WinRunner ®
Tutorial

Version 5.0

Onlinié Guide

......

Table of Contents

Welcome to the WinRunner Tutorial...........ccoooooviiiiiiiiiiiiiiiiiiiiies)Y

Lesson 1: Introducing WINRUNNETciiiiiiiiiiiiiiie e, 1

Lesson 2: Getting Started with RapidTestccccceiieiieveiiinnnnnn. 9

Lesson 3: Recording TestS.........ccccovviiiiiiiiiiiiccec e, 25 _
Lesson 4: Synchronizing TestS......ccoooovviiiiiiiiiiiici e, 42 —
Lesson 5: Checking GUI ODJecCtS.......cccvvveiiiiiiiiieeicce e 55 ?
Lesson 6: Checking Bitmapscooovvvviiiiiiiiiiiiiiiee e 69 ‘ ’
Lesson 7: Programming Tests with TSL.........cccooeeiiiiiiiiieinenennn, 81

Lesson 8: Reading TeXt......ciiiii i 97

Lesson 9: Creating Batch TeStS........cccviiiiieiiiiiiii e 116 *g
Lesson 10: Maintaining Your Test SCriptS.........cccccoevvviiiinnnnee. 126 Click a
Lesson 11: Where Do You Go from Here?........cccccoeeeveveennn. 142 page
80 [PPSR 148

WinRunner Tutorial

Welcome to the WinRunner Tutorial

Welcome to the WinRunner Tutorial, a self-paced guide that teaches you the basics
of testing your application with WinRunner. This tutorial is designed to familiarize
you with the process of creating and executing automated tests and analyzing the
test results.

The tutorial is divided into 11 short lessons. In each lesson you will create and run Find
tests on the sample Flight Reservation application (Flight 1A and Flight 1B) located
in your WinRunner program group.

WinRunner Tutorial

Welcome to the WinRunner Tutorial

After completing the tutorial, you can apply the skills you learned to your own
application.

Lesson 1, Introducin g WinRunner compares automated and manual testing
methods. It introduces the WinRunner testing process and familiarizes you with the
WinRunner user interface.

Lesson 2, Gettin g Started with Ra pidTest shows you how to use the RapidTest
Script wizard to quickly generate tests and to teach WinRunner descriptions of the
GUI (Graphical User Interface) objects in an application. When you execute tests,
WinRunner uses these descriptions to help it locate the objects in your application. Find
After using the wizard, you will run a test and examine the results.

Lesson 3, Recordin g Tests teaches you how to record a test script and explains
the basics of Test Script Language (TSL)—Mercury Interactive’s C-like ‘ ’
programming language designed for creating scripts.

Lesson 4, S ynchronizin g Tests shows you how to synchronize a test so that it @
can run successfully even when an application responds slowly to input.

Lesson 5, Checkin g GUI Objects shows you how to create a test that checks GUI
objects. You will use the test to compare the behavior of GUI objects in different
versions of the sample application.

Lesson 6, Checkin g Bitma ps shows you how to create and run a test that checks
bitmaps in your application. You will run the test on different versions of the sample
application and examine any differences, pixel by pixel.

WinRunner Tutorial \Y}

Welcome to the WinRunner Tutorial

Lesson 7, Pro grammin g Tests with TSL shows you how to use visual
programming to add functions and logic to your recorded test scripts.

Lesson 8, Readin g Text teaches you how to read and check text found in GUI
objects and bitmaps.

Lesson 9, Creatin g Batch Tests shows you how to create a batch test which will
automatically run the tests you created in earlier lessons.

Lesson 10, Maintainin g Your Test Scri pts teaches you how to update the GUI
object descriptions learned by WinRunner, so that you can continue to use your
test scripts as the application changes.

Lesson 11, Where Do You Go from Here? tells you how to get started testing
your own application and where you can find more information about WinRunner. ‘ ’

As you work through the lessons, keep in mind that you are learning the basics for
testing any application. Each lesson should take approximately 20 minutes, but you @
can take as much time as you need.

WinRunner Tutorial

Introducing WinRunner

This lesson:

¢ describes the benefits of automated testing

® introduces the WinRunner testing process

® takes you on a short tour of the WinRunner user interface Find

WinRunner Tutorial Lesson 1, page 1

Introducing WinRunner

The Benefits of Automated Testing

If you have ever manually tested software, you are aware of the drawbacks. Manual
testing is a time-consuming and tedious process, which requires a heavy
investment in human resources. Worst of all, time constraints often make it
impossible to manually test and retest every feature before the software is
released. This leaves you wondering whether serious bugs have gone undetected.

Automated testing with WinRunner dramatically speeds up the testing process. You
can create test scripts that check all aspects of your application, and then run these '7
tests on each new build. As WinRunner runs tests, it simulates a human user by
moving the mouse cursor over the application, clicking GUI objects, and entering ‘ ’
keyboard input—but WinRunner does this faster than any human user.

With WinRunner you can also save time by running batch tests overnight. You
simply start the batch run before you leave work in the evening, and review the
results when you return in the morning.

WinRunner Tutorial Lesson 1, page 2

Introducing WinRunner

Benefits of Automated Testing

Fast WinRunner executes tests faster than human users.
. Tests perform the same operations each time they are run,

Reliable S
thereby eliminating human error.
You can test how the software reacts under repeated

Repeatable . .)
execution of the same operations. Find
You can program sophisticated tests that pull out hidden D

Programmable

information from the application.

Comprehensive

You can build a suite of tests that covers every feature in
your application.

Reusable

You can reuse tests on different versions of an application,
even if the user interface changes.

WinRunner Tutorial

1 Introducing WinRunner

Understanding the Testing Process

The WinRunner testing process consists of 6 main phases:

1 Start by running the RapidTest Script wizard on your application in order to teach
WinRunner a description of every GUI object the application contains. The wizard
automatically generates a series of tests which you can immediately run on your
application.

2 Create additional test scripts that test the functionality of your application. Use
recording and/or programming to build test scripts written in Mercury Interactive’s 7
Test Script Language (TSL).

3 Debug the tests to check that they operate smoothly and without interruption. ‘ ’

4 Run the tests on a new version of the application in order to verify the application’s @
behavior.

5 Examine the test results to pinpoint defects in the application.

6 Report any defects to a database using the Remote Defect Reporter. This phase
requires that you also use TestDirector, Mercury Interactive’s software test
management tool.

WinRunner Tutorial Lesson 1, page 4

Introducing WinRunner

Exploring the WinRunner Window

Before you begin creating tests, you should familiarize yourself with the WinRunner
main window.

To open WinRunner:

g Choose Programs > WinRunner > WinRunner on the Start menu.

The first time you start WinRunner, the Welcome to WinRunner window opens. You
can choose to run the RapidTest Script wizard, open an existing test, or create a

new test. Find
Welcome To WinBunner B 7

: 4
WinRunner
— @ [Rapid Test Script Wizard
g [E pomeer— e 5 S— :

Open Test

Open an existing test scrpt

o [m)

Hew Test 3
Create a new test soript 1

¥ Show at startup MERCUBY INTERACTIVE

If you do not want this window to appear the next time you start WinRunner, clear
the Show at Startup check box.

WinRunner Tutorial Lesson 1, page 5

Introducing WinRunner

Each test you create or run is displayed by WinRunner in a test window. You can
open many tests at one time.

1 2 3

1 The WinRunner window T
displays all open tests. iunner

File Edt Create Bun Debug Tools |Settings Window Help

2 Each test appears in its own

test window. You use this window Qlﬁ“‘]ﬂl |Verify vI 1' l%l'@l ﬁlﬂﬂl < |:§1| @lﬂﬂlg&l %I ﬁl

to record, program, and edit test
scripts. E MNoname2=) =]

win_activate ['Program Manager'); =
set window ["Program Manager", 10]; o)
obj_mouse click ['SysListView32", 330, 502, RIGHT]; :
-»|menu_select_item ['Properties');

set window ['Display Properties", 10]; ‘ ’
tab_select_itemn ['tab", "Appearance"]; # Item Number 2;
button_press ["OK']:

3 Buttons on the Standard
toolbar help you quickly open, run,
and save tests.

4 The Test Creation toolbar
provides easy access to test
creation tools.

5 The execution arrow marks
the line currently being executed
by WinRunner.

6 The status bar displays
information about selected
commands and the current test
run.

19|57 |2 == |s 55 S s

] 1]

ess ALT to choose commands |Line Mumber: 1 |Result Directory: 2

4 5 6

=

WinRunner Tutorial

Introducing WinRunner

The Standard toolbar provides easy access to frequently performed testing tasks,

such as opening, executing, and saving tests, and viewing test results.
Record— Run from Break in

Open Context Sensitive Arrow Pause Step Into Function ~Test Results
Gll@l [Very =l Lol Elelaln] o[58 almss| 52 xf
| |] | | Find
New Save Run Mode Run from Top Stop Step Toggle Add Watch Help
Breakpoint
?

The Test Creation toolbar displays the tools you frequently use to create test ‘ ’
scripts. To display the toolbar, choose Window > Test Creation Toolbar.

WinRunner Tutorial Lesson 1, page 7

Introducing WinRunner

When you create tests, you can minimize the WinRunner window and work
exclusively from the toolbar.

| Insert Function—Point
— Insert Function—From List

— Check GUF—Point

— Check GUF—Create

— Check Bitmap—Point

Check Bitmap—Area

I — Wait Bitmap— Point

— Wait Bitmap—Area 7

I— Get Text—Point

L Get Text—Area ‘ ’

— Wait Object—Point

2|09 | | o o | 5 |3 | 0 9

The tools on the Standard toolbar and the Test Creation toolbar are described in
detail in subsequent lessons.

Note that you can also execute many commands using softkeys. You can configure
the softkey combinations for your keyboard using the Softkey configuration in your
WinRunner program group. For more information, see Chapter 2, “WinRunner at a
Glance,” in your WinRunner User’s Guide.

Now that you are familiar with the main WinRunner window, take a few minutes to
explore these window components before proceeding to the next lesson.

WinRunner Tutorial Lesson 1, page 8

Getting Started with RapidTest

This lesson:

® describes how WinRunner identifies GUI objects in an application

® explains how to use the RapidTest Script wizard to learn descriptions of GUI
objects and to generate tests Find

® shows you how to run a test

® helps you analyze the test results

WinRunner Tutorial Lesson 2, page 9

2 Getting Started with RapidTest

How Does WinRunner ldentify GUI Objects?

GUI applications are made up of GUI objects such as windows, buttons, lists, and
menus. Before you begin creating and running tests on an application, you should
use the RapidTest Script wizard to learn a description of all the GUI objects it
contains. The wizard opens windows, examines their GUI objects, and saves the
object descriptions in a GUI map file. Later on when you run tests, WinRunner uses
this file to identify and locate objects.

When WinRunner learns a description of a GUI object, it looks at the object’s Find
physical properties. Each GUI object has many properties such as “class”, “label”,
“width”, “height”, “handle”, and “enabled” to name a few. However, WinRunner only
learns the properties that uniquely distinguish an object from all other objects in the ‘ ’

application.

For example, when WinRunner looks at an OK button, it might see that the button @
is located in an Open window, belongs to the pushbutton object class, and has the
text label “OK”.

WinRunner Tutorial Lesson 2, page 10

Getting Started with RapidTest

Spying on GUI Objects

To help you understand how WinRunner identifies GUI objects, examine the
objects in the sample Flight Reservation application.

L%‘ 1 Open the Flight Reservation application.
2

Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start
menu. The Login window opens.

Find
oK
Agent MName: I - ?

LCancel
Password;
— <\

g 2 Start WinRunner. @

Choose Programs > WinRunner > WinRunner on the Start menu. In the Welcome
window, click the New Test button. If the Welcome window does not open, choose
File > New.

WinRunner Tutorial Lesson 2, page 11

Getting Started with RapidTest

3 Open the GUI Spy. This tool lets you “spy” on the properties of GUI objects.

On the WinRunner Tools menu, choose GUI Spy. The GUI Spy opens. Position
the GUI Spy on the desktop so that both the Login window and the GUI Spy are
clearly visible.

{GUI Spy E3

Click the Spy button to gpy on properties.

wiindaws MHane:

| Spy

Ohject Mame: Spp o Find
I {* Ohjects

Diescriptian: windows ?

— Show in descripion————— Help |

' Becorded properties

Al properties Cloze |

WinRunner Tutorial Lesson 2, page 12

Getting Started with RapidTest

4 View the properties that provide a unique description of the OK button.

In the GUI Spy, click the Spy button. Move the pointer over objects in the Login
window. Notice that each object flashes as you move the pointer over it, and the
GUI Spy displays its properties. Place the pointer over the OK button and press
Ctrl Left + F3. This freezes the OK button’s description in the GUI Spy.

» GUI Spy
Point on the object and press Ctrl_L+F3
Window Mame:

|Login Spy gl

Ohiject M arne: Spy on Find
IDK * Objects 7
Ciescription: © Windows K

{
clazs: puzgh_button, ‘ ’
label: Ok

1

— Shaw in description Help | @
&' Recorded properties —

" All properties LClose |

WinRunner Tutorial Lesson 2, page 13

2 Getting Started with RapidTest

5 Examine the properties of the OK button.

In the Description box, the property names are listed on the left; property values
are listed after the colon. For example, “label: OK” indicates that the button has
the text label “OK”, and “class: push_button” indicates that the button belongs to
the pushbutton object class. At the top of the dialog box, the GUI Spy also displays
the name of the window in which the object is located.

As you can see, WinRunner needs only a few properties to uniquely identify the

object.
6 Take a few minutes to view the properties of other GUI objects in the Login Find
window.)

Click the Spy button and move the pointer over other GUI objects in the Login

window. ‘ ’

If you would like to view an expanded list of properties for each object, press Ctrl

Left + F3 and then click All Properties in the Show in Description box. Next, click @
the Spy button and move the pointer over the GUI objects in the Login window.
Press Ctrl Left + F3 to freeze an object description in the GUI Spy.

7 Exit the GUI Spy.

Click Close.

