
Codar
Software Version: 1.70

Concepts Guide

Document Release Date: July 2016
Software Release Date: July 2016



Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© 2015 - 2016 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

TheOpenStack® WordMark and the Square O Design, together or apart, are trademarks or registered trademarks marks of OpenStack Foundation, in the United States and
other countries and are used with the OpenStack Foundation's permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loupGailly andMark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HP Passport and to sign in. To register for an HP Passport ID, click Register on the Software Support site or click Create an
Account on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your sales representative for details.

Support
Visit the software support site at: https://softwaresupport.hpe.com.

Hewlett Packard Enterprise software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed tomanage your business. As a valued support customer, you can benefit by using the support website to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HPE support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and to sign in. Many also require a support contract. To register for an HP Passport ID, click
Register on the support site or click Create an Account on the HP Passport login page.

To findmore information about access levels, go to: https://softwaresupport.hpe.com/web/softwaresupport/access-levels.

Concepts Guide

HPE Codar (1.70) Page 2 of 42

https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/
https://softwaresupport.hpe.com/web/softwaresupport/access-levels


Contents

Codar 5
Codar overview 6

Components 6
Service Designs 7

Sequenced design 7
Topology design 7
Declarative-based modeling 8
Topology composition 9
Microservices 10

Application pipeline management 11
Managing packages 13
Package operations 14
Deploy and redeploy 15
Scale out 15
Roles and user access 17
Lifecycle stages and actions 19

Package states 20
Grouping service designs by lifecycle stage 21

Release gate actions 22
Pipeline statistics 23
Environments 24
Schedule releases 25

External integrations 25
Jenkins integration 26
ALM integration 26
Infrastructure as code (IaaC) 27

Deploy containers on Docker Cluster 28
SAML support for Codar 29
Use case: Continuous integration, deployment, and delivery 31

Application modeling 31
Continuous integration and deployment 32

Concepts Guide

HPE Codar (1.70) Page 3 of 42



Importing an application design 32
Deploying on an environment 32
Publishing a design 33

Use case: Customizable release pipeline 35
Use case: Deploy and redeploy packages 37
Use case: Deployment and scale out 39

Next steps 40
Codar Community Edition 41
Send documentation feedback 42

Concepts Guide

HPE Codar (1.70) Page 4 of 42



Codar
Organizations are facing new challenges when extending continuous integration into continuous
delivery. Challenges include consistently deploying applications through development to production
environments while considering the differences in those environments.

DevOps provides a framework to bridge the gaps between the development (Dev) and operations (Ops)
environments by using a set of principles, methods, and practices around collaboration, automation,
and governance. The goal is to extend continuous build or assembly integration to repeatable and
consistent application deployment across heterogeneous environments.

The following diagram illustrates the continuous integration and continuous delivery cycle in a DevOps
environment.

Concepts Guide
Codar

HPE Codar (1.70) Page 5 of 42



Codar overview
Hewlett Packard Enterprise Codar facilitates continuous delivery in which every change to the system
is releasable and every code change can be deployed in production. It enables automation of
continuous delivery where every code change triggers a build, which is deployed, automated unit tests
are executed, and the application is automatically deployed to an environment based on policies that
are defined in a runbook automation flow. Continuous delivery aims to deliver frequently and get quick
feedback from users. 

Components
Components are elements of service design. Only topology components are displayed in the
Components tab. Sequenced components are not associated with providers or provider types. From
the Components tab, you can view the topology components associated with a specific provider
instance andmanage the topological components.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 6 of 42



Service Designs
Create, configure, andmodify service designs to provide on-demand, automated service delivery.
Service designs are the recipes for automating the cloud, and include reusable service components.
Service components and their relationships in a service design define the framework for creating the
service.

Service designs also provide a structure for options that consumers can select when ordering a
service. You can re-use designs for multiple service offerings, with each service offering customized to
meet the needs of different consumer organizations and groups. You can also leverage service designs
shipped with Codar as well as exporting and importing designs between Codar systems.

You can create sequenced and topology designs.

