Connect-It

Software Version: 9.70

For the Windows® and Linux® operating systems

SDK

Document Release Date: September 2016
Software Release Date: September 2016

—

Hewlett Packard
Enterprise

SDK

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice

© 1994 - 2016 Hewlett Packard Enterprise Development LP

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is aregistered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: https:/softwaresupport.hpe.com/.

This site requires that you register for an HPE Passport and to sign in. To register for an HPE Passport ID, click Register on the HPE Software Support site or click Create an
Account on the HPE Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.

Support

Visit the HPE Software Support site at: https:/softwaresupport.hpe.com.
This website provides contact information and details about the products, services, and support that HPE Software offers.

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support website to:

« Search for knowledge documents of interest

« Submit and track support cases and enhancement requests
« Download software patches

« Manage support contracts

« Look up HPE support contacts

« Review information about available services

« Enter into discussions with other software customers

« Research and register for software training

Most of the support areas require that you register as an HPE Passport user and to sign in. Many also require a support contract. To register for an HPE Passport ID, click
Register on the HPE Support site or click Create an Account on the HPE Passport login page.

To find more information about access levels, go to: https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

HPE Software Solutions Now accesses the HPE Software Solution and Integration Portal website. This site enables you to explore HPE Product Solutions to meet your
business needs, includes a full list of Integrations between HPE Products, as well as a listing of ITIL Processes. The URL for this website is
http://h20230.www2.hp.com/sc/solutions/index.jsp.

HPE Connect-It (9.70) Page 2 of 67

https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/web/softwaresupport/access-levels
http://h20230.www2.hp.com/sc/solutions/index.jsp

Contents

Chapter 1: Introduction ... 7
Who is this guide intended for? .. 7
TerMINOIOQY ... 7
General information ... 7

SPl EEX eNSIONS L 8
C I EX ENSIONS 8

Chapter 2: Dataexchange ... 9
Dataand datatypes 9
MOAEIS L 10

Class/Instance model ... 10
ClaSS 10
INStANCE 11
SIMpPle Y PeS . 11
EXamMple 11

XMLSchema/XML model ... 13

Chapter 3: Design-Time ... 14

DesignTimeFactory interface ... L 14
Communication Mode 14
Design-time connection 14
Retrieving metadata 15
EXaMPIe 16

ObjectTypeProviderinterface ... L 16
Inbound communications 17
Outbound communications ... 17
NaVIgatioN . 18

Chapter4: Runtime ... 19

Outbound communications 19
Configuration ... 19
CONNECHION 20
EXCNaNGe 20

HPE Connect-It (9.70) Page 3 of 67

SDK

Request/Response mode 21

Query mode ... 21

SCheMas . 22

Inbound communications 22
Configuration ... 22
CoNNeCtiON L 23
EXChange ... 23
SCNEMaAS 23
Chapter 5: Deployment ... 25
Chapter 6: Configuration ... 26
Description file .. 26
ICON fIl€ 27
Configuration file ... 27
Wizard file 27
JVM configuration file 29
Chapter 7: Packaging ... 30
Java archive .. 30
Chapter 8: EXtensioN 32
Interface com.hp.ov.cit.connector.spi.ContainerContext ._...._.................... 32
Eventlistener 32
Access tothe scenariopath 32
com.hp.ov.cit.connector.spi.designtime.ObjectTypeProviderEx class 33
Chapter O: Use .. . 35
Authorization certificate 35
Generate a KeY ... 35
Appendix A: Wizardfile ... 37
General structure ... 37
Wizard element . 38
Include element .. 38
String INClUSION Y Pe ... L 39
Wizard inClusion type ... 39
Page element 40
Property element ..l 41
Control element . 41

HPE Connect-It (9.70) Page 4 of 67

SDK

Bind attribute ... 44
Password management 44
Linebreak and separatorelements 44
Transition element .. 45
Script attribute ... L 45
Included attribute 46
FUNCHONS . 46
GetValue function ...l 46
DuUmMp FUNCHON 48
EspaceCommas function 48

File function . 48
Appendix B: Configurationfile ... 49
Configuration element L 49
Property element 50
Definition element .. 50
Exportelement .. 51
Class element ... L 51
Property types ... 51
Appendix C: JVM configurationfile 53
jvmConfiguration element 53
jarLocation element ... 54
Jars element 54
Jarelement 55
jvmOptions element .. 56
Import element 56
Appendix D: Database descriptionfile ... o7
File structure .. . 57
Properties 57
EXample . 59
Additional information 60
Multiple descriptions 60
Connector hierarChy ... L 60
Appendix E:Javacode ... 62
JavaBeans ... 62

HPE Connect-It (9.70) Page 5 of 67

SDK

SUPPOREd tYPES . 62
NValidation 63

L OgOING 63
Log4d sSUPPOIt L 64

JDK logging sUpPPOrt . . 64
Internationalization 65
EXaMPle 65
Send documentationfeedback ... 67

HPE Connect-It (9.70) Page 6 of 67

Chapter 1: Intfroduction

The Connect-It Development Kit enables you to develop and implement your own connectors. This
development kit uses a Java interface based on the J2EE Connector Architecture (1.5) standard. The
JCA standard defines a set of Java interfaces used to simplify the integration of enterprise applications
(ERP, database applications, etc).

Who is this guide intended for?

This guide is destined for developers who have sufficient expertise in Java and the JCA standard. For
more information about this standard, consult the following Web site: J2EE Connector Architecture.

Terminology

The following acronyms are used throughout this guide:

« JCA: J2EE Connector Architecture
« RA: Resource Adapter

« EIS: Enterprise Information System
« CCI: Common Client Interface

« SPI: Service Provider Interface

» JDBC: Java Database Connectivity

General information

The API defines an extension to the JCA 1.5 API which enables the connector to be integrated into the
application. The following diagram shows how this works:

Standard CCT
Interfaces

A LS
Resource
Adapter

HP OpenView
Connect-It
Connector
SDE API

Standard CCI
Interfaces

HPE Connect-It (9.70) Page 7 of 67

http://java.sun.com/j2ee/connector

SDK
Chapter 1: Introduction

The communication mode with the connector depends on the information system (EIS) to which it is

connected.

Two communication possibilities exist:

o Outbound communications (synchronous)
The client initiates the data exchange. This occurs, for example, when a query is sent to a
database.

« Inbound communications (asynchronous)
The EIS initiates the data exchange. The connector is in listening mode. This is what takes place

for messaging.

SPI Extensions

The SDK supplies an extension to the SPI classes to enable the support of metadata descriptions.

CCI Extensions

The SDK supplies a client layer that can manage access to a system, whether it be a relational
database or not. This extension groups functions from the standard CCI API and the JDBC API.

HPE Connect-It (9.70) Page 8 of 67

Chapter 2: Data exchange

The goal of a connector designed using the SDK is to standardize data exchange with information
systems. Data exchanges include sending and receiving data.

This chapter includes:

Data and datatypes ... 9
MOEIS .. 10

Data and data types

Before data can be exchanged, the structure of the data must be known. This structure is what is called
metadata. The SDK requires that the structure of the data be known before any operations are done
using the data. This is done via two interfaces:

com.hp.ov.cit.connector.cci.ObjectRecord - represents a specific piece of data.
And

com.hp.ov.cit.connector.cci.ObjectType - represents the structure that a set of related data must
have.

Since it is required to describe each piece of data that is sent or received, an ObjectRecord instance is
linked to its ObjectType description.

Data supplied via a connector are generally organized within a hierarchy or graph. Their metadata is
also hierarchical. Metadata is said to be 'complex' when it contains other metadata. The 'child’
metadata make up the fields of the data. Metadata is said to be 'simple' when it does not contain other
metadata. This metadata contains no fields.

An ObjectRecord graph is composed of:

« A single ObjectRecord root data item.

« Each of the ObjectRecords can be accessed by traversing the fields recursively.

HPE Connect-It (9.70) Page 9 of 67

SDK
Chapter 2: Data exchange

Models

The SDK provides two distinct data models described by the ObjectType, ObjectRecord pair. These
models are the Class/Instance model and the XMLSchema/XML model. Only one model is possible
per connector.