WinRunner Tutorial Lesson 2, page 14

Getting Started with RapidTest

Using the RapidTest Script Wizard

The RapidTest Script wizard enables you to quickly start the testing process. You
should run this wizard before starting to create test scripts.

The RapidTest Script wizard performs two important tasks:

® |t systematically opens the windows in your application and learns a description of
every GUI object. The wizard stores this information in a GUI map file.

® It automatically generates tests based on the information it learned as it navigated Find
through the application.

?
To observe WinRunner’s learning and test creation processes, use the RapidTest
Script wizard on the Flight Reservation application. ‘ ’
L%‘ 1 Log in to the Flight Reservation application. @
P

Flight 14 If the Login window is open, type your name and the password mercury and click
OK. Note that the name you type must be at least four characters long.

If the Login window is not already open on your desktop, choose Programs >
WinRunner > Sample Applications > Flight 1A on the Start menu and then log in,
as described in the previous paragraph.

g 2 Open WinRunner.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu.

WinRunner Tutorial Lesson 2, page 15

Getting Started with RapidTest

3 Open a new test.

If the Welcome window is open, click the New Test button. Otherwise, choose File
> New. A new test window opens in WinRunner.

4 Start the RapidTest Script wizard.

On the WinRunner Create menu, choose RapidTest Script Wizard. Click Next in
the wizard’s Welcome screen to advance to the next screen.

RapidT est Script Wizard

Welcome to the
“cript //izard ! ?

S Script Wizard will create test ‘ ’
soripts £0 pou can start testing
immediately.
To create your scripts, Script Wizard will: @
= "w/'alk through' pour application.
|eam your application's
Graphical User Interface [GUI).

Lancel | <<ﬁack| Hext))l Help |

5 Point to the application you want to test.

Click the button and then click the Flight Reservation application. The
application name appears in the wizard. Click Next.

WinRunner Tutorial Lesson 2, page 16

Getting Started with RapidTest

6 Select the User Interface test.

The wizard can automatically generate tests. For the purposes of the exercise,
check that the User Interface Test check box is selected and the GUI Regression
Test check box is cleared. The User Interface test will check that the Flight
Reservation application complies with Microsoft user interface standards. Click
Next.

7 Accept the default navigation controls.

Navigation controls tell WinRunner which GUI objects are used to open windows.
The Flight Reservation application uses the default navigation controls (... and >
>) so you do not need to define additional controls. Click Next.)

8 Set the learning flow to “Express.”

The learning flow determines how WinRunner will walk through your application. ‘ ’
Two modes are available: Express and Comprehensive. Comprehensive mode

lets you customize how the wizard learns descriptions of GUI objects. First-time @
WinRunner users should use Express mode.

Click the Learn button. The wizard begins walking through the application, pulling
down menus, opening windows, and learning object descriptions. This process

takes a few minutes.

If a pop-up message naotifies you that an interface element is disabled, click the
Continue button in the message box.

If the wizard cannot close a window, it will ask you to show it how to close the
window. Follow the directions on the screen.

WinRunner Tutorial Lesson 2, page 17

9

10

11

12

Getting Started with RapidTest

Accept “No” in the Start Application screen.

You can choose to have WinRunner automatically open the Flight Reservation
application each time you start WinRunner. Accept the default “No.” Click Next.

Save the GUI information and a startup script.
The wizard saves the GUI information in a GUI map file.

The wizard also creates a startup script. This script is automatically run each time
you start WinRunner. It contains a command which loads the GUI map file so that
WinRunner will be ready to test your application.

Accept the default paths and file names or define different ones. Make sure that
you have write permission for the selected folders. Click Next.

Save the User Interface test.

Accept the default path and file name (UI) for the User Interface test and click
Next.

Click OK in the Congratulations screen.

The User Interface test is displayed in a WinRunner test window.

Lesson 2, page 18

2 Getting Started with RapidTest

Running the User Interface Test

You are now ready to run the User Interface test script on the Flight Reservation
application. The User Interface test determines whether the application complies
with the Microsoft user interface standards. It checks that:

® GUI objects do not overlap

® GUI objects are aligned in windows

® text labels on GUI objects begin with capital letters Find

® text labels on GUI objects are clearly visible 5

® OK and Cancel buttons appear in every window -

® asystem menu is available in every window. ‘ ’

WinRunner Tutorial Lesson 2, page 19

Getting Started with RapidTest

To run the User Interface test:

1 Check that WinRunner and the Flight Reservation application are still open
on your desktop.

2 Make sure that the Ul test window is active in WinRunner.

Click the title bar of the Ul test window.

|| 3 Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test dialog Find

box opens.
?

oK ‘ ’
Test Bun Hame: =

LCancel | @
[Use Debug mode (don't display this dialog bo) Help |

¥ Display test results at end of mn

WinRunner Tutorial Lesson 2, page 20

Getting Started with RapidTest

4 Choose a Test Run name.

Define the name of the directory in which WinRunner will store the results of the
test. Accept the default name “res1.”

Note that at the bottom of the dialog box is a Display Test Results at End of Run
check box. When this check box is selected, WinRunner automatically displays

the test results when the test run is completed. Make sure that this check box is
selected.

5 Run the Ul test. Find
Click OK in the Run Test dialog box. WinRunner immediately begins running the)
Ul test. Watch how WinRunner opens each window in the Flight Reservation .

application. ‘ ’

6 Review the test results.

When the test run is completed, the test results automatically appear in the @
WinRunner Test Results window. See the next section to learn how to analyze the
test results.

WinRunner Tutorial Lesson 2, page 21

Getting Started with RapidTest

Analyzing Test Results

Once a test run is completed, you can immediately review the test results in the
WinRunner Test Results window. WinRunner color-codes results (green = passed,
red = failed) so that you can quickly draw conclusions about the success or failure
of the test.

e 7 Make sure that the WinRunner Test Results window is open and displays the
results of the Ul test.

If the WinRunner Test Results window is not currently open, first click the Ul test Find
window to activate it, and then choose Tools > Test Results or click the Test)
Results button. .

Lesson 2, page 22

Getting Started with RapidTest

1 Displays the name of the FR WinRunner Te

current test. E3 File Options |Tools “Window
2 Shows the current results -
directory name. j b
3 Shows whether a test run G Test Result:
,DaSSed or failed. |: +% Total number of bitmap checkpaints: 1]
4 Lists general information 4% Total number of GUI checkpoints: i
about the test run such as ﬁ General Information Find
date, operator name, and E)Date: Monday, &piil 13, 1338 11:44:0
total run time. @Dperator hame: ’?
5 The test log section lists EREEE wpected Results Directan: exp H
the major events that &9 Total Fun Time: 00.00:35
occurred during the test run. It - - - ‘ ’
also lists the test script line at Line Event . Detals Fesul Tme =
which each event occurred. ! start un . - el o000 .

17 User Message Check Uszer Interface for window |- a0:00:01

17 t_step Step: Mnemonic check, Status: Fg-—- 000002 @

17 t_step Step: Mnemaonic check, Status: Fg--- Q00002

17 t_step Step: Mnemonic check, Status: Fg-—- 00:00:02

17 t_zstep Step: Buttons check, Status: Fail, - 00:00:03

17 t_step Step: Buttons check, Statug: Fail, |- 00:00:03

19 Uszer Meszage Check Uszer Interface for window |- 00:00:05

19 t_step Step: label check, Status: Fail, Def-— 00:00:05

19 t_step Step: Buttons check, Status: Fail - 00:00.06 -

| v
4 5

Tutorial Lesson 2, page 23

10

11

Getting Started with RapidTest

Review the results and determine whether the Flight Reservation
application complies with the Microsoft user interface standards.

Close the Test Results window.

Choose File > Exit in the WinRunner Test Results window.
Close the Ul test.

Choose File > Close.

Close the Flight Reservation application.

Choose File > Exit.

Lesson 2, page 24

Recording Tests

This lesson:

® describes Context Sensitive and Analog record modes

® shows you how to record a test script

® helps you read the test script Find

® shows you how to run the recorded test and analyze the results)

WinRunner Tutorial Lesson 3, page 25

Recording Tests

Choosing a Record Mode

By recording, you can quickly create automated test scripts. You simply work with
your application as you normally would, clicking objects with the mouse and
entering keyboard input. WinRunner records the operations you perform and
generates statements in TSL, Mercury Interactive’s Test Script Language. These

statements appear as a script in a WinRunner test window.

A”a’OQ Before you begin recording a test, you should plan the main stages of the test and

S select the appropriate record mode. Two record modes are available: Context Find

Sensitive and Analog.

Lesson 3, page 26

Recording Tests

Context Sensitive

Context Sensitive mode records the operations you perform in terms of the GUI
objects in your application. WinRunner identifies each object you click (such as a
window, menu, list, or button), and the type of operation you perform (such as
press, enable, move, or select).

For example, if you record a mouse click on the OK button in the Flight Reservation
Login window, WinRunner records the following TSL statement in your test script:

button_press ("OK");

When you run the script, WinRunner reads the command, looks for the OK button,

and presses it. ‘ ’

WinRunner Tutorial Lesson 3, page 27

Recording Tests

Analog

In Analog mode, WinRunner records the exact coordinates traveled by the mouse,
as well as mouse clicks and keyboard input. For example, if you click the OK button
in the Login window, WinRunner records statements that look like this:

Recorded statements meaning...

move_locator_track (1); mouse track

mtype ("<T110><kLeft>-"); left mouse button press

mtype ("<kLeft>+"); left mouse button release Find
When you run the test, WinRunner retraces the recorded movements using)
absolute screen coordinates. If your application is located in a different position on

the desktop, or the user interface has changed, WinRunner is not able to execute ‘ ’
the test correctly.

You should record in Analog mode only when exact mouse movements are an @
important part of your test, for example, when recreating a drawing.

When choosing a record mode, consider the following points:

WinRunner Tutorial Lesson 3, page 28

Recording Tests

Choose Context Sensitive If... Choose Analog If...

The application contains bitmap

The application contains GUI objects. areas (such as a drawing area),

Exact mouse movements are

Exact mouse movements are not required. :
required.

You plan to reuse the test in different
versions of the application.

If you are testing an application which contains both GUI objects and bitmap)
areas, you can switch between modes as you record. .

WinRunner Tutorial Lesson 3, page 29

Recording Tests

Recording a Context Sensitive Test

g 1

TN
P

Flight 14

In this exercise you will create a script that tests the process of opening an order
in the Flight Reservation application. You will create the script by recording in
Context Sensitive mode.

Open WinRunner.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu.

Open a new test.

If the Welcome window is open, click the New Test button. Otherwise, choose File
> New. A new test window opens in WinRunner.

Start the Flight Reservation application and log in.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Note that the name you type must be at least four characters long. Position
the Flight Reservation application and WinRunner so that they are both clearly
visible on your desktop

Lesson 3, page 30

Recording Tests

4 Flight Reservation [_ O] =]
Fil= Edit Analyziz Help

|

— Flight Schedule:

r— Order Information;

Drate of Flight: MHame: Order Mo

I | |

Fly Fram: ﬂ IDeparlure Tirne: Flight Ma: Find

|Fly To Aarival Timne: Airling: t)

| =l | -

;la;::st Tickets: I— ‘ ’
{;é‘ { Busitess F'ric:ei I @

Flights ..) Economy Tatal: I

Inzert Hrder I Update Drderl [elete Mrder,

ﬂ 4 Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar. From this point on, WinRunner will record all mouse clicks and keyboard
input.

WinRunner Tutorial

Recording Tests

5 Open order #3.

In the Flight Reservation application, choose File > Open Order. In the Open
Order dialog box, select the Order No. check box. Type 3 in the adjacent box, and
click OK.

Watch how WinRunner generates a test script in the test window as you work.

i 6 Stop recording.

In WinRunner, choose Create > Stop Recording or click the Stop button on the Find

toolbar. -
E 7 Save the test. .

Choose File > Save or click the Save button on the toolbar. Save the test as ‘ ’

lesson3in a convenient location on your hard drive. Click Save to close the Save

Test dialog box. @

Note that WinRunner saves the lesson3 test in the file system as a folder, and not
as an individual file. This folder contains the test script and the results generated
when you run the test.

WinRunner Tutorial Lesson 3, page 32

3 Recording Tests

Understanding the Test Script

In the previous exercise, you recorded the process of opening a flight order in the
Flight Reservation application. As you worked, WinRunner generated a test script
similiar to the following:

set_window ("Flight Reservation”, 10);
menu_select_item ("File;Open Order...");
set_window ("Open Order", 10);

button_set ("Order No.", ON); Find
edit_set (“Edit", "3");
button_press ("OK"); ?

As you can see, the recorded TSL statements describe the objects you selected ‘ ’
and the actions you performed. For example, when you selected a menu item,
WinRunner generated a menu_select_item statement. @

WinRunner Tutorial Lesson 3, page 33

Recording Tests

The following points will help you understand your test script:

® When you click an object, WinRunner assigns the object a logical name, which is
usually the object’s text label. The logical name makes it easy for you to read the
test script. For example, when you selected the Order No. check box, WinRunner
recorded the following statement:

button_set ("Order No.", ON);

“Order No.” is the object’s logical name.

® WinRunner generates a set_window statement each time you begin working in a
new window. The statements following set_window perform operations on
objects within this window. For example, when you opened the Open Order dialog
box, WinRunner recorded the following statement: ‘ ’

set_window ("Open Order", 10); @

® When you enter keyboard input, WinRunner generates a type, an obj_type , or an
edit_set statement in the test script. For example, when you typed 3 in the Order
Number box, WinRunner generated the following statement:

edit_set (“Edit”, "3");

For more information about the different ways in which WinRunner records
keyboard input, refer to the specific functions in the TSL Online Reference.

WinRunner Tutorial Lesson 3, page 34

Recording Tests

Recording in Analog Mode

In this exercise you will test the process of sending a fax. You will start recording in
Context Sensitive mode, switch to Analog mode in order to add a signature to the
fax, and then switch back to Context Sensitive mode.

In the lesson3 test, place the cursor below the last line of the script.

You will add the new test segment to the lesson3 test. If the test is not already
open, choose File > Open and select the test. In the lesson3 test window, place
the cursor below the last line of the test.