Sequenced design

Sequenced designs specify directed execution of the service component lifecycle and provide
mechanisms for controlling resource selection as each component is deployed. When creating
sequenced designs, associate one or more resource offerings on a service component to constrain
provider selection. This association or link ensures that the resource offering will be provisioned when
the service component is deployed. You can also associate resource offerings with component
templates.

Use sequenced designs for complex services and services that rely on runbook automation, such as
integrations with legacy data center systems. Create a sequenced design as a directed component
hierarchy to define lifecycle execution. Sequenced designs use components to groupmultiple
automation providers within a single entity, and they permit explicit specification of lifecycle actions.

Topology design

Topology designs specify components, relationships, and properties. In contrast to sequenced
designs, whichmore explicitly define the provisioning order and the sequence of actions that will run,
topology designs are declarative in nature and do not include explicit actions or sequencing. The
provisioning sequence is inferred by the relationships that exist between components in a topology
design.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 7 of 42



Use topology designs for Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) deployments that are enabled using Chef, Puppet, Server Automation,
andOperations Orchestration flow-based components.

Declarative-based modeling

Automating the deployment of applications using declarative basedmodeling allows the user to declare
the end state of the application deployment (the application components and the dependencies
between them) while the process to get to that state is triggered in the background. This allows the user
to focus on what is deployed rather than how it gets deployed, which results in a shorter time to
automate the deployment of multi-tier applications and greater simplicity in managing them over time.

Codar supports declarative-basedmodel development that involves creation, integration, and
maintenance of complex designs through a user interface. A model consists of a topology design and
its properties. Codar provides flexibility for the user to modify the properties during the time of
realization (similar to late binding).

Concepts Guide
Codar overview

HPE Codar (1.70) Page 8 of 42



Topology composition

An application design, also called a topology design, specifies components and their relationships to
define the application lifecycle. An application design delegates lifecycle sequencing to cloud
providers.

An application design can be of two types:

l Complete design: all components in this design exist for fulfillment

l Partial design: this design requires another design for fulfillment

Topology composition is used to compose the application design with the infrastructure design at run
time. During application deployment, the infrastructure need varies for each deployment; topology
composition helps in defining these variable infrastructure needs in the application design and allows to
compose with different infrastructure designs at deploy time.

The capabilities and characteristics are used to describe the components. The application design will
define the requirements using the capability components and characteristics in the design. The
application design cannot be provisioned on its own and requires the selection of a compatible service
design. The service design components arematched for their capability and characteristics to check
the compatibility and thematching designs are chosen as compatible service design during the
deployment.

The following illustration shows the topology composition for an HR insurance app. The app requires a
database component and web server component, which are defined in the application design APP. This
is fulfilled by PLATFORM1 as it has the ApacheWeb Server which has the web server capabilities and
its characteristics andMySQL database, which has the database capability and its characteristics.
Similarly the PLATFORM2 alsomatches the APP requirements.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 9 of 42



Microservices

A partial application design can be deployed usingmultiple infrastructure designs that provide the
platform or infrastructure services rather than a single service. A partial design with multiple open
requirements (capabilities) can compose with multiple infrastructure designs to satisfy all its open
requirements and build a complete application design. You can choose either a single design that
matches all capabilities, or you can choose components from different designs.

A partial design with multiple open requirements (capabilities) could compose with multiple (micro)
service designs to satisfy all its open requirements and build a complete application design.

For example, if the application requires database and application services, it should be possible to
select a design which has database and application in a single design or you can choose a database
from one service design and an application from another service design.

A combined topology is created at run time based onmicroservice selection. Themicroservice can be
associated with lifecycle stages.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 10 of 42



Application pipeline management
Automating the deployment of applications is a complicated and lengthy process and requires
significant investment. Applications are deployed differently in development and in production, causing
many errors. Application pipelinemanagement allows you to deploy applications across different

Concepts Guide
Codar overview

HPE Codar (1.70) Page 11 of 42



environments using the same topology model. You can choose different microservices in different
stages; however, the application design remains the same. This means that the same design is
deployed and tested across different lifecycle stages.

