
HP Server Automation
Ultimate Edition

Software Version: 10.23
Content Utilities Guide
Document Release Date: June 2016

Software Release Date: June 2016

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211
and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items
are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2001-2016 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

Intel® and Itanium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®‚ Windows® XP are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Support

Visit the HP Software Support Online website at:

https://softwaresupport.hp.com/

This website provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can benefit by using
the support website to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training
2

https://softwaresupport.hp.com/

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract.
To register for an HP Passport ID, go to:

https://hpp12.passport.hp.com/hppcf/createuser.do

To find more information about access levels, go to:

https://softwaresupport.hp.com/web/softwaresupport/access-levels

Support Matrices

For complete support and compatibility information, see the support matrix for the relevant product release. All support
matrices and product manuals are available here on the HP Software Support Online website:

https://softwaresupport.hp.com/group/softwaresupport/support-matrices

You can also download the HP Server Automation Support and Compatibility Matrix for this release from the HP Software
Support Online Product Manuals website:

https://softwaresupport.hp.com/

This site requires that you register for an HP Passport and sign in. After signing in, click the Search button and begin
filtering documentation and knowledge documents using the filter panel.

Documentation Updates

All the latest Server Automation product documentation for this release is available from the SA Documentation Library:

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/
document/KM00417675

Use the SA Documentation Library to access any of the guides, release notes, support matrices, and white papers relevant
to this release or to download the full documentation set as a bundle. The SA Documentation Library is updated in each
release and whenever the release notes are updated or a new white paper is introduced.

How to Find Information Resources

You can access the information resources for Server Automation using any of the following methods:

Method 1: Access the latest individual documents by title and version with the new SA Documentation Library

Method 2: Use the complete documentation set in a local directory with All Manuals Downloads

Method 3: Search for any HP product document in any supported release on the HP Software Documentation Portal

To access individual documents:

1 Go to the SA 10.x Documentation Library:

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/
document/KM00417675

2 Log in using your HP Passport credentials.

3 Locate the document title and version that you want, and then click go.

To use the complete documentation set in a local directory:

1 To download the complete documentation set to a local directory:

a Go to the SA Documentation Library:
3

https://hpp12.passport.hp.com/hppcf/createuser.do
https://softwaresupport.hp.com/web/softwaresupport/access-levels
https://softwaresupport.hp.com/group/softwaresupport/support-matrices
https://softwaresupport.hp.com/
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM00417675
https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM00417675

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/
document/KM00417675

b Log in using your HP Passport credentials.

c Locate the All Manuals Download title for the SA 10.1 version.

d Click the go link to download the ZIP file to a local directory.

e Unzip the file.

2 To locate a document in the local directory, use the Documentation Catalog (docCatalog.html), which provides an
indexed portal to the downloaded documents in your local directory.

3 To search for a keyword across all documents in the documentation set:

a Open any PDF document in the local directory.

b Select Edit > Advanced Search (or Shift+Ctrl_F).

c Select the All PDF Documents option and browse for the local directory.

d Enter your keyword and click Search.

To find additional documents on the HP Software Documentation Search Portal:

Go to the HP Software Documentation Search Portal:

https://softwaresupport.hp.com/

This site requires that you register for an HP Passport and sign in. After signing in, click the Search button and begin
filtering documentation and knowledge documents using the filter panel.

To register for an HP Passport ID, click the Register link on the HP Software Support Online login page.

You can also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP
sales representative for details. See Documentation Change Notes for a list of any revisions.

Product Editions

There are two editions of Server Automation:

• Server Automation (SA) is the Ultimate Edition of Server Automation. For information about Server Automation, see the
SA Release Notes and the SA User Guide: Server Automation.

• Server Automation Virtual Appliance (SAVA) is the Premium Edition of Server Automation. For more information about
what SAVA includes, see the SAVA Release Notes and the SAVA at a Glance Guide.

Documentation Change Notes

The following table indicates changes made to this document since the last released edition.

Date Changes

December 2014 Original release of this document with SA 210.1
4

https://softwaresupport.hp.com/group/softwaresupport/search-result/-/facetsearch/document/KM00417675
https://softwaresupport.hp.com/
https://hpp12.passport.hp.com/hppcf/createuser.do

Contents
1 Importing and Exporting SA Content .11

The DCML Exchange Utility (DET) .11

The cbt Command .11

DET Relationship to DCML .12

Custom Fields and Custom Attributes .12

2 The cbt Command Usage .13

Exporting Content .13

Export Filters .13

Application Configuration Export Filter. .15

Application Configuration Template Export Filter. .16

Audit Filter .17

Custom Extension Export Filter .18

Custom Fields Schema Export Filter .18

Customer Export Filter .19

Folder Export Filter .19

OS Build Plan Export Filters .21

OS Export Filter .21

Package Export Filter .22

Patch Export Filter. .24

Patch Policy Export Filter. .25

Script Export Filter .26

Server Compliance Criteria (Audit Policies) Export Filter .27

Server (Device) Group Export Filter .28

Service Level Export Filter .29

Snapshot Filter. .31

Template Export Filter .31

User Group Export Filter. .33

customerName Element Examples .34

Importing Content .36

Policy on Importing Content Types .37

Import Delete Conditions .42

Renamed Objects That Cannot Be Found .42

Considerations When Importing Customers. .44

Importing Customers Workaround. .45

Synchronizing Multimaster Meshes with Deltas .46

Delta Exports .46

Delta Imports .46

Mesh Synchronization Usage Scenario .47
 5

Content Directory. .47

Example Session .48

Installing the cbt Command. .48

Configuring the cbt Command. .49

Running the cbt Command on a UNIX Host that Is Not an SA Core. .50

Creating a Target Mesh Configuration File .50

3 The cbt Command Reference. .55

Export Option (-e) .55

Import Option (-i) .56

Show Export Status Option (-t) .59

Configuration File Option (-s) .59

Show Version Option (-v) .59

Show Help Option (-h). .60

DET Permissions Command, cbtperm .60

4 IDK Overview .61

Overview of the IDK and ISMs .61

Benefits of the IDK .61

IDK Tools and Environment .61

Supported Package Types .61

Installing the IDK .62

Installing the IDK on a Managed Server .62

Installing the IDK on an Unmanaged Server. .63

IDK Quick Start .64

Platform Differences. .66

Solaris Differences .66

Windows Differences .66

5 IDK Build Environment .67

ISM File System Structure .67

Build Process. .68

When to Invoke the --build Command. .69

Multiple Command-Line Options .69

Actions Performed by the --build Command .69

Packages Created by the --build Command .70

Specifying the Application Files of an ISM. .70

Placing Archives in the bar Subdirectory. .70

Specifying Passthru Packages .71

Compiling Source (Unix Only) .71

ISM Name, Version Number, and Release Number .74

Initial Values for the ISM Name, Version, and Release .74

ISM Version and Release Numbers Compared .74

Upgrading the ISM Version .75

6 IDK Scripts .77

Overview of ISM Scripts .77
6

Installation Hooks .77

Creating Installation Hooks .78

Check Installation Hook .78

Invocation of Installation Hooks. .78

Installation Hooks and ZIP Packages. .78

ZIP Packages and Installation Directories .79

Installation Hook Functions. .79

Scripts for Control-Only ISMs .79

Location of Installation Hooks on Managed Servers .80

Default Installation Hooks for Unix .80

Default Installation Hooks for Windows .81

Control Scripts .82

Creating Control Scripts .82

Control Script Functions. .83

Location of Control Scripts on Managed Servers. .83

Dynamic Configuration with ISM Parameters. .83

Development Process for ISM Parameters .84

Adding, Viewing, and Removing ISM Parameters .84

Accessing Parameters in Scripts. .85

The ISM parameters Utility .85

Example Scripts .85

Search Order for Custom Attributes. .86

 Installation Scripts .87

Differences Between Installation Scripts and Hooks .87

Creating Installation Scripts .87

Invocation of Installation Scripts and Hooks .88

7 IDK Commands .89

ISMTool Argument Types .89

ISMTool Informational Commands .90

--help. .90

--env .90

--myversion .90

--info ISMDIR .90

--showParams ISMDIR .90

--showPkgs ISMNAME .91

--showOrder ISMNAME .91

--showPathProps ISMNAME .91

ISMTool Creation Commands .91

--new ISMNAME .91

--pack ISMDIR. .91

--unpack ISMFILE. .92

ISMTool Build Commands .93

--verbose .93

--banner .93

--clean .93

--build .93
7

--upgrade .93

--name STRING .94

--version STRING .94

--prefix PATH .94

--ctlprefix PATH .96

--user STRING (Unix only) .96

--group STRING (Unix only) .96

--ctluser STRING (Unix only) .96

--ctlgroup STRING (Unix only) .96

--pkgengine STRING (Unix only) .97

--ignoreAbsolutePaths BOOL (Unix only) .97

--addCurrentPlatform (Unix only) .97

--removeCurrentPlatform (Unix only) .97

--addPlatform TEXT (Unix only) .97

--removePlatform TEXT (Unix only) .97

--target STRING (Unix only) .97

--skipControlPkg BOOL. .98

--skipApplicationPkg BOOL .98

--chunksize BYTES (Unix only) .98

--solpkgMangle BOOL (SunOS only). .98

--embedPkgScripts BOOL .98

--skipRuntimePkg BOOL .99

ISMTool Interface Commands .99

--upload .99

--noconfirm .99

--opswpath STRING. .99

--commandCenter HOST[:PORT] . 100

--dataAccessEngine HOST[:PORT] . 100

--commandEngine HOST[:PORT] . 100

--softwareRepository HOST[:PORT] . 101

--description TEXT . 101

--addParam STRING . 101

--paramValue TEXT. 101

--paramType PARAMTYPE . 101

--paramDesc TEXT . 101

--removeParam STRING . 101

--rebootOnInstall BOOL . 102

--rebootOnUninstall BOOL. 102

--registerAppScripts BOOL (Windows only) . 102

--endOnPreIScriptFail BOOL (Windows only) . 102

--endOnPstIScriptFail BOOL (Windows only) . 102

--endOnPreUScriptFail BOOL (Windows only) . 102

--endOnPstUScriptFail BOOL (Windows only) . 103

--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME. 103

--removePassthruPkg {PassthruPkgFileName} ISMNAME . 104

--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME. 104

--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME . 105
8

--addPathProp {PathProp} --propValue {PropValue} ISMNAME . 105

--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue} ISMNAME 106

ISMTool Environment Variables . 108

CRYPTO_PATH. 108

ISMTOOLBINPATH . 109

ISMTOOLCC . 109

ISMTOOLCE . 109

ISMTOOLDA . 109

ISMTOOLPASSWORD . 109

ISMTOOLSITEPATH. 109

ISMTOOLSR . 110

ISMTOOLUSERNAME . 110

ISMUserTool . 110
9

10

1 Importing and Exporting SA Content
This is intended for system administrators responsible for specifying SA content. You should be familiar
with script programming and SA fundamentals. See the SA User Guide: Server Automation.