Start Recording in Context Sensitive mode. P

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar. ‘ ’

Open the Fax Order form and fill in a fax number. @

In the Flight Reservation application, choose File > Fax Order. Click in the Fax
Number box, and type 4155551234.

Select the Send Signature with Order check box.
Sign the fax in Context Sensitive mode.

Sign your name in the Agent Signature box.

Watch how WinRunner records your signature.

Lesson 3, page 35

le
Ell

Recording Tests

Clear the signature.
Click the Clear Signature button.
Move the Fax Order window to a different position on your desktop.

Before switching to Analog mode, reposition the window in which you are working.

Sign the fax again in Analog mode.

Press F2 on your keyboard or click the Record button again to switch to Analog
mode. Sign your name in the Agent Signature box.

Find
Watch how WinRunner records your signature.
Switch back to Context Sensitive mode and send the fax. 7
Press F2 or click the Record button to switch back to Context Sensitive mode. ‘ ’
Click Send. The application will simulate the process of sending the fax.

Stop Recording. @

Choose Create > Stop Recording or click the Stop button.

Save the test.

Choose File > Save or click the Save button.

Lesson 3, page 36

Recording Tests

Running the Test and Analyzing the Results

You are now ready to run your recorded test script and to analyze the test results.
WinRunner provides 3 modes for running tests. You select a mode from the toolbar.

® Use Verify mode when running a test to check the behavior of your application,
and when you want to save the test results.

® Use Debug mode when you want to check that the test script runs smoothly
without errors in syntax. See Lesson 7 for more information.

® Use Update mode when you want to create new expected results for a GUI
checkpoint or bitmap checkpoint. See Lessons 5 and 6 for more information. 2

WinRunner Tutorial Lesson 3, page 37

Recording Tests

To run the test:

Check that WinRunner and the main window of the Flight Reservation
application are open on your desktop.

Make sure that the Jlesson3 test window is active in WinRunner. If the test is
not already open, choose File > Open.

Click the title bar of the lesson3 test window. If the test is not already open,
choose File > Open and select the test.

Make sure the main window of the Flight Reservation application is active. Find

If any dialog boxes are open, close them.)
Make sure that Verify mode is selected in the toolbar.

Choose Run from Top. ‘ ’
Choose Run > Run from Top or click the Run from Top button. The Run Test @
dialog box opens. Accept the default test run name “resl.” Make sure that the

Display Test Results at End of Run check box is selected.
Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test.

Watch how WinRunner opens windows and selects objects. Also watch what
happens when WinRunner draws the signature in Context Sensitive mode and in
Analog mode.

Lesson 3, page 38

Recording Tests

7 Review the test results.

When the test run is completed, the test results appear in the WinRunner Test
Results window. Note that the test result is “OK”, indicating that the test was run
successfully.

8 Close the test results.

Choose File > Exit.

9 Close the lesson3 test.

Choose File > Close.

10 Close the Flight Reservation application. ’)

Choose File > Exit. ‘ ’

Lesson 3, page 39

Recording Tests

Recording Tips

® Before starting to record, you should close applications that are not required for
the test.

® Create the test so that it ends where it started. For example, if the test opens an
application, make sure that it also closes the application at the end of the test run.

This ensures that WinRunner is prepared to run repeated executions of the same
test.
® When recording in Analog mode, avoid holding down the mouse button if this Find
results in a repeated action. For example, do not hold down the mouse button to
scroll a window. Instead, scroll by clicking the scrollbar arrow repeatedly. This 7

enables WinRunner to accurately execute the test.

® Before switching from Context Sensitive mode to Analog mode during a recording ‘ ’
session, always move the current window to a new paosition on the desktop. This
ensures that when you run the test, the mouse pointer will reach the correct areas @
of the window during the Analog portion of the test.

WinRunner Tutorial Lesson 3, page 40

Recording Tests

® When recording, if you click a non-standard GUI object, WinRunner generates a
generic obj_mouse_click statement in the test script. For example, if you click a
graph object, it records:

obj_mouse_click (GS_Drawing, 8, 53, LEFT);

If your application contains a non-standard GUI object which behaves like a
standard GUI object, you can map this object to a standard object class so that
WinRunner will record more intuitive statements in the test script. For more
information refer to Chapter 6, “Configuring the GUI Map” in your WinRunner

User’s Guide. Find

® When recording, if you click on an object whose description was not learned by 7
the RapidTest Script wizard, WinRunner learns a description of the object and
adds it to a temporary GUI map file. For more information, refer to Chapter 4 ‘ ’

“Creating the GUI Map” in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 3, page 41

Synchronizing Tests

This lesson:

¢ describes when you should synchronize a test

® shows you how to synchronize a test

* shows you how to run the test and analyze the results Find

WinRunner Tutorial Lesson 4, page 42

Synchronizing Tests

When Should You Synchronize?

When you run tests, your application may not always respond to input with the
same speed. For example, it might take a few seconds:

® to retrieve information from a database

¢ for a window to pop up

® for a progress bar to reach 100%

® for a status message to appear Find
WinRunner waits a set amount of time for an application to respond to input. The 7
default amount of time that WinRunner waits is up to 10 seconds. If the application
responds slowly during a test run, WinRunner's default wait time may not be ‘ ’
enough, and WinRunner may try to continue the test before the application is
ready. The test run will then unexpectedly fail. @

WinRunner Tutorial Lesson 4, page 43

Synchronizing Tests

If your discover a synchronization problem between the test and your application,
you can either:

® increase the default time that the WinRunner waits. To do so, you change the
value of the timeout test option in the Options dialog box (Settings > Options).
This method affects all your tests and slows down many other Context Sensitive
operations.

® insert a synchronization point into the test script at the exact point that the
problem occurs. A synchronization point tells WinRunner to pause the test run in
order to wait for a specified response in the application. This is the recommended
method for synchronizing a test with your application.)

In the following exercises you will:

O create a test which opens a new order in the Flight Reservation application and
inserts the order into the database @

O run the test and identify a synchronization problem
U add a synchronization point to the test

O run the test again

WinRunner Tutorial Lesson 4, page 44

Synchronizing Tests

Creating a Test

g 1

54, 2
P

Flight 14

ﬂ 3

In this first exercise you will create a test that opens a new order in the Flight
Reservation application and inserts the order into a database.
Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

Start the Flight Reservation application and log in.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

Start Recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar.

Create a new order.

Choose File > New Order in the Flight Reservation application.

Lesson 4, page 45

Synchronizing Tests

5 Fill in flight and passenger information.

2, Flight Reservation [_ O]
Fil= Edit pnalpziz Help
0= |
Enter , r— Flight Schedule: ———— — Order Information:
tomorrow's Enter your name
date in [Ciate of Flight: Mame: Order Mo: y '
MM/DD/YY I_.-"_.-"_ I I
format.
Fly From: Departure Tine: Flight Ma:
" I = Find
SelectLos | =l |
Angeles. Fly Ta Arrival Time: Airline: 7
" {
SelecF San | =l | H
Francisco. ol
ass:
Tickets: I) ‘ ’
= First : Select First
L%‘ £ Buziness Frice: I Class.
Click the & ¢ Econom Total: @
Flights Flights ___ Y |
T
button. Then |rmzert Order I Update Drderl Delete Mrder, |
double-clicka
flight.

6 Insert the order into the database.

Click the Insert Order button. When the insertion is complete, the “Insert Done”
message appears in the status bar.

WinRunner Tutorial Lesson 4, page 46

Synchronizing Tests

7 Delete the order.

Click the Delete Order button and click Yes in the message window to confirm the
deletion.

Q 8 Stop recording.
Choose Create > Stop Recording or click the Stop button.

E 9 Save the test.

Choose File > Save. Save the test as lesson4 in a convenient location on your
hard drive. Click Save to close the Save Test dialog box.

WinRunner Tutorial Lesson 4, page 47

Synchronizing Tests

Changing the Synchronization Setting

The default amount of time that WinRunner waits for an application to respond to
input is 10 seconds. To run the test you have recorded with a synchronization
problem, you must change this synchronization setting.

1 Open the Options dialog box.

Choose Settings > Options.

WinRunner Tutorial Lesson 4, page 48

Synchronizing Tests

2 Click the Run tab.

Dptions E3

Test Recognition | Errvironment | Folders I Current Tesgt
Record Run | Miscellaneous
Cielay for window synchronization; m zeconds
Tirneaut for checkpaints and CS staterments: ﬂ seconds Change the timeout to 1
Threshold for difference between bitmaps; m pixels
Timeaut for waiting for synchronization mezsage: Im millizeconds -
Delay between execution of CS staterments: m milliseconds Find
Run Speed for Analog Mode
& Momal - use recorded speed € Fast - replay as fast as possible ‘ ?
¥ Drop synchronization meat if failed
[¥ Beep when checking a window ‘ ’
[Beep when synchronization fails
¥ Break when verification fails @
[Bunin batch mode
QK. I Cancel | Lpply Help

3 Change the timeout value to 1.
In the Timeout for Checkpoints and CS Statements box, change the value to 1.

4 Click OK to close the dialog box.

WinRunner Tutorial Lesson 4, page 49

Synchronizing Tests

ldentifying a Synchronization Problem

You are now ready to execute the lesson4 test. As the test runs, look for a
synchronization problem.

Make sure that the /esson4 test window is active in WinRunner.
Click the title bar of the lesson4 test window.
Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test dialog
box opens. Accept the default test run name “resl.”

Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test. Watch
what happens when WinRunner attempts to click the Delete button.

Click Pause in the WinRunner message window.

WinRunner failed to click the Delete Order button because the button is still
disabled. This error occurred because WinRunner did not wait until the Insert
Order operation was completed.

Lesson 4, page 50

Synchronizing Tests

Synchronizing the Test

In this exercise you will insert a synchronization point into the lesson4 test script.
The synchronization point will capture a bitmap image of the “Insert Done”
message in the status bar. Later on when you run the test, WinRunner will wait for
the “Insert Done” message to appear before it attempts to click the Delete Order
button.

Make sure that the J/esson4 test window is active in WinRunner.

Click the title bar of the lesson4 test window.

Place the cursor at the point where you want to synchronize the test. '7

Add a blank line below the button_press ("Insert Order"); statement. Place the ‘ ’
cursor at the beginning of the blank line.

Synchronize the test so that it waits for the “Insert Done” message to @
appear in the status bar.

Choose Create > Wait Bitmap > Object/Window or click the
Wait Bitmap— Point button on the Test Creation toolbar.

Use the ¢ pointer to click the status bar in the Flight Reservation window.
WinRunner automatically inserts an obj_wait_bitmap synchronization point into
the test script. This statement instructs WinRunner to wait 1 second for the “Insert
Done” message to appear in the status bar.

Lesson 4, page 51

Synchronizing Tests

4 the test.
E Save the tes

Choose File > Save or click the Save button.

A synchronization point appears as obj_wait_bitmap and win_wait_bitmap
statements in the test script. For example:

obj_wait_bitmap("Insert Done...", "Img1", 1);

Insert Done... is the object’s logical name. Find

Img1 is the file containing a captured image of the object. P

10is the time (in seconds) that WinRunner waits for the image to appear in the ‘ ’
application. This time is added to the default time defined by the timeout testing
option. (In the above exercise, WinRunner waits a total of 11 seconds.) @

WinRunner Tutorial Lesson 4, page 52

Synchronizing Tests

Running the Synchronized Test

In this exercise you will run the synchronized test script and examine the test
results.

Make sure that the lesson4 test window is active in WinRunner.
Click the title bar of the lesson4 test window.

Check that Verify mode is selected in the Standard toolbar.
Verify mode will stay in effect until you choose a different mode.
Choose Run from Top.

Choose Run > Run from Top or click the Run from Top button. The Run Test
dialog box opens. Accept the default name “res2.” Make sure that the Display Test
Results at End of Run check box is selected.

Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test from the
first line in the script.

Watch how WinRunner waits for the “Insert Done” message to appear in the
status bar.

Lesson 4, page 53

Synchronizing Tests

5 Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window. Note that a “wait for bitmap” event appears in green in the test log
section. This indicates that synchronization was performed successfully. You can
double-click this event to see a bitmap image of the status bar.

i Img1.bmp [expected) =] E3
| Inzert Done... -
Find
6 Close the Test Results window.
Choose File > Exit. 7
7 Close the lesson4 test. ‘ ’
Choose File > Close in WinRunner. @
8 Close the Flight Reservation application.

Choose File > Exit.
9 Change the timeout value back to 10.

Choose Settings > Options to open the Options dialog box. Click the Run tab. In
the Timeout for Checkpoints and CS Statements box, change the current value to
10. Click OK to close the dialog box.

To learn about additional synchronization methods, read Chapter 14,
“Synchronizing Test Execution” in your WinRunner User’s Guide.

Lesson 4, page 54

Checking GUI Objects

This lesson:

¢ explains how to check the behavior of GUI objects

® shows you how to create a test that checks GUI objects

® shows you how to run the test on different versions of an application and examine Find
the results

WinRunner Tutorial Lesson 5, page 55

5 Checking GUI Objects

How Do You Check GUI Objects?

When working with an application, you can determine whether it is functioning
properly according to the behavior of its GUI objects. If a GUI object does not
respond to input as expected, a defect probably exists somewhere in the
application’s code.

You check GUI objects by creating GUI checkpoints. A GUI checkpoint examines
the behavior of an object’s properties. For example, you can check:

Fred Flinstonel the content of a field

{* Business If @ radio button is on or off

if a pushbutton is enabled or disabled ‘ ’

To create a GUI checkpoint for a single object, you point to it in an application. If @
you single-click the object, a checklist with the default checks for the object you

selected is inserted into your test script. A checklist contains information about the
GUI object and the selected properties to check. If you double-click the object, the

WinRunner Tutorial Lesson 5, page 56

Checking GUI Objects

Check GUI dialog box opens and displays the object you selected. Select the
properties you want to check, and click OK to insert a checklist for the object into
your test script.

