
Diagnostics
Version 9.30, Released December 2016

.NET Agent Guide
Published December 2016

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HPE shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data
for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2016 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Java is a registered trademark of Oracle and/or its affiliates.

Oracle® is a registered trademark of Oracle and/or its affiliates.

Acknowledgements
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see theOpen Source and Third-Party
Software License Agreements document in the Documentation directory on the product installationmedia.

Documentation Updates
The title page of this document contains the following identifying information:
l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hpe.com/group/softwaresupport/search-result?keyword=.

This site requires an HPE Passport account. If you do not have one, click the Create an account button on the HPE
Passport Sign in page.

Support
Visit the HPE Software Support website at: https://softwaresupport.hpe.com

This website provides contact information and details about the products, services, and support that HPE Software
offers.

HPE Diagnostics (9.30) Page 2 of 208

HPE Software Support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit
by using the support website to:
l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HPE support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require that you register as an HPE Passport user and sign in. Many also require a
support contract. To register for an HPE Passport ID, go to https://softwaresupport.hpe.com and click Register.

To find more information about access levels, go to:
https://softwaresupport.hpe.com/web/softwaresupport/access-levels

HPE Software Integrations and Solutions
Visit the Integrations and Solutions Catalog at https://softwaresupport.hpe.com/km/KM01702731 to explore how
the products in the HPE Software catalog work together, exchange information, and solve business needs.

.NET Agent Guide

HPE Diagnostics (9.30) Page 3 of 208

Contents
Welcome to This Guide 8

How This Guide Is Organized 8
Diagnostics Documentation 8

Part 1: Introduction 10
Chapter 1: Diagnostics .NET Agent Overview 11

About the Diagnostics .NET Agent 11
Introducing Diagnostics Profiler for .NET 11
Features and Benefits of the Diagnostics .NET Profiler 12

Part 2: Installation and Configuration of the Diagnostics .NET Agent 13
Chapter 2: Preparing to Install the Diagnostics .NET Agent 14

Requirements for the Diagnostics .NET Agent Host 14
Requirements for the Diagnostics .NET Profiler UI 15
Planning the Installation 15

Chapter 3: Installing .NET Agents 17
Overview of the .NET Agent Installation 17
Accessing the .NET Agent Installer 18
Installing the .NET Agent 19
Post Install Tasks 31
Verifying the .NET Agent Installation 32
About Configuration of the .NET Agent for Diagnostics 32
Discovery and Standard Instrumentation 32
Probe Aggregator Service 35
Monitoring NET Applications Deployed in Azure Cloud 36
Monitoring Applications on SharePoint with the .NET Agent 36
Determining the Version of the .NET Agent 37
Enabling and Disabling the Diagnostics Agent for .NET 38
Enabling and Disabling Standard Instrumentation for Applications 38
Troubleshooting .NETWeb Applications Not Discovered 40
Manually Adding an AppDomain Not Discovered 41
Other .NET Agent Troubleshooting Tips 44
Uninstalling the .NET Agent 45

Chapter 4: Upgrading the Diagnostics .NET Agent 46
Upgrade .NET Agents 46
Upgrade Notes and Limitations 46

Part 3: Advanced .NET Agent Configuration and Instrumentation 47
Chapter 5: Custom Instrumentation for .NET Applications 48

.NET Agent Guide

HPE Diagnostics (9.30) Page 4 of 208

About Instrumentation and Capture Points Files 48
Locating the .NET Capture Points Files 49
Coding Points in the Capture Points File 49
Instrumentation Examples 53
Understanding the Overhead of Custom Instrumentation 69
Managing ProbeOverhead 69
Default Layers for Typical .NET Applications 70

Chapter 6: Understanding the .NET Agent Configuration File 72
.NET Agent Configuration Elements 73

<ali> element 73
<appdomain> element 74
<bufferpool> element 76
<captureexceptions> element 77
<clientmonitoring> element 78
<consumeridrules> element 79
<cputime> element 80
<credentials> element 81
<demomode> element 82
<depth> element 83
<diagnosticsserver> element 84
<exceptiontype> element 86
<exclude> element (when parent is captureexceptions) 87
<exclude> element (when parent is lwmd) 88
<excludeassembly> element 89
<excludesqlparam> element 90
<filter> element 91
<filter> element 92
<htmlinstrumentation> element 93
<httpcaptureparams> element 94
<httpclient> element 96
<httpheaderrule> element 96
<httpheaderrules> element 98
<id> element 99
<include> element (when parent is captureexceptions) 100
<include> element (when parent is lwmd) 101
<instrumentation> element 102
<iprule> element 103
<iprules> element 104
<latency> element 105
<logging> element (when parent is appdomain, probeconfig, or process) 109
<lwmd> element 111

.NET Agent Guide

HPE Diagnostics (9.30) Page 5 of 208

<mediator> element 112
<metrics> element 113
<metric> element 114
<modes> element 116
<param> element 118
<points> element 119
<probeconfig> element 120
<process> element 121
<profiler> element 123
<rum> element 124
<sample> element 126
<server> element 127
<soapcapture> element 128
<soaprequestforsoapfault> element 129
<soaprule> element 130
<soaprules> element 131
<sqlparsing> element 132
<stacktracesampling> element 133
<symbols> element 135
<throughputthrottle> element 137
<topology> element 138
<trim> element 139
<uriautocollapsing> element 140
<urireplacepattern> element 142
<url> element 143
<vmware> element 144
<webserver> element 145
<ws> element 146
<xvm> element 147

Chapter 7: Advanced .NET Agent Configuration 148
Time Synchronization for .NET Agents Running on VMware 148
Customizing the Instrumentation for ASP.NET Applications 149
Discovering the Classes andMethods in an Application 152
ControllingWhich HPE Software Products the Agent canWork With 153
Configuring Support for MSMQBasedCommunication 155
Configuring Latency Trimming and Throttling 155
Configuring Depth Trimming 158
Configuring URI Truncation andMapping 159
Capturing HTTP Server Requests Based onQuery Parameters 160
Configuring the .NET Agent for Lightweight Memory Diagnostics 161
Limiting Exception Stack Trace Data 163

.NET Agent Guide

HPE Diagnostics (9.30) Page 6 of 208

Configuring Thread Stack Trace Sampling 165
Disabling Logging 166
Overriding the Default Probe Host Machine Name 167
Listing the Probes Running on a Host 168
Authentication and Authorization for .NET Profilers 168
Configuring Consumer IDs 169
Configuring SOAP Fault Data 172
Collecting Additional ProbeMetrics or Modifying ProbeMetrics 173
Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services 174
Configuring Support forWeb API Based Applications 175

Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture 177
About the .NET SystemMetrics Agent 177
SystemMetrics Captured by Default 177
Configuring .NET SystemMetrics Capture 178
Adding SystemMetrics Using theWindows PerformanceMonitor 180
Default Entries in the .NET Agent metrics.config File 182
Keywords in themetrics.config File 182

Part 4: Using the Profiler for .NET 185
Chapter 9: Diagnostics Profiler for .NET 186

About the .NET Diagnostics Profiler 186
How the .NET Agent Provides Data for the .NET Profiler 187
.NET Diagnostics Profiler UI Navigation and Display Controls 187
.NET Diagnostics Profiler Inactivity Timeout 188
How to Access the .NET Diagnostics Profiler 189
How to Enable and Disable the .NET Diagnostics Profiler 189
Server Requests Tab Description 190
SQL Tab Description 193
Methods Tab Description 195
Call Tree Tab Description 196
Exceptions Tab Description 199
Collections Tab Description 201
Threads Window Description 204

Send Documentation Feedback 208

.NET Agent Guide

HPE Diagnostics (9.30) Page 7 of 208

Welcome to This Guide
Welcome to the HP Diagnostics .NET Agent Guide. This guide describes how to install, configure and use the
Diagnostics .NET Agent and the Diagnostics Profiler for .NET.

The Diagnostics .NET Agent captures events such as method invocations, collection sites, and the beginning
and end of business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner, Business
Availability Center, and Performance Center and is an integrated part of HP Software's application lifecycle
solution which includes load testing, productionmonitoring, and trouble diagnosis.

The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent. The Diagnostics Profiler
for .NET provides a way for .NET development teams tomonitor the performance and diagnose issues with
applications in the development environment. HP Softwaremakes this tool available at no cost, through an
easy-to-install trial software download.

How This Guide Is Organized
This guide contains the following parts:

l "Introduction" on page 10
Provides a high level overview of the features, components, architecture, and outputs of the Diagnostics
.NET Agent and Diagnostics Profiler for .NET.

l "Installation and Configuration of the Diagnostics .NET Agent" on page 13
Describes how to install and configure the Diagnostics Agent.

l "Advanced .NET Agent Configuration and Instrumentation" on page 47
Describes advanced configuration of the .NET Agent.

l "Using the Profiler for .NET" on page 185
Describes the UI of the Diagnostics .NET Profiler, and how to use it.

Diagnostics Documentation
HPE Diagnostics includes the following documentation. Unless specified otherwise, the guides are in
PDF format only and are available from the HPE Software Support site (at https://softwaresupport.hpe.com).

l Diagnostics User Guide and Online Help:Explains how to choose and interpret the Diagnostics views
in the Diagnostics Enterprise UI to analyze your monitored applications. To access the online help for
Diagnostics, chooseHelp > Help in the Diagnostics Enterprise UI. If Diagnostics is integrated with
another HPE Software product the online help is also available through that product's Helpmenu. The
User Guide is a PDF version of the online help and their content is identical. The User Guide is available
from the Diagnostics online help Home page, from theWindows Start menu (Start > Programs > HPE
Diagnostics Server > User Guide), or from the Diagnostics Server installation directory.

l Diagnostics Server Installation and Administration Guide:Explains how to plan a Diagnostics

HPE Diagnostics (9.30) Page 8 of 208

https://softwaresupport.hpe.com/

deployment, and how to install andmaintain a Diagnostics Server.
The following Agent guides contain content that supports agent installation, setup and configuration.
l Diagnostics Java Agent Guide:Describes how to install, configure, and use the Diagnostics Java
Agent and the Diagnostics Profiler for Java.

l Diagnostics .NET Agent Guide:Describes how to install, configure, and use the Diagnostics .NET
Agent and Diagnostics Profiler for .NET.

l Diagnostics Collector Guide:Explains how to install and configure a Diagnostics Collector.
l Diagnostics System Requirements and Support Matrixes Guide:Describes the system requirements
for the various Diagnostics components.

l Release Notes:Provides last-minute new information and known issues about each version of
Diagnostics. The PDF file is also located in the Diagnostics installation disk root directory.

l Diagnostics Data Model and Query API:Describes the Diagnostics datamodel and the query API you
can use to access the data. The guide is also available from the Diagnostics online help Home page.

l Diagnostics Frequently Asked Questions (FAQ):Gives answers to frequently asked questions. The
FAQ is also available from the Diagnostics online help Home page.

.NET Agent Guide
Diagnostics Documentation

HPE Diagnostics (9.30) Page 9 of 208

Part 1: Introduction

HPE Diagnostics (9.30) Page 10 of 208

Chapter 1: Diagnostics .NET Agent Overview
This chapter introduces the Diagnostics .NET Agent and the Diagnostics Profiler for .NET by providing a high
level overview of features and components.

This chapter includes:

l "About the Diagnostics .NET Agent" below
l "Introducing Diagnostics Profiler for .NET " below
l "Features and Benefits of the Diagnostics .NET Profiler" on the next page

About the Diagnostics .NET Agent
The Diagnostics .NET Agent is installed on themachine that hosts the application that you want to monitor.
Agent installation and setup automatically discovers and provides standard instrumentation for the .NET
AppDomains you choose tomonitor.

The agent captures events such as method invocations, collection sites, and the beginning and end of
business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner, Performance
Center and BSM.

Introducing Diagnostics Profiler for .NET
The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent.

The Diagnostics Profiler for .NET provides a way for .NET development teams tomonitor the performance
and diagnose issues with applications in the development environment. HP Softwaremakes this tool
available at no cost, through an easy-to-install download.

The Diagnostics Profiler for .NET provides a strong foundation for collaborative diagnostics because it has
been built using the sameDiagnostics probe technology that is used in HP Software's load testing and
productionmonitoring products. When you use the Diagnostics .NET Profiler in the development environment
to profile applications and solve problems, you get a glimpse of the features that are included in the
Diagnostics Lifecycle Solution that enable you to solve the toughest performance problems throughout the
application’s lifecycle.

Because Diagnostics Profiler for .NET uses the same agent that other HP Software Diagnostics products
use, it is an integrated part of HP Software's application lifecycle solution which includes load testing,
productionmonitoring, and trouble diagnosis.

HPE Diagnostics (9.30) Page 11 of 208

Features and Benefits of the Diagnostics .NET
Profiler
The following table describes some of the features and benefits of the Diagnostics .NET Agent and the
Diagnostics Profiler for .NET:

Feature Description Benefit

Server Request Breakdown Identify where time is spent in an application

Layer Breakdown Identify the slowest layer

Slowest Server Requests Identify slowest server request or application entry points

Top 3 Slowest Instances Identify outliers to help diagnose intermittent problems

VM HeapUsage Identify memory problems and garbage collection issues

CollectionMemory Leak Diagnostics Identify the fastest growing and largest size collections including
the caller method that allocated the collection

Heap Breakdown including Class and
Size Information

Identify leaking objects, object growth trends, object instance
counts, and the byte size for objects

SQLDiagnostics

(Slowest SQL)

Identify the slowest SQL query and report query information

Exception Diagnostics Identify exception counts which often go undetected

Snapshot Capture all the data displayed on all the tabs into a single XML
report that can be stored or transported for later viewing and
analysis.

.NET Agent Guide
Chapter 1: Diagnostics .NET Agent Overview

HPE Diagnostics (9.30) Page 12 of 208

Part 2: Installation and Configuration of
the Diagnostics .NET Agent

HPE Diagnostics (9.30) Page 13 of 208

Chapter 2: Preparing to Install the Diagnostics
.NET Agent
This chapter provides you with the information and instructions that will help you to plan and prepare for the
installation and configuration of the Diagnostics .NET Agent.

If you are installing the agent for use in an HP AppPulse environment please refer to theHP Diagnostics .NET
Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation instructions. This
document is provided in the HP AppPulse UI for download with the agent software.

This chapter includes:

l "Requirements for the Diagnostics .NET Agent Host" below
l "Requirements for the Diagnostics .NET Profiler UI" on the next page
l "Planning the Installation" on the next page

Requirements for the Diagnostics .NET Agent Host
For details of the Diagnostics .NET Agent host requirements, see "Requirements for the Diagnostics .NET
Agent Host" in the Diagnostics System Requirements and Support Matrices Guide
(https://softwaresupport.hpe.com/km/KM02645824), located on the HPE Software Support site. Access
requires an HPE Passport login (register for an HPE Passport).

HPE Diagnostics (9.30) Page 14 of 208

https://softwaresupport.hpe.com/km/KM02645824
https://cf.passport.hpe.com/hppcf/createuser.do

Requirements for the Diagnostics .NET Profiler UI
For details of the Diagnostics .NET Profiler UI requirements, see "Requirements for the Diagnostics .NET
Profiler UI" in the Diagnostics System Requirements and Support Matrices Guide
(https://softwaresupport.hpe.com/km/KM02645824), located on the HPE Software Support site. Access
requires an HPE Passport login (register for an HPE Passport).

Planning the Installation
The .NET Agent is installed on the samemachine as the .NET application under test. The following table is
provided to help you gather the information that you will need during the installation of the .NET Agent.

Diagnostics Server Information

Information Required Where to find it Value

Mode for installing the agent Choose according to product
license.

l Profiler only (no connection to
server)

l Used only with
LoadRunner/Performance
Center (AD license)

l Enterprisemode (AM license) for
use with one of the following or
both:

l Diagnostics

Diagnostics Server Name Fully qualified host name or IP
address of the host of the
Diagnostics Server.

System Health Monitor. (See
"Using System Views for
Administrators" in the HPE
Diagnostics Server Installation
and Administration Guide.)

This is not required for using the
.NET Diagnostics Profiler in a
standalonemode.

If there is only one Diagnostics
Server in the deployment where the
agent will run, this is the
Diagnostics Server in Commander
mode.

In a distributed environment with a
commander server andmediator
servers, this is the Diagnostics
Server in Mediator mode that is to
receive the events from the agent.

Diagnostics Server Port System Health Monitor.

This is not required for using
the.NET Diagnostics Profiler in a
standalonemode.

Default value: 2612

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

HPE Diagnostics (9.30) Page 15 of 208

https://softwaresupport.hpe.com/km/KM02645824
https://cf.passport.hpe.com/hppcf/createuser.do

Agent and Port Information

Information Required Where to find it Value

agent group This is user defined at the time
that the agent is installed.

The agent group name you enter
is used as the probe group name

Probe groups are logical
groupings of probes that report to
the sameDiagnostics Server.

Default value:

Default

WebPort Min System Administrator.

The lowest port number in a range
of ports on the agent system that
can be assigned to the probe.

Default value: 35000

WebPort Max System Administrator.

The highest port number in a
range of ports on the agent
system that can be assigned to
the probe.

Default value: 35100

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

HPE Diagnostics (9.30) Page 16 of 208

Chapter 3: Installing .NET Agents
This section describes how to install a .NET Agent and gives you information about the setup and
configuration of the .NET Agent.

If you are installing the agent for use in an HP AppPulse environment please refer to theHP Diagnostics .NET
Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation instructions. This
document is provided in the HP AppPulse UI for download with the agent software.

This chapter includes:

l "Overview of the .NET Agent Installation" below
l "Accessing the .NET Agent Installer" on the next page
l "Installing the .NET Agent" on page 19
l "Post Install Tasks" on page 31
l "Verifying the .NET Agent Installation" on page 32
l "About Configuration of the .NET Agent for Diagnostics" on page 32
l "Discovery and Standard Instrumentation" on page 32
l "Probe Aggregator Service" on page 35
l "Monitoring NET Applications Deployed in Azure Cloud" on page 36
l "Monitoring Applications on SharePoint with the .NET Agent" on page 36
l "Determining the Version of the .NET Agent" on page 37
l "Enabling and Disabling the Diagnostics Agent for .NET" on page 38
l "Enabling and Disabling Standard Instrumentation for Applications" on page 38
l "Troubleshooting .NETWeb Applications Not Discovered" on page 40
l "Manually Adding an AppDomain Not Discovered" on page 41
l "Other .NET Agent Troubleshooting Tips" on page 44
l "Uninstalling the .NET Agent" on page 45

Overview of the .NET Agent Installation
The .NET Agent software is installed on themachine hosting the application you want to monitor. With the
.NET Agent you instrument the application domains for monitoring.

See "Preparing to Install the Diagnostics .NET Agent" on page 14 for .NET Agent requirements.

The .NET Agent (version 9.x) requires .NET Framework 2.0 or later. The .NET Framework must be installed
on themachine before you run the .NET Agent installation.

Note: If you need to support .NET Framework 1.1, you will need to use an earlier version of the .NET
Agent (8.x).

HPE Diagnostics (9.30) Page 17 of 208

WCF Requirements and Limitations:Monitoring .NETWindows Communication Foundation (WCF)
services requires .NET Framework 3.0 SP1 or greater. using the following transports are supported:

l HTTP
l HTTPS
l TCP
If your application uses a transport that is not supported, the .NET probe only creates a generic server request
for eachWCFmethod. It will not be aWeb Service and there will be no cross VM correlation.

The .NET Agent installer automatically detects the ASP.NET applications on the system where the agent is
installed. See "Discovery and Standard Instrumentation" on page 32.

The installer configures the agent to capture basic workload and events for each of the ASP.NET applications
detected. The agent configuration is controlled using the probe_config.xml file. See "Automatic
Instrumentation and Configuration for Discovered ASP.NET Applications" on page 33.

The .NET agent uses points files to provide standard instrumentation to enable you to start monitoring
applications. The points files control the workload the agent captures for the application. See "Custom
Instrumentation for .NET Applications" on page 48. See "Enabling and Disabling Standard Instrumentation for
Applications" on page 38.

The following points files are installed and enabled to provide instrumentation for monitoring ASP.NET
applications:

l ASP.NET.points
l ADO.points
l WCF.points
The following points files can be used for instrumenting applications that use other Microsoft technologies:

l Remoting.points (for .NET remoting environments)
l msmq.points (for MSMQ environments)
l LWMD.points (for analysis of memory used by collections in applications)
Separate instrumentation points files are created for each IIS installed ASP.NET application domain detected
and named <AppDomain>.points files). The probe_config.xml file contains an <appdomain> element for
each of the detected ASP.NET applications. And each <appdomain> element contains an instrumentation
points file reference. The .NET Agent uses this runtime instrumentation to capturemethod latency information
from specified applications.

Note: If there is a pre-existing installation of the .NET Agent on the host machine see "Upgrade .NET
Agents" on page 46 for important instructions on how to upgrade the agent systems.

See "Accessing the .NET Agent Installer" below to begin.

Accessing the .NET Agent Installer
You can launch the .NET Agent installer a number of different ways. You can install the .NET Agent from the
Diagnostics installation disk or the BSM installation disk or from the Downloads page in BSM. You can install
the software from the SSOPortal. And if you want to install a trial version of the HP Diagnostics Profiler for
.NET you can launch the installer from the HP SoftwareWeb site download center.

Note: If you are installing the agent for use in an HP AppPulse environment please refer to theHP

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 18 of 208

Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation
instructions. This document is provided in the HP AppPulse UI for download with the agent software.

To access the Installer from a Diagnostics installation location:

l From the Diagnostics Installation DVD (Autorun.exe) the installationmenu page is displayed. From the
menu, select Diagnostics Agent for .NET 64-bit to launch the install for the 64-bit version of the .NET
agent.

l You could run the appropriate installer directly by locating the executable fileHPDiag.NETAgt_<release
number>_win64.msi in the location you install from and copying the file to the new installation location
and then double-clicking it to run the installer.

Continue with "Installing the .NET Agent" below.

To download the installer from the HP Software Download Center:

1. Access the SSO portal at https://softwaresupport.hpe.com using your HPE Passport login.
2. Locate the Diagnostics downloads and choose the appropriate link for downloading the Diagnostics

.NET Agent software. Note that you could also use the download center in order to get the Diagnostics

.NET profiler trial/evaluation software.
3. Continue with "Installing the .NET Agent" below.

Follow the download instructions on the web site.
To download the Installer from BSM’s Diagnostics downloads page:

1. InBSM, either select Admin > Diagnostics from themainmenu and click theDownloads tab. Or
select Admin > Platform from themainmenu and click theSetup and Maintenance tab.

2. On the Downloads page, click the appropriate link to download the .NET Agent installer for 64-bit
Windows.

Note: The .NET Agent installers are available in BSM if put into the required directory for BSM to access.
You can enable this during the installation of the Diagnostic Server, or you can copy the .NET agent
installers manually from the Diagnostics installation disk to the required location.

Continue with "Installing the .NET Agent" below.

To launch the installer for HP Diagnostics Profiler for .NET trial software from the HP Software Trial
Software Download Web site:

1. Go to the HP SoftwareWeb site’s Download Center.
2. In theQuick Search section, in theProducts list, click Diagnostics and click Search.
3. Under Trial Software, select the appropriate link.
4. Follow the download instructions on the web site.
Continue with "Installing the .NET Agent" below.

Installing the .NET Agent
This section provides detailed instructions for a first time installation of the .NET Agent. If there is a pre-
existing installation of the .NET Agent on the host machine see "Upgrading the Diagnostics .NET Agent" on
page 46 for important instructions on how to upgrade the agent systems.

Caution: If themachine on which you are installing the .NET Agent already has a non HP monitoring or

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 19 of 208

https://softwaresupport.hpe.com/

profiling tool installed on it, the .NET Agent setup program detects this installation and provides the
following options:

l To cancel the .NET Agent installation so that you canmanually uninstall the other tool and then restart
the .NET Agent installation.

l To continue with the .NET Agent installation. Note that having both the HP Diagnostics .NET Agent
and a non HP monitoring or profiling tool installed on the samemachinemay result in the following:
l Should you decide to uninstall the other (non HP)monitoring or profiling tool after installing the
.NET Agent, this may adversely affect the .NET Agent and if so, requires running theEnable
.NET Agent option from Startmenu.

l The other (non HP)monitoring or profiling tool may not function correctly.

Note: If you are installing the agent for use in an HP AppPulse environment please refer to theHP
Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for installation
instructions. This document is provided in the HP AppPulse UI for download with the agent software.

The .NET Agent installation process includes the following steps (select "Step 1. End user license
agreement" below to begin):

"Step 1. End user license agreement" below

"Step 2. Specify install location" below

"Step 3. Select installation options" on the next page

"Step 4. Specify RUM Integration Settings" on page 22

"Step 5. Select agent features to install" on page 24

"Step 6. Agent name and group" on page 24

"Step 7. Diagnostics server information" on page 26

"Step 8. Port and connection information" on page 28

"Step 9. Pre-install summary" on page 29

"Step 10. Additional Setup for Agents Working in an HPE SaaS Environment" on page 29

"Step 11. Post Install Information" on page 31

"Step 12. Restart IIS" on page 31

Step 1. End user license agreement

Accept the end user license agreement. Read the agreement and select I accept the terms of the License
Agreement.

Click Next to proceed and continue to the next step.

Step 2. Specify install location

Provide the location where you want the Agent installed.

By default, the Agent is installed inC:\MercuryDiagnostics\.NET Probe. This location becomes the
<probe_install_dir>.

Accept the default directory or click Browse to select a different directory.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 20 of 208

Note: The installation locationmust end with \.NET Probe. If you select a path that does not end with
such a directory, the installer adds \.NET Probe to the selected path.

Click Next to proceed and continue to the next step.

Step 3. Select installation options

Indicate if the .NET Agent is to be installed as a standalone Profiler without any connection to a server (for
example if you are installing the Diagnostics .NET Profiler trial software), or if you are installing the agent to
work for LoadRunner/Performance Center or to work with a Diagnostics Server and/or RUM Client Monitor.

Make the selection that is appropriate for the environment where you will be using the agent.

l Diagnostics Profiler Mode:Select this option to install the agent as a Diagnostics .NET Profiler without
any connection to a Diagnostics server. This is typically selected when installing the Diagnostics .NET
Profiler trial software prior to purchasing the HP Diagnostics product.
If you select Diagnostics Profiler Mode option, the value of the probe_config.xml <modes> element is
set to promode at the time you install the .NET Agent (see "<modes> element" on page 116).

l Diagnostics Mode for LoadRunner/Performance Center (AD License):Select this option to install the
agent for use with a Diagnostics Server in a load testing (or pre-production) environment where probes are
used only in LoadRunner or Performance Center runs.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 21 of 208

The advantage of running a probe in AD mode is that probes in AD mode are only counted against your
Diagnostics AD license capacity when in a LoadRunner or Performance Center run. For example if you
have 20 probes installed in LoadRunner/Performance Center AD mode but only 5 in a run, then only 5 are
counted against your AD license capacity.

In ADmode the agent will ONLY capture data during a LoadRunner or Performance Center run and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21. When
the agent is in AD mode it will not use resources or send any data to the server unless the probe is part of a
LoadRunner/Performance Center run.
If you select this AD License option, the value of the probe_config.xml<modes> element is set to ad
mode at the time you install the .NET Agent (see "<modes> element" on page 116).
See the chapter "Licensing HP Diagnostics" in the HPE Diagnostics Server Installation and
Administration Guide for more information.

l Diagnostics Mode with SaaS-hosted mediator on HPE premise (AM License):Select this option to
install the agent to work in a SaaS environment where the .NET agent will connect to an HPE SaaS server
on-premise at HPE. An HP SaaS administrator will provide you with information on connecting the .NET
agent to an HPE SaaS hosted Diagnostics mediator server.

l Application Management/Enterprise Mode (AM License):Select this option to install the agent for use
with a Diagnostics Server in an enterprise (or production) environment and/or RUM Client Monitor.
Then indicate which of the following the agent will be configured for:
l A Diagnostics Server (installed locally)

l RUMClient Monitor
Enables the integration between Diagnostics and Real User Monitor (RUM).

For those agents with Enterprisemode set, the agent will be counted against your HPE Diagnostics AM
license capacity.

Click Next to proceed and continue to the next step

Step 4. Specify RUM Integration Settings

This step is skipped if the RUMClient Monitor check box is not selected in "Step 3. Select installation
options" on the previous page.

Enter the configuration information for the RUMClient Monitor JavaScript snippet.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 22 of 208

l RUM Client Monitor JavaScript file URL:Enter the full URL path to the source file containing the RUM
Client Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it on the
.NET IIS Application Server in the root directory of the web application which is beingmonitored.

l RUM Client Monitor Probe HTTP URL:Enter the URL of the RUM Browser Probe to which the
monitored client data is sent. The format for the URL is: <protocol>://<host>:<port>/hpclientmon/data

l RUM Client Monitor Probe HTTPS URL:Enter the URL of the RUM Browser Probe to which the
monitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

Click Next to proceed and continue to the next step.

Note: For details on the RUMClient Monitor-Diagnostics integration, including how to configure these
settings manually, refer to the RUMClient Monitor-Diagnostics Integration Guide located on the HP
Software Support site. Access requires an HP Passport login (register for an HP Passport).

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 23 of 208

http://h20229.www2.hp.com/passport-registration.html

Step 5. Select agent features to install

Select the .NET Agent features you want to install.

l Metrics Agent: It is recommended that you install theMetrics Agent, which is checked by default. But if
you do NOT want to capture systemmetrics on the host machine you can uncheck theMetrics Agent
box. See "About the .NET SystemMetrics Agent" on page 177 for more information.

l Probe Aggregator: It is recommended that you install the Probe Aggregator Service, which is checked by
default.
If you are installing the agent to work in an HPE SaaS environment this option is required for SaaS and
cannot be changed.
This Probe Aggregator service aggregates .NET Agent data to 5 second intervals before sending the
performance data to the Diagnostics mediator server. This can improve scalability by reducing network
communications with the server but the aggregator will also increase probe system overhead.See "Probe
Aggregator Service" on page 35 for more information on the performance tradeoffs to installing the Probe
Aggregator.

l Disk Cost: To check the amount of available disk space on the drives of the host, click theDisk Cost
button. Use this functionality to make sure that there is enough room for the Agent installation.

Click Next to proceed and continue to the next step.