You can also customize your release pipeline and have each application team use a separate lifecycle
stage. This enables a fully automated and continuous deployment. Codar increases the agility of
application release cycles while increasing the quality and reducing the cost of application deployments
by eliminatingmanual steps.

Pipelinemanagement in Codar includes:

l Creating your own roles thus enabling you to create your own user access structure

l Creating your own lifecycle stages in addition to the out-of-the box stages

l Selecting resource environments that already exist and associating them with only certain lifecycle
stages thus creating a lifecycle stage superset comprising a subset of pre-defined lifecycle stages

l Viewing pipeline statistics and getting a visual representation of your deployments

l Filtering your view based on packages, actions, and environments

Concepts Guide
Codar overview

HPE Codar (1.70) Page 12 of 42



Managing packages

Packages represent a snapshot of an application design and allow properties to be parameterized
within the design. We can also say that the package represents a particular build of an application.

A package is the smallest unit that can be deployed for an application. It represents both the
implementation artifacts (themanner in which an application should be deployed) and deployment
artifacts(the location of libraries like war, ear, etc., that should be deployed).

Packages are associated with a lifecycle stage. A package can belong to Development, Testing,
Staging, or Production stages.

Packages are associated with pipelinemanagement. They can bemanaged across lifecycle stages,
such as promotion or rejection in a given stage. For example, a user with the QA role can reject a
package.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 13 of 42



Tasks

l Create a package from a specific application version. An application version can consist of
multiple packages.

l Deploy or redeploy a package. In this case the corresponding state of an application design along
with the properties of the design specified in the package will be fulfilled.

l Delete a package. Go to the Release Pipeline tab, press and hold downCtrl to select multiple
packages, and click Delete.

Note: You cannot delete a package that has an instance associated with it.

Package operations

Codar is a centralized structure for implementing a DevOps environment. Different roles can deploy,
redeploy, promote, or reject the packages. Packages are promoted from one stage to another in a
consistent and repeatable manner. This ensures visibility to teammembers when their applications are
pushed into production.

When packages are created and deployed, new virtual machines will be created and packages will be
deployed. You can execute tests on a deployed instance, and the package can be either promoted or
rejected.

Codar facilitates application pipelinemanagement capabilities, as shown in the following image.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 14 of 42



Deploy and redeploy

A package can be redeployed on an instance that has an older package. You can view instance details
and pick an existing instance. Redeploy can also be used to upgrade or patch a component. Because
redeploy invokes amodify action for all components, all components in a design can be upgraded to
new versions.

Scale out

During Topology design creation you can create a scaling group. A scaling group represents a scalable
stack. There can bemultiple scalable groups in an application design.

You can scale out after the deployment is complete. When you scale out, the full stack is replicated.

For example, the image below shows the web tier as a logical group namedwebServerGroup.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 15 of 42



This group was scaled in the Development stage to one group and in Testing it is scaled to two groups
in the image below.

Development stage Testing stage

Concepts Guide
Codar overview

HPE Codar (1.70) Page 16 of 42



Roles and user access

User access can be configured for topology designs. Both users and LDAP groups can be added to the
designs. An application architect can create a design and either make the design public or restrict it to
certain users.

In Codar, user access comprises roles and permissions. Every user in Codar is assigned one or
multiple roles. Every role is assigned one or more permissions. Therefore, users belonging to a
particular role have all the permissions defined for that role. Codar contains some out-of-the-box roles;
however, users can also create their own roles and then assign permissions to the roles they create.
For information about how to create custom roles, see theCodar Online Help.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 17 of 42



The administrator and the application architect can configure users and groups:

l Users for each role are defined at the application level for a granular level of control.

l Groups should represent application teams to automatically assign roles for the application.

The following image shows a design configured for various users including an application architect,
developers, QA, and releasemanager.

Concepts Guide
Codar overview

HPE Codar (1.70) Page 18 of 42



Lifecycle stages and actions

Lifecycle actions contribute to the initial deployment of a service, communicating with the service
provider through a process engine such as HP Operations Orchestration. Lifecycle actions also provide
other important functions, such as actions required tomodify the service upon request or actions
required to remove the service from deployment.