Class/Instance model

This model is an object representation of a data structure. This model is based on the Java notions of
class and instance.

Class

A class has a name and belongs to a package which forms its namespace. It is made up of fields that
are associated with classes.

Within this model, a class makes up the metadata. It can be accessed via the ObjectType interface
and has the following methods:

public String getName();
public String getNamespace();

public Class getObjectClass();

public boolean isSimple();

public Field getField(String fieldName);
public Field[] getFields();

A field accessed by the com.hp.ov.cit.connector.cci.Field interface contains its own information and
the information that is related to its class. A class has the following characteristics:

« It can be modified
« It can have a default value
« It can appear several times and when it appears in a list it is described as being indexed

« It can be required to have a value

This is done through the Field interface via the following methods:

public String getName();
public ObjectType getType();

HPE Connect-It (9.70) Page 10 of 67

SDK

Chapter 2:

Data exchange

public Object getDefault();
public boolean isIndexed();
public boolean isReadOnly();
public boolean isRequired();

Instance

An instance is associated with a class and contains values for one or more of its fields.

Within this model, an instance forms a piece of data. It is represented via the ObjectRecord interface
and has the following methods:

public
public
public
public
public
public

Object get(String fieldName);

Object get(String fieldName, int fieldIndex);

void set(String fieldName, Object value);

void set(String fieldName, int fieldIndex, Object value);
void remove(String fieldName);

void remove(String fieldName, int fieldIndex);

Simple types

The following table provides the list of Java simple types that are supported by the SDK.

java.lang.Boolean

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.lang.String

java.util.Date

byte][]

char(]

Example

Consider the data model below:

HPE Connect-It (9.70)

Page 11 of 67

SDK
Chapter 2: Data exchange

A
|- String
|- int
|- B
|- string
|- c*
| - boolean

Business classes are thus represented as:

public class A

{
private String stringField = "This is a string";
private int intField;
private B bField;

}

public class B

{
private String stringField;
private List<C> 1listOfCField;
}

public class C
{

private boolean booleanField;

}

Operations on types can be done as follows:

ObjectType objectTypeA = ...;

Field field = objectTypeA.getField("stringField");

boolean isSimple = field.getType().isSimple(); // true

Object defaultValue = field.getDefault(); // "This is a string"

field = objectTypeA.getField("bField");
isSimple = field.isSimple(); // false
ObjectType objectTypeB = field.Type();

field = objectTypeB.getField("1listOfCField");
boolean isIndexed = field.isIndexed(); //true;

Data can be stored in the following manner:

ObjectRecord objectA = ...;
ObjectRecord objectB = ...;
ObjectRecord objectC = ...;

objectA.set("intField", 5);
objectA.set("bField", objectB);

java.util.List<C> list = new java.util.ArraylList<C>();

HPE Connect-1t (9.70) Page 12 of 67

SDK
Chapter 2: Data exchange

list.add(objectC);
objectB.set("1listOfCField", list);

XMLSchema/XML model

This representation model is adapted to systems handling XML data. Metadata is formed from a set of
independent XML schemas. This model limits the use of the interfaces described above. In this case,
the only pertinent methods of the ObjectType interface are:

public String getName();

public String getNamespace();

public boolean isXSD();

public org.w3c.dom.ls.LSInput[] getXSD();

This model also supposes that metadata identified by its name and namespace is always simple. This
means that it cannot contain any fields, and may only contain one or more XML schemas.

Data itself can be accessed in the ObjectRecord interface via the following methods:

public void readXML(org.w3c.dom.ls.LSInput input);
public void writeXML(org.w3c.dom.1ls.LSOutput output);

These methods enable the XML representation to be imported or exported:

« org.w3c.dom.ls.LSInput - represents an input source for the XML data.

« org.w3c.dom.Is.LSOutput - represents an output source for the XML data.

HPE Connect-It (9.70) Page 13 of 67

Chapter 3: Design-Time

This section describes elements that are used by a connector to connect to an EIS and discover its
metadata.

This chapter includes:

DesignTimeFactory interface 14

ObjectTypeProviderinterface 16

DesignTimeFactory interface

The com.hp.ov.cit.connector.spi.designtime.DesignTimeFactory interface centralizes all the
information required to:

« Obtain a connection

« Describe the structure of the data exchanges with the EIS

Communication mode

The methods

public boolean supportsOutbound/ ()
And

public boolean supportsInbound ()

are used to determine the communication mode used by the EIS. Within Connect-It these two modes
are exclusive. A connector implementation can only support one mode at a time.

Design-time connection

Data exchange types must be described regardless of the communication mode. To do this a
connection is used, whether it be a real one or not. For outbound communications it is also possible that

HPE Connect-It (9.70) Page 14 of 67

SDK
Chapter 3: Design-Time

this connection be different from the connection that is used for the data exchange itself. For example,
in the case of a web service, metadata is described using a WSDL file that can be accessed via an
FTP connection whereas communication with the web service is done using the http protocol.

The API of the DesignTimeFactory class provides the following methods:

e public boolean requiresSeparateMetaDataConnection ()
Determines if the EIS distinguishes between the two connection types. This method is not used for
inbound communications.

e public javax.resource.cci.ConnectionSpec createMetaDataConnectionSpec

)

This method returns a JavaBean implementation of the ConnectionSpec interface. The object
contains client-specific information such as "user" and "password" that are used to connect during
the design-time phase. The method involved for outbound communications that do not differentiate
design-time connections from run-time connections is:

e public javax.resource.cci.ConnectionSpec createConnectionSpec ()

For example, the url must be known if metadata is accessed via an http connection:

package com.myeis;

import java.net.URL;

import javax.resource.cci.ConnectionSpec;

public class MyEISConnectionSpec implements ConnectionSpec

{
private URL url;

public URL getUrl()
{

return url;

}
public void setUrl(String url)

{

this.url = url;

}
}

Once the connection information is retrieved, the metadata can be described.

Retrieving metadata

The method

public ObjectTypeProvider getObjectTypeProvider(javax.resource.cci.ConnectionSpec
metaDataConnSpec)

HPE Connect-It (9.70) Page 15 of 67

SDK
Chapter 3: Design-Time

returns an object which is used to obtain the description of the data that is exchanged with the EIS. The
required connection information makes up its parameters.

Example

The operations described above are shown in the following diagram. The diagram shows an outbound
communication which requiring specific connection to access the metadata:

Client DesigTineFactory Connectionipec ObjectTypeProvider
| | |
| supportsutbound i) |
| |
| |
|requiresSeparateletabataComection() |
| > |
| |
|createletabataComectiondpeci) |
| =
| Inew instance
I R ——— >
| |
|set properties |
|

|
|
| |
| getibiectTypeProvider |Connectiondpes) |
| =l
| |
|retrieve metadatas |
|
I I

|
|
|
|
|
|
|
|
|
|
|
|
|
A client queries the DesignTimeFactory to see if the connector supports the outbound
communication. If it does, it queries to see if the connection to the metadata is distinct from the
connection used to exchange data. Depending on the response, the client will either call the
createMetaDataConnectionSpec method or the createConnectionSpec method in order to retrieve a
connection's description. The client then sets the properties of the method and calls the
DesignTimeFactory to retrieve the ObjectTypeProvider which is used to describe the metadata.

ObjectTypeProvider interface

The com.hp.ov.cit.connector.spi.designtime.ObjectTypeProvider interface is used to describe
EIS data types. This description may be infinite. For example, an A data type may contain a B data
type itself containing an A data type. To avoid recursion problems, instead of describing data types in
one block, the interface is based on a navigable model. This makes it possible to find first level data
first. Then, as subsequent calls are made to the interface, the other levels of data can be described. As
these types are retrieved via a connection, calling the method:

public void close()
closes the connection.

The following methods are used to describe first-level metadata:

HPE Connect-It (9.70) Page 16 of 67

SDK
Chapter 3: Design-Time

public java.util.List<ObjectType> getReceivedTypes();
public java.util.List<ObjectType> getRequestTypes();
public java.util.List<ObjectType> getResponseTypes();

Depending on the EIS type and communication mode (inbound or outbound), these methods will need
to be supported or not supported. Supported methods are implemented as follows:

public java.util.List<ObjectType> getXXXTypes()

{
java.util.List<ObjectType> types = new java.util.ArraylList<ObjectType>();

types.add(new MyEISObjectType());

return types;

}

For unsupported methods:

public java.util.List<ObjectType> getXXXTypes() throws
javax.resource.NotSupportedException

{

throw new javax.resource.NotSupportedException();

}

Inbound communications

Only the following method is supported in this mode:
public java.util.List<ObjectType> getReceivedTypes()

This method must return the list of events that could be received from the EIS.

Outbound communications

Two types of data exchange modes are supported:

« Request/response (such as an HTTP request)

o Query (such as an SQL SELECT query)

Data types from queries are retrieved via:
public java.util.List<ObjectType> getRequestTypes()

This method must return the list of query types that could be sent to the EIS.

HPE Connect-It (9.70) Page 17 of 67

SDK
Chapter 3: Design-Time

Once a query produces a response, such as when the getPurchaseOrder (int id) function
returns a "PurchaseOrder" object, the following method must be used to describe the expected
response type:

public java.util.List<ObjectType> getResponseTypes()

Once a query leads toits response, such as when the "getPurchaseOrders(PurchaseOrderType)"
function returns a "PurchaseOrder" object, the following method:

public java.util.List<ObjectType> getReceivedTypes()

is used. Instead of sending a query containing data, the EIS is queried to find elements via their
metadata.

Note that the getResponseTypes () method is not supported separately. An EIS response cannot
be received if a query has not been sent to it.

(] (]
Navigation
Once the first level types have been retrieved, the following method is called to return the sub-types of
the other levels:
public ObjectType getType(String namespace, String name)

Using the information from the namespace, name couple sent as parameter by the caller, it is possible
to know the level that is to be described. Once a level is terminal, the method must return null.

HPE Connect-It (9.70) Page 18 of 67

Chapter 4: Runtime

This section describes elements that are used by a connector to connect to an EIS and exchange data.

This chapter includes:

Outbound ComMMUNICAtIONS 19

Inbound COmMMUNICAtiONS . .. 22

Outbound communications

Configuration

The key class of this communication mode is the one that implements the
javax.resource.spi.ManagedConnectionFactory interface. This class must also implement the
javax.resource.spi.ResourceAdapter interface. As outlined by the JCA specifications, this class
must be a JavaBean. The fields of this JavaBean object represent information that is required by the
connection regardless of the client. For example, for a database accessed via an ODBC connection,
the name of this database is required regardless of the client.

package com.mycompany.myeis;
import javax.resource.spi.ManagedConnectionFactory;
import javax.resource.spi.javax.resource.spi.ResourceAdapter
public class MyEISManagedConnectionFactory implements ManagedConnectionFactory,
ResourceAdapter
{
private String dataSourceName;
public String getDataSourceName()
{

return dataSourceName;

}

public void setDataSourceName(String dataSourceName)

{

this.dataSourceName = dataSourceName;

}

HPE Connect-It (9.70) Page 19 of 67

SDK
Chapter 4: Runtime

Connection

Client connection's obtained from a connector built using the SDK complies with the JCA standard.

A javax.resource.cci.ConnectionSpec object representing the connection information must be
retrieved first. This is done as shown in the following schema:

Client DesignTineFactory ConnectionSpec
| | |
|createConnectionspec () 1
| > |

1

Inew instance

set properties 1

The client accesses EIS via the javax.resource.cci.ConnectionFactory interface to create a
connection from the information that is supplied. To simplify the example, certain details have been
omitted (connection pooling, connection listener).

Client ConnectionFactory ConnectionManager ManagedConnectionFactory ManagedConnection Connection
| | | | |
| getConnection|Commectiondpec) | 1 |
| =mmmmm oo > | I 1 I
| | | |
|allocateConnection (ManagedConnectionFactory, CormectionRequestInfo) |
| =mmmmmm oo > 1 I
| | |

I |

| |

getfonnection|subject, CormectionRequestInto) |

>

|
Inew instance

I
I
|
|
I
|
|
o=t > | |
I
|
|
I
I
|
|
I

All implementations must return a com.hp.ov.cit.connector.cci.Connection type connection object.

Exchange

Once the connection has been established, the client application (Connect-It) is capable of exchanging
data with the external system. At this stage, two exchange modes are possible in accordance with
design-time information:

« Request with or without a response

« Query

HPE Connect-It (9.70) Page 20 of 67

SDK
Chapter 4: Runtime

Request/Response mode

Most exchanges with an EIS can be grouped into this category. For example, inserting arecord into a
relational database. Accessing this feature is done via the method:

public Interaction createInteraction|()

The following com.hp.ov.cit.connector.cci.Interaction interface is used:

public interface Interaction

{

public ObjectRecord execute(ObjectRecord request) throws ResourceException;

}
}

Datais supplied as input and a response or no response is returned.

Query mode

A prototype of expected data is sent to the EIS via a query. By analogy, an SQL SELECT query
specifies in the input which columns are expected in the records that are retrieved.

Accessing this feature is done via the method:

public Statement createStatement ()

The following com.hp.ov.cit.connector.cci.Statement interface is used:

public interface Statement

{

public ObjectResultSet executeQuery(ObjectRecord prototype) throws
ResourceException;

}
}

The next () and getObjectRecord () methods are used to iterate through the result set to retrieve
the data.

public interface ObjectResultSet
{

public boolean next();
public ObjectRecord getObjectRecord();
public void close() throws ResourceException;

}

HPE Connect-It (9.70) Page 21 of 67

SDK
Chapter 4: Runtime

Schemas

Creating a piece of data from design-time metadata:

Client ConnectionFactory ObjectRecordFactory OhjectRecord
| |
|getObjectRecordFactory() |
1

createObjectRecord (DbjectType)

|
|
I
|
|
|
|
Inew instance

|
|
| R >
|
|

->|sec{5cring, 0bject)

Creating an interaction with data that was retrieved:

Client Connection Interaction
| | |
|createInteraction() I

| execute [0bjectRecord) I
| >
I I
Iclose() I
| >

Querying from a data prototype that was retrieved:

Client Connection Statement ObjectResultiet
| | |
|createStatenent)

|
|
|
lexecuteluery (ObjectRecord) | |
| |
| | |

|

- Inext(] 1

|
1 >
| | | |
|__ lgetibiectRecord|) 1 |
| >

| | |
Iclose() 1 I
I '

Inbound communications

Configuration

The key class of this communication mode is the one that implements the
javax.resource.spi.ResourceAdapter interface. As outlined by the JCA specifications, this class
must be a JavaBean. The fields of this JavaBean object represent information that is required by the
connection regardless of the client.

HPE Connect-It (9.70) Page 22 of 67

SDK
Chapter 4: Runtime

Connection

The class that implements the javax.resource.spi.ActivationSpec interface represents the
information required to establish a client connection. As for the javax.resource.spi.ResourceAdapter
class, it must be a JavaBean object.

Exchange

The EIS initiates the exchange. The connector acts as an event listener. When events are received,
the connector notifies the client via the javax.resource.spi.endpoint.MessageEndPointFactory
object passed as parameter when it was started. This allows it to create a ConnectionListener object
whose interface is:

public interface ConnectionlListener extends Messagelistener

{

public void onException(Exception exception);
public ObjectRecord onRecord(ObjectRecord record);

}

Schemas

Retrieving connection information (design-time):

Client DesignTimeFactory ActivationSpec
| I I
|createhctivationdpeci) |
| >

|

Inew instance

Zet properties 1

Life cycle of the ResourceAdapter class:

HPE Connect-It (9.70) Page 23 of 67

SDK
Chapter 4: Runtime

HPE Connect-It (9.70) Page 24 of 67

Chapter 5: Deployment

To use the connector with Connect-It you must first create a deployment file. The SDK uses its own
deployment descriptor file and not the ra.xml descriptor from the JCA standard. This XML file is based
on the context notion introduced by the Spring framework. It must be named designtime-beans.xml
and saved to the root of the connector's JAR archive.

The following information is included:

« Complete name of the com.hp.ov.cit.connector.spi.designtime.DesignTimeFactory class.

« Complete name of the javax.resource.spi.ResourceAdapter class. For outbound
communications, the javax.resource.spi.ManagedConnectionFactory class is implemented.
An example is given below

<beans>
<bean id="designTimeFactory"
class="com.mycompany.myeis.MyEisDesignTimeFactory">
<property name="resourceAdapter">
<ref bean="resourceAdapter"/>
</property>
</bean>

<bean id="resourceAdapter"

class="com.mycompany.myeis.MyEisManagedConnectionFactory"/>
</beans>

HPE Connect-It (9.70) Page 25 of 67

Chapter 6: Configuration

A certain number of configuration files are required by Connect-lt in order to use the connector. This
name must be unique among all existing Connect-lt connectors. We recommend that you follow
"Java" package naming conventions. In this example we will use the name com.mycompany.myeis
for our connector.

This chapter includes:

Description file . il 26
LCON file .. 27
Configuration file .. 27
Wizard file .o 27
JVM configuration file . 29

Description file

This is main file for the actual description of the connector. It groups all the properties related to the
connector such as its unique name, the references to file names described after and its activation key.
The extension of this file must be .dsc. We recommend that you name the file myeis.dsc.

Example:

{CONNECTORDESC
InternalName=com.mycompany.myeis
ParentInternalName=Application_connectors
Name=My EIS
HTMLHelp=This is a description of my connector

NGTED0.0.0.9.9.9.9.0.0.0.0.9.0.9.9.9.0.00.00099990000090999000000999900009009900000009900000000900000
IconFile=myeis.bmp
Sched.CanUsePointer=0
Cnx.HasCnx=1
Wizard.File=myeis-wizard.xml
Java.Class=com.hp.ov.cit.container.RAContainer
Java.Configuration.File=myeis-config.xml
Java.JVMConfiguration.File=myeis-jvmconf.xml
Java.HasOptions=1

}

HPE Connect-It (9.70) Page 26 of 67

SDK
Chapter 6: Configuration

Icon file

You must supply a 16x16 bitmap to view an icon in the connectors navigation tree. This file can be
named myeis.bmp.

Configuration file

This file contains the set of JavaBeans properties that must be configured by the user. This file is also
used to specify which properties will be included in the scenario configuration that is exported via this
command line:

conitsvc -export[:<property file>] <scenario>
Example of a myeis-config.xml file:

<configuration>
<property name="ra_url" type="String" export="true">
<definition>
<default/>
</definition>
<export>
<description>URL</description>
</export>
</property>
<property name="cs_userName" type="String" export="true">
<definition>
<default/>
</definition>
<export>
<description>User</description>
</export>
</property>
</configuration>

Wizard file

An XML-format wizard definition file for the connector.

It is used to describe the pages that are used to configure the connector in Connect-lt. It contains a
connection definition page. Interface controls are also described in terms of notions (text, checkbox,
button), labels, position, etc.

HPE Connect-It (9.70) Page 27 of 67

SDK
Chapter 6: Configuration

All JavaBeans properties that must be configured by the user must be in this file. The following naming
convention must be used:

« The prefix ra_must be added to each property that is related to the implementation of the
javax.resource.spi.ResourceAdapter interface.

« The prefix mdes_ must be added to each property that is related to the implementation of the
designtime (metadata) javax.resource.cci.ConnectionSpec interface.

« The prefix es_ must be added to each property that is related to the implementation of the
javax.resource.cci.ConnectionSpec interface.

« The prefix as_ must be added to each property that is related to the implementation of the
javax.resource.spi.ActivationSpec interface.

Example of a myeis-wizard.xml file:

<wizard>

<page name="pgConnector">
<title>Connection</title>

<description>Configure connection to MyEIS</description>

<description>Enter the URL</description>
<control type="Textbox" name="ra_url">
<Value>$(GetValue[ra_url])</Value>
<label>URL</label>
<XOffset>2500</X0ffset>
<labellLeft>1</labellLeft>
<Mandatory>1</Mandatory>
<MandatoryMsg>You must specify an URL value</MandatoryMsg>
<bind>Value</bind>
</control>

<description>Enter the user name</description>
<control type="Textbox" name="cs_userName">
<Value>$(GetValue[cs_userName])</Value>
<label>User</label>
<XOffset>2500</X0ffset>
<labellLeft>1</labellLeft>
<bind>Value</bind>

</control>

<Transition>
<To script="true">{trConnector}</To>
</Transition>
</page>

HPE Connect-It (9.70) Page 28 of 67

SDK
Chapter 6: Configuration

</wizard>

JVM configuration file

You must provide the application with the classpath configuration file in order to start the JVM.

Connect-It requires a minimum configuration regardless of the connector built using the SDK. This
configuration is described in the file located at CONNECT-IT_HOME/config/shared/jca-container-
jvmconf.xml. It must be included in your own JVM configuration file.

Example of a myeisjvmconf.xml file:

<jvmConfiguration id="com.mycompany.myeis">
<jarLocation>./com.mycompany.myeis</jarLocation>
<jars>
<jar groupId="com.mycompany.myeis" optional="false" provided="true"
version="1.00" versionNeeded="true">myeis</jar>

</jars>
<import>../shared/jca-container-jvmconf.xml</import>
</jvmConfiguration>

HPE Connect-It (9.70) Page 29 of 67

Chapter 7: Packaging

The connector must be packaged with the Connect-It installation in the following manner:

Connect-It/

|
| |- com.mycompany.myeis/

| |- myeis-1.00.7jar

| |- myeis-3rdpartyl.jar
| | - myeis-3rdparty2.jar
| |- ...

|

|

- config/
| - com.mycompany.myeis/
|- myeis.bmp
| - myeis-jvmconf.xml
|- myeis.dsc
|- myeis-wizard.xml
|- myeis-config.xml

Note: To ensure that names are unique, the connector's configuration and archive directories
must follow the "Java" package naming conventions. The name com.mycompany.myeis in the
example above follows these conventions.

This chapter includes:

JaAVA AICNIVE 30

Java archive

The following structure must be used for the myeis-1.00.jar archive:

myeis-1.00.jar

- designtime-beans.xml

|

|

|

| |- mycompany/

| |- myeis/

| | - MyEisDesignTimeFactory.class

| | - MyEisManagedConnectionFactory.class
| | - MyEisConnectionManager.class

HPE Connect-1t (9.70) Page 30 of 67

SDK
Chapter 7: Packaging

|
|
| - META-INF/
| |- Manifest.mf

HPE Connect-1t (9.70) Page 31 of 67

Chapter 8: Extension

This chapter includes:

Interface com.hp.ov.cit.connector.spi.ContainerContext 32
com.hp.ov.cit.connector.spi.designtime.ObjectTypeProviderEx class_. 33
Interface

com.hp.ov.cit.connector.spi.ContainerContex
T

When the connector is instantiated via Connect-It, the application provides the implementation with a
specialization of the <javax.resource.spi.BootstrapContext> class used to access specific features of
the container. This context class provides the following possibilities:

Event listener

Itis possible to receive notifications of execution events concerning the Connect-It scenario. This is
done via a listening class using these methods:

public void addContainerListener(ContainerListener listener);
public void removeContainerListener(ContainerListener listener);

The SDK has introduced 2 listening class types:

« com.hp.ov.cit.connector.spi.ExecutionListener: Listens for notifications when a scenario starts or
stops.

« com.hp.ov.cit.connector.spi.SessionListener: Listens for session opening and closing notifications
for a scenario that is executing.

Access to the scenario path

Itis possible to obtain the full path of the scenario executed via the call:

HPE Connect-It (9.70) Page 32 of 67

SDK
Chapter 8: Extension

public String getScenarioAbsolutePath();

If you are interested by these features, you will need to enter the following code in your
<javax.resource.spi.ResourceAdapter> implementation:

public void start(BootstrapContext bootstrapContext) throws
ResourceAdapterInternalException

{

if (bootstrapContext instanceof ContainerContext)

{

//store this CIT context for use

}

else

{

//who is my container?
throw new ResourceAdapterInternalException();

}
}

com.hp.ov.cit.connector.spi.designtime.Obje
ctTypeProviderEx class

This class is a specific implementation of the
<com.hp.ov.cit.connector.spi.designtime.Object TypeProvider> interface. It enables any
implementation that uses it to supply additional information concerning the supported types to the
container.

The <com.hp.ov.cit.connector.cci.ObjectType> interface provides the Java class type to contain
simple data (whole, Boolean values, etc). However, for some types, notably dates, a Java class may
be insufficient to describe the semantics of a type (for example, date, date/time or time). This special
class addresses this issue by giving the container additional information about a simple type that is
taken into consideration via the method:

public String getXSDBuiltinDatatype(ObjectType simpleType)

This method returns the name of a "built-in" type from the XML Schema specification in order to
complete the description of a simple type.

By default the basic class does not provide any additional information about the manipulated simple
types.

Typical usage is as follows:

public class MyObjectTypeProvider extends ObjectTypeProviderkx
{

HPE Connect-It (9.70) Page 33 of 67

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#built-in-datatypes

SDK
Chapter 8: Extension

@Override
public String getXSDBuiltinDatatype(ObjectType simpleType)
{
if(simpleType instanceof MyDateObjectType)
{
return "date";
}
else if(simpleType instanceof MyDatetimeObjectType)
{
return "dateTime";
}
else if(simpleType instanceof MyTimeObjectType)
{
return "time";
}
else
{
//sorry ...no additionnal info along the Java class type
return null;
}
}

}

HPE Connect-1t (9.70) Page 34 of 67

Chapter 9: Use

Implementing a connector developed using the SDK, is linked to:

« An SDK access declaration in the Connect-It authorization certificate.

« Akey that has been generated for the connector created using the SDK.

This chapter includes:

Authorization certificate

Generate a key

Authorization certificate

The authorization certificate activates:

« The runtime that enables the connector created using the SDK to be used.

« The menu used to generate a key for the newly created connector (key used by the runtime).

» Connect-It - User's guide, Installation chapter, Entering the authorization certificate.

Generate a key

A key allows the connector to be used.

To generate a key:

1. Launch the Connect-It scenario builder
2. Select Javal Generate SDK activation key

3. Inthe window that is displayed, enter:
o The name of the connector.

o Its mode (production, consumption).

4. The key that is generated must be copied to the description file
» Connect-It Guide - SDK, section Database description file.

HPE Connect-It (9.70) Page 35 of 67

SDK
Chapter 9: Use

This key is linked to the authorization certification which enables the connector to be activated and
used.

HPE Connect-1t (9.70) Page 36 of 67

Appendix A: Wizard file

Table of Contents

General structure
Wizard element
Include element
String inclusion type
Wizard inclusion type
Page element
Property element
Control element
Bind attribute
Password management
Linebreak and separator elements
Transition element
Script attribute
Included attribute
Functions
GetValue function
Dump function
EspaceCommas function

File function
This section provides information about the syntax used for the connector's configuration wizard's XML
file.

General structure

A wizard is made up of pages. Each pages can have input fields, labels and descriptions. Each page
defines a transition to the next page.

HPE Connect-1t (9.70) Page 37 of 67

SDK
Appendix A: Wizard file

<wizard>
<include/>
<property/>
<page>
<transition/>
</page>

</wizard>

Wizard element

The root element must be wizard.

Possible sub-elements are:

Element Optional Description

include Yes Used to include definitions from external files.
property = Yes Used to define scripted properties.
page Yes Defines pages that make up the wizard.

Include element

Used to include afile. The syntax is as follows:

<include type="..." [basedir="..."]>the file name</include>

Attribute Optional Description

type No Defines the inclusion type
basedir | Yes Defines the directory of the file to include
included Yes Used to ignore or not to ignore the element

The inclusion types are:

« string

e Wwizard

HPE Connect-It (9.70) Page 38 of 67

SDK
Appendix A: Wizard file

String inclusion type

Used to include a resources file (localization strings). By default, the path of the file to include is relative
to the current file.

Strings that are defined in this file are accessed using the following syntax: $(IDS_NAME_OF_THE
STRING).

For example:
Let's examine the myeisstrings.str file

EIS_TITLE, "Title for the EIS"
EIS_DESCRIPTION, "Description of the EIS"

The resources are used in the wizard file by including the string IDs:

<wizard>
<include type="string">eisstrings.str</include>
<title>$(IDS_EIS TITLE)</title>

</wizard>
Note:

« Access to the resources is only effective for elements defined after the inclusion.

« Theinclusion is taken into account when the wizard is generated. Its value cannot be scripted.

Wizard inclusion type

Used to include another wizard file. The elements that can specify this type of inclusion are wizard and
page.

Parameters can be sent to the included wizard and can be accessed using this syntax:
$(GetValue[NAME_OF_THE PARAMETER])

For example, to send the parameter myParameter whose value is myValue to the
mylncludedWizard.xml wizard, the following syntax is required:

<include type="wizard" myParameter="myValue>myIncludedWizard.xml</include>

HPE Connect-It (9.70) Page 39 of 67

SDK
Appendix A: Wizard file

Page element

A wizard is made up of pages. Possible attributes are:

Attribute Optional Description

name No Defines the name of the page.
Each page name is unique.

included Yes Used to ignore or not to ignore the element.
Possible sub-elements are:

Element Optional Description

Transition | No Defines the transition to the next page.
Description ' Yes Use to add a description to the page, a page section or a control.
Title Yes Defines the title of the page.
property Yes Used to define scripted properties.
control Yes Defines the controls on the page.
linebreak Yes Defines line breaks.
separator | Yes Defines a horizontal separator.
<page name="..." included="...">

<title/>

<image/>

<description/>

<property/>

<control/>

<linebreak/>

<separator/>

<transition/>
</page>

Note: The first page of a connector's wizard must be named pgConnector.

HPE Connect-It (9.70)

Page 40 of 67

SDK
Appendix A: Wizard file

Property element

A property is a basic value type such as string or long. Possible attributes are:

Attribute Optional Description

name No Defines the name of the property.

included Yes Used to ignore or not to ignore the element.

script Yes Used to specify scripted content.
Example:

<page name="myPage">
<property name="IsVisible" type="Long" script="true">RetVal = 1</property>
</page>

<property name="DelimString" script="true">RetVal = ""</property>

A property is used via the property full path syntax which references the complete path (without the
root) of the property in the XML tree structure.

Example:

<visible script="true">{myPage.IsVisible} &1t;> 1</visible>
<value script="true">{DelimString}</value>

Control element

Used to define a graphical control. Possible attributes are:

Attribute Optional Description
name No Defines the name of the property.

type No Defines the control type.

It must be unique for the page.
included Yes Used to ignore or not to ignore the element.

script Yes Used to specify scripted content.

HPE Connect-It (9.70) Page 41 of 67

SDK
Appendix A: Wizard file

Possible sub-elements, regardless of the control type, are:

Element Optional
visible Yes
enabled Yes
readonly Yes
mandatory Yes

mandatorymsg Yes

label Yes
labelleft Yes
xoffset Yes
bind Yes
property Yes

Type

boolean
boolean
boolean
boolean

string

string
boolean
long

string

string

Description

Specifies whether or not the control is visible.
Specifies whether or not the control is grayed out.
Specifies whether or not the control can be edited.
Specifies whether or not the control requires a value.

Specifies the error message if no value is provided when the
mandatory attribute is present and is equal to 1.

Defines text above the control.
If'1' or 'true', positions the label to the left.
Defines the space to the left of the control.

Specifies the control elements whose values were taken into
account when its associated page was validated.

Example: <bind>value</bind> used to take into account the
value of the element <value>.

Used to define scripted properties.

Other sub-elements are available depending on the type of control that is involved. The main controls

and their sub-elements are:

Control type Sub-element Type

textbox value

multiline

password

checkbox value
caption
combobox value

values

HPE Connect-It (9.70)

string

long

Description
Value of the input text.
0 =singleline

otherwise percentage of the control size

boolean ' Value specifying whether or not the field is encrypted. 1 =

encrypted field

boolean ' Specifies whether or not the control is checked.

string
string

string

Control label
Value of the selected item.

List of possible items (label=value) separated by
commas.

Example: <values>English=en,French=fr<values>

Page 42 of 67

SDK
Appendix A: Wizard file

Control type Sub-element Type Description

numbox value long Numerical value for the control.
minvalue long Specifies the minimum value.
maxvalue long Specifies the maximum value.
label caption string Control label
fileedit value string Path of the selected file.
openmode long Defines the editing type:
« 1=0PEN
« 2=SAVE

« 4=0PEN_DIR

« 8=SAVE_DIR

» 16=APPEND
filters string Defines afile filter.

Example: <filters>XML files (*.xml)|*.xmI|XMLSchema
files (*.xsd)|*.xsd|</filters>

defext string Default extension to use.
Example: <defext>txt</defext>

serializationld = string Defines the id of the file selection control. Several
controls can use the same id. This id is used to save the
path of the last selected file.

optionbuttons = value sting Value of the selected item.
values string List of possible items (label=value) separated by
commas.

Example: <values>IS0-8859-1=0,UTF-8=1,Shift-
JIS=2<values>

border boolean ' Specifies whether or not the control has a frame.

Example:

<control type="TextBox" name="Server">
<value>$(GetValue[Server])</value>
<caption>$(IDS_SERVER_LABEL)</caption>
<xoffset>2500</xoffset>
<bind>value</bind>

</control>

HPE Connect-It (9.70) Page 43 of 67

SDK
Appendix A: Wizard file

Bind attribute

The bind attribute is used to link a control to a configuration property of a connector. Currently, only the
value value is supported by the SDK. When it is specified for a control named 'cs_myprop', the value of
the control's <value> element is sent to the connector as the value for the 'cs_myprop' configuration
property (as the value of the 'myprop' property of the connector's ConnectionSpec property).

Password management

Managing configuration properties such as passwords requires specific handling in the wizards. If the
property containing the password is 'cs_password', the name of the wizard control for this property
must be 'clearcs_password'.

Example:

<control type="TextBox" name="clearcs_password">
<value>$(GetValue[cs_password])</value>
<password>1</password>
<label>$(IDS_PASSWORD LABEL)</label>
<xoffset>2500</xoffset>
<labelleft>1</labelleft>
<bind>value</bind>

</control>

Linebreak and separator elements

These elements are used to format the wizard page. Possible attributes are:

Attribute Optional Description

included Yes Used to ignore or not to ignore the element.

HPE Connect-It (9.70) Page 44 of 67

SDK
Appendix A: Wizard file

Transition element

Every page must have a transition element. This element specifies what the next page is. Possible
attributes are:

Attribute Optional Description

script Yes Used to specify scripted content.

Examples:

<transition><to>nextPage</to></transition>

<transition>
<to script="true">
if($(GetValue[ShowAdvancedWiz]) = 1) then
RetVal = "pgAdvanced"
else
RetVal = {trConnector}
end if
</to>
</transition>

Note: The transition of the last page of a connector's wizard must be equal to the scripted value
{trConnector}.

Script attribute

Wizards support simple scripts written using Basic syntax. These scripts are evaluated when the
wizard is executed.

The script attribute is available for all elements containing a value. It is used to specify the value of the
element as a scripted expression which is evaluated when the value of the attribute is true.

Example:
<... script="true">
if {Protocol.Value} = "ftp" or {Protocol.Value} = "http" then
Retval = 1
else
Retval = @

HPE Connect-It (9.70) Page 45 of 67

SDK
Appendix A: Wizard file

end if
</ o>

In Basic scripts used in the wizards, the syntax {...} references the value of a wizard control or property.
These values are referenced using the complete path (without the root) of the property in the XML tree
structure.

Included attribute

This attribute is available for most elements. It is optional. It contains a boolean value which specifies if
the element in question is to be ignored or not.

The different values that this attribute can have are:
o 0or1 (orany other that is not 0)

o false ortrue

« Anexpression that uses the and, or and not operators.
When the value of this attribute is false, the contents of the element to which it belongs will be ignored.

Note: The value of this attribute is evaluated when the wizard is generated and not when it is
executed. Therefore, including an element cannot depend on the value of a control or any other
scripted expression. The value of this attribute is generally evaluated using the Getvalue
function.

Functions

The functions defined below are not Basic script functions. They are functions that are evaluated when
the wizard is generated and not when it is executed.

Format of the functions:

$(FunctionName[paraml, param2<,optionalparam>,...])

GetValue function

This function is used to dynamically retrieve a value from the wizard. This function is the most used
wizard function since it allows the current value of a connector's configuration property to be retrieved.

HPE Connect-It (9.70) Page 46 of 67

SDK
Appendix A: Wizard file

The syntax is as follows:

$(GetValue[name,default])

The name parameter specifies the name of the value to find. The default parameter defines a default

value if the current value is not found.

Several existing values have predefined names:

o OSUnix: Returns 1 if the platform is Unix and 0 otherwise.

o OSWindows: Retumns 1 if the platform is Windows and 0 otherwise

« WizardDir: Returns the complete path of the installation wizard directory (CONNECT-IT _

HOME/config/wiz)

« NamelD: Returns the name of the connector

o ShowAdvancedWiz: Returns 1 if the wizard is in advanced mode and 0 otherwise

« ConfigDir: Returns the complete path of the connector's configuration directory

When the GetValue function is called, the search for the value is done on:

1. Specific values defined in the description file.
2. The connector's configuration properties.

3. Predefined values.

Example:

<value>$(GetValue[mylogin])</value>

<property name="trConnector" script="true">
if($(GetValue[Cnx.HasCnx, 1]) = 1 then
RetVal = "pgConnection”
else

</property>

<control type="checkbox" name="UseWindowsRegistry" included="$(GetValue

[OSWindows])">
<value>$(GetValue[UseWindowsRegistry])</value>
<caption>$(IDS_SERVER_LABEL)</caption>
<xoffset>2500</xoffset>
<bind>value</bind>

</control>

HPE Connect-It (9.70)

Page 47 of 67

SDK
Appendix A: Wizard file

Dump function

This function is used to format a string for use in a script. The string is enclosed by quotation marks and
quotation marks in the string are escaped. This function is very useful in scripts that retrieve strings
using the GetVvalue function or with strings from an .str file. The syntax is as follows:

$(Dump[string])
Example:

<value script="true">RetVal = $(Dump[$(GetValue[theValue])])</value>

EspaceCommas function

This function is used to escape commas in a string. The function can be used when the string is a sub-
element of a string that uses a comma as character separator (for example, the values element of the
optionbuttons control). The syntax is as follows:

$(EscapeCommas[string])

File function

This function is used to retrieve the full path of a file. The syntax is as follows:
$(File[name,basedir])

The name parameter specifies the file's name. The basedir parameter defines the file's directory. The
default directory is the wizard's directory.

Example:



HPE Connect-It (9.70) Page 48 of 67

Appendix B: Configuration file

Table of Contents

Configuration element
Property element
Definition element
Export element
Class element

Property types

This section provides information about the syntax used for the configuration file.

The file is structured in the following manner:

configuration>

<property>
<definition>
<default/>
</definition>
<export>
<description/>
</export>
</class>
</property>

<property>
<definition>
<default/>
</definition>
<export>
<description/>
</export>
</class>
</property>

</configuration>

Configuration element

The root element must be configuration. Possible sub-elements are:

HPE Connect-1t (9.70)

Page 49 of 67

SDK
Appendix B: Configuration file

Element Optional Description

property = Yes Defines one or more properties required by the connector's Java code.

Property element

Specifies a Java configuration property.

Possible attributes are:

Attribute Optional Type Description

name No string Defines the name of the property.
type No string Specified the property type.
export Yes Boolean = Specifies whether or not the property needs to be taken into

account during export (-export option).

Possible sub-elements are:

Element Optional Description

Definition ' Yes Property definition.
export Yes Definition of the export.
class Yes Definition of the corresponding Java class.

Definition element

Has the following sub-elements:

Element Optional Type Description

default Yes string = Specifies the default value that is used when initializing the wizard.

HPE Connect-It (9.70) Page 50 of 67

SDK
Appendix B: Configuration file

Export element

Has the following sub-elements:

Element Optional Type Description
Description ' Yes string = Specifies the description used when the property is exported.

Appears as a comment in the exported properties file.

Class element

A Java class is implicitly associated with each property type. This element lets you overload the
implicit class of the property type.

In the example below, a String property type is declared and corresponds to a JavaBean property in the
java.net.URI class.

<property name="myURIProperty" type="String" export="true">
<class>java.net.URI</class>
</property>

Property types

The following table lists the supported property types and their default JavaBean property type.

Type JavaBean Type

Boolean java.lang.Boolean

Byte java.lang.Byte
Short java.lang.Short
Long java.lang.Integer
Linglnt java.lang.Long
Float java.lang.Float

HPE Connect-It (9.70) Page 51 of 67

SDK
Appendix B: Configuration file

Type JavaBean Type
Double java.lang.Double
String java.lang.String
Memo java.lang.String
Date java.util.Date
Time java.sql.Time

Timestamp java.sql.Timestamp
Password java.lang.String
File java.io.File

Url java.net.URL

Please consult the JavaBeans documentation for the complete list of supported JavaBean types.

HPE Connect-It (9.70) Page 52 of 67

Appendix C: JVM configuration file

Table of Contents

jvmConfiguration element
jarLocation element
Jars element

Jar element
jvmOptions element

Import element
This section provides information about the syntax used for the JVM configuration file.

The file is structured in the following manner:

<jvmConfiguration>

<jarLocation/>
<jarLocation/>

<jars>
<jar/>
<jar/>
<jar/>

</jars>

<jvmOptions>
<jvmOption/>
<jvmOption/>

</jvmOptions>

<import/>
<import/>

</jvmConfiguration>

jvmConfiguration element

The root element must be jymConfiguration.

Possible attributes are:

HPE Connect-1t (9.70) Page 53 of 67

SDK
Appendix C: JVM configuration file

Attribute Optional Type Description

id No string = Defines a unique identifier for the configuration.

Possible sub-elements are:

Element Optional Type Description

jarLocation ' Yes string | Defines the paths of the classpath used by the connector.
jars Yes Defines the archives used by the connector.

import Yes string | Used to include a classpath from an extemal file.
jvmOptions Yes Used to define JVM options.

jarLocation element

The connector's classpath comprises one or more paths which reference the different archives (.jar or
.zip files) required for code execution. For each connector it is possible to define the paths to search for
the archives. The path value is either relative to the Connect-It installation lib directory or an absolute
path. The archives are searched in the order that the paths are declared.

Example:

<jarLocation>./com.mycompany.myeis</jarLocation>
<jarLocation>c:/myEIS/myEISPath</jarLocation>

By default, if no jarLocation element is specified, the path used is the Connect-It installation lib
directory.

Jars element

Possible sub-elements are:

Element Optional Type Description

jar Yes string = Defines an archive entry for the classpath.

HPE Connect-It (9.70) Page 54 of 67

SDK
Appendix C: JVM configuration file

Jar element

Possible attributes are:

Attribute Optional Type Default Description

groupld No string Defines a group identifier for the archive.

provided Yes boolean ' true Specifies if the archive in question is from one of
the classpath search paths or if the path needs to
be provided by the user.

The value 'true' indicates that it is supplied by the
installation (search paths). In this case, the
'optional'’ attribute is ignored.

optional Yes boolean false Specifies if the archive is optional.

The value 'false' indicates that the archive must be
present in one of the classpath search paths, orin
the additional classpath defined in the application
(‘Java/ Configure the JVM' menu) or in the
connector (on the wizard's 'Configure the JVM'

page).
version Yes string Used to append archive version to the archive.

The full name of the archive becomes name-
version.jar. If this extension is not found, a new
search is done using the fullname name-
version.zip.

versionNeeded Yes boolean ' true Indicates if archive must be searched using its
name and version.

« The value 'true' indicates that the search is on
the name and the version.

« Thevalue 'false' indicates that the search is on
the name and the version, then just the name
for each path.

The value must reference the name of the archive to be added.
Sample classpath entry for the xerceslmpl-2.6.2.jar library that is provided with the application:

<jar groupId="xerces" optional="false" provided="true" version="2.6.2"
versionNeeded="true">xercesImpl</jar>

HPE Connect-It (9.70) Page 55 of 67

SDK
Appendix C: JVM configuration file

jvmOptions element

This element is used to define additional JVM options

Possible sub-elements are:

Element Optional Type Description

jvmOption = Yes string | Defines a JVM option.

Example:

<jvmOptions>
<jvmOption>-Xmx125m</jvmOption>
<jvmOption>-Dcom.sun.management. jmxremote</jvmOption>
</jvmOptions>

Import element

In addition to the connector's configuration, it is possible to provide additional JVM configuration
elements. Theses elements are declared in one or more files which use the same syntax. Depending
on where the import declaration is made, the declarations can come before or after the current
definitions. The value must reference the relative path of the file to import.

Example:

<import>../shared/jca-container-javaconf.xml</import>

HPE Connect-It (9.70) Page 56 of 67

Appendix D: Database description file

Table of Contents

File structure

Properties

Example

Additional information
Multiple descriptions

Connector hierarchy

This section provides information about the syntax used for the description file.

File structure

The file is structured in the following manner:

{CONNECTORDESC
//property list
//property name=property value
Name=
InternalName=

Properties

The following table list the connectors' properties:

Def
ault
Typ Opti val
Property e onal ue Description
Common properties
Name strin No Connector name that is displayed.

g

HPE Connect-It (9.70)

Page 57 of 67

SDK

Appendix D: Database description file

Property

InternalName

ParentInternalName

HTMLHelp string yes
Description in html
format.

Key

Icon

IconFile

Schedulers

Sched.CanUsePointer

Cache

Cache.SupportCache

Timezone

Tmz.HandleServerDel
ay

External formats

ExtFmt.Use

Wizard

Wizard.File

HPE Connect-It (9.70)

Typ
e

strin
g

strin
g

strin

strin

bool
ean

bool
ean

bool
ean

bool
ean

strin

Opti
onal

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Def
ault
val
ue

true

true

true

true

Description

Internal name of the connector (unique).

Name of the parent node that it belongs to.

Activation key

Relative path to the connector's icon (.bmp)

The SDK does not provide support for schedule
pointers. This value must be set to 0.

Sched.CanUsePointer=0

The SDK does not provide support for the metadata
cache. This value must be set to 0.

Cache.SupportCache=0

The SDK does not provide support for server time
differences. This value must be set to 0.

Tmz.HandleServerDelay=0

The SDK does not provide support for extended
formats. This value must be set to 0.

ExtFmt.Use=0

Relative path of the Wizard file.

Page 58 of 67

SDK
Appendix D: Database description file

Def
ault
Typ Opti val
Property e onal ue Description
Java
Java.Class strin No Specifies the connector's Java class. Must be:
g Java.Class=com.hp.ov.cit.container.RAContai
ner
Java.Configuration.File ' strin | Yes Relative path of the configuration file.
g
Java.JVMConfiguratio | strin | Yes Relative path of the JVM configuration file.
n.File g
Java.HasOptions strin Yes fals This value should be set to 1. Java.HasOptions=1
g e
Java.SupportProxy Bool Yes fals | Is aproxy server configuration supported?
ean e

Java.PriorToJdk15Pro | Bool ' Yes fals @ Does the record of the proxy server use the function
xyRegistration ean e introduced by the <java.net.ProxySelector> class?

Miscellaneous

RedeployOnChange strin | Yes If the properties in this list are modified, the connector
g must be redeployed.
Example:

RedeployOnChange=cs_CacertsFile cs_
KeystoreFile as_KeystorePassword

Example

Below is a sample configuration file for an outbound type connector built using the SDK.

{CONNECTORDESC
Name=MyEIS
InternalName=com.mycompany.myeis
ParentInternalName=com.mycompany
HTMLHelp=Connector to interact with my eis

Key=XXXXXXXXXXXXXXHIXIKXKXIKIHKXHKXIHKIHKXIEKIHKXHIIIKXHKXIEKIHKIXKIIKXIXIKKKXKIXIKIKXXXXKXKXXKX
IconFile=myeis.bmp

HPE Connect-It (9.70) Page 59 of 67

SDK
Appendix D: Database description file

EventDriven=0

SupportParallelization=1
Transac.CanSupportTransactions=1

Cnx.HasCnx=1

Cnx.CanDisableReconnection=0
Wizard.File=myeis-wizard.xml
Java.Class=com.hp.ov.cit.container.RAContainer
Java.Configuration.File=myeis-config.xml
Java.JVMConfiguration.File=myeis-jvmconf.xml
Java.HasOptions=1

// The following properties must always have these values
Sched.CanUsePointer=0

Cache.SupportCache=0

Tmz.HandleServerDelay=0

ExtFmt.Use=0

Additional information

Multiple descriptions

A description file can contain several descriptions each of which corresponds to a
CONNECTORDESC section. Although it is recommended to write a single description file for each
connector, including several descriptions in the same file can be useful when defining connector
categories or when managing different versions of the same EIS.

Connector hierarchy

The ParentinternalName property is used to specify the internal name of the parent node, or category,
in the connector hierarchy. Categories are also defined in description files in a more simplified format:

{CONNECTORDESC
InternalName=...
ParentInternalName=...
Name=...

HTMLHelp=...
IconFile=...

HPE Connect-It (9.70) Page 60 of 67

SDK
Appendix D: Database description file

If no ParentinternalName property is specified, the category (or the connector) will be located at the
root of the hierarchy.

Connect-It has a certain number of predefined categories:

Category Internal name
Application connectors = Application_connectors
Protocol connectors Protocol_connectors
ERP connectors ERP_connectors

Inventory connectors Gateways

HPE Connect-It (9.70) Page 61 of 67

Appendix E: Java code

Table of Contents
JavaBeans
Supported types
Validation
Logging
Log4J support
JDK logging support
Internationalization

Example

JavaBeans

Supported types

A certain number of interfaces from the JCA specifications must be implemented as JavaBeans. The
following interfaces are used by the SDK:

javax.resource.spi.ManagedConnectionFactory
javax.resource.spi.ResourceAdapter
javax.resource.cci.ConnectionSpec
javax.resource.spi.ActivationSpec

The following table lists the value types that are authorized for their properties:

java.lang.Boolean
java.lang.String
java.lang.Integer

java.lang.Double

HPE Connect-1t (9.70) Page 62 of 67

SDK
Appendix E: Java code

java.lang.Byte
java.lang.Short
java.lang.Long
java.lang.Float

java.lang.Character
The SDK extends this list to other frequently used types. The following types are supported:

java.util.Date
java.sql.Time
java.sql.Timestamp
java.io.File
java.net.URL

java.net.URI

Validation

In some cases, the value that a JavaBean object property can have depends on another property.
Since the object does not control the order in which the properties are updated, the SDK provides an
alternative to this problem via the interface.

public interface ValidatingBean

{

public void validate() throws InvalidPropertyException;

}

This interface is used to manage a validation or initialization phase on the JavaBean that implements it
once all of its properties have been updated.

Logging

The SDK uses the Jakarta Commons Logging (JCL) framework to log messages in the Connect-It
log. Include the following code to use this function from a Java class:

HPE Connect-It (9.70) Page 63 of 67

SDK
Appendix E: Java code

package com.mycompany.myeis;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;
public class MyEISClass

{
private static final Log log = LogFactory.getLog(MyEISClass.class);

}

JCL defines a priority level for each message. The following levels are used by Connect-It:

« error - Error messages

« info - Information

« warn - Warning messages

« debug - Debug messages Logged only when 'debug' mode is activated.
Tolog messages to the Connect-It log, use these org.apache.commons.logging.Log interface
methods:

log.error(Object message);
log.error(Object message, Throwable t);
log.warn(Object message);
log.warn(Object message, Throwable t);
log.info(Object message);
log.info(Object message, Throwable t);
log.debug(Object message);
log.debug(Object message, Throwable t);

Log4J support

The JCL framework is used to unify access to an implemented logging system: Log4J, JDK Logging,
etc.

By default, Connect-It uses a configuration of the Log4J library. All messages logged by the Log4J
layer, whether called directly or via the JCL API, will be taken into account by Connect-It.

JDK logging support

Connect-It adds support for the logging framework supplied by the JDK thanks to a static configuration.
The default static configuration is described by the <JRE_HOME>\lib\logging.properties file.

HPE Connect-It (9.70) Page 64 of 67

SDK
Appendix E: Java code

When the connector is instantiated, the logging level of the JDK's root logger is modified to make it
correspond to the one configured for the Connect-It application. All log events, obtained via a direct call
to the JDK logging framework, are redirected to the application.

Internationalization

The SDK uses Java's standard internationalization mechanism. To implement this mechanism with
your code, you will need to create one or more properties files that will contain the strings required for
internationalization.

Example

com/mycompany/myeis/i18n/mymessages.properties file

connection.error = Connection error.
execution.failed = Execution failed.

com/mycompany/myeis/i18n/mymessages_fr.properties file

connection.error = Erreur de connexion.
execution.failed = Echec de 1'exécution.

com/mycompany/myeis/MyEISClass.java file

package com.mycompany.myeis;
import java.util.ResourceBundle;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
public class MyEISClass
{
private static final ResourceBundle bundle = ResourceBundle.getBundle
("com.mycompany.myeis.il8n.mymessages");
private static final Log log = LogFactory.getLog(MyEISClass.class);

public void execute()

{
try

{
}

catch(Exception e)

{

log.error(bundle.getString("execution.failed"), e);

}

HPE Connect-It (9.70) Page 65 of 67

SDK
Appendix E: Java code

HPE Connect-It (9.70) Page 66 of 67

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the

following information in the subject line:
Feedback on SDK (Connect-It 9.70)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to connectit_support@groups.hpe.com.

We appreciate your feedback!

HPE Connect-1t (9.70) Page 67 of 67

mailto:connectit_support@groups.hpe.com?subject=Feedback on SDK (Connect-It 9.70)

	Chapter 1: Introduction
	Who is this guide intended for?
	Terminology
	General information
	SPI Extensions
	CCI Extensions

	Chapter 2: Data exchange
	Data and data types
	Models
	Class/Instance model
	Class
	Instance
	Simple types
	Example

	XMLSchema/XML model

	Chapter 3: Design-Time
	DesignTimeFactory interface
	Communication mode
	Design-time connection
	Retrieving metadata
	Example

	ObjectTypeProvider interface
	Inbound communications
	Outbound communications
	Navigation

	Chapter 4: Runtime
	Outbound communications
	Configuration
	Connection
	Exchange
	Request/Response mode
	Query mode
	Schemas

	Inbound communications
	Configuration
	Connection
	Exchange
	Schemas

	Chapter 5: Deployment
	Chapter 6: Configuration
	Description file
	Icon file
	Configuration file
	Wizard file
	JVM configuration file

	Chapter 7: Packaging
	Java archive

	Chapter 8: Extension
	Interface com.hp.ov.cit.connector.spi.ContainerContext
	Event listener
	Access to the scenario path

	com.hp.ov.cit.connector.spi.designtime.ObjectTypeProviderEx class

	Chapter 9: Use
	Authorization certificate
	Generate a key

	Appendix A: Wizard file
	General structure
	Wizard element
	Include element
	String inclusion type
	Wizard inclusion type

	Page element
	Property element
	Control element
	Bind attribute
	Password management

	Linebreak and separator elements
	Transition element
	Script attribute
	Included attribute
	Functions
	GetValue function
	Dump function
	EspaceCommas function
	File function

	Appendix B: Configuration file
	Configuration element
	Property element
	Definition element
	Export element
	Class element
	Property types

	Appendix C: JVM configuration file
	jvmConfiguration element
	jarLocation element
	Jars element
	Jar element

	jvmOptions element
	Import element

	Appendix D: Database description file
	File structure
	Properties
	Example
	Additional information
	Multiple descriptions
	Connector hierarchy

	Appendix E: Java code
	JavaBeans
	Supported types
	Validation

	Logging
	Log4J support
	JDK logging support

	Internationalization
	Example

	Send documentation feedback