5| Check GUI - list1.ckl [>{i— This dialog box opens when
" @=x | ~—~ | -~ | Yyouclick the Insert Order
= LT pushbutton.
addall | Select &l Clear All
Objects Fropertiesz

MHame | Expected Value |
& Enabled OM

— Select the properties you want

@ Focused OFF to check. The default check for Find
O Height 23 a pushbutton is “Enabled”.

1% Label Insert Order ?
O R width 72

0@ = 167

a@y 327 B ‘ ’
I Highlight Selected Object 0K I Cancel | Help | @

Whether you choose to check an object’s default properties or you specify the
properties of an object you want to check, WinRunner captures the current values
of those properties and saves this information as expected results. It then inserts
an obj_check gui statement into the test script if you are checking an object, or a
win_check_gui statement if you are checking a window.

When you run this test on a new version of the application, WinRunner compares
the expected behavior of the object with its actual behavior in the application.

WinRunner Tutorial Lesson 5, page 57

5 Checking GUI Objects

Adding GUI Checkpoints to a Test Script

In this exercise you will check that objects in the Flight Reservation Open Order
dialog box function properly when you open an existing order.

g 1 Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

”ﬁ?‘ 2 Start the Flight Reservation application and log in. ?
P .

Flight14 ~ Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start ‘ ’
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop. @

ﬂ 3 Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar.

4 Open the Open Order dialog box.

Choose File > Open Order in the Flight Reservation application.

WinRunner Tutorial Lesson 5, page 58

5 Checking GUI Objects

m 5 Create a GUI checkpoint for the Order No. check box.

Choose Create > Check GUI > Object/Window, or click the
Check GUI—Point button on the Test Creation toolbar.

Use the pointer to double-click the Order No. check box. The Check GUI dialog

box opens and displays the available checks. Accept the default check “State.”
This check captures the current state (off) of the check box and stores it as
expected results.
Find
Click OK in the Check GUI dialog box to insert the checkpoint into the test script.
The checkpoint appears as an obj_check _gui statement.)
6 Enter “4” in the Order No. text box.
Click in the Order No. text box. Type “4”". ‘ ’
7 Create another GUI checkpoint for the Order No. check box.
£

Choose Create > Check GUI > Object/Window or click the
Check GUI—Point button on the Floating Toolbar.

Use the {7 pointer to single-click the Order No. check box. WinRunner
immediately inserts a checkpoint into the test script (an obj_check_gui
statement) that uses the default check “State.” (Use this shortcut when you want
to use only the default check for an object.) This check captures the current state
(on) of the check box and stores it as expected results.

WinRunner Tutorial Lesson 5, page 59

5 Checking GUI Objects

m 8 Create a GUI checkpoint for the Customer Name check box.

Choose Create > Check GUI > Object/Window or click the
Check GUI—Point button on the Test Creation toolbar.

Use the {1 pointer to double-click the Customer Name check box. The Check GUI
dialog box opens and displays the available checks. Accept the default check
“State” and select “Enabled” as an additional check. The “State” check captures
the current state (off) of the check box; the “Enabled” check captures the current

condition (disabled) of the check box. Find
Click OK in the Check GUI dialog box to insert the checkpoint into the test script.)
The checkpoint appears an as obj_check_gui statement. .

9 Click OK in the Open Order dialog box to open the order. ‘ ’

i 10 Stop recording. @

Choose Create > Stop Recording in WinRunner or click the Stop button.

WinRunner Tutorial Lesson 5, page 60

Checking GUI Objects

11 the test.
E Save the tes

Choose File > Save or click the Save button. Name the test lesson5. Click Save.

GUI checkpoints appear as obj_check_gui and win_check gui statements in
the test script. For example:

obj_check_gui("Order No.", "list1.ckl", "guil", 1)

Order No. is the object’s logical name. Find
list1.ckl is the checklist containing the checks you selected. P
guil is the file containing the captured GUI data. ‘ ’
1is the time (in seconds) needed to perform the check. This

time is added to the value of the timeout test option. See Lesson 4 for more @
information.

WinRunner Tutorial Lesson 5, page 61

Checking GUI Objects

Running the Test

You will now run the lesson5 test in order to verify that the test runs smoothly.

Make sure that the Flight Reservation application is open on your desktop.
In WinRunner, check that Verify mode is selected in the Standard toolbar.
Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “res1.” Make sure that the
Display Test Results at End of Run check box is selected.

Run the test.
Click OK in the Run Test dialog box.

Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window. In the test log section all “end GUI checkpoint” events should
appear in green (indicating success).

Lesson 5, page 62

Checking GUI Objects

Double-click an “end GUI checkpoint” event to view detailed results of a GUI
checkpoint. The GUI Checkpoint Results dialog box opens. Select Customer
Name to display the dialog box as follows:

Ohjects Properties .
Names the —— &~ MZ3 Open Order | Name | Expectedv.. | Actualvalue | L
window —- B G Ensbl.. OFF OFF @
containing the @ Sate OFF OFF sl
objects ‘ | Lists actual results
Indicates whether — E Lists expected results Find
an object passed —
or failed Q Lists the property checks P
)) & performed .
Lists the objects — =0l .
in the checkpoint I Indicates whether a ‘ ’
4 | | _>| == property check passed or
I Highlight Selected biect oK | Cancel | Help | failed @

6 Close the test results.

Click OK to close the GUI Checkpoint Results dialog box. Then choose File > Exit
to close the Test Results window.

7 Close the Flight Reservation application.

Choose File > Exit.

WinRunner Tutorial

5 Checking GUI Objects

Running the Test on a New Version

In this exercise you will run the /lesson5 test on a new version of the Flight
Reservation application in order to check the behavior of its GUI objects.

L%‘ 1 Open version 1B of the Flight Reservation application.
P

Flight 18 Choose Programs > WinRunner > Sample Applications > Flight 1B on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Position the Flight Reservation application and WinRunner so that they are

both clearly visible on your desktop. Find

2 Make sure that lesson5 is the active test. 2
Click in the lesson5 test window in WinRunner. .

3 Check that Verify mode is selected in the toolbar. ‘ ’

4 Choose Run from Top. @

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “res2.” Make sure that the
Display Test Results at End of Run check box is selected.

5 Run the test.
Click OK. The test run begins.

If a mismatch is detected at a GUI checkpoint, click Continue in the message
window.

WinRunner Tutorial Lesson 5, page 64

Checking GUI Objects

6 Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window. In the test log section, one “end GUI checkpoint” statement
appears in red and its Result field lists “Failed.” This indicates that one or more of
the checks performed on the object failed.

Double-click the red “end GUI checkpoint” event to view detailed results of the
failed check. The GUI Checkpoint Results dialog box opens. Select Customer
Name to display the dialog box as follows:

Find
Objects Propertiez . ’)
=2 Open Order | Name | Evpectad . | Actualvalue | [N
The check on the— | [& |Custome| [§ Enabl.. OFF On @
Customer Name &) State OFF OFF el ‘ ’
check box failed. -
8 The actual result is “on”. @
=
The check on the E! ——— The expected result is “off".
Enabled property '%
of the Customer E
Name check box 1] |] IE
failed. i
I Highlight Selected Object 0K I Cancel | Help |

WinRunner Tutorial Lesson 5, page 65

Checking GUI Objects

7 Close the Test Results window.

Click OK in the GUI Checkpoint Results dialog box and then choose File > Exit to
close the Test Results window.

8 Close the lesson5 test.

Choose File > Close.

9 Close version 1B of the Flight Reservation application.

Choose File > Exit.

WinRunner Tutorial Lesson 5, page 66

Checking GUI Objects

GUI Checkpoint Tips

ﬂ ® You can create a single GUI checkpoint that checks several or all objects in a
window. Choose Create > Check GUI > Create GUI Checkpoint or click the
Check GUI—Create button on the Test Creation toolbar. The Create GUI
Checkpoint dialog box opens, which enables you to add objects to the GUI
checkpoint and to specify the checks you want to perform on those objects. When
you finish creating the checkpoint, WinRunner inserts a win_check_gui
statement into the test script, which includes a checklist for the selected objects.

® For overnight test runs, you can instruct WinRunner not to display a message Find
when a GUI mismatch is detected. Choose Settings > Options. In the Options)
dialog box, click the Run tab, and clear the Break when Verification Fails check
box. This enables the test to run without interruption. For more information on
setting test run options, refer to Chapter 33, “Setting Global Testing Options,” and ‘ ’

Guide.

Chapter 34, Setting Testing Options from a Test Script,” in the WinRunner User’s @

WinRunner Tutorial Lesson 5, page 67

Checking GUI Objects

Text Recognition | Ernviranment | Folders I Current Test
Recard Rurn | Mizcellaneous
Delay far window synchronization: m seconds
Timeout for checkpoints and C5 statements: ﬂ seconds
Threzhold for difference between bitmaps: 0 = pixels
Timeout for vaiting for zunchronization mezsage: Im milliseconds
Dielay between execution of C5 statements: ID 3: millizeconds .
Run Speed for Analog Mode Find
% Momal - use recorded speed € Fast - replay as fast as possible ‘
¥ Dirop synchionization timeout if Failed ?
[+ Beep when checking a window
[Beep when sunchronization fails ‘ ’
¥ Ereak when verification fails
[Bun it batch mode @

QK I Cancel | Apply | Help |

® |f you want to create new expected results for a GUI checkpoint, run the test in
Update mode. WinRunner overwrites the existing expected GUI data with new
data captured during the Update run.

For more information on GUI checkpoints, refer to Chapter 9, “Checking GUI
Objects,” in the WinRunner User’s Guide.

WinRunner Tutorial Lesson 5, page 68

Checking Bitmaps

This lesson:

® explains how to check bitmap images in your application

® shows you how to create a test that checks bitmaps

® shows you how to run the test in order to compare bitmaps in different versions of Find
an application

® helps you analyze the results

WinRunner Tutorial Lesson 6, page 69

Checking Bitmaps

How Do You Check a Bitmap?

If your application contains bitmap areas, such as drawings or graphs, you can
check these areas using a bitmap checkpoint. A bitmap checkpoint compares
captured bitmap images pixel by pixel.

To create a bitmap checkpoint, you indicate an area, window, or object that you
want to check.
About Flight Reservation System E3 Find
A Mercury Tours [_7]
‘:;h‘ Flight Reservation System | M | ’)
Yersion 1.0 | ‘ -
Copyright 1938 L'“ﬂ'“i”"‘i""ﬂ"ﬂ_'_ ‘ ’
Programmers: Shawn dbemathy, Che Fang
wihite Eagle System Technology @

WinRunner captures a bitmap image and saves it as expected results. It then
inserts an obj_check bitmap statement into the test script if it captures an
object, or a win_check _bitmap statement if it captures an area or window.

WinRunner Tutorial Lesson 6, page 70

Checking Bitmaps

When you run the test on a new version of the application, WinRunner compares
the expected bitmap with the actual bitmap in the application. If any differences are
detected, you can view a picture of the differences from the Test Results window.

-2
Expected

MERCURY INTERACTIVE

Actual

MERCURY INTERACTIVE _:

* Difference ‘ ’

WinRunner Tutorial Lesson 6, page 71

6 Checking Bitmaps

Adding Bitmap Checkpoints to a Test Script

In this exercise you will test the Agent Signature box in the Fax Order dialog box.
You will use a bitmap checkpoint to check that you can sign your name in the box.
Then you will use another bitmap checkpoint to check that the box clears when you
click the Clear Signature button.

g 1 Start WinRunner and open a new test.

. . . . Find
If WinRunner is not already open, choose Programs > WinRunner > WinRunner n
on the Start menu. If the Welcome window is open, click the New Test button. o
Otherwise, choose File > New. A new test window opens. :
”ﬁ?‘ 2 Start the Flight Reservation application and log in. ‘ ’
P

Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start @
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

ﬂ 3 Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar.

WinRunner Tutorial Lesson 6, page 72

Checking Bitmaps

4 Open order #6.

In the Flight Reservation application, choose File > Open Order. In the Open
Order dialog box, select the Order No. check box and type “6” in the adjacent box.
Click OK to open the order.

5 Open the Fax Order dialog box.

Choose File > Fax Order.

6 Enter a 10-digit fax number in the Fax Number box. Find
You do not need to type in parentheses or dashes. o

7 Move the Fax Order dialog box. .
Position the dialog box above the Flight Reservation window. ‘ ’

8 Switch to Analog mode. @

Press F2 on your keyboard or click the Record button to switch to Analog mode.
9 Sign your name in the Agent Signature box.
10 Switch back to Context Sensitive mode.

Press F2 on your keyboard or click the Record button to switch back to Context
Sensitive mode.

WinRunner Tutorial Lesson 6, page 73

6 Checking Bitmaps

ﬂ 11 Insert a bitmap checkpoint that checks your signature.

Choose Create > Check Bitmap > Object/Window or click the Check Bitmap—
Point button on the Test Creation toolbar.

Use the din pointer to click the Agent Signature box. WinRunner captures the
bitmap and inserts an obj_check_bitmap statement into the test script.

12 Click the Clear Signature button.

The signature is cleared from the Agent Signature box. Find

ﬂ 13 Insert another bitmap checkpoint that checks the Agent Signature box. o

Choose Create > Check Bitmap > Object/Window or click the Check Bitmap—
Point button on the Test Creation toolbar. ‘ ’

Use the 7 pointer to click the Agent Signature box. WinRunner captures a bitmap
and inserts an obj_check_bitmap statement into the test script. @

14 Click the Cancel button.

j 15 Stop recording.
Choose Create > Stop Recording or click the Stop button.

WinRunner Tutorial Lesson 6, page 74

Checking Bitmaps

1 the test.
E 6 Save the tes

Choose File > Save or click the Save button. Name the test lessoné. Click Save in
the Save Test dialog box.

Bitmap checkpoints appear as obj_check_bitmap and win_check_bitmap
statements in the test script.For example:

obj_check_bitmap(“(static)", "Img1", 1);

static is the object or area’s logical name.

Img1 is the file containing the captured bitmap.

1is the time (in seconds) needed to perform the check. This time is added to the ‘ ’
value of the timeout test option. See Lesson 4 for more information. @

WinRunner Tutorial Lesson 6, page 75

6 Checking Bitmaps

Viewing Expected Results

You can now view the expected results of the lessoné6 test.

g& 1 Open the WinRunner Test Results window.