Every lifecycle comprises a stage and every stage has roles associated with it. It means that all users
who belong to the roles in a particular lifecycle stage can perform operations defined in the role during
that stage. For example, if the Development lifecycle stage has the Application Architect role
associated with it, then users belonging to the Application Architect role can perform tasks associated
with the role in the Development lifecycle stage.

The following are the out-of-the-box lifecycle stages available in Codar:

l Development: This is usually the first stage in which the code is developed and application artifacts
are created.

l Testing: Stage in which test cases are executed against the code developed in the Development
stage.

l Staging: Pre-production stage that replicates the production environment; used to test the code and
artifacts.

l Production: This is usually the final stage in which the application is deployed in a live environment.

Apart from the out-of-the-box lifecycle stages, there are custom stages that you can create. For
information about creating, editing, and deleting custom stages, see the Codar Online Help.

The following table lists the actions pertaining to a package that take place in each lifecycle stage:

Stage Promote
Deploy,
Redeploy Edit Delete Reject

First stage (usually the Development
stage)

Yes Yes Yes Yes Yes

Intermediate Yes Yes Yes Yes Yes

Final stage (usually the Production stage) No Yes Yes Yes Yes

You can access lifecycle stages by using theRelease Automation > Pipeline Configurations tile.

Use the following actions to deploy or move a package through the stages. These actions describe the
flow when release gate actions are not defined.

Concepts Guide

HPE Codar (1.70) Page 19 of 42



l Promote: Moves the package to the next lifecycle stage. The package state remains Active.

l Deploy, Redeploy: Deploys the package.

l Edit: Changes the properties of a package.

l Reject: Stops the package from advancing to another stage. The package will remain in its current
stage, its state will be set to Rejected, and the action buttons will no longer be available.

l Delete: Deletes a package. The package will be removed permanently from the system.

Note: A package can only be deleted if all associated deployed instances are canceled and
deleted.

l Refresh: Retrieves current package status.

Package states

Packages have the following states:

l Active: the package is active in the current lifecycle stage

l Rejected: the package has been rejected and will not move to the next lifecycle stage

l Transition: the package is in transition to the next lifecycle stage

l Failed: the promotion of the package has failed

If you reject a package, then it remains in its current stage, its state is set to Rejected, and no further
actions can be applied; however, it can be deleted and is removed from the system.

When a package is promoted, it moves to the next stage and remains in the active state. Packages are
always created in the first lifecycle stage. If the Codar Jenkins plug-in is configured, then after a
successful build the Jenkins plug-in talks to Codar and creates a package.

Concepts Guide

HPE Codar (1.70) Page 20 of 42



Grouping service designs by lifecycle stage

A partial design with an active package requires you to select a service design to provision in the
deploy package wizard. These service designs can be grouped for different lifecycle stages. This
grouping enables package deployment in a lifecycle stage to list only those grouped service designs
from that lifecycle stage.

To group the service designs for a lifecycle stage, create a tag with the name of the lifecycle stage in
each topology design. When a lifecycle stage is created, a tag with the lifecycle stage is automatically
created. Hence, only the designs need to associated with the right lifecycle stage tag. For example,
you could create a Development tag and associate it with all required designs in the Development
lifecycle state.

Note: The test run wizard in the Test tab lists all designs and does not group by tag.

Concepts Guide

HPE Codar (1.70) Page 21 of 42



Release gate actions

Release gate actions are actions that are user-defined and act as a promotion request check between
two lifecycle stages. Only if a package passes through each enabled action and the status of all the
actions in a lifecycle stage is successful, is the package promoted to the next stage.

Release gate actions are of four types:

l Deploy action

This action deploys a partial or complete application design based on pre-definedOperations
Orchestration (OO) content packs. The deploy action can be configured such that an email
message is sent to users who initiated the promotion request notifying them of the promotion
success or failure. Users can even choose to reject the package and clean up the deployment if the
deploy action fails to execute and the package has not been promoted.