Step 6. Agent name and group

Skip this step if the agent won’t be reporting to a Diagnostics Server.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 24 of 208

Enter the Agent Name and Agent Group Name.

l Agent Name: The name that identifies the agent within HP Diagnostics. If you leave this field blank, the
.NET Agent will auto-generate an agent name based on the application domain name of themonitored
application. The agent name is assigned as the probe entity name.

Note: It is recommended that you leaveAgent Name blank and allow the agent to auto-generate the
agent name. Read the following information carefully if you decide to enter your own agent name.

Note that Diagnostics does not support localization of agent names.
Considerations when entering an agent name:
l Valid characters that can appear in the agent name are: letters, digits, dashes, underscores, and
periods.

l Assign an agent name that will help you recognize the application that is beingmonitored, and the type
of instrumentation.

For example, the agent name for the .NET Agent installed tomonitor the application named PetWorld
can be:

PetWorld_Dotnet_Agent

l When you specify an agent name, all of the agents on the host are forced to use the same agent name.
The default agent name auto-generated by the agent when the agent name field is left blank is
equivalent to specifying $(MACHINENAME)_$(APPDOMAIN).NET.
To override the default name, use the following substitutionmacros to enhance the name at run time:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 25 of 208

o $(MACHINENAME):Machine’s host name
o $(APPDOMAIN): Application’s domain name
o $(SERVICENAME): Service name (for application running as aWindows service)
o $(PID): Application’s process ID
o $(WEBSITENAME): The IIS Web site under which the application is hosted.
o $(COMMANDLINE:n)Where n is the command line parameter number.

For example: +
<id probeid=”ILTEST_$(COMMANDLINE:3)_rest” probegroup=”Default”/>

with a command line of iltest “heart and lung” -abc server results in a probeid of ILTEST_
server_rest.

Note that n=0 indicates the executable/command name.

Note: For applications that are not hosted in IIS the agent namewill be reverted to the default, that is,
$(MACHINENAME)_$(APPDOMAIN).NET. An example of this would be console applications.

For newly installed IIS applications youmay need to runRescan ASP.NET ApplicationsorRun HP
.NET AppScanner from the HP Diagnostics .NET Agent program group in theWindows Start menu.

l Agent Group Name:Enter a name for an existing group or for a new group to be created. The default
value for the agent group name is Default. The agent group name is case-sensitive. In Diagnostics this
name is used as the probe group name.
Probe groups are logical groupings of probes that report to the sameDiagnostics Server. The performance
metrics for a probe group are tracked, and can be displayed onmany of the Diagnostics views.
For example, you could assign all of the probes for a particular enterprise application to a single probe
group so that you canmonitor both the performance at the group level and the performance based on
individual probe entities.

l Profiler Admin Password:Enter the admin user password used to connect to the .NET Diagnostics
Profiler. If left blank, the default password (admin) is set.

Click Next to proceed and continue to the next step.

Step 7. Diagnostics server information

Skip this step if the agent won’t be reporting to a Diagnostics Server or if you are installing the agent to work in
an HPE SaaS environment. Your HPE SaaS administrator will provide details for configuring communication
between the agent and the SaaS-hosted Diagnostics Server.

Provide the information needed to enable the .NET Agent to communicate with the Diagnostics Server in
Mediator mode.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 26 of 208

If you selected to install the Probe Aggregator Service, you will see the Probe Aggregator Data Port instead of
the Diagnostics Server Data Port and Probe Aggregator Metric Port instead of Diagnostics Server Metric Port.

Enter the following information:

l Diagnostics Server (Name or IP address): The host name or IP address of the host for the Diagnostics
Server in Mediator mode.
Specify the fully qualified host name, not just the simple host name. In amixedOS environment, where
UNIX is one of the systems, this is essential for proper network routing.

l Diagnostics Server Data Port: The port number where the Diagnostics Server is listening for Agent
communication. The default port number is 2612. If you changed the port since the Diagnostics Server
was installed, specify that port number here instead of using the default.
If you selected to install the Probe Aggregator Service, you will see theProbe Aggregator Data Port box
instead of for the Diagnostics Server data port. Type in the port number where the Diagnostics mediator
server is listening for the Agent communication when probe aggregation is installed. The default port
number is 2626. If you changed the port since the Diagnostics Server was installed, specify that port
number instead of using the default.

l Diagnostics Server Metric Port: The port number where the Diagnostics Server is listening for
communications from the SystemMetrics Agent. The default port number is 2006. If you changed the port
since the Diagnostics Server was installed, specify that port number here instead of the default.
If you selected to install the Probe Aggregator Service, you will see theProbe Aggregator Metric Port
box instead of for the Diagnostics Server metric port. Type in the port number where the Diagnostics
mediator server is listening for the Agent communication when probe aggregation is installed. The default
port number is 45000. If you changed the port since the Diagnostics Server was installed, specify that port
number instead of using the default.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 27 of 208

l To perform a connectivity check tomake sure that the Diagnostics Server is running and accessible from
the installation host, click Test.
The connectivity check lets you know right away if youmade an error in the information you provided about
the Diagnostics Server in Mediator mode, or if there is a connection problem between the Diagnostics
Server’s host and the Agent’s host. If the connection to the Diagnostics Server in Mediator mode host
cannot be resolved, an error message is displayed.

Click Next to proceed and continue to the next step.

Step 8. Port and connection information

Provide theWeb port range for the .NET Agent to use.

l Minimum Web Port: The lowest port number, in a range of ports on the Agent host, you want to assign to
the Agent.

l Maximum Web Port: The highest port number, in a range of ports on the Agent host, you want to assign
to the Agent.

The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of theWeb Port Range are defined by theMinimum Web Port andMaximum
Web Port fields. TheWeb Port Range contains the ports the Agent can use.

When an Agent is started, it attempts to find an unused port from within this range, starting from the lowest
port number in the range and working its way up to the highest. Ports within the range could already be in use if
another Agent or application previously claimed them.

Theminimum size for the port range is equal to themaximum number of Agents that will be concurrently
running on the Agent’s host.

Considerations when setting the Web Port Range:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 28 of 208

l If the Agents are working with ASP.NET applications, double the number of ports to account for
ASP.NET’s AppDomain recycling.

l If you have a firewall between the Agent and a component that will be communicating with the Agent, open
the firewall for the ports within the range. Adjust the range to be just big enough.

Click Next to proceed and continue to the next step.

Step 9. Pre-install summary

The pre-installation summary screen opens. Click Back to make any changes. Click Install to start the .NET
Agent installation.

Note:When installing the agent for use as a Profiler only, there is no test for Metric Port connectivity.

If you are installing the agent to work in an HPE SaaS environment continue to Step 10 otherwise skip the
next step and continue to Step 11.

Step 10. Additional Setup for Agents Working in an HPE SaaS Environment

If you are installing the agent to work in an HP SaaS environment then the SaaS Setupmodule starts
automatically or you can run the SaaS Setupmodule anytime by selectingStart > All Programs > HPE
Diagnostics .NET Probe > SaaS Setup.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 29 of 208

In the SaaS Setupmodule the following dialog box is displayed. If you are not setting up the agent for an HPE
SaaS environment then you will not see this dialog box.

l Diagnostics Server Connectivity: In an HPE SaaS environment the Diagnostics Server is setup by
HPE on a system on-premise at HPE.

l Diagnostics Server Port: The default port for a SaaS environment is 443. An HPE SaaS administrator
will provide you with the information on the Diagnostics Server host name and port to use.

l If a proxy server is used to communicate with the Diagnostics Mediator Server select Use Proxy Server
to connect to Diagnostics Server check box and enter the appropriate options. In an HPE SaaS

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 30 of 208

environment if your company requires a proxy to communicate to outside servers then you would select
this option.
l Proxy Server Name:Host name of the proxy server.

l Proxy Server Port:Port of the proxy server.

l Proxy Server Username (optional): The user used to authenticate the proxy server.

l Proxy Server Password (optional): The password used to authenticate the proxy server.

l Password: The password is automatically set to the same password as the .NET Profiler Admin
password, so for an initial agent setup for SaaS you will not see this field. If you want to subsequently
change the password, run the SaaS Setupmodule again and this field will be displayed.

Click Finish to save the information and close the dialog box.

Step 11. Post Install Information

On the final installation screen, you can select the Show theWindows Installer Log checkbox to view the log
file and check for errors.

Click Finish to exit the installer.

For information on post installation tasks see "Post Install Tasks" below.

When you are ready youmust restart IIS, see the next step.

Step 12. Restart IIS

Restart IIS or theWeb publishing service to pick up the new agent configuration.

l To restart IIS from the command line or from theStart > Runmenu, type iisreset and press Enter.
l To restart theWeb publishing service, use the Service Control Manager onWindows
(%windir%\system32\services.msc).

For Diagnostics these commands restart theWeb publishing service but do not immediately start
the.NET Agent. The next time that aWeb page in the application is requested, the agent is started, the
applications are instrumented, and the agent registers with the Diagnostics Server.

Note: ASP.NET automatically restarts applications under various circumstances, including when it
detects that applications are redeployed, or when applications exceed the configured resource
thresholds.

When ASP.NET restarts an application that is beingmonitored by a .NET Agent, the agent is deactivated
and a new agent is started. While this is occurring, there can be a period of overlap where there are
multiple agents simultaneously registered with the Diagnostics Server in Commander mode and
connected to the Diagnostics Server in Mediator mode. This condition could cause LoadRunner /
Performance Center and BSM to report errors during the application restart sequence.

Continue with the next section to learnmore about post installation tasks.

For information on verifying the installation see "Verifying the .NET Agent Installation" on the next page.

Post Install Tasks
See the following topics for information about additional configuration for the .NET Agent:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 31 of 208

l For information on how the .NET Agent automatically discovers applications and configures standard
instrumentation to allow monitoring see "Discovery and Standard Instrumentation" below.

l For information on configuring the .NET Agent for Diagnostics and for links tomore advanced topics see
"About Configuration of the .NET Agent for Diagnostics" below.

l "Enabling and Disabling Standard Instrumentation for Applications" on page 38 for more information.
l For information on configuration for environments with proxies or firewalls, see the "Configuring for HTTP
Proxy and Firewalls" chapter in the HP Diagnostics Installation and Configuration Guide.

l For information on enabling HTTPS, see the "Enabling HTTPS Between Components" chapter in the HP
Diagnostics Installation and Configuration Guide.

Verifying the .NET Agent Installation
On the final installation screen you can select theShow the Windows Installer Log checkbox to view the
log file and check for errors.

Log files are created in <probe_install_dir>/log. A log file is created for each discovered AppDomain.

The .NET probe does not register with the Diagnostics Server until the probe is started. The probe is started
and registered with the Server when the instrumented application is run. For ASP.NET applications this
happens the first time a page is requested for the instrumented application.

Once a .NET probe is started you can launch the Diagnostics Enterprise UI to verify that the probe is working.
Access the System Health view to see details about each .NET probe and themachines that host them. See
"How to Access the Diagnostics UI" in the Diagnostics Help system or the HPE Diagnostics User Guide.

About Configuration of the .NET Agent for
Diagnostics
You can customize the .NET Agent configuration and add custom instrumentation to suit your environment
and the performance issues you would like to diagnose.

The installer configures your ASP.NET applications and the .NET Agent to work together to capture the basic
workload of the applications. It is possible that one or more of your ASP.NET applications was deployed in a
manner that prevents the installer from detecting it. Or, youmight want to enhance the standard
instrumentation to capture the performancemetrics for the custom classes in the application.

In Diagnostics, you can do additional configuration using the probe_config.xml file. For details on this file
see "Understanding the .NET Agent Configuration File " on page 72. For instructions on advanced .NET
Agent configuration, see "Advanced .NET Agent Configuration" on page 148.

Also in Diagnostics, you can create custom instrumentation points to handle unique situations in your
application environment. For general information on custom instrumentation see "Custom Instrumentation for
.NET Applications" on page 48.

Discovery and Standard Instrumentation
The .NET Agent installer automatically discovers the ASP.NET applications youmight want to instrument.
After you install the .NET Agent, you can request that the agent rescan your IIS configuration to catch any
additions or changes.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 32 of 208

Discovering ASP.NET Applications During Installation

The .NET Agent installer detects ASP.NET applications on themachine when the agent is installed. The
.NET Agent installer discovers applications by inspecting the IIS configuration and looking for virtual directory
entries that might refer to ASP.NET applications.

In some instances, the ASP.NET applications are installed in amanner that prevents them from being
detected. An example is when an ASP.NET application is installed as aWeb directory instead of a virtual
directory.

Discovering ASP.NET Applications After Installation

You can request a rescan of the IIS configuration if youmodified an existing ASP.NET application deployment
or installed new ASP.NET applications. You can use one of the following options:

l To rescan the IIS configuration and automatically update the probe_config.xml file, select Start > All
Programs > HP Diagnostics .NET Probe > Rescan ASP.NET Applications.

l To rescan the IIS configuration andmanually select the applications and services to bemonitored, All
Programs > HP Diagnostics .NET Probe > Run HP .NET AppScanner. For details of this option, see
"Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services" on page 174.

Automatic Instrumentation and Configuration for Discovered ASP.NET Applications

The .NET Agent installer configures the agent to capture basic ASP.NET/ADO/WCF workload for each of the
ASP.NET applications detected. The agent performs the following configuration steps:

l Creates an application-specific capture points file template.
The capture points file defines the instrumentation that controls the workload that the agent captures for
each application. You canmodify the instrumentation in the capture points file to provide instructions that
allow the agent to capture performance data for application-specific custommethods. See "About
Instrumentation and Capture Points Files" on page 48.

l Creates an <appdomain> tag in the probe_config.xml file, which is located in the <probe_install_
dir>/etc directory. The attributes of the <appdomain> tag direct the behavior of the .NET Agent (points
and enabled attributes). See "Understanding the .NET Agent Configuration File " on page 72 for details.

Note: Diagnostics enables the instrumentation for all discovered applications by setting the
enablealldomains attribute in the process tag to "true", which overrides the appdomain tag’s enabled
attribute. For information on enabling and disabling instrumentation for applications see "Disabling
Logging" on page 166.

Population of BSM's RTSM

Diagnostics populates CIs andmodel relationships in the BSMRun-time ServiceModel (RTSM) for
application infrastructure elements and business transactions.

For CI population the .NET Agent installer automatically discovers the IIS configurationmetadata for
ASP.NET applications that are deployed under IIS versions 6.x or greater. The discovered IIS configuration
metadata is written to the iis_discovery_data.xml file which is located in the <probe_install_dir>\etc
directory. After you have installed the .NET Agent, you can request that the agent re-scan your IIS
configuration to update for any additions or changes.

l Runtime Population CIs for IIS Deployed ASP.NET Applications
At runtime the .NET Agent queries the iis_discovery_data.xml file for IIS configurationmetadata
associated with the instrumented AppDomain. If the associatedmetadata is found, the agent forwards the
data to its Diagnostic Server which populates the BSMRun-time ServiceModel CIs for .NET Application.
See integration with the BSMRun-time ServiceModel model for .NET Applications.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 33 of 208

l Discovery of IIS Metadata of IIS Deployed ASP.NET Applications During Installation
The .NET Agent installer discovers IIS deployed ASP.NET applications on themachine when the agent is
installed. The .NET Agent installer discovers applications by querying theWMI (WMEB) Provider for the
IIS configurationmetadata. The pertinent metadata is written to the iis_discovery_data.xml file.

l Discovery of IIS Metadata of IIS Deployed ASP.NET Applications After Installation
Youmust request a re-scan of the IIS configurationmetadata when you havemodified an existing
ASP.NET application deployment or installed new ASP.NET applications. To request that the agent re-
scan the IIS configuration and write a new iis_discovery_data.xml file, runStart > HP Diagnostics
.NET Probe > Rescan ASP.NET Applications shortcut. Note that the new iis_discovery_data.xml file
is not intended for editing by the user; any such user edits will be overwritten by executing this shortcut.

l Privilege Requirements for Discovery of IIS Deployed ASP.NET Applications
The user must have Administrator privileges on themachine that the .NET Agent is installed on, otherwise
theWMI queries will fail and the iis_discovery_data.xml file will not be created.

l Debugging the Discovery of IIS Deployed ASP.NET Applications
If the iis_discovery_data.xml file is not created or there is any reason to suspect that some of its
metadatamay be inaccurate, you can enable the creation of a detailed debug file to examine the results of
theWMI queries. To enable the creation of a detailed debug file. change last parameter of the Target
Property for theStart > HP Diagnostics .NET Probe > Rescan ASP.NET Applications shortcut from
"false" to "true". When the Rescan ASP.NET Applications shortcut is executed, an <probe_install_
dir>/log/AutoDetect.log is created. Note that you should have Administrator privileges when executing
this shortcut. You can send theAutoDetect.log to HP Support for analysis.

For information about setting up the integration with BSM/APM, see the APM-Diagnostics Integration Guide.

Non ASP.NET Applications

The .NET Agent installation automatically discovers your ASP.NET applications, creates settings for the
applications in the probe_config.xml, and creates template points file for them. For each non-ASP.NET
application—for example, NT Service, console application, UI client—youmust create the appropriate
settings in the probe_config.xml settings to configure the .NET Agent to monitor your applications as well as
create points files indicating which points in your application you want to monitor.

The following is an example of a probe_config.xml setting for an application called
SimpleConsoleHost.exe:

<process name="SimpleConsoleHost">
<points file="SimpleConsoleHost.points"/>
<logging level=" "/>

</process>

The following is an example of points file setting for an application called SimpleConsoleHost.exe:

[SimpleConsoleHost]
class = MyNamespace.SimpleConsoleHost
method = !.*
ignoreMethod = Main
layer = SimpleConsoleHost

See "Custom Instrumentation for .NET Applications" on page 48 for more details.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 34 of 208

Note: Tomonitor services, use the .NET Application Scanner utility. For details, see "Manually Enabling
Auto-Discovered ASP.NET Applications and Non ASP.NET Services" on page 174.

Probe Aggregator Service
The Probe Aggregator Service can optionally be installed as part of the .NET Agent installation. It runs as a
Windows Service, HP Probe Aggregator.

The Probe Aggregator Service aggregates probe data to 5 second intervals before sending the performance
data to the Diagnostics mediator server. This is useful when the volume of data collected based on
instrumentation of multiple applications is high and networking traffic would be too great if not aggregated.

The basic .NET Agent installation, without the Probe Aggregator Service, results in performance data being
sent to the Diagnostics mediator server as method starts and stops occur.

There are performance trade-offs to using the Probe Aggregator Service. So youmust assess the
requirements in your environment. For example, consider using the probe aggregator when you have two or
more .NET probe instances running on the same system. Actual network overhead is dependent on the
applications beingmonitored, so you need to determine if the potential savings in network bandwidth and
mediator load offsets the increasedmemory usage on the application system.

When you install the .NET Agent with the Probe Aggregator Service, this service runs automatically and waits
for connections from the .NET probes. Standard configuration of the probe aggregator is done during the .NET
Agent installation. The <probe_install_dir>\ProbeAggregator\etc\probeaggregator.properties file is used
to set configuration parameters for the Probe Aggregator (for example, setting the SQL trending threshold).

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 35 of 208

If you decide, post installation, to install the Probe Aggregator Service you can run the .NET Agent installation
again, selecting theChange button. Then select the check box for installing theProbe Aggregator Service.

Uninstalling the .NET Agent also removes the Probe Aggregator Service.

See "Enabling and Disabling the Diagnostics Agent for .NET" on page 38 for how to disable and enable the
Probe Aggregator Service.

Monitoring NET Applications Deployed in Azure
Cloud
Microsoft provides Windows Azure SDK for developers to create and deploy Azure applications to the
Microsoft Windows Azure Cloud Infrastructure. The Diagnostics .NET Agent leverages the Azure SDK to
provide seamless deployment of the .NET Agent into the Azure Infrastructure. Once deployed the .NET Agent
monitors applications running in the Azure Cloud, collecting performance data and reporting to an HP
Diagnostics Server for analysis and problem detection. See theAzurePackReadMe.pdf in the .NET Agent
AzurePack zip file for details on installing and configuring the .NET Agent for monitoring applications in the
Windows Azure Cloud.

Monitoring Applications on SharePoint with the
.NET Agent
SharePoint is a web application that runs on ASP.NET and therefore the .NET Agent monitors it like any other
ASP.NET-based web application. For instance, the .NET agent collects metrics that allow you to see:

l Web services. All calls toWeb services that are serviced in themonitored SharePoint environment, or
any Web services that are called from within the SharePoint environment, are captured.

l Server Requests. All incoming HTTP server requests to the SharePoint Server are captured.
l SQL statements. All outgoing database calls made in the SharePoint applications are captured.
You can perform additional configurations to further support monitoring of SharePoint by the .NET Agent as
described below.

Note that SharePoints sites with virtual directories of the same name (AppDomain name) are distinguished by
the full IIS path in the AppDomain\Probe Name and can be configured separately in the probe_config.xml
file.

l Monitor SharePoint Web Parts with custom instrumentation by discovering points using the Reflector.
See "Discovering the Classes andMethods in an Application" on page 152.

l Monitor the SharePoint SQL Server with a Diagnostics Collector. SharePoint Servers typically use one or
more instances of SQL Server databases to store configuration and data. Install and configure a Collector
to monitor each instance of these databases.
See the HPE Diagnostics Collector Guide.

l Monitor SharePoint performance counters at the host level. By default, the NET systemmetrics agent
collects some Perfmon counters that are expected to be useful for SharePoint monitoring. You can add
additional Perfmon counters.
See "Adding SystemMetrics Using theWindows PerformanceMonitor" on page 180.

l Monitor SharePoint performance counters at the probe level. Configure AppDomain-specific metrics using

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 36 of 208

the using the <metrics> and <metric> elements in the <probe_install_dir>\etc\probe_config.xm. file.
See ".NET Agent Configuration Elements" on page 73.

l Distinguish different SharePoint team sites with similar URLs by specifying key arguments in the
<httpcaptureparams> element.
See ".NET Agent Configuration Elements" on page 73.

l Consolidate "layout" server requests in SharePoint by specifying the <urireplacepattern> element. For
example, this pattern specifies everything that is fetching layouts gets into one server request:

<symbols>
<urireplacepattern enabled="true">

<pattern value="s#(?i)(^.*)(_layouts).*$#Layouts#" />
</urireplacepattern>

</symbols

This configuration is especially useful with newer versions of SharePoint, such as 2010 and 2013, where
the default instrumentation results in numerous server requests.
For another example, this pattern consolidates all pages of the same name by stripping out the path.

<symbols>
<urireplacepattern enabled="true">

<pattern value="s#(?i)(^.*)(?<word1>/.*\.
(aspx|asmx|ashx)$)#${word1}" />

</urireplacepattern>
</symbols>

This configuration changes two URIs such as these:

/div/20rpo/r3-r8_ops/4.101_afa/4.101.001_listmap/blog/Lists/Links/AllItems.aspx

/About/Directorates/PublishingImages/Forms/AllItems.aspx

To this:

/AllItems.aspx

l Adjust or configure automatic URI collapsing as needed for your monitoring requirements by using the
<uriautocollapsing> element. By default, this feature is enabled.
See ".NET Agent Configuration Elements" on page 73.

l Use the $(MACHINENAME), $(COMMANDLINE:2), and $(WEBSITENAME)macros for probe naming.
SharePoint web sites often have names that include numbers andGUIDs. Assignmoremeaningful names
to the probes by usingmacros for the probe name. See "Considerations when entering an agent name:" on
page 25.

Collected performance data from SharePoint servers is displayed in theMicrosoft SharePoint Server view
group of the Diagnostics Enterprise UI. For details on the user interface, see the HPE Diagnostics User
Guide.

Determining the Version of the .NET Agent
When you request support, it is useful to know the version of the Diagnostics components you installed.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 37 of 208

To determine the version of the .NET Agent:

l Right-click the file <Agent_install_dir>\bin\HP.Profiler.dll and select Properties from themenu. In the
Properties dialog, select the Version tab to display the component version information.

or

l Use the System Health view in the Diagnostics UI.

Enabling and Disabling the Diagnostics Agent for
.NET
The .NET Agent is enabled when it is installed. After you restart yourWeb server and a URL in the application
is accessed, the .NET Agent begins to gather performance information.

You can disable the .NET Agent so that it does not start and does not gather performancemetrics.

To disable a .NET Agent:

Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET Probe.

To enable a .NET Agent that was disabled:

Select Start > All Programs > HP Diagnostics .NET Probe > Enable HP .NET Probe.

Note: Disabling the .NET Agent only disables the probemetrics collector and the active probes. It does
not disable the systemmetrics collector. The process of enabling or disabling systemmetrics collection
is controlled through the standardWindows services manager. The effect of enabling or disabling probes
only happens the next time the probed application restarts. It has no affect on currently running
applications.

Once the Probe Aggregator Service is installed and running, you can disable and enable it from the Start
Menu. Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET Probe or Enable
HP .NET Probe. Selecting Disable HP .NET Probe, in addition to disabling the .NET probes will mark the
Probe Aggregator Service as disabled, but not stop the service (in case there are running probes remaining).
Selecting Enable HP .NET Probe, in addition to enabling the .NET probes will change the Probe Aggregator
Service back to type automatic and start it if needed.

Enabling and Disabling Standard Instrumentation for
Applications
When the .NET Agent is first installed, the standard ASP.NET/ADO instrumentation for all discovered
applications is enabled, but no application specific instrumentation is enabled. You control which applications
have their instrumentation enabled or disabled using the attributes of the enablealldoamins attribute in the
<process> element and attributes in the <appdomain> element in the probe_config.xml file for the .NET
Agent.

Disabling instrumentation for an application allows you to avoid the processing overhead and distracting
information in the Diagnostics views for applications that are not relevant to the environment whose
performance you want to monitor.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 38 of 208

Enabling instrumentation for all application allows the .NET Agent to monitor the performance of all detected
applications so that you can see the performancemetrics for all of the applications in the views of the
Diagnostics and Profiler user interfaces.

These are the rules for the enablealldomains attribute of the <process> element:

l enablealldomains = false : If there are no domains in the list of <appdomain> No domains should be
enabled.

l enablealldomains = false : If there are domains in the list of <appdomain> Domains should be enabled if
the "enable" attribute is set to true or not defined in the enable attribute of the <appdomain>.

l enablealldomains = true : If there are domains in the list of <appdomain> Only Domains in the list should
be enabled disregarding their "enable" attribute.

l enablealldomains = true : If there are no domains in the list of <appdomain> All domains should be
enabled.

l enablealldomains attribute is not defined: same as if enablealldomains = true.
To enable or disable the instrumentation for an application:

1. Set the enablealldomains attribute in the <process> element to false. This allows the attributes of
each <appdomain> tag to control the state of the instrumentation for each application. If there are no
<appdomain> entries, no applications are enabled.

2. Set the enabled attribute in the <appdomain> element to true for each application where you want to
enable the instrumentation.

3. Set the enabled attribute in the <appdomain> element to false for each application that is to have its
instrumentation disabled.

The following example shows instrumentation enabled for one application and disabled for another.

<process name="ASP.NET" enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/myApplication" website=”Default Web Site” enabled="true">

<points file="DefaultWebsite-myApplication.points" />
</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site”

enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

To enable the instrumentation for ALL applications:

Set the enablealldomains attribute in the <process> element to true. This overrides the settings of the
attributes in each <appdomain> element so that the instrumentation can be enabled without having to set
numerous attributes.

The following example shows instrumentation enabled for all applications:

<process name="ASP.NET" enablealldomains="true">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/myApplication" website=”Default Web Site” enabled="false">

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 39 of 208

<points file="DefaultWebsite-myApplication.points"/>
</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site”

enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

Troubleshooting .NETWeb Applications Not
Discovered
In aMicrosoft Windows 2003 server and IIS 6 environment, if your web site has a virtual directory under a web
folder .NET Agent may fail to discover the virtual directory. This is because of an issue with theMicrosoft
WMI provider used by Diagnostics to walk down the web site tree. TheWMI provider does not properly
recognize the web folder as an IIS web directory and so Diagnostics can’t discover the virtual directory under
the folder. See the example described below.

The example shows web folderWebFolderTest under the web site abc. Under this web folder there is a virtual
directory WebChain.

Because of an issue with theWMI provider, the listing inWMI for this web site would not show the
WebFolderTest/WebChain virtual directory. The .NET Agent uses the listing from theWMI provider to
discover web applications. So in situations like this, the .NET Agent may not be able to discover virtual
directories under a web folder.

Microsoft recommends modifying themetabase directly or using a simple script like the following to set the
folder style using ADSI:

Set objRoot = GetObject("IIS://localhost/W3SVC/1/Root/WebFolderTest")
objRoot.KeyType = "IIsWebDirectory"
objRoot.SetInfo()

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 40 of 208

Instead of using a script you canmanually configure the web folder as an application in IIS. Once this is done
it can be reverted to a non-application but the property would now be set and Diagnostics would be able to
discover the web application.

Another option is to manually add the excluded APPDOMAIN in the ASP.NET AppDomain list in the probe_
config.xml file.

Manually Adding an AppDomain Not Discovered
If an AppDomain that you expected to be discovered by the .NET Agent was not discovered, rescan the IIS
configuration. If the application was added after the .NET Agent was installed it may not have been
discovered. See "Discovering ASP.NET Applications After Installation" on page 33 for details on rescanning.

If the AppDomain still does not appear, you canmanually add the AppDomain. Choose the option below that
suits your application.

l "Add all AppDomains Without Any Filtering" below
l "Add all AppDomains that Match a Specific Name in the Entire IIS configuration" on the next page
l "Add a Specific AppDomain in the IIS Configuration" on page 43
After youmodify the configuration as described below, restart IIS or theWeb publishing service to pick up
the new agent configuration. See "Step 12. Restart IIS" on page 31.

Add all AppDomainsWithout Any Filtering
In the <agent_install_dir>/etc/ probe_config.xml file, locate the ASP.NET section and remove any existing
<appdomain> elements. Then add the following section:

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

</process>

All AppDomains are enabled.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 41 of 208

Add all AppDomains that Match a Specific Name in the Entire
IIS configuration
Assume that you havemultiple AppDomains of the same name, but in different web sites, to be included. For
example the "CallChain" AppDomain below:

Add the entry shown in bold to the <agent_install_dir>/etc/ probe_config.xml file :

<process enablealldomains="false" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 42 of 208

<points file="ADO.points" />
<points file="WCF.points" />
<appdomain enabled="true" name="CallChain">
<points file="CallChain.points" />

</appdomain>
</process>

All AppDomains of the same name are added, regardless of the web site in which they appear.

