
1

Unified Mediation Bus
Adapter Development Guide
Version 1.1
Edition: 1.0

2

Notices

Legal notice

© Copyright 2016 Hewlett Packard Enterprise Development LP

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR

12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HPE products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be

construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions

contained herein.

Printed in the US

Warranty

The information contained herein is subject to change without notice. The only warranties for HP products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be

construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions

contained herein.

Trademarks

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.
Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the UK and other
countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.
Neo4j is a trademark of Neo Technology.

Hazelcast™ is a trademark of Hazelcast Inc.
Apache Kafka™ is a trademark of the Apache Software Foundation.

Apache ZooKeeper™ is a trademark of the Apache Software Foundation.

3

Table of Contents
Notices 2

Preface 8
About this guide ... 8
Intended Audience ... 8
Software Versions.. 8
Typographical Conventions... 8
Associated Documents... 9
Support .. 9

Chapter 1 Introduction 10
1.1 Overview ... 10

1.1.1 The Mediation Common Registry .. 11
1.1.2 The Message Broker ... 13

1.2 Unified Mediation Bus principles .. 13
1.2.1 The Unified Mediation Bus Server (broker) .. 13
1.2.2 The Unified Mediation Bus Adapters ... 14
1.2.3 The Unified Mediation Bus Adapter Services .. 17
1.2.4 The Unified Mediation Bus messages ...25

Chapter 2 Getting started with Unified Mediation Bus Development Kit 28
2.1 Installing the Unified Mediation Bus Adapter Development Kit .. 28
2.2 Adapter Development Pre-requisites ... 28

2.2.1 Eclipse IDE .. 28
2.2.2 Post-install Environment Setup ... 29
2.2.3 Unified Mediation Bus Eclipse plug-in installation instructions .. 29

Chapter 3 Unified Mediation Bus Adapters development 32
3.1 Creating a new UMB Adapter .. 32

3.1.1 Creating a UMB Adapter project within Eclipse.. 32
3.1.2 Anatomy of the created project .. 35
3.1.3 Validation of the created project .. 37

3.2 Customizing the created UMB Adapter project.. 38
3.2.1 Customizing the Adapter Name... 39
3.2.2 Adding producer flow services ... 39
3.2.3 Adding action services ... 45
3.2.4 Adding consumer flows ... 49

3.3 Generating the UMB Adapter kit ...55
3.4 Installing and starting the UMB Adapter ... 57

Chapter 4 Advanced development topics 58
4.1 Creating a new UMB Event Definition Project .. 58

4.1.1 Anatomy of the created project ... 61
4.1.2 Validation of the created project... 63

4.2 Customizing the serialization Class .. 65

4

4.3 Lifecycle and thread-safety of user-provided classes .. 66
4.3.1 Lifecycle and thread-safety of actionClass objects ... 68
4.3.2 Lifecycle and thread-safety of collectorClass and serializerClass producer flow objects 70
4.3.3 Lifecycle and thread-safety of messageConsumerClass and serializerClass consumer flow objects72

4.4 Retrieving information on Adapters in the solution/cluster .. 73
4.4.1 Getting the list of known Adapters .. 73
4.4.2 Getting notifications on Adapters .. 73

4.5 Multiple Kafka/ZooKeeper clusters configuration ... 75
4.6 Make an adapter compliant with the ‘umb’ command-line administration tool .. 76
4.7 Specifying a custom Partitioner .. 77
4.8 Using the manual Commit feature .. 78

Chapter 5 Unified Mediation Bus sample Adapters 81
5.1 Camel Adapter .. 81

5.1.1 Configuration .. 82
5.1.2 How does it work? ... 86
5.1.3 JUnit tests .. 89

5.2 File Adapter ... 90
5.2.1 Configuration ... 91
5.2.2 How does it work? .. 94
5.2.3 JUnit tests ... 96

5.3 Log Adapter .. 96
5.3.1 Configuration .. 97
5.3.2 How does it work? .. 99

Appendix A 101
5.4 Maven pom.xml .. 101

Chapter 6 Glossary 102

5

Figures
Figure 1 - Unified Mediation Bus architecture overview ... 11
Figure 2 - Mediation Common Registry overview ... 12
Figure 3 - Unified Mediation Bus Action Mechanism overview ... 12
Figure 4 - Unified Mediation Bus flows overview .. 13
Figure 5 - Action execution without load balancing... 15
Figure 6 - Action execution with load balancing .. 15
Figure 7 - Example of “auto” consumer flows in the AdapterConfiguration.xml file .. 22
Figure 8 - Example of autoNonUmbConsumer flow definition in the AdapterConfiguration.xml file... 23
Figure 9 - Example of an Action Service Definition .. 23
Figure 10 - Unified Mediation Bus plug-in: Installation step 1.. 30
Figure 11 - Unified Mediation Bus Eclipse plug-in: Installation step 2 ... 30
Figure 12 - Unified Mediation Bus Eclipse plug-in: Installation step 3 ... 31
Figure 13 - UMB project creation wizard Step1 ... 34
Figure 14 – New UMB Adapter project .. 35
Figure 15 - Folder structure of the new UMB Adapter project .. 36
Figure 16 - Adapter.java Java class of the new UMB Adapter project ... 37
Figure 17 - AdapterTest.java JUnit test class of the new UMB Adapter project ... 38
Figure 18 - Customizing the Adapter Name ... 39
Figure 19 - Example of a flow in the AdapterConfiguration.xml file ... 40
Figure 20 - Creating a “Collector” Java class – Step 1 .. 40
Figure 21 - Creating a "Collector" Java Class Step 2 .. 41
Figure 22 - Creating a “Collector” Java class – Step 3 ... 42
Figure 23 - Example of an action in the AdapterConfiguration.xml file .. 45
Figure 24 - Creating an “Action” Java class – Step 1 .. 46
Figure 25 - Creating an “Action” Java class – Step 2 .. 46
Figure 26 - Creating an “Action” Java class – Step 3 .. 47
Figure 27 - Java code to send action requests .. 48
Figure 28 - Java code to create consumer flows ... 50
Figure 29 - Creating a “MessageConsumer” Java class – Step 1... 51
Figure 30 - Creating a “MessageConsumer” Java class – Step 2 ...52
Figure 31 - Creating a “MessageConsumer” Java class – Step 3 ... 53
Figure 32 - Consumer Flow status diagram... 54
Figure 33 - Building the kit of your Adapter ...55
Figure 34 – Location of the kit of your Adapter .. 56
Figure 35 - UMB Event Definition project creation wizard Step1 ... 60
Figure 36 – New UMB Event Definition project ... 61
Figure 37 - Folder structure of the new UMB Event Definition project ... 62
Figure 38 – MyClassName.java Java class of the UMB Event Definition project created in Figure 35 63
Figure 39 - Event DefinitionMarshallingTest.java JUnit test class of the new UMB Event Definition project 64
Figure 40 - Example of an actionClass attribute .. 67
Figure 41 - Example of a collectorClass and a serializerClass attribute .. 67
Figure 42 - Example of a messageConsumerClass and a serializerClass attribute .. 68

6

Figure 43 - Lifecycle of actionClass objects ... 69
Figure 44 - Lifecycle of collectorClass and serializerClass producer flow objects .. 70
Figure 45 - Camel adapter overview ... 82
Figure 46 - The Camel Adapter’s AdapterConfiguration.xml file .. 83
Figure 47 - The Camel Adapter’s camel-context.xml file ... 84
Figure 48 - “camel-actions” route in the camel-context.xml file .. 85
Figure 49 - “camel-collectionactions” route in the camel-context.xml file ... 86
Figure 50 - “camel-collection” route in the camel-context.xml file ... 86
Figure 51 - Processing Actions in the Camel Adapter ... 87
Figure 52 - Processing Collection Flow Actions in the Camel Adapter .. 88
Figure 53 - Processing Collections in the Camel Adapter ... 89
Figure 54 - File adapter overview .. 91
Figure 55 - The File Adapter’s AdapterConfiguration.xml file .. 92
Figure 56 - File Adapter’s “alarms.xml” data file... 93
Figure 57 - File Adapter’s “temperatures.csv” data file .. 94
Figure 58 - File Adapter’s alarms collections ... 95
Figure 59 - File Adapter’s temperatures collections ... 95
Figure 60 - Log adapter overview ... 97
Figure 61 - The Log Adapter’s AdapterConfiguration.xml file ... 98
Figure 62 - Log Adapter consuming alarms/events collections ... 100

7

Tables
Table 1 - Software versions .. 8
Table 2 - Eclipse IDE Prerequisites for UMB Adapter Development Kit ... 28

8

Preface

About this guide
This guide provides an overview of the Unified Mediation Bus product and describes how to create Mediation Adapters to

connect Alarm or Event provider and consumer applications.

Product Name: Unified Mediation Bus Adapter Development Toolkit

Product Version: V1.1

Intended Audience
Here are some recommendations based on possible reader profiles:

• Solution Developers
• Software Development Engineers

Software Versions
The software versions referred to in this document are as follows:

Product Version Supported Operating systems

Unified Mediation Bus Adapter Development

Toolkit V1.1
• Windows XP / Vista

• Windows Server 2007

• Windows 7
• Red Hat Enterprise Linux Server release 6.x & 7.x

Table 1 - Software versions

Typographical Conventions
Courier Font:

• Source code and examples of file contents.

• Commands that you enter on the screen.

• Pathnames
• Keyboard key names

Italic Text:

• Filenames, programs and parameters.
• The names of other documents referenced in this manual.

Bold Text:

9

• To introduce new terms and to emphasize important words.

Associated Documents
The following documents contain useful reference information:

 [R1] HP Unified Mediation Bus– Installation and Configuration Guide

Support
Please visit our HP Software Support Online Web site at softwaresupport.hpe.com for contact information, and details

about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

• Downloadable documentation.

• Troubleshooting information.

• Patches and updates.

• Problem reporting.

• Training information.
• Support program information.

https://softwaresupport.hpe.com/

10

Chapter 1
Introduction

This guide gives an overview of the Unified Mediation Bus and explains how to create a new mediation Adapter project
with the provided Unified Mediation Bus Adapter Development Toolkit.

1.1 Overview
Unified Mediation Bus allows several applications to exchange Events (and by extension Alarms) with each other. It also
provides features for executing actions remotely: alarm operations (creation, grouping, deletion etc.), Trouble ticket

operations, command executions (shell scripts, java, etc.)

The Unified Mediation Bus product comes in replacement of the legacy “NGOSS Open Mediation” product with the aim to

provide:

• Better performance

• Better robustness

• Easier deployment
• Easier Adapter Development

Unified Mediation Bus is constructed around two main technologies:

• A common registry, and remote execution service implemented with the Hazelcast® technology. Hazelcast provides
both:

o a common registry feature that centralizes configuration, status and monitoring information on all UMB Adapters

that are part of the overall UMB solution
o a distributed executor service feature that provides a framework for executing actions on UMB Adapters across

the whole UMB solution

• A message broker based on the Kafka Technology. Apache Kafka / Apache ZooKeeper provide a high-performance,
high-availability, reliable framework for producing and consuming collections of alarms or events across the whole
UMB solution

A typical UMB solution is composed of (see figure below):

• A UMB Server product installation, usually installed on one or more dedicated UMB Server host(s), that contains
Apache Kafka / Apache ZooKeeper

• Several UMB Adapter1 product installations (one for each Application connected to the UMB solution). Each
application has its own dedicated UMB Adapter, usually installed on the same host as the application itself.

1 UMB Adapters are developed using the UMB Adapter Development Kit. Information on how to install the UMB Adapter

Development Kit is provided in the [R1] HP Unified Mediation Bus– Installation and
Configuration Guide

11

Figure 1 - Unified Mediation Bus architecture overview

The above figure shows UMB interconnecting 2 separate applications: Application A and Application B.

In the figure, Hazelcast appears as a centralized component for simplification’s sake: Hazelcast is in fact distributed across

both Application A and Application B UMB Adapters. Each of the UMB Adapters is a Hazelcast cluster member. Hazelcast

cluster members are interconnected directly, without any centralized component.

Any UMB Adapter can act as an action service provider and/or consumer:

• It provides action services for the Application that it is associated with (in our case Application A or Application B).
UMB Adapters act as proxies to execute actions on Applications that they are associated with.

• It consumes action services from other UMB Adapters

On the other hand, Apache Kafka / Apache ZooKeeper are indeed a centralized component. Both Application A and

Application B UMB Adapters connect to the same central component. Apache ZooKeeper provides a high performance
coordination service for the “cluster” of Apache Kafka brokers. Apache ZooKeeper acts as a front-end to the Apache

Kafka brokers. The Apache Kafka brokers provide the messaging service: they store collections of alarms or events (sent

by Kafka producers) as Topics. Kafka consumers then retrieve the collections of alarms or events.

Any UMB Adapter can act as Kafka producer and/or Kafka consumer:

• It provides collection services for the Application that it is associated with (in our case Application A or Application B).

UMB Adapters act as proxies to collect alarms or events from Applications that they are associated with.
• It consumes collection services from other UMB Adapters

1.1.1 The Mediation Common Registry
The Mediation Common Registry is a common (shared grid in-memory) storage implemented using the Hazelcast®
Technology that allows all mediations contributors (the Adapters) to register information.

This information identifies adapters that are part of the mediation solution but also gives a description of the services
they provide. The services are of two types:

• Flow services
• Action services

12

Using the Common Registry information, any adapter is able to know about all the other adapters and also get their

status or the definition (description) of the services they offer.

At Adapter startup time the local Adapter configuration is automatically made available by the Adapter Framework to the

Common Registry. This prevents any complex configuration on each side when one adapter wants to communicate with
another one.

The Common Registry can be schematically represented as follows:

Figure 2 - Mediation Common Registry overview

1.1.1.1 Using Hazelcast® for Actions implementation
Hazelcast® provides an efficient distributed executor service to execute Callable and Runnable instances on the remote
cluster members. The Unified Mediation Bus uses this feature to implement Actions. Doing this way there is no additional

configuration to perform. Any Mediation member (Adapter) can potentially be an action executor.

Action services are defined in the Adapter Configuration file and made available in the Common Registry.

Figure 3 - Unified Mediation Bus Action Mechanism overview

http://hazelcast.com/docs/2.1/manual/multi_html/ch09.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/Callable.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Runnable.html

13

1.1.2 The Message Broker
The Unified Mediation Bus message exchange is based on the Apache Kafka technology.

The Kafka message broker is one of the fastest message brokers. It offers off the shelf message persistency (persistency

duration is configurable). It has a strong ordering guarantee and offers High Availability (via redundancy and through the
use of ZooKeeper).

The Unified Mediation Bus allows defining Event Collection Flows between an Event producer and an Event Consumer.

The collection flows are of two types:

• Static flows
 One Producer for several possible Consumers. Each of the consumers which don’t belong to the same group will

receive a copy of the produced events

 Can produce events even if no Consumer is waiting for them. Events are persisted in the Kafka log system for a
configurable amount of time

 One Kafka Topic per static flow

• Dynamic flows
 One Producer for One Consumer.

 Production is done only upon Consumer request (create Flow request). The producer must be up and running

for the dynamic flow to be established successfully.
 One Kafka Topic per consumer / producer pair

Figure 4 - Unified Mediation Bus flows overview

1.2 Unified Mediation Bus principles

1.2.1 The Unified Mediation Bus Server (broker)
The Unified Mediation Bus Server or broker as mentioned above is implemented with Kafka. To be more precise it is in
fact the ZooKeeper / Kafka association that implements the broker.

A simple Unified Mediation Bus Server configuration can be made with one ZooKeeper instance and one Kafka instance
on a single Linux box.

14

However, for a production environment, a highly available Unified Mediation Bus Server should be redundant. As such, it

must be made of at least two Kafka servers and three Zookeeper instances.

The Unified Mediation Bus Server kit is delivered for Linux Only. The Zookeeper and Kafka servers are installed as Linux

services.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for

details on ZooKeeper and Kafka configuration and administration.

1.2.2 The Unified Mediation Bus Adapters
The Unified Mediation Bus Adapters are key components of the mediation.

• On the Provider side, they are defining and implementing the Flows and Action services.
• On the Consumer side, they are implementing the action requests, and flow consumers.

Of course, an Adapter can be both a service provider and a service consumer at the same time meaning that it can

provide services to other adapters while consuming services from another adapter.

A mediation Adapter can be of two types:

• Embedded

When embedded, the Adapter components (All the Java classes representing the adapter) are running in the same

JVM than the application using the Adapter. This allows for a more efficient communication between the application
and the adapter components (procedure calls) and an easier monitoring because the adapter has the same life time

that the application.

A typical example of an embedded Adapter is the UCA-EBC Adapter which shares the same process as UCA-EBC.

Applications implementing an embedded Adapter must provide the Adapter configuration files on their Java class
path.

• Standalone

A Standalone Adapter runs in its own JVM. It must implement a main() method and provide its own configuration

files.

A standalone Adapter must implement a communication technology to communicate with the Application it serves.

The communication technology choice it usually driven by the application capabilities (Web services, specific API,
sockets etc.…)

A standalone Adapter is usually used when there is no way to integrate the Adapter classes into an existing
application (3rd party application, or non-Java application)

A typical example of a Standalone Adapter is the TeMIP Adapter that communicates with TeMIP for collecting alarms
and executing actions using the TeMIP Web Services (TWS) component.

An Adapter is identified by its name in the AdapterConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="AdapterName" actionGroup="GroupName" version="1.0"
xmlns="http://hp.com/umb/config">
</adapter>

A <adapter>…</adapter> XML element can have the following optional attributes:

• name

15

Each Adapter part of the same mediation solution (bound to the same Common Registry) must have a distinct name.

An attempt to start an Adapter with the same name as another adapter already bound to the Common Registry will
result in an error preventing the start of the Adapter.

• actionGroup

The Adapter’s actionGroup attribute is optional and used for horizontal scaling of actions. Adapter action group

names should be different than adapter names, throughout your whole UMB solution. If several adapters in the UMB

solutions share the same action group, one can request execution of actions on the action group itself. This is done
by specifying an action group (instead of an adapter name) as the target of the action. The action will then be

executed on a randomly selected adapter from the action group. This provides load-balancing among adapters that

can perform identical tasks.

The following figure illustrates action execution when load balancing is not used (i.e. the target of each action is a

specific adapter):

Figure 5 - Action execution without load balancing

In the figure above, load balancing of actions is not used and all actions are executed by the adapter that is

specifically targeted.

On the other hand, the following figure illustrates action execution with load balancing (i.e. the target of each action is

an action group instead of a specific adapter):

Figure 6 - Action execution with load balancing

16

In the figure above, load balancing of actions is used and on average 50% of actions are executed on each adapter

part of the targeted action group.

• flowGroup

The flowGroup labels the adapter as belonging to a consumer group.

The flowGroup has a meaning only for Static flows for which we can have several consumers for one producer. Each

message published to a StaticFlow is delivered to one instance within each subscribing consumer group.

If all the consumer instances have different consumer groups, then this works like publish-subscribe and all

messages are broadcast to all consumers.

Here the two consumer adapters belong to different flow groups and they both receive the same flow of events.

If all the consumer instances have the same consumer group, then this works just like a traditional queue balancing
load over the consumers balancing the topics partitions between consumers.

For UMB flows that have single one partition (the default), this means that only one of the flow consumer belonging
to the same flow group will get the messages:

In such configuration the second adapter is just on hold. If the adapter receiving the events stops or loses the
connection with the Kafka server, then this second adapter will get the messages that were not previously collected

by the first adapter.

In the case the flow is created with several partitions, the partitions will be balanced over the consumers. Each

consumer will then receive messages from the partitions that have been allocated to it. If one of the consumer stops,

the partitions allocated to it will be reallocated to the other available consumers.

17

1.2.3 The Unified Mediation Bus Adapter Services
A Unified Mediation Bus Adapter can implement two types of services:

• Flow Services
• Action Services

1.2.3.1 Flow Services
Flow services are defined in the <flowServices> section of the AdapterConfiguration.xml file.

A Flow definition specifies a collection channel provided by this Adapter.

Example of Flow Service definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="FileAdapter" version="1.0" xmlns="http://hp.com/umb/config">
 <flowServices>
 <flow name="AlarmFileStaticFlow" type="Static"
 collectorClass="com.hp.umb.adapter.file.FileCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 <flow name="AlarmFileDynamicFlow" type="Dynamic"
 collectorClass="com.hp.umb.adapter.file.FileCollector">
 <parameters>
 <parameter key="fileName" defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 <flow name="TemperaturesStaticFlow" type="Static"

collectorClass="com.hp.umb.adapter.file.TemperaturesCollector">
 <parameters>
 <parameter key="fileName"
defaultValue="data/temperatures.csv"/>
 </parameters>
 </flow>
 <flow name="TemperaturesDynamicFlow" type="Dynamic"

collectorClass="com.hp.umb.adapter.file.TemperaturesCollector">
 <parameters>
 <parameter key="fileName"
defaultValue="data/temperatures.csv"/>
 </parameters>
 </flow>
 </flowServices>
</adapter>

A Flow is identified by a ‘name’ attribute and must specify a ‘collectorClass’ attribute (i.e. the class that collects

information from the application and produces the messages to the UMB flow)

Flows can be of two different types: ‘Static’ or ‘Dynamic’.

• Static flows

Static flows are automatically started when the Adapter is started (unless the autoStarted attribute is set to

‘false’). Message production starts even if there is no requester. The messages are sent to Kafka which stores

them for a configurable period of time.

18

Several consumers can consume the same static production flow. Each of the consumers will receive all the produced

messages (at the condition that they do not belong to the same flowGroup). A Static flow can be seen as message
broadcasting between the producer Adapter and multiple consumer Adapters.

The name of the Kafka topic for a static Flow follows a specific pattern (without the quotes):

“producer Adapter name”-“flow name”

From the example above, the topic name for the flow AlarmFileStaticFlow will be:

FileAdapter-AlarmFileStaticFlow

• Dynamic flows

Dynamic Flows are started upon flow consumer request. A Dynamic Flow can be seen as a peer to peer connection

between a consumer Adapter and the producer Adapter.

The Kafka topic name for a Dynamic Flow is constructed as follows (without the quotes):

“consumer Adapter name"-"requester Identifier"-"producer Adapter name“-
“flow name”

As an example, if a UCA-EBC value pack named ‘vp1’ requests the creation of a dynamic flow named

AlarmFileDynamicFlow, the Kafka topic name will be:

UCA-EBC-vp1-FileAdapter-AlarmFileDynamicFlow

Flow services are defined by the <flowServices>…</flowServices> XML element.

Each individual flow service is defined by a <flow>…</flow> XML element inside the

<flowServices>…</flowServices> XML element. There can be as many flow services defined as needed.

A <flow>…</flow> XML element can have the following attributes:

Mandatory attributes:

• collectorClass: The full name of Java class that implements the message production. There is no default value. The
‘collectorClass’ attribute is mandatory. The collectorClass Java class has to extend the

com.hp.umb.adapter.collector.BaseCollector class and implement the

com.hp.umb.adapter.collector.CollectorInterface Java interface.

• name: The name of the flow. This name will be referenced by UMB Adapters wishing to consume this flow.

• type: The type of the flow: either “Static” or “Dynamic” (see the differences between static and dynamic flows above).
There is no default value.

Optional attributes

• autoStarted (optional default true): This is a boolean attribute. This attribute is applicable only if the flow type is
“Static”. It indicates that the UMB Framework should start this flow automatically at adapter start.

If not started automatically, the flow can be started later-on by using the ‘umb’ command.

• broker: this is the name of the ‘broker’ (Kafka server instance) to which the flow is published. This attribute’s value

must be added in the adapter.properties file.

For example: for a configuration like the following <flow … broker=”broker1”></flow>, the

adapter.properties file must be updated accordingly by adding the following lines:
broker1.producer.bootstrap.servers=brokerhost:9092

19

broker1.zookeeper.connect=brokerhost:2181
[…]

• lastEventReceivedFirstDuringResynchronization (optional default false): This is a boolean attribute. It indicates
whether collection events/alarms are received in chronological order (in which case the flag has to be set to false) or

not (flag set to true) during resynchronization. By default, if this attribute is not present, the flag is assumed to be

false, which means that events/alarms are received in chronological order during resynchronization.
• logCleanupPolicy (optional, default value = ‘delete’): Specifies the cleanup policy for the flow: ‘delete’ or

‘compact’. When the ‘delete’ policy is chosen (the default), messages in the topics are deleted after the

‘retentionMinutes’ time as elapsed (See below for more information on the ‘retentionMinutes’

attribute). When the ‘compact’ policy is chosen, only the last instance of messages having the same identifier is

kept in the topic. (See Apache Kafka log compaction policy for details).

• monitoringRestartPeriod (optional. Unit: milliseconds default 30000): The monitoring restart period in
milliseconds. This is the time between two re-start attempts in case of flow disconnection. Default value is 30000
milliseconds, i.e. 30 seconds.

• numberOfPartitions (optional default 1): Creates the topic with the specified number of partitions.
Note: refer to section “4.7 Specifying a custom Partitioner” in this document for instructions on how to create and use

a partitioner class.

NOTE:
It is a known limitation that the numberOfPartitions attribute only works on new Topics. Existing topics will

ignore the numberOfPartitions attribute.

• replicationFactor (optional default 1): Defines the number of servers where the topic will be replicated. Replication
allows automatic failover in case of failure of one or more servers in the cluster. Default value is 1 meaning no

replication.

• retentionMinutes (optional): sets the maximum retention time in minutes before cleaning old segments of the log.

After the retention time has elapsed, if the logCleanupPolicy (see above for more information on the

logCleanupPolicy attribute) is set to ‘delete’ the elapsed logs are deleted. If the logCleanupPolicy is set to

‘compact’, the logs are compacted keeping the last occurrence of events having the same identifier. Default value is

60 minutes

serializerClass (optional): The full name of the Java class that serializes the flow messages. When no value is

specified, the default serializer class (the

com.hp.umb.adapter.internal.utilities.JavaClassSerializer class which uses the

standard Java class serialization mechanism) is used. A custom serialization class must implement the following

interfaces:

org.apache.kafka.common.serialization.Serializer<Object>
org.apache.kafka.common.serialization.Deserializer<Object>

• topicName (optional): Explicitly sets the name of the topic that will be used by a static flow. The topic will be
created only if it does not already exist, otherwise the existing one will be used.

Each Flow can define a list of parameters using a <parameters>…</parameters> XML element inside a

<flow>…</flow> XML element.

1.2.3.1.1 Flow Parameters

The parameters are a list of configuration values (key/value pairs) that can be specified by the flow creation requester.

A set of attribute help specifying parameters properties. Such attributes are:

20

• key: The ‘key’ attribute specifies the Parameter name. It is mandatory to specify a value for the ‘key’ attribute.

• defaultValue: this attribute gives the Parameter a default value. In case this parameter is not specified by the flow
creation requester, the flow service provider will set this parameter with this default Value at flow creation time.

• overridable: the ‘overridable’ attribute is a boolean attribute. When set to ‘false’, the flow creation requester cannot
override the parameter. When omitted the Parameter remains overridable (similar to overridable=’true’). This is

particularly useful when the flow service developer wants to protect the parameter definition.

• occurs: the ‘occurs’ attribute can take the value ‘once’ or ‘many’. By default, the same parameter can only be specified

once by the requester. If the occurs=’many’ attribute is not set, specifying the same parameter more than once will
lead to a flow creation failure.

• mandatory: the ‘mandatory’ attribute indicates that this parameter must be specified by the requester. If not
specified, the flow creation execution will return a failure.

1.2.3.2 Defining Flow Service Consumers by configuration
If the AdapterConfiguration.xml file allows for the definition of flow services (production side), it also allows

for the definition of flow consumers that are automatically created when the adapter is started.

Consumer flows that start automatically are defined by adding the <autoConsumers>…</autoConsumers>

XML element inside the enclosing <adapter>…</adapter> root XML element.

Each “auto” consumer flow is defined by adding a <autoConsumer>…</autoConsumer> XML element inside

the enclosing <autoConsumers>…</autoConsumers> XML element.

Each <autoConsumer>…</autoConsumer> XML element must define all of the following mandatory attributes:

• consumerIdentifier: an identifier of the consumer of the flow

• targetAdapterName: this is the name of the Adapter producing the collection flow to consume from

• targetFlowName: this is the name of the collection flow to consume from (as per the definition of the producer
collection flow on the target Adapter)

• messageConsumerClass: this is the name of the Java class (including the Java package name) implementing the
flow consumer.

For example: com.example.MyMessageConsumer. This class must extend the

com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class and has to implement the
com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface<K extends
Event> Java interface (K being the type of message object to consume. K has to extend both the

com.hp.uca.expert.event.Event and java.io.Serializable interfaces).

Please refer to section “3.2.4.3 Defining the flow message consumer class” for a full description of

how to define a Message Consumer object.

The following optional attributes can be defined:

• messageConsumerTimeout (in milliseconds default 1000): this attribute is applicable only if the specified
messageConsumerClass implements the
com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface<K extends
Event>. It indicates the time in milliseconds to wait while no message arrives before returning the actual message

set.

• messageConsumerMaxSetSize: this attribute is applicable only if the specified messageConsumerClass implements

the com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface<K
extends Event>. It indicates the maximum size of the message set to return.

• manualCommit (optional default false): Specifies whether or not the commit of consumer offsets is done
automatically by the UMB framework or left to the developer. If set to true, the default automatic offsets commit is

disabled and it is the responsibility of the adapter developer to execute the commit through the methods of the

BaseConsumerFlow class:

21

o commit(message) – calling this method commits the partition and offset of the message given as parameter.

o commitAllPartitions() – commit all consumed messages for all partitions

Note: this feature is only available when the flow Consumer messageConsumerClass implements the
com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface<K extends
Event> interface.

• monitored (Boolean default true): a boolean flag to indicate whether the consumer flow is monitored by the UMB
Framework (in which case the flag has to be set to true) or not (flag set to false in this case). By default, if this

attribute is not present, the flag is assumed to be true, which means that the consumer flow is monitored. Monitored
flows are attempted to be restarted automatically by the UMB Framework is they fail.

• monitoringRestartPeriod (in milliseconds default 30000): in case of Consumer Flow start failure, if the Flow is
monitored (the default), this represents the restart attempt period.

• readOffset: this parameter defines the offset from which the consumer consumes messages in the Kafka server. It
can be set to 'earliest' or ‘latest’. The parameter is optional. When it is not set, the value ‘earliest’ is used.

When the attribute readOffset is set to ‘earliest’, the consumer consumes messages from the very first ones i.e. all
messages that the producer has pushed into Kafka.

When the attribute readOffset is set to ‘latest’, the consumer consumes only messages starting from the latest ones
i.e. only messages which the producer has sent to Kafka after the start of the consumer.

• serializerClass: this parameter can specify a custom serialization Class. The serialization class is the class in charge of
serializing (de-serializing) the Event message into (and from) a byte array. The default serialization class is the UMB

framework provided com.hp.umb.adapter.internal.utilities.JavaClassSerializer

class which uses the standard java class serialization mechanism.

A custom serialization class must implement the following legacy interfaces:

kafka.serializer.Encoder.Encoder<Object>
kafka.serializer.Decoder.Decoder<Object>

or the new interfaces:

org.apache.kafka.common.serialization.Serializer<Object>
org.apache.kafka.common.serialization.Deserializer<Object>

The default JavaClassSerializer implements all of them, allowing the use of old and new custom

serializers.

Each <autoConsumer>…</autoConsumer> XML element can also define parameters associated with the flow

by adding the optional <flowParameters>…</flowParameters> XML element.

Inside the <flowParameters>…</flowParameters> XML element, each parameter is defined by a

<flowParameter>…</flowParameter> XML element. Each parameter must define all of the following

mandatory attributes:

• key: this is the name of the flow parameter
• value: this is the value of the flow parameter

The parameters defined in the <flowParameters>…</flowParameters> XML element will be used

(alongside the properties of the flow defined in the target Adapter’s AdapterConfiguration.xml file) when the

flow is created.

Below is an example of an AdapterConfiguration.xml file that defines two “automatic” consumer flows:

22

Figure 7 - Example of “auto” consumer flows in the AdapterConfiguration.xml file

You can find example of consumer flows that start automatically in the Log Adapter described in this document. For more
information on the Log Adapter, please refer to chapter 5.3 “Log Adapter”.

1.2.3.2.1 Defining Non-UMB consumer flows
The UMB framework offers the possibility to consume messages from Kafka topics where messages are not produced by

an UMB adapter, but by any other Kafka producer.

In such a case, there is no Adapter providing the Flow service. The message source is therefore identified by the Topic

name itself.

Such consumers can be defined in the <autoConsumer> section by using the <autoNonUMBConsumer … /> tag.

Each < autoNonUMBConsumer >…</ autoNonUMBConsumer > XML element must define all of the following

mandatory attributes:

• consumerIdentifier: an identifier of the consumer of the flow

• topicName: this is the name of the kafka Topic from which the messages are retrieved.

• messageConsumerClass: this is the name of the Java class (including the Java package name) implementing the

flow consumer. (Same definition as for autoConsumers).

The optional attributes are the same as for the standard autoConsumers. No parameters can be defined.

 NOTE: When using non UMB flows, a specific attention must be paid to the deserialization process.

The format of the message pushed by the Kafka (nonUMB) producer is by definition application specific.

The nonUMBConsumer must therefore provide a Java Class that will be able to de-serialize the messages
and turn them into Java objects.

Such de-serializer is specified by the serializerClass attribute.

Below is an example of an AdapterConfiguration.xml file that defines an “autoNonUMBConsumer” consumer:

23

Figure 8 - Example of autoNonUmbConsumer flow definition in the AdapterConfiguration.xml file

1.2.3.3 Action Services
Action services are defined in the <actionServices> section of the AdapterConfiguration.xml file.

An action definition specifies an action that can be executed by the Adapter.

Example of an Action Service definition:

Figure 9 - Example of an Action Service Definition

Action services are defined by the <actionServices>…</actionServices> XML element.

Each individual action service is defined by an <action>…</action> XML element inside the

<actionServices>…</actionServices> XML element. There can be as many action services defined as

needed.

24

An action service (or action) is identified by a ‘name’ (i.e. the identifier for the action) and an ‘actionClass’ (i.e. the Java

class that will execute the action).

An <action>…</action> XML element can have the following attributes:

• name: The name of the action. This name will be referenced by UMB Adapters wishing to execute this action. It is
mandatory to specify a value for the ‘name’ attribute.

• actionClass: The full name of the Java class that implements the action. It is mandatory to specify a value for the
‘actionClass’ attribute.

• inherits: The name of the action that the current action inherits from. This attribute is optional. If a child action
inherits from a parent action, all the parameters defined in the parent action are implicitly also defined for the child

action (See chapter 1.2.3.3.1 “Action Parameters” for more information on action parameters.).

For example, it could be useful to use action inheritance if some parameters are common to several actions.

It is optional to specify a value for the ‘inherits’ attribute.

Each Action can define a list of parameters using a <parameters>…</parameters> XML element inside an

<action>…</action> XML element.

1.2.3.3.1 Action Parameters
The parameters are a list of configuration values (key/value pairs) that can be specified by the action service requester at

the time of execution.

Each parameter is defined by a <parameter>…</parameter> XML element inside the

<parameters>…</parameters> XML element. There can be as many parameters defined as needed.

A <parameter>…</parameter> XML element can have the following attributes:

• key: The ‘key’ attribute specifies the Parameter name. It is mandatory to specify a value for the ‘key’ attribute.

• defaultValue (optional): the ‘defaultValue’ attribute gives the Parameter a default value. In case this parameter is
not specified by the requester, the default value is used.

In the example above, the ‘Command’ Parameter of the ‘PingAction’ action is set with the defaultValue of ‘/bin/ping’

which is the operating system command to execute.

Doing so, the action requester does not have to specify this argument each time the ‘PingAction’ action is called.

• overridable (optional): the ‘overridable’ attribute is a boolean attribute. When set to ‘false’, the Action requester
cannot override the parameter. When omitted the Parameter remains overridable (similar to overridable=’true’).

This is particularly useful when the Action service developer wants to protect the parameter definition.

Again in the example above, giving the possibility for the requester to override the ‘Command’ parameter would have

no sense for an action called ‘PingAction’.

• occurs (optional): the ‘occurs’ attribute can take the value ‘once’ or ‘many’. By default, the same parameter can only
be specified once by the requester. If the occurs=’many’ attribute is not set, specifying the same parameter more than

once will lead to an action failure.

• mandatory (optional): the ‘mandatory’ attribute indicates this parameter must be specified by the requester. By
default, parameters are not mandatory. If a mandatory parameter is not set for an action it will fail.

With the PingAction action provided by the Exec Adapter, the ‘Argument’ parameter is mandatory and must be set

by the requester with the IP Address of the host to ping or some other ping command-line option.

25

It is optional to specify a value for the ‘mandatory’ attribute.

• listValues (optional): the ‘listValues’ attribute indicates that this parameter can only have a value that is part of this
comma-separated list. By default, all values are authorized.

1.2.4 The Unified Mediation Bus messages
Unified Mediation Bus messages can be any Java Objects with the following restrictions:

1. The message class must extend the com.hp.uca.expert.event.DefaultEvent Class.

2. The message class must implement the java.io.Serializable interface.

The Unified Mediation Bus framework uses the standard Java Serialization for serializing the message Objects at the time

they are pushed to the Kafka server. In the same manner, the Objects are de-serialized when read from the Kafka server
on the consumer side.

Note that the message Serialization/de-Serialization class can be changed in the Flow service definition.

1.2.4.1 Logging and testing considerations (UCA-EBC)
During the UCA-EBC value pack development phase, it may be very useful to collect samples of collected messages in

order to replay them, or use them in the context of JUnit tests. This can be done by activating the UCA-EBC collector

logging feature that will dump the collected messages using XML marshalling.

Refer to: UCA-EBC Admin, Configuration and Troubleshooting guide section “Collector Logging” for full explanation on

how to activate UCA Collector logging.

For this reason, it is recommended that the Unified Mediation Bus message classes offer XML marshalling/un-marshalling

capabilities based on JAXB.

One simple way to achieve that is to start from an XML schema and use the maven-jaxb2-plugin to produce a Java Class

as shown in the example below.

Example of message schema:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema xmlns:tns="http://hp.com/uca/expert/demo"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 targetNamespace="http://hp.com/uca/expert/demo"
elementFormDefault="qualified" version="1.0"
 xmlns:inheritance="http://jaxb2-commons.dev.java.net/basic/inheritance"
jaxb:version="2.1"
 jaxb:extensionBindingPrefixes="xjc inheritance">

 <!-- FORCE ALL CLASSES IMPLEMENTS SERIALIZABLE -->
 <xs:annotation>
 <xs:appinfo>
 <jaxb:globalBindings generateIsSetMethod="true">
 <xjc:serializable uid="123456" />
 </jaxb:globalBindings>
 </xs:appinfo>
 </xs:annotation>

 <!-- -->
 <!-- ELEMENTS DEFINITION -->
 <!-- -->
 <xs:element name="temperature">

26

 <xs:complexType>
 <xs:annotation>
 <xs:appinfo>

<inheritance:extends>com.hp.uca.expert.event.DefaultEvent</inheritance:exte
nds>
 </xs:appinfo>
 </xs:annotation>

 <xs:sequence>
 <xs:element name="value" type="xs:double" minOccurs="1" />
 </xs:sequence>

 </xs:complexType>
 </xs:element>
</xs:schema>
Maven plugin configuration:

<plugin>
 <groupId>org.jvnet.jaxb2.maven2</groupId>
 <artifactId>maven-jaxb2-plugin</artifactId>
 <configuration>
 <schemaDirectory>src/main/resources/schemas</schemaDirectory>
 <extension>true</extension>
 <verbose>true</verbose>
 <forceRegenerate>true</forceRegenerate>
 <removeOldOutput>true</removeOldOutput>
 <args>
 <arg>-Xinheritance</arg>
 </args>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jaxb2_commons</groupId>
 <artifactId>jaxb2-basics</artifactId>
 <version>${jaxb2-basics.version}</version>
 </plugin>
 </plugins>
 </configuration>
 <executions>
 <execution>
 <id>Generate XML Marshallers</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Another approach is to directly add JAXB annotations to the Java Class as shown below:

package com.hp.uca.expert.demo;

import java.io.Serializable;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
import com.hp.uca.expert.event.DefaultEvent;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = {
 "value"
})
@XmlRootElement(name = "temperature")
public class Temperature

27

 extends DefaultEvent
 implements Serializable
{

 private final static long serialVersionUID = 123456L;
 protected double value;

 /**
 * Gets the value of the value property.
 *
 */
 public double getValue() {
 return value;
 }

 /**
 * Sets the value of the value property.
 *
 */
 public void setValue(double value) {
 this.value = value;
 }

 public boolean isSetValue() {
 return true;
 }

}

28

Chapter 2
Getting started with Unified Mediation Bus Development
Kit

2.1 Installing the Unified Mediation Bus Adapter Development Kit
Detailed information on how to install UMB Adapter Development Kit is provided in the [R1] HP Unified
Mediation Bus– Installation and Configuration Guide

2.2 Adapter Development Pre-requisites

2.2.1 Eclipse IDE
The UMB Adapter Development Kit has been designed for an easy integration with the Eclipse Integrated Development

Environment (IDE) tool.

Before starting the development of any UMB value pack, it is necessary to download and install the EclipseTM application

development environment.

The following table lists the Eclipse IDE pre-requisites for UMB Adapter Development Kit:

Software Version

Eclipse IDE 4.4 (Luna) or higher

Table 2 - Eclipse IDE Prerequisites for UMB Adapter Development Kit

The minimum version of Eclipse IDE required by the UMB Development Kit is version 3.4 but we recommended Eclipse
IDE version 4.4 (Luna) or higher.

If you want to install Eclipse IDE, please go to the following URL for downloading Eclipse IDE:

http://www.eclipse.org/downloads/

At the time of writing, the Eclipse IDE version is Neon 4.6.

We recommend you to download either (other choices may also be valid):

• Eclipse IDE for Java Developers, or
• Eclipse IDE for Java EE Developers

Then you need to choose to install either the 32-bit or 64-bit version of Eclipse IDE depending on whether you have a 32-

bit or 64-bit operating system.

http://www.eclipse.org/downloads/

29

2.2.2 Post-install Environment Setup

2.2.2.1 The UMB_DEV_HOME Variable
The variable environment variable UMB_DEV_HOME is necessary for various development phases of a UMB Adapter,
especially the build and packaging phases.

On Windows:

The Unified Mediation Bus Development Kit installation procedure adds the %UMB_DEV_HOME% environment variable

to your user environment.

This variable is necessary for various development phases of a UMB Adapter development, especially the build and

packaging phases.

To verify that this variable is correctly set after the UMB Adapter Development Kit has been installed, open a command-

line (Run… -> cmd.exe) and type:

C:\> echo %UMB_DEV_HOME%
You should get an output similar to the following:

C:\UMB-DEV\

On Linux:

This Variable must be manually set in the user’s environment, as specified in the [R1] Unified Mediation Bus Installation

and Configuration Guide.

To verify that this variable is correctly set, please perform the following command:

$ echo ${UMB_DEV_HOME}
You should get an output similar to the following:

/opt/UMB-DEV

2.2.2.2 Maven Configuration
The UMB Adapter packaging is based on the use of the Apache Maven tool. If you don’t have Apache Maven installed on

your development system, please download it from maven.apache.org and follow the installation instructions.

The minimum required version of Apache Maven is 3.3.5

2.2.3 Unified Mediation Bus Eclipse plug-in installation
instructions
The UMB Adapter Development Kit delivers an Eclipse plug-in that eases UMB project creation on Eclipse.

This plugin is delivered by the %UMB_DEV_HOME%\eclipseplugin\umbEclipsePluginSite-1.1.2-assembly.zip file.

The installation of this plug-in is done as follows:

• From the Eclipse ‘Help’ menu, choose ‘Install new software’ and then click on the Add… button.

• Select the Unified Mediation Bus eclipse plug-in ZIP file using the Archive... button and give it the name “UMB

plugin” as shown in the picture below:

https://maven.apache.org/download.cgi

30

Figure 10 - Unified Mediation Bus plug-in: Installation step 1

• Then click on the OK button. The screen should then display the archive content as follow:

Figure 11 - Unified Mediation Bus Eclipse plug-in: Installation step 2

• Check the “Unified Mediation Bus plugins” checkbox, uncheck the “Contact all update sites…”, and then click on

the Next > button. The following screen is displayed:

31

Figure 12 - Unified Mediation Bus Eclipse plug-in: Installation step 3

• Click on the Next > button for installing the plug-ins after accepting the license terms.

CAUTION: The following message appears during the installation. This is a normal message that is displayed because the UMB
Eclipse Plugin is signed

. Select the listed Certificates and Click OK to continue the installation

The plug-in installation requires a restart of your Eclipse IDE environment. Please restart Eclipse before any attempt to

create a UMB Adapter project.

32

Chapter 3
Unified Mediation Bus Adapters development

3.1 Creating a new UMB Adapter
UMB Adapters provide connectivity between a target application and the UMB framework, and from there to other UMB
Adapters and applications.

Each UMB Adapter can provide:

• Flow collection services
• Action services

Each UMB Adapter can also act as a consumer of other UMB Adapters flow or action services.

3.1.1 Creating a UMB Adapter project within Eclipse
The UMB eclipse plug-in brings a project creation wizard that allows for the creation of a new UMB Adapter project in just

a few clicks. The plug-in also allows for the creation of a new UMB Event Definition project (see 4.1 for details).

This plug-in can be launched from the Eclipse menus by selecting File -> New Project:

33

This launches the UMB Project wizard:

34

Figure 13 - UMB project creation wizard Step1

From the UMB project wizard window, you can specify information regarding your UMB project. It is possible to

create two kinds of UMB Projects: UMB Adapter Project or UMB Event Definition Project (see 4.1 for details).
Therefore, the type of UMB project has to be selected first before going further. If ‘UMB Adapter project’ is selected,

the following parameters have to be specified:

• Project type: the type of UMB Adapter project to create

• Project name: the name of the UMB Eclipse Adapter project to create

• Project version: the version of the UMB Adapter project which is also the adapter version.

• Project package: the name of the Java package to be used for the Java classes of the UMB Adapter

• Class Name: a UMB Adapter class name is given by default and its value is “Adapter”. The class name is used in the

adapter’s startup.conf configuration file.

• Adapter Name: The name of the UMB Adapter is used to identify the Adapter on the UMB framework

• Project location: the location of the UMB Adapter Eclipse project on the file system, either in the Eclipse workspace
or anywhere on the file system

35

• UMB Development Toolkit location: location on the file system of the installation directory of the UMB Adapter

Development Kit2. The default value is the value of the %UMB_DEV_HOME% environment variable on Windows

systems (${UCA_EBC_DEV_HOME} on Linux): C:\UMB-DEV by default on Windows systems (/opt/UMB-
DEV on Linux)

When you click on the Finish button, your UMB Adapter Eclipse project is created. It already has a Maven nature and also

a minimum set of configuration, Java and JUnit files. It can be successfully compiled and unit tested.

Figure 14 – New UMB Adapter project

3.1.2 Anatomy of the created project
Using Eclipse IDE, you can browse through the different directories that compose the newly created UMB Adapter

project.

The structure of the created UMB Adapter project is as follows:

2 Please refer to [R1] Unified Mediation Bus installation and configuration Guide for more information on how to install the

UMB Adapter Development Kit

36

Figure 15 - Folder structure of the new UMB Adapter project

The configuration files of the Adapter are located in the src/main/resources/conf folder:

• The adapter.properties file defines properties for the adapter including connection information for the

UMB Kafka/ZooKeeper instance(s)

• The AdapterConfiguration.xml file defines the flow and action services provided by the adapter as well

as “automatic” consumer flows

• The hazelcast.xml file defines how to connect to the UMB Hazelcast instance(s)

• The log4j.xml file defines the Adapter’s Log4j configuration

The Adapter Java classes that define the behavior of the Adapter are located in the src/main/java folder. As the

Adapter has just been created, there’s only one Java class present: the Adapter.java class. An object of this class

represents an instance of the Adapter. By default, this class also has a main(String[] args) method that creates

one instance of the Adapter and starts it.

37

Figure 16 - Adapter.java Java class of the new UMB Adapter project

The created UMB Adapter project also comes with an Apache Maven pom.xml file that is used for building and

packaging the UMB Adapter outside of the Eclipse IDE.

3.1.3 Validation of the created project
The Adapter’s src/test/java folder contains a Junit test Class named AdapterTest.java. This is a simple

test that simply starts the Adapter and checks it is in the ‘RUNNING’ state.

This Test class is a template that can be extended to test the Adapter’s capabilities (flow services and action services).