For detailed information about creating, editing, and deleting deploy actions, see theCodar Online
Help.

l Custom action

This action executes the specified flow in Operations Orchestration. Typically, this action can be
used to execute specific tests, with or without a deployment instance.

Custom actions can be configured such that an email message is sent to users who initiated the
promotion request notifying them of the promotion success or failure. Users can choose to either
reject the package or proceed with the package promotion if the custom action fails to execute.

For detailed information about creating, editing, and deleting custom actions, see theCodar Online
Help.

l Approval action

This action promotes a package only if designated approvers manually approve or reject a package
promotion. An approval action can also be configured to automatically approve or reject a package
promotion.

For detailed information about creating, editing, and deleting approval actions, see theCodar Online
Help.

l Test set action

This action can be used for executing specific tests in Application Lifecycle Management, with or
without a deployment instance. UAT environment can also be added along with test set actions.

Concepts Guide

HPE Codar (1.70) Page 22 of 42



For detailed information about creating, editing, and deleting test set actions, see theCodar Online
Help.

The following figure is a representation of the way in which release gate actions work:

Pipeline statistics

The Pipeline Statistics tab displays detailed information about packages and includes graphical
representations of package summary, trends, states, deployment status and so on. It provides a
holistic view of all packages and deployments and enables you tomake informed decisions with
respect to package deployment.

It displays information about the number of packages created on any date, the number of successful
transitions, the number of deployments and so on.

For detailed information about the pipeline statistics, see theCodar Online Help.

Concepts Guide

HPE Codar (1.70) Page 23 of 42



Environments

You can select different environments for each lifecycle stage at the application level. For example,
you can configure vCenter for deployment but a public cloud environment for staging.

Concepts Guide

HPE Codar (1.70) Page 24 of 42



Schedule releases

You can schedule and govern the transition of packages across release pipeline. You can set up the
following schedules:

l Automatic promotion of packages from one lifecycle stage to another

l Automatic purging of packages and deployments periodically

You can view the schedules in a calendar view to get visibility of scheduled package promotions
across lifecycle stages.

External integrations
Codar is open and extensible, and can be integrated with different build systems such as Jenkins,
Hudson, etc. A comprehensive set of REST APIs can be used with other external tools to achieve
continuous integration, deployment, and delivery. The Codar architecture also provides options for you
to hook into customized flows for DevTest and DevOps.

Concepts Guide

HPE Codar (1.70) Page 25 of 42



Jenkins integration

Codar includes a Jenkins plug-in for continuous deployment. The following illustration shows how it
works.

1. Developers check in changes.

2. Continuous integration triggers build.

3. Jenkins plug-in creates and deploys package.

4. Application is deployed to different environments depending on lifecycle stage.

5. In case of continuous promote, packages aremoved to the final lifecycle stage if all the release
gate actions are executed successfully.

Note: Similar kind of OOTB integration is also available with Bamboo and TFS.

ALM integration

You can integrate Application Lifecycle Management (ALM) with Codar to run tests after successful
deployment. The following illustration shows how Jenkins acts as an orchestrator.

Concepts Guide

HPE Codar (1.70) Page 26 of 42



Infrastructure as code (IaaC)

Managing infrastructure as code (IaaC) allows IT teams to leverage the best practices for developing
code, such as code reviews and unit testing for how infrastructure and applications get provisioned.

Codar canmanage infrastructure as code. Topology designs that can contain server configurations,
networks, volumes, relationships, and application-specific details like the application version and
package information can be exported in JSON format andmanaged with the application in the source
control system. Developers canmake changes to themodel using a text editor and use it for
automation. Themodifiedmodel can also be imported back into Codar.

Concepts Guide

HPE Codar (1.70) Page 27 of 42



Deploy containers on Docker Cluster
Docker Universal Control Plane provides an on-premises, or virtual private cloud (VPC) container
management solution for Docker app.