Choose Tools > Test Results or click the Test Results button. The Test Results
window opens.

% 2 View the captured bitmaps.
In the test log section, double-click the first

Mttt e “capture bitmap” event, or select it and click the)
l—H Display button. -

Next, double-click the second “capture bitmap”

l—‘ event, or select it and click the Display button.

3 Close the Test Results window.

Close the bitmaps and choose File > Exit to close the Test Results window.

WinRunner Tutorial Lesson 6, page 76

Checking Bitmaps

Running the Test on a New Version
You can now run the test on a new version of the Flight Reservation application.

1 Close Flight Reservation 1A.

Choose File > Exit.

”ﬁ?‘ 2 Open Flight Reservation 1B.
P

Flight 18 Choose Programs > WinRunner > Sample Applications > Flight 1B on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are Find
both clearly visible on your desktop.

?
3 Make sure that lessoné6 is the active test. -
Click in the lesson6 test window. ‘ ’
4 Check that Verify mode is selected in the Standard toolbar. @

I5.| 5 Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “res1.” Make sure that the
Display Test Results at End of Run check box is selected.

6 Run the test.
Click OK. The test run begins.

If a mismatch is detected at a bitmap checkpoint, click Continue in the message
window.

WinRunner Tutorial Lesson 6, page 77

Checking Bitmaps

6 7 Review the results.

When the test run is completed, the test results appear in the WinRunner Test
Results window.

m WinRunner Test Results - [Nonameb] M=l E3

File Option: Tool: ‘window 5| x|
| & |res = G 52 A2
The test failed —l—l l J _I
because the M [Test Resul: Fil

Agent Signature |: +2 Total rumber of bitmap check points: 2
field did not clear +% Total number of GUI checkpaints: 1]
when WinRunner & General Informatian
clicked the Clear Find
Signature button. in
. Line Ewent Detailz Fiesult Time = ‘ ’
D(,JUb/e-,CI/Ck the 1 start run nanames LN 00:00:00
failed bitmap bit heckpoint {lmgl Ok 000027
checkpoint to view 21 tmap checkpont imd i
the expected 273 bitmap checkpaint |Ima2 mismatch |00:00:32
actual, and 26 stop run nonames fail 00:00: 32 =
difference | | P

8 Close the Test Results window.

Choose File > Exit to close the Test Results window.
9 Close the lessoné6 test.

Choose File > Close.

10 Close version 1B of the Flight Reservation application.

Choose File > Exit.

r Tutorial Lesson 6, page 78

Checking Bitmaps

Bitmap Checkpoint Tips

E ® To capture an area, choose Create > Check Bitmap > Area or click the
Check Bitmap—Area button on the Test Creation toolbar. Use the crosshairs
pointer to mark the area that you want WinRunner to capture. WinRunner inserts
a win_check_bitmap statement into your test script. This statement includes
additional parameters that define the position (x- and y-coordinates) and size
(width and height) of the area.

. . . . Find
® For overnight test runs, you can instruct WinRunner not to display a message
when a bitmap mismatch is detected. Choose Settings > Options. In the Options o
dialog box, click the Run tab and clear the Break when Verification Fails check :
box. This enables the test to run unattended. ‘ ’

WinRunner Tutorial Lesson 6, page 79

Checking Bitmaps

Text Recognition | Ernviranment | Folders I Current Test
Recard Rurn | Mizcellaneous
Delay far window synchronization: I'I 3: seconds
Timeout for checkpaints and CS statements: ﬂ seconds
Threzhold for difference between bitmaps: 0 = pixels
Timeout for vaiting for zunchronization mezsage: Im milliseconds
Delay between execution of C5 statements: ID 3: millizecands

Run Speed for Analog Mode ‘

% Momal - use recorded speed € Fast - replay as fast as possible Find
¥ Dirop synchionization timeout if Failed
[+ Beep when checking a window ’)

[Beep when sunchronization fails

¥ Ereak when verification fails ‘ ’

[Bun it batch mode

QK I Cancel Apply | Help | @

® When running a test that includes bitmap checkpoints, make sure that the screen
display settings are the same as when the test script was created. If the screen
settings are different, WinRunner will report a bitmap mismatch.

® If you want to create new expected results for a bitmap checkpoint, run the test in
Update mode. WinRunner overwrites the existing expected bitmaps with new
expected bitmaps captured during the Update run.

For more information on bitmap checkpoints, refer to Chapter 12, “Checking
Bitmaps” in the WinRunner User’s Guide.

WinRunner Tutorial Lesson 6, page 80

Programming Tests with TSL

This lesson:

® shows you how to use visual programming to add functions to your recorded test

scripts
® shows you how to add decision-making logic to a test script Find
® helps you debug a test script s

® lets you run a test on a new version of an application and analyze the results

WinRunner Tutorial Lesson 7, page 81

Programming Tests with TSL

How Do You Program Tests with TSL?

When you record a test, WinRunner generates TSL statements in a test script each
time you click a GUI object or type on the keyboard. In addition to the recorded TSL
functions, TSL includes many other built-in functions which can increase the power
and flexibility of your tests. You can quickly add these functions to a test script using
WinRunner's visual programming tool, the Function Generator.

The Function Generator enables you to add TSL functions in two ways:

® You can point to a GUI object and let WinRunner “suggest” an appropriate
function. You can then insert this function into the test script. o

® You can select a function from a list. Functions are presented both by category

and alphabetically. ‘ ’

You can further enhance your test scripts by adding logic. Simply type @
programming elements such as conditional statements, loops, and arithmetic
operators directly into the test window.

WinRunner Tutorial Lesson 7, page 82

Programming Tests with TSL

In the following exercises your goal is to create a test that:

O opens an order

O opens the Fax Order dialog box

O checks that the total is equal to the number of tickets ordered multiplied by the
price per ticket

U reports whether the total is correct or incorrect Find

WinRunner Tutorial Lesson 7, page 83

7 Programming Tests with TSL

Recording a Basic Test Script

Start by recording the process of opening an order in the Flight Reservation
application and opening the Fax Order dialog box.

g 1 Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

Find
L%‘ 2 Open the Flight Reservation application and log in.
s
Flight 14, Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start 7

menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are ‘ ’
both clearly visible on your desktop.

ﬂ 3 Start recording in Context Sensitive mode. @

Choose Create > Record—Context Sensitive or click the Record button on the
toolbar.

4 Open order #4.

In the Flight Reservation application, choose File > Open Order. In the
Open Order dialog box, select the Order No. check box and type “4” in the
adjacent box. Click OK to open the order.

WinRunner Tutorial Lesson 7, page 84

Programming Tests with TSL

5 Open the Fax Order dialog box.
Choose File > Fax Order.
6 Click Cancel to close the dialog box.

i 7 Stop recording.
Choose Create > Stop Recording or click the Stop button.

E 8 Save the test. Find
Choose File > Save or click the Save button. Name the test /esson7 and click P
Save. .

WinRunner Tutorial Lesson 7, page 85

Programming Tests with TSL

Using the Function Generator to Insert Functions

You are now ready to add functions to the test script which query the # Tickets,
Ticket Price, and Total fields in the Fax Order dialog box.

Insert a blank line above the button_press ("Cancel"); statement and place the
cursor at the beginning of this line.

Open the Fax Order dialog box.
Choose File > Fax Order.
Query the # Tickets field.

Choose Create > Insert Function > Object/Window or click the
Insert Function—Point button on the Test Creation toolbar. Use the {1 pointer to
click the # Tickets field.

The Function Generator opens and suggests the edit_get _text function.

Function Generator E3

Iedit_get_te:-tt["ﬂ Tickets:" text]; Cloze |
Change »> | Execute | Paste I

This function reads the text in the # Tickets field and assigns it to a variable. The
default variable name is text. Change the variable name to tickets by typing in the
field.

edit_get_text("# Tickets:" tickets);

Click Paste to add the function to the test script.

WinRunner Tutorial Lesson 7, page 86

Programming Tests with TSL

@ 4 Query the Ticket Price field.

Choose Create > Insert Function > Object/Window or click the
Insert Function—Point button on the Test Creation toolbar. Use the € pointer to
click the Ticket Price field.

The Function Generator opens and suggests the edit_get_text function. Change
the name of the text variable to price.

edit_get_text("Ticket Price:",price);

Click Paste to add the function to the test script.

@ 5 Query the Total field.

Choose Create > Insert Function > Object/Window or click the
Insert Function—Point button on the Test Creation toolbar. Use the ¢ pointer to
click the Total field. ‘ ’

The Function Generator opens and suggests the edit_get _text function. Change @
the name of the text variable to total.

edit_get_text("Total:",total);

Click Paste to add the function to the test script.

6 Close the Fax Order dialog box.

Click Cancel to close the dialog box.

E 7 Save the test.

Choose File > Save or click the Save button.

Lesson 7, page 87

7 Programming Tests with TSL

Adding Logic to the Test Script

In this exercise you will program decision-making logic into the test script using an
if/else statement. This will enable the test to:

® check that the total is equal to the number of tickets ordered multiplied by the price
per ticket

® report whether the total is correct or incorrect

WinRunner Tutorial Lesson 7, page 88

Programming Tests with TSL

1 Place the cursor below the last edit_get_text statement in the lesson7 script.
2 Add the following statements to the test script exactly as they appear below.

if (tickets*price == total)
tl_step (“total", O, "Total is correct.");
else

tl_step ("total", 1, "Total is incorrect.");

In plain English these statements mean: “If tickets multiplied by price equals total,
report that the total is correct, otherwise (else) report that the total is incorrect.” Find
See “Understanding tl_step” below for more information on the tl_step function.

@ You can use the Function Generator to quickly insert tl_step statements into the ‘ ’
test script. Choose Create > Insert Function > From List or choose Insert
Function—From List from the Test Creation toolbar. @

E 3 Save the test.

Choose File > Save or click the Save button.

WinRunner Tutorial Lesson 7, page 89

Programming Tests with TSL

Understanding tl_step

In most cases when you run a test, WinRunner reports an overall test result of
pass or fail. By adding tl_step statements to your test script, you can determine
whether a particular operation within the test passed or failed, and send a
message to the report.

For example:
tl_step ("total", 1, "Total is incorrect."); Find
total is the name you assign to this operation. ’?

1 causes WinRunner to report that the operation failed. If you use 0, WinRunner ‘ ’
reports that the operation passed.

Total is incorrectis the message sent to the report. You can write any message that @
will make the test results meaningful.

WinRunner Tutorial Lesson 7, page 90

Programming Tests with TSL

Debugging the Test Script

After enhancing a test with programming elements, you should check that the test
runs smoothly, without errors in syntax and logic. WinRunner provides debugging
tools which make this process quick and easy.

You can:

® run the test line by line using the Step commands

® define breakpoints that enable you to stop running the test at a specified line or Find
function in the test script

® monitor the values of variables and expressions using the Watch List

When you debug a test script, you should run your test in Debug mode. (To run a ‘ ’
test in Debug mode, select Debug from the Run Mode list on the Standard
toolbar.) The test results are saved in a debug directory. Each time you run the @
test in Debug mode, WinRunner overwrites the previous debug results.

WinRunner Tutorial Lesson 7, page 91

Programming Tests with TSL

In this exercise you will control the test run using the Step command. If any error
messages appear, examine the test script and try to fix the problem.

1 Select Debug mode from the Run Mode list on the Standard toolbar.

Debug mode will remain in effect until you select a different mode.

2 Place the execution marker —> next to the first line in the test script.

Click in the left margin, next to the first line in the test script.

&| 3 Choose Run > Step or click the Step button to run the first line in the test Find
script. 7
WinRunner runs the first line of the test.

£ 4 Use the Step button to run the entire test, line by line. ‘ ’
Click the Step button to run each line of the test script. @

j 5 Click Stop.

Click the Stop button to tell WinRunner that you have completed the Debug test
run.

WinRunner Tutorial Lesson 7, page 92

Programming Tests with TSL

3& 6 Review the test results in the WinRunner Test Results window.

Choose Tools > Test Results or click the Test Results button. The WinRunner Test
Results window displays the results of the Debug test run.

7 Close the Test Results window.

Choose File > Exit.

8 Exit the Flight Reservation application.

Choose File > Exit. Find

For more information on debugging test scripts, refer to Part VI, “Debugging Tests”)
in your WinRunner User’s Guide.

Lesson 7, page 93

7 Programming Tests with TSL

Running the Test on a New Version

Once the test script is debugged, you can run it on a new version of the Flight
Reservation application.

L%‘ 1 Open version 1B of the Flight Reservation application.
P

Flight 18 Choose Programs > WinRunner > Sample Applications > Flight 1B on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are

both clearly visible on your desktop. Find
2 Select Verify mode from the Run Mode list on the Standard toolbar. 2
Verify mode will remain in effect until you select a different mode. -
|| 3 Choose Run from Top. ‘ ’

Choose Run > Run from Top, or click the Run from Top button. The Run Test @
dialog box opens. Accept the default test run name “res1.” Make sure that the
Display Test Results at End of Run check box is selected.

4 Run the test.

Click OK in the Run Test dialog box. The test run begins.

WinRunner Tutorial Lesson 7, page 94

Programming Tests with TSL

5 Review the test results.

When the test run is completed, the test results appear in the WinRunner Test
Results window.

ﬁ WinRunner Test Results - [C:\Program Files\Mercury Interactive\WinRunneritmpilesson?] =] E3

File DOptions Tool: ‘window == =]
ﬁ'l@l |res1 L Y4
M E]';lTest Fiesult: Ok,
|: +% Taotal nurber of bitmap checkpaints: i} K
+% Total number of GUI checkpoints: i} Find
é General Information
@ Date: Wednesday, Apnl 22, 1938 02405 ?
Eﬂpelator Name:
The number of 2 E wpected Results Directony: axp ‘ ’
tickets multiplied 3 7otal Aun Time: 0000
by the price
equals the total. Lime Event Details Result Time = @
Therefore the 1 start run lezzon? [y] 00:00:00
tl_step statement 14 t_step Step total, Statug: Pazs, Descriptic-- 00:00:01
reports “pass”. 18 stap run leszan? pass 00:00:01
I 4

Tutorial Lesson 7, page 95

Programming Tests with TSL

You can double-click the tl_step statement in the test log to view the full details:

WinRunner Message E3

Step: total, Status: Pass, Description:

Total iz comect.