The DCML Exchange Utility (DET)

DCML, the Data Center Markup Language, is an XML-based language for describing elements and
relationships in a data center environment. The DCML Exchange Utility (DET) is a command that exports
and imports SA content. It enables you to inject a newly-installed SA Multimaster Mesh with content from
an existing mesh. This tool can also be used to export partial content from one mesh and import it into
other mesh instances.

The cbt Command

The DET is simply a command, cbt, included with SA. For details on the cbt command, see The cbt
Command Usage on page 13 and The cbt Command Reference on page 55.

The cbtperm command lets you set permissions for using DET. For details on the cbtperm command see
DET Permissions Command, cbtperm on page 60.

In the context of DET, content means user-created SA server management information. This includes the
following content types:

• Application Configurations, Application Configuration Templates

• Custom Extensions

• Custom Fields, Custom Attributes

• Customers

• Folders

• Packages

• Patches and Patch Policies

• Server Compliance Criteria

• Device Groups

• User Groups.

Content does not include managed environment type information. For example, facility information and
server properties are not included.
11

DET Relationship to DCML

The content exported by the DET is in compliance with DCML Framework Specification v0.11, the first
publicly-available specification of DCML. The DCML Exchange Tool uses a proprietary extension schema to
describe contents exported from Server Automation. The exported data.rdf is a valid DCML instance
document that is parsable by a compliant DCML processor.

Custom Fields and Custom Attributes

Each custom field exists in a namespace. The DET only has access to (and thus will only export) these
objects in the default, user-visible namespace. Objects in other namespaces (OPSWARE, etc.) will not be
exported. If objects in other namespaces need to be exported (for example, OS sequences), they will be
exported via application-specific APIs (for example, OS sequence APIs).

All custom attributes are exported, including those that are hidden from end-users (those keys starting
with __OPSW).

For custom fields and attributes, imported values (including nulls) overlay existing values.
12 Chapter 1

2 The cbt Command Usage
Exporting Content

The cbt command exports the content you specify from a target SA mesh to an RDF/XML file that can be
imported into another SA mesh. See Importing Content on page 36.

The cbt command is found in the directory:

/opt/opsware/cbt/bin

The export command is:

cbt -e <content_dir> -f <filter_file> -cf <target_core_config>

The command and its arguments indicate:

• content_dir - the path to a directory where the exported content will be stored. This directory will
be created by the export function if it does not already exist.

• filter_file - a set of rules that tells DET what content it should export from the target SA mesh.
See the Export Filters on page 13 for information on creating this file.

• target_core_config - a configuration file that tells DET where the various SA components are
located, and what identity it should use to access them. Instructions for creating this file are found at
Creating a Target Mesh Configuration File on page 50.

The export command can be run multiple times using the same arguments, with the following caveats:

• If a filter has been specified, DET will ignore any previous exports in the content directory and will
restart the export process.

• If the export command specifies a content directory that contains a valid export (one which previously
succeeded), DET will prompt the user if it is OK to overwrite. If the user says it is not OK to overwrite,
then DET will exit.

Before beginning an export or import process in a standalone mesh, shut down the Command Center core
component to prevent users from changing any SA content until the process has completed.

In a multimaster mesh, first use the multimaster tools to ensure that the mesh is caught up and there are
no conflicts, then shut down all Command Centers in the mesh to prevent users from changing any SA
content until the process has completed.

See the SA Administration Guide for information about stopping and restarting the Command Center
core component.

Export Filters

An export filter is a user-specified rule that tells DET what content to export — content that will
subsequently be imported. Export filters are used with the following content types:

• Application Configuration Export Filter
13

• Application Configuration Template Export Filter

• Audit Filter

• Custom Extension Export Filter

• Custom Fields Schema Export Filter

• Customer Export Filter

• Folder Export Filter

• OS Build Plan Export Filters

• OS Export Filter

• Package Export Filter

• Patch Export Filter

• Patch Policy Export Filter

• Server Compliance Criteria (Audit Policies) Export Filter

• Server (Device) Group Export Filter

• Service Level Export Filter

• Snapshot Filter

• Template Export Filter

• User Group Export Filter

Example: Export Filter File

DET reads export filters in a specified filter file. The filter file is encoded in RDF/XML. The following is an
example of a simple filter file that contains a single export filter rule.

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE rdf:RDF [
3. <!ENTITY filter "http://www.opsware.com/ns/cbt/0.1/filter#">
4.]>
5. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6. xmlns="http://www.opsware.com/ns/cbt/0.1/filter#">
7. <PackageFilter rdf:ID="exportPackages">
8. <packageType rdf:resource="&filter;RPM"/>
9. <packageName>software1.0.0-1.rpm</packageName>
10. </PackageFilter>
11. </rdf:RDF>

This example shows the standard filter headers in lines 1 through 6. These lines are the same in every
filter, as is Line 11, which is the standard filter footer.

Lines 7 through 10 are the lines that are unique in each filter and indicate the specific function of the filter.

In the example above, there is just one export filter rule. However, filters can contain any number of
unique filters between the standard header and footer lines. For example, this filter contains three export
filter rules:

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE rdf:RDF [
3. <!ENTITY filter "http://www.opsware.com/ns/cbt/0.1/filter#">
4.]>
5. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
14 Chapter 2

6. xmlns="http://www.opsware.com/ns/cbt/0.1/filter#">
7. <PackageFilter rdf:ID="pkg1">
8. <packageType rdf:resource="&filter;RPM"/>
9. <packageName>software1.0.0-1.rpm</packageName>
10. </PackageFilter>
11. <PackageFilter rdf:ID="pkg2">
12. <packageType rdf:resource="&filter;ZIP"/>
13. </PackageFilter>
14. <CustomExtensionFilter rdf:ID="exportCustExtBulkPasswd">
15. <scriptName>Bulk_Password_Changes</scriptName>
16. <CustomExtensionFilter/>
17. </rdf:RDF>

Example filters can be found in the DET install directory under:

<install_dir>/filters

This directory includes examples for each filter type and also an all.rdf filter, that exports all known SA
data types from an SA mesh.

Running CBT export commands requires specifying the absolute path for the selected filter. For example:

cbt -e /tmp -f /opt/opsware/cbt/filters/filter.rdf

The following sections describe each filter type and their allowed parameters. In general, filter types map
to an object type that can be manipulated in the SA Client. The Patch Filter, for example, maps to the SA
Client patch object.

Application Configuration Export Filter

The Application Configuration export filter tells DET what Application Configurations you want to export.
An Application Configuration is a container for one or more Application Configuration Template files. Thus,
if you export an Application Configuration, you will also be exporting all template files inside it.

Application Configuration Export Filter Example

Export all Application Configurations.

table 1 Application Configuration Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format rdf:ID=“unique name"

table 2 Application Configuration Export Filter Nested Elements

Element Description

configurationName
(optional)

An optional element that specifies the name of the Application Con-
figuration. Use this if you want to export specific Application Config-
urations by name.

customerName (optional) An optional element that specifies to export all Application Configu-
rations that have been associated with the specified customer.

osPlatform rdf:resource
(optional)

An optional element that specifies to export all Application Configu-
rations that have been associated with the specified OS.
The cbt Command Usage 15

<ApplicationConfigurationFilter rdf:ID="getAllAppConfigs"/>

Export only the Application Configuration named “iPlanet" that is customer independent and that has
been associated with the SunOS 5.8 operating system.

<ApplicationConfigurationFilter rdf:ID="getSpecificAppConfigs">

<configurationName>iPlanet</configurationName>

<customerName>Customer Independent</customerName>

<osPlatform rdf:resource="&filter;SunOS_5.8"/>

</ApplicationConfigurationFilter>

Application Configuration Template Export Filter

The Application Configuration Template export filter tells DET what Application Configuration Template
files you want to export.

Application Configuration Template Export Filter Examples

Export all Application Configuration Templates.

<ApplicationConfigurationFileFilter rdf:ID="getAllAppConfigTemps"/>

Export the specific Application Configuration Template named “iplanet6.1_mimetypes.tpl" that is
customer independent and is associated with the Red Hat Enterprise Linux AS 3 X86_64 operating system.