You can do the following using Docker UCP.

l Configure Docker UCP as a Resource Provider within Codar.

l Create designs based on the Docker content.

l Deploy containers on Docker UCP and perform Pipelinemanagement.

Docker Universal Control Plane

Concepts Guide

HPE Codar (1.70) Page 28 of 42



Docker UCP Dashboard

SAML support for Codar
Codar provides SSOwith SAML. Authenticate only once (using your Identity Provider with SAML
support) and subsequently use Cloud Service Automation without having to type in a password again.

Concepts Guide

HPE Codar (1.70) Page 29 of 42



Concepts Guide

HPE Codar (1.70) Page 30 of 42



Use case: Continuous integration, deployment,
and delivery
The goal is for an application to be enabled for continuous integration (CI) and continuous
deployment. An application developer codes the application and an application architect models the
application in the Codar interface and then exports the applicationmodel as code (IaaC). When the
application developer checks in the code, a Jenkins build is triggered and the application is deployed
using the applicationmodel on a specific environment. After the application is deployed, the continuous
deployment process is extended to continuous delivery whereas application-specific tests can be
automatically run on the deployed instance, with the application possibly being deployed to a different
environment dependent on the outcome of the tests.

The following section describes how Codar achieves this scenario.

Application modeling

Application architects model applications graphically by including the necessary components of the
design in the designer interface and connecting them via relationships. Codar contains a palette of
standard components, and components can be imported (embraced) from various deployment engines
such as HPE Operations Orchestration and Chef. Such designs, called applicationmodels, are

Concepts Guide

HPE Codar (1.70) Page 31 of 42



representations of themethods in which applications are to be deployed. An applicationmodel can be
exported in JSON format andmanaged in an external source repository, achieving infrastructure as
code (IaaC).

Continuous integration and deployment

In continuous integration, the code for the sample application and themodel for the deployment of the
application (in JSON format) is available in a source repository.

When an application developer makes a code change to the application and checks it into the source
repository (1), Jenkins triggers a build (2).

Codar provides a Jenkins plug-in which has details such as the IP address, user name, and password
for Codar. It establishes a connection and invokes an API as part of a post-build step (3). The API then
invokes a workflow that executes various actions for achieving continuous deployment and continuous
delivery.

Importing an application design

If the applicationmodel has not already been imported into Codar or if it has changed, the continuous
deployment workflow imports it, in JSON format (IaaC), into Codar (4) as a new version of the
application design. This allows changes that have beenmade by application developers and architects
to be taken into consideration at the time of deployment.

It is important to note that if the applicationmodel has already been imported or if there is no change in
the application design, then this import operation does not take place and the application version within
Codar remains the same. You can view the applicationmodel in the Topology/Sequened tile in the
designer.

Deploying on an environment

After the package is created, the continuous deployment workflow fulfills the application design based
on the environment (6). You can view deployments for the package on the Deployments tab:

Concepts Guide

HPE Codar (1.70) Page 32 of 42



A runbook automation engine creates an execution plan based on the design that fulfills the
infrastructure layer, platform layer, and application layer. You canmonitor the status of the deployment
of a particular package and view a graphical representation of the deployed application, which includes
component-level properties and actions.

Publishing a design

Publishing a designmakes it available as an offering to service consumers. Youmust have a CSA
license installed before you can publish a design.

A complete design with an active package in the Production stage contains package-specific
properties as part of the design and can be published.

A partial design with an active package in the Production stage contains package-specific properties as
part of the design, but it cannot be published until a final composed design is created by deploying the
production package.

Publishing a partial design is different depending on which licenses you have installed:

l A Codar application design that has been advanced to the Production stage is deployed on a
production infrastructure, and then the composed production design is made visible on successful
production deployment. The design can then be published to service consumers.

l A design that is not a Codar application designmust be saved as a composed design from the Test
tab. The design can then be published to service consumers.

Note: A sequenced design can be published only if it has no packages or if the package is in the
last stage of PipelineManagement, with an active deployment instance.

If a topology design has been tagged with an application, it cannot be published unless it is
untagged.