Click OK to close the message.

6 Close the test results. ‘ ’

Choose File > Exit to close the Test Results window. @

7 Close the lesson7 test.

Choose File > Close.
8 Close version 1B of the Flight Reservation application.

Choose File > Exit.

WinRunner Tutorial Lesson 7, page 96

Reading Text

This lesson:

® describes how you can read text from bitmaps and non-standard GUI objects

® shows you how to teach WinRunner the fonts used by an application

* |ets you create a test which reads and verifies text Find

® |ets you run the test and analyze the results)

WinRunner Tutorial Lesson 8, page 97

Reading Text

How Do You Read Text from an Application?

You can read text from any bitmap image or GUI object by adding text checkpoints
to a test script. A text checkpoint reads the text from the application. You then add
programming elements to the test script which verify that the text is correct.

For example, you can use a text checkpoint to:

® verify a range of values

¢ calculate values Find

® perform certain operations only if specified text is read from the screen)
To create a text checkpoint, you indicate the area, object, or window that .
contains the text you want to read. ‘ ’
WinRunner inserts a win_get_text or obj_get text statement into the test @
script and assigns the text to a variable. To verify the text you add programming

elements to the script.

Note that when you want to read text from a standard GUI object (such as an edit
field, a list, or a menu), you should use a GUI checkpoint, which does not require
programming. Use a text checkpoint only when you want to read text from a bitmap
image or a non-standard GUI object.

WinRunner Tutorial Lesson 8, page 98

Reading Text

In the following exercises you create a test that:
U opens a graph and reads the total number of tickets sold
O creates a new order for the purchase of one ticket

U opens the graph again and checks that the total number of tickets sold was
updated

U reports whether the number is correct or incorrect

WinRunner Tutorial Lesson 8, page 99

Reading Text

Reading Text from an Application

g 1

5, 2
P

Flight 14

In this exercise you will record the process of opening the graph in the Flight
Reservation application to read the total number of tickets sold, creating a new
order, and opening the graph again. In the next exercise you will add programming
elements to the test script that verify the text in the graph.

Note that in order for WinRunner to read text on computers with certain display
drivers, including ATI, you must learn the fonts in the Flight Reservation application
before you can perform this exercise. If WinRunner fails to read text in the exercise
below, stop the exercise, follow the instructions in “Teaching Fonts to WinRunner”
in the next section, and repeat this exercise from the beginning.

Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

Open the Flight Reservation application and log in.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

Start recording in Context Sensitive mode.

Choose Create > Record—Context Sensitive or click the Record button.

Lesson 8, page 100

Reading Text

4 Open the graph.
In the Flight Reservation application, choose Analysis > Graphs.
ﬂ 5 Read the total from the graph.

Choose Create > Get Text > Area, or click the Get Text—Area button on the Test
Creation toolbar.

Use the crosshairs pointer and the left mouse button to drag a rectangle around
the total.

i Graph _ (O] x| Find

Stule

A gent Mame; jennifer ’)

LWL L 4 N ke 2T
Eoic ki ST ST AL AT

Total Tickets Snld[3§'+

Click the right mouse button to finish the operation. WinRunner inserts an
obj_get_text statement into the test script. The text appears in the script as a
comment, for example #34.

Lesson 8, page 101

Reading Text

Note: If the #No text found comment is inserted into your test script above the
obj_get_text statement, it means that the display driver of your computer is
preventing WinRunner from recognizing the font in the Flight Reservation
application. If this happens, follow the instructions in Teachin g Fonts to
WinRunner on page 107, and then start this exercise from the beginning.

6 Close the graph. Find

7 Create a new order.)

Choose File > New Order in the Flight Reservation application.

WinRunner Tutorial Lesson 8, page 102

Reading Text

8 Enter flight and passenger information.

4 Flight Reservation [_ O] =]
Fil= Edit Analyziz Help
sl b= B |
— Flight Schedule: — Order Information:

Enter Drate of Flight: MHame: Order Mo
tomorrow's r 7 | i Enter your name.
date. -

Fly Fram: Departure Time: Flight Ma: Find
Select Denver. i ﬂ | |

Fly Ta: Aarival Timne: Airling: t)

[H
Select. San | ﬂ | |
Francisco. -

ass; .
Tickets: I Order 1 ticket. ‘ ’
= First ;
Click th " Business Price: I @
ICi e
. Tatal:

Flights button Flights __. € Ecanomy o I
and double-
click a flight. Inzert Hrder I Update Drderl [elete Mrder, |

9 Insert the order into the database.

Click the Insert Order button. When the insertion is complete, the message “Insert
Done” appears in the status bar.

WinRunner Tutorial Lesson 8, page 103

Reading Text

% 10 Synchronize the test so that it waits for the “Insert Done” message to
appear in the status bar.

Choose the Create > Wait Bitmap > Object/Window command or click the Wait
Bitmap—Point button on the Test Creation toolbar.

Use the dm pointer to click the “Insert Done” message.

11 Open the graph again.

Choose Analysis > Graphs.

ﬂ 12 Read the total from the graph. Find

Choose Create > Get Text > Area, or click the Get Text—Area button on the Test P
Creation toolbar.

Lesson 8, page 104

Reading Text

Use the crosshairs pointer and the left mouse button to drag a rectangle around

the total.
HETET _ (O] x|
Stule
A gent Mame; jennifer
Find
?
Total Tickets Sold[351 iy @

Click the right mouse button to finish the operation. WinRunner inserts an
obj_get_text statement into the test script.

13 Close the graph.

Q 14 Stop recording.
Choose Create > Stop Recording or click the Stop button.

Lesson 8, page 105

1 the test.
E 5 Save the tes

Choose File > Save or click the Save button. Name the test lesson8 and click
Save.

When WinRunner reads text from the screen, it inserts a win_get_text or
obj_get text statement into the test script. For example:

obj_get text("GS_Drawing", text, 346, 252, 373, 272);

Find
GS_Drawing is the logical name of the non-standard GUI object containing the
text. ?
text is the variable which stores the text you selected. ‘ ’

346, 252, 373, 272 are the coordinates of the rectangle you marked around the @
text.

WinRunner Tutorial Lesson 8, page 106

Reading Text

Teaching Fonts to WinRunner

In the following exercise you will teach WinRunner the font used by the Flights
Reservation application. Note that you only need to perform this exercise now if
WinRunner did not recognize text in the previous exercise. In general, you only

need to teach fonts to WinRunner if it does not automatically recognize the fonts in
the application you are testing.
To teach a font to WinRunner you: Find
® |earn the set of characters (font) used by your application '7
® create a font group, a collection of fonts grouped together for specific testing ‘ ’
purposes
® activate the font group by adding the setvar TSL function to a test script @

WinRunner Tutorial Lesson 8, page 107

Reading Text

Learning Fonts

You use the WinRunner Fonts Expert to learn the fonts used by your application.

Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

Open the Fonts Expert.

In WinRunner, choose Tools > Fonts Expert. The Font Expert window opens.

Open the Learn Font window. Find
In the Fonts Expert, choose Font > Learn. The Learn Fonts window opens. ’)
Name the font in the Flight Reservation flights .

In the Font Name box, type flights. ‘ ’

Describe the properties of the flights font. @

Click the Select Font button to open the Font dialog box. The Flight Reservation
font is MS Sans Serif, Bold, 8 points. Select these properties in the window and
click OK.

Learn the flights font.

In the Learn Font window, click the Learn Font button. When the learn process is
completed, the Existing Characters box displays the characters learned and the
Properties box displays the font’s properties.

Close the Learn Fonts window.

Click Close.

Lesson 8, page 108

Reading Text

Create a Font Group

After WinRunner learns a font, you must assign it to a font group. A font group can
contain one or more fonts. In this exercise you will create a font group which
contains only the flights font.

Open the Font Groups window.

In the Fonts Expert, choose Font > Groups.

Create a Font Group called flt_res and assign the flights font to it.

Type the name fit_res into the Group Name field. Select flights in the Fonts in
Library box. Click the New button. p)

Close the Font Groups window and the Fonts Expert.

Click Close. ‘ ’

Close the Fonts Expert. @

Choose Font > Exit.

Lesson 8, page 109

Reading Text

Activating the Font Group

The final step before you can read text is to activate the font group. You do this in
the Options dialog box.

1 Open a blank test window in WinRunner.

If a blank test window is not currently open, choose File > New.

2 Activate the fit_res font group and the Image Text Recognition mechanism.

Choose Settings > Options. In the Options dialog box, click the Text Recognition Find
tab. In the Font Group box, type fit_res. Select the Use Image Text Recognition
Mechanism check box. 2

Note: You can also activate a font group using the fontgrp testing option by adding
a setvar statement to a test script. To do so, in the test window type: @

setvar (“fontgrp", "flt_res");

Keep in mind that only one font group can be active at a time. If you use a setvar
statement to activate a font group, then the font group remains active only during
the current WinRunner testing session. If you close WinRunner and restart it, you
must run the setvar statement again in order to reactivate the font group. For
more information on using the setvar function, refer to Chapter 34, “Setting
Testing Options from a Test Script,” in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 8, page 110

Reading Text

Verifying Text

In this exercise you add an if/else statement to the test script in order to determine
whether the total was updated in the graph after you placed an order.

In the first obj_get_text statementinthe lesson8 test script, change the text

variable to first total.

In the second obj_get_text statement in the test script, change the text

variable to new _total.

)) Find

Place the cursor below the last line the script.

Add the following statements to the test script exactly as they appear below. 7

if (new_total == first_total + 1) ‘ ’
tl_step (“graph total", O, "Total is correct.");

else @
tl_step ("graph total", 1, "Total is incorrect.");

In plain English, these statements mean “If new_total equals first_total plus 1,
report that the total is correct, otherwise (else) report that the total is incorrect.

For a description of the tl_step function, review Lesson 7, “Programming Tests
with TSL.”

Save the test.

Choose File > Save or click the Save button.

Lesson 8, page 111

Reading Text

Debugging the Test Script

You should now run the test in Debug mode in order to check for errors in syntax
and logic. If any error messages appeatr, look over the test script and try to fix the
problem.

Select Debug mode from the Run Mode list on the Standard toolbar.

Debug mode will stay in effect until you select a different mode.

Run the test.

Choose Create > Run from Top or click the Run from Top button. If you prefer to
run the test line-by-line, use the Step button.

Review the test results in the WinRunner Test Results window.

Choose Tools > Test Results or click the Test Results button. The WinRunner Test
Results window displays the results of the Debug test run.

If the tI_step event failed, a problem exists in the test script. Examine the script
and try to fix the problem.

Exit the Flight Reservation application.

Choose File > Exit.

Lesson 8, page 112

Reading Text

Running the Test on a New Version

Once the test script is debugged, you can run it on a new version of the Flight
Reservation application.

L%‘ 1 Open version 1B of the Flight Reservation application.
P

Flight 16 Choose Programs > WinRunner > Sample Applications > Flight 1B on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.)

2 In WinRunner, select Verify mode from the Run Mode list on the Standard

toolbar. ‘ ’

Verify mode will stay in effect until you select a different mode. @

|5.| 3 Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “res1.” Make sure that the
Display Test Results at End of Run check box is selected.

4 Run the test.

Click OK in the Run Test dialog box. The test run begins.

WinRunner Tutorial Lesson 8, page 113

Reading Text

Review the test results.

The test fails because the graph was not updated after WinRunner placed an
order for one ticket. WinRunner read the total number of orders from the graph

and concluded that the text is incorrect.
Close the report.

Choose File > Exit.

Close the lesson8 test.

Choose File > Close.

Close version 1B of the Flight Reservation application.

Choose File > Exit.

Lesson 8, page 114

Reading Text

Text Checkpoint Tips

® Before you create a script that reads text, determine where the text is located. If
the text is part of a standard GUI object, use a GUI checkpoint or TSL functions
such as edit_get_text or button_get _info . If the text is part of a non-standard
GUI object, use the Create > Get Text > Object/Window command. If the text is
part of a bitmap, use the Create > Get Text > Area command.

®* When WinRunner reads text from the application, the text appears in the script as
a comment (a comment is preceded by #). If the comment #no text was found
appears in the script, WinRunner does not recognize your application font. Use o
the Font Expert to teach WinRunner this font. :

® TSL includes additional functions that enable you to work with text such as ‘ ’
win_find_text , obj_find_text , and compare_text . For more information, refer to
Chapter 13, “Checking Text,” in your WinRunner User’s Guide. @

WinRunner Tutorial Lesson 8, page 115

Creating Batch Tests

This lesson:

® describes how you can use a batch test to run a suite of tests unattended

® helps you create a batch test

® helps you run the batch test and analyze the results Find

WinRunner Tutorial Lesson 9, page 116

Creating Batch Tests

What is a Batch Test?

By creating a single batch test, you can run an entire suite of tests unattended. You
can start a batch test run, go to lunch, and come back to review the results when
the run is finished.

A batch test looks and behaves like a regular test script, except for two main
differences:

® It contains call statements, which open other tests. For example: Find
call "c:\\ga\\flights\\lesson8"();
?
During a test run, WinRunner interprets a call statement, and then opens and
runs the “called” test. When the called test is done, WinRunner returns to the ‘ ’

batch test and continues the run.

® You choose the Batch Run option in the Options dialog box (Settings > Options) @
before running the test. This option instructs WinRunner to suppress messages
that would otherwise interrupt the test. For example, if WinRunner detects a
bitmap mismatch, it does not prompt you to pause the test run.

When you review the results of a batch test run, you can see the overall results of
the batch test (pass or fail), as well as the results of each test called by the batch
test.