<ApplicationConfigurationFileFilter rdf:ID="getSpecificAppConfigTemp">

<configurationFileName>iplanet6.1_mimetypes.tpl</configurationFileName>

table 3 Application Configuration Template Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in
the filter file using the format rdf:ID=“unique
name"

table 4 Application Configuration Template Export Filter Nested Elements

Element Description

configurationFileName (optional) An optional element that specifies the name of the
Application Configuration Template. Use this if you
want to export specific Application Configuration
Templates by name.

osPlatform rdf:resource (optional) An optional element that specifies to export all
Application Configurations that have been associ-
ated with the specified OS.

customerName
(optional)

An optional element that specifies to export all
Application Configuration Templates that have
been associated with the specified customer.
16 Chapter 2

<customerName>Customer Independent</customerName>

<osPlatform rdf:resource="&filter;Red_Hat_Enterprise_Linux_AS_3_X86_64"/>

</ApplicationConfigurationFileFilter>

Audit Filter

The audit filter tells DET which audit to export from an SA core/mesh so that you can then import it into
another SA core/mesh.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY filter "http://www.opsware.com/ns/cbt/0.1/filter#">
]>

table 5 Audit Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 6 Audit Filter Nested Elements

Element Description

auditPolicyName
(optional)

The name of the audit policy that you want to export.

clearSource (optional) Used to specify whether the source of the audit policy should be
deleted in the exported content or not.

Possible values: Yes or N

Examples:

<clearSource rdf:resource="&filter;Yes"/>
<clearSource rdf:resource="&filter;No"/>

osType (optional) Used to specify to export all Audit policies that have been associated
with the specified OS.

Possible values: Windows or Unix

Examples:

<osType rdf:resource="&filter;Windows"/>
<osType rdf:resource="&filter;Unix"/>
The cbt Command Usage 17

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.opsware.com/ns/cbt/0.1/filter#">
<AuditPolicyFilter rdf:ID="apf1">
 <auditPolicyName>My Audit Policy</auditPolicyName>
</AuditPolicyFilter>
</rdf:RDF>

Custom Extension Export Filter

The custom extension export filter tells DET to either export a specific custom extension or all custom
extensions. If you want to export more than one custom extension, but not all, create a filter for each
custom extension you want to export.

Custom Extension Export Filter Examples

Export the Bulk_Password_Changes custom extension script only.

<CustomExtensionFilter rdf:ID="exportCustExtBulkPasswd">
 <scriptName>Bulk_Password_Changes</scriptName>
</CustomExtensionFilter>

Export all custom extension scripts.

<CustomExtensionFilter rdf:ID="exportAllCustExtScripts"/>

Custom Fields Schema Export Filter

The custom fields schema export filter tells DET to export all custom fields definitions from a mesh.

table 7 Custom Extension Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 8 Custom Extension Export Filter Nested Elements

Element Description

scriptName (optional) An optional element that specifies a script to export. The script
name does not include the account prefix. If this element is omitted,
all custom extension scripts are exported.

table 9 Custom Fields Schema Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".
18 Chapter 2

Custom Field Schema Export Filter Example

Export all custom field definitions from a mesh:

<CustomFieldSchemaFilter rdf:ID="getCustomFieldsSchema"/>

Customer Export Filter

The customer export filter tells DET to export all or specific customers from a mesh.

Customer Export Filter Example

Export the all customers from a mesh:

<CustomerFilter rdf:ID="exportAllCustomers"/>

Export Customer named “Acme Computers" from a mesh:

<CustomerFilter rdf:ID="exportAcmeCustomer">
<customerName>Acme Computers</customerName>

</CustomerFilter>

Folder Export Filter

The folder filter tells DET to either export a specific Folder, including the following items that are
associated with or contained in the Folder:

• Application Configuration Templates

• Application Configurations

• Attributes and custom attributes

• Contained audit policies

• Contained OS Build Plans

• Contained OS sequences

• Contained packages

• Contained scripts

• Contained software policies

• FolderACLs referencing user groups by name (user groups not exported).

table 10 Customer Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 11 Customer Export Filter Nested Elements

Element Description

customerName (optional) An optional element that specifies a unique customer to export.
The cbt Command Usage 19

• Placeholders for all folders along the path to the specified Folder

• Subfolders (optional)

Folder Export Filter Examples

For example, suppose the following folder hierarchy.

/
/A
/A/B

The following examples list which folders are exported given the preceding folder hierarchy.

Export folder A:

<FolderFilter rdf:ID="f1">
<path>/A</path>
<recursive rdf:resource="&filter;No"/>

</FolderFilter>

Export folder B:

<FolderFilter rdf:ID="f1">
<path>/A/B</path>

</FolderFilter>

Export folders A and B:

<FolderFilter rdf:ID="f1">
<path>/A</path>
<recursive rdf:resource="&filter;Yes"/>

</FolderFilter>

Export folders A and B:

<FolderFilter rdf:ID="f1">
<path>/</path>
<recursive rdf:resource="&filter;Yes"/>

</FolderFilter>

table 12 Folder Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name"

table 13 Folder Export Filter Nested Elements

Element Description

path (required) A required element that specifies the folder path.

recursive (optional) An optional element that specifies the export of sub-folders.
20 Chapter 2

OS Build Plan Export Filters

The OS Build Plan export filter tells DET what OS Build Plans to export.

OS Build Plan Export Filter Examples

Exports all OS Build Plans:

<OSBuildPlanFilter rdf:ID="osbp1"/>

Export all OS Build Plans with “OS Build Plan 1” name:

<OSBuildPlanFilter rdf:ID="osbp2">
 <osBuildPlanName>OS Build Plan 1</osBuildPlanName>
</OSBuildPlanFilter>

Export all OS Build Plans located in “Build Plan Folder” folder:

<OSBuildPlanFilter rdf:ID="osbp3">
 <folderName>Build Plan Folder</folderName>
</OSBuildPlanFilter>

OS Export Filter

The Operating System export filter tells DET what Operating System node or Operating System type to
export.

table 14 OS Build Plan Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in
the filter file using the format rdf:ID=“unique
name".

table 15 OS Build Plan Export Filter Nested Elements

Element Description

osBuildPlanName (optional) The name of the OS build plan to export.

folderName (optional) The name of the folder containing the OS Build
Plans to export.

Note: the folderName nested element refers to a
folder name and not to a folder path. All folders
with the given name will be taken into
consideration when executing an OS Build Plan
filter with the folderName nested element.

table 16 OS Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".
The cbt Command Usage 21

OS Export Filter Examples

Export the “7.1 for mwp" Red Hat Linux 7.1 OS.

<OSFilter rdf:ID="exportOSRHLinux71">
 <osPlatform rdf:resource="&filter;Red_Hat_Linux_7.1"/>
 <osName>7.1 for mwp</osName>
</OSFilter>Export all Solaris 5.6 operating systems.
<OSFilter rdf:ID="exportOSSun56">
 <osPlatform rdf:resource="&filter;SunOS_5.6"/>
</OSFilter>

Package Export Filter

The package export filter tells DET to export all or specified packages from a mesh. A placeholder for the
containing folder is exported. Placeholders for all folders on the path to the containing folder are also
exported.

For Microsoft Hotfixes and service packs, it is possible that the Microsoft package you want to export has
not yet had its binary file uploaded, even though the package shows as existing in the mesh. For example,
a user may have uploaded the Microsoft Patch Database to the mesh, but not yet uploaded the actual
binary file of the package In this case, a unit record for the package will have been created in the SA model,
but there is no content to export. In this case, if you try to export the package content using the Package
Export Filter, the content of the Microsoft package will not be exported.

table 17 OS Export Filter Nested Elements

Element Description

osName (optional) The name of the OS assigned by the user in the SA Client.

osPlatform (required) A required nested element. This empty element has an
rdf:resource parameter. This parameter may refer to one of the
supported operating systems listed in the SA Support and Compat-
ibility Matrix.

table 18 Package Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".
22 Chapter 2

Package Export Filter Example

Export all RPM packages associated to platform SunOS_5.8:

<PackageFilter rdf:ID="exportCIPackages">
 <packageType rdf:resource="&filter;RPM"/>

<osPlatform rdf:resource="&filter;SunOS_5.8"/>
</PackageFilter>

A relocatable ZIP file can be installed into different locations on a single server. Because the name of a
relocatable ZIP file is the same as that of its parent ZIP file, specifying one will export all relocatable
versions of that ZIP file. For example, suppose the ZIP file hierarchy is as follows:

table 19 Package Export Filter Nested Elements

Element Description

packageType (required) A required element that specifies the package type you want to
export. This parameter may refer to one of the following package
types:

• AIX_Base_Fileset
• AIX_LPP
• AIX_Update_Fileset
• APAR
• Build_Customization_Script
• Chef_Cookbook
• DEB
• HPUX_Depot
• HPUX_Fileset
• HPUX_Patch_Fileset
• HPUX_Patch_Product
• HPUX_Product
• Relocatable_ZIP
• RPM
• Solaris_Package
• Solaris_Package_Instance
• Solaris_Patch
• Solaris_Patch_Cluster
• Unknown
• Windows_Hotfix
• Windows_MSI
• Windows_OS_Service_Pack
• Windows_Update_Rollup
• ZIP

packageName (optional) An optional element that allows you to specify a named package.
The name of the package is the Name field as it appears in the
Package Properties page in the SA Client, not the filename of the
package.

osPlatform (optional) An optional element that allows you to specify the operating system
of a named package. This parameter may refer to one of the
supported operating systems listed in the SA Support and
Compatibility Matrix.

customerName (optional) An optional element that allows you to specify the customer of a
named package.
The cbt Command Usage 23

• ZIP hmp.zip (SunOS 5.8)

— Relocatable ZIP hmp.zip installed in /foo.

— Relocatable ZIP hmp.zip installed in /bar.

For the preceding ZIP file hierarchy, with the following filter, both relocatable ZIP files will be exported (/
foo and /bar).

<PackageFilter rdf:ID="p1">
<packageType rdf:resource="&filter;Relocatable_ZIP"/>
<packageName>hmp.zip</packageName>
<osPlatform rdf:resource="&filter;SunOS_5.8"/>

</PackageFilter>

Patch Export Filter

The patch export filter tells DET what patch or patch type to export.

For Windows patch content that was defined previous to DET 2.5, make sure that the Windows MBSA patch
definitions are the same for both the source mesh and the destination mesh, or undefined Windows
patches will not get imported.

table 20 Patch Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 21 Patch Filter Nested Elements

Element Description

patchType (required) A required nested element that has an rdf:resource parameter.
This parameter can refer to one of the following patch types:

• APAR
• APAR_FILESET
• UPDATE_FILESET
• AIX_Update_Fileset
• HPUX_PATCH_PRODUCT
• HPUX_Patch_Product
• HPUX_PATCH_FILESET
• HPUX_Patch_Fileset
• SOL_PATCH
• Solaris_Patch
• SOL_PATCH_CLUSTER
• Solaris_Patch_Cluster
• HOTFIX
• Windows_Hotfix
• SERVICE_PACK
• Windows_OS_Service_Pack
• PATCH_META_DATA
• Microsoft_Patch_Database
24 Chapter 2

Patch Filter Examples

Export the IY13260 APAR.

<PatchFilter rdf:ID="exportAPARIY13260">
 <patchName>IY13260</patchName>
 <patchType rdf:resource="&filter;APAR"/>
</PatchFilter>

Export all Solaris patches.

<PatchFilter rdf:ID="exportSolPatches">
 <patchType rdf:resource="&filter;SOL_PATCH"/>
</PatchFilter>

Export the patch named Q123456 for the Japanese locale.

<PatchFilter rdf:ID="pf1">
<patchName>Q123456</patchName>
<patchLocale>ja</patchLocale>

</PatchFilter>

Patch Policy Export Filter

The patch policy export filter tells DET what user-defined patch policy to export. (Vendor recommended
policies will not be exported.)

The optional nested elements <patchPolicyName> and <osPlatform> can be specified to filter for a
specific patch policy. If no optional nested elements are specified, all patch policies in the target mesh are
exported.

The Patch Policy filter will not export Solaris Patch Policies. In order to export Solaris Patch Policies, you
must export the parent folder using a Folder Export filter. (See Folder Export Filter on page 19.)

patchName (optional) An optional element that specifies the name of a specific patch. The
name must be the patch unit_name, which is the name shown in the
SA Client.

patchLocale (optional) The locale, which identifies the language of the Windows patch. This
element is ignored for non-Windows patches.

Examples of values for this element are en, ja, and ko. These values
represent English, Japanese, and Korean. English is the default. For
the list of locales currently supported by Windows patching, see the
SA User Guide: Patching Servers.

table 21 Patch Filter Nested Elements (cont’d)

Element Description

table 22 Patch Policy Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".
The cbt Command Usage 25

Patch Policy Export Filter Examples

Export all patch policies from the target mesh:

<PatchPolicyFilter rdf:ID="PatchPolicies1"/>

Export only the patch policies named “BestWindowsPoliciesNT" on the Windows NT 4.0 operating system,
and “BestWindowsPolicies2003" on the Windows 2003 operating system:

<PatchPolicyFilter rdf:ID="PatchPolicies2"/>
<patchPolicyName>BestWindowsPoliciesNT</patchPolicyName>
<osPlatform rdf:resource="&filter;Windows_NT_4.0/>

</PatchPolicyFilter>

<PatchPolicyFilter rdf:ID="PatchPolicies3"/>
<patchPolicyName>BestWindowsPolicies2003</patchPolicyName>
<osPlatform rdf:resource="&filter;Windows_2003"/>

</PatchPolicyFilter>

Export all Patch Policies for the Windows 2003 operating system:

<PatchPolicyFilter rdf:ID="PatchPolicies4"/>
<osPlatform rdf:resource="&filter;Windows_2003"/>

</PatchPolicyFilter>

Script Export Filter

Scripts can only be exported by exporting their parent folder. See Folder Export Filter on page 19.

table 23 Patch Policy Export Filter Nested Elements

Element Description

patchPolicyName An optional element that specifies the unique name of the patch
policy.

osPlatform An optional element that specifies a specific operating system of the
patch policy using an rdf:resource parameter. This parameter
can refer to one of the supported Windows operating systems using
the following syntax:

<OS>_<Version>_<Revision(if applicable)>_<Architecture>

For example, for Windows 2008 R2 IA64, the valid OS Platform
attribute would be Windows_2008_R2_IA64. Other examples of
platforms would be Windows_2008_R2_x64,
Windows_2012_R2_x64, and so on.
26 Chapter 2

Server Compliance Criteria (Audit Policies) Export Filter

The Server Compliance Criteria export filter instructs DET what Audit Policies you want to export.

Server Compliance Criteria Export Filter Examples

Export all Audit Policies.

<ComplianceSelectionCriteriaFilter rdf:ID="getAllSelectionCriteria"/>

Export the specific Audit Policy named “My Audit Policy" that has been associated with the Windows
operating system.

<ComplianceSelectionCriteriaFilter rdf:ID="getSpecificSelectionCriteria">
<selectionCriteriaName>My Audit Policy</selectionCriteriaName>
<osType rdf:resource="&filter;Windows"/>

</ComplianceSelectionCriteriaFilter>

table 24 Server Compliance Criteria Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the
filter file using the format rdf:ID=“unique name"

table 25 Server Compliance Criteria Filter Nested Elements

Element Description

selectionCriteriaNam (optional) Used to specify the name of the Audit Policy. Use this if
you want to export specific Audit Policy by name.

osType rdf:resource (optional) Used to specify exporting all Audit Policies that have
been associated with the specified OS.

Possible values: Windows or Unix

Examples:

<osType

rdf:resource="&filter;Windows"/>

<osType rdf:resource="&filter;Unix"/>

clearSource (optional) Used to specify if the source of the Audit Policy should
be deleted in the exported content or not.

Possible values: Yes or No

Examples:

<clearSource rdf:resource="&filter;Yes"/>
<clearSource rdf:resource="&filter;No"/>
The cbt Command Usage 27

Server (Device) Group Export Filter

The server groups export filter tells DET to export specified server groups from a mesh.

Notes

• Core specific information such as group membership and “Date last used", or History properties, are
not exported.

• Static groups can also be exported; however, only the name and description of the group are
exported.

table 26 Server Group Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 27 Server Group Filter Nested Elements

Element Description

path (required) A required element that specifies the name of the server group to
export.

directive (required) A required empty content element with a single rdf:resource
parameter. Allows you to specify the contents of the groups to
export. The parameter refers to one of three constants:

• Node: Exports only the leaf node of the path, but create empty
placeholders (name and description, no rules) down the path if
the path doesn't already exist.

• Path: Exports all groups along the path (name, description, and
rules) but not the descendants.

• Descendants: Exports all descendants of the given path,
including the leaf node of the path.

For example, given the following path:

/Group/A/B/C/D
and your path is
/Group/A/B

If the rdf:resource parameter is Node, server group node B is
exported. If the rdf:resource parameter is Path, server group
nodes A and B are exported. If the rdf:resource parameter is
Descendants, server group nodes B, C and D are exported.

customerName (optional) This optional element restricts the export of attached server group
nodes so that only those attached nodes owned by this customer get
exported.

The customerName element does not affect the export of nodes
referenced by dynamic server group rules.
28 Chapter 2

• If a dynamic group rule references a custom field, the custom field schema will only export the
individual custom field, not the whole schema.

• The path defines whether a group is public or private. So all public groups can be exported by
specifying a path of
/Group/Public (and Descendants directive).

• Private groups cannot be exported, so a path of /Group/Private will result in an error during export.

• It is possible for an imported dynamic server group to not have any rules. This can happen if the
source group only had rules like “Facility is C07" or “Realm is Sat02". Since Facility and Realm are core
specific, these rules are not exported.

• Also, any rules that reference Server IDs will not be exported. For example rules like “Server ID equals
55500001" will not be exported.

• All attached software policies are exported.

Server Group Export Filter Example

Export all public server groups from a mesh:

<ServerGroupFilter rdf:ID="exportPubServGroups">
 <path>/Group/Public/</path>
 <directive rdf:resource="&filter;Descendants"/>
</ServerGroupFilter>

Export the public server group named “NT Servers" including all sub groups that belong to it:

<ServerGroupFilter rdf:ID="exportNTServGroups">
 <path>/Group/Public/NT Servers</path>
 <directive rdf:resource="&filter;Descendants"/>
</ServerGroupFilter>

Export only the public server group named “Production Web Servers" (but none of its subgroups):

<ServerGroupFilter rdf:ID="exportProdWebServGroups">
 <path>/Group/Public/Production Web Servers</path>
 <directive rdf:resource="&filter;Node"/>
</ServerGroupFilter>

Export the public group named “Production Web Servers" and its subgroup named “iPlanet", but no other
subgroups.

<ServerGroupFilter rdf:ID="exportProdWebServGroupsIP">
<path>/Group/Public/Production Web Servers/iPlanet</path>
<directive rdf:resource="&filter;Path"/>

</ServerGroupFilter>

Service Level Export Filter

The service level export filter tells DET what service level nodes to export.

table 28 Service Level Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".
The cbt Command Usage 29

Service Level Export Examples

Export the /Service Level/Foo node only.

<ServiceLevelFilter rdf:ID="exportServLevfoo">
 <path>/Service Level/Foo</path>
 <directive rdf:resource="&filter;Node"/>
</ServiceLevelFilter>

Export Bar and Baz nodes along the given path. Note that the stack root is not exported.

<ServiceLevelFilter rdf:ID="exportServLevBarBaz">
 <path>/ServiceLevel/Bar/Baz</path>
 <directive rdf:resource="&filter;Path"/>
</ServiceLevelFilter>

Export the Gold Service Level node and all of its descendants, including the leaf node.

<ServiceLevelFilter rdf:ID="exportServLevGold">
 <path>/ServiceLevel/Gold</path>
 <directive rdf:resource="&filter;Descendants"/>
</ServiceLevelFilter>

table 29 Service Level Export Filter Nested Elements

Element Description

path (required) An absolute path from the top level node to the node to be exported.
The path separator is “/".

directive (required) An empty content element with a single rdf:resource parameter.
The parameter refers to one of three constants:

• Descendants: Export all descendants of the given path including
the leaf of the path.

• Node: Only export the given node.

• Path: Export all nodes along the path and no other nodes.

For example, given the following path:

/Service Level/A/B/C/D
and your path is
/Service Level/A/B

If the rdf:resource parameter is Node, node B is exported.

If the rdf:resource parameter is Path, nodes A and B are
exported.

If the rdf:resource parameter is Descendants, nodes B, C and D
are exported.

customerName (optional) This optional element restricts the export to nodes owned by this
customer at or below the specified path. If the node specified by the
path is not owned by the specified customer, nothing is exported
and a warning is logged.

For examples of how this element works in a filter file, see
customerName Element Examples on page 34.
30 Chapter 2

Snapshot Filter

The snapshot filter tells DET which snapshot you want to export from an SA core/mesh so that you can
then import it into another SA core/mesh.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
 <!ENTITY filter "http://www.opsware.com/ns/cbt/0.1/filter#">
]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.opsware.com/ns/cbt/0.1/filter#">
<SnapshotResultFilter rdf:ID="srf1">
 <snapshotResultId>20001</snapshotResultId>
</SnapshotResultFilter>
</rdf:RDF>

Template Export Filter

The template export filter tells DET what template nodes to export.

table 30 Snapshot Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 31 Snapshot Filter Nested Elements

Element Description

snapshotResultId The ID of the snapshot to export. Snapshot names are not unique
such that an ID must be given instead. The ID is shown in the user
interface by opening up the Snapshot browser, where it is displayed
on the first screen.

table 32 Template Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format
rdf:ID=“unique name".

table 33 Template Export Filter Nested Elements

Element Description

path (required) An absolute path from the top level node to the node to be exported.
The path separator is “/".
The cbt Command Usage 31

Template Export Filter Examples

Export the /Templates/Foo node only.

<TemplateFilter rdf:ID="exportTemplatesfoo">
 <path>/Templates/Foo</path>
 <directive rdf:resource="&filter;Node"/>
</TemplateFilter>

Export Bar and Baz nodes along the given path. Note that the stack root is not exported.

<TemplateFilter rdf:ID="exportTemplatesBarBaz">
 <path>/Templates/Bar/Baz</path>
 <directive rdf:resource="&filter;Path"/>
</TemplateFilter>

Export the Alpha Template node and all of its descendants, including the leaf node.

<TemplateFilter rdf:ID="exportTemplatesAlpha">
 <path>/Templates/Alpha</path>
 <directive rdf:resource="&filter;Descendants"/>
</TemplateFilter>

directive (required) An empty content element with a single rdf:resource parameter.
The parameter refers to one of three constants:

• Descendants - export all descendants of the given path
including the leaf of the path.

• Node - only export the given node.

• Path - export all node along the path and no other nodes.

For example, given the following path:

/Templates/A/B/C/D
and your path is
/Templates/A/B

If the rdf:resource parameter is Node, node B is exported.

If the rdf:resource parameter is Path, nodes A and B are
exported.

If the rdf:resource parameter is Descendants, nodes B, C, and D
are exported.

customerName (optional) This optional element restricts the export to nodes owned by this
customer at or below the specified path. If the node specified by the
path is not owned by the specified customer, nothing is exported
and a warning is logged.

For examples of how this element works in a filter file, see
customerName Element Examples on page 34.

table 33 Template Export Filter Nested Elements (cont’d)

Element Description
32 Chapter 2

User Group Export Filter

The User Group export filter tells DET what user groups to export. A user group export includes the
following information for each user group:

• Name

• Description

• The read, read & write, none or yes/no state of each action permission in the Action Permission view of
the SA client Administration User Groups view

• The read, read & write, none state of each customer and device group in the Resource Permission View

Notes

• The membership of users and facility permissions (as seen in the Users and Facilities tabs) are not
exported.

• The Customers and Device Groups tabs currently list all customers and server groups respectively to
allow the read, read & write, none state to be set. Only customers and device groups that are
configured with read or read & write will be exported.

table 34 User Groups Export Filter Parameters

Parameter Description

rdf:ID Each filter has a unique name that is specified in the filter file using
the format rdf:ID=“unique name"

table 35 User Groups Export Filter Nested Elements

Element Description

groupName (optional) An optional element that allows you to export specific user groups
by name. If groupName is not specified, then all user groups will be
exported.
The cbt Command Usage 33

User Group Export Filter Examples

Export all user groups from a mesh.

<UserGroupFilter rdf:ID="exportAllUserGroups"/>

Export the group named “SuperUsers":

<UserGroupFilter rdf:ID="exportUserGroups">
<groupName>SuperUsers</groupName>

</UserGroupFilter>

Export three user groups with the names “AdvancedUsers," “OpswareAdministrators," and “BasicUsers":

<UserGroupFilter rdf:ID="exportAdvUsersGroup">
<groupName>AdvancedUsers</groupName>

</UserGroupFilter>
<UserGroupFilter rdf:ID="exportOpsUsersGroup">
 <groupName>OpswareAdministrators</groupName>
</UserGroupFilter>
<UserGroupFilter rdf:ID="exportBasicUsersGroup">
<groupName>BasicUsers</groupName>

</UserGroupFilter>

customerName Element Examples

These examples illustrate how the customerName element works for the Application, Service Level,
Template, and Server Group export filters.

This section contains two topics:

— customerName Examples for Applications, Service Levels, Templates

— customerName Examples for Server Groups

customerName Examples for Applications, Service Levels, Templates

Given this node hierarchy:

Service Levels (owned by Customer Independent)
A (Customer Independent)

B (Customer Independent)
C (Nike & Adidas)

D (Nike)

• If your file specifies the following filter definition, then A, B, C, and D will be exported. In other words,
the service levels of all customers.

<ServiceLevelFilter rdf:ID="a1">
<path>/Service Level/A</path>
<directive rdf:resource="&filter;Descendants"/>

</ServiceLevelFilter>
34 Chapter 2

• If your file specifies the following filter definition, then A and B will be exported.
C and D will be skipped

ServiceLevelFilter rdf:ID="a1">
<path>/Service Level/A</path>
<directive rdf:resource="&filter;Descendants"/>
<customerName>Customer Independent</customerName>

</ServiceLevelFilter>

• If your file specifies the following filter definition, then C and D will be exported.

<ServiceLevelFilter rdf:ID="a1">
<path>/Service Level/A/C</path>
<directive rdf:resource="&filter;Descendants"/>
<customerName>Nike</customerName>

</ServiceLevelFilter>

• If your file specifies the following filter definition, then only C will be exported. D will be skipped
because it is not owned by Adidas.

<ServiceLevelFilter rdf:ID="a1">
<path>/Service Level/A/C</path>
<directive rdf:resource="&filter;Descendants"/>
<customerName>Adidas</customerName>

</ServiceLevelFilter>

• If your file specifies the following filter definition, then nothing will be exported:

<ServiceLevelFilter rdf:ID="a1">
<path>/Service Level/A</path>
<directive rdf:resource="&filter;Descendants"/>
<customerName>Nike</customerName>
</ServiceLevelFilter>

customerName Examples for Server Groups

The examples illustrate how the customerName Element works for the Server Group filter.

For example, if your core had this server group hierarchy:

Server Groups
Public
SG1

+ /Application Servers/A (owned by Customer
Independent)

+ /System Utilities/B (Nike)
+ /Web Servers/C (Adidas)

• If your file specifies the following filter definition, then SG1, A, B, and C will be exported.

<ServerGroupFilter rdf:ID="a1">
<path>/Group/Public/SG1</path>
<directive rdf:resource="&filter;Node"/>

</ServerGroupFilter>
The cbt Command Usage 35

• If your file specifies the following filter definition, then SG1 and A will be exported.

<ServerGroupFilter rdf:ID="a1">
<path>/Group/Public/SG1</path>
<directive rdf:resource="&filter;Node"/>
customerName>Customer Independent</customerName>

</ServerGroupFilter>

• If your file specifies the following filter definition, then SG1 and B will be exported.

<ServerGroupFilter rdf:ID="a1">
<path>/Group/Public/SG1</path>
<directive rdf:resource="&filter;Node"/>
<customerName>Nike</customerName>

</ServerGroupFilter>

• If your file specifies the following filter definition, then server group SG1 will be exported.

<ServerGroupFilter rdf:ID="a1">
<path>/Group/Public/SG1</path>
<directive rdf:resource="&filter;Node"/>
<customerName>Acme</customerName>

</ServerGroupFilter>

Importing Content

The cbt command imports content to a target SA mesh.

Content import is supported on a forward compatible basis only. That is, you cannot import content from
any version of SA into an older version of SA.

The cbt command executable is found in the directory:

/opt/opsware/cbt/bin

The import command is:

cbt -i <content_dir> -p <policy> -cf <target_core_config> --noop

The command and its arguments indicate:

• content_dir — the directory containing the previously-exported content

• policy — the import policy that DET should use when it detects duplicates in the target SA mesh.
See the Policy on Importing Content Types on page 37.

• target_core_config - a configuration file that tells DET where the various SA components are
located, and what identity it should use to access them. Instructions for creating this file are located
at Configuring the cbt Command on page 49.

• --noop — Run the import in a “dry run" mode. In other words, don't modify any data. Instead, output
a summary of what changes would be made if run normally.

See The cbt Command Reference on page 55 for a complete list all the available arguments and their
meanings.

When Applications are imported using DET, the associated package name in the SA mesh receives a “cbt"
suffix. For example:

openssh-3.8p1-sol8-sparc-local_cbt796213986
36 Chapter 2

Policy on Importing Content Types

The following table shows the affect of the policy you specify on the command-line for each content type
when duplicates are found.

The choices are:

• overwrite - the default if no policy is specified. The effect of this option is different for each content
type as described in the table.

• duplicate - the effect of this option is different for each content type as described in the following
table.

• skip - for all content types, specifying “skip" means that if a duplicate is found, a message is entered
in the session log and the import continues.

See The cbt Command Reference on page 55 for a complete list of all the available arguments and their
meanings.

table 36 Policies Used By DET When Importing Each Content Type

Content Type
Associated Content
Types Import Policy (Overwrite) Import Policy (Duplicate)

Application
Configuration

Application
Configuration
Template

All attributes are updated in
overwrite mode.

New Application
Configuration is created
and named “Oldname-
cbt<random>"

Application
Configuration
Template

All attributes are updated in
overwrite mode.

New Application
Configuration template is
created and named
“Oldname-cbt
<random>"

Custom Attributes NA Creates and overrides
existing keys. The result is
the union of the imported key
and existing keys.

Same as Install Order
Relationship.

Custom Extension NA A new version of the script is
created

Same as overwrite policy.

Custom Field
Schema

NA Display name is the only field
that is updated.

Do nothing on duplication.

Customer NA Do nothing on duplication. Do nothing on duplication.

Please see Synchronizing
Multimaster Meshes with
Deltas on page 46 for
important information
about importing customers.
The cbt Command Usage 37

Folder • Package

• Software Policy

• OS Sequence

• Customer

Placeholders for all Folders
along the path to this folder
are created. All attributes of
this folder are updated.
Folder contents and
associated customers are
overlaid on existing data. If --
folderacls is specified,
folderACLs to any pre-
existing user groups are
created.

Skip: folders are not
duplicated.

Install Hooks NA See Unit. See Unit.

Install Order
Relationship

NA Creates the relationship
regardless and override the
existing relationship.

Since this is done in the
context of the parent node,
a new relationship is always
created because a parent
node is always created -
albeit with a different
name.

MRL NA Always create an MRL in the
target mesh using the
identical name as in the
source mesh.

Same as overwrite.

OS • Custom
attributes

• Customer

• InstallHooks

• MRL

Content information
overrides existing node in
target SA mesh without
changing its node ID. Content
information is overlaid on the
existing node.

Content information is
renamed by applying a
“cbt<random>" suffix to
the application name.

table 36 Policies Used By DET When Importing Each Content Type (cont’d)

Content Type
Associated Content
Types Import Policy (Overwrite) Import Policy (Duplicate)
38 Chapter 2

OS Build Plan • Application
Configuration
Template

• Custom
attribute

• Customer

• Device Group

• Script

• Software Policy

• ZIP Package

Custom attributes are
overlaid. Application
Configuration Templates,
Scripts, Software Policies,
Patch Policies and ZIP
Packages are overwritten. OS
Build Plan description is
updated.

If the name of a Build Plan is
changed or the Build Plan is
moved to a different location
after export, the exported OS
Build Plan will be imported to
the original location as a new
OS Build Plan leaving the
renamed/relocated OS Build
Plan unchanged.

Skip: OS Build Plans are not
duplicated.

OS Build Plan content is
duplicated as follows:

• Application
Configuration
Templates, Scripts and
Server Groups are
duplicated

• Zip Packages are
overwritten

• Customers are skipped

• New Software Policies
are created with name
<software_policy>
_cbt<random>

Package NA Package is uploaded over the
existing package and will
overwrite the “container"
package types: LPP, HPUX
Depot, and Solaris Package.
These package types will be
overwritten with the new
data if their new contents
(contained packages) are a
superset of the old contents.
If not, DET will revert to the
existing “rename" mode.

If the package already exists
in a different folder, it is
imported as a new package in
the new folder -- the existing
package is not moved to the
new folder.

Same as overwrite.

table 36 Policies Used By DET When Importing Each Content Type (cont’d)

Content Type
Associated Content
Types Import Policy (Overwrite) Import Policy (Duplicate)
The cbt Command Usage 39

Patch NA Physical patch package is
uploaded and contained units
are created in the Software
Repository.

AIX LPPs and HPUX Depots,
package types will be
overwritten with the new
data if their new contents
(contained packages) are a
superset of the old contents.
If not, DET will revert to the
existing “rename" mode.

Same as overwrite. This is
because Server Automation
cannot reliably and
efficiently determine
whether a package in the
Software Repository is
equivalent to the package
being uploaded.

Patch Knowledge

(PATCH_META_DAT
A)

NA The patch database is
imported into Server
Automation, overwriting the
existing database, if there is
one. The knowledge created
by the import will depend on
the patch preference settings
in the target SA mesh.

Same as overwrite.

Patch Policy Patch Description and list of
patches are updated.

New patch policy is created
and named “Oldname-
cbt<random>"

Scriptsa NA Adds the current version of
the imported script to the
existing object.

Duplicates the existing
object with a new name and
adds the current version of
the imported script to the
duplicate.

Server Compliance
Criteria

NA All attributes are updated in
overwrite mode.

New Server Compliance
Criteria is created and
named “Oldname-
cbt<random>"

Server (Device)
Group

• Application

• Software Policy

• Custom
Attribute

• Custom Field
Schema

• Patch

• Server Group

• Service Level

Group description and type
are updated. Dynamic group
rules are overwritten. The
match “if any rules are met"
and “if all rules are met"
setting will be updated to
reflect what is defined in the
export. Custom attributes are
overlaid. Attachments to
patches, applications and
service levels are
overwritten.

New server group is created
and named “Oldname-
cbt<random>".

table 36 Policies Used By DET When Importing Each Content Type (cont’d)

Content Type
Associated Content
Types Import Policy (Overwrite) Import Policy (Duplicate)
40 Chapter 2

Service Level • Custom
attributes

• Customer

Content information
overrides existing node in
target SA mesh without
changing its node ID. Content
information is overlaid on the
existing node.

Content information is
renamed by applying a
“cbt<random>" suffix to
the template name.

Template • Custom
attributes

• Customer

• Application

• Patch

• OS

• Service Level

Content information
overrides existing node in
target SA mesh without
changing its node ID. Content
information is overlaid on the
existing node.

Content information is
renamed by applying a
“cbt<random>" suffix to
the template name.

Unit Unit script Units are associated with a
physical package, see
Package content type above.
Virtual units are always
associated with existing units
in the target SA mesh - this is
presumably created as a side
effect of uploading the
physical package that is also
part of the same import
session.

Same as overwrite.

Unit Script NA Created and overrides
existing unit scripts.

Same as overwrite.

User Group Customer, Server
(Device) Group

User group description is
updated. In addition, the
checked state of features (as
seen in the Features and
Other tabs) will be updated to
reflect what is in the export.
The Read, Read & Write, and
None settings of customers,
node stacks, and client
features will be updated to
reflect what is in the export.
The Read and Read & Write
settings of server groups are
updated as well.

New user group is created
and named “Oldname-cbt
<random>".

a. Scripts can only be imported by importing the parent folder.

table 36 Policies Used By DET When Importing Each Content Type (cont’d)

Content Type
Associated Content
Types Import Policy (Overwrite) Import Policy (Duplicate)
The cbt Command Usage 41

Import Delete Conditions

If you have specified that content be marked as deleted during an export, running the
--delete option on import will delete those marked items from the destination mesh.

In some cases, however, if the content marked for deletion in the destination mesh is being used by parts
of the SA model, DET will take a ‘no harm’ approach by renaming the content item instead of deleting it.
Or, if you used the -del option during export but did not use the -del option during import, then any
content items marked for deletion in the export will not be deleted in the destination mesh — they will
instead be renamed.

When a content item is renamed in the destination mesh, the following naming convention is used for the
renamed item:

<item_name>-cbtDeleted<12345>

For example, if Application Configuration “foo" is renamed during one DET run, it would be renamed to
“foo-cbtDeleted134234".

Table 37 describes all conditions that must be met for a content item to be deleted on an import, and
those cases in which the content item will be renamed. If the conditions for allowing delete are not met,
then the item will be renamed according to the renaming convention.

For some content items, there are no restrictions and they will always be marked as deleted when the
delete option is used for both import and export. For other content items, deletion will never be allowed.

Renamed Objects That Cannot Be Found

When a content item is renamed for any reason (no -del or “do no harm’"), it may become un-findable by
DET on subsequent imports. This reason for this is that the name by which the item is located in the
destination mesh has been changed due to the rename.

For example, if Application Configuration “foo" is renamed during one DET run to “foo-
cbtDeleted134234", on subsequent runs the DET will attempt and fail to find an Application Configuration
named “foo". This will prevent the DET from re-renaming or deleting the Application Configuration.

Types of objects with dependencies that can become unfindable after they get renamed include
Application, Application Configuration, Application Configuration file, Compliance Selection Criteria,
Custom Extension, Distributed Script, OS, Patch Policy, Server (Device) Group, Service Level, Template.

table 37 Condition for Content Items to Be Deleted Upon Import with the -del Option

object type Conditions allowing delete

Application
Configuration

In use by zero servers or device Groups.

In use by zero software policies.

Application
Configuration File

In use by zero application configurations.

Compliance Selection
Criteria

Always allow delete.

Custom Extension Never allow delete; always rename.

Custom Field Schema Always allow delete.
42 Chapter 2

Customer Zero application, service level, and template nodes.

Zero non-deactivated devices.

Zero packages (including those with status DELETED).

Zero IP range groups.

Zero folders.

Note: A Customer cannot be deleted if it has any packages still in SA, including
those with the status DELETED. When an object has a DELETED status, it means
that either a) the package is still needed for remediation operations on at least
one server, or b) the Satellite Software Repository Cache has not yet flushed
the package. If this is the case, then the Customer marked for deletion will not
be deleted, but renamed.

Deployment Stage
Value

Zero devices using this value.

Folder Zero contained packages, software policies, and sub-folders.

OS Zero attached devices.

Zero child nodes.

Zero templates or device Groups include this node.

Package Is a deletable unit type (see below)

Zero Solaris patch clusters or MRLs use this package.

Zero software policies use this package.

If a ZIP package, it has zero child relocatable ZIPs.

Zero OS definitions or application nodes use this package.

Zero software policies use this package.

If a patch:

— Zero devices attached to the patch node.

— Zero templates or device Groups include the patch node.

— Zero patch policies or patch exceptions include the patch node.

If an LPP, HPUX depot, or Solaris package:

— Zero sub-packages in use by software policies.

— Zero OS definitions or application nodes use any sub-package.

— For any sub-package that is a patch:

– Zero devices attached to the patch node.

– Zero templates or device Groups include the patch node.

– Zero patch policies or patch exceptions include the patch node.

Deletable package unit types* (see list following this table)

Patch Policy Zero attached devices.

Zero attached device groups.

table 37 Condition for Content Items to Be Deleted Upon Import with the -del Option (cont’d)

object type Conditions allowing delete
The cbt Command Usage 43

* Detectable package unit types:

— HOTFIX

— HPUX_DEPOT

— LPP

— MRL

— MSI

— PROV_INSTALL_HOOKS

— RPM

— SERVICE_PACK

— SOL_PATCH

— SOL_PATCH_CLUSTER

— SOL_PKG

— SP_RESPONSE_FILE

— UNKNOWN

— UPDATE_ROLLUP

— WINDOWS_UTILITY

— ZIP

Considerations When Importing Customers

Currently, DET does not support the export of user group permissions that are associated with customers,
except in cases when the customer name being exported has the same name as a customer in the target
mesh (the mesh you are importing the customer into).

For example, let’s say that in your source mesh, you had a software application node named iPlanet, and
that software application node iPlanet was accessible for reading and writing to all groups associated with
a customer named Computing Machines. One of these groups associated with the customer Computing
Machines was named groupA.

Server (Device) Group Zero attached devices.

Zero child nodes.

Not used by access control.

Zero dynamically bound jobs.

Server Use Value Zero devices using this value.

Service Level Zero attached devices.

Zero child nodes.

Zero templates or device Groups include this node.

Template Zero child nodes.

User Group Always allow delete.

table 37 Condition for Content Items to Be Deleted Upon Import with the -del Option (cont’d)

object type Conditions allowing delete
44 Chapter 2

Next, you export a software application node iPlanet from the source mesh, and then import that node
into a new mesh — and this mesh does not have a customer named Computing Machines. The result
would be that any users in groupA would not be able to see software application node iPlanet in the target
mesh.

However, if the mesh you imported the customer Computing Machines into already has a customer with
exactly the same name, then all permissions are untouched in the new mesh and all users groupA would
be able to access the software application node named iPlanet — in other words, all permissions
associated with the Computing Machines customer (the ability to read and write the software node
iPlanet) will remain in tact.

Importing Customers Workaround

If a user group loses permissions to access objects (such as servers associated with a customer), then use
the SA Client to re-assign the permissions. Until doing so, only users who are administrators will see these
customers and their associated objects.
The cbt Command Usage 45

Synchronizing Multimaster Meshes with Deltas

DET provides the means of performing ‘incremental" exports and imports, which helps you keep the
content in your multimaster mesh synchronized and up to date.

For example, you can run regular exports from your “source" mesh that represents all the content you
want other meshes to contain. Using the new options allows you to export only content that has been
modified or deleted so that your target mesh are consistent with the source mesh.

Delta Exports

These command-line options allow you to perform an delta export:

• --baseline (short form: -b)

Specifies a baseline export against which to compare the current export. This requires that either --
incremental or --delete be specified during export.

• --incremental (short form: -incr)

Of the content specified by the filter file, export only that which has been added or modified since the
baseline. If this option is not given, all content specified by the filter file is exported. Must be used
with --baseline.

• --delete (short form: -del)

Include in the export any content in the baseline that is not specified by the filter file, marked “as
deleted". If this option is not given, nothing is exported “as deleted". Must be used with --baseline.

Here is what happens when you use --delete and --incremental in combination with --baseline
during an export:

• No incremental export options.

All content specified by filter file is exported.

• -incr

All content specified by filter file that is new or changed since the baseline is exported.

• -del

All content specified by filter file is exported (since -incr is not given), plus all content in the
baseline that is not specified by the filter file (“as deleted").

• -incr -del

All content specified by filter file that is new or changed since the baseline is exported, plus all content
in the baseline that's not specified by the filter file (“as deleted").

Delta Imports

This command-line options allows you to perform a delta import (if certain options were given during
export):

• --delete (short form: -del)

If the --baseline option was given with --delete during export, then using the
--delete option during import will delete objects that have been marked for deletion from the
export.
46 Chapter 2

If the --baseline option was given with --delete during export, but you do not use --delete
during import, the items marked for deletion will not be deleted but rather renamed. For more
information on cases in which some content may never get deleted and always renamed (for
example, if the object has a dependency elsewhere in the mesh) then see Import Delete Conditions
on page 42.

Mesh Synchronization Usage Scenario

Here is what a typical incremental export and import cycle might look like when content in the source
mesh has been both deleted and modified:

• Initial, full export of a filter that exports Application Configuration content:

cbt -e content/appConfig.0 -f ac_Filter.rdf -cf meshA_Config

• Import exported content into another mesh:

cbt -i content/appConfig.0 -p overwrite -cf meshB_Config

Content is changed and deleted in source mesh.

• Export the modified and deleted content from the source mesh using -b and -incr and -del:

cbt -e content/appConfig.1 -f ac_Filter.rdf -b content/appConfig.0 -incr -
del -cf meshA_Config

• Import the delta into the destination mesh, updating the modified content and deleting the deleted
content:

cbt -i content/appConfig.1 -p overwrite -cf meshB_Config -del

• Repeat steps four and five every time you want to update content, using the most recent export as
your baseline. For example, on the next round you would use:

— Export content/appConfig.2 with -b content/appConfig.1.

— Import content/appConfig.2.

Content Directory

The content directory is the persistent store of exported SA content. The content directory contains:

• data.rdf - a database of exported SA configuration content.

• filter.rdf - a database of filters provided by the user and generated by DET.

• blob/ - a directory containing exported software packages and scripts.

• var/ - a directory containing logs for each of the last ten import and export sessions. Logs are named
cbtexport {0-9}.log and cbtimport {0-9}.log. The 0 log is always the most recent and the
9 log file is always the oldest of the ten session logs.

The following is an example content directory.

% ls -R
.:
blob
data.rdf
The cbt Command Usage 47

filter.rdf
var

./blob:
unitid_140270007.pkg
unitid_166510007.pkg
unitid_166540007.pkg
unitid_2090007.pkg

./var:
cbtexport0.log
cbtexport0.log.lck
cbtimport0.log

Example Session

The cbt command is pre-configured to be executed as the root user on a managed server. If used in this
configuration, you will only have to provide your SA user name and password to perform an export or an
import.

The following is an example session. The example below assumes the user has been granted import and
export permission. For more information, see Configuring the cbt Command on page 49.

The following is an example csh session on the Command Center server.

% setenv JAVA_HOME <j2re 1.4.x installation>
% /opt/opsware/cbt/bin/cbt -e /tmp/foo -f \
/opt/opsware/cbt/filters/app.rdf \
--spike.username hermaime
Enter password for hermaime: ********
...

The cbt command is found in the directory:

/opt/opsware/cbt/bin

Installing the cbt Command

The cbt command comes installed and ready to use on your SA core servers.

If you want to use the cbt command on any other Unix server, you need to install it manually, as
described in this section. Cbt can also be installed on any Unix-based managed server automatically by
creating a software policy.

The cbt command can be run on any Unix computer with network access to an SA mesh. Although the cbt
command is not supported on the Windows platform, it does support import and export of Windows
content.

To install the cbt command on a Unix server other than the SA Core:

1 Log on as root to the Unix server where you want to install the cbt command. The server must have
access to an SA mesh.
48 Chapter 2

2 You can obtain the cbt archive, cbt-<version>.zip, via the HPSA installation media or on the SA
Core:

a On the SA Core, find the cbt archive in the SA Library under: Opsware/Tools/CBT

b On the HP Server Automationinstallation media, find the cbt-<version>.zip file in the
packages subdirectory.

3 Copy the cbt archive to the directory where you want to install it.

4 Unzip the archive.

5 Configure your Java Runtime Environment (JRE):

a If you do not already have them, download JRE 1.4.x or JDK 1.6.x or later from
www.oracle.com, and install it on the server where you have logged in.

b Set your JAVA_HOME environment variable to point to your Java installation. For example, in csh
you would issue the following command:
% setenv JAVA_HOME <java installation>

c Optionally, you can set the PATH environment variable to include the cbt install directory:
<cbt_install_directory>/bin.

6 To verify that you can run the cbt command, enter the following commands:

% cd <cbt_install_directory>/bin
% ./cbt -v

The -v option displays the command’s version string.

On some servers, the cbt command displays the following error:

Error occurred during initialization of VM
Could not reserve enough space for object heap

If this error occurs, edit the cbt script, changing the value of the -Xmx option in jargs to a lower
value, for example: -Xmx512m.