Concepts Guide

HPE Codar (1.70) Page 33 of 42



The following figure illustrates when a sequenced design can be published based on the license used:

The following figure illustrates when a topology design can be published based on the license used:

Concepts Guide

HPE Codar (1.70) Page 34 of 42



Use case: Customizable release pipeline
The goal is to allow users to build their own custom release pipeline and have each application team
define and use separate lifecycle stages. The following are the high-level steps for users to define their
own release pipeline. For information about how to perform these steps, see theCodar Online Help.

1. Create roles and add permissions

2. Create lifecycle stages and associate roles with each lifecycle stage

3. Add lifecycle stages to the application design

4. Add release gate actions to each lifecycle stage

5. Create packages using the continuous promote API

Concepts Guide

HPE Codar (1.70) Page 35 of 42



The package is moved to the last lifecycle stage if all the release gates execute successfully.

The following illustration depicts the customizable release pipeline.

Concepts Guide

HPE Codar (1.70) Page 36 of 42



Use case: Deploy and redeploy packages
The goal is to deploy a package and then use the same instance to redeploy a newer version of the
package on an instance that has older versions.

An application architect models the application andmarks it for pipelinemanagement. The developer
will then create a package and deploy it. A new instance is created when the package is deployed. The
deployment is based on the topology design.

After deployment, the same instance can be used to redeploy a newer version of the package. The
instance can be upgraded or patched to newer packages or builds.

The following diagram shows the process:

Concepts Guide

HPE Codar (1.70) Page 37 of 42



Page 38 of 42HPE Codar (1.70)

Concepts Guide



Use case: Deployment and scale out
The goal is to create a scalable stack and scale out the stack on demand after deployment. An
application architect models the application andmarks the application for pipelinemanagement. The
architect identifies the components that should be scaled out in different life cycle stages. The scalable
stack can contain a single component or group of components. During development, the stack can be
scaled in by one, and then during testing the stack can be scaled to two, and so on.

Concepts Guide

HPE Codar (1.70) Page 39 of 42



Next steps
Codar Installation Guide andCodar Configuration Guide explain how to download, install, and
configure the software, andCodar API and CLI Reference provides a brief introduction to the REST
APIs and explains how to obtain detailed information for each API. It also explains the command-line
interface. You can access Online Help from the application for task-oriented assistance.

Concepts Guide
Next steps

HPE Codar (1.70) Page 40 of 42



Codar Community Edition
A 30-day full featured trial version of Codar is available as Docker Images.

Community edition trial

Product registration and activation is required in order to use the Codar Community Edition.

The product activation code for the trial license of 30 days is issued to the user once registered. The
product can be activated online following the link sent over the email or the activation code can be used
to activate the product online.

Concepts Guide
Codar Community Edition

HPE Codar (1.70) Page 41 of 42



Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Concepts Guide (Codar 1.70)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to clouddocs@hpe.com.

We appreciate your feedback!

HPE Codar (1.70) Page 42 of 42

mailto:clouddocs@hpe.com?subject=Feedback on Concepts Guide (Codar 1.70)

	Codar 1.7 Concepts Guide
	Contents
	Codar
	Codar overview
	Components
	Service Designs
	Sequenced design
	Topology design
	Declarative-based modeling
	Topology composition
	Microservices

	Application pipeline management
	Managing packages
	Package operations
	Deploy and redeploy
	Scale out
	Roles and user access
	Lifecycle stages and actions
	Package states
	Grouping service designs by lifecycle stage

	Release gate actions
	Pipeline statistics
	Environments
	Schedule releases

	External integrations
	Jenkins integration
	ALM integration
	Infrastructure as code (IaaC)

	Deploy containers on Docker Cluster
	SAML support for Codar
	Use case: Continuous integration, deployment, and delivery
	Application modeling
	Continuous integration and deployment
	Importing an application design
	Deploying on an environment
	Publishing a design

	Use case: Customizable release pipeline
	Use case: Deploy and redeploy packages
	Use case: Deployment and scale out

	Next steps
	Codar Community Edition
	Send documentation feedback