WinRunner Tutorial Lesson 9, page 117

9 Creating Batch Tests

Programming a Batch Test
In this exercise you will create a batch test that:
O calls tests that you created in earlier lessons (lesson5, lesson6, and lesson7)

O runs each called test 3 times in order to check how the Flight Reservation applica-
tion handles the stress of repeated execution.

g 1 Start WinRunner and open a new test.

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button. o)
Otherwise, choose File > New. A new test window opens. .

2 Program call statements in the test script that call lesson5 , lesson6 , and ‘ ’
lesson7 .
Type the call statements into the new test window. The statements should look @
like this:

call "c:\\ga\\flights\\lesson5"();
call "c:\\ga\\flights\\lesson6"();
call "c:\\ga\\flights\\lesson7"();

In your test script, replace c:\\qa\\flights with the directory path which contains

your tests. When you type in the path, use double backslashes between the
directory names.

WinRunner Tutorial Lesson 9, page 118

9 Creating Batch Tests

3 Define a loop so that each test is called 3 times.
Define a loop around the call statements so that the test script looks like this:

for (i=0; i<3; i++)

{

call "c:\\ga\\flights\\lesson5"();
call "c:\\ga\\flights\\lesson6"();
call "c:\\ga\\flights\\lesson7"();

}

In plain English, this means “Run lesson5, lesson6, and lesson7, and then loop
back and run each test again. Repeat this process until each test is run 3 times.” 7
Note that the brackets { } define which statements are included in the loop.

4 Choose the Batch Run option in the Options dialog box. ‘ ’
Choose Settings > Options. In the Options dialog box, click the Run tab. Then @
select the Run in Batch Mode check box. Click OK to close the Options dialog
box.

5 Save the batch test.

Choose File > Save or click the Save button. Name the test batch.

WinRunner Tutorial Lesson 9, page 119

9 Creating Batch Tests

Running the Batch Test on Version 1B

You are now ready to run the batch test in order to check the Flight Reservation
application. When you run the test, WinRunner will compare the expected results
of each test to the actual results in the application. It uses the expected results
stored when you created the tests in earlier lessons.

L%‘ 1 Open version 1B of the Flight Reservation application and log in.
P

Flight 16 Choose Programs > WinRunner > Sample Applications > Flight 1B on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are)
both clearly visible on your desktop.

2 In WinRunner, select Verify mode from the Run Mode list on the Standard ‘ ’
toolbar.
|| 3 Choose Run from Top. @

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name “res1.” Make sure that the
Display Test Results at End of Run check box is selected.

4 Run the test.
Click OK in the Run Test dialog box. The test run begins.

Watch how WinRunner opens and runs each called test, and loops back to
execute the tests again (for a total of 3 times).

WinRunner Tutorial Lesson 9, page 120

Creating Batch Tests

Analyzing the Batch Test Results

Once the batch test run is completed, you can analyze the results in the WinRunner
Test Results window. The Test Results window displays the overall result (pass or
fail) of the batch test, as well as a result for each called test. The batch test fails if
any of the called tests failed.

E 1 Open the WinRunner Test Results window and display the res1 results of
the batch test.

If the WinRunner Test Results window is not currently open, click on the batch test
window and choose Tools > Test Results, or click the Test Results button.)

WinRunner Tutorial Lesson 9, page 121

Creating Batch Tests

2 View the results of the batch test.

ES WinRunner Test Results - [C:\Program Files\Mercury Interactive’. .. [H=] B3
File Options Tools ‘window ‘ —1&]| =] Displays the
ﬁ‘l @l |res1 ‘ j] | 5 i %I EI current results
directory name.
The test tree — % [Test Resul: fail Batch-Tesh—L
ShZM:]S:” t_he l;(;;StS - B4 lessons |: +% Total number of bitmap checkpoints: 0 Shows whether
Zztfh [el;;”:gn € - El lezzonG +% Total number of GUI checkpoints: n the batch tes_t
Since each l‘elst = lezzon? & General Information passed or failed.
was called 3 -8 lessons Find
times, the test - &= lessonB Line | Ewent Details Fiesul Time &)
names appear 3 F B lesson? | 1 |start run batch n 00:00:00 — 2
times in the list. - lezzond 3 |calltest lezzon5 oK 00:00:00 A “call test” -
r EI lezsanb 14 |retum lezzona mizmate|00;00:01 event indicates ‘ ’
- B lesson? 4 |caltest [lessort 0K o000l that a called test
- was opened and
25 |retum lezzonk mizmatc|00:00; 23 run. @
Il test [7 0K 00:00:23
Lists all the events. b jcalles Fesan
that occurred 19 |retum lezzon? QK 00:00:24
during the batch 3 |calltest lezsond QK. 000024
test run. 14 |retum lessonS rizrmatc|00:00: 25 A ‘return” event
4 lcaltest [lessond 0K |00:00:25 ’”d’fafles that
. — control was
25 |retum lezzonk mizmate|00:00; 47 returned to the
LY 5 |calltest lezzon? QK. 00:00:47 - batch test.
| | Y

The batch test failed because one or more of the called tests failed. As you have
seen in earlier lessons, version 1B contains some bugs.

Tutorial Lesson 9, page 122

Creating Batch Tests

3 View the results of the called tests.

Click a test name in the test tree to view the results of a called test.

Ef winRunner Test Results - [C:\Program Files\Mercury Interactives . [H[=] E3
File Options Tools ‘indow =18l x] Displays the
The highlighte ﬁ'l %l [rest e | ﬁl EI current results
test indicates U_ﬂbatch @Test Result: fail Batch-Test) directory name.
which test results 3 El lezzons |: 42 Total number of bitmap checkpaints: 2 ‘L
Shows whether
3,..6' currently . = +% Total number of GUI checkpoints: a the called test .
isplayed. In this Find
case, lesson6 = El lesson? & General Information pa;sed or
results appear in - B2 lessans failed.)
the Test Results - B tessor Lire Evert Dietails Fesult Tirne = .
window. 3 lessan? A0 [start run lezzoni] 00:00:00
Lists all the - B lessons 19 |bitmap checHimal oK |omon ‘ ’
events that | 89 ssor? 22 |bitmap checklmad mismats|00:00:22
occurred when — 25 |ztoprun lezsonE QK. 00:00:22 @
the test was -
called. | | p

Remember that lesson6 uses a bitmap checkpoint to check that the Agent
Signature field in the Fax Order dialog box clears after WinRunner clicks the Clear
Signature button. Since the field did not clear, the bitmap checkpoint detected a
mismatch. You can double-click the failed event to display the expected, actual,
and difference results.

r Tutorial Lesson 9, page 123

9 Creating Batch Tests

4 Close the Test Results window.
Choose File > Exit.
5 Close the batch test.

Choose File > Close.

6 Clear the Batch Run option in the Options dialog box.

Once you are finished running the batch test, clear the Batch Run option. Choose
Settings > Options. In the Options dialog box, click the Run tab. Then clear the :
Run in Batch Mode check box and click OK. Find

7 Close version 1B of the Flight Reservation application. ’)

Choose File > Exit. ‘ ’

WinRunner Tutorial Lesson 9, page 124

Creating Batch Tests

Batch Test Tips

® By defining search paths, you can instruct WinRunner to search for called tests in
certain directories. Choose Settings > Options. In the Options dialog box, click the
Folders tab. In the Search Path for Called Tests box, simply define the paths in
which the tests are located. This enables you to include only the test name in a

call statement. For example:
call "lesson6"();
For more information on defining search paths for called tests, refer to Chapter 33, Find
“Setting Global Testing Options,” in your WinRunner User’s Guide.)

® You can pass parameter values from the batch test to a called test. Parameter ‘ ’
values are defined within the parentheses of a call statement.
call test_name ([parameterl, parameter2, ...]); @

®* Remember that you must select the Run in Batch Mode option in the Options
dialog box in order for the batch test to run unattended.

For more information on creating batch tests, refer to Chapter 18, “Calling Tests
and Chapter 27, “Running Batch Tests” in your WinRunner User’s Guide.

WinRunner Tutorial Lesson 9, page 125

Maintaining Your Test Scripts

This lesson:

® explains how the GUI map enables you to continue using your existing test scripts
after the user interface changes in your application

® shows you how to edit existing object descriptions or add new descriptions to the Find
GUI map

® shows you how to use the Run wizard to automatically update the GUI map 7

WinRunner Tutorial Lesson 10, page 126

Maintaining Your Test Scripts

What Happens When the User Interface Changes?

Consider this scenario: you have just spent several weeks creating a suite of
automated tests that covers the entire functionality of your application. The
application developers then build a new version with an improved user interface.
They change some objects, add new objects, and remove others. How can you test
this new version using your existing tests?

WinRunner provides an easy solution. Instead of manually editing every test
script, you can update the GUI map. The GUI map contains descriptions of the
objects in your application. It is created when you use the RapidTest Script wizard

to learn the objects in your application. This information is saved in a GUI map file. ‘ ’

WinRunner Tutorial Lesson 10, page 127

Maintaining Your Test Scripts

An object description in the GUI map is composed of:

® a logical name, a short intuitive name describing the object. This is the name you
see in the test script. For example:

button_press ("Insert Order");

Insert Order is the object’s logical name.

® a physical description, a list of properties that uniquely identify the object. For Find
example:
?
{ !
class: push_button
label: "Insert Order" ‘ ’

} @
The button belongs to the push_button object class and has the label “Insert
Order.”

When you run a test, WinRunner reads an object’s logical name in the test script
and refers to its physical description in the GUI map. WinRunner then uses this
description to find the object in the application under test.

If an object changes in an application, you must update its physical description in
the GUI map so that WinRunner can continue to find it during the test run.

WinRunner Tutorial Lesson 10, page 128

Maintaining Your Test Scripts

In the following exercises you will:
O edit an object description in the GUI map
0 add objects to the GUI map

U use the Run wizard to automatically detect user interface changes and update the
GUI map

WinRunner Tutorial Lesson 10, page 129

Maintaining Your Test Scripts

Editing Object Descriptions in the GUI Map

Suppose that in a new version of the Flight Reservation application, the Insert
Order button is changed to an Insert button. In order for you to continue running
tests that use the Insert Order button, you must edit the button’s physical
description in the GUI map.

g 1 Start WinRunner and open a new test. Find

If WinRunner is not already open, choose Programs > WinRunner > WinRunner
on the Start menu. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens. ‘ ’

WinRunner Tutorial Lesson 10, page 130

10

Maintaining Your Test Scripts
2 Open the GUI map editor.

Choose Tools > GUI Map Editor. The GUI Map Editor opens and displays the

current contents of the GUI Map.

¥ GUI Map Editor
Fil= Edit “iew QOptionz Tools
Windows/Objects:

- & [static)”

HEE Cancel

B8 "Clear Signature"
L abl] "Fax Mumber:"
= "Flight Reservation”
-3 d3zEe

LH tbout.”

Help

M E3

Leamn

Modify... |
Add. |
Delete |

- F3 abdwinddd
—a_bll Uil
& “hidine: (static]”

<]

¥ Show Bhysical Description

i

i
clazz window,

label: "Fax Order Mo, B,
MSW_class: "H32770"
H

i

=i

Show |
Find El

IEIbiect iz not found. Cannot Highlight

The GUI Map Editor displays the object names in a tree. Next to each name is an
icon representing the object’s type. The objects are grouped according to the
window in which they are located. You can double-click a window to collapse or

expand the view of its objects.

WinRunner Tutorial Lesson 10, page 131

Objects are listed in a tree,
according to the window in which
they are located.

Maintaining Your Test Scripts

3 Find the Insert Order button in the tree.

In the GUI Map Editor, choose View > Collapse Objects Tree to view only the

windows.
¥ GUI Map Editor _ O] x|
Fil= Edit “iews Optionz Toolz Help
findoves /0 bjects:
2 "Fax Order Mo, 4" ;I
i T2 Order No. B
™ 'Flight Reservation" LeamE El
= "Graphics Server” Madify... I Find
™ "Open Order" When you collapse the
Add tree, only windows are o
Delste listed.

= Showa @
K _>|_I Find

¥ Show Bhysical Description

(s

class window,

label; "Fax Order Mo, B",
MSW_class: "HIZ7F0"
I

Lo |

IDbiect iz not found. Cannot Highlight

Double-click the Flight Reservation window to view its objects. Scroll down until
you locate the Insert Order button.

WinRunner Tutorial Lesson 10, page 132

Maintaining Your Test Scripts

4 View the Insert Order button’s physical description.

Click the Insert Order button in the tree.

% GUI Map Editor = B3
File Edit “iew Options Toolz Help
windows /Objects:

- & Help |

"Insert Order"

—ﬂl "Marmne:" Lo

A "Mame[static]” T o
& "Mew Order

F & "Open Order..." J Add... n
L €3 “Order Information:" Delete .

L sbl] “Order Mo
F & "Order No:[static]”

F & Paste

L abl] “Price: — Show @
<] _'I_I Find

S i

¥ Show Physical Description

claze puzgh_button,
label "Inzert Order*

7|

Iﬁctive GUI file: <&l maps

WinRunner Tutorial Lesson 10, page 133

Maintaining Your Test Scripts

5 Modify the Insert Order button’s physical description.

Click the Modify button or double-click the Insert Order button. The Modify dialog
box opens and displays the button’s logical name and physical description.

.
Find

Logical Hame: (] I

IInserl Order e | ?
Physzical Description: Help I
{ 3 4D

clagz puzh_button,

label: “Inzert Order'
| &

[

WinRunner Tutorial Lesson 10, page 134

Maintaining Your Test Scripts

In the Physical Description box, change the label property from Insert Order to

Insert.
Modify E3
Logical Hame: Ok, I
IInsert Order
LCancel |
Physical Description: Help I
{ |=] ;
clazs: push_button, Find
label: "Insert”

Click OK to close the dialog box. @
6 Close the GUI Map Editor.

In the GUI Map Editor, choose File > EXxit.

The next time you run a test that contains the logical name “Insert Order”,
WinRunner will locate the Insert button in the Flight Reservation window.

WinRunner Tutorial Lesson 10, page 135

Maintaining Your Test Scripts

Adding GUI Objects to the GUI Map

If your application contains new objects, you can add them to the GUI map without
running the RapidTest Script wizard again. You simply use the Learn button in the
GUI Map Editor to learn descriptions of the objects. You can learn the description
of a single object or all the objects in a window.