38

Figure 17 - AdapterTest.java JUnit test class of the new UMB Adapter project

3.2 Customizing the created UMB Adapter project
The project generated by the UMB Eclipse plug-in provides an “empty shell” Adapter that does not provide any collection
flow or action services and that does not consume any collection flows.

This is basically a class that extends the com.hp.umb.adapter.BaseAdapter class. It then must implement:

• Production flow services (if this is an adapter producing Events)

• Consumer flows (if this is an adapter consuming Events)
• Actions services (if this adapter is an action service provider)

The following chapters will explain how to turn the Adapter into an Adapter that does these things. For this you have to

customize:

• The Adapter configuration files, mostly the AdapterConfiguration.xml file

• The Adapter Java files
• The Adapter JUnit files

39

3.2.1 Customizing the Adapter Name
Each Adapter that is part of an UMB Mediation solution must have a unique Name. This name is defined in the

AdapterConfiguration.xml file by setting the name attribute of the <adapter>…</adapter> XML

element:

Figure 18 - Customizing the Adapter Name

Additionally an actionGroup name (used for load-balancing action execution on a group of adapters) and version number
can be defined for the adapter. The version number does not play any role in the adapter’s identification however.

3.2.2 Adding producer flow services
In order to add producer collection flow services to your Adapter, you first have to define the collection flows or types of

collection flows that you want to provide in the AdapterConfiguration.xml file.

In this file, producer collection flow services are defined by adding the <flowServices>…</flowServices>

XML element inside the enclosing <adapter>…</adapter> root XML element.

Each producer collection flow service is defined by adding a <flow>…</flow> XML element inside the enclosing

<flowServices>…</flowServices> XML element.

Each <flow>…</flow> XML element must define all of the following mandatory attributes.

Refer to section “1.2.3.1 Flow Services” in this documents for a full description of the flow service attributes.

Each <flow>…</flow> XML element can also define parameters associated with the flow by adding the optional

<parameters>…</parameters> XML element. Inside the <parameters>…</parameters> XML

element, each parameter is defined by a <parameter>…</parameter> XML element.

Refer to section “1.2.3.1.1Flow Parameters” in this documents for a full description of the flow service parameter attribute

definitions.

The parameters defined in the <parameters>…</parameters> XML section are positioned by a flow consumer

when the flow is started.

40

Below is an example of an AdapterConfiguration.xml file that defines one static flow named

AlarmFileStaticFlow:

Figure 19 - Example of a flow in the AdapterConfiguration.xml file

Once the producer collection flow services have been defined in the AdapterConfiguration.xml file, it is

necessary to create a “Collector” Java class for each producer collection flow. The name of the class has to match the

value of the collectorClass attribute of the <flow>…</flow> XML element in the

AdapterConfiguration.xml file. It is mandatory that this class extends the

com.hp.umb.adapter.collector.BaseCollector class.

You can create a “Collector” Java class by using the context menus in your Adapter project:

Figure 20 - Creating a “Collector” Java class – Step 1

41

This opens the New Class window.

Figure 21 - Creating a "Collector" Java Class Step 2

Please make sure that the new “Collector” Java class that you’re creating extends the

com.hp.umb.adapter.collector.BaseCollector. Eclipse will automatically create the methods from

the com.hp.umb.adapter.collector.CollectorInterface Java interface that need to be overriden.

42

Once you click on the Finish button, the new “Collector” Java class is created as shown below:

Figure 22 - Creating a “Collector” Java class – Step 3

In order to finalize the new “Collector” Java class, several methods need to be implemented:

• Initialization and destruction methods:

o onInitialization(…): This method initializes the creation of the collector. It is automatically

called by the UMB framework when the collector is created. If you need to initialize objects or resources

associated with the “Collector” object, this is the place to do it.

o onDestruction(): This method finalizes the destruction of the collector. It is automatically called

by the UMB framework when the collector is destroyed. If you need to free objects or resources

associated with the “Collector” object, this is the place to do it.

• Collection flow action methods:

43

o startCollection(): This method starts the Collection flow. It is called by the UMB framework

when a startCollection() request is made on the ConsumerFlow side. This method returns an

ActionReply object to indicate whether the start of the collection flow was successful or not.

o resynchCollection(): This method re-synchronizes the Collection flow. It is called by the UMB

framework when a resyncCollection() request is made on the ConsumerFlow side. This

method returns an ActionReply object to indicate whether the re-synchronization of the collection

flow was successful or not.

The re-synchronization mechanism requires that the Event Provider offers a re-synchronization feature.

This is the case for TeMIP for example, that stores alarms and then is capable of re-sending all alarms at
any given point in time, but will be true for any event provider that stores its event and is able to send

them back again on request.

A resynchronized flow of events must be surrounded by two additional events: one indicating the

beginning of the synchronization flow, and another one indicating the end of the resynchronization flow.

Such events must not contain any other information than the start and end of synchronization flags.

The Begin of Synchronization event is any event that has the beginOfSynchronization flag

set to true and the End of synchronization event is is any event that has the

endOfSynchronization flag set to true. Any event type extending the

com.hp.uca.expert.event.DefaultEvent will inherit the two methods:

setBeginOfSynchronization() and setEndOfSynchronization() that allow for

setting such flags.

Any Event Type extending the DefaultEvent class can therefore be used as begin and end of

synchronization events by setting these falgs. It is imperative however that these events not be “real”

events, and thus not contain “real” event data. These events should only be used to flag the start and

end of the resynchronization.

In the case of an Alarm flow, the resynchronization event flow starts with the specific

com.hp.uca.expert.alarm.internal.BeginSynchronization event and is ter

minated by sending the com.hp.uca.expert.alarm.internal.EndSynchronizat
ion event.

o getCollectionAudit(): This method returns a description of the Collection flow. It is mainly

used for troubleshooting purposes. It is called by the UMB framework when an audit request on the

collection flow is received (AuditFlow request). This method returns a MAP<String,String>
representing a key/value collection describing the collector information.

Such information is retrieved by the consumer side by calling the auditCollection() method

on the ConsumerFlow object.

o stopCollection(): This method stops the Collection flow. It is called by the UMB framework

when a stopCollection() request is made on the ConsumerFlow side. This method returns an

ActionReply object to indicate whether the stop of the collection flow was successful or not.

• Collection flow method:

o pull(): This method pulls a set of messages from a collection source. It returns a Collection of events

to the UMB framework. The framework pushes the collection of returned event to the production Topic.

Implementations of this method should throw InterruptedException if the current thread is

interrupted. This is the main method of any “Collector” Java class because it is the one that actually

collects alarms/events.

44

IMPORTANT NOTE:
When implementing this method, please use a java.util.List instead of merely a

java.util.Collection as the return type of the pull() method. This will preserve the order of

events being collected.

You can find examples of implementation of “Collector” Java classes in the Camel Adapter (CamelCollector.java

class) and File Adapter (FileCollector.java and TemperaturesCollector.java classes) described in

this document:

NOTE:
• For more information on the Camel Adapter, please refer to chapter 5.1 “Camel Adapter”
• For more information on the File Adapter, please refer to chapter 5.2 “File Adapter”.

Once you have both declared a producer collection flow in the AdapterConfiguration.xml file and

implemented the associated “Collector” class, you have successfully added a producer collection flow service to your UMB
Adapter.

If the producer collection flow that you have created is static, then it will be automatically started by the UMB Framework

when the Adapter starts (unless the autoStarted attribute of the <flow> XML element is set to false). On the

other hand, if the producer collection flow is dynamic, the Adapter will wait for a CreateFlow collection action request

initiated by a flow consumer to start the producer collection flow.

Producer collection flows can be consumed by any UMB Adapter. Setting up consumer flows is explained in detail in

chapter 3.2.4 “Adding consumer flows”.

3.2.2.1 Managing the Collectors state
A state is associated to each Collector instance. This state can be retrieved by the getStatus() method of the

BaseCollector Class. This method returns an object of type FlowStatus that can take the following values:

(UNKNOWN, DISABLED, STARTING, ACTIVE, FAILOVER, STOPPING, INACTIVE, FAILED)

The different states are managed by the framework itself during the Collector lifecycle. This is the case for the

UNKNOWN->STARTING->ACTIVE transitions and for the ACTIVE->STOPPING->INACTIVE transitions.

However, the Collector class can set its state using the setStatus()method mainly to notify collection errors.

For such a purpose, there are two states available:

• The FAILED state:

This state is use to notify a fatal collection error. In such a case, the Collection Flow is considered not usable anymore.

This state will be propagated to the Consumer side which in turn will be set in the FAILED state. If the consumer is
monitored, the framework will automatically restart the flow.

• The FAILOVER state:

This state indicates that there is a collection error, but the Collector itself will try to re-establish the collection. This
FAILOVER state is propagated to the Consumer side for information, but no specific action is taken from the

framework. It is the responsibility of the Collector to re-establish the collection itself. When the collection is
successfully re-established, the Collector state must be set back to the ACTIVE state. In case of failure, the state

should be changed to FAILED.

45

NOTE:
Any attempt to change the flow state to a value other than FAILED or FAILOVER or turn it back to ACTIVE when it
was FAILOVER will lead to an exception.

3.2.3 Adding action services
In order to add action services to your Adapter, you first have to define the actions or types of actions that you want to

provide in the AdapterConfiguration.xml file.

In this file, action services are defined by adding the <actionServices>…</actionServices> XML element

inside the enclosing <adapter>…</adapter> root XML element.

Each action service is defined by adding a <action>…</action> XML element inside the enclosing

<actionServices>…</actionServices> XML element.

Each <action>…</action> XML element must define all of the following mandatory attributes:

Please refer to section “1.2.3.3 Action Services” in this documents for a full description of the action service attributes.

Each <action>…</action> XML element can also define parameters associated with the action by adding the

optional <parameters>…</parameters> XML element. Inside the <parameters>…</parameters>

XML element, each parameter is defined by a <parameter>…</parameter> XML element.

Refer to section “1.2.3.3.1 Action Parameters” in this documents for a full description of the action parameter attribute

definitions.

Below is an example of an AdapterConfiguration.xml file that defines one action:

Figure 23 - Example of an action in the AdapterConfiguration.xml file

46

Once the action services have been defined in the AdapterConfiguration.xml file, it is necessary to create an

“Action” Java class for each action. The name of the class has to match the value of the actionClass attribute of the

<action>…</action> XML element in the AdapterConfiguration.xml file. It is mandatory that this

class extends the com.hp.umb.adapter.BaseAction abstract Java class.

You can create an “Action” Java class by using the context menus in your Adapter project:

Figure 24 - Creating an “Action” Java class – Step 1

This opens the New Class window.

Figure 25 - Creating an “Action” Java class – Step 2

47

Please make sure that the new “Action” Java class that you’re creating extends the

com.hp.umb.adapter.BaseAction abstract Java class.

Once you click on the Finish button, the new “Action” Java class is created as shown below:

Figure 26 - Creating an “Action” Java class – Step 3

In order to finalize the new “Action” Java class, several methods need to be implemented:

• Initialization method:

o onInitialization(…): This method initializes the creation of an action. It is automatically called

by the Unified Mediation Bus framework when the action is created. If you need to initialize objects or

resources associated with the “Action” object, this is the place to do it.

• Action method:

o execute(): This method executes an action. It is automatically called by the Unified Mediation Bus

framework when the action is executed. If the action being executed is cancelled (by the requester), the

current thread will be interrupted. This is the main method of any “Action” Java class because it is the
one that actually executes the action.

You can find example of implementation of “Action” Java classes in the Camel Adapter (CamelAction.java class)

described in this document:

NOTE: For more information on the Camel Adapter, please refer to chapter 5.1 “Camel Adapter”.

Once you have both declared an action in the AdapterConfiguration.xml file and implemented the associated

“Action” class, you have successfully added an action service to your UMB Adapter.

48

In order for the new action to be executed, the Adapter has to be started and an ExecuteAction action request has

to be sent to the Adapter.

Any UMB Adapter can request actions to be executed by any Adapter providing action services by simply using Java
code as show below:

Figure 27 - Java code to send action requests

As seen in the example Java code above, you need to first create an ActionQuery object, specifying the source

Adapter, target Adapter Name (in case you want to load balance action execution across multiple adapter, you can

specify a target Adapter Group name instead: the action will be executed on a randomly selected adapter that’s part of
the group), target Action Name and parameters.

Then you can execute the action by calling the executeSyncAction() method on the ActionQuery object.

This will execute the action synchronously (i.e. the method call is blocking until the action is complete). When the action is

complete, an ActionReply object is returned.

Alternatively it is also possible to execute the action asynchronously:

• Synchronous execution methods (from the ActionQuery Java class):
o public ActionReply executeSyncAction() throws IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

o public ActionReply executeSyncAction(long timeout) throws IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

• Asynchronous execution methods (from the ActionQuery Java class):

49

o public void executeAsyncAction() throws IllegalActionStateException, AdapterNotFoundException,

AdapterNotActiveException
o public void executeAsyncAction(ActionCallback callback) throws IllegalActionStateException,

AdapterNotFoundException, AdapterNotActiveException

• Methods for retrieving the result of an asynchronous action (from the ActionQuery Java class):

o public ActionReply getAsyncActionReply() throws IllegalActionStateException

o public ActionReply getAsyncActionReply(long timeout) throws TimeoutException,

IllegalActionStateException

• Cancellation method (from the ActionQuery Java class):

o public ActionReply cancelAction() throws IllegalActionStateException

NOTE: For more information, please refer to the UMB Development Toolkit Javadoc available either in Eclipse IDE

or directly from the UMB Development Toolkit installation directory:

• %UMB_DEV_HOME%\apidoc on Windows systems
• ${UMB_DEV_HOME}/apidoc on Linux systems

3.2.4 Adding consumer flows
In order to add consumer flows to your Adapter, you have 2 options:

• Either define automatic consumer flows (started automatically by the UMB Framework when the Adapter starts)
• Or create your own consumer flows and start them from the Java code of your Adapter

3.2.4.1 Automatically started Consumer flows
Defining consumer flows that start automatically in the AdapterConfiguration.xml file is straightforward.

Please refer to section 1.2.3.2 “Defining Flow Service Consumers by configuration” for full description on how to define

automatic consumers.

3.2.4.2 Consumer flows started from java code
Alternatively to defining consumer flows that are created and started by the Framework, it is also possible to create
consumer flows and start them directly from the Java code of your Adapter:

50

Figure 28 - Java code to create consumer flows

The flow is created using the ConsumerFlow() constructor (giving all the necessary parameters. These are the same

parameters as the ones described for automatically started Consumer Flows.)

The flow collection is started by calling the startCollection() method . And the collection can be stopped by

calling the stopCollection() method.

The Consumer flows created from an Adapter’s custom Java code also allow the flow to be resynchronized (in case the

Flow Producer side supports this capability). In such a case, the re-synchronization of the flow can be requested by calling

the resyncCollection() method.

3.2.4.3 Defining the flow message consumer class
Both the automatic consumer flows and consumer flow created from Java code require a “MessageConsumer” Java class.

A “MessageConsumer” class must:

1. Extend the com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class.

2. Implement one of the following java interfaces:
o com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface< K

extends Event>

With this interface the messages are returned by sets of messages.

The maximum message set size is specified by calling the setConsumerMaxSetSize() method

on the consumer Flow:

For example:

 myFlow.setConsumerMaxSetSize(100);

which sets the maximum set size to 100.

51

The UMB framework reads the Kafka topic until no message arrives during a given time period (the

timeout period). This timeout is a configuration parameter of the ConsumerFlow. It is specified by calling

the setConsumerTimeout() method on the consumer Flow:

Example:

 myFlow.setConsumerTimeout (500);

which sets the read timeout to 500 milliseconds. The default timeout is set to one second.

The UMB framework calls the onNewMessageSet() method of the “MessageConsumer” class

when either the number of event in the set reaches the maximum set size, or when the specified
timeout elapses.

You can create a “MessageConsumer” Java class by using the context menus in your Adapter project:

Figure 29 - Creating a “MessageConsumer” Java class – Step 1

This opens the New Class window.

52

Figure 30 - Creating a “MessageConsumer” Java class – Step 2

Please make sure that the new “MyMessageConsumer” Java class that you’re creating extends the

com.hp.umb.adapter.consumer.BaseConsumerMessageHandler class and implements
com.hp.umb.adapter.consumer.ConsumerMessagesHandlerInterface<K extends
BasicEvent> Java interface.

Note also that you have to specify the interface’s formal type K (in the example:

com.hp.uca.alarm.AlarmBaseInterface)

Once you click on the Finish button, the new “MyMessageConsumer” Java class is created as shown below:

53

Figure 31 - Creating a “MessageConsumer” Java class – Step 3

In order to finalize the new “MessageConsumer” Java class, only one method needs to be implemented:

• onNewMessage(…): This method is called by the UMB framework whenever an event/alarm is consumed from

the flow.

To consume the messages, the onNewMessage() method must use the iterator given as argument. A typical

implementation should be as follows:

Once you have both declared an “auto” consumer flow in the AdapterConfiguration.xml file and implemented

the associated “MessageConsumer” class, you have successfully added an “auto” consumer flow service to your UMB
Adapter. The “auto” consumer flow will be started automatically when the Adapter starts.

3.2.4.4 Consumer flows state diagram
Consumer flows have a status that reflects the state of the collection they’re consuming. This status is returned by calling

the consumer flow’s getStatus() method.

The consumer flow status diagram is as follows:

54

Figure 32 - Consumer Flow status diagram

At Consumer Flow creation the Status is set to UNKNOWN. The other states are the results of the following transitions:

1. ConsumerFlow creation: sets the consumer flow status to UNKNOWN

2. startCollection requested: changes the consumer flow status from UNKNOWN to STARTING

3. startCollection completed: changes the consumer flow status from STARTING to ACTIVE
4. stopCollection requested: changes the consumer flow status from ACTIVE to STOPPING

5. Collection successfully stopped : changes the consumer flow status from STOPPING to INACTIVE

6. Production flow Failed or Production Flow’s Adapter stopped or
Kafka server connection lost: changes the consumer flow status from STARTING or ACTIVE to FAILED

7. ConsumerFlow Restarted by Monitoring: changes the consumer flow status from FAILED to STARTING

8. Producer collector recovering: changes the consumer flow status from ACTIVE to FAILOVER
9. Producer collector recovered: changes the consumer flow status from FAILOVER to ACTIVE

10. Adapter not started: changes the consumer flow status from UNKNOWN to FAILED

11. Flow service does not exist: changes the consumer flow status from STARTING to FAILED
12. producer error while stopping flow: changes the consumer flow status from STOPPING to FAILED

The Adapter can react to consumer flow status changes by defining a Flow status change listener. This is done by calling
the addFlowStatusChangeListener() adapter’s method. This method requires a flow status listener instance to

be passed as parameter.

The flow status listener instance must implement the com.hp.umb.adapter.consumer.
ConsumerFlowStatusListenerInterface interface.

55

3.3 Generating the UMB Adapter kit

Once your Eclipse project has been updated, it is necessary to generate the kit associated with the Adapter so that it can
be deployed, usually on the same system that runs the application that the adapter interfaces with.

To do this, you just need to execute the following commands:

C:\> cd <Project Base>
C:\> mvn package

<Project Base> refers to the root directory of the Adapter Eclipse project.

Figure 33 - Building the kit of your Adapter

The kit of the Adapter is then generated in the target directory of the <Project Base> directory as a Zip file

called <Adapter name>-<Adapter version>.zip (for example MyAdapterProject-1.0.zip):

56

Figure 34 – Location of the kit of your Adapter

The ZIP file of your Adapter contains a root folder named <Adapter name> (for example MyAdapter) that

contains the following sub-folders:

• conf/ sub-folder which contains the Adapter’s configuration files:

o adapter.properties: defines the properties for the Adapter including connection information

for the UMB Kafka/ZooKeeper instance(s)

o AdapterConfiguration.xml: defines the flow and action services provided by the adapter as

well as “automatic” consumer flows

o hazelcast.xml: defines how to connect to the UMB Hazelcast instance(s)

o log4j.xml: defines the Adapter’s Log4j configuration

o startup.conf: that contains a set of configurations used by the ‘umb’ administration command-

line tool.

• lib/ sub-folder that contains the library files (jar files) that the Adapter depends on.

57

3.4 Installing and starting the UMB Adapter
Since UMB V1.1, you must use the ‘umb’ administration tool to install, run and manage UMB Adapters.

To install a UMB Adapter from a Zip file, you should enter the following command:

$ umb install <Adapter name>-<Adapter version>.zip

To deploy the installed adapter in the ‘default’ cluster:

$ umb deploy <Adapter name>

To start the adapter:

$ umb start <Adapter name>

Please refer to the [R1] HP Unified Mediation Bus– Installation and Configuration Guide for a

full description of the ‘umb’ command

58

Chapter 4
Advanced development topics

4.1 Creating a new UMB Event Definition Project
UMB Adapters may require the implementation of some specific Event Classes that are passed from an adapter to
another. Such classes must comply with some very specific requirements. The simplest way to create an Event class

project is to use the UMB eclipse plug-in that allows for the creation of new UMB Event Definition projects in just a few

clicks.

This plug-in can be launched from the Eclipse menus by selecting File -> New Project:

59

This launches the UMB Project wizard:

60

Figure 35 - UMB Event Definition project creation wizard Step1

From the UMB project wizard window, you can specify information regarding your UMB Event Definition project by

specifying:

• The Project type: the type of UMB project to create

• The Project name: the name of the UMB Eclipse Event Definition to create

• The Project version: the version of the UMB project which is also the Event Definition version.

• The Project package: the name of the Java package to be used for the Java classes of the UMB Event Definition

• The Class Name: its value has to be given by the user. It is the name of the main class of the Event Definition project.
The class name has to start with an upper case. No special characters are allowed.

• The Location: the location of the UMB Event Definition Eclipse project on the file system, either in the Eclipse
workspace or anywhere on the file system

• The UMB Development Toolkit location: the location on the file system of the installation directory of the UMB

Adapter Development Kit. The default value is the value of the %UMB_DEV_HOME% environment variable on

61

Windows systems (${UMB_DEV_HOME} on Linux): C:\UMB-DEV by default on Windows systems

(/opt/UMB-DEV on Linux)

When you click on the Finish button, your UMB Event Definition Eclipse project (of Maven nature) is created. It has a
minimum set of configuration, Java and JUnit files. It can be successfully compiled and unit tested.

Figure 36 – New UMB Event Definition project

4.1.1 Anatomy of the created project
Using Eclipse IDE, you can browse through the different directories that compose the newly created UMB Event

Definition project.

Please see below for a look at the folder structure of a UMB Event Definition project:

62

Figure 37 - Folder structure of the new UMB Event Definition project

The Event Definition Java class that defines the behavior of the Event Definition is located in the src/main/java

folder. There is only one Java class present: ClassName.java class, where “ClassName “is the value entered by

the user in the ‘Class Name’ field on the UMB eclipse project wizard. An object of this class represents an instance of the

Event Definition. By default, this class implements a set of marshaller and unmarshaller methods that are mandatory when

the Event class is used in the context of UCA-EBC.

63

Figure 38 – MyClassName.java Java class of the UMB Event Definition project created in Figure 35

The created UMB Event Definition project also comes with a pom.xml file that is used for building and packaging the

UMB Event Definition outside of the Eclipse IDE, using Apache Maven.

4.1.2 Validation of the created project
The Event Definition’s src/test folder contains a Junit test Class ClassNameMarshallingTest.java. This

is a test skeleton that marshals a “ClassName” object to an XML file and unmarshals the XML file back into a “ClassName”

Java object.

This test class is a template that can be extended to test the Event Definition’s capabilities.

64

Figure 39 - Event DefinitionMarshallingTest.java JUnit test class of the new UMB Event Definition project

65

4.2 Customizing the serialization Class
The serialization class is the class in charge of serializing (de-serializing) the Event message into (and from) a byte array.

The default serialization class is provided by the UMB framework. This class is the

com.hp.umb.adapter.internal.utilities.JavaClassSerializer class which uses the

standard java class serialization mechanism.

A custom serialization class can be used instead of the default one. Such a class must implement the following interfaces:

org.apache.kafka.common.serialization.Serializer<Object>
org.apache.kafka.common.serialization.Deserializer<Object>

Here is a skeleton of a custom serialization class:

package com.example.mypkg;

import java.util.Map;

import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serializer;

public class MySerializer implements Serializer<Object>,
Deserializer<Object> {

 @Override
 public void configure(Map<String, ?> configs, boolean iskey) {
 // TODO Auto-generated method stub
 }

 @Override
 public void close() {
 // TODO Auto-generated method stub
 }

 @Override
 public Object deserialize(String topic, byte[] bytes) {
 // TODO Auto-generated method stub
 return null;
 }

 @Override
 public byte[] serialize(String topic, Object data) {
 // TODO Auto-generated method stub
 return null;
 }
}
The use of a custom serialization class needs to be configured on both the producer and consumer sides. It is necessary
that both producer and consumer use the same serialization class, otherwise de-serialization will not be performed

properly and results will be unpredictable:

• On the Producer side:

In the flow service description (in the AdapterConfiguration.xml file), a custom serialization class can be

specified using the serializerClass attribute of the <flow> XML element.

For example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="CollectionTestAdapter" version="1.0"
xmlns="http://hp.com/umb/config">

66

 <flowServices>
 <flow name="AFlowWithCustomSerializer"
 type="Dynamic"
 collectorClass="com.hp.umb.adapter.collection.MyCollector"

serializerClass="com.hp.umb.adapter.collection.MySerializer">
 <parameters>
 <parameter key="fileName"
defaultValue="data/alarms.xml"/>
 </parameters>
 </flow>
 </flowServices>
</adapter>

• On the Consumer side:

In the (auto) flow consumer description (in the AdapterConfiguration.xml file), a custom serialization

class can be specified using the serializerClass attribute of the <autoConsumer> XML element.

Alternatively, a custom serialization class can be specified in Java by using the

setSerializerClass(String) method on the ConsumerFlow object (For example:
myFlow.setSerializerClass("com.hp.umb.adapter.collection.MySerializer");)

For example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adapter name="LogAdapter" version="1.0" xmlns="http://hp.com/umb/config">
 <autoConsumers>
 <autoConsumer
 consumerIdentifier="AlarmLogger"
 targetAdapterName="CollectionTestAdapter"
 targetFlowName="AFlowWithCustomSerializer"
 serializerClass="com.hp.umb.adapter.collection.MySerializer"
 messageConsumerClass="com.hp.umb.adapter.log.LogAlarmConsumer"/>
 </autoConsumers>
</adapter>

4.3 Lifecycle and thread-safety of user-provided classes
For most UMB Adapters, the UMB Framework requires that the user provides Java classes that give the implementation

for specific features of an Adapter. This is the case for:

• Action services: the action service provider Adapter developer is required to provide the name of a Java class

that implements the action service. The name of the class is defined in the actionClass attribute of the

action XML element defining the action service in the AdapterConfiguration.xml file

67

Figure 40 - Example of an actionClass attribute

• Flow services: the flow producer Adapter developer is required to provide the name of a Java class that provides

the implementation of each flow service. The name of the class is defined in the collectorClass attribute

of the flow XML element defining the flow service in the AdapterConfiguration.xml file. Optionally,

it is also possible to provide the name of a Java class to serialize/de-serialize flow messages, in case the default

serialization class (com.hp.umb.adapter.internal.utilities.JavaClassSerializer)

is not wanted. The name of this class is defined in the serializerClass attribute of the flow XML

element defining the flow service in the AdapterConfiguration.xml file.

Figure 41 - Example of a collectorClass and a serializerClass attribute

• Automatic flow consumers: Both standard (UMB) and non UMB flows can have automatic flow consumers. The

automatic flow consumers are defined in the AdapterConfiguration.xml file of the flow consumer

68

Adapter, using either the autoConsumer or the autoNonUMBConsumer XML element. In order to

define an automatic flow consumer, the developer is required to provide the name of the Java class that provides

the implementation of the consumer. The name of the class is defined in the messageConsumerClass

attribute of the autoConsumer or autoNonUMBConsumer XML element defining the automatic

consumer in the AdapterConfiguration.xml file. Optionally, it is also possible to provide the name of

a Java class to serialize/de-serialize flow messages, in case the default serialization class

(com.hp.umb.adapter.internal.utilities.JavaClassSerializer) is not wanted. The

name of this class is defined in the serializerClass attribute of the autoConsumer or

autoNonUMBConsumer XML element defining the automatic consumer in the

AdapterConfiguration.xml file.

Figure 42 - Example of a messageConsumerClass and a serializerClass attribute

Instances of Java objects from classes defined as either actionClass, collectorClass,

messageConsumerClass, or serializerClass in the AdapterConfiguration.xml file are handled

by the UMB Framework.

In the following chapters, we will detail the lifecycle of these objects as well as their concurrency/thread-safety

requirements/characteristics.

4.3.1 Lifecycle and thread-safety of actionClass objects
The following schema describes the lifecycle of actionClass objects:

69

Figure 43 - Lifecycle of actionClass objects

In the above schema, there are 2 adapters: 1 source Adapter that will send action execution requests, and 1 target adapter

that will execute the requested actions. Executing actions in UMB is a 5 step process:

1. In step 1, on the source Adapter, an ActionQuery object is created. This is typically done in the main thread of the

source Adapter but this can be done in another thread depending on the implementation of the source Adapter.

The ActionQuery object contains information on the source and target adapters, the name of the action to
execute on the target adapter and the action execution parameters. Then the ActionQuery is executed (in the

above schema, the ActionQuery is executed asynchronously).

2. In step 2, the UMB framework and more precisely the Hazelcast distributed executor service component has
taken over and transmitted the ActionQuery from the source Adapter to the target Adapter for execution.

3. In step 3, the ActionQuery is executed on the target Adapter. This is done is one of the Hazelcast Executor

Service worker threads. Hazelcast defines a pool of threads to use for the Executor Service. This pool of threads

is configured in the <executor-service><pool-size>7</pool-size>…</executor-
service> section of the hazelcast.xml file of the target Adapter. In step 3, the actionClass object is

created, then the execute() method is called on this object to actually execute the requested action.

Execution of the execute() method returns an ActionReply object that represents the result of the action

execution. The end of the execution of the execute() method marks the end of life for the actionClass object

previously created that can now be garbage collected.
4. In step 4, the UMB framework transmits the ActionReply from the target Adapter to the source Adapter.

5. In step 5, the execution that was blocked on the actionQuery.getAsyncActionReply() call

resumes and the ActionReply is retrieved.

To summarize, actionClass object are created when execution starts on the target Adapter (inside an Hazelcast Executor

Service worker thread). These objects live until the execution stops and then they are ready to be garbage collected.
ActionClass objects are not re-used. There’s no requirement regarding thread-safety for the actionClass classes as

execution will always occur in a single thread and execution occurs only once and then the actionClass object is garbage

collected.

70

4.3.2 Lifecycle and thread-safety of collectorClass and
serializerClass producer flow objects
This chapter describes the lifecycle and thread-safety of collectorClass and serializerClass producer flow objects.

Figure 44 - Lifecycle of collectorClass and serializerClass producer flow objects

In the above schema, there are 2 adapters: 1 Consumer Adapter that will send requests to create and (later on) delete a
flow of alarms/events provided by the Producer Adapter, and 1 Producer Adapter that will execute the requested actions

and actually create or delete the corresponding flow.

Creating a flow in UMB is a 4 step process:

1. In step 1, on the Consumer Adapter, a ConsumerFlow object is created and the startCollection()

method is called on this object. This is typically done in the main thread of the Consumer Adapter but this can be

done in another thread depending on the implementation of the Consumer Adapter. The call to the

startCollection() method triggers a createFlow() action request to be sent to the Producer Adapter

2. In step 2, the UMB framework and more precisely the Hazelcast distributed executor service component has

taken over and transmitted the createFlow() action request from the Consumer Adapter to the Producer

Adapter for execution.
3. In step 3, the createFlow() action is executed on the Producer Adapter. This is done is one of the Hazelcast

Executor Service worker threads. Hazelcast defines a pool of threads to use for the Executor Service. This pool of

threads is configured in the <executor-service><pool-size>7</pool-
size>…</executor-service> section of the hazelcast.xml file of the Producer Adapter. In step

3, the collectorClass and serializerClass producer flow objects are created and a new Producer Flow Thread is

created to handle the collection of alarms/events of the flow.

4. In step 4, the Producer Flow Thread starts and executes a loop until a deleteFlow() action request is received by

the Producer Adapter. At each run of the loop, the Producer Flow Thread calls the pull() method on the

collectorClass object and then forwards the list of alarms/events thus retrieved to the Kafka topic associated with
the flow.

Deleting a flow in UMB is a 4 step process too:

5. In step 5, on the Consumer Adapter, the stopCollection() method is called on the ConsumerFlow object.

This is typically done in the main thread of the Consumer Adapter but this can be done in another thread

depending on the implementation of the Consumer Adapter. The call to the startCollection() method

triggers a deleteFlow() action request to be sent to the Producer Adapter

71

6. In step 6, the UMB framework and more precisely the Hazelcast distributed executor service component has

taken over and transmitted the deleteFlow() action request from the Consumer Adapter to the Producer
Adapter for execution.

7. In step 7, the deleteFlow() action is executed on the Producer Adapter. This is done is one of the Hazelcast

Executor Service worker threads. Hazelcast defines a pool of threads to use for the Executor Service. This pool of

threads is configured in the <executor-service><pool-size>7</pool-
size>…</executor-service> section of the hazelcast.xml file of the Producer Adapter. In step

7, a request is sent to the Producer Flow Thread to stop the collection of alarms/events of the flow.
8. In step 4, the Producer Flow Thread stops. The end of the execution of the Producer Flow Thread marks the end

of life for the collectorClass and serializerClass objects previously created that can now be garbage collected.

To summarize, collectionClass and serializerClass producer flow objects are created when flows are created on the
Producer Adapter (inside an Hazelcast Executor Service worker thread) upon a createFlow() request from a Consumer

Adapter. These objects live until the corresponding flows are deleted upon a deleteFlow() request from a Consumer

Adapter and then they are ready to be garbage collected.

CollectorClass and serializerClass objects are not re-used. Each flow creation leads to new collectionClass and

serializerClass objects. For example, if a flow is created, deleted, then re-created again, this will lead to a first set of
collectionClass/serializerClass objects being created then garbage collected and then a second set of

collectionClass/serializerClass objects being created.

There should be some level of thread-safety for collectorClass classes as execution may occur concurrently in multiple

threads. If requests for createFlow(), deleteFlow(), auditFlow() or resynchFlow() are sent concurrently to the Producer

Adapter, then multiple threads (from the Executor Service thread-pool of the Producer Adapter) may concurrently
execute methods from the CollectorClass. These methods being:

• onInitialization() and startCollection() on createFlow() requests

• onDestruction() and stopCollection() on deleteFlow() requests

• resynchCollection() on resynchFlow() requests

• getCollectionAudit() on auditFlow() requests

In addition to the Executor Service worker threads, the Producer Flow Thread also accesses the collectorClass objects as

it periodically calls the pull() method.

On the other hand, there’s no requirement regarding thread-safety for serializerClass classes as execution will always

occur in a single thread, the Producer Flow Thread.

72

4.3.3 Lifecycle and thread-safety of messageConsumerClass and
serializerClass consumer flow objects
This chapter describes the lifecycle and thread-safety of messageConsumerClass and serializerClass consumer flow

objects.

In the above schema, there is just 1 adapter, the Consumer Adapter that will create consumer flows as defined in the

AdapterConfiguration.xml file at adapter start and stop these flows at adapter stop.

The lifecycle of a consumer flow (whether it’s a UMB or non UMB consumer flow) in UMB is a 4 step process:

1. In step 1, on the Consumer Adapter, a ConsumerFlow object is created and started by calling the

startCollection() method on all consumerFlow instance. This call triggers the creation and start of a

Consumer Flow Thread for each consumer flow.

2. In step 2, a Consumer Flow Thread is started which triggers the creation of the messageConsumerClass and
serializerClass objects. The Consumer Flow Thread then executes a loop until a stopCollection() call is made. At

each run of the loop, the Consumer Flow Thread pulls messages from the Kafka topic associated with the flow.
3. Step 3 does not directly follow step 2. It happens later on when the consumer Flow is stopped via a call to the

stopCollection() metho. This call triggers the request to stop the Consumer Flow .

4. In step 4, the Consumer Flow Thread is stopped, which marks the end of life for the messageConsumerClass and

serializerClass objects previously created that can now be garbage collected.

To summarize, messageConsumerClass and serializerClass consumer flow objects are created when the ConsumerFlow is
created and the collection starts (inside an Consumer Flow Thread) upon a createCollection() call. These objects live until

the ConsumerFlow is stopped via a call to stopCollection() and then these objects are ready to be garbage collected.

MessageConsumerClass and serializerClass objects are not re-used. Each consumer flow creation leads to new

messageConsumerClass and serializerClass objects

There’s no requirement regarding thread-safety for the messageConsumerClass and serializerClass classes as execution

will always occur in a single thread, the Consumer Flow Thread.

73

4.4 Retrieving information on Adapters in the solution/cluster
The UMB Framework offers the possibility for an adapter to be aware of other (remote) adapters that are part of the

solution/cluster (i.e. accessible through Hazelcast).

This is done mainly by:

1. Getting the list of known remote adapters
2. Getting notifications when adapters are added/removed from the solution/cluster or when the state of the

adapters in the cluster/solution changes.

4.4.1 Getting the list of known Adapters
The com.hp.umb.adapter.BaseAdapter class (and thus any custom Adapter class) provides the

getAdapterLimitedProxyMap()method. This method returns a map of all adapters that are currently connected

to the distributed UMB solution.

This method can be used as follows:

// Log all Adapters already present in the cluster
for (Map.Entry<String, ? extends AdapterProxyLimited> entry :
 adapter.getAdapterLimitedProxyMap().entrySet()) {
 AdapterProxyLimited remoteAdapter = entry.getValue();
 log.info("Adapter : " + remoteAdapter.getName()+ " : "
 + remoteAdapter.getState());
}

4.4.2 Getting notifications on Adapters
Adapter notifications are emitted in either of the following conditions:

• An adapter has started

• An adapter has stopped
• An adapter’s state has changed (from STARTING to ACTIVE or from ACTIVE to STOPPING)

In order to receive Adapter notifications, you first need to create a new class that implements the

com.hp.umb.adapter.configuration.AdapterProxyListenerInterface as shown below:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.hp.umb.adapter.configuration.AdapterProxyEvent;
import com.hp.umb.adapter.configuration.AdapterProxyListenerInterface;

public class TestAdapterProxyListener implements
AdapterProxyListenerInterface {

 private static final Logger log = LoggerFactory
 .getLogger(TestAdapterProxyListener.class);

 @Override
 public void entryAdded(AdapterProxyEvent adapterProxyEvent) {
 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry added : "
 + adapterProxyEvent.getName() + " : "
 + adapterProxyEvent.getState());
 }

 @Override
 public void entryRemoved(AdapterProxyEvent adapterProxyEvent) {

74

 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry removed : "
 + adapterProxyEvent.getName().toString());
 }

 @Override
 public void entryUpdated(AdapterProxyEvent adapterProxyEvent) {
 // TODO write custom code here
 log.info("Proxy Listener: Adapter Proxy Entry updated : "
 + adapterProxyEvent.getName() + " : "
 + adapterProxyEvent.getState());
 }

}

Then you need to associate an instance of this new class as an AdapterProxyListener for your Adapter. This is done using

the addAdapterProxyListener() method of the com.hp.umb.adapter.BaseAdapter class (which

any Adapter extends):

// Register an Adapter listener
try {
 adapter.addAdapterProxyListener(new TestAdapterProxyListener());
} catch (AdapterNotActiveException e1) {
 log.error("Failed to add Proxy Listener", e1);
 }

In the above code sample the adapter variable represents your Adapter instance.

75

4.5 Multiple Kafka/ZooKeeper clusters configuration
There are cases where it is necessary to not just use one Kafka/ZooKeeper cluster but several. With UMB, it is possible to

design solutions where some flows are produced to one Kafka/ZooKeeper cluster and some flows are produced to

another. There’s no limit to the number of Kafka/ZooKeeper cluster that UMB can use.

The first step in a multi Kafka/ZooKeeper cluster UMB solution is to define all the clusters to use in the

adapter.properties file of each UMB Adapter that needs to work with multiple Kafka/ZooKeeper clusters.

The producer.* and consumer.* Kafka/ZooKeeper properties in the adapter.properties file can be

prefixed by a Kafka/ZooKeeper cluster specific prefix so that each Kafka/ZooKeeper cluster has its own properties.
There’s no pattern to follow for the name of the prefix. It can be anything. For example, the prefix can refer to the name or

id of the Kafka/ZooKeeper cluster: kafka1, kafka2, etc… Any chosen prefix for a Kafka/ZooKeeper cluster will have to

match the prefix used in the AdapterConfiguration.xml file, when we define that a flow targets a specific

Kafka/ZooKeeper cluster using the broker attribute of the flow XML element (see later on for an example

AdapterConfiguration.xml file that demonstrates this feature).

Below is an example of an adapter.properties file that defines the properties of two separate Kafka/ZooKeeper

clusters (identified by their prefixes as kafka1 and kafka2):

Properties specific to “kafka1” Kafka/ZooKeeper cluster

kafka1.producer.bootstrap.servers=brokerhost1:9092
kafka1.zookeeper.connect=brokerhost1:2181

Properties specific to “kafka2” Kafka/ZooKeeper cluster
kafka2.producer.bootstrap.servers=brokerhost2:9092

kafka2.zookeeper.connect=brokerhost2:2181

In order for an adapter to produce a flow to a specific Kafka/ZooKeeper cluster there are two steps to follow:

1. In the AdapterConfiguration.xml file, it is necessary to set the value of the optional broker

attribute for each flow to indicate that the flow will be produced to a specific Kafka/ZooKeeper cluster.

If the optional broker attribute is not set, it is understood that the flow will target the “default”

Kafka/ZooKeeper cluster which properties are not be prefixed (with a Kafka/ZooKeeper id/name) in the

adapter.properties file.

For example:

<adapter name="Adapter1" version="1.0" xmlns="http://hp.com/umb/config">
 <flowServices>
 <flow name="StaticFlow1" type="Static" broker="kafka1" […]>
 </flow>
 <flow name="StaticFlow2" type="Static" broker="kafka2" […]>
 </flow>
 </flowServices>
</adapter>

2. As mentioned above, in the adapter.properties file, it is necessary to use the value previously set as

prefix for all the properties that belong to a specific Kafka/ZooKeeper cluster.

For example:

kafka1.producer.bootstrap.servers= brokerhost1:9092
kafka1.zookeeper.connect= brokerhost1:2181

76

In the adapter.properties file, it is possible to have both Kafka/ZooKeeper cluster specific properties (i.e.

properties prefixed with a Kafka/ZooKeeper cluster id/name) and also general properties that will be used for all

Kafka/ZooKeeper clusters (i.e. properties that are not prefixed with a Kafka/ZooKeeper cluster id/name).

4.6 Make an adapter compliant with the ‘umb’ command-line
administration tool
UMB V1.1 brings the ‘umb’ command-line administration tool. This tools enables users to start, stop and control an UMB

adapter from a command-line Interface. In order for your adapter to work correctly with this administration tool, you need

to understand how to configure your adapter’s MANIFEST.MF or startup.conf files.

Properly configuring these files is the key to letting the ‘umb’ command-line tool know how to start your adapter. At the

minimum, the ‘umb’ command-line tool needs to know what the main class of the Adapter is: i.e. the class that contains

the main(String[] args) method used to start your Adapter.

There are several ways to specify the main class of your adapter:

• The easiest way is to deliver your Adapter as a single jar file with the main-class specified in the Adapter’s jar’s

MANIFEST.MF file.

• Another way (if your UMB adapter brings multiple jar files for example) is to deliver a startup.conf

configuration file

A startup.conf file defines the main class and JVM options to be used by the ‘umb’ administration tool when

starting the adapter.

An example of contents of the startup.conf file is (the content below is from the startup.conf file of the

TeMIP Adapter):

MAIN_CLASS=com.hp.umb.adapter.temip.TemipAdapter

MAIN_JAR=umb-adapter-temip-1.1.jar

JAVA_OPTS=-Xmx1024m

REFERENCE=temip-adapter

ADAPTER_ARGUMENTS=”Put your adapter arguments here”

The ‘umb’ administration tool will use:

- MAIN_CLASS as the class to be called for starting the adapter

- MAIN_JAR (in case MAIN_CLASS is not set) as the jar to be called for starting the adapter (this jar is expected to

contain a MANIFEST.MF file defining the main-class of the jar)

- JAVA_OPTS as optional Java options to be used when starting the adapter
- REFERENCE as the adapter’s directory name (the one under $UMB_HOME/adapters) so that the ‘umb’ command-

line tool can know where to find the adapters libraries

- ADAPTER_ARGUMENTS as the adapter program arguments (the arguments to pass to the main(String[]
args) method of the main class). By default no arguments are required, but depending on some specific

configuration needs it may be useful to pass arguments to the adapter’s main class.

77

NOTE:
As any other configuration file, the startup.conf file should be delivered in the conf/ sub-folder of the

adapter.

4.7 Specifying a custom Partitioner
Starting with version 1.1, UMB is capable of managing Kafka topics that use more than 1 partition. It is therefore possible

to specify a custom ‘Partitioner’ for an adapter or for a given flow. A ‘partitioner’ is a class that extends the

kafka.producer.Partitioner interface and allows for customizing the way the partition to use is selected for

any given message.

With the default ‘Partitioner’ class, the message Object itself is used as the key for partitioning. The partition to use is

computed using the key hashcode(). This method is akin to a pseudo-random association of messages to partitions.

The Partioner can be customized if there is the need to target specific partitions for specific messages.

For example:

We have the following Event Object and we have a topic with a partition for every possible cityCode value:

public class MyEvent extends Event {

 int cityCode = 0;

 public int getCityCode(){ return cityCode;}

 }

And we want to send events with different cityCodes to different partitions. In order to do so, you need to perform the
following steps:

1) Create a custom Partitioner:

A custom Partitioner is a class that implements the kafka.producer.Partitioner interface:

public class MyPartitioner implements Partitioner {

 @Override
 public int partition(Object key, int numPartitions) {

 // get the key as a MyEvent object and retrieve the
 // partition corresponding to the cityCode
 if (key instanceof MyEvent) {

 targetPartition = ((MyEvent)key).getCityCode()
 }

// the partition where the message will be sent

 return targetPartition % numPartitions;
 }
 }

eclipse-javadoc:%E2%98%82=umb-adapter-fmk/C:%5C/Users%5C/argento%5C/.m2%5C/repository%5C/org%5C/apache%5C/kafka%5C/kafka_2.11%5C/0.9.0.1%5C/kafka_2.11-0.9.0.1.jar%3Ckafka
eclipse-javadoc:%E2%98%82=umb-adapter-fmk/C:%5C/Users%5C/argento%5C/.m2%5C/repository%5C/org%5C/apache%5C/kafka%5C/kafka_2.11%5C/0.9.0.1%5C/kafka_2.11-0.9.0.1.jar%3Ckafka.producer

78

The Partitioner class computes the target partition based on the key object (in our case the Event itself) and the

number of available partitions. With UMB, the key is the message object itself, thus any field of the message can
be used to compute the target partition.

2) Specify the custom Partitioner to use in the adapter.properties file of the flow producer Adapter:

This can be done globally (for all flows defined for the producer Adapter)

producer.partitioner.class=com.hp.mypackage.MyPartitioner

or on a per-broker basis by using the ‘broker’ feature (in which case, the Partitioner class will be used for all flows

that use a specific broker, ‘broker1’ in our case)

broker1.producer.partitioner.class=com.hp.mypackage.MyPartitioner

4.8 Using the manual Commit feature
The committed position is the last offset that has been securely consumed by a flow consumer. Should the consumer

process fail and restart, this is the offset that it will restart from when the consumer ‘readOffsetValue’ property is

configured to ‘earliest’.

When automatic commit is configured (the commit feature is automatic by default), the UMB framework commits all

messages once they have been consumed by the onNewMessages() method of the class extending the

BaseConsumerMessageHandler class.

The call diagram of the automatic commit feature is the following:

This default behavior can be de-activated in order to give the class extending the

BaseConsumerMessageHandler class a better control on message commitment.

The manual commit feature can be activated either on the autoConsumer definition (in the

AdapterConfiguration.xml file on the consumer Adapter) or via a consumer flow API:

• Setting the manualCommit attribute to true in the autoConsumer definition:

<autoConsumer consumerIdentifier="AlarmLogger" targetAdapterName="FileAdapter"

https://kafka.apache.org/090/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#commitSync()

79

 targetFlowName="AlarmFileStaticFlow" manualCommit="true"
 messageConsumerClass="com.hp.umb.adapter.log.LogAlarmConsumer"/>

• Calling the setManualCommit(true) method from the consumer flow API:

ConsumerFlowInterface consumerFlow = new ConsumerFlow(
 adapterConsumer, "MyConsumer", "FileAdapter",
 "AlarmFileStaticFlow ", new ArrayList<Parameter>(),
 new ConsumerSetCommitAllPartitions(), true);
consumerFlow.setManualCommit(true);

When the automatic commit feature is activated, the UMB framework does not make any commits. It is therefore the

responsibility of the message consumer’s custom Java code to commit the messages.

There are two methods on the BaseConsumerFlow class that allows for committing messages:

• commit(BasicEvent message)

When this method is used, only the partition that the message was consumed from is commited. The method

commits all the messages read from this partition up to the message given as parameter.

A typical use of this API is as follows:

 @Override
 public void onNewMessages(MessagesIterator<BasicEvent> iterator) {
 while (iterator.hasNext()) {
 BasicEvent message = iterator.next();

 log.info("reading message: partition=" + message.getPartition()
 + " offset=" + message.getOffset());

 PERFORM SOME CUSTOME CODE HERE

 if (SOME CONDITION) {
 log.info("committing message: partition="
 + message.getPartition() + " offset="
 + message.getOffset());
 getFlow().commit(message);
 }
 }
 }

Note: for flows with a single partition, all consumed messages are committed.

• commitAllPartitions()

This method makes sense for flows configured with several partitions. It allows for committing all consumed events

regardless of their partitions. An event is considered as “consumed” as soon as it has been retrieved using the iterator

next() method.

For example:

 @Override
 public void onNewMessages(MessagesIterator<BasicEvent> iterator) {
 while (iterator.hasNext()) {
 BasicEvent message = iterator.next();

 log.info("reading message: partition=" + message.getPartition()
 + " offset=" + message.getOffset());

 PERFORM SOME CUSTOME CODE HERE

80

 if (SOME CONDITION) {
 log.info("committing all consumed messages in all partitions’’);
 getFlow().commitAllPartitions();
 }
 }
 }

Note: for a flow with a single partition, calling either the commit(message) or the

commitAllPartitions() method is equivalent.

81

Chapter 5
Unified Mediation Bus sample Adapters

The UMB Adapter Development Kit provides sample Adapters that can be used as examples to create your own
Adapters. These sample Adapters are located in the ${UMB_DEV_HOME}/adapter-examples folder on Linux,

%UMB_DEV_HOME%\adapter-examples folder on Windows.

5.1 Camel Adapter
The Camel Adapter is an example adapter that demonstrates how a UMB Adapter can be integrated with Camel3 in order

to benefit from the power and versatility of Camel inside an Adapter. This adapter acts both as a Flow and Action service
provider.

As a Flow provider, the adapter will:

• respond to collection flow actions: CreateFlow, DeleteFlow, ResynchFlow, StatusFlow

• as a consequence of these collection flow actions, the adapter will create/delete/resynchronize or get the status of
collections of alarms/events

As an Action provider, the adapter will:

• respond to action requests

The Camel Adapter is composed of:

• Configuration files:

o The Adapter properties file: adapter.properties that defines properties for the adapter

including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how to connect to the

UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines the flows and actions

provided by the adapter

o A Camel Spring file: camel-context.xml that defines routes to be used for processing actions,

collection flow actions and collections

• Java files that define the Adapter’s behavior

• A JUnit test file that tests the Adapter’s behaviour: CamelAdapterTest.java

The Adapter uses the Camel Spring API4 instead of the Camel Java API5 because it provides the ability to modify the

Camel routes in the camel-context.xml file without having to recompile the Adapter. It is possible to use the

Camel Java API instead inside a UMB Adapter however this is not part of this example.

3 Please see http://camel.apache.org/ for more information on Camel

4 Please see: http://camel.apache.org/spring.html for more information on the Camel Spring DSL

5 Please see http://camel.apache.org/java-dsl.html for more information on the Camel Java DSL

http://camel.apache.org/
http://camel.apache.org/spring.html
http://camel.apache.org/java-dsl.html

82

The following figure explains the overall architecture of the Camel Adapter.

Figure 45 - Camel adapter overview

In the above figure, the Camel Adapter is used to connect to a Target Application to the Unified Mediation Bus. The

Camel routes defined in the camel-context.xml file are used to connect to the Target Application for processing

actions, collection flow actions and collections of alarms/events.

As Camel is used for connection to the Target Application any protocol can be used to interact with the Target
Application: web services (SOAP, REST), JMS, JDBC, ...6

The following sections will explain in detail how the Camel Adapter works.

5.1.1 Configuration
The configuration files of the Camel Adapter are located in the src/main/resources and

src/test/resources folders. Each of the configuration files is explained in detail below.

5.1.1.1 The adapter.properties file
The Adapter properties file: adapter.properties defines properties for the adapter including connection

information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

• producer.bootstrap.servers: a list of Kafka broker <host>:<port> information

• producer.acks: set to 1 by default, indicating that Kafka is in a mode where messages are acknowledged

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

adapter.properties file.

5.1.1.2 The hazelcast.xml file
The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the UMB Hazelcast

instance(s).

6 Please see http://camel.apache.org/components.html for a list of available Camel components

http://camel.apache.org/components.html

83

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

hazelcast.xml file.

5.1.1.3 The log4j.xml file
The Adapter’s Log4j configuration file: log4j.xml

5.1.1.4 The AdapterConfiguration.xml file
The Adapter configuration file: AdapterConfiguration.xml defines the flows and actions provided by the

adapter.

Figure 46 - The Camel Adapter’s AdapterConfiguration.xml file

By default, one action and one flow are defined.

The action named “CamelAction” defines its implementing class as well as the Camel route start endpoint URI

associated with the action. This URI is a reference to the URI of the start endpoint of the Camel route named “camel-
actions” in the camel-context.xml file.

The flow named “CamelDynamicFlow” defines its implementing class as well as both the Camel route start endpoint

URI for collection flow actions and the Camel route end endpoint URI for the collection associated with the flow. The

“CollectionActionRouteURI” URI is a reference to the URI of the start endpoint of the Camel route named

“camel-collectionactions” in the camel-context.xml file. The “CollectionRouteURI” URI is a

reference to the URI of the end endpoint of the Camel route named “camel-collection” in the camel-
context.xml file.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

AdapterConfiguration.xml file.

5.1.1.5 The camel-context.xml file
A Camel Spring file: camel-context.xml defines routes to be used for processing actions, collection flow actions

and collections.

84

Figure 47 - The Camel Adapter’s camel-context.xml file

Note: In the above screen capture of the camel-context.xml file, the Camel routes are collapsed, so the detail of

these routes is not shown. These routes will be presented and explained in detail in the remainder of this section.

The camel-context.xml file is a Spring XML file that defines a Camel Context which in turn defines Camel routes7.

The Camel Adapter defines 3 routes:

• The “camel-actions” route: this route processes action requests for actions named “CamelAction”

• The “camel-collectionactions” route: this route processes collection flow action requests, i.e.

CreateFlow/DeleteFlow/ResynchFlow/StatusFlow for the flow named “CamelDynamicFlow”

• The “camel-collection” route: this route processes collection of alarms/events for the flow named

“CamelDynamicFlow”

These routes (or more accurately the start or end endpoint URIs of these routes) are referenced in the

AdapterConfiguration.xml file as shown in the previous section: 5.1.1.4 “The AdapterConfiguration.xml file”.

5.1.1.5.1 The “camel-actions” route

As mentioned above, this route processes action requests for actions named “CamelAction” as per the configuration

of the “CamelAction” action in the AdapterConfiguration.xml file.

7 Please see: http://camel.apache.org/spring.html for more information on Camel Spring

http://camel.apache.org/spring.html

85

Figure 48 - “camel-actions” route in the camel-context.xml file

This route works by requesting an action to be performed on the Target Application and processing the action response.

This route is explained in detail in the 5.1.2.1 “Actions” chapter.

5.1.1.5.2 The “camel-collectionactions” route
This route processes collection flow action requests, i.e.

CreateFlow/DeleteFlow/ResynchFlow/StatusFlow for the flow named “CamelDynamicFlow” as

per the configuration of the “CamelDynamicFlow” flow in the AdapterConfiguration.xml file.

86

Figure 49 - “camel-collectionactions” route in the camel-context.xml file

This route works by requesting a collection flow action to be performed on the Target Application and processing the
action response.

This route is explained in detail in the 5.1.2.2 “Collections” chapter.

5.1.1.5.3 The “camel-collection” route

This route processes collection of alarms/events for the flow named “CamelDynamicFlow” as per the configuration

of the “CamelDynamicFlow” flow in the AdapterConfiguration.xml file.

Figure 50 - “camel-collection” route in the camel-context.xml file

This route works by collecting alarms/events from a Target Application and forwarding them to the Collection service of

the UMB framework, implemented by Kafka/ZooKeeper.

This route is explained in detail in the 5.1.2.2 “Collections” chapter.

5.1.2 How does it work?

5.1.2.1 Actions
When a “CamelAction” is requested to be executed by the Camel Adapter, the request will be handed over to the

“CamelAction” implementing class (the com.hp.umb.adapter.camel.CamelAction Java class) by the

UMB framework. The CamelAction class will push the request to the “camel-actions” route defined in the

camel-context.xml file. Inside the “camel-actions” route, the request will be processed by being sent to the

Target Application. We use the com.hp.umb.adapter.camel.ActionBean Java class inside the “camel-
actions” route to simulate the request being sent to the Target Application. The response to the request is picked up

87

by the com.hp.umb.adapter.camel.CamelAction Java class at the end of the “camel-actions”

route. The response is then forwarded to the original requester by the UMB framework.

Figure 51 - Processing Actions in the Camel Adapter

Executing an action on the Camel Adapter entails the following steps:

1. An action request is forwarded by the Distributed Executor service of the UMB framework to the Camel Adapter. This

action request comes from another Adapter connected to the UMB. If this action is named “CamelAction” (let’s

assume this is the case), then the action request is to be processed by the

com.hp.umb.adapter.camel.CamelAction class, as per the Camel Adapter’s

AdapterConfiguration.xml configuration file. An action request in the UMB framework takes the form of a

com.hp.umb.adapter.ActionQuery object.

2. The action request is processed by the public ActionReply execute() method in the CamelAction

class. The ActionQuery object that represents the action request is pushed to the start endpoint of the “camel-
actions” route.

3. The ActionQuery object follows the “camel-actions” route step by step. Along this route, the action request is

sent to the “actionBean” for processing8. This step simulates the action request being sent to a Target Application

for processing. Should you wish to actually connect to a Target Application, you should consider replacing this step by
your own Camel code.

4. The action request is processed by the “actionBean” which returns an action response in the form of a

com.hp.umb.adapter.ActionReply object which is pushed back along the Camel route.

5. The Camel route ends and the action response is returned to the public ActionReply execute() method in

the CamelAction class.

6. The public ActionReply execute() method returns the action response to the Distributed Executor service

of the UMB framework, which in turn sends it to whichever Adapter requested the action to be processed initially.

The “camel-actions” route in the Camel Adapter is an example route for processing action requests using Camel.

You can modify this route to do your own processing using the full extent of the Camel Spring DSL. The only constraint is

that the messages processed by the “camel-actions” route have to be of type

8 The “actionBean” is implemented by the com.hp.umb.adapter.camel.ActionBean class as the bean

declaration for the “actionBean” indicates, at the beginning of the camel-context.xml file

88

com.hp.umb.adapter.ActionQuery as input of the route and

com.hp.umb.adapter.ActionReply as output of the route.

5.1.2.2 Collections
When a collection flow action (CreateFlow/DeleteFlow/ResynchFlow/StatusFlow) is requested to be

executed by the Camel Adapter for the “CamelDynamicFlow” flow, the request will be handed over to the

“CamelDynamicFlow” implementing class (the com.hp.umb.adapter.camel.CamelCollector Java

class) by the UMB framework.

The CamelCollector class will push the request to the “camel-collectionactions” route defined in the

camel-context.xml file. Inside the “camel-collectionactions” route, the request will be processed by

being sent to the Target Application. We use the

com.hp.umb.adapter.camel.CollectionActionBean Java class inside the “camel-
collectionactions” route to simulate the request being sent to the Target Application. The response to the

request is picked up by the com.hp.umb.adapter.camel.CamelCollector Java class at the end of the

“camel-collectionactions” route. The response is then forwarded to the original requester by the UMB

framework.

Once a collection has been created, the Target Application will push collection alarms/events to the start of the “camel-
collection” route. These alarms/events will be transformed by the

com.hp.umb.adapter.camel.TransformationBean Java class so that they can be mapped into event

(or alarms) compatible with the UMB framework. The alarms/events will then be picked by the

com.hp.umb.adapter.camel.CamelCollector Java class at the end of the “camel-collection”

route. They will then be forwarded to the proper Topic on the Kafka instance(s) part of the UMB framework.

Figure 52 - Processing Collection Flow Actions in the Camel Adapter

Processing collection flow actions is very similar to processing actions in the Camel Adapter as described in the 5.1.2.1

“Actions” chapter.

The only differences are that:

• collection flow actions are processed inside the com.hp.umb.adapter.camel.CamelCollector Java

class (instead of the com.hp.umb.adapter.camel.CamelAction Java class for actions) by either of the

following methods (instead of the public ActionReply execute() method for actions):

o public ActionReply startCollection()

89

o public ActionReply stopCollection()

o public ActionReply resynchCollection()
o public ActionReply getCollectionStatus()

• collection flow actions are processed by the “camel-collectionactions” route (instead of the “camel-
actions” route for actions)

• to simulation the collection flow actions being processed by a target application the collectionActionBean

bean is used (instead of the actionBean bean for actions)

Figure 53 - Processing Collections in the Camel Adapter

Collecting alarms/events in the Camel Adapter entails the following steps:

1. Thanks to a previous CreateFlow action, a collection has been created on the Target Application which pushes

alarms/events to the “camel-collection” route start endpoint: direct:startCollection. As the Camel

Adapter is an example Adapter we use a direct: endpoint (for simplicity’s sake) as the start endpoint of the route. In

a real use case, we could imagine that the Target Application pushes alarms/events to a JMS queue/topic and we would
use this JMS queue/topic as the start endpoint of the route.

2. Alarms/Events are processed along the “camel-collection” route by the transformationBean bean. This

bean provides a means to transform Alarm/Event objects initially in the Target Application format into Alarms/Events in

UCA EBC format (objects that implement the com.hp.uca.expert.event.Event Java interface)

3. Alarms/Event are picked up at the end of the “camel-collection” route by the public
Collection<Event> pull() method of the com.hp.umb.adapter.camel.CamelCollector

Java class.
4. These alarms/events are then pushed to the Collection service component of the UMB framework implemented by

Kafka/Zookeeper on the topic associated with the collection flow. The alarm/event collection is thus made available for
consumption by the Adapter that requested the collection flow to be created in the first place (since this is a dynamic flow

as per the AdapterConfiguration.xml file).

5.1.3 JUnit tests
A JUnit test is present in the src/test/java folder. The name of the JUnit test class is

com.hp.umb.adapter.camel.CamelAdapterTest. This class contains 2 test methods:

• A method that tests action executions named: testExecuteAction()

• A method that tests collection flows named: testFlowAction()

90

The testExecuteAction() test works by requesting an action to be executed on the Camel Adapter and

verifying that the action response is correct.

The testFlowAction() test works by creating a collection flow on the Camel Adapter, resynchronizing it, retrieving

its status and then deleting it.

5.2 File Adapter
The File Adapter is a sample adapter that demonstrates how a UMB Adapter can easily provide flow collection services
based on files. This adapter acts as a Flow service provider.

As a Flow provider, the adapter will:

• respond to collection flow actions: CreateFlow, DeleteFlow, ResynchFlow, StatusFlow

• as a consequence of these collection flow actions, the adapter will create/delete/resynchronize or get the status of
collections of alarms or events

There are 2 distinct parts in the File Adapter:

• One that can produce flows of alarms based on alarms stored in an XML file

• One that can produce flows of events (temperatures in our case) based on data stored in a comma-separated values
(CSV) file

The File Adapter is composed of:

• Configuration files:

o The Adapter properties file: adapter.properties that defines properties for the adapter

including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how to connect to the

UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines the flows and actions

(in our case just flows, no actions) provided by the adapter

• Data files:

o An XML alarms file: alarms.xml that contains alarms in XML format to be used to create alarm

flows

o An comma-separated values (CSV) file: temperatures.csv that contains temperature data in

CSV format to be used to create temperature flows
• Java files that define the Adapter’s behavior

The following figure explains the overall architecture of the File Adapter.

91

Figure 54 - File adapter overview

In the above figure, the File Adapter is used to provide alarm and event (temperatures) collection flows to the Unified
Mediation Bus based on data files in XML format for alarms and CSV format for events (temperatures). The flows are

defined in the AdapterConfiguration.xml file. A data file is associated with each flow. Both static and dynamic

flows are supported.

The following sections will explain in detail how the File Adapter works.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

AdapterConfiguration.xml file.

5.2.1 Configuration
The configuration files of the File Adapter are located in the src/main/resources and

src/test/resources folders (data files are located in the src/test/resources/data folder). Each of

the configuration files is explained in detail below.

5.2.1.1 The adapter.properties file
The Adapter properties file: adapter.properties defines properties for the adapter including connection

information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

• producer.bootstrap.servers: a list of Kafka brokers in the form of <host>:<port>

• producer.acks: set to 1 by default, indicating that Kafka is in a mode where messages are acknowledged

• zookeeper.connect: a list of Zookeeper instances in the form of <host>:<port>

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

adapter.properties file.

92

5.2.1.2 The hazelcast.xml file
The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the UMB Hazelcast

instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

hazelcast.xml file.

5.2.1.3 The log4j.xml file
The Adapter’s Log4j configuration file: log4j.xml

5.2.1.4 The AdapterConfiguration.xml file
The Adapter configuration file: AdapterConfiguration.xml defines the flows and actions provided by the

adapter.

Figure 55 - The File Adapter’s AdapterConfiguration.xml file

By default, 4 flows are defined:

• 2 alarm flows: one static and one dynamic9

• 2 temperatures flows: one static and one dynamic

The flow named “AlarmFileStaticFlow” defines its implementing class

(com.hp.umb.adapter.file.FileCollector) as well as the data file to use (data/alarms.xml). Its

type is declared to be static.

9 Static flow are automatically started when the Adapter is started while dynamic flows are not. For dynamic flows a

CreateFlow collection flow action needs to be sent to the adapter for the flow to be created and started. This is done

automatically by the flow consumer when the startCollection() method is called.

93

The flow named “AlarmFileDynamicFlow” is identical to the “AlarmFileStaticFlow” except that it is

declared to be dynamic.

The flow named “TemperaturesStaticFlow” defines its implementing class

(com.hp.umb.adapter.file.TemperaturesCollector) as well as the data file to use

(data/temperatures.csv). Its type is declared to be static.

The flow named “TemperaturesDynamicFlow” is identical to the “TemperaturesStaticFlow” except

that it is declared to be dynamic.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

AdapterConfiguration.xml file.

5.2.1.4.1 The “alarms.xml” data file

This file contains alarms in XML format to be used for both the “AlarmFileStaticFlow” and

“AlarmFileDynamicFlow” flows.

This file uses the same format as alarm files in the UCA EBC application (the XML namespace used is:

http://hp.com/uca/expert/x733Alarm).

Figure 56 - File Adapter’s “alarms.xml” data file

94

5.2.1.4.2 The “temperatures.csv” data file

This file contains temperatures in CSV format to be used for both the “TemperaturesStaticFlow” and

“TemperaturesDynamicFlow” flows.

Figure 57 - File Adapter’s “temperatures.csv” data file

The first column is the temperature identifier, and the second column is the temperature value.

5.2.2 How does it work?

5.2.2.1 Collections

5.2.2.1.1 Alarms collections

Alarm collections are implemented with the com.hp.umb.adapter.file.FileCollector Java class, as

apparent by the “AlarmFileStaticFlow” and “AlarmFileDynamicFlow” flow definitions in the

AdapterConfiguration.xml file.

The FileCollector Java class will respond to collection flow action requests

(CreateFlow/DeleteFlow/ResynchFlow/StatusFlow) from the UMB framework and also handle the

actual collection of alarms from the alarms file (specified in the AdapterConfiguration.xml file) to the

collections service of the UMB framework (implemented by Kafka) and from there to potential consumers.

95

Figure 58 - File Adapter’s alarms collections

5.2.2.1.2 Temperatures collections

Temperature collections are implemented with the

com.hp.umb.adapter.file.TemperaturesCollector Java class, as apparent by the

“TemperaturesStaticFlow” and “TemperaturesDynamicFlow” flow definitions in the

AdapterConfiguration.xml file.

The TemperaturesCollector Java class will respond to collection flow action requests

(CreateFlow/DeleteFlow/ResynchFlow/StatusFlow) from the UMB framework and also handle the

actual collection of temperatures from the temperatures CSV file (specified in the AdapterConfiguration.xml

file) to the collections service of the UMB framework (implemented by Kafka) and from there to potential consumers.

Figure 59 - File Adapter’s temperatures collections

96

5.2.3 JUnit tests
A JUnit test is present in the src/test/java folder. The name of the JUnit test class is

com.hp.umb.adapter.file.FileAdapterTest. This class contains 1 test method:

• A method that tests collection flows named: testFlowAction()

The testFlowAction() test works by creating a collection flow on the File Adapter, resynchronizing it, retrieving

its status and then deleting it.

5.3 Log Adapter
The Log Adapter is a sample adapter that demonstrates how a UMB Adapter can be easily set up as a flow consumer in
order to log alarms or events from existing UMB collection flows.

As a Flow consumer, the adapter will:

• send collection flow actions: CreateFlow, DeleteFlow, ResynchFlow to target UMB Adapters acting as flow producers
• consume (and log) alarms or events from these collection flows

The Log Adapter defines 2 flow consumers by default:

• One that can consume flows of alarms10: com.hp.umb.adapter.log.LogAlarmConsumer

• One that can consume flows of events11: com.hp.umb.adapter.log.LogEventConsumer

The Log Adapter is composed of:

• Configuration files:

o The Adapter properties file: adapter.properties that defines properties for the adapter

including connection information for Kafka/ZooKeeper

o The Adapter’s Hazelcast configuration file: hazelcast.xml that defines how to connect to the

UMB Hazelcast Central Repository

o The Adapter’s Log4j configuration file: log4j.xml

o The Adapter configuration file: AdapterConfiguration.xml that defines the flows and actions

(in our case no flows or actions are defined) provided by the adapter
• Java files that define the Adapter’s behavior

The following figure explains the overall architecture of the Log Adapter.

10 Alarms are objects that implement the com.hp.uca.expert.alarm.AlarmCommon Java interface

11 Events are objects that implement the com.hp.uca.expert.event.Event Java interface

97

Figure 60 - Log adapter overview

In the above figure, the Log Adapter is used to consume alarm and event collection flows from the Unified Mediation Bus
and log these alarms and events as log messages. Both static and dynamic flows are supported. The Log Adapter can

also send collection flow actions to UMB in order to create/delete/resynchronize collection flows.

The following sections will explain in detail how the Log Adapter works.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

AdapterConfiguration.xml file.

5.3.1 Configuration
The configuration files of the Log Adapter are located in the src/main/resources and

src/test/resources folders. Each of the configuration files is explained in detail below.

5.3.1.1 The adapter.properties file
The Adapter properties file: adapter.properties defines properties for the adapter including connection

information for the UMB Kafka/ZooKeeper instance(s).

The following properties are defined by default in this file:

Producer properties
producer.bootstrap.servers=localhost:9091
producer.acks=1
producer.batch.size=1000000
producer.linger.ms=500

Consumer specific properties
consumer.bootstrap.servers=localhost:9091

Adapter general properties
zookeeper.connect=localhost:2181, localhost:2182
hazelcast.backpressure.workaround.delay.ms=50

98

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

adapter.properties file.

5.3.1.2 The hazelcast.xml file
The Adapter’s Hazelcast configuration file: hazelcast.xml defines how to connect to the UMB Hazelcast

instance(s).

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

hazelcast.xml file.

5.3.1.3 The log4j.xml file
The Adapter’s Log4j configuration file: log4j.xml

5.3.1.4 The AdapterConfiguration.xml file
The Adapter configuration file: AdapterConfiguration.xml defines the flows and actions provided by the

adapter.

Figure 61 - The Log Adapter’s AdapterConfiguration.xml file

As the Log adapter is only a flow consumer, it does not define any producer flow services in the

AdapterConfiguration.xml file. However it does declare “autoConsumers” for each consumer flow that needs

to be automatically created and started. Declaring consumer flows in the AdapterConfiguration.xml file

removes the need to add Java code in the Adapter’s main Java class for the specific purpose of creating and starting

consumer flows.

In the provided configuration example, two consumer flows that start automatically are defined:

• Alarm Logger

• Event Logger

• Each of them is consuming events from the File Adapter flows: the TemperatureStaticFlow flow for the

Even Logger and the AlarmFileStaticFlow flow for the Alarm Logger.

99

The Log Adapter can be easily enhanced (even after the Adapter has been installed) by adding new consumer flows in

the “autoConsumer” section of the configuration file and providing the associated consumer message handler class as a

.jar file in the Log Adapter’s lib directory.

Please refer to the [R1] Unified Mediation Bus installation and configuration Guide for details on how to configure the

AdapterConfiguration.xml file.

5.3.2 How does it work?

5.3.2.1 Collections

5.3.2.1.1 Alarms/Events collections

The com.hp.umb.adapter.log.LogAdapter Java class is the class that implements the Log Adapter. It

contains a main(String[] args) method that starts the Adapter based on configuration settings stored in the

AdapterConfiguration.xml file.

The AdapterConfiguration.xml file defines 2 consumer flows that are set to automatically start when the

Adapter starts:

• UcaStaticForwarderFlow
• UcaStaticEventForwarderFlow

Each of these consumer flows is associated with a consumer message handler12 class that defines what to do with each

message consumed from the collection flow. Messages take the form of alarms13 in the case of the

UcaStaticForwarderFlow flow and events14 in the case of the UcaStaticEventForwarderFlow flow.

The following consumer message handler classes are defined in the Log Adapter:

• com.hp.umb.adapter.log.LogAlarmConsumer: this class is associated with the UcaStaticForwarderFlow flow
• com.hp.umb.adapter.log.LogEventConsumer: this class is associated with the UcaStaticEventForwarderFlow flow

These classes are implemented in such a way that each message consumed from the collection flow (alarm or event) is

logged in a log file.

However, any other treatment could be implemented by some other customized message handlers.

12 Consumer message handler classes must implement the

com.hp.umb.adapter.consumer.ConsumerMessageHandlerInterface Java interface

13 Alarms are objects that implement the com.hp.uca.expert.alarm.AlarmCommon Java interface

14 Events are objects that implement the com.hp.uca.expert.event.Event Java interface

100

Figure 62 - Log Adapter consuming alarms/events collections

101

Appendix A

5.4 Maven pom.xml
The Adapter examples provided with UMB come with a Maven pom.xml file that can build and package the project as

described in this document.

Following is the list of Apache Maven targets that can be executed from the command line using the mvn tool:

mvn clean
Removes all files created during the build from the build directory.

mvn compile
Compiles all Java files of the project.

mvn test
Runs the JUnit tests defined in the project.

mvn package
Build the final, “ready to deploy” Adapter ZIP file without cleaning the folder 'target'

mvn clean package
Is equivalent to executing the following targets: “clean”, “compile”, “test” and “package”.

102

Chapter 6 Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

IDE: Integrated Development Environment

JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UMB product.

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm for expert behavior

DRL: Drools Rule file

XML: Extensible Markup Language

XSD: Schema of an XML file, describing its structure

X.733: Standard describing the structure of an Alarm used in telecommunication environment.

EVP: UMB Value Pack

DSL: Domain Specific Language

API: Application Programming Interface

URI: Uniform Resource Identifier

CSV: comma-separated values

	Notices
	Preface
	About this guide
	Intended Audience
	Software Versions
	Typographical Conventions
	Associated Documents
	Support

	Chapter 1 Introduction
	1.1 Overview
	1.1.1 The Mediation Common Registry
	1.1.1.1 Using Hazelcast® for Actions implementation

	1.1.2 The Message Broker

	1.2 Unified Mediation Bus principles
	1.2.1 The Unified Mediation Bus Server (broker)
	1.2.2 The Unified Mediation Bus Adapters
	1.2.3 The Unified Mediation Bus Adapter Services
	1.2.3.1 Flow Services
	1.2.3.1.1 Flow Parameters

	1.2.3.2 Defining Flow Service Consumers by configuration
	1.2.3.2.1 Defining Non-UMB consumer flows

	1.2.3.3 Action Services
	1.2.3.3.1 Action Parameters

	1.2.4 The Unified Mediation Bus messages
	1.2.4.1 Logging and testing considerations (UCA-EBC)

	Chapter 2 Getting started with Unified Mediation Bus Development Kit
	2.1 Installing the Unified Mediation Bus Adapter Development Kit
	2.2 Adapter Development Pre-requisites
	2.2.1 Eclipse IDE
	2.2.2 Post-install Environment Setup
	2.2.2.1 The UMB_DEV_HOME Variable
	2.2.2.2 Maven Configuration

	2.2.3 Unified Mediation Bus Eclipse plug-in installation instructions

	Chapter 3 Unified Mediation Bus Adapters development
	3.1 Creating a new UMB Adapter
	3.1.1 Creating a UMB Adapter project within Eclipse
	3.1.2 Anatomy of the created project
	3.1.3 Validation of the created project

	3.2 Customizing the created UMB Adapter project
	3.2.1 Customizing the Adapter Name
	3.2.2 Adding producer flow services
	3.2.2.1 Managing the Collectors state

	3.2.3 Adding action services
	3.2.4 Adding consumer flows
	3.2.4.1 Automatically started Consumer flows
	3.2.4.2 Consumer flows started from java code
	3.2.4.3 Defining the flow message consumer class
	3.2.4.4 Consumer flows state diagram

	3.3 Generating the UMB Adapter kit
	3.4 Installing and starting the UMB Adapter

	Chapter 4 Advanced development topics
	4.1 Creating a new UMB Event Definition Project
	4.1.1 Anatomy of the created project
	4.1.2 Validation of the created project

	4.2 Customizing the serialization Class
	4.3 Lifecycle and thread-safety of user-provided classes
	4.3.1 Lifecycle and thread-safety of actionClass objects
	4.3.2 Lifecycle and thread-safety of collectorClass and serializerClass producer flow objects
	4.3.3 Lifecycle and thread-safety of messageConsumerClass and serializerClass consumer flow objects

	4.4 Retrieving information on Adapters in the solution/cluster
	4.4.1 Getting the list of known Adapters
	4.4.2 Getting notifications on Adapters

	4.5 Multiple Kafka/ZooKeeper clusters configuration
	4.6 Make an adapter compliant with the ‘umb’ command-line administration tool
	4.7 Specifying a custom Partitioner
	4.8 Using the manual Commit feature

	Chapter 5 Unified Mediation Bus sample Adapters
	5.1 Camel Adapter
	5.1.1 Configuration
	5.1.1.1 The adapter.properties file
	5.1.1.2 The hazelcast.xml file
	5.1.1.3 The log4j.xml file
	5.1.1.4 The AdapterConfiguration.xml file
	5.1.1.5 The camel-context.xml file
	5.1.1.5.1 The “camel-actions” route
	5.1.1.5.2 The “camel-collectionactions” route
	5.1.1.5.3 The “camel-collection” route

	5.1.2 How does it work?
	5.1.2.1 Actions
	5.1.2.2 Collections

	5.1.3 JUnit tests

	5.2 File Adapter
	5.2.1 Configuration
	5.2.1.1 The adapter.properties file
	5.2.1.2 The hazelcast.xml file
	5.2.1.3 The log4j.xml file
	5.2.1.4 The AdapterConfiguration.xml file
	5.2.1.4.1 The “alarms.xml” data file
	5.2.1.4.2 The “temperatures.csv” data file

	5.2.2 How does it work?
	5.2.2.1 Collections
	5.2.2.1.1 Alarms collections
	5.2.2.1.2 Temperatures collections

	5.2.3 JUnit tests

	5.3 Log Adapter
	5.3.1 Configuration
	5.3.1.1 The adapter.properties file
	5.3.1.2 The hazelcast.xml file
	5.3.1.3 The log4j.xml file
	5.3.1.4 The AdapterConfiguration.xml file

	5.3.2 How does it work?
	5.3.2.1 Collections
	5.3.2.1.1 Alarms/Events collections

	Appendix A
	5.4 Maven pom.xml

	Chapter 6 Glossary