Add a Specific AppDomain in the IIS Configuration
Assume that you havemultiple AppDomains of the same name as described in the previous example. To
specify a particular AppDomain, specify the fully-qualified domain name as described below. For example,
add the following to the <agent_install_dir>/etc/ probe_config.xml file to reference the CallChain
AppDomain inWebSite2:

<process enablealldomains="false" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />
<appdomain enabled="true" name="2/ROOT/CallChain" website="WebSite2">
<points file="WebSite2-CallChain.points" />

</appdomain>

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 43 of 208

To get the fully-qualified AppDomain name, perform the following steps.

1. In the <probe_install_dir>\log directory, locate the log file name that has the name of the virtual directory:

2. In the log file, locate an entry similar to the following:

2013.01.02.21.10.19.105 [0006] INFO AppDomain Capture disabled for
appdomain(2/ROOT/CallChain) user(NT AUTHORITY\NETWORK SERVICE).

The highlighted name above is what should be used for the name value in the probe_config.xml file.

Other .NET Agent Troubleshooting Tips
If you have problems getting the agent started properly here are some things to check:

l Make sure you restarted the web server and that a URL in the application was accessed, this triggers the
agent to begin collecting data.

l Check if a probe_config.xml file was created and is formatted correctly (that is, nomissing tag closers,
etc.). This can be done by opening the file in a web browser.

l Look for any message in theWindows Event Log named “HP Diagnostics”. This log is used exclusively by
the .NET Agent. There should be amessage for each attempt to instrument an application.

l After installing the .NET agent, Microsoft SharePoint 2013may not function correctly. To fix this you can
apply the following workaround:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 44 of 208

a. Open the SharePoint web.config file for editing. By default this file is located in
C:\inetpub\wwwroot\wss\VirtualDirectories\80.

b. Change the legacyCasModel setting from true to false, as follows:

<trust level="Full" originUrl="" legacyCasModel="false" />

c. Restart IIS by using either IIS Manager or the IISReset command-line utility.
You can track the issue related to this workaround at
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-
produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-
1.aspx.

Uninstalling the .NET Agent
To uninstall the .NET Agent:

1. Stop all Web applications that are using SOAP.
2. From theWindows Control Panel, select Add/Remove Programs and then select HPE Diagnostics

Agent for .NET to uninstall.
3. Restart theWeb applications.

To remove the Probe Aggregator Service you can uninstall the .NET Agent which will also remove the
Probe Aggregator Service. Or you can run the .NET Agent installation again, selecting theChange
button and then de-select the check box for installing theProbe Aggregator Service.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HPE Diagnostics (9.30) Page 45 of 208

http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx

Chapter 4: Upgrading the Diagnostics .NET
Agent
This chapter presents the information you need to upgrade the Diagnostics .NET Agent.

This chapter includes:

l "Upgrade .NET Agents" below
l "Upgrade Notes and Limitations" below

Upgrade .NET Agents
Consider the following when planning the Diagnostics Agent upgrade:

l Youmust upgrade the Diagnostics Server before upgrading the .NET Agents that are connected to it
because Diagnostics Servers are not forward-compatible.

l You need to stop the Diagnostics Probe Aggregator before upgrading .NET agents.
To upgrade a .NET Agent:

1. Install the new Diagnostics Agent for .NET (select Upgrade).
The upgrade will take effect when the probed applications are restarted.
To force the upgrade to take effect:
a. Shut down all applications that are beingmonitored by the current .NET Probe.
b. Restart IIS.
c. Restart the applications that were beingmonitored by the old probe.
See "Installing .NET Agents " on page 17 for additional information you need for installing a .NET Agent.

2. You can verify that the upgraded Diagnostics Agent is running by checking the version in the System
Health view in the Diagnostics UI. The version should be the latest version if the upgrade was
successful. To access the System Health view youmust open the Diagnostics UI as theMercury
System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the Views pane you can
select the System Views view group.

Upgrade Notes and Limitations
In Diagnostics version 9.24, by default HTTP methods (such as PUT, GET, and POST) are used as an
identifying component for each HTTP/S Server Request and a separate HTTP Server Request is generated
for each HTTP method to the sameURL. In earlier versions of Diagnostics, the root method of an
HTTP Server Request is 'Server.Request' and one HTTP Server Request is generated for all HTTP methods
to the sameURL.

We recommend using the new method of Server Request identification, even though this is not backward
compatible and breaks trend lines. If youmust maintain continuity of trend lines, in the probe_config.xml file,
change the value of the symbols usehttpmethod parameter to false (<symbols usehttpmethod=”false” />).

HPE Diagnostics (9.30) Page 46 of 208

Part 3: Advanced .NET Agent
Configuration and Instrumentation

HPE Diagnostics (9.30) Page 47 of 208

Chapter 5: Custom Instrumentation for .NET
Applications
This section explains how to control the instrumentation that HP Diagnostics applies to the classes and
methods of applications to enable the .NET Agent to gather the performancemetrics.

This chapter includes:

l "About Instrumentation and Capture Points Files" below
l "Locating the .NET Capture Points Files" on the next page
l "Coding Points in the Capture Points File" on the next page
l "Instrumentation Examples" on page 53
l "Understanding the Overhead of Custom Instrumentation" on page 69
l "Managing ProbeOverhead" on page 69
l "Default Layers for Typical .NET Applications" on page 70

About Instrumentation and Capture Points Files
Instrumentation refers to bytecode that the probe inserts into the class files of the application as they are
loaded by the CLR. Instrumentation enables a probe tomeasure execution time, count invocations, and catch
exceptions; and to correlate method calls and threads. The instrumentation points for each probe are specified
in the capture points file.

The capture points file enables you to control the scope of the instrumentation so that Diagnostics can give
you all the information you need to understand the performance of the applications without overwhelming you
with costly or confusing extraneous information. The instrumentation definitions contained in the capture
points file are called points that tell the probe whichmethods to instrument, how they should be instrumented,
and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so that they apply to more than one
method, class or namespace specification. For more information about using regular expressions, see "Using
Regular Expressions" in the HPE Diagnostics User Guide.

You can customize the points in the capture point file to includemethods, classes, and namespaces for areas
of the application that do not fall within the default points.

TheMicrosoft specification for .NET does not include a unified or recommended interface that business logic
should implement except in the case of instrumentation for web andWCFmethods. This means that the .NET
probe will almost always require custom points in the capture points file to enable it to gather meaningful
metrics for the performance of the business logic classes andmethods in .NET applications.

The points in the capture points file are grouped into layers. Layers organize the performancemetrics into
meaningful tiers of information that can be compared as part of a triage process and control the collection
behavior of the instrumentation.

The points in the capture points files are grouped into default layers. You can customize the default layers and
create new layers (see "Default Layers for Typical .NET Applications" on page 70).

HPE Diagnostics (9.30) Page 48 of 208

Locating the .NET Capture Points Files
When you install the .NET Agent, predefined default capture points files are installed.

Default capture points files for ASP.NET applications are located at <probe_install_dir>\etc\ and include
Asp.Net.points, Ado.points andWCF.points as well as other points files shown in the table below.

In addition, the .NET Agent installer automatically creates a separate capture points file for each IIS deployed
ASP.NET Application Domain it detects. Youmust modify the automatically detected and created points file
to enable custom instrumentation points for the Application Domain. These capture points files are located in
the <probe_install_dir>\etc\<ApplicationDomain>.points file. These points files and the default points
files are read by the .NET Agent.

At installation, only theAsp.Net.points, Ado.points andWCF.points default points files are enabled. The
following default .NET points files are installed in the <probe_install_dir>/etc directory but not enabled:

Default Point File (initially disabled) Instrumentation Target

Asp.Net.IExecutionStep.points IIS5, IIS6 and IIS7. This file makes the IIS points obsolete.

IIS.points IIS5 and IIS6

Lwmd.points Lightweight Memory Diagnostics

Msmq.points Microsoft MessageQueuing (MSMQ instrumentation)

Remoting.points .NET Remoting

WebServices.points ASP.NETWeb Services

You can enable the points files by adding a reference to them in the <points> element in the scope of the
AppDomain in the probe_config.xml file. See "Understanding the .NET Agent Configuration File " on
page 72 for details on each element in the probe_config.xml file.

Coding Points in the Capture Points File
The following arguments can be used to define a point in the points files:

[Point-Name] =<unique name for the point>
;---
class = <class/package name/s to capture>
method = <method name/s to capture>
signature = <signature/s of method/s>
ignoreClass = <classes to ignore>
ignoreMethod= <method prototypes to ignore>
ignoreTree= <class hierarchy to ignore>
deep_mode= <soft or hard mode>
scope = <comma separated list of methods>
ignoreScope= <comma separated list of methods>
detail = <list of specifiers>

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 49 of 208

keyword = <keyword>
layer = <layer name>
layerType = <layer type>

Caution: Do not modify any of the default points files because, in an installation upgrade, modifications
are lost. Store your application-specific instrumentation points in a custom capture points file.

All arguments that can be specified as a regular expression list have an effectivemaximum limit of 260
characters, which if exceeded results in a truncated value. The arguments are described in the following
sections.

Mandatory Point Arguments
Every point, except for the points for LWMD, HttpCorrelation, WSCorrelation andWCF, must contain the
following arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be instrumented. The name
should include the full namespace name using periods between the
namespace and class levels. Any valid regular expression can be used.

method Specifies the name of themethod to be instrumented. To be successful, the
method namemust match amethod defined in the class or interface
specified by the class argument. Any valid regular expression can be used.

layer Specifies a layer, sublayer, or tier under which the data from this point is
grouped. Layers are a part of the instrumentation collection control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a / (slash). The layer specified following the
slash is a sublayer of the layer specified before the slash. A sublayer can
have its own sublayers by coding another slash and layer name following a
sublayer name.

The following is an example of a custom point that contains themandatory arguments:

[MyCustomEntry_1]
; comments here….
class = myNameSpace.myClass.MyFoo
method = myMethod
layer = myCustomStuff

Note: Regular expressions can be used for most of the arguments in a point. They must be prefaced with
an exclamation point. For more information about using regular expressions, see "Using Regular
Expressions" in the HPE Diagnostics User Guide.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 50 of 208

Optional Point Entries
Point definitions can contain one or more of the following arguments:

Argument Description

keyword Indicates special instrumentation. The keyword argument can be used to
enable specific features; for example, theWCF keyword turns on theWCF
feature. The keyword argument can also relate point definitions to special
functionality; an example of this is the RemotingServer keyword and the
Remoting.points file.

l HttpCorrelation. Turns on correlation of client/server method calls via
HTTP

l WsCorrelation. Turns on web service correlation logic on the client side
and turns on correlation of raw HTTP client request calls across both the
.NET and Java technologies.

l WCF. Turns on theWCF feature.
l REST. Turns on theWCF REST service instrumentation.
l lwmd. Turns on lwmd instrumentation.
l Remoting. Turns on .NET Remoting framework instrumentation.
l RemotingServer. Associates points in a .NET Remoting server to
special .NET Remoting logic for these points. See "How to Configure
Instrumentation for .NET Remoting" on page 63.

l WAPI. Turns on support forWeb API based applications. See
"Configuring Support forWeb API Based Applications" on page 175.

ignoreClass Specifies a comma-separated list of classes to ignore. Any class matching
one of the classes specified with ignoreClass is not instrumented.

ignoreMethod Specifies a comma-separated list of methods to ignore. Any method
matching one of themethods specified with ignoreMethod is not
instrumented.

ignoreTree Ignores instrumenting any method that is implemented on a class that
inherits from the specified class. Thus, an entire class hierarchy tree of
methods would be ignored.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 51 of 208

Argument Description

deep_mode Specifies how subclasses are handled. This argument accepts three values:

l none - A value of none is identical to not specifying a deep_mode
argument. It has no effect on how subclasses are handled.

l soft - A value of soft requests that, for every class or interfacematching
the class, method, and signature entries, any subclasses or
subinterfaces that also implement thematchingmethod and signature
should also be instrumented. Soft mode is typically used for points for
interfaces.

l hard - A value of hard requests that, for every class or interfacematching
the class, method, and signature entries, any subclasses or
subinterfaces at any depth should have all their methods instrumented.
Hardmode is typically used for special cases. Caution:Hardmode can
lead to extensive instrumentation and very high probe overhead.

scope Constrains the context in which instrumentation is performed. If specified,
the inserted bytecode is caller side. Any valid regular expression can be
used for the value of this argument. Scope values are expressed as a
comma-separated list of method names.

ignoreScope Excludes certain methods from those included in the scope specified by the
scope argument. Any valid regular expressionmay be used for the value of
this argument. ignoreScope values are expressed as a comma-separated list
of method names.

detail Provides more specific capture instructions.

For the following the string that is returned is displayed in themethod's
Argument field in the details pane of the Call Profile view. It is a comma-
separated list of the following:

l args:n – Captures all supported types of arguments for themethod(s)
that match. A value of ‘n’ captures all arguments. Or you can enter a
value for n from 1 through 256.

l args:0 – Calls the ToString() on the current class instance or callee
object. This is invalid for static methods.

l *args:1 –Marks (*) the argument as a key argument for the server
requests if themethod is a top-level request.

layerType Specifies special handling for some instrumentedmethods and accepts
these values:

l trended_method – Identifies methods to be displayed in the Trended
Methods view.

l sql – Identifies methods used to capture SQL for the SQL views. These
are set by HP Diagnostics and should not bemodified.

signature Specifies the signature (return and parameter types); for example,
System.String(System.int32, System.String). Any valid regular expression
can be used.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 52 of 208

Instrumentation Examples
The following examples illustrate how you can customize the instrumentation of an application by creating and
modifying the points in the capture points file.

This section includes:

l "Custom layer and sublayer" below
l "Wildcardmethod" below
l "Ignore SpecifiedMethods" on the next page
l "CaptureMethods for the TrendedMethods View" on the next page
l "Capture Only a Specific Method In a Class" on the next page
l "Capture a Specific Method That Returns a String" on page 55
l "Caller Side Instrumentation" on page 55
l "Argument Capture" on page 56
l "ConfigureWCF REST Services for Monitoring" on page 59
l "Deep_mode Examples" on page 60
l "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications" on page 61
l "How to Configure Instrumentation for .NET Remoting" on page 63

Custom layer and sublayer
The following point creates a custom sublayer called BAR within the layer called FOO for themethod
myMethod inmyCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR

Wildcard method
The following point captures all methods in theMyCompany.MyFoo class:

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*
layer = FOO/BAR

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 53 of 208

Ignore Specified Methods
The following point captures all methods in theMyCompany.MyFoo class except for themethods
setHomeInterface and getHomeInterface:

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo
method = !.*
ignoreMethod = setHomeInterface,getHomeInterface
layer = FOO/BAR

The following point captures all methods in theMyCompany namespace except for those contained in the
MyCompany.logging class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
ignoreClass = MyCompany.logging
layer = FOO/BAR

Capture Methods for the Trended Methods View
The following point captures the required data to populate the TrendedMethods View for themyMethod
method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR
layertype = trended_method

Capture Only a Specific Method In a Class
The following point captures all non-static constructor methods for theMyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = .ctor
layer = FOO/BAR

The following point captures all static constructor methods for theMyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = .cctor

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 54 of 208

layer = FOO/BAR

The following point captures the setFoomethod in theMyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
layer = FOO/BAR

The following point captures all methods in theMyCompany.MyFoo class whose name includes “set”:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !.*set.*
layer = FOO/BAR

The following point captures all methods in theMyCompany namespace:

[myCompany_All_Methods]
class = !myCompany\..*
method = !.*
layer = FOO/BAR

Capture a Specific Method That Returns a String
The following point captures the getFoomethod that returns a System.String in theMyCompany.MyFoo
class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo
method = getFoo
signature = !System.String\(.*
layer = FOO/BAR

Caller Side Instrumentation
By default, all the instrumentation in Diagnostics is Callee side instrumentation where the bytecode is placed
within themethod call. Caller side instrumentation refers to the process of placing bytecode for measurement
around the call to themethod to be instrumented, instead of within themethod.

Caller side instrumentation allows for finer control of instrumentation placement, but can increase the
application initialization time because each class specified in the scopemust be checked for references to the
class/method specified in the points.

The scope and ignoreScope arguments are used to specify what caller should be instrumented. The following
two examples refer to Caller side instrumentation.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 55 of 208

The following point captures all methods in theMyCompany namespace that are called from the
MyCompany.logging class.

[myCompany_All_Methods_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
layer = FOO/BAR

The ignoreScope argument is used to exclude certain classes andmethods from those included in the scope
specified in scope argument. The following point captures all methods in theMyCompany namespace that are
called from theMyCompany.logging class except for those called from themyMethodmethod.

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
ignoreScope = MyCompany.logging.myMethod
layer = FOO/BAR

Argument Capture
The arguments to be captured are specified in the detail key of a points file section.

The following example calls the ToString() method of the n-th argument. The string that is returned is
displayed in themethod’s Argument field in the Call Profile view: detail=args:1,...args:4, *args:3

There are several special values to note:

l args:n – Captures all supported types of arguments for themethod(s) that match. A value of ‘n’ captures all
arguments. Or you can enter a value for n from 1 through 256.

l args:0 – Calls the ToString() method on the current class instance or callee object.
l Adding a * to the args element (*args:1) marks a key argument.
To see the arguments for eachmethod call, do not specify a key argument. This is a way to get more detailed
information on the captured instance tree and could help answer questions about why this instance is aMAX
tree or what values were passed in when there was an exception.

To group server requests for amethod by arguments, specify a key argument. The key arguments, aggregate
server requests with distinct values. Arguments that have a large number of distinct values are not good
candidates for key arguments because this will lead to unique server requests for every distinct value.

Note: Even if you have not specified argument capture, arguments are captured when amethod in the
call tree throws an exception. These arguments are displayed in the Call Profile view, in the Stack Trace
section of the Exceptions detail pages. See the Call Profile View online help for more details.

The following argument capture example relates to the code shown below:

[ILTest]
class = !ILTest_NameSpace.ILTest_Class

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 56 of 208

method = methodWithParams
detail = args:0, *args:3, args:5, args:7
layer = myFunctionLayer

Here is the relevant code example:

class ILTest_Class
{
public bool methodWithParams
(string param1, int param2, string QnameParam3, long param4, object param5, int
param6, double param7)
{
... some implementation
}
}
In this example the defined detail will capture ILTest_Class.ToString(args:0)
param1, QnameParam3, param5 and
param7.

The value of QnameParam3will be part of the identity of the server request if the top level method is
methodWithParams.

When an argument to be captured is marked as a key argument (with an asterisk *) and themethod is a top-
level method, the argument value becomes part of the Server Request identity.

For example, if Shipping Type is a parameter of amethod processing different shipments and you specify the
Shipping Type argument as a key argument, you will be able to see aggregated views for each different
shipment (apples and oranges) being processed by themethod.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 57 of 208

When you specify a key argument, the Call Profile view shows key arguments in the Arguments field in the
Details pane. You will also see the arguments displayed under Method Arguments in the Details pane.

When arguments to be captured are NOTmarked as key arguments (with no asterisk *), they are displayed in
the Call Profile view under Method Arguments only.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 58 of 208

Configure WCF REST Services for Monitoring
For a .NET ProbeWCF REST services aremonitored by default based on the keyword=REST value enabled
out-of-the-box in theWCF.points file. These REST services will bemonitored as web services and their
performance data displayed in the Diagnostics UI SOA Services views.

You can further configure REST services as described in the sections below.

REST Service Configuration

InWCF REST style services sometimes the operations are encoded as url parameters. For example:

HTTP Method: PUT Url: http://localhost:81/RestNOSvc/AccountsRESTService/{ID}?op=
{OPERATION} op can be "deposit" or "withdrawal"

To be able to distinguish operations in these types of services you can specify the operation parameters of the
REST servicemethod as a key argument to allow it to be displayed as a separate operation. See "Argument
Capture" on page 56 for a general description of argument capture.

For example, for themethod

[WebInvoke(UriTemplate = "{id}?op={operation}", Method = "PUT")]
public TransactionResult Update(string id, string operation, long Amount)

The operation is the key argument and can be specified in the points file as:

[WebSite2-RestNOSvc]
class = !HP.Test.WcfRestService.*
method = Update
detail = *args:2
layer = WebSite2-RestNOSvc

The SOA Services Operations view example below shows the results of this configuration with separate
operations shown in the table.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 59 of 208

REST Client Configuration

The REST service client is the same as an HTTP client call and cannot be distinguished. So for monitoring
.NET applications that are REST service clients, the configuration option <httpclient showurl=”false”/>
should be set in the probe_config.xml file to avoid a large number of outbound calls and possible symbol
table explosion. The number of calls is due to unique urls accessed by the client, often with ids encoded in the
urls.

For example:

/RestNOSvc/AccountsRESTService/8FFD2F34-E334-4E1E-A940-50FCCCACE1D1

where the Guid represents different account ids.

Deep_mode Examples
The following interface definition is used for both soft and hard deep_mode examples:

public interface Interface1 {

public void callerMethod();

}

The following class is used for both soft and hard deep_mode examples:

public class Class1 implements Interface1 {
public void callerMethod(){
calleeMethod();
calleeMethod2();

}

public void calleeMethod(){
Console.WriteLine("hello world");
//more code lines here…

}

public void calleeMethod2(){
Console.WriteLine("hello world 2");

}
}

The following point captures the callerMethod in the Class1 class:

[Training-1]
class = Interface1
method = !.*
deep_mode = soft
layer = Training

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 60 of 208

The following point captures all methods in Class 1; that is, callerMethod, calleeMethod1, and calleeMethod2:

[Training-1]
class = Interface1
method = !.*
deep_mode = hard
layer = Training

How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications
This section explains how to configure both the probe_config.xml file and custom points files that enable
instrumentation for Non-ASP.NET orWindows applications. Instrumentation forWindows Services, console
applications, Windows Forms applications, andWPF applications are consideredWindows applications and
are referred to as such.

Windows Application Design

The critical point to consider when contemplating how to configure aWindows application you want to monitor
is that the .NET probe is designed tomonitor long running processes. Therefore, if yourWindows application
is designed to run for a few seconds and then exit, you will probably not be able to see any data for that run.
When theWindows application exits quickly, the AppDomain is shut down and the probe is shut down before
it can establish andmaintain communication with a Diagnostics Server or the Diagnostics .NET Profiler.

The following simpleWindows application illustrates a number of crucial concepts to be considered when
configuring the instrumentation for aWindows application.

namespace Hello_dotNet_nameSpace
{

class someclass
{

static void Main(string[] args)
{
// do something
// read form commandline then exit
clReader myClReader = new clReader();
String cl;
cl = myClReader.readCl();
}

}
// Command Line Reader
public class clReader
{

public String clread;
public String readCl()
{

System.Console.WriteLine("Continue?");
clread = Console.ReadLine();
return clread;

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 61 of 208

}
}

}

The Hello_dotNet.exeWindows application has Main() that calls amethod, waits for the user to enter
something on the command line, and then exits. Until the application exits, the probe is active.

Creating the Hello_dotNet.points File

In the <probe_install_dir>\bin folder there is aReflector.exe command line utility you can run against the
Hello_dotNet.exeWindows application to obtain a suggested points file. See "Discovering the Classes and
Methods in an Application" on page 152 for more information on the reflector utility.

When both the Reflector.exe and the Hello_dotNet.exe application are in the same folder, you would the
following command:

Reflector.exe Hello_dotNet.exe

The output is sent to stdout. Among other information you will see the following suggested Hello_
dotNet.points:

--
Sample .points by Namespace
--
[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
layer = Hello_dotNet_nameSpace

The suggested points can be used as is, except when theWindows application has amethod likeMain(); that
is, a method that, if instrumented, does not return an exit until the application exits. In this case, themethod
spans the lifetime of the application so nothing would be reported until the application exits. Since the probe
will be unloaded when the application exits, you will probably not get any data from the instrumentation point.

To fix this situation, construct a points file so that theMain() method, or any method like it, is not
instrumented. The following Hello_dotNet.points file shows how to do this. It assumes that Main() is
implemented in someclass.

Hello_dotNet.points:

[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
ignoreClass = Hello_dotNet_nameSpace.someclass
layer = Hello_dotNet_nameSpace

[ignore]
class = Hello_dotNet_nameSpace.someclass
ignoreMethod = Main
layer = Hello_dotNet_nameSpace

The crucial aspect of this type of points file is shown in bold. The [ignore] section instruments other methods
in Hello_dotNet_nameSpace.someclass if there are any while ignoring theMain() method.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 62 of 208

Configuring the Windows Application for Instrumentation

To configure the .NET probe to instrument the Hello_dotNet.exeWindows application, add the following XML
to the probe_config.xml file. You can add it to the bottom of the file just above the </probeconfig> entry.

<process name="Hello_dotNet">
<points file="Hello_dotNet.points" />
<instrumentation>

<logging level="" />
</instrumentation>
<logging level="" />

</process>

Note: Youmust place yourHello_dotNet.points file in the <probe_install_dir>\etc folder before you
make the above changes to the probe_config.xml file.

The only required child element is the points file. The instrumentation, logging, andmodes are optional. The
following instrumentation setting can be useful when diagnosing whichmethods are or are not being
instrumented:

<instrumentation>
<logging level="points ilasm" />

</instrumentation>

How to Configure Instrumentation for .NET Remoting
You can configure the .NET probe to add custom instrumentation that supports the instrumentation of .NET
Remoting Client and Server applications. Supported configurations are:

l Both HTTP and TCP bindings
l Both Binary and SOAP Formatting
Configuration

By default, the .NET probe is not enabled to instrument Remoting applications. Youmust add custom
instrumentation points for both the Client and Server applications.

Two instrumentation keywords are related to Remoting:

Remoting. The Remoting keyword enables instrumentation for various points in the Remoting Framework.

RemotingServer. The RemotingServer keyword identifies the class that implements the RemotingMethods
and isolates the instrumentation of themethods on that class from unintended instrumentation of other similar
methods.

Client Example

The following very simpleWindows application example illustrates a number of crucial concepts themust be
considered when configuring the instrumentation for a Remoting Client Application.

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 63 of 208

class SimpleConsoleClient
{

[STAThread]
static void Main(string[] args)
{

const string msg1 = "How are you?";
String filename = AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename, false);
MyRemotableObject remoteObject = new MyRemotableObject();
doit(remoteObject, myMsg);
Console.WriteLine();
Console.WriteLine("(Press any key to exit)");
Console.ReadKey();

}
public static void doit(MyRemotableObject obj, String message)
{

Console.WriteLine(obj.GetEnlightenment(message));
}

}

As described in "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications" on
page 61, you can use the Reflector utility to help determine how to configure the Remoting Client points file.

To configure the probe to instrument the SimpleConsoleClient RemotingWindows application, add the
following XML to the probe_config.xml file:

<process name="SimpleConsoleClient">
<points file="Remoting.points" />
<points file="SimpleConsoleClient.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level="" />

</process>

Youmust add the <points file="Remoting.points" /> entry.

If you are in the directory that holds the SimpleConsoleClient.exe and the Reflector.exe is in the PATH, you
can execute the Reflector on the command line to view an implementation decomposition of the
SimpleConsoleClient.exe and suggested point file settings:

Reflector SimpleConsoleClient.exe

The output of this commandwill contain the following:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 64 of 208

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient (8
Methods)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetHashCode System.Int32()
GetType System.Type()
doit (method signature information unavailable))
Main System.Void(System.String[])
MemberwiseClone System.Object()
ToString System.String()

The suggested SimpleConsoleClient.points are:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

These settings, however, would not create instrumentation that would produce any data. The reason, as
discussed in "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications" on page 61,
is that youmust ignoremethods likeMain(). If you factor in the need to ignoreMain(), you would be left with
the following possible points file settings:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
ignoreMethod = Main
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Although these settings might be useful and would produce data, you shouldmake themmore precise. This is
primarily due to probe performance. Themoremethods that are instrumented, the greater will be the probe's
performance hit on the instrumented application. For example, if you can remove the wildcards "!.*" from the
settings, the scope of your settings become explicit.

Notice from the Reflector output that there is actually only a single implemented class:

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

You can remove the wildcards from the class setting as follows:

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

Notice also, that the Reflector output does not contain amethod setting. The default meaning of nomethod
setting is that all methods are instrumented. Sincemost the followingmethods are only present because they
are inherited from System.Object, it is unlikely that you really want to instrument thesemethods: Equals,
Finalize, GetHashCode, GetType, MemberwiseClone, ToString. However, it is likely that you would
want to instrument the doitmethod because it wraps the Remoting client call.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 65 of 208

The following settings are recommended for the SimpleConsoleClient.points file:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
method = doit
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Server Example

The followingWindows application example illustrates a number of crucial concepts themust be considered
when configuring the instrumentation for a Remoting Server Application:

C# code snippets are shown for both the Remotable Object, which is shared between the Remoting Client
and Server, and the SimpleConsoleServer.exe Remoting Server Application.

Here is the C# code snippet for the Remotable Object:

HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

public class MyRemotableObject : MarshalByRefObject
{

const string response = "I'm just fine!";

public MyRemotableObject()
{
}
public String GetEnlightenment(string message)
{

return response;
}

}
}

Here is the C# code snippet for the SimpleConsoleServer.exe:

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

class SimpleConsoleServer
{

[STAThread]
static void Main(string[] args)
{

String filename = AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename, false);

Console.WriteLine("Server is running... press any key to exit");
Console.ReadKey();

}
}

}

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 66 of 208

To configure the probe to instrument the SimpleConsoleServer RemotingWIndows application, add the
following XML to the probe_config.xml file:

<process name="SimpleConsoleServer">
<points file="SimpleConsoleServer.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level="" />

</process>

You are not required to add the <points file="Remoting.points" /> entry.

Point files for the Remoting Server can have one or more sections. The first section relates to the Remotable
Object and is a required section. A second section that relates to the Remoting Server instrumentation can be
added. Other optional sections can also be added to instrument other methods that can be called by either the
Remotingmethods or the Remoting Server. Wewill construct the Remotable Object section first.

The Remotable Object will reside in some assembly. Wewill assume it is in the RemotableObjects.dll.