In this exercise you will add the objects in the Flight Reservation Login window to Find

the GUI map.
?
”ﬁ?‘ 1 Open the Flight Reservation Login window. .
s
Flight 14, 2 Choose Programs > WinRunner > Sample Applications > Flight 1A on the ‘ ’
Start menu.
3 Open the GUI map. @

Choose Tools > GUI Map Editor. The GUI Map Editor opens.
4 Learn all the objects in the Login window.

Click the Learn button. Use the {m pointer to click the title bar of the Login window.

WinRunner Tutorial Lesson 10, page 136

Maintaining Your Test Scripts

A message prompts you to learn all the objects in the window. Click Yes.

WinRunner Meszage [<]

ou are currently pointing at a windo,
Do you want ta Learn all objects

within the window ?
HNo
Find

WinRunner learns a description of each object in the Login window and adds it to 2

the GUI Map. .
5 Find the Login window objects in the GUI Map Editor tree. ‘ ’
6 Close the GUI Map Editor. @

In the GUI Map Editor, choose File > EXxit.

7 Close the Login window.

Click Cancel.

WinRunner Tutorial Lesson 10, page 137

10 Maintaining Your Test Scripts

Updating the GUI Map with the Run Wizard

During a test run, if WinRunner cannot locate an object mentioned in the test
script, the Run wizard opens. The Run wizard helps you update the GUI map so
that your tests can run smoothly. It prompts you to point to the object in your
application, determines why it could not find the object, and then offers a solution.
In most cases the Run wizard will automatically modify the object description in
the GUI map or add a new object description.

WinRunner Tutorial Lesson 10, page 138

Maintaining Your Test Scripts

For example, suppose you run a test that clicks the Insert Order button in the
Flight Reservation window.

button_press ("Insert Order");

If the Insert Order button is changed to an Insert button, the Run wizard opens
during a test run and describes the problem.

Run Wizard [x|

Can't Find.. winFunner cannot find the
puzh_button "Inzert Order',

Fress the "Hand" icon and then click

on the push_button “lnsert Order'. ‘ ’
&

Mote: If the object not found iz a "irtual
Ohbject”, then you need tao re-learm it [
uzing the "Yirtual Object Leam Wizard").

Cancell @i Eackl ﬂe:-tt»l Help |

WinRunner Tutorial Lesson 10, page 139

Maintaining Your Test Scripts

You click the hand button in the wizard and click the Insert button in the Flight
Reservation program. The Run wizard then offers a solution:

Run Wizard [x|
Solution - The phyzical description of the
New puzh_button "Inzert Order' haz
- - changed.

Prezz "0K" to update the description in

the GUI map. -
Tip: to viewedit the new description press Find
Edit.
Edit... | ?
¥ Continue replaying the test ‘ ’
Cancel | [Eackl QK. | Help |

When you click OK, WinRunner automatically modifies the object’s physical
description in the GUI map and then resumes the test run.

If you would like see for yourself how the Run wizard works:

8 Open the GUI map (Tools > GUI Map Editor).
9 Delete the Fly From object from the GUI Map Editor tree.

The Fly From object is listed under the Flight Reservation window. Select this
object and click the Delete button in the GUI Map Editor.

WinRunner Tutorial Lesson 10, page 140

10

11

12

13

14

15

Maintaining Your Test Scripts

Open Flight Reservation 1A.

Choose Programs > WinRunner > Sample Applications > Flight 1A on the Start
menu. In the Login window, type your name and the password mercury, and click
OK. Reposition the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

In WinRunner, open the lesson4 test and run it.

Watch what happens when WinRunner reaches the statement

list_select_item ("Fly From:", "Los Angeles"); Find
Follow the Run wizard instructions.

The Run wizard asks you to point to the Fly From object and then adds the object 7
description to the GUI map. WinRunner then continues the test run. ‘ ’
Find the object description in the GUI map.

When WinRunner completes the test run, return to the GUI Map Editor and look @

for the Fly From object description. You can see that the Run wizard has added
the object to the tree.

Close the GUI Map.
In the GUI Map Editor, choose File > Exit.
Close the Flight Reservation application.

Choose File > Exit.

Lesson 10, page 141

Where Do You Go from Here?

Now that you have completed the exercises in Lessons 1 through 10, you are ready
to apply the WinRunner concepts and skills you learned to your own application.

This lesson:
® shows you how to start testing your application Find
® describes where you find additional information about WinRunner o

WinRunner Tutorial Lesson 11, page 142

Where Do You Go from Here?

Getting Started

In order to start testing your application you should use the RapidTest Script wizard
to learn a description of every object it contains. However, before doing this,
remove the sample application’s object descriptions from the GUI map.

To get started:

1 Close all applications on your desktop except for WinRunner and the Find
application you want to test.

2 Clear the GUI map.

The GUI map currently contains descriptions of objects in the sample application. ‘ ’
Since you no longer need these descriptions, you should clear the GUI map.

To clear the GUI map, open the GUI Map Editor (Tools > GUI Map Editor) and @
choose File > Close All. When prompted, click OK to discard any descriptions

found in the temporary GUI map file. When prompted, click Yes to clear the

temporary buffer. WinRunner will close all open GUI map files and will also delete

any descriptions found in the temporary GUI map file.

Choose File > Exit to close the GUI Map Editor.

WinRunner Tutorial Lesson 11, page 143

Where Do You Go from Here?

3 Run the RapidTest Script Wizard on your application. Learn object
descriptions in Comprehensive mode.

You should now use the RapidTest Script Wizard to learn a description of each
object in your application. Choose Create > RapidTest Script Wizard and follow
the instructions on the screen.

When the wizard asks you to choose a learning flow, choose Comprehensive.

This mode lets you control how WinRunner learns object descriptions. It enables Find
you to customize logical names and map custom objects to a standard object
class. ?

After the learning process is completed, the wizard creates a GUI map file and a ‘ ’
startup script. If you are working in a testing group, store this information on a
shared network drive. @

If you need help while using the wizard, click the Help button on the appropriate
screen.

4 Create tests!

Once you finish using the wizard, you can start creating tests in WinRunner. Use
recording, programming, or a combination of both to build your automated test
scripts.

Lesson 11, page 144

Where Do You Go from Here?

Getting Additional Information

For more information on WinRunner and TSL, refer to the user guides and online
resources provided with WinRunner.

Documentation Set

In addition to this tutorial, WinRunner comes with a complete set of documentation:

WinRunner User’s Guide provides step-by-step instructions on how to use Find
WinRunner to test your application. It describes many useful testing tasks and

options not covered in this tutorial. 2
WinRunner Installation Guide explains how to install WinRunner on a single ‘ ’
computer or on a network.

Lesson 11, page 145

Where Do You Go from Here?

Online Resources

WinRunner includes the following online resources:
Read Me First provides last-minute news and information about WinRunner.

Books Online displays the complete documentation set in PDF format. Online

books can be read and printed using Adobe Acrobat Reader 3.01, which is

included in the installation package. Check Mercury Interactive’s Customer

Support web site for updates to WinRunner online books. Find
Note that in order to view the Books Online you must first install the Acrobat o
Reader. To install the Acrobat Reader, choose Programs > WinRunner > .
Documentation > Acrobat Reader Setup on the Start menu. ‘ ’
WinRunner Context Sensitive Help provides immediate answers to questions

that arise as you work with WinRunner. It describes menu commands and dialog @

boxes, and shows you how to perform WinRunner tasks. Check Mercury
Interactive’s Customer Support web site for updates to WinRunner help files.

TSL Online Reference describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions. Check Mercury Interactive’s
Customer Support site for updates to the TSL Online Reference.

WinRunner Tutorial Lesson 11, page 146

Where Do You Go from Here?

WinRunner Sample Tests includes utilities and sample tests with accompanying
explanations. Check Mercury Interactive’s Customer Support site for updates to
WinRunner help files.

Technical Support Online uses your default web browser to open Mercury
Interactive’s Customer Support web site.

Support Information presents the locations of Mercury Interactive’s Customer
Support web site and home page, the e-mail address for sending information Find
requests, the name of the relevant news group, the location of Mercury Interactive’s
public FTP site, and a list of Mercury Interactive’s offices around the world.

Mercury Interactive on the Web uses your default web browser to open Mercury ‘ ’
Interactive’s home page. This site provides you with the most up-to-date
information on Mercury Interactive and its products. This includes new software @
releases, seminars and trade shows, customer support, educational services, and
more.

WinRunner Tutorial Lesson 11, page 147

Index

A

Analog mode 28
Attributes 10, 13
Automated testing 2

B

Batch test 116—125
creating 118
running 120
tips 125
viewing results 121

Bitmap checkpoint
creating 72
viewing actual 78
viewing difference 78
viewing expected 76

button_get_info function 115

C

call statement 117

Check Bitmap command 74
Check GUI command 59
Context Sensitive mode 27

D

Debug mode 37,91, 112
Decision-making logic 88

E

edit_get_text function 86, 115
Execution arrow 6

F

Font Expert 108

Font group
activating 110
creating 109

Function Generator 82, 86

G

Get Text command 101
GUI checkpoint 67, 98

creating 56, 59

viewing results 63
GUlmap 127

adding GUI objects 136

Ko
Click a
page

editing object descriptions 130
updating with the Run Wizard 138

ABCDEFGHIJKLMNOPQRSTUVWXY Z

WinRunner Tutorial

Index

GUI Map Editor 131 P
gg: gap f”lez 10, 127 Physical description 128
py Programming tests 8196
| R
Insert Function command 86, 87 RapidTest Script Wizard 15—18

Introduction 1-8 Comprehensive mode 17, 144

Express mode 17

L Reading text 97—115
; Record button 8
Logical name ;
g 34,128 Record mode Find

Loop 119

Analog 28

Context Sensitive 27 7
M Recording tips 40
Manual testing 2 Report form 22 ‘ ’
Microsoft user interface standards 19 Run Wizard 138
N S
Navigation controls 17 Set Options form 117 “ﬁ

set_window function 34
setvar function 107, 110 .

o Softkeys 8 Click a
obj_check_bitmap 70, 75 Standard toolbar 7 page
obj_check_gui function 57, 61 Status bar 6
obj_get_text function 98, 106 Stop button 8
obj_wait_bitmap function 52 Synchronizing tests 4254

ABCDEFGHIJKLMNOPQRSTUVWXY Z

WinRunner Tutorial

Index

T win_check _bitmap 70, 75
win_check_gui function 57, 61
win_get_text function 98, 106
win_wait_bitmap function 52
WinRunner main window 5

Test Creation toolbar 7
Testlog 22

Testresults 22

Test script, understanding 33
Test window 6

Testing process 4

Text
reading 100
verifying 111

Text checkpoint 98

Text checkpoint tips 115
timeout test option 44 o)
tl_step function 90, 111 .

U 4

Update mode 37, 68, 80 @
User Interface test 17

Tt
v &
Verify mode 37, 94 Click a

page

W

Wait Bitmap command 51
Welcome to WinRunner window 5

ABCDEFGHIJKLMNOPQRSTUVWXY Z

WinRunner Tutorial

WinRunner Tutorial
© Copyright 1994 - 1998 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express permission
in writing of Mercury Interactive. Information in this document is subject to change without notice and does not
represent a commitment on the part of Mercury Interactive.

Patents pending.

WinRunner, XRunner, and LoadRunner are registered trademarks of Mercury Interactive Corporation.

TestSuite, Astra, Astra SiteManager, Astra SiteTest, RapidTest, TestDirector, QuickTest, Visual Testing, Find
WebTest, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, Fast Scan and Visual Web Display are
trademarks of Mercury Interactive Corporation. ?

This document also contains Registered Trademarks, Trademarks and Service Marks that are owned by their ‘
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue

Sunnyvale, CA 94089

Tel. (408)822-5200 (800) TEST-911
Fax. (408)822-5300

WRTUT5.0/01

	Cover Page
	Table of Contents
	Introducing WinRunner
	The Benefits of Automated Testing
	Understanding the Testing Process
	Exploring the WinRunner Window

	Getting Started with RapidTest
	How Does WinRunner Identify GUI Objects?
	Spying on GUI Objects
	Using the RapidTest Script Wizard
	Running the User Interface Test
	Analyzing Test Results

	Recording Tests
	Choosing a Record Mode
	Recording a Context Sensitive Test
	Understanding the Test Script
	Recording in Analog Mode
	Running the Test and Analyzing the Results
	Recording Tips

	Synchronizing Tests
	When Should You Synchronize?
	Creating a Test
	Changing the Synchronization Setting
	Identifying a Synchronization Problem
	Synchronizing the Test
	Running the Synchronized Test

	Checking GUI Objects
	How Do You Check GUI Objects?
	Adding GUI Checkpoints to a Test Script
	Running the Test
	Running the Test on a New Version
	GUI Checkpoint Tips

	Checking Bitmaps
	How Do You Check a Bitmap?
	Adding Bitmap Checkpoints to a Test Script
	Viewing Expected Results
	Running the Test on a New Version
	Bitmap Checkpoint Tips

	Programming Tests with TSL
	How Do You Program Tests with TSL?
	Recording a Basic Test Script
	Using the Function Generator to Insert Functions
	Adding Logic to the Test Script
	Understanding tl_step
	Debugging the Test Script
	Running the Test on a New Version

	Reading Text
	How Do You Read Text from an Application?
	Reading Text from an Application
	Teaching Fonts to WinRunner
	Verifying Text
	Running the Test on a New Version
	Text Checkpoint Tips

	Creating Batch Tests
	What is a Batch Test?
	Programming a Batch Test
	Running the Batch Test on Version 1B
	Analyzing the Batch Test Results
	Batch Test Tips

	Maintaining Your Test Scripts
	What Happens When the User Interface Changes?
	Editing Object Descriptions in the GUI Map
	Adding GUI Objects to the GUI Map
	Updating the GUI Map with the Run Wizard

	Where Do You Go from Here?
	Getting Started
	Getting Additional Information

	Index

	help:
	search:
	home:

