESPACE, ACM-FILENAME-KEY and ACM-FILENAME-DEFAULT.

1. Select the Content view in the navigation pane.

<!--
ACM-NAMESPACE = /TravelManager
ACM-FILENAME-KEY = /files/TravelManager
ACM-FILENAME-DEFAULT = /var/www/html/we/mysql.xml
-->

2. Copy and paste the following XML into the Content pane:

3. Select the Validate button tomake sure the XML is valid.

4. Select the File > Savemenu to save your template.

5. Select the File > Closemenu.

These XML lines define the following:

l ACM-NAMESPACE: Specifies a unique name space which is required for each configuration template.
In this example, since a name space for the Travel Manager application has already been
established, you could reuse the root name space and append the service name. For example:

l ACM-NAMESPACE = /TravelManager/web/mysql

l ACM-FILENAME-KEY: Specifies a path to the key in the name space that stores the file name of the
file being generated.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 275 of 325



l ACM-FILENAME-DEFAULT: Specifies the path on the target server where the Travel Manger
application’s mysql.xml file is stored. This can be overridden for specific servers or groups of
servers.

3. Creating an application configuration to

contain the template
In this step, you create an application configuration object to contain your configuration template.

1. In the SA Client navigation pane, select Library and then select the By Type tab.

2. Open the Application Configuration node, then open the Configurations node. This shows all the
operating system groups.

3. Open the operating system node and select the same operating system you used when you
created the template in the previous steps. TheOSs specified for the application configuration
must be a subset of the OSs specified for the template.

4. From theActionsmenu, select New.

5. In the Properties view of the File Configuration screen, specify the following properties:
o Name: Tm-MySql-Config

o Description: This is the application configuration for themySQL configuration file for the
Travel Manager application.

o Location: You can leave the default folder location in the SA Library of /, or select another
folder to store your application configuration. Note that the customer setting of the folder
containing the application configurationmust include the customer setting of themanaged
servers where you intend to push the application configuration. For more information on folder
settings, see the “Folder Permissions” section in the SA 10.51 Administration Guide.

o Version: 0.1.

o OS: Select one or more operating systems of managed servers that the application
configuration can be installed on.

6. Select Configuration Values.

7. Select the add button “+” or theActions > Addmenu to add the template.

8. In the Select Configuration Template screen, select the TM-MySql template and then select OK.
This adds the template to the application configuration object.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 276 of 325



9. Select File > Save and then File > Close. The application configuration and the configuration
template inside of it are ready to be attached to a server where the configuration file is stored.

4. Attaching the Application Configuration to a

managed server
Now that you have created the configuration template and application configuration object, you need to
attach the application configuration to the server where the Travel Manager application is installed and
specify the path to where the mysql.xml file is stored on themanaged server.

To attach the application configuration to a server:

1. From the SA Client navigation pane, select Devices, then select Servers > All Managed Servers.

2. Locate a server where you can simulate installing the Travel Manager application configuration.
The server’s operating systemmust match one of the operating systems specified in the
application configuration.

3. Select the server, and from theActionsmenu, select Open.

4. In the server screen, select theManagement Policies tab.

5. In the navigation pane, select Configured Applications. This displays the application
configurations that are attached to the server.

6. Select the Installed Configurations tab.

7. From theActionsmenu, select Add Configuration.

8. In the Select Application Configuration screen, select the Tm-MySql-Config application
configuration.

9. In the Instance Name field, enter “Default mysql config values”. This creates a value set at the
server instance level. For details, see Value Set Editor at the Server Level.

10. Select OK. The application configuration is now attached to the server.

11. Select the Save Changes button. Leave the server screen open for the next step.

The following figure shows the Tm-MySql-Config application configuration attached to the server
and the “Default mysql config values” value set. This value set is at the server instance level.

Application Configuration Attached to a Server, with the Value Set at the Server Instance
Level Highlighted

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 277 of 325



Note:
Note that at this point, if the server you are adding the application configuration to has more than
one instance of the mysql.xml configuration file because the server is hosting several instances of
the application, you can right-click the “Default mysql config values” node of the configuration and
select Duplicate. This creates another value set where you can set the file name path to point to
the other instance of the application. For more information on the different levels of value sets, see
Value Set Levels and Value Set Inheritance.

5. Configuring Application Configuration

settings for the server
Now that you have attached the application configuration to themanaged server, you need to configure
it for the server and set values for the configuration file.

To import the values from the configuration file as described below, copy and paste the XML listed in
"Sample non-DTD XMLmysql.xml file " on page 274 into the target file
/var/www/html/we/mysql.xml on your managed server. This will enable the import values step below.

1. Expand the Tm-MySql-Config node to show the value set at the server instance level. This value
set is named “Default mysql config values”.

2. From the Contents pane, configure the following settings in the application configuration’s Value
Set Editor:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 278 of 325



o Filename: The original path and file name of the target XML file on themanaged server is
displayed to the right of the Filename field. This value is the same value for FILENAME-
DEFAULT defined in the template. If this path name is acceptable for this server, you can
leave this field empty. If you want the configuration file placed in a different location on this
server, set the correct path to the target XML file on the target server in the Filename field.

o Encoding: Select the character encoding for themanaged configuration file. The default
encoding is the encoding used on themanaged server. (Note that UTF-16 encoding is not
supported.)

o Preserve Format: Select this option if you want to keep comments and preserve as much of
the ordering and spacing of the original XML configuration file from the target server. SA will
preserve as much of the target file as possible. For more information, see Set Fields in the
Value Set Editor.

o Preserve Values: To preserve the values contained in the actual configuration file on the
server when no value is provided in a value set, select Yes for this option. With this option set
to Yes, the target file’s values will be used unless overridden by values at any level of the
inheritance hierarchy. If this option is set to No, and no value exists in the value set, no entry
will be placed in the configuration file. For more information, see Set Fields in the Value Set
Editor.

o Show Inherited Values: Select this option to show the values in the value set and the
inheritance level. When unchecked, only the values set at the current inheritance level are
displayed. When checked, all values in the value set are displayed, those set at the current
level and those that are inherited. This view is read-only.

3. Right-click inside the value set editor and select Import Values. Importing values will read the
XML file on themanaged server and copy the XML file’s contents to the value set at the server
instance level.

4. To save changes, select the Save Changes button. Leave the server screen open for the next
step.

6. Editing values and pushing the

configuration
The last steps are to edit values in the value set editor and then push the configuration to the server.
When you push an application configuration, all the values in the value set replace the values in the
configuration files on the target managed servers. Any scripts contained in the application configuration

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 279 of 325



are executed based on what type they are. If the configuration file does not exist on the target server,
the file is created when you perform the push.

To edit values and push the application configuration:

1. Modify one or more values of the value set by editing in the Value column. For a description of the
columns, seeMeaning of Columns in the Value Set Editor.

2. After you have set values for the application configuration, select Preview to see the existing file
on the server and the file that would be pushed to the server.

3. Select Push to copy the new application configuration to the server.

4. In the Push Configuration screen, select Start Job. Examine the status and results of the push job.

XML Tutorial 2 - Creating an XML-DTD
configuration template
This section shows how to create an XML-DTD configuration template tomanage an XML
configuration file that references a DTD, using the Travel Manager application as an example. For
background on the Travel Manager example, see "Example: Travel manager application and XML
configuration file" on page 200.

You will first create the XML-DTD template as a text file and then import the text file into the SA Library
and add it to an application configuration object. You will then attach the application configuration to a
managed server. Finally you will edit some values in the application configuration and push those
changes to the target XML file on themanaged server.

Sample Travel Manager DTD-based XML file:

mysql.xml
For the Travel Manager application, below is the mysql.xml XML configuration file. It is stored in
/var/www/html/we/mysql.xml.

<?xml version="1.0"?>
<!DOCTYPE db-config PUBLIC "-//Williams Events//Travel Manager//EN" "mysql.dtd">
<db-config>

<db-host>localhost</db-host>
<db-name>wrightevents</db-name>
<db-user>root</db-user>

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 280 of 325



<db-password>hp-pass</db-password>
</db-config>

Sample Travel Manager XML DTD file:

mysql.dtd
For the Travel Manager application, below is the accompanying mysql.dtdDTD. It is stored in
/var/www/html/we/mysql.dtd.

<!ELEMENT db-config (db-host,db-name,db-user,db-password)>
<!ELEMENT db-host (#PCDATA)>
<!ELEMENT db-name (#PCDATA)>
<!ELEMENT db-user (#PCDATA)>
<!ELEMENT db-password (#PCDATA)>

1. Creating XML-DTD template in a text editor
In this task, you will create the source for the XML-DTD configuration template using a text editor.

To create an XML-DTD configuration template in a text editor:

1. In a text editor, enter the following information:

<!--
ACM-TIMEOUT = 1
ACM-FILENAME-KEY = /files/TravelManager
ACM-FILENAME-DEFAULT = /var/www/html/we/mysql.xml
ACM-NAMESPACE = /TravelManager/
ACM-DOCTYPE = db-config
ACM-DOCTYPE-SYSTEM-ID = mysql.dtd
ACM-DOCTYPE-PUBLIC-ID = -//Williams Events//Travel Manager//EN
-->

This information is required (except ACM-TIMEOUT) and is used by the application configuration
parser to read both the XML-DTD and the XML file you want to manage:

o ACM-TIMEOUT: (Optional) Represents the number of minutes that are added onto the
configuration template’s default timeout value (tenminutes) during a push.

o ACM-FILENAME-KEY: Defines the location in name space where the mysql.xml filenamewill
stored.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 281 of 325



o ACM-FILENAME-DEFAULT: Defines the default location (absolute path) of the mysql.xml file on
themanaged server.

o ACM-NAMESPACE: This value defines the location where values read from the mysql.xml file on
themanaged server will be stored in the database. This name spacemust be unique, and the
pathmust start with a forward slash (/).

o ACM-DOCTYPE: Defines the name of the root element in the XML file. The root element follows
the opening <!DOCTYPE declaration found in the target XML configuration file.

o ACM-DOCTYPE-SYSTEM-ID: Defines the name of associated DTD file on themanaged server.
This value can typically be found in the XML configuration file as the SYSTEM attribute in the
DOCTYPE element.

o ACM-DOCTYPE-PUBLIC-ID: Defines a string that represents a public identifier of the XML
document. This value can typically be found in the XML configuration file as the PUBLIC-ID
attribute of a DOCTYPE element.

2. Save the file, giving it the name mysql-dtd.tpl. Keep the file open for the next task.

2. Adding custom settings for element

descriptions in the Value Set Editor
In this task you will add some extra information to the XML-DTD template file that allows you to
customize the display of each element from the target XML file as seen in the value set editor in the SA
Client.

There are two optional settings you can add to your XML-DTD configuration template that allow you to
customize how elements from the target XML-DTD configuration file are displayed in the value set
editor in the SA Client:

l ACM-PRINTABLE: Defines a label for each element from the XML file that will be displayed in the
value set editor when the XML-DTD template is shown in the SA Client.

l ACM-DESCRIPTION: Defines mouse-over text when a user moves amouse pointer over the field
defined in ACM-PRINTABLE in the value set editor in the SA Client.

See the XML-DTD template figure for an example of how these elements appear in the value set editor
in the SA Client.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 282 of 325



This example uses the explicit method for placing these custom settings inside the XML-DTD
template. For more information on this method of placing custom settings, see "Explicit versus
positional display settings" on page 205.

To add custom settings in the XML-DTD template:

1. In the text editor with the mysql-dtd.tpl file, add the following information for each XML element
being referenced by the DTD. For example, after themain information in the template, add a list of
each element contained in the source XML file and then for each element, make an XML comment
using these three ACM setting tags:
o ACM-ELEMENT: Declares the element from the XML file that the following the ACM-PRINTABLE

and ACM-DESCRIPTION settings will describe. This option defaults to whatever element or
attribute came before this section in the DTD file.

o ACM-PRINTABLE: Set a short, descriptive label for the element when it is displayed in the value
set editor.

o ACM-DESCRIPTION: Set mouse-over text for the element.

The example XML-DTD template file should look like this:

ACM-TIMEOUT = 1
ACM-FILENAME-KEY = /files/TravelManager
ACM-FILENAME-DEFAULT = /var/www/html/we/mysql.xml
ACM-NAMESPACE = /TravelManager/
ACM-DOCTYPE = db-config
ACM-DOCTYPE-SYSTEM-ID = mysql.dtd
ACM-DOCTYPE-PUBLIC-ID = -//Williams Events//Travel Manager//EN
-->
<!ELEMENT db-config (db-host,db-name,db-user,db-password)>
<!ELEMENT db-host (#PCDATA)>
<!ELEMENT db-name (#PCDATA)>
<!ELEMENT db-user (#PCDATA)>
<!ELEMENT db-password (#PCDATA)>
<!--
ACM-ELEMENT = db-config
ACM-PRINTABLE = database configuration
ACM-DESCRIPTION = The db-config element specifies the data structure that
contains the information needed to connect to a database.
-->
<!--
ACM-ELEMENT = db-host
ACM-PRINTABLE = database hostname
ACM-DESCRIPTION = The db-host element specifies the name of the host computer
(the server) on which the database engine is running.
-->
<!--
ACM-ELEMENT = db-name

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 283 of 325



ACM-PRINTABLE = database name
ACM-DESCRIPTION = The db-name element specifies the name of the database.
-->
<!--

ACM-ELEMENT = db-user
ACM-PRINTABLE = database user
ACM-DESCRIPTION = The db-user element specifies the user identification used
to connect to the database.
-->
<!--
ACM-ELEMENT = db-password
ACM-PRINTABLE = database password
ACM-DESCRIPTION = The db-password element specifies the password used to
connect to the database.
-->

2. Save and close the file.

3. Importing the XML-DTD configuration file
In this task you will import your template file and create a new configuration template that will manage
the target XML and DTD files.

To import the XML-DTD configuration file into the SA Library:

1. From the SA Client navigation pane, select Library and then select the By Type tab.

2. Locate and open the Application Configuration node. Open the Templates node. Open an operating
system group and navigate to the operating system that the template file applies to. Note that a
template can apply to multiple operating systems. For example, you could select one of the Red
Hat operating system versions.

3. From theActionsmenu, select Import Template.

4. Navigate to the file you created in the previous step and select it. Set the encoding if it is not the
default.

5. Select Open. This imports your template file and displays it in the Templates screen.

6. Select the Properties view and enter the following information:
o Name: mysql-dtd.tpl

o Description: This is the template for themysql.dtd (mysql.xml) file for the Travel Manager
application.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 284 of 325



o Location: Specify where in the SA Library you want to store the template.

o Version: 0.1.

o Type: Template file

o Parser Syntax: XMLDTD Syntax.

o OS: Select the appropriate operating system.

7. Select the Contents view to display the contents of the template file you just imported.

8. Select theValidate button to confirm that the syntax is valid before proceeding.

9. Select File > Save.

10. Select File > Close.

4. Creating an Application Configuration

object
An application configuration is a container for configuration template files. In this step you will create an
application configuration and import the template.

1. From the SA Client navigation pane, select Library and then select the By Type tab.

2. Locate and open the Application Configuration node. Open the Configurations node. Open the
operating system group and select the operating system that the application configuration applies
to. Note that an Application Configuration can apply to multiple operating systems. You can
change this in a later step.

3. Select theActions > Newmenu. This displays the File Configuration screen where you can
specify the properties and contents of the Application Configuration.

4. In the Properties view, specify the following:
o Name: TM-mysql-dtd

o Description: This is the application configuration for themysql.xml andmysql.dtd files for the
Travel Manager application.

o Location: Specify where in the SA Library you want to store the Application
Configuration.

o Version: 0.1

o OS: Select the appropriate operating system.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 285 of 325



5. In the Content view, select theActions > Addmenu or the “+” button to add a template to the
Application Configuration.

6. In the Select Configuration Template screen, select themysql-dtd.tpl template file.

7. Select OK.

8. Select File > Save to save your Application Configuration.

9. Select File > Close.

5. Attaching the Application Configuration to a

managed server
In this task you will to attach the application configuration to the server where the Travel Manager
application is installed, and then enter the path name to the mysql.dtd configuration file.

To attach the application configuration to a server:

1. From the SA Client navigation pane, select Devices > Servers All Managed Servers.

2. Select a server, and from theActionsmenu, select Open. Make sure the operating system of the
server you select matches the operating system specified on the application configuration and the
template.

3. Select theManagement Policies tab.

4. Select the Configured Applications node.

5. Select the Installed Configurations tab.

6. From theActionsmenu, select Add Configuration.

7. In the Select Application Configuration screen, select the application configuration TM-mysql-dtd.

8. In the Instance Name field, enter “Value set 1 for mysql.xml”.

9. Select OK. The application configuration is attached to the server.

10. Select theSave Changes button.

11. Leave the application configuration screen open for the next step.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 286 of 325



6. Importing values from the configuration file
The next step is to set values in a value set. While you can set values in a value set manually, the
easiest way is to import the values from an existing configuration file. In this step you will import the
values from a configuration file on the server.

To import the values from the configuration file as described below, copy and paste the XML listed in
"Sample Travel Manager DTD-based XML file: mysql.xml" on page 280 above into the target file
/var/www/html/we/mysql.xml on your managed server. Copy and paste the DTD listed in "Sample
Travel Manager XMLDTD file: mysql.dtd" on page 281above into the target file
/var/www/html/we/mysql.dtd. This will enable the import step below.

1. In the server Management Policies, open the Configured Applications node. This displays the
application configuration attached to the server.

2. Open the TM-mysql-dtd node. This displays the server instance value sets, which are the node
under the TM-mysql-dtd node.

3. Select the “Value set 1 for mysql.xml” node. This is the server instance value set for themysql-
dtd.tpl configuration template.

4. Right-click on any value under the Value column and select the Import Valuesmenu.

5. In the Confirmation Dialog, select Yes. This imports the values from the file
/var/www/html/we/mysql.xml into the value set at the server instance level.

6. Select the Save Changes button. The following figure shows the XML-DTD template with the
server instance value set and themouse-over text displayed from the ACM-DESCRIPTION
element.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 287 of 325



Value Set and Mouse-Over Text for XML-DTD Configuration Template

7. Leave the application configuration displayed for the next step.

7. Editing values and push the configuration
The last step is to edit values in the value set editor and then push the configuration to the server. When
you push an application configuration, all the values in the value set replace the values in the
configuration files on the target managed servers. All scripts in the application configuration are also
executed. If the configuration file does not exist on the target server, the file is created as part of the
push.

To edit values and push the application configuration:

1. Make sure that the server instance level value set is displayed by selecting the “value set 1 for
mysql.xml” node in the navigation pane.

2. Modify the password value under the Value column.

3. Select Save Changes.

4. Select Preview to display the difference between the existing configuration file on the server and
the configuration file that will be pushed to the server.

5. After examining the comparison screen, select the Close button.

6. Select Push. This displays the Push Configurations wizard.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 288 of 325



7. Select Start Job. This starts the push operation.

8. Examine the Job Status of the push job. Select any step to display details on that step.

9. When the job completes, select the Close button.

10. You can log on to the server and examine the mysql.xml configuration file to verify that it was
updated on the server.

CML Tutorial 1 - Creating an Application
Configuration for a simple web app server
This section demonstrates how to set up andmanage a simple configuration file for aWeb Application
Server running on two servers. Each server runs theWeb Application Server and needs to be
configured separately. This tutorial shows how to create an application configuration, a configuration
template, value sets and two instances of the application configuration, one for each server. Finally it
shows how to push the application configuration to each server.

1. Determining the configuration files to be

managed
The web application server uses one configuration file namedWASconfig.txt. This file is located in the
directory /opt/WAS/WASconfig.txt. The contents of this file are as follows:

size=1000
dir=/tmp/WAS_001
primary=yes

2. Creating a template for the configuration

file
You can create a template in either of two ways:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 289 of 325



l Create a template in a text file and import the text file into the SA Library.

l Create a template directly in the SA Library.

Bothmethods are described below. Choose onemethod and follow the steps.

Creating a template file and importing it into SA

1. In a text editor, copy the configuration file into an empty file:
size=1000
dir=/tmp/WAS_001
primary=yes

2. Create a template that models this file using CML. First add a comment block and the required
CMLmetadata defining the name space and the target configuration file name.
o The name space defines the key where information for this template will be stored in the

database.

o The file name key defines where the default file namewill be stored in the database.

o The default file name specifies the name that will be used for the resulting configuration file.

@#####################################################
# /opt/WAS/WASconfig.txt                             #
# Version 1.0 #
# Author <name> #
######################################################@
@!namespace=/WAS-server-namespace/@
@!filename-key=”/WAS-server”@
@!filename-default=”/opt/WAS/WASconfig.txt”@
size=1000
dir=/tmp/WAS_01
primary=yes

3. Next change the variable parts of the configuration file to variables using CML tags:

@#####################################################
# /opt/WAS/WASconfig.txt                             #
# Version 1.0 #
# Author <name> #
######################################################@
@!namespace=/WAS-server-namespace/@
@!filename-key=”/WAS-server”@
@!filename-default=”/opt/WAS/WASconfig.txt”@
size=@value_of_size;int@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 290 of 325



dir=@value_of_dir;string@
primary=@value_of_primary;boolean@

4. Save the file with an extension of “.tpl”, for example WASconfig_txt.tpl.

5. Import the template file into the SA Library. Follow the steps at Importing and validating a template
file.

Creating a template file directly in SA

1. In the SA Client, select the Library tab.

2. Select theBy Type tab.

3. Open the Application Configurations node and the Templates node. Navigate to the OS family and
theOS version where the application runs. For this example, select Red Hat Enterprise Linux AS
4.

4. Select Actions > New. This displays the Templates screen.

5. Enter the template name “WASconfig_txt.tpl” and a brief description. Select the location in the SA
Library to store the template file. Set the version string. Set the Type to “Template file”. Set the
Parser Syntax to “CML Syntax”.

6. Select theContent view to display a text editor.

7. Type or paste in the CML text. This is the sameCML text as shown above.

8. Select Actions > Validate to check the syntax of your CML. Make any needed corrections.

9. Select File > Save to save your template.

10. Close the template screen.

3. Creating an Application Configuration

object
Create an application configuration object to contain the configuration template.

1. In the SA Client, select the Library tab.

2. Select theBy Type tab.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 291 of 325



3. Open the Application Configurations node and the Configurations node. Navigate to the OS family
and theOS version where the application runs. For this example, select Red Hat Enterprise Linux
AS 4.

4. Select Actions > New. This displays the Configuration screen.

5. Enter the name “WAS-app-config”, a brief description and version string of your application
configuration. Select the location in the SA Library to store the application configuration.

6. Select File > Save to save your application configuration.

4. Adding the template file to the Application

Configuration object
1. Open the “WAS-app-config” application configuration object you created in the previous step.

2. Select theConfiguration Values view.

3. Select the “+” button or select Actions > Add. This displays the Select Configuration Template
screen.

4. Select your “WASconfig_txt.tpl” template file and select OK.

5. Select File > Save to save your changes to the application configuration object.

6. Select File > Close to close the application configuration object.

5. Attaching the Application Configuration

object to servers
Two servers are running the web application server, RHEL001 and RHEL008. RHEL001 is the primary
server and RHEL008 is the secondary server. Create two instances of the application configuration by
attaching the application configuration object to these two servers as follows:

1. Locate the primary server RHEL001 in the SA Client.

2. Select the RHEL001 server and select Actions > Open.

3. Select theManagement Policies tab.

4. Select the Configured Applications node.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 292 of 325



5. Select theActions > Add Configurationmenu.

6. Select the “WAS-app-config” application configuration object.

7. In the Instance Name field, enter “Primary Instance of WAS-app-config” and select OK.

8. Select Save Changes. This creates an instance of the application configuration for the server
RHEL001.

9. Repeat the above steps with the secondary server RHEL008 except in the Instance Name field,
enter “Secondary Instance of WAS-app-config” and select OK. This creates a second instance of
the application configuration for the server RHEL008.

6. Setting default values
The required values for the configuration files for the two servers are shown below:

Server: RHEL001 Server: RHEL008

size=1000

dir=/tmp/WAS_001

primary=yes

size=1000

dir=/tmp/WAS_008

primary=no

Configuration value for two servers
running the Web Application Server

You can set default values for the configuration file that can be inherited by the individual servers or that
can be overridden by each individual server. If an individual server does not override the default value, it
uses the inherited default value.

The following table shows which values will be set with default values and which will be set by
individual servers:

Default
Value

Description

size=1000 Set this to a default value of 1000 at the application level. All servers attached to this
application configuration will use this value unless they override it.

dir Do not set this to a default value. Each server will set this value at the server level or
at the server instance level.

primary=no Set this to a default value of “no” at the application level. All servers attached to this
application configuration will use this value unless they override it.

Table 7: Application level default vValues for the configuration file for the Web Application
Server

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 293 of 325



Setting application level default values

1. Open the application configuration object you created above.

2. Select theConfiguration Values view.

3. Select theWAS-config-template.tpl template file.

4. Select File Values in the view drop-down list. This displays the default values for the template at
the application level.

5. Set “value_of_size” to 1000 and “value_of_primary” to “False” (casematters), as shown below. Do
not set a default value for “value_of_dir” because each server will need to set this value.

6. Select File > Save to save your application level default values.

7. Select File > Close.

Setting server level default values for RHEL001

The server RHEL001 needs to set dir=/tmp/WAS_001 and primary=yes at the server level. It does not
need to set size because it can use the value set at the application level.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 294 of 325



1. Locate in the SA Client the RHEL001 server.

2. Select the RHEL001 server and select Actions > Open.

3. Select theManagement Policies tab.

4. Open the Configured Applications node to reveal the “WAS-app-config” application configuration
object.

5. Select the “WAS-app-config” application configuration object attached to this server. This displays
the default values set at the server level. Values set at the server level apply to all instances of the
application configuration on the server unless overridden at the server instance level.

6. Set the server level default value for “value_of_dir” to “/tmp/WAS_001”, as shown below. Do not
set a default value for “value_of_size” or “value_of_primary” because these values will be inherited
from the application level.

7. Select theSave Changes button or the File > Savemenu to save your server level default
values.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 295 of 325



8. Open theWAS-app-config node to reveal the application configuration instance “Primary Instance
of WAS-app-config”.

9. Select the instance “Primary Instance of WAS-app-config”. This displays the instance level
default values. This is the lowest value set level and overrides all other levels. Notice that no
values have been defined at the instance level.

10. Select “Show Inherited Values” to show the values that will be inherited from the application level
defaults and the server level defaults. Notice that “value_of_size” and “value_of_primary” are
inherited from the application level and “value_of_dir” is inherited from the server level.

11. Uncheck “Show Inherited Values” so you can set the instance level default values.

12. Set “value_of_primary” to “True” (casematters).

13. Select theSave Changes button or the File > Savemenu to save your instance level default
values.

14. Select “Show Inherited Values” again to show the values that are inherited from the application
level, the server level and the instance level. Notice that “value_of_size” is inherited from the
application level, “value_of_dir” is inherited from the server level and “value_of_primary” is
inherited from the instance level, as shown below.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 296 of 325



Setting server level default values for RHEL008

The server RHEL008 needs to set dir=/tmp/WAS_008 at the server level. It does not need to set size
or primary because it can use the values set at the application level.

1. Locate in the SA Client the RHEL008 server.

2. Select the RHEL008 server and select Actions > Open.

3. Select theManagement Policies tab.

4. Open the Configured Applications node to reveal the “WAS-app-config” application configuration
object.

5. Select the “WAS-app-config” application configuration object attached to this server. This displays
the default values set at the server level. Values set at the server level apply to all instances of the
application configuration on the server unless overridden at the server instance level.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 297 of 325



6. Set the server level default value for “value_of_dir” to “/tmp/WAS_008”. Do not set a default value
for “value_of_size” or “value_of_primary” because these values will be inherited from the
application level.

7. Select Save Changes or the File > Savemenu to save your server level default values.

8. Open theWAS-app-config node to reveal the application configuration instance “Secondary
Instance of WAS-app-config”.

9. Select the instance “Secondary Instance of WAS-app-config”. This displays the instance level
default values. This is the lowest value set level and overrides all other levels. Notice that no
values have been defined at the instance level.

10. Select “Show Inherited Values” to show the values that will be inherited from the application level
defaults and the server level defaults. Notice that “value_of_size” and “value_of_primary” are
inherited from the application level and “value_of_dir” is inherited from the server level.

7. Comparing the actual configuration files

with the configuration template
You can optionally compare the values specified in the application configuration to the actual values in
the configuration file on the server by selecting the Preview button from the server screen. The
following shows the comparison on RHEL001 when there is no configuration file on the server yet:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 298 of 325



The following shows the comparison when there is an existing configuration file on the server that
differs from the values specified in the application configuration:

8. Pushing configuration changes to the

server
1. Locate in the SA Client the RHEL001 server.

2. Select the RHEL001 server and select Actions > Open.

3. Select theManagement Policies tab.

4. Open the Configured Applications node to reveal the “WAS-app-config” application configuration
object.

5. Open the “WAS-app-config” application configuration node to reveal the “Primary Instance of
WAS-app-config” instance.

6. Select the “Primary Instance of WAS-appconfig” instance.

7. Select thePush button.

8. You can select theStart Job button to accept the job defaults for scheduling and notifications, or
select Next.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 299 of 325



9. In the Scheduling screen you can specify when you want the push configurations job to run. Select
Next.

10. In the Notifications screen you can specify one or more people to receive an email message when
the job succeeds or fails. You can also specify a ticket identifier. Select Next.

11. Select Start Job. SA generates the configuration file from the template and value set, pushes the
resulting configuration file to the server and displays the results.

12. Select Close.

For a tutorial showing amore complex configuration file, see "CML Tutorial 2 - Creating a template of a
web server configuration file" below.

CML Tutorial 2 - Creating a template of a
web server configuration file
This tutorial explains how to use theConfiguration Modeling Language (CML) tomake a
configuration template based upon theMicrosoft Internet Information Services (IIS)Web server
configuration file namedUrlScan.ini. You will use the CML language to create a template file based on
this file so it can bemanaged on amanaged server.

While this tutorial will not teach you everything about CML, creating a CML template from UrlScan.ini
will help you gain a fundamental understanding of CML and the process of creating a configuration
template from a configuration file.

A sample of the UrlScan.ini file is listed in "Sample UrlScan.ini file" on page 315. The complete CML
file is listed in "Complete url_scan_ini.tpl CML template" on page 322.

To complete this tutorial you should have the following.

l Documentation for UrlScan.ini. This is available with theMicrosoft IIS documentation.

l The UrlScan.ini file.

l A text editor for creating a CML file.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 300 of 325



1. Analyzing the native configuration file and

documentation
Once you have identified an application configuration file you want to manage, the first thing to do is to
analyze the native configuration file and its documentation. Make sure that you understand the purpose
of the configuration file, all the elements in the file and the kinds of data the configuration file manages.

This tutorial uses the UrlScan.ini file. A sample is listed in "Sample UrlScan.ini file" on page 315. The
file UrlScan.ini enables systems administrators to configureMicrosoft Internet Information Services
(IIS) web server. The UrlScan.ini file consists of several sections, such as [Options], [AllowVerbs],
[DenyVerbs], [DenyHeaders], [AllowExtensions], and [DenyExtensions]. Each section allows the IIS
administrator to set different configurations to either allow or disallow certain kinds of HTTP requests
on the IIS server. These sections do not need to be in any specific order. However, the information
inside each sectionmust be ordered. For example, the [AllowVerbs] sectionmust be followed by
specific HTTP requests that are allowed to access the web site.

UrlScan.ini contains lists of strings, such as lists of verbs and file extensions, and options that take a
Boolean value of “1” for True or “2” for False.

2. Creating a CML comment block
A CML template is a simple text file namedwith the .tpl file extension. Use a text editor to create a new
text file namedUrl_Scan_ini.tpl. The .tpl extension is the typical (but optional) file extension used by
SA for CML templates.

Create a CML comment block at the top of the file with information about the template as follows:

@#############################################
# \system32\inetsrv\urlscan.ini (Windows) #
# Version 1.0 #
# Joe Author (joe_author@your_company.com) #
##############################################@

The CML comment tag uses the following syntax:

@# <one line comment>

Or

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 301 of 325



@## <comments spanning multiple lines>
<comments spanning multiple lines> #@

3. Creating CML setup instructions
The setup section instructs the parser how to interpret the CML file. The namespace, filename-key
and filename-default instructions are required for all CML files. The other instructions shown below
are optional. These instructions define whitespace handling, Boolean values, comment formats and
ordering rules.

To create the basic setup section, enter the following information after the comment block in the CML
template:

@!namespace=/security/@
@!filename-key="/test";filename-default="/c/UrlScan.ini"@
@!optional-whitespace@
@!boolean-yes-format="1";boolean-no-format="0"@
@!line-comment-is-semicolon@
@!unordered-lines@

Notice that each CML instruction tag starts with the characters “@!” and ends with the character “@”.

The following line combines two CML instructions on one line:

@!filename-key="/test";filename-default="/c/UrlScan.ini"@

This line could also be written as two separate lines as follows:

@!filename-key="/test"@
@!filename-default="/c/UrlScan.ini"@

Setup instructions

The following figure explains setup instructions.

CML Tag Description

@!namespace=/security/@ The @!namespace instruction defines the name space that will be
used by this CML template. This defines where in the database the
values used by this CML template will be stored. Each CML template
should use its own name space so names do not collide with other
template.

In this example, the name space is /security. All value sets will be
stored in this name space.

CML template setup instructions

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 302 of 325



CML Tag Description

@!filename-
key="/files/urlscan_
ini";filename-
default="/c/urlscan.ini"@

The @!filename-key instruction defines the location in the name
space where the file namewill stored. If the value starts with a “/”, it
defines a separate name space. If the value does not start with a “/”, it
will be appended to the name space defined by the @!namespace
instruction.

In this example, the default file namewill be stored in the database
under the name space “/file/urlscan-ini”.

The @!filename-default instruction defines the default path where
the native configuration file will be saved on the server. This path can
be changed using the SA Client.

In this example, when the configuration file is pushed to amanaged
server, it will be placed in /c/urlscan.ini.

Note that the path names use only forward slashes.

@!optional-whitespace@ This instruction indicates that whitespace is optional between items in
the configuration file. For example, either of the following entries
would be valid if this option is set:

Key = "value"

Key="value"

@!boolean-yes-
format="1";boolean-no-
format="0"@

This instruction defines the allowable Boolean values in the
configuration file. In this case, true is indicated with the character 1,
and false is indicated with a 0. Any other values for Booleans will not
be allowed.

@!line-comment-is-
semicolon@

Instructs the parser to ignore anything that follows a semicolon in the
configuration file. This allows comments in the native configuration
file using the semicolon before each comment.

@!unordered-lines@ Instructs the parser that the sections in the configuration file can be in
any order. If you used ordered-lines, then the configuration file
would have to conform to the order of the template.

CML template setup instructions, continued

4. Defining the [Options] section — Opening

blocks
Now you are ready to add CML instructions to the template. The first section of the UrlScan.ini file you
will model in CML is the [Options] section, which contains several options for the configuration file.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 303 of 325



In CML, if a section of information in a configuration file has more than one kind of data (data that needs
to be read differently by the CML parser), you can open “blocks” to handle each section of information
separately. Typically, you open a block in CML to define special parser rules for a section of the CML
file. The [Options] section has two “blocks” of information: the title of the section which is just
“[Options]” and all the options in that section. Since these blocks belong together, you will set them at
different levels, the first block (the title of the section) at level one, and the second block (the contents
of the section) at level two. Nesting the blocks in this manner keeps the sections within the block
together when read by the parser.

1. To define the [Options] section, enter the following lines:

@1[;optional;ordered-lines@
[Options]
@2[;unordered-lines@

2. In the UrlScan.ini file the [Options] section contains a list of key-value pairs. Use the block tag ([)
set at two levels because there are two kinds of data in this section: a heading and a list of key-
value pairs. The first level block handles the text string “[Options]” while the second level block
handles all of the key-value pairs in that section.

The following table explains how to open two block levels for the [Options] section.

CML tag Description

@1
[;optional;ordered-
lines@

The number 1 sets the first level of themultiline block.

[
The square bracket opens a new block.

optional
Indicates that this entire block is optional in the configuration file.

ordered-lines
Indicates that whatever follows this tag (the string [Options]) must come first in
the native UrlScan.ini configuration file. In other words, the title [Options] must
appear before the actual options.

[Options] The string that names the section in the native configuration file. This string will
appear in the configuration file.

@2[;unordered-
lines@

The number 2 sets the second level of the block.

[
The square bracket opens a new block, in this case a level 2 block, nested
within the previous level 1 block.

unordered lines
Indicates that the lines that follow [Options] within the block can be in any order

Marking up the start of the [Options] section

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 304 of 325



CML tag Description

in the configuration file. That is, all the key-value pairs in the [Options] section
can be in any order.

Marking up the start of the [Options] section, continued

Next, you will define all the options that can appear in the [Options] section of the configuration file.
Most of these entries use the CML replace tag, because they are simple key-value pairs that allow you
to replace a single value. The following table explains the CML for each option.

CML Tag Description

AllowDotInPath = @allow_
dot_in_path;boolean@

Note: All of the key-value pairs use some variation of the following
syntax (unless otherwise indicated):

string literal = @source;type@

The string literal defines the actual option name that will appear in the
configuration file. The source is the location in the database where the
value will be stored in the value set. The type is the type of data that
will be stored in the value set.

@allow_dot_in_path
This string defines the name space path in which to store this value.
In this example, the name space is relative, whichmeans that it will
be appended to the name space that you defined in the header of the
template (@!namespace=/security/@) and will store the value in that
name space location. That is, the value will be stored in the database
at the key /security/allow_dot_in_path.

You could also write this tag as follows:
AllowDotInPath = @/security/allow_dot_in_path;boolean@

boolean

Since the key-value pair type is Boolean, the CML type: boolean is
used. Note that since the header of this template defined the Boolean
true value as 1, when the IIS administrator sets the value set, they
would need to enter a 1 to allow dots in the path of the IIS server.

AllowHighBitCharacters =
@allow_high_bit_
characters;boolean@

Similar to the previous example, AllowHighBitCharacters is the option
that appears in the configuration file, allow_high_bit_characters is the
relative name space path, and boolean is the data type.

This IIS option allows users to choose whether or not high bit
characters are acceptable in a URL, indicated by a 1 for true and 0 for
false in the configuration file.

AllowLateScanning =
@allow_late_

Allows the IIS administrator to choose whether or not late scanning of
a URL is acceptable. Defines a name space location to store the

Marked up key-value pairs from UrlScan.ini [Options] section

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 305 of 325



CML Tag Description

scanning;boolean@ value. boolean indicates this key can be 1 for true and 0 for false in
the configuration file.

AlternateServerName =
@alternate_servername@

Defines a name space location where an alternate server name can
be stored when entered by the user or read in from a configuration file.
Since no type is specified, the default is a string type.

EnableLogging = @enable_
logging;boolean@

Allows users to turn on logging, indicated by 1 for true and 0 for false
in the configuration file.

LoggingDirectory =
@logging_directory;dir@

Allows users to choose a directory to store log files, if logging has
been turned on. The type dir indicates a directory.

LogLongURLs = @log_
long_urls;boolean@

Allows users to choose whether or not to log URLs that access the
server, specified by 1 for true and 0 for false in the configuration file.

NormalizeUrlBeforeScan =
@normalize_url_before_
scan;boolean@

Allows users to choose whether or not to normalize the URL before it
is read by the server, indicated by 1 for true and 0 for false in the
configuration file.

PerDayLogging = @per_
day_logging;boolean@

Allows users to choose to turn on per day logging, indicated by 1 for
true and 0 for false in the configuration file.

PerProcessLogging =
@per_process_
logging;boolean@

Allows users to turn on or off per process logging, indicated by 1 for
true and 0 for false in the configuration file.

RejectResponseUrl =

@reject_response_
url;string;r”(HTTP_
URLSCAN_STATUS_
HEADER)|(HTTP_
URLSCAN_ORIGINAL_
VERB)|(HTTP_URLSCAN_
ORIGINAL_
URL)”;optional@

Syntax:

string literal = @source;type;r”regular expression”;option@

reject response
String literal that defines the path where the strings will be stored in
the name space.

string
Indicates that the data type for the reject URL request is a string.

r”
This is a string range specifier that introduces a regular expression. In
this case, a range of string literals.

(HTTP_URLSCAN_STATUS_HEADER)|(HTTP_URLSCAN_ORIGINAL_
VERB)|(HTTP_URLSCAN_ORIGINAL_URL)”
The string literals (rejected URL responses) to be read by the parser:
the status header, original verb, and original URL.

optional
Indicates that this value is optional. That is, the RejectResponseUrl
optionmay be omitted from the UrlScan.ini file.

Marked up key-value pairs from UrlScan.ini [Options] section, continued

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 306 of 325



CML Tag Description

RemoveServerHeader =
@remove_server_
header;boolean@

Allows users to turn on or off the RemoveServerHeading feature.
When activated (set to 1), the reject response sent to the client will
remove the server header in themessage. This setting is indicated by
1 for true and 0 for false in the configuration file.

UseAllowVerbs = @use_
allow_verbs;boolean@

Allows users to turn on or off the UseAllowVerbs feature. When
activated (set to 1), the server will reject any request to the server that
contains an HTTP verb that is not explicitly listed in the AllowVerbs
section of the UrlScan.ini file. Indicated by 1 for true and 0 for false in
the configuration file.

UseAllowExtensions =
@use_allow_
extensions;boolean@

Allows users to turn on or off the UseAllowExtension feature. When
activated (set to 1), the server will reject any request to the server that
contains a file extension that is not explicitly listed in the
AllowExtension section of the UrlScan.ini file. Indicated by 1 for true
and 0 for false in the configuration file.

UseFastPathReject =
@use_fast_path_
reject;boolean@

Allows users to turn on or off the UseFastPathReject feature. When
activated (set to 1), the server ignores the RejectResponseUrl option
and returns a short 404 response to the client when a URL is rejected.
Indicated by 1 for true and 0 for false in the configuration file.

VerifyNormalization =
@verify_
normalization;boolean@

Allows users to turn on or off normalization of all URLs scanned by
UrlScan.ini. When activated (set to 1), the URL is normalized before
being scanned. Indicated by 1 for true and 0 for false in the
configuration file.

Marked up key-value pairs from UrlScan.ini [Options] section, continued

5. Defining the [AllowExtensions] section -

Closing a block by opening a new block
Now that you have defined all of the options in the [Options] section of the UrlScan.ini file, you are
ready to start defining the next section, [AllowExtensions]. Remember that to start the [Options]
section you had to open a two-level block to account for two levels of information— the title of the
[Options] section and its contents.

Before you can start defining the [AllowExtensions] section, you need to close the previous section by
closing the CML block. With CML, you can close a block explicitly with the “]” tag, or by opening a new
block at a higher level (specified by a lower number) or at an equal level. In this task, you will open the
new block for the [AllowExtensions] the sameway you opened a block for the [Options] section, by
starting a new level 1 block. This automatically closes the blocks opened by the [Options] section.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 307 of 325



To open a new block and define the [AllowExtensions] section:

1. After the last line of the [Options] section, enter the following to open the new block for the
[AllowExtensions] section:

@1[;optional;ordered-lines@
[AllowExtensions]
@2[;unordered-lines@

The following table explains how opening a new two level block closes the previous block.

CML Tag Description

@1
[;optional;ordered-
lines@

The number 1 opens a new level one block. Because it is a number 1 level
block, which is at a higher level than the previous block (a level two block
for the key-value pairs in the [Options] section) and equal to the level 1
block before that, it will close the two blocks that came before it.

Note that you can explicitly close a block by using the close block tag. For
example:
@2]@

[
CML block tag that opens a new block.

optional
Indicates that this entire block is optional and not required to be in the
configuration file.

ordered-lines
Indicates that whatever follows this tag (the string [AllowExtensions] has
to come first in the native UrlScan.ini configuration file. In other words, you
could not list all the options in the native file and then the title.
[AllowExtensions] has to come first. In CML, the ordered-line element
determines this order.

[AllowExtensions] The literal string that names the section in the native configuration file.

@2[;unordered-
lines@

The number 2 sets the second level of the block.

[

CML block symbol that opens a new block.

unordered lines
Indicates that all the lines that follow [AllowExtensions] within the block
can be in any order in the configuration file. That is, all the key-value pairs
in the [AllowExtensions] section can be in any order.

Starting a New Block for the [AllowExtensions] Section

2. Next, because the [AllowExtensions] section of the UrlScan.ini file can contain any list of file

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 308 of 325



extensions entered by the user, you will use a CML loop and loop target tag to instruct the parser
to read the information in this section one line at a time. Immediately after the last @2
[;unordered-lines@ text from the last step, enter the following text:

@*allow_extension;unordered-string-set@
.@.@

The following table explains the how the loop and loop target CML tags work:

CML tag Description

@*allow_
extension;unordered-
string-set@

Syntax

@<level><tag type><name>;<data type>;<options>@

The loop tag (*) will loop and read over the unordered string set listed in
the [AllowExtensions] section.

allow_extension
String that defines the path where the strings will be stored in the name
space.

unordered-string-set
Indicates that the list of strings do not have to be in any specific order.

.@.@ First ( . )

In this section, this unordered string set that the parser reads is a list of
file extensions listed in the [AllowExtensions] section that start with a
( . ) character.

@.@

Loop target tag ( . ) instructs the parser to read everything in this list that
starts with a period character.

Loop and loop target CML tags

3. Save the file.

6. Defining the [DenyExtensions] section
Next you define the [DenyExtensions] section of the UrlScan.ini file the sameway you defined the
[AllowExtensions] section. You will open a new level one block, which closes the previous block from
the [AllowExtensions] section. Then you will open a level two block from which you will instruct the
parser to read an unordered list of all file extensions beginning with a (.) that you want to block using
UrlScan.ini.

The CML for the [DenyExtensions] section looks like this:

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 309 of 325



@1[;optional;ordered-lines@
[DenyExtensions]
@2[;unordered-lines@
@*deny_extension;unordered-string-set@
.@.@

7. Defining the [AllowVerbs] and [DenyVerbs]

sections
The next two sections of the UrlScan.ini file follow the sameCML you used for [DenyExtensions] in the
previous sections. You open a first level block to close the previous block, which will also parse the
following text as an ordered line.

Then you open a second level block that reads the following list of unordered strings — in other words,
a list of verbs. In these two sections, the string instructs the parser to read the list of verbs you want to
allow into your web site and a list of verbs you want to deny access to your web site.

The CML for both of these sections is as follows:

@1[;optional;ordered-lines@
[AllowVerbs]
@2[;unordered-lines@
@*allow_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyVerbs]
@2[;unordered-lines@
@*deny_verb;unordered-string-set@
@.@

8. Defining the [DenyHeaders] section
Next you define the [DenyHeaders] section of the UrlScan.ini file, which allows you to configure IIS to
deny specific HTTP request headers.

This section is similar to the previous sections in that you open two blocks for strings. However, you
will separate the list of HTTP headers listed in the UrlScan.ini file by a colon, using a CML sequence

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 310 of 325



delimiter. Since HTTP request headers contain a colon (:), you need to use a sequence delimiter to tell
the parser to read each line in the section so when it encounters a colon (:), it will move on to the next
entry.

For example, the list of HTTP headers to be denied listed in the UrlScan.ini file might read:

Translate:
If:
Lock-Token:

Because each header request listed in the configuration file ends with a (:), you need to instruct the
parser to recognize the (:) as the end of an entry.

1. To define the [DenyHeaders] section, after the last line of the [DenyVerbs] section, enter the
following text to open the new block for the [DenyHeaders] section:

@1[;optional;ordered-lines@
[DenyHeaders]
@2[;unordered-lines@

As in previous sections, these tags open a level one block to be read as an ordered line, then they
open a second level block to be read as unordered lines.

2. Next enter the following CML loop and loop target tags to instruct the parser to read through the list
of header requests:

@*deny_header;unordered-string-set;;sequence-delimiter=":"@
@.@:

The following table describes the syntax of these two tags.

CML tag Description

@*deny_
header;unordered-string-
set;;sequence-
delimiter=":"@

*
Indicates a loop CML tag that will read through the list of strings.

deny_header
String literal that defines the path where the strings will be stored in
name spacename space.

unordered-string-set
Indicates that the list of strings can be listed in any order.

;
The first semicolon separates the two sections of the tag.

;

Loop and Loop Target Tags for the [DenyHeaders] Section

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 311 of 325



CML tag Description

The second semicolon allows you to enter the following colon ( : )
sequence delimeter without it being interpreted as a range.

sequence-delimiter=":"
Instructs the parser to read a colon ( : ) as part of the string and the
point at which tomove on to the next entry.

@.@ Loop target tag instructs the parser to store these values into the
deny_header name space location. For example: /security/deny_
header.

: The final colon (:) tells the parser that each item in this list will be
followed by a colon. That is, this character will be stored as a part of
the entry for a denied header.

Loop and Loop Target Tags for the [DenyHeaders] Section, continued

3. Save the file.

9. Defining the [DenyURLSequences] section
Define the [DenyUrlSequence] similar to the [DenyHeader] section. Open two blocks that will be read
for order and unordered strings. However, for this section you will separate the list of URL sequences in
the template with a field delimiter. The field delimiter used here will be an end of line element which
instructs the parser to stop reading an entry when it encounters the end of a line.

To define the [DenyUrlSequence] section:

1. After the last line of the [DenyUrlSequence] section, enter the following text to open the new block
for the [DenyUrlSequence] section:

@1[;optional;ordered-lines@
[DenyUrlSequence]
@2[;unordered-lines@

As in previous sections, these tags open a level one block to be read as an ordered line, then they
open a second level block to be read as unordered lines.

2. Next type the following CML loop and loop target tags to instruct the parser to read through the list
of URL sequences to be denied:
@*deny_url_sequence;unordered-string-set;;field-delimiter-is-eol@
@.@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 312 of 325



The following table describes the syntax of these tags.

CML Tag Description

@*deny_url_
sequence;unordered-string-
set;;field-delimiter-is-eol@

*
Indicates a loop CML tag that reads through the list of strings.

deny_url_sequence
String literal that defines the path where the string will be stored
in the name space.

unordered-string-set
Indicates that the list of strings can be listed in any order.

;
The first semicolon separates the two sections of the tag.

;
The second semicolon allows you to enter the following field
delimeter without it being interpreted as a range.

field-delimiter-is-eol
Instructs the parser to read the next entry up to the end of the
line.

@.@ Loop target tag instructs the parser to store these values into the
deny_url_sequence name space location. For example:
/security/deny_url_sequence.

TLoop and Loop Target Tags for the [DenyUrlSequence] Section

3. Save the file.

10. Defining the [RequestLimits] section
Defining the [RequestsLimits] is very similar to the way you defined the [DenyUrlSequence] section.
Open two blocks that will be read for order and unordered strings. But for this section, after you open
both blocks, you will use the CML replace tag to define three key-value pairs.

To define the [RequestsLimits] section:

1. After the last line of the [RequestsLimits] section, enter the following text to open the new block
for the [RequestsLimits] section:

@1[;optional;ordered-lines@
[RequestsLimits]
@2[;unordered-lines@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 313 of 325



As in previous sections, these tags open a level one block to be read as an ordered line, then open
a second level block to be read as unordered lines. Recall that by starting the new first level block,
you are closing the previous second level block from the {DenyUrlSequence] section.

2. Next, type the following CML replace tags to define the three key-value pairs found in the
[RequestsLimits] section:

MaxAllowedContentLength = @max_allowed_content_length;int@
MaxUrl = @max_url;int@
MaxQueryString = @max_query_string;int@
@1]@

The following table describes the syntax of these tags.

CML Tag Description

MaxAllowedContentLength = @max_
allowed_content_length;int@

MaxAllowedContentLength
Request limit parameter string from the
configuration file.

max_allowed_content_length
String literal that defines the path where the value
will be stored in the name space.

int
Indicates that the value to be stored is an integer.

MaxUrl = @max_url;int@ MaxUrl
Request limit parameter string from the
configuration file.

max_url
String literal that defines the path where the value
will be stored in the name space.

int
Indicates that the value to be stored is an integer.

MaxQueryString = @max_query_
string;int@

MaxQueryString
Request limit parameter string from the
configuration file.

max_query_string
String literal that defines the path where the value
will be stored in the name space.

int
Indicates that the value to be stored is an integer.

Loop and loop target tags for the [DenyUrlSequence] section

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 314 of 325



CML Tag Description

@1]@ This level one block tag closes the block.

Loop and loop target tags for the [DenyUrlSequence] section, continued

3. Save the file.

11. Placing the template in an Application

Configuration
Now that you have created the CML template for UrlScan.ini and saved it as url_scan_ini.tpl, you are
ready to do the following tasks:

l Import the template into the SA Client and validate the CML syntax. See Importing and validating a
template file.

l Add the template to an Application Configuration. See Add or Remove Templates from an
Application Configuration.

l Attach the Application Configuration to a server. See Attach an Application Configuration to a
Server or Device Group.

l Test your template by making changes and pushing them to a server. See Push Application
Configurations.

These steps are described in "CML Tutorial 1 - Creating an Application Configuration for a simple web
app server" on page 289.

Sample UrlScan.ini file
Below is a sample UrlScan.ini file.

[Options]

UseAllowVerbs=1 ; If 1, use [AllowVerbs] section, else use the

; [DenyVerbs] section. The default is 1.

UseAllowExtensions=0 ; If 1, use [AllowExtensions] section, else

; use the [DenyExtensions] section. The

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 315 of 325



; default is 0.

NormalizeUrlBeforeScan=1 ; If 1, canonicalize URL before processing.

; The default is 1. Note that setting this

; to 0 will make checks based on extensions,

; and the URL unreliable and is therefore not

; recommend other than for testing.

VerifyNormalization=1 ; If 1, canonicalize URL twice and reject

; request if a change occurs. The default

; is 1.

AllowHighBitCharacters=0 ; If 1, allow high bit (ie. UTF8 or MBCS)

; characters in URL. The default is 0.

AllowDotInPath=0 ; If 1, allow dots that are not file

; extensions. The default is 0. Note that

; setting this property to 1 will make checks

; based on extensions unreliable and is

; therefore not recommended other than for

; testing.

RemoveServerHeader=1 ; If 1, remove the 'Server' header from

; response. The default is 0.

EnableLogging=1 ; If 1, log UrlScan activity. The

; default is 1. Changes to this property

; will not take effect until UrlScan is

; restarted.

PerProcessLogging=0 ; This property is deprecated for UrlScan

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 316 of 325



; 3.0 and later. UrlScan 3.0 and later can

; safely log output from multiple processes

; to the same log file. Changes to this

; property will not take effect until

; UrlScan is restarted.

AllowLateScanning=0 ; If 1, then UrlScan will load as a low

; priority filter. The default is 0. Note

; that this setting should only be used in

; the case where there another installed

; filter is modifying the URL and you wish

; to have UrlScan apply its rules to the

; rewritten URL. Changes to this property

; will not take effect until UrlScan is

; restarted.

PerDayLogging=1 ; If 1, UrlScan will produce a new log each

; day with activity in the form

; 'UrlScan.010101.log'. If 0, UrlScan will

; log activity to urlscan.log. The default

; is 1. Changes to this setting will not

; take effect until UrlScan is restarted.

UseFastPathReject=0 ; If 1, then UrlScan will not use the

; RejectResponseUrl. On IIS versions less

; than 6.0, this will also prevent IIS

; from writing rejected requests to the

; W3SVC log. UrlScan will log rejected

; requests regardless of this setting. The

; default is 0.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 317 of 325



LogLongUrls=0 ; This property is deprecated for UrlScan 3.0

; and later. UrlScan 3.0 and later will

; always include the complete URL in its log

; file.

UnescapeQueryString=1 ; If 1, UrlScan will perform two passes on

; each query string scan, once with the raw

; query string and once after unescaping it.

; If 0, UrlScan will only look at the raw

; query string as sent by the client. The

; default is 1. Note that if this property is

; set to 0, then checks based on the query

; string will be unreliable.

RejectResponseUrl=

LoggingDirectory=Logs

[AllowVerbs]

;

; The verbs (aka HTTP methods) listed here are those commonly

; processed by a typical IIS server.

;

; Note that these entries are effective if "UseAllowVerbs=1"

; is set in the [Options] section above.

;

GET

HEAD

POST

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 318 of 325



[DenyVerbs]

;

; The verbs (aka HTTP methods) listed here are used for publishing

; content to an IIS server via WebDAV.

;

; Note that these entries are effective if "UseAllowVerbs=0"

; is set in the [Options] section above.

;

PROPFIND

PROPPATCH

MKCOL

DELETE

PUT

COPY

MOVE

LOCK

UNLOCK

OPTIONS

SEARCH

[DenyHeaders]

;

; The following request headers alter processing of a

; request by causing the server to process the request

; as if it were intended to be a WebDAV request, instead

; of a request to retrieve a resource.

;

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 319 of 325



Translate:

If:

Lock-Token:

Transfer-Encoding:

[AllowExtensions]

;

; Extensions listed here are commonly used on a typical IIS server.

;

; Note that these entries are effective if "UseAllowExtensions=1"

; is set in the [Options] section above.

;

.htm

.html

.txt

.png

.png

.png

[DenyExtensions]

;

; Extensions listed here either run code directly on the server,

; are processed as scripts, or are static files that are

; generally not intended to be served out.

;

; Note that these entries are effective if "UseAllowExtensions=0"

; is set in the [Options] section above.

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 320 of 325



;

; Also note that ASP scripts are denied with the below

; settings. If you wish to enable ASP, remove the

; following extensions from this list:

; .asp

; .cer

; .cdx

; .asa

;

; Deny executables that could run on the server

.exe

.bat

.cmd

.com

; Deny infrequently used scripts

.htw ; Maps to webhits.dll, part of Index Server

.ida ; Maps to idq.dll, part of Index Server

.idq ; Maps to idq.dll, part of Index Server

.htr ; Maps to ism.dll, a legacy administrative tool

.idc ; Maps to httpodbc.dll, a legacy database access tool

.shtm ; Maps to ssinc.dll, for Server Side Includes

.shtml ; Maps to ssinc.dll, for Server Side Includes

.stm ; Maps to ssinc.dll, for Server Side Includes

.printer ; Maps to msw3prt.dll, for Internet Printing Services

; Deny various static files

.ini ; Configuration files

.log ; Log files

.pol ; Policy files

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 321 of 325



.dat ; Configuration files

.config ; Configuration files

[DenyUrlSequences]

;

; If any character sequences listed here appear in the URL for

; any request, that request will be rejected.

;

.. ; Don't allow directory traversals

./ ; Don't allow trailing dot on a directory name

\ ; Don't allow backslashes in URL

: ; Don't allow alternate stream access

% ; Don't allow escaping after normalization

& ; Don't allow multiple CGI processes to run on a single request

Complete url_scan_ini.tpl CML template
Below is the complete url_Scan_ini.tpl template.

@#############################################
# \system32\inetsrv\urlscan.ini (Windows)    #
# Version 1.0                                #
# Joe Author (joe_author@your_company.com)   #
##############################################@

@!namespace=/security/@
@!filename-key="/test";filename-default="/c/UrlScan.ini"@
@!optional-whitespace@
@!boolean-yes-format="1";boolean-no-format="0"@
@!line-comment-is-semicolon@
@!unordered-lines@

@###########################################
# Begin data #
###########################################@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 322 of 325



@1[;optional;ordered-lines@
[Options]
@2[;unordered-lines@
AllowDotInPath = @allow_dot_in_path;boolean@
AllowHighBitCharacters = @allow_high_bit_characters;boolean@
AllowLateScanning = @allow_late_scanning;boolean@
AlternateServerName = @alternate_servername@
EnableLogging = @enable_logging;boolean@
LoggingDirectory = @logging_directory;dir@
LogLongURLs = @log_long_urls;boolean@
NormalizeUrlBeforeScan = @normalize_url_before_scan;boolean@
PerDayLogging = @per_day_logging;boolean@
PerProcessLogging = @per_process_logging;boolean@
RejectResponseUrl =
@reject_response_url;string;r”(HTTP_URLSCAN_STATUS_HEADER)|(HTTP_URLSCAN
_ORIGINAL_VERB)|(HTTP_URLSCAN_ORIGINAL_URL)”;optional@
RemoveServerHeader = @remove_server_header;boolean@
UnescapeQueryString = @unescape_query_string;boolean@
UseAllowVerbs = @use_allow_verbs;boolean@
UseAllowExtensions = @use_allow_extensions;boolean@
UseFastPathReject = @use_fast_path_reject;boolean@
VerifyNormalization = @verify_normalization;boolean@

@1[;optional;ordered-lines@
[AllowExtensions]
@2[;unordered-lines@
@*allow_extension;unordered-string-set@
.@.@

@1[;optional;ordered-lines@
[DenyExtensions]
@2[;unordered-lines@
@*deny_extension;unordered-string-set@
.@.@

@1[;optional;ordered-lines@
[AllowVerbs]
@2[;unordered-lines@
@*allow_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyVerbs]
@2[;unordered-lines@
@*deny_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyHeaders]

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 323 of 325



@2[;unordered-lines@
@*deny_header;unordered-string-set;;sequence-delimiter=":"@
@.@:

@1[;optional;ordered-lines@
[DenyURLSequences]
@2[;unordered-lines@
@*deny_url_sequence;unordered-string-set;;field-delimiter-is-eol@
@.@

@1[;optional;ordered-lines@
[RequestLimits]
@2[;unordered-lines@
MaxAllowedContentLength = @max_allowed_content_length;int@
MaxUrl = @max_url;int@
MaxQueryString = @max_query_string;int@
@1]@

Developer Guide
Application Configuration

HPE Server Automation (10.51) Page 324 of 325



Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Developer Guide (Server Automation 10.51)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to hpe_sa_docs@hpe.com.

We appreciate your feedback!

HPE Server Automation (10.51) Page 325 of 325

mailto:hpe_sa_docs@hpe.com?subject=Feedback on Developer Guide (Server Automation 10.51)

	HPE Server Automation 10.51 Developer Guide
	Legal Notices
	Contents
	Introduction
	Server Automation Platform
	Overview of the Server Automation Platform
	Components
	Benefits of the SA Platform
	SA Platform API design
	Services
	Objects in the API
	Exceptions
	Event Cache
	Searches
	Security
	API Documentation and the Twister
	Constant field values

	Supported clients
	Platform Developer Guide examples


	SA CLI methods
	Method invocation
	Security
	Mapping between API and SA CLI methods
	Differences between SA CLI methods and Unix commands
	SA CLI method tutorial
	Format specifiers
	Position of format specifiers
	Default format specifiers
	Examples of ID format specifier
	Structure format specifier syntax
	Examples of structure format specifier
	Examples of directory format specifier

	Value representation
	SA objects in the OGFS
	Object attributes
	Custom attributes
	Primitive values
	Arrays

	SA CLI method parameters and return values
	Method context and the self parameter
	Passing arguments on the command-line
	Specifying the type of a parameter
	Complex objects and arrays as parameters
	Overloaded methods
	Return values
	Exit status

	Search filters and SA CLI methods
	Search syntax
	Search examples
	Finding servers
	Finding other objects
	Searchable attributes and valid operators

	Sample scripts
	create_custom_field.sh
	create_device_group.sh
	create_folder.sh
	remediate_policy.sh
	remove_custom_field.sh
	schedule_audit_task.sh

	Getting usage information on SA CLI methods
	Listing services
	Finding a service in the API documentation
	Listing the methods of a service
	Listing the parameters of a method
	Getting information about a value object
	Determining if an attribute can be modified
	Determining if an attribute can be used in a filter query


	Python API access with Pytwist
	Setup for Pytwist
	Pytwist examples
	Virtualization Pytwist examples
	Pytwist details

	Automation Platform Extensions (APX)
	Creating an APX
	Program APXs
	Web APXs
	APX user roles
	APX permissions
	Permission escalation

	APX structure
	File structure
	OGFS integration
	APX interfaces - Defining categories of APX extensions
	Implementing an interface
	RightClickToRun interface
	CoreAffinity interface
	Using the Interface API

	apxtool command
	Syntax of apxtool
	Using short and long command options
	Creating a new APX - apxtool new
	Usage
	Deleting an APX - apxtool delete
	Usage
	Exporting an APX from SA - apxtool export
	Usage
	Importing an APX into SA - apxtool import
	Usage
	Querying APX information - apxtool query
	Usage
	Setting the current version of an APX - apxtool setcurrent
	Usage
	Error handling

	APX files
	APX configuration file - apx.cfg
	APX permissions escalation configuration file - apx.perm
	No escalation
	All permissions
	With escalation

	Showing the progress of an APX
	apxprogress command
	Syntax of apxprogress
	Example shell script that uses apxprogress
	Viewing APX progress

	Tutorial: Creating a Web application APX
	Tutorial prerequisites
	Setting permissions and creating the tutorial folder
	Creating a new web application
	Importing the new web application into SA
	Running the new web application
	Modifying the web application
	Running the modified web application

	Tutorial: Creating a program APX
	Tutorial prerequisites
	Setting permissions and creating the tutorial folder
	Creating a new program APX
	Importing the new APX into SA
	Running the new APX
	Modifying the APX
	Running the modified APX
	Viewing the APX progress in the Twister interface


	Agent Tools
	Installation requirements
	Installation
	Upgrading Agent Tools
	Agent Tools scripts
	Sample Agent Tool scripts

	Microsoft Windows PowerShell - SA integration
	Windows PowerShell integration with SA
	Integrated PowerShell/SA cmdlets
	Installation requirements
	Installation
	Microsoft Windows PowerShell integration with SA features
	Sample sessions

	Java RMI clients
	Setup for Java RMI clients
	Sample Java RMI
	Possible issue on Windows

	Web Services clients
	Programming language bindings provided in this release
	URLs for service locations and WSDLs
	Security for Web Services clients
	Overloaded operations
	Java interface support
	Unsupported data types
	Invoke setDirtyAtrributes when creating or updating VOs
	Compatibility with SA Web Services API 2.2
	Perl Web Services clients
	Required software for Perl clients
	Running the Perl demo program
	Sample Perl code
	Construction of Perl objects for Web Services

	C# Web Services clients
	Required software for C# clients
	Obtaining the C# client stubs
	Building the C# demo program
	Running the C# demo program
	Sample C# code
	Password security with C#


	Pluggable checks
	Setup for pluggable checks
	Pluggable check tutorial
	Audit and remediation
	Creating a pluggable check
	Creating the audit policy
	Document Type Definition (DTD) for config.xml file

	Search filter syntax
	Filter grammar

	Rebuilding the Apache HTTP server and PHP
	Extending the APX HTTP environment


	Application Configuration
	Managing XML configuration files
	Example: Travel manager application and XML configuration file
	Contents of the Travel Manager mysql.xml file
	Contents of the Travel Manager mysql.xml DTD-based XML file

	Non-DTD XML configuration templates
	Non-DTD XML configuration template for mysql.xml

	DTD-based XML configuration templates
	XML-DTD configuration template for mysql.xml

	Customize XML DTD element display
	Explicit versus positional display settings
	Add positional custom display settings

	Add explicit custom display settings
	Customize how elements display in the SA Client

	XML configuration template settings

	CML primer
	Terminology
	CML basic concepts
	Combining tags on one line
	Use case 1 - Simple Key=Value configuration file
	Using the Replace instruction
	Final CML template
	Resulting value set

	Use case 2 - Repeating values in the configuration file
	Using the Loop instruction tag
	Final CML
	Resulting value set

	Use case 3 - Complex repeating values in the configuration file
	Final CML
	Resulting value set

	Partial templates

	CML Reference
	Configuration templates
	CML overview
	Structure of CML tags
	Required CML tags

	Example CML template for /etc/hosts
	CML tag types
	Comment Tag: @# and @##
	Replace Tag: @
	Instruction Tags: @!
	Block (or Group) Tag: @[@...@]@
	Loop Tag: @*
	Example 2

	Loop Target Tag: @.
	Conditional Tag: @?
	DTD Tag: @~

	CML type attributes
	The ip type
	Syntax
	Description
	Syntax


	CML range attributes
	! & , – Logical operators
	n< n<= <n <=n =n – Comparison specifiers
	 – String literal specifier
	r – Regular expression specifier

	CML global option attributes
	The @!filename-key attribute
	The @!filename-default attribute
	The @!full-template and @!partial-template attributes
	The @!timeout attribute
	The @!unix-newlines and @!windows-newlines attributes

	CML regular option attributes
	The @! unordered-lines and @!ordered-lines attributes
	The unordered-elements and ordered-elements attributes
	The relaxed-whitespace and strict-whitespace attributes
	The required-whitespace and optional-whitespace attributes
	The missing-values-are-null and missing-values-are-error attributes
	The case-insensitive-keywords and case-sensitive-keywords attributes
	The reluctant attribute
	The required and optional attributes
	The skip-lines-without-values and show-lines-without-values attributes
	The skip-groups-without-values and show-groups-without-values attributes
	The sequence-append, sequence-replace and sequence-prepend attributes
	The not-primary-field and primary-field attributes
	The namespace attribute
	The boolean-no-format attribute
	The boolean-yes-format attribute
	The delimiter attribute
	The line-comment attributes
	The sequence-delimiter attribute
	The field-delimiter attribute
	The line-continuation attribute

	Use DTD tags in CML
	Example of DTD tags

	Sequence aggregation
	Sequence replace
	Sequence append
	Sequence prepend


	XML Tutorial 1 - Creating a non-DTD XML configuration template
	Sample non-DTD XML mysql.xml file
	1. Creating an XML configuration template
	2. Adding XML settings
	3. Creating an application configuration to contain the template
	4. Attaching the Application Configuration to a managed server
	5. Configuring Application Configuration settings for the server
	6. Editing values and pushing the configuration

	XML Tutorial 2 - Creating an XML-DTD configuration template
	Sample Travel Manager DTD-based XML file: mysql.xml
	Sample Travel Manager XML DTD file: mysql.dtd
	1. Creating XML-DTD template in a text editor
	2. Adding custom settings for element descriptions in the Value Set Editor
	3. Importing the XML-DTD configuration file
	4. Creating an Application Configuration object
	5. Attaching the Application Configuration to a managed server
	6. Importing values from the configuration file
	7. Editing values and push the configuration

	CML Tutorial 1 - Creating an Application Configuration for a simple web app s...
	1. Determining the configuration files to be managed
	2. Creating a template for the configuration file
	3. Creating an Application Configuration object
	4. Adding the template file to the Application Configuration object
	5. Attaching the Application Configuration object to servers
	7. Comparing the actual configuration files with the configuration template
	8. Pushing configuration changes to the server

	CML Tutorial 2 - Creating a template of a web server configuration file
	1. Analyzing the native configuration file and documentation
	2. Creating a CML comment block
	3. Creating CML setup instructions
	4. Defining the [Options] section — Opening blocks
	5. Defining the [AllowExtensions] section - Closing a block by opening a new ...
	6. Defining the [DenyExtensions] section
	7. Defining the [AllowVerbs] and [DenyVerbs] sections
	8. Defining the [DenyHeaders] section
	9. Defining the [DenyURLSequences] section
	10. Defining the [RequestLimits] section
	11. Placing the template in an Application Configuration
	Sample UrlScan.ini file
	Complete url_scan_ini.tpl CML template



	Send documentation feedback