When you run the Reflector against the RemotableObjects.dll, you see output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject (17
Methods)
__RaceSetServerIdentity System.Runtime.Remoting.ServerIden…)
__ResetServerIdentity System.Void()
CanCastToXmlType System.Boolean(System.String,System…)
CreateObjRef System.Runtime.Remoting.ObjRef(Syste…)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetComIUnknown System.IntPtr(System.Boolean)
GetEnlightenment System.String(System.String)
GetHashCode System.Int32()
GetLifetimeService System.Object()
GetType System.Type()
InitializeLifetimeService System.Object()
InvokeMember System.Object(System.String,System…)
IsInstanceOfType System.Boolean(System.Type)
MemberwiseClone System.MarshalByRefObject(System…)
MemberwiseClone System.Object()
ToString System.String()

As with the Remoting Client example, you cannot just use the suggested point settings. Youmust be certain
that you identified the class that implements the Remotable Object. You do this by observing that the

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 67 of 208

Remotable Object is required to inherit from System.MarshalByRefObject and thereforemust have the
followingmethods on it: CreateObjRef, GetLifetimeService, InitializeLifetimeService,
MemberwiseClone. From the Reflector output above, you can see that the
HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject class is an obvious candidate for
the class that implements the Remotable Object.

The Remotable Object sectionmust include the keyword = RemotingServer entry. This entry indicates that
the probe's Instrumenter should perform special processing for the point settings in this section. This special
processing accomplishes two things. It instruments all methods on a class that inherits from
System.MarshalByRefObject. Therefore, you need not specify which Remotingmethods to instrument. All
Remotingmethods will be instrumented. This is also why there is no need for amethod entry in this section.
Second, this keyword isolates the instrumentation of methods that are implemented on a class that inherits
from System.MarshalByRefObject to the specified class. This is important because there aremany System
classes and user classes that also inherit from System.MarshalByRefObject and you do not want to
unintentionally instrument them.

Based on these observations, here is the recommended Remotable Object section:

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

Now you can construct the optional Remoting Server section. You only need to create this section if you want
to monitor the Server logic that is invoked independent of the Remotingmethods.

When you run the Reflector against the SimpleConsoleServer.exe, you will see output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer (7
Methods)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetHashCode System.Int32()
GetType System.Type()
Main System.Void(System.String[])
MemberwiseClone System.Object()
ToString System.String()

As explained in "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications" on
page 61, you cannot just use the suggested points settings. Youmust ignore theMain() method.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 68 of 208

Based on these observations, the following settings are the recommended settings for the
SimpleConsoleServer.points file:

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

[RemotingServer]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer
ignoreMethod = Main
layer = RemotingServer

Finally, you can add other optional sections to instrument other methods that can be called by either the
Remotingmethods or the Remoting Server.

Understanding the Overhead of Custom
Instrumentation
When creating custom instrumentation, beware of over-instrumenting the application because that can
introduce excessive latency into the probed application. The custom instrumentation does not have the same
impact on themethod latency or the CPU overhead because the overhead of instrumentation is nearly fixed
for every method because the amount of bytecode is almost always the same. The physical percentages of
the CPU and latency overhead will vary in direct proportion to the length of time themethod takes to execute.

For example, if a method takes 100ms and instrumentationmakes it execute in 101ms, overhead is 1%. If a
method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%. If this method is not
called very often, its overall latency effect on the application is minimal. However, the overall latency effect of
an instrumentedmethod that is calledmore frequently could have an impact on the latency of the application’s
response even though its overhead percentage is much smaller.

Unlike a traditional profiler that can profile every method called, HP Diagnostics uses bytecode
instrumentation. This allows the default instrumentation to be selective so as tominimize the overhead
caused by instrumentation to an average of 3-5%. Methods with higher latency overhead introduced by
instrumentation are only instrumented when they are called infrequently in relation to other components in the
application and when the instrumentation provides specific information needed for triage activities.

You should also consider Diagnostics data overhead when you are customizing the instrumentation for an
application. Themoremethods you instrument, themore data the probemust serialize and pass over the
network to the Diagnostics Server. You can tune the probe’s default configuration so that it can adjust the
volume of Diagnostics data to avoid any unnecessary effect on the performance of the system being
monitored. Improper probe tuning can cause CPU, Memory, and Network overhead on the physical machine
where your probe resides. For more information about managing Latency, CPU, Memory and Network
overhead, see "Advanced .NET Agent Configuration" on page 148.

Managing Probe Overhead
Once you have configured instrumentation points and the probe is running, theremay be occasions when you
want to temporarily disable a specific instrumentation point and not see its related data. For example, if you

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 69 of 208

have high frequency, low latency calls in an application that are causing high probe overhead or if you want to
control the depth of the Call Profile data due to the severity of a problem.

You can view the instrumentation points and disable or enable them dynamically (that is, without having to
restart the application) in the Instrumented Layers table. You access the Instrumented Layers table by one of
the following options:

l In the Profiler UI, click Instrumented Layers in the title bar.
l Enter the URL http://<probe_host>:< probeport>/profiler/layer in your browser. (The probes are
assigned to the first available port beginning at 35000.)

The list of instrumented layers is displayed as shown in the following example:

The list shows the instrumentation point layers for the applicationmonitored by the probe. Click a layer name
to expand it and show the individual instrumentation points included in the layer.

For each layer or instrumentation point, the number of hits is displayed. That is, the number of times the
method has been called since the application started. By default, the list is sorted by the number of hits, in
descending order. Click a column header to change the sort order.

Click Enable orDisable in the Control column to enable or disable a layer or an individual instrumentation
point. Enabling or disabling a layer, enables or disables all the instrumentation points in that layer.

Points that cannot be controlled (enabled or disabled) show Not supported in the Control column.

Default Layers for Typical .NET Applications
HP Diagnostics groups the performancemetrics for classes andmethods into layers and sublayers according
to the instructions provided in the points file. The default layers were defined so that the performancemetrics
for processing in the application that used similar system resources could be reported together. The layers

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 70 of 208

make it easier for you to isolate and identify the areas of the system that could be contributing to performance
issues.

The following table lists the default layers and sublayers that are defined for typical .NET applications.

.NET Layers

Layer Sublayers Parent Layer

Web Tier IIS

IIS ExecutionSteps

Database ADO

ADO Execute

Connection

Fill

Update

Cache

Database

Messaging Sender

Receiver

Web Services Soap

Http

WCF

LWMD

HTTP Client

Outbound Calls

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HPE Diagnostics (9.30) Page 71 of 208

Chapter 6: Understanding the .NET Agent
Configuration File
You control the configuration of the .NET Agent by modifying the elements and attributes in the .NET Agent
configuration file: <probe_install_dir>/etc/probe_config.xml.

The topics in this section describe the elements and attributes that make up the .NET Agent configuration file
<probe_install_dir>/etc/probe_config.xml.

Each element is defined by describing its purpose, attributes, and parent and children elements.

HPE Diagnostics (9.30) Page 72 of 208

.NET Agent Configuration Elements

<ali> element
Purpose

Enables ALI integration.

Attributes

Attributes Valid
Values

Default Description

enabled true
false

false Enable or disable the ALI integration. If enabled, build information (build
number, build data and server) for a selected probe can be viewed in the
Diagnostics Commander and in an HP AppPulse environment.

Elements

Number of Occurrences zero or more

Parent Elements probeconfig

Child Elements none

Example

<ali enabled="false" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 73 of 208

<appdomain> element
Purpose

Builds an AppDomain inclusion list for processes that host multiple application domains. If no appdomain
elements are defined for a process then all application domains for that process will be included.

Attributes

Attributes Valid
Values

Default Description

enabled true
false

true Determines if the AppDomain should be instrumented. Is overridden by
enableallappdomains attribute of a process element.

Note:When an AppDomain is enabled or disabled, youmust restart the
process for the change to take effect. For details on restarting IIS, see
"Step 12. Restart IIS" on page 31. (To restart an application that is neither
IIS hosted, nor running as aWindows Service, stop and start the
application by whatever method is relevant for the application.)

name string none Name of the .NET AppDomain. (IIS path qualified, see the example
below.)

website string none The name of theWebsite for those AppDomains that areWebsites
(information only)

Elements

Number of
Occurrences

zero or more

Parent
Elements

process

Child
Elements

bufferpool, credentials, diagnosticsserver, mediator, id, ipaddress, logging, lwmd, modes,
points, profiler, sample, trim, webserver, symbols, filter, topology

Example

<appdomain enabled="true" name="1/ROOT/MSPetShop"/>
Where 1/ROOT is the Website ID and MsPetShop is the Virtual DirName

<appdomain enabled="false" name="1/ROOT" website="Default Web Site">
<points file="Default Web Site.points"/>
<id probeid="Default Web Site" />

</appdomain>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 74 of 208

<authentication> element
Purpose

List of authenticated user names and passwords.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

username string admin User name account. No

password string admin Passwords must be generated using the passgen
utility in the <probe_install_dir>\bin directory.

No

Elements

Number of Occurrences zero tomany

Parent Elements profiler

Child Elements none

Example

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 75 of 208

<bufferpool> element
Purpose

Configures the bufferpool behavior.

Attributes

Attributes Valid
Values

Default Description Requires Application
Restart

size number 65536 Size of each buffer. Yes

buffers number 512 Number of buffers in pool. Yes

sleep number 1000 Number of milliseconds between flush
checks.

Yes

expires number 1000 Number of milliseconds before buffer
expires.

Yes

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<bufferpool size="65536" buffers="512" sleep="1000" expires="1000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 76 of 208

<captureexceptions> element
Purpose

Enables and controls the stack trace capture for exceptions.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

true Enables exception capture. No

capture_args true
false

true Enables (true) or disables (false) the display of
method parameters in the Exception tab of a call
profile.

No

max_per_
request

number 4 Maximum exceptions captured for one server
request.

No

max_stack_
size

number 0
(meaning
no
maximum)

Maximum size of the call stack for a captured
exception.

No

stacktracefull true
false

false Enables (true) or disables (false) full stack trace
capture instead of the stack trace reported by the
exception object.

No

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements include, exclude

Example

<captureexceptions enabled="true" max_per_request="4" max_stack_size="0" capture_
args="true" stacktracefull = " false ">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 77 of 208

<clientmonitoring> element
Purpose

This is the root element for configuring client monitoring for the .NET Agent.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables/disables
client monitoring

samplemethod percent
count
period

percent Specifies which
method to use for
sampling

samplerate for percent rate must be 0-100
for count rate must be >1
for period rate must be one of standard Diagnostics
time strings (3m for 3minutes, 4s for 4 seconds, and so
forth)

50 Specifies the rate for
sampling

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements htmlinstrumentation, server, filter

Example

<clientmonitoring enabled="false" samplemethod="percent" samplerate="50" >

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 78 of 208

<consumeridrules> element
Purpose

This is the root element for configuring consumer ID rules.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables consumer ID rule evaluation.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements httpheaderules, iprules, soaprules

Example

<consumeridrules enabled="false">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 79 of 208

<cputime> element
Purpose

Controls the cputime setting property.

Attributes

Attributes Valid Values Default Description Requires
Application
Restart

mode none, serverrequest,
method

serverrequest No

Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements none

Example

<cputime mode="serverrequest"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 80 of 208

<credentials> element
Purpose

Supplies credentials that are used to validate for communication with the Diagnostics Server.

Attributes

Attributes Valid Values Default Description

username string none User name to validate with the Diagnostics Server.

password string none Password to validate with the Diagnostics Server.

authenticate true, false true Enables and disables authentication.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<credentials username="test" password="diag" authenticate="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 81 of 208

<demomode> element
Purpose

This configures demomode. Demomodemakes it easier to show capability and value of the .NET agent
because it requires less custom points to be defined. With demomode turned on, all outbound calls will be
shown irrespective of any other instrumentation.

Once the calls leading to the outbound calls of interest are identified then demomode should be turned off and
"custom" instrumentation added to ensure that call stacks leading to the outbound calls are apparent.

It is recommended to TURN THIS OFF under production environments.

Demomode is used primarily to find outbound calls (webserver, http, remoteing, msmq) when themethod
making them is not instrumented. It is meant as a way to quickly find how applications may be connected
without having to instrument application specific methods . This may be too noisy in production situations but
is useful when you there is a lack of upstream instrumentation and you don’t knowwhere the outbound call is
beingmade from. It can be used for all kinds of applications including ASP.NET.

Attributes

Attributes Valid Values Default Description Requires Application Restart

enabled true, false false Enables or disables demomode. No

Elements

Number of Occurrences Zero or one.

Parent Elements probeconfig

Child Elements none

Example

<demomode enabled="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 82 of 208

<depth> element
Purpose

Configures depth trimming.

Attributes

Attributes Valid Values Default Description Requires Application Restart

enabled true
false

true Enables depth trimming. No

depth number 25 Sets the depth for depth trimming. No

Elements

Number of Occurrences 1

Parent Elements trim

Child Elements none

Example

<trim>
<depth enabled="true" depth="25"/>

</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 83 of 208

<diagnosticsserver> element
Purpose

Contains connection and settings information related to the Diagnostics Server which are used for enterprise
mode.

Attributes

Attributes Valid Values Default Description Requires
Application
Restart

url Registrar
URL.
http://<host>:
<port>

none URL to connect to registrar. No

delay number 2 Number of seconds to wait before
registering.

Yes

keepalive number 15 Number of seconds between
keepalives.

No

proxy URL of proxy none Registrar connection proxy.

proxyuser user id for
proxy

none Proxy user account.

proxypassword password for
proxy

none Proxy user account’s password.

registered_hostname string none Name of host to register as (external
name for firewall traversing).

Yes

register_byip true, false false Register using ipaddress instead of
hostname.

Yes

timeskewcheckinterval number 60 Number of seconds to wait for getting
the time skew from the Diagnostics
server.

No

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

This is a general example showing the setting for the <diagnosticsserver> element. The questionmarks (?)
indicate that appropriate values need to be substituted.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 84 of 208

<diagnosticsserver url="http://localhost:2006/commander" delay="2" keepalive="15"
proxy="?" proxyuser="?" proxypassword="?" registerhostname="?" register_
byip="false"/>

For the steps involved in using the registered_hostname attribute to override the default probe host machine
name see "Overriding the Default Probe Host Machine Name" on page 167.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 85 of 208

<exceptiontype> element
Purpose

Define an exception type.

Attributes

Attributes Valid Values Default Description Requires Application Restart

name string None Class name of an exception. No

Elements

Number of Occurrences Zero tomany

Parent Elements include, exclude

Child Elements None

Example

<exceptiontype name="System.DivideByZeroException"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 86 of 208

<exclude> element (when parent is captureexceptions)
Purpose

Define a list of exceptions to exclude.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Example

<exclude>
<exceptiontype name="System.DivideByZeroException"/>

</exclude>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 87 of 208

<exclude> element (when parent is lwmd)
Purpose

Define which collection classes to exclude from the Collections by Growth and Collections by Size tables in
the .NET Profiler's Collections tab and the Diagnostics user interface’s Collections view.

The specified collection classes may include classes that implement ICollection. Note that this setting
does not affect the instrumentation of LWMD points; it only affects the presentation of the LWMD data and
the amount of LWMD data that is sent to the Diagnostics Server.

Attributes

None

Elements

Number of Occurrences Zero tomany

Parent Elements lwmd

Child Elements None

Example

<lwmd enabled="true" sample="15s" autobaseline="1h" growth="10" size="10">
<exclude>System.Collections.ArrayList</exclude>
<exclude>System.Data.DataView</exclude>

</lwmd>

Note that System.Data.DataView implements System.Collections.ICollection.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 88 of 208

<excludeassembly> element
Purpose

Excludes the instrumentation of an assembly. An assembly is an .exe or .dll file. Provides the ability to
exclude sensitive assemblies from instrumentation (for example, when a product was used to obfuscate and
encrypt code in sensitive assemblies and exceptions would be thrown if instrumented).

Add <excludeassembly name=<AssemblyNameToExclude> as a child to a process element.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

name string none Name of assembly to exclude (without the file extension).

Note: The assembly name can be a Regular Expression to
excludemultiple assemblies. The Regular Expression entry
must be preceded by and exclamationmark (!) to
distinguish it from a simple entry.

Yes

Elements

Number of Occurrences zero tomany

Parent Elements process

Child Elements none

Example

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

<excludeassembly name="Devart.Data.Oracle" />
<excludeassembly name="Devart.Data" />
<excludeassembly name="!Glimpse.*" />

<appdomain enabled="false" name="TestWebService">
<points file=" TestWebService .points" />

</appdomain>
</process>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 89 of 208

<excludesqlparam> element
Purpose

Excludes specific SQL Bind Parameters from being captured.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

name string none Name of the SQL Bind Parameter to be excluded from
capture for user needs (for example, for security
reasons).

This can be a list of Parameter Names.

No

Elements

Number of Occurrences zero tomany

Parent Elements sqlparsing

Child Elements none

Example

<sqlparsing mode="3" capturesqlparameters="true">
<excludesqlparam name="p__linq__1"/>
<excludesqlparam name="p__linq__0"/>

</sqlparsing>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 90 of 208

<filter> element
Purpose

Filters out certain metrics that would skew the results or not be representative of the processing being
monitored.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

firstserverrequest true,
false

false Enables/disables skipping the collection of metrics
for the first time a particular server requests (URL)
gets run after application startup.

Yes

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<filter firstserverrequest="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 91 of 208

<filter> element
Purpose

Enables the inclusion or exclusion of web pages from client monitoring.

Attributes

Attributes Valid
Values

Default Description

type include
exclude

exclude Specifies whether to include or exclude web pages from client
monitoring

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements url

Example

<filter type="include">
<url name=".*\.aspx" />

</filter>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 92 of 208

<htmlinstrumentation> element
Purpose

Enables configuring an alternate instrumentation file to be used for client monitoring. The file must be located
in the /etc directory.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes

Attributes Valid Values Default Description

File HPRUMCMInst.hpcm null The name of the file containing alternate (RUM) client
monitoring instrumentation. The file must be located in the
etc folder.

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements none

Example

<htmlinstrumentation file="HPDefaultInst.hpcm" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 93 of 208

<httpcaptureparams> element
Purpose

Specifies how to configure and capture selected query parameters of HTTP Requests by .NET web
applications.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true,
false

false Enables/disables HTTP parameter capture. No

capturequerystring true,
false

false Enables/disables the query string capture. The
query string is captured as a Server Request
instance property.

This attribute works independently of the
enabled attribute which is used to control the
parameter capture list.

No

param name "Genre"
for
example

none Specifies which query parameter by name
should be captured as part of the Server Request
Name.

No

Number of Occurrences Zero to one.

Parent Elements probeconfig, process

Child Elements param

Example

For the HTTP URL http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punk
with this configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

You see the following server requests:

/MVC3/MusicStore/Store/Browse?Genre=Alternative
/MVC3/MusicStore/Store/Browse?Genre=Blues
/MVC3/MusicStore/Store/Browse?Genre=Classical
/MVC3/MusicStore/Store/Browse?Genre=Disco
/MVC3/MusicStore/Store/Browse?Genre=Latin
/MVC3/MusicStore/Store/Browse?Genre=Metal

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 94 of 208

/MVC3/MusicStore/Store/Browse?Genre=Pop
/MVC3/MusicStore/Store/Browse?Genre=Reggae
/MVC3/MusicStore/Store/Browse?Genre=Rock

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 95 of 208

<httpclient> element
Purpose

This configures whether the URLwill be included as part of an HTTP outbound call’s identity. The default is
true and should be kept so unless there aremany distinct URLs for the outbound HTTP calls. This could
potentially overwhelm the performance of the Diagnostics Server because of the number outbound calls
created (one for each distinct URL). Youmay also want to turn it off if you do not care about the URL of the
HTTP outbound call. The identity of the HTTP outbound call will then be the Server and port number to which
the request is beingmade to.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

showurl true,
false

true Enables/disables the inclusion of the URL as part of the
identity of an outbound call made by a client using HTTP.

Setting to false can be used to protect against symbol table
explosion on the server/agent side if there are toomany
distinct http client calls.

The value should be set to false for REST service client
applications

No

Elements

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain

Child Elements none

Example

<httpclient showurl="true"/>

<httpheaderrule> element
Purpose

Defines a consumer ID rule for HTTP headers.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

id string None ID of the rule. No

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 96 of 208

Attributes Valid
Values

Default Description Requires
Application
Restart

rule string None A regular expression that is used tomatch against
the URL that the HTTP request is being sent to by
the consumer.

No

consumeridfield string None Name of the header to use as the consumer ID. No

Elements

Number of Occurrences Zero tomany

Parent Elements httpheaderrules

Child Elements None

Example

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*" consumeridfield="Caller"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 97 of 208

<httpheaderrules> element
Purpose

This element contains all of the <httpheaderrule> elements.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements consmeridrule

Child Elements httpheaderule

Example

<httpheaderrules>
</httpheaderrules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 98 of 208

<id> element
Purpose

Provides probe id and probe group id.

Attributes

Attribute Valid Values Default Description

probeid String containing:

Letters, digits, underscore,
dash, period and internally
defined $() variable values:

$(APPDOMAIN),

$(MACHINENAME)

$(WEBSITENAME)

$(SERVICENAME)

$(PID)

$(MACHINENAME)_
$(APPDOMAIN).NET

The name of the probe as recognized
by LoadRunner / Performance
Center and System Health.

probegroup string Default Defines the grouping recognized by
the Diagnostics Server for reporting
of systemmetrics and probe
metrics.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process, appdomain

Child Elements none

Examples

Default setting example.

<id probeid="$(MACHINENAME)_$(APPDOMAIN).NET" probegroup="Default"/>

Example for a probe running in a LoadRunner 8.1 environment reporting to "myDiagServer" with the probe’s
name comprised of valid characters, the name of theWeb site the application is deployed under, plus the
name of themachine the application is deployed on.

<id probeid="LR_81_$(WEBSITENAME)_$(MACHINENAME).NET" probegroup="LR_81_
myDiagServer"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 99 of 208

<include> element (when parent is captureexceptions)
Purpose

Define a list of exceptions to include.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Example

<include>
<exceptiontype name="System.DivideByZeroException"/>

</include>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 100 of 208

<include> element (when parent is lwmd)
Purpose

Define which collections to include to the exclusion of others.

Attributes

None

Elements

Number of Occurrences Zero tomany

Parent Elements lwmd

Child Elements None

Example

<include>System.Collections.Hashtable</include>
<include>System.Collections.ArrayList</include>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 101 of 208

<instrumentation> element
Purpose

Contains logging configuration for instrumenter.

Attributes

None.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process

Child Elements logging

Example

<instrumentation>
<logging level="property lwmd" />

</instrumentation>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 102 of 208

<iprule> element
Purpose

Defines a consumer ID rule for IP addresses.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

id string None Enables consumer ID rule evaluation. No

rule string None Define an IP address, or a range of addresses, to
be assigned to a consumer ID.

No

consumerid string None The consumer ID to use if there is amatch on the
rule.

Elements

Number of Occurrences zero tomany

Parent Elements iprules

Child Elements none

Example

<iprule id="IpTest1" rule="43.*.1-20.*" consumerid="HP"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 103 of 208

<iprules> element
Purpose

This element contains all of the <iprule> elements.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements iprule

Example

<iprules>
</iprules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 104 of 208

<latency> element
Purpose

Configures latency trimming.

Attributes

Attributes Valid
Values

Default Description

enabled true
false

true Enables latency trimming.

throttle true
false

true Enables latency trimming throttling.

min number 2 Minimum latency threshold.

max number 100 Maximum latency threshold.

increment number 2 Threshold increment.

increment
threshold

number 75 The percentage of the buffer usage before the throttling should
be incremented.

decrement
threshold

number 50 The percentage of the buffer usage before the throttling should
be decremented.

Elements

Number of Occurrences 1

Parent Elements trim

Child Elements none

Example

<trim>
<latency enabled="true" throttle="true" min="2" max="100" increment="2"

incrementthreshold="75" decrementthreshold="50"/>
</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 105 of 208

<logdirmgr> element
Purpose

Contains the configuration for the log directory manager. The logdirmgrmonitors the log directory to ensure
that it does not grow unbounded. The logdirmgr scans the logs periodically as indicated by the scaninterval. If
the size has exceeded the size indicated by maxdirsize the logdirmgr deletes the oldest files until the size no
longer is greater than themaxdirsize.

Important: The account under which the .NET process is running (for IIS the AppPool Account) has to be
provided delete privileges on the log folder. This is not available by default on the NETWORK SRERVICE
account or the App Pool Identity Account (which is the default Application Pool Account).

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

true

maxdirsize number 1024 Largest size in MB to which the log directory can
grow.

Must be at least 1(MB).

No

scaninterval number 30 How often in minutes that themanager scans the
logs to check for growth and size.

Must be at least 10 (minutes).

No

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

<logdirmgr enabled="true" maxdirsize="1" scaninterval="10"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 106 of 208

<logging> element (when parent is instrumentation)
Purpose

Sets the logging level for the .NET Agent instrumentation processing.

Attributes

Attributes Valid
Values

Default Description Requires Application
Restart

level off
assert
break
severe
warning
info

_
debug
points
eh
sig
chi
cil
classmap
ilasm
symbols
deepmode
load
all
checksum
property

remoting

lwmd

http

""

which is equivalent
to "info"

Level of logging. No

threadids true
false

true Should thread IDs be included
in the log.

Valid values below "info" should typically not be used. These are diagnostic settings that can produce
extremely large log files.

Elements

Number of Occurrences zero tomany

Parent Elements instrumentation

Child Elements none

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 107 of 208

Example

<instrumentation>
<logging level="warning" />

</instrumentation>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 108 of 208

<logging> element (when parent is appdomain, probeconfig,
or process)
Purpose

Sets the logging level for the .NET Agent processing for monitoring and reporting application performance.

Attributes

Attributes Valid Values Default Description Requires Application
Restart

level off
severe
warning
info

debug
events
property
webserver
http
symbols
probemetrics
registrar
threadpool
authentication
bufferpool
rum
bacforsoa
vmware
exceptions|

""

which is
equivalent to
"info"

No

max number 10 Themaximum size of a
probe log file. After the
log reaches this size no
more logging will occur.

No

Valid values below "info" should typically not be used. These are Diagnostic settings that can produce
extremely large log files.

Elements

Number of Occurrences

Parent Elements appdomain, probeconfig, process

Child Elements none

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 109 of 208

Example

<logging max="10" level="INFO"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 110 of 208

<lwmd> element
Purpose

Configures the Light-Weight Memory Diagnostics (LWMD) feature.

Attributes

Attributes Valid
Values

Default Description Requires Application
Restart

enabled true
false

false Enables sampling for lwmd
capturing.

No

sample string 1m Sample interval
(h-hour/m-minute/
s-second).

autobaseline string 1h Auto baseline interval.

manualbase
line

string none Manual baseline time.

growth number 15 Number of collections to growth
track.

size number 15 Number of collections to size
track.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements exclude, include

Example

<lwmd enabled="false" sample="1m" autobaseline="1h" manualbaseline= "?" growth="15"
size="15"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 111 of 208

<mediator> element
Purpose

Specifies the diagnostics server that is in theMediator mode to which events are to be sent when in the
enterprisemode.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

host host
name

none Name of mediator. No

port number 2612 Mediator port. No

ssl true/false false When the Diagnostics Server URL starts with http the
default is false. When the Diagnostics URL starts
with https the default is true.

Yes

metrichost string The host to whichmetric data is sent. No

metricport number 2006 The port to which the probe sends the probemetrics
such as heap usage and availability.

No

block true/false false Block until mediator connection established.

ipaddress local ipaddress to use when connecting to the
eventserver.

localportstart number 4000 Beginning of port range to use for tcp event channel
connection to the Diagnostics Server in Mediator
mode. Used only when ipaddress is specified.

localportend number 5000 End of port range to use for tcp event channel
connection to the Diagnostics Server in Mediator
mode. Used only when ipaddress is specified.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<mediator host="localhost" port="2612" ssl="false" metricport="2006" block="false"
ipaddress="16.255.18.99" localportstart="4000" localportend="5000"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 112 of 208

<metrics> element
Purpose

This element contains all of the <metric> elements.

Attributes

None

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, process

Child Elements metric

Example

<metrics>
<metric name="% Time in GC" group="Memory" units="percent" category=".NET CLR

Memory" counter="% Time in GC"/>
</metrics>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 113 of 208

<metric> element
Purpose

Specifies additional probemetrics that you want the Diagnostics .NET to collect from perfmon. See
"Collecting Additional ProbeMetrics or Modifying ProbeMetrics" on page 173 for additional information.

Attributes

Attributes Valid Values Default Description Requires
Application
Restart

name string Name of themetric as
you would like to see
it in the Diagnostics
UI.

Yes

group string Group (Category) of
themetric as you
would like to see it in
the Diagnostics UI.

Yes

units microseconds, milliseconds, seconds,
minutes, hours, days, bytes, kilobytes,
megabytes, gigabytes, count, percent,
fraction_percent, load, status

Units of measure for
the perfmonmetric.

Yes

category string The performance
counter category as
specified in perfmon.

Yes

counter string The performance
counter as specified in
perfmon

Yes

Note: The instance of the counter is automatically assigned as the process instance for the counter or
application domain instance for ASP.NET application counters. Counters that do not have process or
application domain instances are not collected; you should define systemmetrics instead.

Elements

Number of Occurrences 1 or more per parent

Parent Elements metrics

Child Elements none

Example

<metrics>
<metric name="% Time in GC" group="Memory" units="percent" category=".NET CLR

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 114 of 208

Memory" counter="% Time in GC"/>
</metrics>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 115 of 208

<modes> element
Purpose

Specifies which product mode(s) the .NET Agent should run in. See "ControllingWhich HPE Software
Products the Agent canWork With" on page 153 for more information about using the different modes.

The <modes> element is also used in determining usage against the HP Diagnostics license capacity.

See the chapter "Licensing HP Diagnostics" in the HPE Diagnostics Server Installation and Administration
Guide for more information.

The value of the <modes> element is initially set at the time you install the agent.

The .NET agent can set in different modes to do the following:

l Monitor applications from development through pre-production testing and into production.
l Used with other HP Software products.
l Used as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software products.
Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enterprise true
false

Depends
onmode
chosen in
installation.

true if pro is
false

false if pro
is true

Sets agent to run in enterprisemode (probe is working
with Diagnostics Server).

Enterprisemode is like a combination of ad, am and pro
mode. It will capture data for LoadRunner runs as well
as data outside of LoadRunner runs.

Enterprisemode is the default for .NET Agents (if you
don’t specify AD or AMmode). In Enterprisemode the
agents are counted against the AM license capacity.

No

ent true
false

Depends
onmode
chosen in
installation.

true if pro is
false

false if pro
is true

This is a short form of the enterprise attribute. No

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 116 of 208

Attributes Valid
Values

Default Description Requires
Application
Restart

ad true
false

false admode supersedes all other modes. If admode and
any other modes are set, thenmode will be set to ad.

In admode the .NET Agent will only capture runs from
LoadRunner and put the results in a specific database
for that run (for example, Default21).

Agents in AD modewill only be counted against AD
license capacity when the probe is running in a
LoadRunner or Performance Center test run. When not
in a test run the agent does not count against license
capacity.

For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but only 5
are in a run, then only 5 are counted against AD license
capacity.

No

am true
false

false ammode supersedes all other modes except for ad. In
ammode the .NET agent will ignore runs. If
LoadRunner is executing an application then you will
see the data in the normal Diagnostics database.

Agents in AMmodewill always be counted against the
AM license capacity.

No

pro true
false

Depends
onmode
chosen in
installation.

true if
enterprise
is false

false if
enterprise
is true

Sets the agent to run in Profiler mode.

This mode sends data to the profiler. This mode can be
combined with other modes. Agents in promode are not
counted against license capacity.

No

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<modes enterprise="false" ad="false" am="false" pro="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 117 of 208

<param> element
Purpose

Specifies a query parameter to capture in an HTTP request.

Attributes

Attributes Valid Values Default Description

name string none Name of the .NET process that these setting apply to.

None.

Number of Occurrences Zero tomany.

Parent Elements httpcaptureparams

Child Elements none

Example

For the HTTP URL http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punk
with this configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 118 of 208

<points> element
Purpose

Specifies the capture points file to use for instrumentation.

Attributes

Attributes Valid
Values

Default Description Requires Application
Restart

file string none Name of instrumentation capture
points file.

Yes

Elements

Number of Occurrences zero or more

Parent Elements appdomain, process

Child Elements none

Example

<points file="ASP.NET.points"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 119 of 208

<probeconfig> element
Purpose

Provides single containing root element for the .NET Agent configuration.

Attributes

None.

Elements

Number of
Occurrences

1

Parent
Elements

None

Child
Elements

appdomain, bufferpool, captureexceptions, consumeridrules, credentials,
diagnosticsserver, eventserverhost, id, instrumentation, ipaddress, logging, lwmd,
mediator, modes, points, process, profiler, rum, sample, soappayload, trim, webserver,
topology, vmware, xvm

Example

<probeconfig>
</probeconfig>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 120 of 208

<process> element
Purpose

Provides an inclusion filter list of which processes will bemonitored.

If no process elements are defined then no processes will bemonitored.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enablealldomains true
false

true When set to true the enable attribute on all
AppDomains that are part of the process is overriden
so that all will be enabled.

Yes

name string none Name of the .NET process that these setting apply
to.

Yes

monitorthreads true
false

true When set to true, enables ThreadMonitoring by the
.NET agent. The stacktracesampling option
depends on this option being enabled.

Note: If this option is disabled, theView Thread in
New Window navigation in the Diagnostics
Enterprise UI does not work for probes with this
setting.

Yes

These are the rules for the enablealldomains attribute of the <process> element:

l enablealldomains = false : If there are no domains in the list of <appdomain> then no AppDomains should
be enabled.

l enablealldomains = false : If there are domains in the list of <appdomain> then AppDomains should be
enabled if the "enable" attribute is set to true or not defined in the enable attribute of the <appdomain>.

l enablealldomains = true : If there are domains in the list of <appdomain> then only AppDomains in the list
should be enabled disregarding their "enable" attribute.

l enablealldomains = true : If there are no domains in the list of <appdomain> then all AppDomains should
be enabled.

l enablealldomains attribute is not defined: same as if enablealldomains = true.
Elements

Number of
Occurrences

zero or more

Parent
Elements

probeconfig

Child
Elements

appdomain, bufferpool, credentials, diagnosticsserver, mediator, id, instrumentation,
ipaddress, logging, lwmd, modes, points, profiler, sample, trim, webserver, filter, symbols,
topology

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 121 of 208

Example

<process enablealldomains="true" name="ASP.NET" monitorthreads="true">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 122 of 208

<profiler> element
Purpose

Contains settings for the Profiler feature.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

authenticate true,
false

none Enables/Disables authentication of incoming
Profiler connection requests.

Changes to this attribute setting are applied
dynamically; you do not need to restart the
application or the probe.

No

register true,
false

false Tells the probe to register even if it is in Profiler
only mode.

No

samples number 60 Tells the Profiler how many samples to keep for
lwmd/heap trending.

No

best number 1 The number of fastest instance trees to keeps. No

worst number 3 The number of slowest instance trees to keep. No

inactivitytimeout string 10m The length of time that the Profiler continues to
run after the user has stopped interacting with
the Profiler.

No

disableremoteaccess true,
false

false Disables remote access to the Profiler, thus not
exposing the User/Password, and still be able to
telnet/RemoteDeskTop into themachine and
run the Profiler locally.

No

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements authentication

Example

<profiler authenticate="true" register="false" samples="60" best="1" worst="3"
inactivitytimeout="10m">

<authentication username="admin" password="admin"/>
</profiler>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 123 of 208

<rum> element
Purpose

Controls the settings for Real User Monitoring.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enable true
false

true Enables or disables the RUM Integration feature. No

responseheader string X-HP-
CAM-
COLOR

The name of the http header whose value
contains the Diagnostics to RUM integration
information.

No

encryptedkey string The encrypted key must be generated using the
passgen utility in the <probe_install_dir>\bin
directory.

No

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

<rum enabled="true" responseheader="X-HP-CAM-COLOR"
encryptedkey="OBF:3pe941vx43903wre40303xxz3q6r42ob43n93wre3io03xjs40h940pc3wir3q233ju
r3zir3yi03zir3vc03wre3xpi3r8o3olr44na3zor3v6m3vc03zir44u03ohb3rdi3xjs3wx03v6m3zor3yc6
3zor3jqz3q6r3wd740vi40b53xpi3ike3wx043gp42ur3q233y3r3zwy3wx0432i42293p9p"/>

To create the encrypted key, use the PassGen utility as follows:

cd <installdir>/bin
PassGen /system encryptionKey

Where encryptionKey is a string of alpha-numeric characters with amaximum length of 128 characters. The
encryptedkey is shown on stdout.

passgen example:

PassGen /system TheLazyFoxJumpedHigh

Returns:

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 124 of 208

OBF:3q6r3xxz3y3r3xjs3wx03yc63n0r3lbr3vc03wd745893wre44u0413j3kn93zwy40vi432i44fr3m453
m894493439040pc40303kjd419r44na3wx0451h3wir3v6m3lfr3mwj3yi03wre3xpi3xxz3y3r3q23

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 125 of 208

<sample> element
Purpose

Sets the sampling type and rate.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

method percent,
count,
period

percent Sets the samplingmethod:

for percent rate must be 0-100

for count rate must be >1

for period ratemust be one of standard Diagnostics
time strings (3m for 3minutes, 4s for 4 seconds, and
so forth)

No

rate number 0 Sets the sampling rate for percent type. No

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process, ws

Child Elements none

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>
Sampling is a random percentage rate.

<xvm>< ws ><sample method="count" rate="50"/></ ws ></xvm>
Sampling is once every rate count.

<xvm>< ws ><sample method="period" rate="60000"/></ ws ></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 126 of 208

<server> element
Purpose

Configures the scripts and URLs to load for client monitoring instrumentation.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes

Attribut
es

Valid Values Default Description

scriptsurl Example:
http://Mediatorhost/ClientMon/boome
rang-min.js

http://Mediatorhost:port/boomerang-
min.js

Defines the
script and the
URL to load
for
instrumentati
on

beaconur
l

Example:
http://Mediatorhost/ClientMonitoring/
B

http://Mediatorhost:port/ClientMonitori
ng/B

Defines the
script and the
URL to load
for
instrumentati
on

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements none

Example

<server scriptsurl="boomerang-min.js" beaconurl="ClientMonitoring/B" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 127 of 208

<soapcapture> element
Purpose

Configures whether SOAP requests and responses are captured.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

true Enables or disables the capture of SOAP requests and
responses. If this is disabled it will affect the following:

SOAP request capture for SOAP faults

ConsumerID assigned via the SOAP rules.

No

maxsize number 0 This is an optional attribute that specifies themaximum
size in characters of the SOAP request or response
captured.

0 indicates unlimited.

No

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<soapcapture enabled="true" maxsize="0" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 128 of 208

<soaprequestforsoapfault> element
Purpose

Configures SOAP request capture (including payloads) on SOAP Faults. Payloads can contain sensitive
information such as credit card numbers so this element is disabled by default.

NOTE: If the <soapcapture> element is disabled it will override the <soaprequestforsoapfault> setting.
Please refer to the documentation for the <soapcapture> element.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

false Enables or disables the SOAP request capture on SOAP
fault feature. Disabled by default.

No

maxsize number 5000 This is an optional attribute that specifies themaximum
size in characters of SOAP request capture. If not present
the Default value is used. If present and an error is made in
the setting, the Default value is used.

No

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<soaprequestforsoapfault enabled="true" maxsize="5000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 129 of 208

<soaprule> element
Purpose

Defines a consumer ID rule for SOAP headers.

Attributes

Attributes Valid Values Default Description Requires
Application
Restart

id string None ID of the rule. No

rule string None A regular expression that is used to
match against the web service name
being called by the consumer.

No

consumeridfield string None The element in the SOAP header to get
the value for to use as the consumer ID.

No

location soap-header, soap-
body, soap-
envelope, Not set

Not set The location within the SOAP payload
where the soaprule applies.

No

Elements

Number of Occurrences zero tomany

Parent Elements soaprules

Child Elements none

Example

<soaprule id="SOAP1" rule="TestService2" consumeridfield="Caller"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 130 of 208

<soaprules> element
Purpose

This element contains all of the <soaprule> elements.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements soaprules

Example

<soaprules>
</soaprules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 131 of 208

<sqlparsing> element
Purpose

This element is used to indicate in what mode SQL queries should be parsed. If there are a large number of
SQL queries using literals it can overwhelm the server symbol table so the default is set to mode 3 to avoid
this problem.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

mode 1, 2, 3,
4

3 Boolean property to turn asynchronous stack
trace sampling on or off.

No

keywordsfile string None Optionally allows you to specify a file containing
keywords you want the agent to find in the SQL
statement and highlight in upppercase when
stored or displayed by Diagnostics. This helps
ensure similar queries are recognized as the
same query irrespective of case.

Yes

capturesqlparameters true
false

false Turns capturing of SQL Bind Parameters for the
Diagnostics Agent on or off.

No

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements excludesqlparam

Example

<sqlparsing mode="4" capturesqlparameters="false"
keywordsfile="C:\myfolder\mykeyword.txt"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 132 of 208

<stacktracesampling> element
Purpose

Enables/disables and configures asynchronous thread stack trace sampling.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

false Enables or disables asynchronous stack trace
sampling feature.

No

tardymethodlatency number
greater
than 20

150 Minimum time (in millisecs) that an instrumented
methodmust run without hitting any
instrumentation points before stack trace
sampling is attempted for this method. The
purpose of this property is to control the overhead
of sampling by limiting the stack trace collection
to themost critical cases.

No

rate number
greater
than 20

100 The time (in millisecs) that must elapse before the
next consecutive sampling attempt is made.

Small values cause frequent sampling, thus
providing rich data, but at the cost of increased
overhead. Large values causemany methods to
miss most of the samples, thus required you to
hunt for additional details in multiple saved
instances, whichmay not be there.

The overhead caused by frequent sampling
affects primarily the latency of server requests.
The overall CPU usage by the probemay go up as
well, but this effect is not as profound as the
latency increase. For machines with many CPUs,
the process CPU consumptionmay actually go
down (and it is not a good thing).

No

outboundcalls true
false

false Turn asynchronous stack trace sampling on or off
for outbound calls/

No

suspendthread true
false

true Suspends the thread before it takes a stack
snapshot on it.

No

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 133 of 208

Attributes Valid
Values

Default Description Requires
Application
Restart

maxactivethreads number 100 Prevents the probe from doing stack traces when
the number of active fragments is greater than the
configured number. This option is for throttling
stack trace sampling during high throughput
periods, which can adversely affect performance
due to stack trace sampling overhead. Stack
trace sampling will restart automatically after the
load drops to 25 percent below the defined number
of maxactivethreads.

No

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements

Example

<stacktracesampling enabled="false" tardymethodlatency="150" rate="100"
outboundcalls="false" suspendthread="true" maxactivethreads="100"/>

This statement enables stack trace sampling with the shown configuration.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 134 of 208

<symbols> element
Purpose

Limits the number of unique URIs and SQL strings that can be captured to control the amount of memory
consumed.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

maxuri number 1000 Sets the top limit for number of unique URIs that can
be captured.

No

maxuriname string Maximum
number of
unique
URIs
exceeded

No

maxsql number 1000 Sets the top limit for number of unique URIs that can
be captured.

No

maxsqlname string Maximum
number of
unique
SQLs
exceeded

No

usehttpmethod true

false

true true. Use the HTTP method (such as PUT, GET,
POST, and so forth) as the root method (identifying
component) for each HTTP/S Server Request. This
generates a separate HTTP Server Request for each
HTTP method to the sameURL.

false. The root method (identifying component) for
an HTTP Server Request is 'Server.Request'. This
generates one HTTP Server Request for all HTTP
methods to the sameURL.

No

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements urireplacepattern

Example

<symbols maxuri="1000" maxuriname="Maximum number of unique URIs exceeded"

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 135 of 208

maxsql="1000" maxsqlname="Maximum number of unique SQLs exceeded"
usehttpmethod="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 136 of 208

<throughputthrottle> element
Purpose

Each instrumented point has a counter which gets reset every second. The counter is incremented by one
every time the point is invoked. If the incremented value is over the threshold, the invocation is ignored by the
probe.

The number of locations (instrumented points) which are currently being throttled by this mechanism can be
viewed as a probemetric in the Enterprise console.

The throughputthrottle element controls the location throughput throttling in the probe_config.xml file.

Attributes

Attributes Valid
Values

Default Description

enable true
false

true Turns on or off throughput throttling for instrumented points for .NET
Diagnostics Agent

maxthroughput number 1000 Themaximum number of hits per sec on a Instrumented point
(location) after which the point will be ignored.

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<throughputthrottle enable="true" maxthroughput="1000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 137 of 208

<topology> element
Purpose

Controls whether topology information will be collected and sent to the Diagnostics server.

Attributes

Attributes Valid
Values

Default Description

enable true
false

true Enables gathering topology information and passing it to the
Diagnostics Server.

Elements

Number of Occurrences 1

Parent Elements <probeconfig>, <process>, or <appdomain>

Child Elements none

Example

<topology enable="true">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 138 of 208

<trim> element
Purpose

Configures the trimming feature to reduce data volume transferred between the probe and the Diagnostics
Server.

The Profiler user interface ignores all configured trim settings, for example, depth trimming and latency
trimming, as the Profiler does not require that any data be sent to the Diagnostics Server.

Attributes

None.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements depth, latency

Example

<trim>
</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 139 of 208

<uriautocollapsing> element
Purpose

Configures automatic URI collapsing–the detection and trimming of server requests to avoid flooding the
server symbol table with a large number of unique server requests.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

enabled true
false

true Enables automatic URI collapsing. No

limits numbers
separated
by "/"

120/60/25/10 Themaximum number of path segments allowed
for each segment position, provided all of the
preceding path segments are equal.

The last specified value extends for all unspecified
segments, that is, specifications 80/90/20 and
80/90/20/20/20 are equivalent.

No

Elements

Number of Occurrences 1

Parent Elements probeconfig, symbols

Child Elements none

Example

<symbols>
<uriautocollapsing enabled="true" limits="120/60/25/10"/>

</symbols>

Once the limit for the fourth path segment is exceeded, URIs of that form are collapsed. For instance, assume
the application receives the following URIs:

/a/b/c/01
/a/b/c/02
...
/a/b/c/11

Because the limit for the fourth path segment is exceeded, all future incoming URIs of that form will be
replaced by /a/b/c/*.

The following screen shots show before and after automatic URI collapsing. The third segment of the
URI path exceeds the specified limit so it is collapsed.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 140 of 208

After:

For server request URIs that have beenmodified by the automatic URI collapsing feature, each associated
call profile retains the original, uncollapsed, URI. You can view this value in the Original URI field in the
Details pane of the Call Profile view.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 141 of 208

<urireplacepattern> element
Purpose

Used to reduce the number of unique server requests by replacingmany server requests with one simplified
server request URI that aggregates them. Uses regular expression patternmatching. See "Configuring URI
Truncation andMapping" on page 159.

Attributes

Attributes Valid Values Default Description Requires
Application
Restart

enabled true
false

false Enables uri pattern replacement. No

pattern
value

s/string/string/ If enabled there are
two default patterns
defined for you.

The syntax for the pattern value is
s/search_pattern/replace_pattern/.

If / is used in the pattern then the
character # should be used instead of /
as the separator.

Patterns are applied to all server
requests and are applied in the order
they are specified in probe_config.xml.

No

Elements

Number of Occurrences 1

Parent Elements probeconfig, symbols

Child Elements none

Example

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">
<pattern value="s/TestService1/CommonService/"/>

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>

</symbols>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 142 of 208

<url> element
Purpose

Enables configuring which web pages are included or excluded from client monitoring.

Attributes

Attributes Valid
Values

Default Description

name /CallChain.* include every
page

Specifies which web pages to include or exclude from client
monitoring,

Note:Regular expressions can be used.

Changes to these attribute settings are applied dynamically; you do not need to restart the application or the
probe.

Elements

Number of Occurrences 1

Parent Elements filter

Child Elements none

Example

<filter type="include">
<url name=".*\.aspx" />

</filter>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 143 of 208

<vmware> element
Purpose

Controls the ability to adjust timestamps to bemore accurate when running in a VMware environment.

Attributes

Attributes Valid
Values

Default Description Requires
Application
Restart

attempttime
stampadjustments

true
false

false Enables time stamp adjustments in VMware
environments.

No

useworkaround true
false

false If you encounter negative latency issues when
running the .NET Agent on a VMware guest with
the attempttimestampadjustments attribute set to
true you should set this attribute to true. When this
attribute is set to true the .NET Agent will use an
alternative call to get the VMware host
timestamps to workaround the negative latency
issue.

No

disableperfcounters true
false

false Set this option to true if the .NET Agent causes
IIS worker process to crash in a VMWare
environment.This is a workaround for aMicrosoft-
VMWare environment problem related to
accessing perfmon counters in certain VMWare
environments.

Yes

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements none

Example

<vmware attempttimestampadjustments="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 144 of 208

<webserver> element
Purpose

Specifies the local Web server properties for communication with the probe.

Attributes

Attributes Valid
Values

Default Description Requires Application
Restart

start number 35000 Starting port for webserver. Yes

end number 35100 Ending port for webserver. Yes

ipaddress IP address Local ip address to run webserver
on.

Yes

Example

<webserver start="35000" end="35100" ipaddress="16.255.18.99"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 145 of 208

<ws> element
Purpose

Controls Web services correlation sampling.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements <xvm>

Child Elements <sample>

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 146 of 208

<xvm> element
Purpose

Controls the cross VM settings.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements <ws>

Example

<xvm></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HPE Diagnostics (9.30) Page 147 of 208

Chapter 7: Advanced .NET Agent
Configuration
Instructions are provided for advanced configuration of the .NET Agent. Advanced configuration is intended
for experienced users with in-depth knowledge of this product. Use caution whenmodifying any of the
Diagnostics components’ properties.

This chapter includes:

l "Time Synchronization for .NET Agents Running on VMware" below
l "Customizing the Instrumentation for ASP.NET Applications" on the next page
l "Discovering the Classes andMethods in an Application" on page 152
l "ControllingWhich HPE Software Products the Agent canWork With" on page 153
l "Configuring Support for MSMQBasedCommunication" on page 155
l "Configuring Latency Trimming and Throttling" on page 155
l "Configuring Depth Trimming" on page 158
l "Configuring URI Truncation andMapping" on page 159
l "Capturing HTTP Server Requests Based onQuery Parameters" on page 160
l "Configuring the .NET Agent for Lightweight Memory Diagnostics" on page 161
l "Limiting Exception Stack Trace Data" on page 163
l "Configuring Thread Stack Trace Sampling" on page 165
l "Disabling Logging" on page 166
l "Overriding the Default Probe Host Machine Name" on page 167
l "Listing the Probes Running on a Host" on page 168
l "Authentication and Authorization for .NET Profilers" on page 168
l "Configuring Consumer IDs" on page 169
l "Configuring SOAP Fault Data" on page 172
l "Collecting Additional ProbeMetrics or Modifying ProbeMetrics" on page 173
l "Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services" on page 174

Time Synchronization for .NET Agents Running on
VMware
.NET Agents running in VMware hosts have additional time synchronization requirements. For agents running
in a VMware guest, timemust be synchronized between the VMware guest and the underlying VMware host.
If time is not synchronized properly, the Diagnostics UI could display inaccuratemetrics or nometrics at all
from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper on
timekeeping (http://www.vmware.com/pdf/vmware_timekeeping.pdf) in the section "Synchronizing Hosts
and Virtual Machines with Real Time." In summary, VMware Tools must be installed in each VMware guest

HPE Diagnostics (9.30) Page 148 of 208

http://www.vmware.com/pdf/vmware_timekeeping.pdf

operating system that hosts a Diagnostics probe and the time synchronization option in VMWare Tools should
be turned on. Note that this option in VMware Tools will only work if the guest operating system time is initially
set earlier than that of the VMware host. For instructions on how to install VMware Tools, see the "Basic
System Administration" document for VMware ESX Server. In addition, if any non-VMware time
synchronization software (such as Network Time Protocol) is used, it should be run in the VMware ESX
server service console.

Customizing the Instrumentation for ASP.NET
Applications
When the .NET Agent is installed, theASP.NET.points file is created with the standard instrumentation that
the agent applies to all ASP.NET processing on themonitored server.

Youmust create application-specific instrumentation points to capture performancemetrics for the business
logic that has been implemented through application-specific classes andmethods. The application-specific
instrumentation points must be stored in a custom capture points file that can be associated with the
application using the attributes in the <probe_install_dir>/etc/probe_config.xml file. If the application was
auto-detected during the installation or during a rescan of IIS, a custom capture points file was automatically
created for the application at the same time.

Note: If you do not know the classes andmethods in an application that you want to monitor, you can use
the Reflector tool that was installed with the .NET Agent to analyze the .dll files in the application and
discover the classes andmethods. See "Discovering the Classes andMethods in an Application" on
page 152 for instructions on using Reflector.

To let the .NET Agent know that you want the instrumentation points in a custom capture points file to apply to
an application, youmust update the points attribute of the appdomain element in the probe_config.xml file.

To associate a custom capture points file with an application:

1. Create a capture points file with the instrumentation for the application specific classes. To create a
capture points file, copy an existing capture points file in the <probe_install_dir>/etc directory.

Note: If the application was auto-detected during the installation or during a rescan of IIS, a capture
points file already exists for the application with some or all of the points file entries commented out.

2. Customize the capture points file by adding instrumentation points so that the agent captures custom
business logic for the applications.
The following example illustrates how tomodify the capture points file so that the agent captures
IBuySpy custom code:

[IBuySpy Callee]
class = !IBuySpy.*
method = !.*
signature =
scope =
ignoreScope =
layer = Custom.IBuySpy

Formore information about instrumentation, see "Custom Instrumentation for .NET Applications" on
page 48

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 149 of 208

3. Update the configuration of the .NET Agent probe in probe_config.xml to ensure that themodified
capture points file is properly referenced.
Within the ASP.NET <process> tag add an <appdomain> tag for the application. Include the <points>
tag with the file attribute and the enabled attribute. See "Virtual Directories (AppDomains) Under
Different IIS Paths with the SameNames" below for more examples.

<appdomain name="1/ROOT/your_app_name" website="Default Web Site"
enabled="true">

<points file="DefaultWebsite-your_app.capture points"/>
</appdomain>

The example below illustrates this step. A custom capture points file has been created for the
MSPetsShop application. The file has been namedMSPetShop.points. The <appdomain> tag for the
application, and the capture points file were added to the ASP.NET <process> tag in the probe_
config.xml file. Note that the IIS path is included in the appdomain tag.

<?xml version="1.0" encoding="utf-8"?>

<probeconfig>
<id probeid="" probegroup="Umatilla"/>

<credentials username="" password=""/>
<profiler authenticate=""><authentication username="" password=""/></profiler>

<diagnosticsserver url="http://issaquah:2006"/>
<mediator host="issaquah" port="2612"/>
<webserver start="35000" end="35100"/>
<modes am="true"/>

<instrumentation><logging level="" threadids="no"/></instrumentation>

<lwmd enabled="true" sample="1m" autobaseline="1h" growth="10" size="10"/>

<process name="ASP.NET", enablealldomains="false">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/MSPetShop" website="Default Web Site" enabled="true">

<points file="DefaultWebsite-MSPetShop.points"/>
</appdomain>

</process>
</probeconfig>

4. Restart IIS as instructed in "Discovery and Standard Instrumentation" on page 32.

Virtual Directories (AppDomains) Under Different IIS Paths
with the Same Names
You can distinguish two or more appdomains on the same IIS server which have the same name. Consider
the configuration below where there are 3 virtual directories (AppDomains) with the nameCallChain.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 150 of 208

In the probe_config.xml file you can distinguish the AppDomains by including the IIS configuration path.

The configuration for the 3 CallChain applications in the example above would be as follows:

<appdomain enabled="false" name="1/ROOT/CallChain/CallChain" website="Default
Web Site">

<points file="Default Web Site-CallChain-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="1/ROOT/CallChain" website="Default Web Site">

<points file="Default Web Site-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="2/ROOT/CallChain" website="WebSite2">

<points file="WebSite2-CallChain.points" />
</appdomain>

The resultant probes are distinguished using the IIS path and are displayed in the Enterprise UI as:
1ROOTCallChain.NET, 1ROOTCallChainCallChain.NET, 2ROOTCallChain.NET

Backward Compatibility with Pre-9.01 Releases
For the sake of backward compatibility, the 9.01 or later version of the agent will be able to read and process
versions of the probe configuration earlier than 9.01 for ASP.NET AppDomains. The ’earlier’ format is shown
in the example below:

<appdomain name="CallChain">
<points file="CallChain.points" />

</appdomain>

If you use the earlier format, then the behavior of the agent will revert to the previous version’s behavior.

l All AppDomains with name "CallChain" (in this example) will be enabled or disabled simultaneously.
l All CallChain probe instances will be consolidated on the server into one probe.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 151 of 208

l Trend lines for probes and server requests should continue from previous versions.
It is recommended that you do NOT use the earlier format of configuration where backward compatibility
(such as trend lines) is not required.

For an appdomain configured using the earlier format, if the new behavior is desired, the "old" format entry
should be deleted from the probe_config.xml file. Then runRescan ASP.NET Applications from the start
menu on the probe system. This will result in the addition of AppDomain entries with the new format, allowing
you to distinguish different probes on the same IIS server with the same name.

The upgrade install will retain the earlier version of the appdomain configuration andmodify probe_config.xml
to add the new format configuration for any unlisted AppDomains.

Discovering the Classes and Methods in an
Application
Tomonitor the performance of an application that you are not familiar with, use the Reflector automatic
discovery tool that is installed with the .NET Agent to find the classes andmethods in the application that you
want to add to the instrumentation used by a probe. The Reflector executable is located at <probe_install_
dir>\bin\reflector.exe.

To discover classes and methods using Reflector:

1. Locate the installation directory for the application that you want to monitor.
2. Locate the folder in the application installation directory where the .dll files are stored.
3. Open a command prompt and change the directory to the folder where the .dll files for the application are

stored.
4. Run the Reflector against all of the .dll files and .exe files in the current directory by executing the

following the command at the command prompt:

<probe_install_dir>\bin\Reflector.exe

You can limit the Reflector to certain .dll and .exe files by adding additional parameters to the command.
The following example shows another way to enter the command in the previous example:

<probe_install_dir>\bin\Reflector.exe *.dll *.exe

This command explicitly tells the Reflector to check all of the .dll and .exe files in the target directory.
To limit the Reflector to specific files, you could enter the following:
<probe_install_dir>\bin\Reflector.exeWorkHorse.dll Utility.dll
This command explicitly tells the Reflector to check only the two .dll files specified.
The following example shows the commands youmight execute if you have an application called
PetShop that has .dll files located in a bin folder:

C:\>cd "c:\Program Files\Microsoft\PetShop\Web\bin"

C:\Program Files\Microsoft\PetShop\Web\bin>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 152 of 208

C:\MercuryDiagnostics\".NET Probe"\bin\Reflector.exe

5. The Reflector displays a report of the assemblies, namespaces, classes, andmethods found in the .dll
files that you specified.

Note: You can redirect the output from the Reflector to a file, as shown in the following example:

<probe_install_dir>\bin\Reflector.exe sys*.dll > <report_name>.txt
The output from Reflector is redirected to the file that you specify.

Use the information in the report to customize the instrumentation for the application, as described in
"Customizing the Instrumentation for ASP.NET Applications" on page 149.

Controlling Which HPE Software Products the Agent
can WorkWith
The .NET Agent can be set in different modes for the following:

l Monitoring applications from development through pre-production testing and into production.
l Usewith other HP Software products.
l Use as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software products.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 153 of 208

Themode the .NET Agent works in is determined by the <modes> element set in the <probe_install_
dir>/etc/probe_config.xml file.

The <modes> element is also used in determining usage against the license capacity (see "License
Information Based on Currently Connected Probes" in the HPE Diagnostics Server Installation and
Administration Guide). For Diagnostics there are two types of LTUs (License to use):

l AM -When using of the product in an enterprisemode, typically in a production environment.
l AD -When using the product in a pre-production load testing environment with probes in LoadRunner or
Performance Center runs.

The value of the <modes> element is initailly set at the time you install the .NET agent. See "Installing .NET
Agents " on page 17.

To change the value of the <modes> element you can edit the probe_config.xml file. Or you can re-run the
.NET Agent installer and use the Change option to set themode to Diagnostics Profiler Mode (PRO),
ApplicationManagement/EnterpriseMode for Diagnostics (Enterprise), or Diagnostics Mode for
LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for .NET in enterprisemode or integrated with other HP
Software products, contact HP Software Customer Support to purchase HP Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software products, youmust perform
additional configuration steps. See APM-Diagnostics Integration Guide and the LoadRunner/Peformance
Center-Diagnostics Integration Guide.

The sections that follow provide instructions for configuring each product mode of the <modes> element (see
also "<modes> element" on page 116).

PRO Mode - Diagnostics Profiler for .NET

When PROmode is set, the agent gathers performancemetrics and presents them in the standalone
Diagnostics Profiler for .NET user interface which is made available through a URL on the agent host.

In this mode the profiler is always collecting data even when the profiler UI is not in use. This mode can be
combined with other modes.

PROmode is not used in determining usage against license capacity.

Enterprise Mode

When configured in Enterprisemode, the agent works with HP Software products such as BSM, LoadRunner,
Performance Center, and as the full Diagnostics enterprise product. It will capture data for
LoadRunner/Performance Center runs in a separate database as well as capture data outside of
LoadRunner/Performance Center runs.

Both AD and AMmodes will override this mode.

In Enterprisemode data will also be sent to the Diagnostics .NET Profiler. If the PROmode is set along with
Enterprisemode then the .NET Agent will collect data continuously for the profiler even if the profiler UI is not
in use. If PROmode is not set then the agent will not start collecting data until the profiler UI is started.

Enterprisemode is the default for .NET Agents (if you don’t specify AD or AMmode). In Enterprisemode the
agents are counted against the AM license capacity.

AM Mode

In AMmode the .NET agent will capture all instrumentation data. You can set AMmode to protect an agent in a
production BSM deployment from accidently being included in a LoadRunner or Performance Center run. In
AMmode, the agent is not listed as an available agent in LoadRunner or Performance Center.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 154 of 208

Agents in AMmodewill always be counted against the AM license capacity.

AMmode supersedes all other modes except for AD.

AD Mode

In AD mode the .NET agent will only capture data during runs from LoadRunner/Performance Center and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.

When the agent is in this mode it will not use resources or send any data to the server unless the probe is part
of a LoadRunner/Performance Center run.

AD mode supersedes all other modes. So for example, if AD mode and any other modes are set then the
mode will be set to AD.

See the APM-Diagnostics Integration Guide and the LoadRunner/Peformance Center-Diagnostics Integration
Guide for more information.

Use this mode to prevent an agent in a QA environment from using additional resources and continually report
data to the Diagnostics console dataset when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD modewill only be counted against AD
license capacity when the probe is running in a LoadRunner or Performance Center test run. For example if
you have 20 agents installed in LoadRunner/Performanace Center AD mode but only 5 are in a run, then only 5
are counted against AD license capacity.

Note about AD Mode and Enterprise Mode

The .NET agent gets notified of LoadRunner/Performance Center runs by the Diagnostic Mediator.

If LoadRunner/Performance Center starts testing an instrumented application that is not running, for example,
a web application getting hit the first time, then when the application starts executing the Diagnostics agent
will not be notified of the run. This is because the agent will not have had enough time to get initialized and
start listening to themediator for this notification.

To work around this problem, the .NET agent needs to be "primed"(initialized) by a call to the web application
before a LoadRunner/Performance Center run is started. This initializes the web application's process (worker
process) and the probe so that it is ready to accept run information from themediator.

Configuring Support for MSMQ
BasedCommunication
To configure the .NET Agent to support MSMQ based communication, include themsmq.points file in the
scope of the appdomain as shown in the example excerpt from a <probe_install_dir>/etc/probe_config file:

<process name="SimplestQueuingSender">
<points file="msmq.points"/>
<modes enterprise="true"/>
</process>

Configuring Latency Trimming and Throttling
When the .NET Agent determines that it is running out of resources because the Diagnostics Server is not
keeping up with the amount of data that the probes are capturing, the agent can automatically reduce the

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 155 of 208

number of methods the probe captures using a process called latency trimming. By default, latency trimming
is enabled so that the probe’s work load can be adjusted as necessary.

When latency trimming is enabled, the .NET Agent trims the number of methods captured by a probe by
ignoringmethods with a total latency below a certain minimum latency threshold. The idea behind trimming is
that it is better to miss capturingmethods with lower latency that are less likely to be of interest than to allow
the probe to bog down or stop running. Trimming allows the probe to continue to run so that it can capture the
more interestingmethods with higher latencies.

Note: Because of threading and buffering, partial information about amethod that was trimmed can be
transmitted to the Diagnostics Server. When the Diagnostics Server detects that it received only partial
information for amethod, it issues a warningmessage. You should ignore these warningmessages
unless you expected that the information for all methods was to be captured.

Note:

l Latency trimming and throttling are ignored by the Profiler user interface.
l The Diagnostics Server can be configured to apply additional trimming of the probe’s data which will
affect the granularity of the data shown by the Diagnostics user interface.

Disabling Latency Trimming

By default, trimming is enabled for the .NET Agent. To disable trimming youmust change the configuration.

To disable Latency Trimming:

Add the latency tag to the <probe_install_dir>/etc/probe_config.xml configuration file, as shown in the
following example:

<trim>
<latency enabled="false" />

</trim>

The attribute of the latency element that turns on latency trimming is enabled. Latency trimming is enabled
when enabled is set to true. When enabled attribute is set to false, latency trimming is disabled. The
default value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET Agent
Configuration File " on page 72

Enabling Latency Trimming

By default, trimming is enabled for the .NET Agent. If you subsequently disabled trimming, youmust change
the configuration to enable it oncemore.

To enable Latency Trimming:

Change the value of the enabled attribute of the latency element in the <probe_install_dir>/etc/probe_
config.xml configuration file, as shown in the following example:

<trim>
<latency enabled="true" />

</trim>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 156 of 208

The attribute of the latency element that turns on latency trimming is enabled. Latency trimming is enabled
when enabled is set to true. When enabled attribute is set to false, latency trimming is disabled. The default
value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET Agent
Configuration File " on page 72

Setting Latency Trimming Thresholds

By default, the latency trimming thresholds are set so that thosemethods with a latency less than 2ms are
trimmed, and thosemethods with a latency greater than 100ms are never trimmed.

You can set theminimum trimming threshold by adjusting the value of themin attribute. You can set the
maximum trimming threshold by adjusting the value of themax attribute. These attributes are specified in the
latency element in the <probe_install_dir>/etc/probe_config.xml configuration file.

<trim>
<latency enabled="true" min="50" max="100" />

</trim>

The attributes of the latency element that control the trimming thresholds are:

l min
Sets theminimum latency threshold. When latency trimming is enabled, methods with a latency less than
or equal to the value of this attribute are trimmed. If you do not specify a value for this attribute, the default
value of 2 ms is used.
The lower the value of themin attribute the greater the chance that the performance of the application will
be adversely impacted. A lower valuemeans that fewermethods are trimmed becausemore low-latency
methods are captured.
If the information for all methods must be captured, disable latency trimming by setting latency enabled
equal to false.

l max
Sets themaximum latency threshold. When latency trimming is enabled, methods with a latency greater
than or equal to the value of this attribute are never to be trimmed. The default value for this attribute, if you
do not specify a value, is 100ms.

For a description of the attributes and elements of the latency element, see "Understanding the .NET Agent
Configuration File " on page 72

Configuring Latency Trimming Throttling

Latency trimming is throttled by default. When throttling is enabled, the amount of trimming that is done is
automatically adjusted based on the percentage of the probe resources that are being used up by the
Diagnostics Server processing backlog.

Without throttling, themethods that fall below theminimummethod latency threshold are always trimmed.

If the percentage resources used by the probe increases above a set throttling increment threshold, the
effective trimming threshold is incremented so that methods with higher latency are trimmed. If the
percentage of probe resources used increases above the threshold again, the effective trimming threshold is
incremented oncemore so that methods with even higher latency are trimmed. If the percentage of probe
resources used drops below the throttling decrement threshold, the effective trimming threshold is
decremented so that themethods with lower latencies are captured oncemore.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 157 of 208

The effective trimming threshold cannot be incremented above themaximummethod latency threshold, and it
cannot be decremented below theminimummethod latency threshold.

Below is an example of the latency element in the probe_config.xml configuration file that includes the
throttling attributes:

<trim>
<latency enabled="true" min="50" max="100"
throttle="true" incrementthreshold="75"
decrementthreshold="50" increment="2"/>

</trim>

The attributes of the latency element that control throttling are:

l throttle
Throttling is enabled when this attribute is set to true. When this attribute is set to false throttling is
disabled. The default value for this attribute is true.

l increment
Sets the amount that the effective trimming threshold is incremented when the percentage of probe
resources used exceeds the incrementthreshold. Sets the amount that the effective trimming threshold
is decremented when the decrementthreshold is crossed. The default value for this attribute is 2ms.

l incrementthreshold
When the percentage of probe resource usage rises to the value of this attribute or higher, throttling is
triggered so that the effective trimming threshold is incremented. The default value for this attribute is 75
percent.

l decrementthreshold
When the percentage of probe resource usage falls to the value of this attribute or lower, throttling is
triggered so that the effective trimming threshold is decremented. The default value for this attribute is 50
percent.

For a description of the attributes and elements of the latency element, see "Understanding the .NET Agent
Configuration File " on page 72.

Configuring Depth Trimming
The .NET Agent can automatically reduce the number of methods that it captures using a process called
depth trimming. When the Diagnostics Server is not keeping up with the amount of data that the probe is
capturing, the probe can use depth trimming to help prevent it from running out of resources. By default, depth
trimming is enabled.

Note: Depth trimming is ignored by the Profiler user interface.

When depth trimming is enabled, the .NET Agent trims the number of methods captured by ignoringmethods
that are called at a stack depth that is greater than themaximum stack depth threshold. Those that are called
at a stack depth less than or equal to the stack depth threshold are captured. The idea behind trimming is that
it is better to miss capturingmethods further down in the call stack, that are less likely to be of interest, so that
the probe is able to continue to run and is able to capture themore interestingmethods that occur higher in the
call stack.

For example, if the stack depth threshold is 3, and the followingmethod calls aremade:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 158 of 208

/login.do calls a() calls b() calls c()

where only the /login.do, a, and bmethods are captured, andmethod c is trimmed.

Below is an example of the depth element in the probe_config.xml configuration file that includes the
trimming attributes:

<trim>
<depth enabled="true" depth="10" />

</trim>

The attributes of the depth element that control trimming are:

l enabled
Depth trimming is enabled when this attribute is set to true. When this attribute is set to false depth
trimming is disabled. The default value for this attribute is true.

l depth
Sets the threshold that are used for depth trimming. Methods that are called at or below the value of this
attribute are trimmedwhen depth trimming has been enabled. The default value for this attribute is 25.
Setting depth to a lower value can significantly reduce the overhead of capture. For a description of the
attributes and elements of the depth element, see "Understanding the .NET Agent Configuration File " on
page 72.

Configuring URI Truncation and Mapping
Any HTTP/S server request URI can be transformed before being reported by the probe. This transformation
is based on regular expressionmatching and replacement controlled by the urireplacepattern element in the
probe_config.xml configuration file. It is turned off by default.

This can be useful when you are seeing toomany server requests and you want to replacemany server
request URIs with one simplified server request URI that aggregates them.

Caution: Overuse of this feature will impact performance.

An example is shown below:

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">

<pattern value="s/TestService1/CommonService/"/>

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>

</symbols>

The syntax used for the pattern value is s/search_pattern/replace_pattern/.

The search_pattern and replace_pattern should be enclosed in /. If / is used in the pattern then the character #
should be used instead of / as the separator.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 159 of 208

The patterns are applied to all server requests and are applied to the uri in the order they are specified in the
probe_config.xml file.

If urireplacepattern is enabled, then two default patterns are configured by default.

The first of these default patterns is used to trim server requests that contain a ; or /!. All content after these
tokens is removed from the server request.

The pattern used is : s#(;|/?\\!).*$##"

The second of these default patterns replaces loading of images, pdfs and docs with a fixed token ("/Static
Content").

The pattern used is:

s#(?<word1>^.*)(/.*\\.js|css|jpg|gif|png|pdf|html|doc|docx)#${word1}/Static Content#

Both of these patterns can be customized.

Capturing HTTP Server Requests Based on Query
Parameters
AnHTTP/S server request can be named based on its query parameters. This allows the probe to report more
granular metrics for a particular server request.

By default, query parameters are ignored whenmonitoring a particular server request. To specify that a server
request be created based on a particular query parameter, use the httpcaptureparams element in the probe_
config.xml configuration file. Multiple parameters can be specified.

An example is shown below:

<httpcaptureparams enabled="true">
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

A server request is created for each server request that includes the Genre parameter and accounttype
parameters:

The httppcaptureparams element can also be used to capture the original URI of the server request. To
capture the unmodified server request, set the capturequerystring argument to true:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 160 of 208

<httpcaptureparams enabled="false" capturequerystring="true">
<param name="Genre"/>

</httpcaptureparams>

The captured query string is displayed in the call profile (SR instance) as shown below:

Note: Avoid using a session parameter or highly unique URI value because of the impact to overhead
and data storage.

Configuring the .NET Agent for Lightweight Memory
Diagnostics
The Lightweight Memory Diagnostics (LWMD) feature refers to the ability to capture and analyze usage data
that relates to Collections. Specifically Collections refer to any class that implements either the
System.Collections.ICollection orSystem.Collections.Generic.ICollection interfaces. Examples of
such Collections are ArrayList, HashTable, DataView etc. Themost common from of .NETmemory leaks
occur in Collections that are not properly maintained.

When the .NET Agent is installed, the default configuration for the .NET Agent probe is to have LWMD turned
off. To enable the LWMD feature youmust perform twomodifications to the probe_config.xml file:

l Youmust enable the <lwmd> element (see "<lwmd> element" on page 111).
l Youmust add one or more references to the Lwmd.points file as described in the instructions below.

Note: Enabling the probe to capture collections metrics could incur additional overhead on the host for an
application.

To enable the capture of collection metrics for a process or for an AppDomain:

Add a points tag for the Lwmd.points file to either the process tag or to one or more <appdomain> tags in
the probe_config.xml configuration file.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 161 of 208

When you install the .NET Agent, the Lwmd.points file is installed in the <probe_install_dir>/etc/ directory
along with theASP.NET.points andADO.points files. The Lwmd.points file contains the instrumentation
instructions needed to enable the capture of collectionmetrics.

To enable LWMD instrumentation for all enabled AppDomains that run under a process, you add the points tag
to the process tag in the probe_config.xml configuration file. For example, to enable LWMD instrumentation
for all enabled ASP.NET AppDomains:

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="Lwmd.points"/>
<appdomain name="1/ROOT/your_app_name" website="Default Web Site enabled="true">

<points file="DefaultWebsite-your_app.capture points" />
</appdomain>

</process>

To enable LWMD instrumentation for a specific enabled AppDomain that runs under a process, you add the
points tag to an appdomain tag in the probe_config.xml configuration file. You can add the points tag to one
or more of the <appdomain> tags. For example, to enable LWMD instrumentation for the "your_app_name"
AppDomain running in the ASP.NET process:

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/your_app_name" website="Default Web Site" enabled="true">

<points file="DefaultWebsite-your_app.capture points" />
<points file="Lwmd.points"/>

</appdomain>
</process>

To disable LWMD:

To disable the LWMD feature youmust perform twomodifications to the probe_config.xml file:

l Disable the <lwmd> element (see "<lwmd> element" on page 111).
l Delete the points tags for the Lwmd.points file from all process tags and from the appropriate
<appdomain> tags.
Without the LWMD points tags in the configuration file, the probe cannot locate the LWMD instrumentation
instructions contained in the Lwmd.points file and so the probe will not instrument for Collection usage.

To control LWMD Instrumentation:

When the .NET Agent is installed, the default configuration for the Lwmd.points file contain instructions to
instrument Collection usage in a wide range of assemblies, AppDomains, namespaces and classes. You can
modify the your application's points file to narrow the scope of the Collections that you want to inspect.
LWMD Instrumentation is implemented as Caller side Instrumentation, refer to "Caller Side Instrumentation"
on page 55 for a description of how this instrumentation works.

Note: Narrowing the scope of LWMD instrumentation is a recommended best practice.

To narrow the scope of the Collections that you want to inspect perform the following steps:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 162 of 208

1. Delete the points tags for the Lwmd.points file from the process tags and from the appropriate
<appdomain> tags. This will remove the LWMD settings that specify a wide instrumentation scope.

2. Add an LWMD section to the points file for your process or AppDomain. As an example, to do this copy
and paste the following into your_app.points file:

[LWMD]
keyWord = lwmd
scope =
ignoreScope =

3. Set the scope and ignoreScope Arguments in the LWMD section to narrow the scope of the Collections
that you want to inspect. Example:

[LWMD]
keyWord = lwmd
scope = !my_namespace\..*
ignoreScope = !my_namespace.my_class1\..*

The example above instruments all the Collections that are constructed from themy_namespace
namespace except for any Collections that are constructed from any method in themy_namespace.my_
class1 class.
For LWMD Instrumentation there is an internal default value for ignoreScope that is unpublished and is
always included with any value you enter. The default value includes namespaces and classes relating
to the .NET Infrastructure that if instrumented would adversely affect the application, for example,
!System.*, !Microsoft.*, and so on.

Limiting Exception Stack Trace Data
The agent collects exception data for exception throwing server requests and presents the information in the
Diagnostics UI. The collected exception data can optionally include a stack trace.

Collecting stack trace data for all exceptions is usually undesirable however, because exception stack traces
that are not of interest overload the display as well as the data collection and transfer operations. You can
therefore limit the exception types for which stack trace data is collected. For example, filtering application
server-based errors such as System.Security.Authentication.AuthenticationException would allow the
stack traces to be used for more application-specific errors.

The stack trace data that is collected is controlled in three ways: limiting specific exception types, limiting the
number of exceptions for which stack trace data is collected and limiting the size of the stack trace data.

Note: You can disable all stack trace collection by setting captureexceptions enabled="false" in the
probe_config.xml file. By default, stack trace collection is enabled.

This section includes:

l "Limit Specific Exception Types" on the next page
l "Limit the Number of Exceptions per Server Request" on the next page
l "Limit the Size of the Stack Trace" on the next page
l "Example" on the next page

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 163 of 208

Limit Specific Exception Types
The exceptions for which stack trace data is collected is limited by setting the exclude and include
properties in the probe_config.xml file as shown in the following example:

<exclude>
<exceptiontype name="System.ArithmeticException"/>

</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

Subtypes of any exception type specified to be excluded or included are also excluded or included,
respectively, unless they are explicitly specified otherwise on the include or exclude list.

The following diagram shows which exception types are included and excluded based on the preceding
example:

Changes to the probe-config.xml file take effect immediately; it is not necessary to restart the application.

Limit the Number of Exceptions per Server Request
By default, the .NET Agent probes collect stack trace data on only the first 4 exceptions encountered during a
server request. If your application has more exceptions for which you want to view stack trace information,
you can increase the value of themax_per_request property in the probe_config.xml file. As with all
collectedmetrics, increased amounts of collected data place a higher load on the Diagnostics Server.

Limit the Size of the Stack Trace
By default, the captured stack trace data can be of any size. You can limit the size of the stack trace string to
improve the readability of the Exceptions tab. Set the value of themax_stack_size property to themaximum
stack trace string in the probe_config.xml file. As with all collected data, increased amounts of collected
data place a higher load on the Diagnostics Server. By default, this property is set to 0 (zero) whichmeans
that the stack trace size is not limited.

Example
The following settings enable exception stack traces with amaximum stack trace string size of 2048.

<captureexceptions enabled="true" max_per_request="4" max_stack_size="2048">

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 164 of 208

<exclude>
<exceptiontype name="System.ArithmeticException"/>

</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

</captureexceptions>

Configuring Thread Stack Trace Sampling
When asynchronous thread sampling is enabled, you can see, in the Call Profile view, whichmethods were
executed during long running fragments even if no instrumentedmethods were hit during this time. See the
HPE Diagnostics User Guide chapter on Call Profiles for a screen shot showing the additional nodes added
based on thread sampling.

The <stacktracesampling> element in probe_config.xml enables and configures thread stack trace sampling.
For more information about this element, see "<stacktracesampling> element" on page 133.

Example Thread Sampling Configurations

Use Case 1: You see a particular method that intermittently takes an exceptionally long time to complete.
Since themethod average execution time is relatively short, you do not want to add additional instrumentation
to themethods callable from themethod, because this would increase the overhead.

1. You enable stack trace sampling and configure the longmethod latency threshold to a value larger than
the average execution time of themethod, but shorter than the observed long running times.

2. The stack traces are collected only for methods running at least as long as the specified threshold value,
thus incurring no overhead for most cases.

3. You examine the Call Profile for the long running instances of the Server Request and sees additional
nodes revealed by stack trace sampling.

Example:

In production environment, a particular method has average latency about 170milliseconds, but from time to
time it takes 1.4 second for this method to complete. Most of themethods visible in Call Profiles for any
fragment execute in about 550milliseconds or less.

Since themethod in questionmakes multiple calls to its callees, you do not want to instrument them.
Instead,you enable sampling to find out what is the cause of long execution times. Tominimize the overhead,
you set tardymethodlatency value to 600milliseconds. This ensures that most of themethods will not get
sampled at all, because they are likely to complete before this time elapses. However, any method running
longer than this value, including our trouble-makingmethod, will get sampled, once themethod runs for 600
milliseconds (or longer) without making any calls to any of the instrumentedmethods.

You also set the value of stacktracesampling-rate to 100milliseconds. Theoretically, this should give up to 8
samples for eachmethod invocation that lasts 1.4 seconds ((1400 - 600) / 100).

Use Case 2:You see insufficient Call Profile info for all or some of the Server Requests, but are reluctant to
add additional instrumentation because of the performance concerns or because of the need to restart the
application.

1. You enable stack trace sampling, resets the longmethod latency to zero, and configures the sampling
rate to balance the overhead and the amount of additional data.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 165 of 208

2. The stack traces are collected for all methods
3. You examine the Call Profiles and see additional nodes revealed by stack trace sampling
Example: You prepare a custom application for deployment and sees that the default instrumentation provided
with the Diagnostics probe does not work very well, becausemany Call Profiles contain very few methods
which do not give any insight about the application specific behavior. You are reluctant to add additional
instrumentation for all classes andmethods belonging to her custom application, because of the performance
andmemory consumption concerns.

Assuming that a typical fragment that does not have sufficiently detailed call tree information runs in about 2
seconds, you select stacktracesampling-rate to be 200ms. This can give up to 10 stack traces per typical
fragment. However, you do not want all the stack traces to be reported, because some of themethods visible
in the stack traces can be very fast, and they do not substantially contribute to the fragment overall latency.
After viewing the Call Profiles with the additional method nodes obtained from sampling, youmake an
informed decision about adding additional instrumentation points to the probe configuration in deployment.

Troubleshooting Thread Sampling Configurations

Why do I not see any new nodes in my Call Profile after I enabled stack trace sampling?

See if any of the following applies to your case:

Check if the last method visible in the Call Profile is an outbound call. Outbound calls do not get sampled by
default.

l Try to reduce tardymethodlatency. It is possible that the last method visible in Call Profile makes calls that
get trimmed, but they prohibit the sampling to kick in because there's never an inactive period of
tardymethodlatency for the caller.

l Try to reduce stacktracesampling - rate. Perhaps your methods simply miss the opportunities to get
sampled.

l Verify that the latency of the last visible method in Call Profile is not caused by running garbage collector.
No .NET code runs during garbage collection, and this includes the stack trace sampling code.

What is the minimum value of stacktracesampling.rate I can use?

You can use any positive value, but please keep inmind that each platform will simply refuse to samplemore
frequently that it possibly can. The three factors playing a role here are: theminimum granularity of sleep()
available, the timer resolution, and the time it actually takes to collect one set of samples. It is recommended
to be higher than 20ms.

What is the maximum value of stacktracesampling-tardymethodlatency I can use?

There is no limit. The usefulness of a high setting depends entirely on the latency of the server requests for the
application. To get any results, you should plan for at least a few samples for each fragment you are
concerned with, and even that may require tuning other sampling parameters as well.

Disabling Logging
You can disable application logging by changing the logging level tag of the ASP.NET process section of the
probe_config.xml file, as shown in the following example:

<process name="ASP.NET">
<logging level="off"/>

</process>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 166 of 208

You can disable instrumentation logging by changing the logging level tag of the instrumentation section, as
shown in the following example:

<instrumentation>
<logging level="off" />

</instrumentation>

Overriding the Default Probe Host Machine Name
The registered_hostname property enables you to override the default host machine name that a probe uses
to register itself with the Diagnostics Server in Commander mode. In situations where a firewall or NAT is in
place or where your probe host machine has been configured as amulti-homed device, it might not be possible
for the Diagnostics Server in Commander mode to communicate with the probe unless you override the
default host machine name.

To override the default host machine name for a probe there is a three step process.

1. First, set the registered_hostname attribute, located in the .NET Agent <diagnosticsserver> element
of the probe_config.xml file, to an alternatemachine name or IP address that allows the Diagnostics
Server in Commander mode to communicate with the Probe.
For example:

<diagnosticsserver url="http://localhost:2006/commander" registered_hostname="
my_host_name "/>

2. Second, register the alternatemachine name or IP address of the host with the .NETMetrics Agent. To
do this, make ametrics.agent.registered_hostname entry in themetrics.config file. You can add the
entry just under themetrics.systemgroup entry.
For example:

metrics.systemgroup = Default
metrics.agent.registered_hostname = my_host_name

3. Finally, youmust restart both the .NET Agent and the .NETMetrics Agent for this change to take effect.

Note:

l Setting the registered_hostname attribute because of a NAT or firewall is only an issue for a test
environment where you are using LoadRunner, Performance Center, or Diagnostics Standalone.

l You need to set the registered_hostname attribute to deal properly with the use of the IIS Host
Header technology.

l However, if you should set the registered_hostname in a production environment where you are using
BSM or Diagnostics Standalone, the name that you specify is shown as the host name in System
Health.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 167 of 208

Listing the Probes Running on a Host
Whenmore than one probe is running on a single host, you cannot know which port each probe is using since
the port that is assigned is based on the one that is available at the time the application (and probe) is started.
As the applications are started and stopped, the port that is assigned to the probe for a given application is
likely to change.

You can determine which probes are running on a host and the ports that they are using by accessing the
following URL:

http://<probe_host>:<port>

For the port value, enter the port number 35000 or 35001. It does not matter which one you enter.

The list of probes and ports is displayed as shown in the following example:

Authentication and Authorization for .NET Profilers
You canmanage the authentication and authorization of users of the Profiler in the <probe_install_
dir>/etc/probe_config.xml file.

Note: If the .NET Agent is configured to work with a Diagnostics Server, the probe (Profiler) authorization
and authentication settings aremanaged from the Diagnostics Server in Commander mode to which this
probe is connected. For more information, see "User Authentication and Authorization" in the HPE
Diagnostics Server Installation and Administration Guide.

When you access the probe from the Diagnostics Server, the default username is admin and the default
password is admin.

If the .NET Agent is installed as a profiler only, by default, users are not required to enter a username and
password to access the profiler.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 168 of 208

However, you can configure the profiler to require user authentication. If you configure the profiler to require
user authentication, you can define the password required for accessing the profiler.

To configure the profiler to require user authentication:

Go to the <probe_install_dir>/etc/probe_config.xml file and set the value of profiler authenticate to true.

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>>

If you do not set a username and password, the default username is admin and the default password is admin.

To create new usernames and passwords for users of the .NET Diagnostics Profiler:

1. Generate a new username and password using thePassGen.exe utility located in the <probe_install_
dir>/bin directory. Enter the user name and password for encryption. The encrypted password
generated for the user is FIPS-2 compliant.

2. In the probe_install_dir>/etc/probe_config.xml file, after the <profiler authenticate="true"> line,
enter the username and password for each new user, in the following format:

<profiler authenticate="true">
<authentication username="" password=""/>

</profiler>

l For authentication username, enter the username that you chose when running the PassGen utility.

l for password, enter the encoded string that was returned by thePassGen.exe utility.

Caution: If you defined new usernames and passwords to access the profiler, you can no longer
use the default username and password (admin, admin). Rather, youmust use one of the new
usernames that you defined.

Configuring Consumer IDs
Web servicemetrics can be grouped by particular consumers of theWeb service. Themetrics are then
aggregated for that consumer and displayed as such in the Services by Consumer ID andOperations by
Consumer ID views.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular service and
how frequently they are using it. Consumer IDs are also useful for BSM. BSM users can look at the
performance of the same application based on consumers to compare their performance characteristics.

Configuring Consumer IDs is optional. By default, the Consumer ID of aWeb service beingmonitored is
reported as the IP address of the consumer of theWeb service.

There are three ways of defining the consumer ID:

l a value that appears in the SOAP request
l a value that appears in an HTTP header
l to a specific IP address or a range of IP addresses

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 169 of 208

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:

1. For each .NET probe for which you want metrics grouped by consumer, update the probe_config.xml file
as described in "Consumer ID Rules Syntax and Examples for .NET Agent" below.

2. If you are configuringmore than 5 consumer types, update themax.tracked.ids.per.probe setting in the
server.properties file.

About Consumer ID Rules
The assignment of consumer IDs is controlled by consumer ID rules in the probe_config.xml file.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, and IP rules. The rules
are applied in an order nomatter which order the rules are defined. The SOAP header rules are applied first,
the HTTP headers rules are applied next, and lastly the IP rules are applied.

All rule types do not need to be used. There could be SOAP rules, no HTTP rules, and IP rules. If there is no
match on any of these rules, the original IP address is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header,
envelope or body. The rule specifies a regular expression that is used tomatch against the web service name
being called by the consumer. See "Using Regular Expressions" in the HPE Diagnostics Server Installation
and Administration Guidefor information on using regular expressions.

If there is amatch with the web service name, the agent/probe attempts to find the element defined in
consumeridfield in the appropriate SOAP location defined by the SOAP rule. If the element is not found, this
rule is skipped and the agent/probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of HTTP
headers in a HTTP request.

The IP rules allow for the consumer ID to be obtained from themapping of IP addresses to a consumer ID.
The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for .NET Agent
The rules syntax and examples are specific to how the consumer ID is being defined.

SOAP Rules

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header,
envelope or body.

An example of configuring consumer ID based on a value in the SOAP header is shown below:

<consumeridrules enabled="true">
<soaprules>

<soaprule id="SOAP1" rule="TestService" location="soap-header"
consumeridfield="Caller"/>

</soaprules>
</consumeridrules>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 170 of 208

id= attribute can be any name you would like to use to identify the rule; this attribute is not used by the .NET
probe.

rule= attributemust be defined for a soaprule. The rule is a regular expression that is used tomatch against
the web service name being called by the consumer or you can use the exact Web service name.

location= can be set to "soap-header", "soap-envelope", "soap-body". If you do not specify a location, it
defaults to use "soap-header." If you configure a location for any soap rule, youmust configure a location for
all soap rules, or a severe error will occur and the consumer ID based on SOAP logic will be disabled.

consumeridfield= attributemust be defined for a soaprule. The element in the SOAP header, envelope or body
whose value you want to use as the consumer ID.

If there is amatch with the pattern specified in the rule= attribute, the .NET agent attempts to find a text
element for the element defined in the consumeridfield. The element in the consumeridfield can be a qualified
name—that is, composed of a namespace name and the local part—or an unqualified name, which does not
have an associated namespace. If the element is not found in the specified location, this rule is skipped and
the probe goes on to the next rule that is defined.

For example, the following rule matches on aWeb service named TestService and uses the Caller element’s
value as the consumer ID:

<soaprule id="SOAP1" rule="TestService" location="soap-header" consumeridfield="Caller"/>

As long as the callers of the TestServiceWeb service have a value defined for Caller, themetrics will be
grouped by the different values for Caller. Here is an excerpt from the soap header that wouldmap to a
consumer ID of "Customer2" for this caller of the TestService:

SoapTest1;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<env:Header>

<Caller>Customer2</Caller> <-- The consumer id returned is"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>

</m:sell>
</env:Body>

</env:Envelope>

Enable SOAP Capture

SOAP envelopes can be very large so the <soapcapture> element is provided to enable you to control the
overhead, mainly memory overhead, of capturing SOAP requests and responses.

<soapcapture enabled="true">

The <soapcapture> element controls whether SOAP requests and responses are captured. If it is disabled,
SOAP requests and responses will not be captured. This means there will not be any SOAP requests
available with SOAP faults, and you cannot configure consumer ID based on SOAP header, envelope, or
body.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 171 of 208

The <soapcapture> setting overrides the settings in <soaprequestforsoapfault> which controls SOAP
payload capture on SOAP faults. See "Configuring SOAP Fault Data" below.

HTTP Header Rules

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of HTTP
headers in a HTTP request. A rule and consumeridfield attributemust both be defined for a HTTP rule
element, and an id attribute can also be defined for the user to identify individual rules.

The rule is a regular expression that is used tomatch against the URL that the HTTP request is being sent to
by the consumer. If there is amatch, the .NET probe attempts to find an HTTP header for the header name
defined in the consumeridfield. If the header name is not found in the collection of HTTP headers, this rule is
skipped and the probe goes on to the next rule that is defined.

Example httpheader rules:

<consumeridrules enabled="true">
<httpheaderrules>
<httpheaderrule id="httpHeader 1" rule="/Webservice/.* consumeridfield="Caller"/>

</httpheaderrules>
</consumeridrules>

IP Address Rules

The IP rules allow for the consumer ID to be obtained from themapping of IP addresses to a consumer ID. A
rule and consumerid attributemust both be defined for an IP rule element, and an id attribute can also be
defined for the user to identify individual rules.

The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID. This rule
can be defined as a single IP address; for example, 19.225.17.125. The rule can also define a range; for
example, 19.255.17.125,19.255.17.255.

An asterisk can also be used in an octet of an IP address tomatch against anything in that octet; for example,
19.255.17.*. A range can be defined in an octet to match a range of values in that octet; for example,
19.255.17.20-255. Combinations of these can also be used; for example, 19.*.17.20-255, 20.*.10-55.*. If there
is amatch, the .NET probe sets the consumer ID to the consumer ID defined in the rule.

Examples:

<consumeridrules enabled="true">
<iprules>

<iprule id="IpTest1" rule="18.*.1-20.*" consumerid="Client1"/>
<iprule id="IpTest2" rule="17.*.*.*" consumerid="Client2"/>
<iprule id="IpTest3" rule="19.255.17.125,19.255.17.255" consumerid="Client3"/>

</iprules>
</consumeridrules>

Configuring SOAP Fault Data
If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP payload is
only captured when there is a SOAP fault.

In the Diagnostics UI, you can view the payload information as part of the SOAP fault instance tree (call
profile).

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 172 of 208

Because payloads can contain sensitive information such as credit card numbers, payload capture on SOAP
faults is disabled by default. To enable payload capture on SOAP faults set <soaprequestforsoapfault
enabled="true"/> in the probe_config.xml file on the .NET probe system.

You can also define the limit for the payload size using themaxsize attribute in the
<soaprequestforsoapfault> element. For example, the following entry increases the SOAP payload length to
10000 from its default of 5000:

<soaprequestforsoapfault enabled="true" maxsize="10000"/>

The <soapcapture> element overrides the <soaprequestforsoapfault> element. So that if <soapcapture> is
disabled, <soaprequestforsoapfault> is disabled even if <soaprequestforsoapfault> is set to true. Also
whatever <soapcapture> maxsize value is set, overrides the <soaprequestforsoapfault> maxsize. So that is
<soapcapture> maxsize is set to 5000 and <soaprequestforsoapfault> maxsize is set to 10000, the payload
size will bemaximum of 5000.

Collecting Additional Probe Metrics or Modifying
Probe Metrics
You can configure the .NET agent to collect additional probemetrics based on perfmon counters using the
<metrics> and <metric> elements in the <probe_install_dir>\etc\probe_config.xml file. See "<metric>
element" on page 114 and "<metric> element" on page 114 for details.

You can alsomodify probemetrics using the <metric> element. But note the following special cases:

l If you want to move ametric from onemetric category to another, youmust change themetric’s group
attribute as well as themetric name attribute. This is because the existingmetric name is already
registered to its old group on the Diagnostics mediator and this association cannot be changed.

l If you want to redefine an existing probemetric it is better to create a completely new metric entry rather
than assigning a different perfmon counter to themetric. This ensures that you avoid aggregating disparate
data.

Performance Counter Security
The .NET Agent uses Performance Counters to collect probemetrics. This requires the application process
that is beingmonitored by the .NET Agent to have access rights to performance counters. Each process runs
as a user account therefore this user account must have access rights to performance counters. The simplest
way to do this is to add the user account that the process runs as to thePerformance Monitor Users group.

However Microsoft has introduced the concept of a virtual accounts inWindows Vista SP2, Windows
Server 2008 SP2, Windows 7 andWindows Server 2008 R2 (see
http://technet.microsoft.com/en-us/library/dd548356(WS.10).aspx for details). These operating systems
have used the virtual accounts concept in IIS and by default, application pools in IIS run as
ApplicationPoolIdentity. Because this user account is virtual, it requires special steps to add the user
account to the PerformanceMonitors Users group.

In Windows 2008 R2 and Windows 7 do the following:

1. Open theServer Manager tool, there aremany ways to do this but one is through Administrative Tools.
2. In the left hand pane find Local Users and Groups under Configuration.
3. Click the + to expand it.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 173 of 208

4. Double-click Groups.
5. Double-click thePerformance Monitor Users group.
6. Click theAdd… button.
7. Click the Locations… button.
8. Select the local computer.
9. Click theOK button.
10. Make sure that object types includes Built-in security principals.
11. Enter IIS APPPOOL\<name of the application pool>, (example IIS APPPOOL\My WebService App

Pool, whereMy WebService App Pool is the name of the application pool), in the text box.
12. Click theOK button.
In Windows 2008 SP2 and Windows Vista SP2 do the following:

1. Open a Command Prompt window.
2. Type net localgroup "Performance Monitor Users" "IIS APPPOOL\<name of application pool>

/ADD (where <name of the application pool> is the application pool name).
3. The command completed successfullywill be displayed if this is successful.

Manually Enabling Auto-Discovered ASP.NET
Applications and Non ASP.NET Services
When installing a .NET Agent, a utility is automatically run that discovers all the ASP.NET applications
configured in IIS and adds them to the probe_config.xml file with a status of enabled for monitoring.

You can run another utility at any time after installation that not only automatically discovers all the ASP.NET
applications configured in IIS, but also discovers all the services running on themachine that are eligible for
monitoring. You can then select the specific applications and services that you want to monitor.

To run this utility:

1. From theStartmenu, select All Programs > HP Diagnostics .NET Probe > Run HP
.NET AppScanner.

2. The utility runs and aWindow opens with two tabs. The first lists the discovered ASP.NET applications
and the second lists the discovered services. Select the relevant tab.

3. Select the check box for each ASP.NET application or service you want to enable for monitoring.

Note: If an application or service has already been configured and enabled for monitoring, the check
box is already selected by default.

4. Click OK.
A description of the highlighted application or service appears on the right.

A summary section at the bottom provides additional statistical data.

When you enable a service for monitoring, an element is added to the probe_config.xml file with the name of
the service's related process. This element includes instrumentation for standard .NET frameworks
(ASP.NET, ADO, WCF, EF) as well as a custom instrumentation .points file. Configure this file is you require
custom instrumentation beyond that which is included in the standard frameworks.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 174 of 208

Configuring Support for Web API Based Applications
ASP.NETWeb API is a framework that makes it easy to build HTTP services that reach a broad range of
clients, including browsers andmobile devices. ASP.NETWeb API is an ideal platform for building RESTful
applications on the .NET Framework.

For more information on the technology and framework see http://www.asp.net/web-api

REST Service Operations and key Arguments.

In REST style services, you can categorize service requests by the URL parameters.

Example:

HTTP Method: GET Url: http://localhost/RESTWebAPI/api/products?category=Toys. See
operations by categories

To distinguish operations in this implementation, specify the operation parameter of the RESTmethod as a
key argument to show it as separate operation. To do this, add the following points sections to the Custom
Points file of the application:

Example: REST Service Method with Key Args

[WAPI]
keyword = WAPI
detail =*args:1
ignoreMethod = GetProduct, GetProducts

[WAPI_ALL]
keyword = WAPI

This configuration creates a key argument (1) for all methods. To prevent other operations using the key
argument, add it to the ignoreMethod clause.

Other non-key argument services can be added to a later section.

REST Service Client

The REST service client is the same as a HTTP Client call and cannot be distinguished, this is due to the
inherent nature of the REST design.

For applications calling REST services, the config option should be set in the prob_config.xml file as
follows:

<httpclient showurl="false"/>

This avoids a large number of outbound calls due to unique URLs accessed by the client, as the IDs are often
encoded in the URLs

Example:

/RestWebAPI/api/products/1

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 175 of 208

http://www.asp.net/web-api

where 1 represents different product ids.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HPE Diagnostics (9.30) Page 176 of 208

Chapter 8: .NET System Metrics Agent -
Systems Metrics Capture
Information is provided about systemmetrics capture and how to configure the systemmetrics collector
installed with the .NET Agent.

This chapter includes:

l "About the .NET SystemMetrics Agent" below
l "SystemMetrics Captured by Default" below
l "Configuring .NET SystemMetrics Capture" on the next page
l "Adding SystemMetrics Using theWindows PerformanceMonitor" on page 180
l "Default Entries in the .NET Agent metrics.config File" on page 182
l "Keywords in themetrics.config File" on page 182

About the .NET SystemMetrics Agent
A systemmetrics collector is installed with the .NET Agent and run as aWindows Service (HP Diagnostics
Metrics Agent). The .NET systemmetrics agent gathers system level metrics, such as CPU usage and
memory usage, from the agent’s host. It is configurable so you can control whichmetrics are collected as well
as aspects of how themetrics are collected and published.

Only one instance of the .NET systemmetrics agent is run on a given host, nomatter how many instances of
the probe were started on the host.

Note: To configure additional probemetric capture with the .NET Agent (other than systemmetrics
capture described here) see "Collecting Additional ProbeMetrics or Modifying ProbeMetrics" on
page 173.

SystemMetrics Captured by Default
The following are the systemmetrics that the .NET systemmetrics agent collects by default for all supported
platforms (excluding z/OS):

l CPU
l MemoryUsage
l VirtualMemoryUsage
l ContextSwitchesPerSec
l DiskBytesPerSec
l DiskIOPerSec
l NetworkBytesPerSec
l NetworkIOPerSec

HPE Diagnostics (9.30) Page 177 of 208

l PageInsPerSec
l PageOutsPerSec
In addition to the default systemmetrics listed above, the following systemmetrics are also captured by
default on .NET Agent systems. (The layout of these entries is described in "Understanding the system/
Metrics Collector Entries" below).

l .NET CLR Memory\# Total committed Bytes_Global_
l ASP.NET\Application Restarts
l ASP.NET\Requests Queued
l ASP.NET\Request Wait Time
l ASP.NET\Requests Rejected
l ASP.NET Applications\Requests/sec
l ASP.NET Applications\Requests Executing
You can control which of the default systemmetrics the .NET systemmetrics agent gathers and you can
capture custom systemmetrics with the .NET systemmetrics agent.

Configuring .NET SystemMetrics Capture
The configuration file for the .NET systemmetrics agent is the <probe_install_dir>/etc/metrics.config file.
Changes to themetrics.config file are processed dynamically by the .NET Agent.

There is a differentmetrics.config file included with the Java Agent. See the HPE Diagnostics Java Agent
Guide.

Understanding the system/ Metrics Collector Entries
Metrics collector entries in themetrics.config file instruct the .NET systemmetrics agent to gather specific
metrics. Entries that begin with system/ are processed as Windows PerformanceMonitor Counters.

These systemmetrics collector entries use the following layout:

system/<Counter_name>\<Performance_object>\<Instance>\<Remote_machine> = <metric_

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 178 of 208

id>|<metric_units>|<category_id>

All fields are required except for the optional <Instance> and <Remote_machine> fields.

Where:

l Counter_name indicates theWindows PerformanceMonitor counter. See "Adding SystemMetrics Using
theWindows PerformanceMonitor" on the next page for details on how to identify the counter,
performance object and instance in theWindows PerformanceMonitor UI.

l Performance_object indicates theWindows PerformanceMonitor performance object associated with
the Counter_name.

l Instance indicates theWindows PerformanceMonitor instance of a counter. Youmay use a wildcard (*) to
indicate that all instances are desired. If you wish to specify a specific enumeration of all instances, you
precede the enumeration index number with the hash sign (#1). The enumeration index numbermust be a
positive number.

l Remote_machine is only required if theWindows PerformanceMonitor Counter is running on amachine
that is different (remote) from themachine that the .NET systemmetrics agent is running on. The
minimum requirement for this configuration to work is that the Network Service User on themachine that
the .NET systemmetrics agent is running onmust have permissions to read theWindows Performance
Monitor Counters from the remotemachine.

l <metric_id> indicates the name that represents themetric in the Diagnostics UI. Themetric_id must be
unique in themetrics.config file. If the value of themetric_id is the same as one of the default metrics,
Diagnostics replaces themetric_id in the entry with a standard name to be used to reference themetric in
the UI. If the value of themetric_id is not the same as one of the default metrics, themetric_id is used as
the name of themetric in the UI exactly as shown in the entry.

l <metric_units> indicates the units of measure in which themetric is reported. This is a required
parameter and it must contain one of the following units of measure:
l microseconds, milliseconds, seconds, minutes, hours, days

l bytes, kilobytes, megabytes, gigabytes

l percent, fraction_percent

l count

l load

l <category_id> groups a set of metrics together under the same heading in the Details pane of the
Diagnostics UI. This parameter has no impact on the data displayed in the Diagnostics views.

Example without an <Instance>:

system/ASP.NET\Requests Queued = Requests Queued|count|ASP

Example with an <Instance>:

system/Processor\% Processor Time_Total = CPU|percent|System

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 179 of 208

Example with an integer <Instance>:

system/Processor\% Processor Time\#1 = CPU 1|percent|System

Example without an <Instance> and running on a <Remote_Machine):

system/ASP.NET\Requests Queued\\IISAQUAH = Requests Queued(IISAQUAH)|count|ASP

Adding SystemMetrics Using the Windows
Performance Monitor
To add a systemmetric counter to themetrics.config file youmust first find its definition using theWindows
PerformanceMonitor (Perfmon). The following example uses version 5.x of Perfmon. Version 6.x is similar
but the UI is a little different.

To add counters in Perfmon:

1. Start theWindows PerformanceMonitor. For example select Start > Control Panel > Administrative
Tools > Performance.

2. The Perfmon Performance dialog box is displayed showing the SystemMonitor graph with a table of the
current counters beneath the graph. Right-click the SystemMonitor graph and select Add Counters...
from the pop-upmenu.
The Add Counters dialog box is displayed:

3. Select theSelect counters from computer entry andmake sure the host computer is select in from the
drop down list.

4. In the Performance object list, select the object that the counter belongs to.
5. ChooseSelect counters from list and select an instance from the list of instances.
6. Click theAdd button to add the counter. The following instructions tell you how to create an entry for a

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 180 of 208

counter using the system/ metrics entry described in "Understanding the system/ Metrics Collector
Entries" on page 178.

To collect metrics for a Perfmon counter:

1. Open the <probe_install_dir>/etc/metrics.config file on the .NET agent system.
2. Create the system/metrics entry for the counter using the layout described in "Understanding the

system/ Metrics Collector Entries" on page 178.
You can add this entry anywhere in the file, however best practice is to add it to the bottom of existing
collection of these type of entries. In the example shown in the screen shot above:
l The selected host computer is ROS59524ART

l The selected Performance object is Processor

l The selected Counter is % Processor Time

l The selected Instance is _Total

So if the host computer is local, the entry in themetrics.config file for the PerformanceMonitor counter
would be:

system/Processor\% Processor Time_Total = CPU|percent|System

And if the host computer is remote, the entry in themetrics.config file for the PerformanceMonitor
counter would be:

system/Processor\% Processor Time_Total\ROS59524ART = CPU
(ROS59524ART)|percent|System

Performance Counter Security

The .NETmetrics agent uses Performance Counters to collect systemmetrics. Themetrics agent runs as a
Network Service and this account needs to be added to thePerformance Monitor Users group.

Troubleshooting Added System Metrics Counters

If you specify a new counter that appears to not be functioning, you can use theWindows Event Viewer to
look at the Diagnostics logs for the .NET systemmetrics agent source for errors and warnings.

For example:

A Could not locate Performance Counter with specified category namewarning entry typically indicates
that youmay havemis-typed the name of the counter. This can happen, for example, if you read a counter
name from the PerfMon Performance pane that has embedded blanks. The default font used by PerfMon is
not amonospaced font and as suchmakes it difficult to see embedded blanks in the name of the counters,
categories and instances. You can change the font to amonospaced font type and thenmore clearly see the
exact format of counter names.

For example:

An Instance does not exist in the specified Categorywarning entry typically indicates that the instance
you have chosen is not active at this time. We do not recommend that you use transient instances.
Permanent instances like __Total__ are appropriate.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 181 of 208

Default Entries in the .NET Agent metrics.config File
Upon installation, the <probe_install_dir>/etc/metrics.config file has three entries:

l A grouping of default system/ entries for PerfMon counters
l Ametrics.server.uri entry that specifies how the .NET systemmetrics agent publishes its data
l A defaultmetrics.systemgroup entry
Other additional entries can be added after these default entries.

Keywords in the metrics.config File
The keywords that can be used in entries in the <probe_install_dir>/etc/metrics.config file are as follows:

l credentials.password
l credentials.username
l default.sampling.rate
l metrics.server.uri
l metrics.systemgroup
l metrics.agent.publish.interval
l metrics.agent.registered_hostname
l proxy.password
l proxy.user
l proxy.uri
l system/
The use of the system/ keyword is described in "Configuring .NET SystemMetrics Capture" on page 178.

The use of each of the other keywords is described in the following section.

credentials.password This settingmust match the setting for the password attribute of
the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 81 for more details.

credentials.username This settingmust match the setting for the username attribute of
the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 81 for more details.

default.sampling.rate This setting defines the rate at which the .NET systemmetrics
agent samples the configured systemmetric counters. The
default rate is every 5 seconds. Values are expressed as a
number of Seconds, Minutes, Hours or Days, for example, nS,
nM, nH or nD. The following example sets the rate to every 10
seconds:

default.sampling.rate = 10s

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 182 of 208

metrics.server.uri This setting is automatically generated at install time. It defines
the URI that the .NET systemmetrics agent uses to publish the
systemmetric counters to the Diagnostic Mediator Server.

The following example is for a Diagnostic Mediator Server
running on themy_diag_server machine, and using ametricport
of 2006 to publish themetrics:

metrics.server.uri =
http://<my_diag_server>:2006/metricdata/?sleep=false

Any changes to the probe_config.xml settings for either the
metrichost attribute or themetricport attribute of the <mediator>
element must also be reflected at the same time in the
metrics.server.uri setting.

The ?sleep setting controls whether the Diagnostic Mediator
Server that receives the publishedmetrics will respond
immediately or delay its response to the .NET systemmetrics
agent. A setting of ?sleep=false responds immediately, a
setting of ?sleep=true delays its responds by a default of 5
seconds.

The following example is for a Probe Aggregator-enabled .NET
system, using the default metricport of 45000 to publish the
metrics:

metrics.server.uri =
http://127.0.0.1:45000/metricdata/

metrics.systemgroup This setting is automatically generated at install time. Do not
change this setting.

metrics.agent.publish.interval This setting defines the interval between publishes of the
current values of the SystemMetric Counters by the .NET
systemmetrics agent to the Diagnostic Mediator Server. The
default interval is 5 seconds. Set values can be expressed as a
number of Seconds or Minutes, for example, nS or nM. The
following example sets the publish interval to 10 seconds:

metrics.agent.publish.interval = 10S

metrics.agent.registered_
hostname

Refer to the "Overriding the Default Probe Host Machine Name"
on page 167 for a description of when and how to use this
setting.

proxy.password This settingmust match the setting for the proxypassword
attribute of the < diagnosticsserver> element in the probe_
config.xml file. See "<diagnosticsserver> element" on page 84
for more details. Also refer to “Configuring Diagnostics Servers
and Agents for HTTP Proxy” in the HPE Diagnostics Server
Installation and Administration Guide.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 183 of 208

proxy.user This settingmust match the setting for the proxyuser attribute of
the < diagnosticsserver> element in the probe_config.xml file.
See "<diagnosticsserver> element" on page 84 for more details.
Also refer to “Configuring Diagnostics Servers and Agents for
HTTP Proxy” in the HPE Diagnostics Server Installation and
Administration Guide.

proxy.uri This settingmust match the setting for the proxy attribute of the
< diagnosticsserver> element in the probe_config.xml file. See
"<diagnosticsserver> element" on page 84 for more details.
Also refer to “Configuring Diagnostics Servers and Agents for
HTTP Proxy” in the HPE Diagnostics Server Installation and
Administration Guide.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HPE Diagnostics (9.30) Page 184 of 208

Part 4: Using the Profiler for .NET

HPE Diagnostics (9.30) Page 185 of 208

Chapter 9: Diagnostics Profiler for .NET
This chapter describes how to use the .NET Diagnostics Profiler:

l "About the .NET Diagnostics Profiler" below
l "How the .NET Agent Provides Data for the .NET Profiler" on the next page
l ".NET Diagnostics Profiler UI Navigation and Display Controls" on the next page
l ".NET Diagnostics Profiler Inactivity Timeout" on page 188
l "How to Access the .NET Diagnostics Profiler" on page 189
l "How to Enable and Disable the .NET Diagnostics Profiler" on page 189
.NET Diagnostics Profiler UI Description:

l "Server Requests Tab Description" on page 190
l "SQL Tab Description" on page 193
l "Methods Tab Description" on page 195
l "Call Tree Tab Description" on page 196
l "Exceptions Tab Description" on page 199
l "Collections Tab Description" on page 201
.NET Threads Window UI Description:

l "Threads Window Description" on page 204

About the .NET Diagnostics Profiler
The Diagnostics Profiler for .NET is installed with the .NET Agent. The Profiler runs in a separate UI and
provides near real-time data, enabling you to pinpoint application performance bottlenecks.

Note: The.NET Diagnostics Profiler operates in an unlicensedmode with load restrictions until the probe
is able to connect to a Diagnostics Server that has been properly licensed. In unlicensedmode, the .NET
Profiler is limited to capturing data from 5 concurrent threads.

If you installed the unlicensed trial software agent from the HP SoftwareWeb site and you want to use it
with a Diagnostics Server, contact HP Software Support to purchase HP Diagnostics.

If you are using Diagnostics with HPE LoadRunner or HPE Performance Center you will be prompted to enter
the Diagnostics User Name and Password when selecting the .NET Profiler from the Diagnostics UI.

You can use the different tabs in the .NET Profiler to analyzemethod latency for the selected application. And
you can analyzememory problems for the selected application using thememory diagnostics metrics
displayed in the .NET Profiler.

Some of the information presented in the .NET Profiler is also available in the Diagnostics enterprise UI.

HPE Diagnostics (9.30) Page 186 of 208

How the .NET Agent Provides Data for the .NET
Profiler
This section describes the way in which the .NET Agent monitor your application and how this data is
displayed in the .NET Diagnostics Profiler.

Monitoring Method Latency and Call Stacks
The .NET Agent runs probes tomonitor your application and keep track of themetrics for all of the
instrumentedmethods that your application calls. As probes aremonitoring, they capture the call stack for the
three slowest instances and the single fastest instance of each server request.

When a new server request instance is encountered that is slower than one of the currently captured
instances for the server request, it replaces one of the previously captured instances. In the samemanner the
captured call stack for the fastest instance is replaced when an instance that is even faster is encountered.

The .NET Diagnostics Profiler displays metrics for all of the instrumentedmethods. The .NET Profiler ignores
all configured trim settings, for example, latency trimming, depth trimming or throttling. For details about trim
configuration refer to the "Advanced .NET Agent Configuration and Instrumentation" on page 47. You can drill
down to the instances of themethods that were included in one of the four server request call stacks that were
captured when you accessed the .NET Diagnostics Profiler user interface.

While you are analyzing the information displayed on the various tabs of the .NET Diagnostics Profiler, you
are working with themethods and call stacks captured from the time that the .NET Profiler was started/reset
to the time that the user interface was started/refreshed. In themeantime the probe continues tomonitor your
application, capturemethodmetrics, and capture call stacks. These changes are not sent automatically to the
user interface, youmust request them via theRefresh Now button. This is so the underlying data will not
change unexpectedly while you are investigating something of interest.

Monitoring Application Memory
The .NET Diagnostics Profiler allows you tomonitor your application's memory usage using Lightweight
Memory Diagnostics. Lightweight Memory Diagnostics allows you tomonitor the collections that your
application has created, and to identify the largest collections and the fastest growing collections. For more
information about Lightweight Memory Diagnostics, see "Collections Tab Description" on page 201.

.NET Diagnostics Profiler UI Navigation and Display
Controls
This section describes the following features and controls that are common to all of the .NET Profiler tabs:
Refresh now, Reset, Snapshot andHelp:

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 187 of 208

Refresh Metrics
Click Refresh Now to refresh the information displayed on the tabs with the latest metrics and call stacks.

After you refresh themetrics, the .NET Diagnostics Profiler continues tomonitor and collect metrics using the
same baseline for the calculations of instance counts, average latency, and slowest latency. It also continues
to use the captured call stacks as a basis of comparison for finding new call stacks to capture.

Reset Metrics
You can force the .NET Diagnostics Profiler to use new baselines for the calculation of instance counts,
average latency, and slowest latency, and to force-drop all captured call stacks, by clickingReset.

After you reset themetrics, the .NET Diagnostics Profiler begins collecting data with new baselines and
starts processing the instance trees as though the profiler had just been started.

Note: Youmay want to click Reset once your system has warmed up so that you can do your
performance analysis usingmetrics that aremore representative of the processing that takes place when
your application is running in steady state.

Take a Snapshot
You can capture a snapshot of the data from your profiler session into an .xml formatted file, by clicking the
Snapshot button.

The resulting snapshot can be used, for example, as a report that is distributed to your colleagues or as a point
of reference when you are about to make changes to your applications. The snapshot includes the profiler tabs
so that you can review and analyze the data in the snapshot in the sameway that you would view it in the
Profiler.

The Profiler displays a dialog box that indicates the path to where the .xml file is stored. When you open the
snapshot, the saved profiler data is displayed in your browser.

Access Help
When you click Help, on the top right hand corner of the screen, you access the on-line helpmanual for the
.NET Diagnostics Profiler.

.NET Diagnostics Profiler Inactivity Timeout
By default, the .NET Diagnostics Profiler is not started until you display the Profiler UI. When you close the
Profiler UI, the profiler continues to run for a period of time specified by the inactivitytimeout attribute in
<probe_install_dir>/etc/probe_config.xml. If you reopen the Profiler UI before the profiler times out, the
profiler displays the data for the time period since the profiler was started. If you reopen the Profiler UI after the

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 188 of 208

timeout has occurred, the profiler is restarted and only the data for the new profiler session is displayed. As
long as the Profiler UI is open, the profiler session remains active. The count down for the inactivity timeout
begins when you close the Profiler UI.

How to Access the .NET Diagnostics Profiler
Once you have installed the .NET Agent, configured a probe to collect performancemetrics and started the
application that is beingmonitored, you can access the .NET Diagnostics Profiler from your browser and view
diagnostics data. You can also access the .NET Diagnostics Profiler by drilling down from the views of the
Diagnostics Enterprise user interface.

Remote access to the .NET Profiler can be disabled with the profiler element in the probe_config.xml file.

To open the .NET Diagnostics Profiler directly (standalone):

1. In your browser, go to the .NET Diagnostics Profiler URL: http://<probe_host> :< probeport> /profiler
The probes are assigned to the first available port beginning at 35000.

2. Type your username and password.
Depending on your authentication settings, youmay be prompted to enter a username and password.
The default username is admin. The default password is admin.
For more information about authentication, usernames and passwords when you have the full
Diagnostics product, refer to the HPE Diagnostics Server Installation and Administration Guide section
on Authentication and Authorization.

To drill down to the Diagnostics .NET Profiler from the main Diagnostics UI:

1. From any view in the Diagnostics UI that shows probe entities, right-click the probe in the table and
select View Profiler for <probe name> from themenu.
If you are using Diagnostics with HPE LoadRunner or HPE Performance Center you will be prompted to
enter the Diagnostics User Name and Password when selecting the .NET Profiler from the Diagnostics
UI.

2. If the Profiler fails to open, ensure that you have set a default browser within your operating system.

How to Enable and Disable the .NET Diagnostics
Profiler
This task describes how to disable and re-enable the .NET Profiler to start.

When the .NET Agent is installed and probes configured to work with a Diagnostics Server, the probe data
collection starts automatically when aWeb page in themonitored application is accessed.

By default the .NET Diagnostics Profiler isn't started until you access the Profiler UI. Youmay configure the
agent so that the .NET Profiler is started at the same time that the probe data collection is started or so the
.NET Profiler cannot be started.

To configure the probe to automatically start the profiler:

Youmay want to start the .NET Profiler at the same time that the probe is started if you are trying to
understand the performance of your application when it is first invoked.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 189 of 208

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to true.

<modes enterprise="true" pro="true"/>

To configure the probe to prevent the Profiler from starting:

Youmay want to prevent someone from starting the .NET Profiler for a probe that is monitoring an application
where you do not want to incur the additional overhead from the .NET Profiler.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to false

<modes enterprise="true" pro="false"/>

To configure the probe to start the Profiler when you access the UI:

By default, the probe starts the Profiler when you bring up the Profiler UI. If you have altered the setting for the
probe, youmay want to reset the behavior of the probe to the default behavior.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to auto:

<modes enterprise="true" pro="auto"/>

Note: If you do not include the pro attribute, the probe defaults to the behavior when pro is set to auto.

Server Requests Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls made by your application. The Server
Requests tab displays information about the server request methods. The server request methods are listed in
a table that shows the number of times that eachmethod was executed, along with the average latency and
the slowest execution time for all of the calls to themethod. You can expand each server request listed in the
table, to reveal the latency for the three slowest instances of the server request along with the single fastest
instance.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and the single
fastest instance of each server request. The .NET Diagnostics Profiler lets you drill into the captured call
trees from the Server Requests tab.

UI example

To access In the .NET Diagnostics Profiler, select the Server Requests tab.

Relevant tasks "How to Access the .NET Diagnostics Profiler" on the previous page

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 190 of 208

The following user interface elements are included:

UI Element Description

Server
Request
Method
Table

TheMethod table lists the server requests that have been called. You can sort the table by
clicking the column headers.

The following columns are included in the table:

Method. The server request methods that were called.

If a server request method was calledmore than once, themethod name is preceded by a
plus sign (+) or aminus sign (-) to indicate that the instance specific latency information is
available for the server request.

Calls. The number of times that the server request method was invoked.

Average. The average latency for all of the calls to the server request method. The average
latency is shown inmicroseconds.

Slowest. The response time of the instance with the longest latency. The slowest response
time is shown inmicroseconds.

If a server request method was calledmore than once, themethod name is preceded by a
plus sign (+) or aminus sign (-). When you click the plus sign, the entry is expanded to
reveal the three slowest instances of themethod along with the single fastest method. Click
theminus sign to the collapse instances shown.

If a server request method was called only once, the entry itself represents the single
instance of themethod call. The value in the Slowest column is the instance's latency.

You can view the call tree for a server request instance by clicking on any row that contains a
server request instance (a row that does not have a plus sign (+) or aminus (-) sign before the
method name or that only contains a latency value is a server request instance).

The Profiler switches to the Call Tree tab and displays the call tree for the selected server
request instance. Themethod call for the selected server request is highlighted in blue in the
call tree.

Layer
Breakdown
Graph

The Layer Breakdown graph shows the amount of processing time that was spent in each
layer while executing a selected instance of amethod call. It is a graphical representation of
the information shown in the Layer Breakdown table.

You can view the Layer Breakdown for a server request instance by hovering themouse
pointer on any row in theMethod table that contains a server request instance (a row that
does not have a plus sign (+) or aminus (-) sign before themethod name, or that only has a
latency value, is a server request instance).

The Profiler shows the layer breakdown for the indicated instance in both the Layer
BreakdownGraph and Layer Breakdown Table.

The graph is divided so that each layer is depicted as an area on the graph that is proportional
to the percentage of processing that was performed in the layer. Each layer is displayed in a
different color, as shown in the Legend column in the Layer Breakdown table.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 191 of 208

UI Element Description

Layer
Breakdown
Legend

The Legend shows the amount of processing time that was spent in each layer while
executing a selected instance of amethod call. The table can be sorted by clicking the
column headers.

The following columns are included in the table:

Legend. The color that is used in the Layer Breakdown graph to depict the processing that
took place in the layer.

Layer Name. The name of the layer where the processing for the server request took place.

%. The percentage of processing time that was spent in each layer, for a selected server
request.

Time. The latency measured for the processing that took place in the layer, for a selected
server request. The time is shown inmicroseconds.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 192 of 208

SQL Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes. The SQL tab
displays the SQLmethods only. The SQLmethods are listed in theMethod table which shows the number of
times that eachmethod was executed, along with the average latency and the slowest execution time for all
of the calls to themethod. TheMethod table also shows the actual SQL statement when it was included in the
SQLmethod call.

Each SQLmethod listed in the table can be expanded to reveal the latency for each instance of themethod
that was included in a captured call tree.

UI example

To access In the .NET Diagnostics Profiler, select the SQL tab.

Important
information

The .NET Diagnostics Profiler captures call trees for the three slowest instances and the
single fastest instance of each server request. You can drill down to the captured call trees
from the SQL tab.

Relevant
tasks

"How to Access the .NET Diagnostics Profiler" on page 189

See also Formore information on the Call Tree tab, see "Call Tree Tab Description" on page 196.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 193 of 208

The following user interface elements are included:

UI Element Description

Table This table lists the SQLmethods that have been called, and displays latency information for
instances of the SQLmethod calls that were included in the captured call trees. The table
can be sorted by clicking the column headers.

The following columns are included in the table:

Method. The SQLmethods that were called. If an SQLmethod has two or more instances in
the captured call trees, themethod name is preceded by a plus sign (+) or aminus sign (-)
to indicate additional instance specific latency information can be viewed for the SQL call.

Calls. The number of times that the SQLmethod was invoked. This count includes all
instances, whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to the SQLmethod. The average latency is
shown inmicroseconds.

Slowest. The response time for the instance with the longest latency. The slowest response
time is shown inmicroseconds.

SQL. The first part of the SQL statement that was executed by the SQLmethod call.

You can display a tooltip containing the entire SQL statement by holding themouse pointer
over a row in the SQL column.

The latencies for instances of SQLmethods can be displayed if they are included in one of
the captured call trees.

If two or more instances of an SQLmethod are included in the captured call trees, that
method's name is preceded by a plus sign (+) or aminus sign (-) in theMethod table. The
entry can be expanded to reveal the latency for each of the captured instances for the
selectedmethod. Click theminus sign to collapse the visible instances.

Table
(continued)

if only one instance of an SQLmethod was included in the captured call trees, themethod
name in the SQLMethod table is not preceded by a plus sign or minus sign and the table
entry itself represents the single instance of themethod call, and the value in the Slowest
column is the instance's latency.

If no instances of a SQLmethod were included in the captured call trees, themethod is not
preceded by a plus sign or minus sign, and when you click themethod, you get amessage
indicating that although this method was called there is no data captured for it.

You can view the call tree for an SQLmethod instance listed in the SQLMethod table by
clicking on any row that contains an instance of an SQLmethod call. (A row that does not
have a plus sign (+) or aminus (-) sign before themethod name, or that only contains a
latency value, is an SQL instance.)

When you select a row with an SQLmethod instance, the Call Tree tab opens, and displays
the call tree for the selected SQLmethod instance. Themethod call for the selected SQL
method is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 196.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 194 of 208

Methods Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes. The
Methods tab is used to list all of themethods. Themethods are listed in theMethod table, which shows the
number of times eachmethod was executed, along with the average latency and the slowest execution time
for all of the calls to themethod. Themethods listed in theMethods tab include the server requests methods
listed in the Server Requests tab, the SQLmethods listed in the SQL tab, and themethods that generated
exceptions shown in the Exceptions tab.

Eachmethod listed in the table can be expanded to reveal the latency for each instance of themethod that
was included in one of the captured call trees. The .NET Diagnostics Profiler captures call trees for the three
slowest instances and the single fastest instance of each server request. The .NET Diagnostics Profiler lets
you drill down to the captured call trees from theMethods tab.

UI example

To access In the .NET Diagnostics Profiler, select theMethods tab.

Relevant tasks "How to Access the .NET Diagnostics Profiler" on page 189

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 195 of 208

The following user interface elements are included:

UI Element Description

Table This table lists themethods that have been called, and displays latency information for
instances of themethod calls that are included in the captured call trees. This table can be
sorted by clicking the column headers.

The following columns are included in the table:

Method. The name of themethods that were called. If a method has two or more instances
included in the captured call trees, themethod name is preceded by a plus sign (+) to
indicate additional instance specific latency information can be viewed for themethod call.

Calls. The number of times that themethod was invoked. This count includes all instances,
whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to themethod. The average latency is
shown inmicroseconds.

Slowest. The response time for the instance with the longest latency. The slowest response
time is shown inmicroseconds.

You can view the latency for instances of methods if they are included in one of the captured
call trees.

If two or more instances of amethod are included in the captured call trees, themethod name
in theMethod table is preceded by a plus sign (+) or aminus sign (-). The plus sign
indicates that you can expand the entry to reveal the latency for each of the captured
instances for the selectedmethod. Click theminus sign to collapse the visible instances.

If no instances of amethod were included in the captured call trees, themethod is not
preceded by a plus sign or minus sign, and when you click themethod, you get amessage
indicating that although this method was called there is no data captured for it.

Table
(continued)

You can view the call tree for amethod instance listed in theMethod table by clicking on any
row that contains an instance of amethod call. (A row that does not have a plus sign (+) or a
minus (-) sign before themethod name, or that only contains a latency value, is amethod
instance.)

When you click a row with amethod instance, the Call Tree tab opens and displays the call
tree for the selectedmethod instance. Themethod call for the selectedmethod is highlighted
in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" below.

Call Tree Tab Description
The .NET Diagnostics Profiler captures call trees for the three slowest instances and the single fastest
instance of each server request. The captured server request call trees are displayed on the Call Tree tab, in
the Call Breakdown graph and in the Call Tree table.

As you analyze themethods presented on the Server Requests, SQL, Exceptions, andMethods tabs, you
navigate to the Call Tree tab to understand the context of the processing associated with particular instances
of themethod's execution. The call tree allows you to see the calling and the calleemethods for themethod of
interest as well as the contribution of thosemethods to themeasured latency.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 196 of 208

UI
example

To
access

In the .NET Diagnostics Profiler, select the Call Tree tab.

You can also access a Call Tree by clicking one of themethod instances listed on the Server
Requests, SQL, Exceptions, andMethods tabs.

Relevant
tasks

"How to Access the .NET Diagnostics Profiler" on page 189

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 197 of 208

The following user interface elements are included:

UI Element Description

The Call
Breakdown
Graph

The Call Breakdown graph shows the processing time that was spent at each level of the call
tree hierarchy.

Each level in the graph represents the processing at the corresponding level in the call stack.
The length of the bar is proportional to the length of time spent in performing themethods at
that level of the call stack. The positions where a bar starts and stops indicates the relative
time, in relationship to the other levels, that the processing for the level began and ended. A
gap in a bar, where the bar ends and then resumes again, indicates that the processing
returned to a higher level in the hierarchy before once again proceeding at the lower level.

There are two ways that youmay identify themethod associated with a particular location on
the Call Breakdown graph as youmouse over the bars in the graph.

As you slide the pointer along a bar in the graph, a tooltip is displayed with the name of the
method associated with each segment of the graph bar.

As you slide the pointer along a bar in the graph, the Call Tree table scrolls so that the
method associated with the selected location in the graph is displayed in the table. The row
that contains the selectedmethod is highlighted in gold.

Call Tree
Table

The Call Tree table lists method calls that are part of a captured server request call tree in a
hierarchical structure.

Eachmethod in the call tree is depicted on a separate line containing two parts: themethod
name and the latency.

The latency for eachmethod is shown in brackets following themethod name. There are two
numbers in the brackets separated by a slash: the exclusive latency and the total latency.

Exclusive Latency is the amount of latency that is attributable to just the processing in the
selectedmethod.

Total Latency is the amount of latency that is attributable to the selectedmethod and all of its
calleemethods.

In the following example the exclusive latency is 156:

- PetShop.Web.Controls.NavBar.PageLoad [156/225 uSec]

To see a captured call tree on the Call Tree tab youmust select amethod instance from one
of the other .NET Diagnostics Profiler tabs. The Call Tree tab opens with the call tree that
contains the selected instance visible and the selectedmethod instance highlighted in blue.

Themethod of interest will remain highlighted until a different method is selected on one of
the other tabs.

Youmay identify themethod associated with a particular location on the Call Breakdown
graph by mousing over the bars in the graph. As you slide the pointer along a bar in the graph,
the Call Tree table scrolls so that themethod associated with the selected location in the
graph is displayed in the table. The row that contains the selectedmethod is highlighted in
gold.

The path through the call tree that has the longest latency is called the critical path. Methods
in the Call Tree table that are on the critical path are written using a red font.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 198 of 208

Exceptions Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes. The
Exceptions tab is used to list only themethods that generated exceptions. The callingmethods that generated
exceptions are listed in a table that shows the number of times that eachmethod threw an exception. This
information allows you to quickly determine if your application is throwing exceptions, and exactly what those
exceptions are.

If the exception was included in one of the captured call trees, the exception class will also be listed in the
table along with the latency for each instance of an exception.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and the single
fastest instance of each server request. You can drill down to the captured call trees from the Exceptions
tab.

UI example

To access In the .NET Diagnostics Profiler, select the Exceptions tab.

Important
information

Exceptions are only captured by the probe if the exception causes the termination of a
method. If the instrumentedmethod handles the exception, no exception information is
gathered by the probe.

Relevant
tasks

"How to Access the .NET Diagnostics Profiler" on page 189

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 199 of 208

The following user interface elements are included:

UI
Element Description

Table This table lists themethods calls that generated exceptions and allows you to view latency
information for instances of the exceptions that were included in the captured call trees. The
rows in this table can be sorted by clicking the column headers.

The table includes the following columns:

Method. The name of themethods generated exceptions. If a method generated two or more
exceptions and they were included in the captured call trees, themethod name is preceded by a
plus sign (+) or aminus sign (-) to indicate that additional instance-specific latency information
can be viewed for the exception.

Exceptions. The number of times that themethod generated an exception. This count includes
all instances of all classes of exceptions, whether or not they are included in the captured call
trees.

The latency for instances of exceptions are available to be displayed if they are included in one
of the captured call trees.

If an instance of an exception for a particular method call was included in one of the captured call
trees, themethod name in the Exceptions table is preceded by a plus sign (+) or aminus sign
(-). The plus sign indicates that when you click the row in the table, the entry expands to reveal
additional rows with the exception class for each of the captured instances of the exception. The
minus sign indicates that when you click the row in the table, the entry contracts so that the
exception class row is hidden.

Table If two or more instances of an exception class were included in the captured call trees, the
exception class name in the Exceptions table is preceded by a plus sign (+) or aminus sign
(-). The plus sign indicates that when you click the row in the table, the entry expands to reveal
the latency for each of the captured instances for the selected exception class. Theminus sign
indicates that when you click the row in the table, the entry contracts so that the latency for the
captured exception class is hidden.

If only one instance of an exception class was included in the captured call trees, the exception
class in the Exceptions table is not preceded a plus sign or minus sign. In this case, the table
entry itself represents the single instance of the exception class and the value in the latency for
the exception can be determined from the Call Trees tab.

You can view the call tree for an exception listed in the Exceptions table by clicking on any row
that contains an instance of an exceptions class. (A row that does not have a plus sign (+) or a
minus (-) sign before the exception class or that only contains a latency value is an exception
class instance.)

When you click a row with an exception class instance, the profiler switches to the Call Tree tab
and displays the call tree for the selected exception instance. Themethod call that generated
the exception for the selected exception class is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 196.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 200 of 208

Collections Tab Description
The .NET Diagnostics Profiler canmonitor your applications' memory usage using Lightweight Memory
Diagnostics (LWMD). LWMD monitors thememory used by your applications by tracking the collections. The
metrics from LWMD are displayed on the Collections tab. Thememory metrics are shown in a graph of heap
usage, and in tables that list the collections that are growing the fastest and that have become the largest. The
Collections tab displays these problems, enabling identification of memory issues.

UI example

To access In the .NET Diagnostics Profiler, select the Collections tab.

Relevant tasks "How to Access the .NET Diagnostics Profiler" on page 189

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 201 of 208

The following user interface elements are included:

UI Element Description

Heap
Usage
Graph

The Heap Usage graph shows thememory that was committed and used at periodic sample
intervals. (The default sample interval is 1minute.) For each sample interval, a bar is
displayed on the graph.

l The height of the bar indicates the total amount of heap that was committed when the
sample was taken.

l The red portion of the bar indicates the amount of the heap that was committed and used
when the sample was taken.

l The green portion of the bar indicates the amount of the heap that was committed, but not
used, when the sample was taken.

Hold themouse pointer over a sample's bar on the graph to display a tooltip showing the size
of the heap that was used, followed by the size of the heap that was committed for the
selected sample.

By default, the LWMD process establishes a new baseline for measuring the growth of
collections every hour. You can force a new baseline by clicking the Force Baseline link at
the upper-right corner of the Heap Usage graph.

When the .NET Diagnostics Profiler establishes a new baseline, a green line is inserted
between the last sample of the previous baseline and the first sample of the next baseline to
mark the point where the baseline was set.

The calculation for the growth of collections that is used to determine which collections are
included in the Collections by Growth table, is based on the number of collections added
since the last baseline.

Samples
and
Collections
Details
Pane

Displays additional information about the sample selected in the Heap Usage graph, and
about the collection selected from the collection tables.

It contains the following information:

Sampled. The date and time when the selected Heap Usage sample was taken.

Baselined. The date and time of the last baseline prior to the sample being taken.

Contains. The type of object contained in the selected collection. This information is
displayed when youmouse over the Collections by Growth or Collections by Size tables.

Allocated In. Themethod that allocated the selected collection. This information is
displayed when youmouse over the Collections by Growth or Collections by Size tables.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 202 of 208

UI Element Description

Collections
by Growth
Table

The Collections by Growth table lists the top ten collections in relation to the growth in the
number of objects contained in the collection since the last baseline. The top-ten list of
collections changes from sample to sample as the growth rates for each collection fluctuate.
When a new baseline is established, the growth rate is calculated in relation to the new
baseline, so the list of collections can change significantly.

The table contains the following information:

Growth. The number of objects that were added to the collection since the last baseline.

Class. The class name for the collection.

To see details for the collection, hold themouse pointer over the row in the table for the
collection. The row is highlighted in pink and the details are displayed in the Samples and
Collections Details pane.

Collections
by Size
Table

The Collections by Size table lists the top ten collections relative to the size of the collection
for the selected Heap Usage sample. The size of a collection is based upon the total number
of objects in the collection.

The table contains the following information:

Size. The total number of objects in the collection at the end of the sample period.

Class. The class name for the collection.

To see details for the collection, hold themouse pointer over the row in the table for the
collection. The row is highlighted in pink and the details are displayed in the Samples and
Collections Details pane.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 203 of 208

ThreadsWindow Description
The Threads window displays thread performancemetrics for the threads that are running in a .NET probed
application and provides a way for you to capture stack traces for the running threads. There is also a thread
state analyzer that displays approximate thread state distribution percentage for each thread.

This page can be useful for helping to diagnose the following situations:

l Incorrect thread pooling or attempting to do toomuch in a single thread.
l Performance problems caused by deadlocks or concurrency-related issues.
l Problems that go deep into the interactions with the OS kernel where you need to see the CPU time
broken into user and kernel times.

The following is an example of the .NET Threads display.

To
access

Select a .NET probe from the the .NET Probes or Probes view, then click View Threads in New
Window from the Common Tasks area.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 204 of 208

The following user interface elements are included:

UI
Element Description

Controls Used to control how often the threadmetrics are updated, maximum stack trace depth for each
thread, and what kind of data is displayed for the thread processing in your application.

When the Threads tab is updated, the information displayed on the tab is refreshed with the
latest threadmetrics. You control how often the Profiler updates the threadmetrics on the
Threads tab.

Update button. Select the Update button and the Profiler refreshes the information in the graph
and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to turn automatic
updates on. Select the update interval from the spinner. The Profiler immediately begins
refreshing the threadmetrics displayed in this tab based on the update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for each of
the threads listed in the thread table. You can control how many stack traces for each thread
are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select themaximum stack trace depth collected for each sample for each
thread.

Chart
Tab

Charts themetric for the selected threads. Youmay chart themetrics for one or more of the
threads listed in the threads table and you can select themetric that is to be charted for each
thread.

Select a thread in the thread table to have it's metric graphed in the chart. Diagnostics removes
themetrics for any previously charted threads from the graph and charts themetric for the
selected thread. The graph legend is updated to indicate the color with which the selected
thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted, select
additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table usingCtrl-
Click. To select a range of threads, select the row in the thread table usingShift-Click.
Diagnostics charts themetrics for the selected thread along with themetrics for all of the
threads in the thread table that are between the selected threads and the newly selected thread.
The graph legend is updated to indicate the colors with which the selected threads metrics were
charted.

To remove themetrics from the chart for selected threads, useCtrl-Click to select the row in
the thread table that contains the thread whosemetrics you'd like to remove from the chart.

Chart difference in. To select ametric to be charted for each thread, select themetric from the
drop downmenu. Diagnostics updates the graph to chart the indicatedmetric for each of the
threads selected in the thread table.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 205 of 208

UI
Element Description

Thread
Table

The table shown below the chart lists themetrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last threadmetric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was executing in
kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing in user
mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock Owner Id.

The table can also include columns forWaited Time andBlocked Timemetrics if you enable
them. To enable thesemetrics, set the threads.contention.monitoring.enabled property to
true in the <probe_install_dir>/etc/probe.properties file. This settingmay cause instability
for some older JVMs.

Stack
Traces
Tab

Stack traces for the threads selected in the threads table are displayed when you have
indicated that you want thread stack traces captured.

The Stack Traces tab display is divided into two areas:

Captured Stack Traces. List contains a list of the times when stack trace captures occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your selections
from the stack trace capture list, the scope selection drop down, and the thread table.

TheStack Trace Details for drop down allows you to control which thread's stack traces the
Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the stack trace
details area. The selections made in the threads table do not impact the stack traces that are
displayed in the stack trace details area whenAll Threads is selected.

When you select Selected Threads, the stack traces displayed in the stack trace details area
are limited to those for the threads that you select in the threads table in the Chart tab.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 206 of 208

UI
Element Description

State
Analyzer

The State Analyzer displays approximate thread state distribution percentage for each thread,
over the specified time period. Each thread is represented by a single row.

The left panel provides the thread name. The center panel provides the thread state data. The
total height of the colored bar represents 100%. If a thread has been inmore than one state
during the observation period, multiple colors are used to display the corresponding states,
proportional to the time spent in those states. For automatic updates, the observation period is
the same as the configured refresh period.

The right panel displays the current method name, with line number, if available. If the stack
traces collected for the thread over the observation period are all the same, themethod name is
displayed using a bold font. If different stack traces were observed, the displayedmethod is the
topmost commonmethod for the collected stack traces, and its display uses a regular font. If
no such commonmethod could be found, nothing is displayed.

The following thread states are presented by the Thread State Analyzer:

Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Javamonitor. This can
happen when the thread tries to invoke a synchronizedmethod, enter a synchronized block, or
re-enter the Javamonitor after being awaken from the waiting state, while another thread has
not left the Javamonitor yet.

Running. The thread is actively consuming CPU time.

I/O. The thread is performing an I/O operation. It does not use any CPU time. The notion of I/O
covers not only the traditional operations on files or sockets, but also covers any multimedia or
graphics operations. In general, the thread is waiting for an external (out-of-process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However, threads can
get into this state by other means. In general, the thread is waiting for an internal (in-process)
event.

Starving. The thread is runnable, it is not suspended by any I/O, wait(), or sleep() operation, but
is not running. This can be caused by insufficient number of CPUs available, Garbage
Collection pauses, excessive paging, or by a virtual machine guest OS experiencing a shortage
of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HPE Diagnostics (9.30) Page 207 of 208

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following
information in the subject line:

Feedback on .NET Agent Guide (Diagnostics 9.30)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and send
your feedback to sw-doc@hpe.com.

We appreciate your feedback!

HPE Diagnostics (9.30) Page 208 of 208

mailto:sw-doc@hpe.com?subject=Feedback on .NET Agent Guide (Diagnostics 9.30)

	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics .NET Agent Overview
	About the Diagnostics .NET Agent
	Introducing Diagnostics Profiler for .NET
	Features and Benefits of the Diagnostics .NET Profiler

	Part 2: Installation and Configuration of the Diagnostics .NET Agent
	Chapter 2: Preparing to Install the Diagnostics .NET Agent
	Requirements for the Diagnostics .NET Agent Host
	Requirements for the Diagnostics .NET Profiler UI
	Planning the Installation

	Chapter 3: Installing .NET Agents
	Overview of the .NET Agent Installation
	Accessing the .NET Agent Installer
	Installing the .NET Agent
	Post Install Tasks
	Verifying the .NET Agent Installation
	About Configuration of the .NET Agent for Diagnostics
	Discovery and Standard Instrumentation
	Probe Aggregator Service
	Monitoring NET Applications Deployed in Azure Cloud
	Monitoring Applications on SharePoint with the .NET Agent
	Determining the Version of the .NET Agent
	Enabling and Disabling the Diagnostics Agent for .NET
	Enabling and Disabling Standard Instrumentation for Applications
	Troubleshooting .NET Web Applications Not Discovered
	Manually Adding an AppDomain Not Discovered
	Other .NET Agent Troubleshooting Tips
	Uninstalling the .NET Agent

	Chapter 4: Upgrading the Diagnostics .NET Agent
	Upgrade .NET Agents
	Upgrade Notes and Limitations

	Part 3: Advanced .NET Agent Configuration and Instrumentation
	Chapter 5: Custom Instrumentation for .NET Applications
	About Instrumentation and Capture Points Files
	Locating the .NET Capture Points Files
	Coding Points in the Capture Points File
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Managing Probe Overhead
	Default Layers for Typical .NET Applications

	Chapter 6: Understanding the .NET Agent Configuration File
	.NET Agent Configuration Elements
	<ali> element
	<appdomain> element
	<bufferpool> element
	<captureexceptions> element
	<clientmonitoring> element
	<consumeridrules> element
	<cputime> element
	<credentials> element
	<demomode> element
	<depth> element
	<diagnosticsserver> element
	<exceptiontype> element
	<exclude> element (when parent is captureexceptions)
	<exclude> element (when parent is lwmd)
	<excludeassembly> element
	<excludesqlparam> element
	<filter> element
	<filter> element
	<htmlinstrumentation> element
	<httpcaptureparams> element
	<httpclient> element
	<httpheaderrule> element
	<httpheaderrules> element
	<id> element
	<include> element (when parent is captureexceptions)
	<include> element (when parent is lwmd)
	<instrumentation> element
	<iprule> element
	<iprules> element
	<latency> element
	<logging> element (when parent is appdomain, probeconfig, or process)
	<lwmd> element
	<mediator> element
	<metrics> element
	<metric> element
	<modes> element
	<param> element
	<points> element
	<probeconfig> element
	<process> element
	<profiler> element
	<rum> element
	<sample> element
	<server> element
	<soapcapture> element
	<soaprequestforsoapfault> element
	<soaprule> element
	<soaprules> element
	<sqlparsing> element
	<stacktracesampling> element
	<symbols> element
	<throughputthrottle> element
	<topology> element
	<trim> element
	<uriautocollapsing> element
	<urireplacepattern> element
	<url> element
	<vmware> element
	<webserver> element
	<ws> element
	<xvm> element

	Chapter 7: Advanced .NET Agent Configuration
	Time Synchronization for .NET Agents Running on VMware
	Customizing the Instrumentation for ASP.NET Applications
	Discovering the Classes and Methods in an Application
	Controlling Which HPE Software Products the Agent can Work With
	Configuring Support for MSMQ BasedCommunication
	Configuring Latency Trimming and Throttling
	Configuring Depth Trimming
	Configuring URI Truncation and Mapping
	Capturing HTTP Server Requests Based on Query Parameters
	Configuring the .NET Agent for Lightweight Memory Diagnostics
	Limiting Exception Stack Trace Data
	Configuring Thread Stack Trace Sampling
	Disabling Logging
	Overriding the Default Probe Host Machine Name
	Listing the Probes Running on a Host
	Authentication and Authorization for .NET Profilers
	Configuring Consumer IDs
	Configuring SOAP Fault Data
	Collecting Additional Probe Metrics or Modifying Probe Metrics
	Manually Enabling Auto-Discovered ASP.NET Applications and Non ASP.NET Services
	Configuring Support for Web API Based Applications

	Chapter 8: .NET System Metrics Agent - Systems Metrics Capture
	About the .NET System Metrics Agent
	System Metrics Captured by Default
	Configuring .NET System Metrics Capture
	Adding System Metrics Using the Windows Performance Monitor
	Default Entries in the .NET Agent metrics.config File
	Keywords in the metrics.config File

	Part 4: Using the Profiler for .NET
	Chapter 9: Diagnostics Profiler for .NET
	About the .NET Diagnostics Profiler
	How the .NET Agent Provides Data for the .NET Profiler
	.NET Diagnostics Profiler UI Navigation and Display Controls
	.NET Diagnostics Profiler Inactivity Timeout
	How to Access the .NET Diagnostics Profiler
	How to Enable and Disable the .NET Diagnostics Profiler
	Server Requests Tab Description
	SQL Tab Description
	Methods Tab Description
	Call Tree Tab Description
	Exceptions Tab Description
	Collections Tab Description
	Threads Window Description

	Send Documentation Feedback