Configuring the cbt Command

This explains how to configure the cbt command. The cbt command is installed on your SA core servers in
the following directory:

/opt/opsware/cbt/bin

To run the cbt command outside the SA Core, see Running the cbt Command on a UNIX Host that Is Not
an SA Core on page 50.

The cbt command can be run on any Unix computer with network access to an SA mesh. Although the cbt
command is not supported on the Windows platform, it does support import and export of Windows
content.

The cbt command is written in Java and uses OWL and RDF for its schema definition and persistent store.
It imports and exports SA content by using SA APIs to extract both configuration and large binary content,
such as packages and scripts.

1 To verify that you can run the cbt command, enter the following commands:

% cd <cbt_install_directory>/bin
% ./cbt -v
The cbt Command Usage 49

The -v option displays the command’s version string.

On some servers, the cbt command displays the following error:

Error occurred during initialization of VM
Could not reserve enough space for object heap

If this error occurs, then edit the cbt script, changing the value of the -Xmx option in jargs to a
lower value, for example: -Xmx512m.

2 Perform the following steps for each mesh that you will be importing into or exporting from.

a Obtain a copy of the opsware-ca.crt trust certificate from
/var/opt/opsware/crypto/twist/opsware-ca.crt
and save it in a location that the cbt command can access. This step is optional if you are running
cbt from the server where the SA Command Center core component is installed.

b Obtain a copy of the spog.pkcs8 client certificate from
/var/opt/opsware/crypto/twist/spog.pkcs8
and save it in a location the cbt command can access. This step is optional if you are running cbt
from the server where the SA Command Center core component is installed.

c Obtain the Web Services Data Access Engine (twist) user name and password from your SA
administrator. This is set during the Web Services Data Access Engine (twist) installation.

d Create a target mesh configuration file that contains the location and identity information
required to access the SA mesh components. For details on this task, see the following section.

Running the cbt Command on a UNIX Host that Is Not an SA Core

When running the cbt command from an UNIX host which is not an SA core, the NSS_FIPS_ENABLED
environment variable needs to be set. If the SA core is running in FIPS enabled mode, the
NSS_FIPS_ENABLED environment variable should be set to 1.

An example of an cbt command run from an UNIX host:

export NSS_FIPS_ENABLED=1 && <cbt_install_directory>/bin/cbt -i <content_dir>
-p <policy> -cf <target_core_config>

Creating a Target Mesh Configuration File

Create a target mesh configuration file to simplify the use of DET. A sample default configuration file is
installed with DET at the following location:

cbt/cfg/default.properties

The mesh configuration file is a key=value pair text file that contains SA component access information
that would otherwise need to be given on the DET command-line. To define the parameters of the DET
mesh configuration file, make a copy of this file and save it to a known location.

Because the configuration file contains user names and passwords, make sure it is secure.

Table 38 contains all possible DET configuration-related properties. These properties can be either given
on the DET command-line or specified in a configuration file.
50 Chapter 2

The default configuration property values listed in Table 38 assume that you are running DET on an SA
mesh running the Command Center core component. (It is for this reason that the.host properties shows a
localhost value.) Also, twist.certpaths, ssl.trustcerts, and ssl.keypairs assume paths on
an Command Center server.

If a configuration-related property is not specifically mentioned in the mesh Configuration file, the default
value shown in the Configuration Properties table below will be used.

table 38 Configuration Properties

Property Name Default Value Description

cbt.numthreads 1 Number of concurrent threads used for
export.

For exporting content, you can specify
as many threads as you wish.

However, for importing content, DET
supports only one thread.

spike.enabled true Use Spike for authentication and autho-
rization on all XML-RPC-based servers.

spike.host way Spike's host name or IP.

spike.path wayrpc.py Spike's base URL path.

spike.password <no default> User password for Spike authentication.
This is an OCC user's password and is set
during the installation of the mesh. Con-
tact your SA Administrator (or the per-
son who installed the mesh) for this
information.

spike.port 1018 Spike's listener port.

spike.protocol https Spike's listener protocol. This is typically
HTTPS.

spike.username admin User name for Spike authentication.
This is the user who was granted per-
missions by the
cbtperm tool.

This user name needs to be an admin
account that has permissions to create
or modify objects. The DET default con-
figuration sets spike.username to
account: admin

spin.host spin Data Access Engine's host name or IP.

spin.path spinrpc.py Data Access Engine's base URL path.

spin.port 1004 Data Access Engine's listener port.
The cbt Command Usage 51

spin.protocol http Data Access Engine's listener protocol.
HTTP if the DET is on the same server as
the SA Command Center and is running a
clear text spin in a multi-server mesh or
HTTPS for any other configuration.

ssl.keyPairs /var/opt/opsware/
crypto/twist/
spog.pkcs8

Comma-separated list of client certifi-
cates used to communicate with XML-
RPC-based servers.

ssl.trustCerts /var/opt/opsware/
crypto/twist/
opsware-ca.crt

Comma-separated list of trust certifi-
cate files used to communicate with
XML-RPC-based servers.

ssl.useHttpClient true Use the HTTP Client library instead of
JDK's built-in HTTP client.

twist.certPaths /var/opt/opsware/
crypto/twist/
opsware-ca.crt

Comma-separated list of trust certifi-
cates used to communicate with the
Web Services Data Access Engine.

twist.host localhost Web Services Data Access Engine's host
name or IP.

twist.password <no default> Web Services Data Access Engine's pass-
word. This password is set during the
installation of the mesh. Contact your
SA Administrator (or the person who
installed the mesh) for this information.

twist.port 1032 Web Services Data Access Engine's lis-
tening port.

twist.protocol t3s Web Services Data Access Engine's pro-
tocol. This should be t3 or t3s.

twist.username detuser Web Services Data Access Engine's user
name. This needs to be “detuser”. This
account is a system account, and the
password is set during install of the
mesh.

way.host way Command Engine's host name or IP.

way.path wayrpc.py Command Engine's base URL path.

way.port 1018 Command Engine's listener port.

way.protocol https Command Engine's listener protocol.
This is typically HTTPS.

word.host word Software Repository's host name or IP.
As of SA 7.80, the Software Repository
is part of the Slice Component bundle.

table 38 Configuration Properties (cont’d)

Property Name Default Value Description
52 Chapter 2

The following is an example of a target mesh configuration file that contains only essential mesh
configuration information.

twist.host=twist.c07.dev.opsware.com
twist.port=1032
twist.protocol=t3s
twist.username=<detuser>
twist.password=<twist_password>
twist.certPaths=<absolute path to opsware-ca.crt>

spike.username=<OCC_user>
spike.password=<OCC_user_password>
spike.host=way.c07.dev.opsware.com
way.host=way.c07.dev.opsware.com
spin.host=spin.c07.dev.opsware.com
word.host=theword.c07.dev.opsware.com

ssl.keyPairs=<absolute path to spog.pkcs8>
ssl.trustCerts=<absolute path to opsware-ca.crt>

mail.transport.protocol=smtp
mail.smtp.host=mail
mail.smtp.port=44
mail.from=joe_user@yourcompany.com

word.path wordbot-new.py Software Repository's base URL path.

word.port 1003 Software Repository's listener port.

word.protocol https Software Repository's listener protocol.
This is HTTPS.

mail.transport.protocol smtp Mail transport protocol used for your
mail server.

mail.smtp.host smtp Mail server host name.

mail.smtp.port 25 Port number used by your mail server.

mail.from <currentuser>@<curr
enthost>

Email address to use for the From field
in the notification email.

table 38 Configuration Properties (cont’d)

Property Name Default Value Description
The cbt Command Usage 53

54 Chapter 2

3 The cbt Command Reference
This describes the cbt command and its options. The cbt command is found on SA core servers in the
following directory:

/opt/opsware/cbt/bin

Export Option (-e)

The export option uses the following syntax:

cbt -e <content_dir> [<options>]

table 39 Export Options

Short Option long option description

-e <content_dir> --export
<content_dir>

Export SA data from an SA core and
store the data in the given content
directory.

-f <filter_file> --filter
<filter_file>

The first time you export, you must
specify a filter file describing what data
to export. After that, if no filter is
specified, then any previously-used
filter in the content directory is used. For
more information on the DET filter file,
see Example: Export Filter File on page
14.

-b <content_dir> --baseline
<content_dir>

Specifies a baseline export against
which to compare the current export.
This requires that either
--incremental
or
--delete
be specified during export.

-incr --incremental Performs an incremental export. Of the
content specified by the filter file,
export only that which has been added
or modified since the baseline. If this
option is not given, all content specified
by the filter file is exported.
55

Import Option (-i)

The import option uses the following syntax:

cbt -i <content_dir> [<options>]

-cf <file> --config <file> Specifies the DET configuration file. For
more information, see Creating a
Target Mesh Configuration File on
page 50.

-c --clean Remove previously exported data from
the content directory given by -e.

-d --debug Show more detailed debug information.

-del --delete Include in the export any content in the
baseline that's not specified by the filter
file, marked “as deleted”. If this option
is not given, nothing is exported “as
deleted”.

If used,

--baseline

must also be used to specify the
baseline export.

-np --noprogress Don't show the progress on the console.

-nd --nodownload Don't download the units from Software
Repository (the word). IMPORTANT:
Exports using this option cannot be
imported.

-lx --logxml Create log file in XML format.

-em <addrs> --email <addrs> Email a summary of the export to this
comma-separated list of addresses. In
order for this option to work, you must
have added the email notification
parameters to the DET configuration
file.

(none) --emaillog Include the entire log file in the email.

table 39 Export Options (cont’d)

Short Option long option description
56 Chapter 3

table 40 Import Options

Short Option long option description

-i <content_dir> --import <content_dir> Import SA data from the given
content directory.

-p
overwrite|duplicate|skip

--policy
overwrite|duplicate|skip

Import policy. Default is
“overwrite.”

“overwrite” means to override
objects in the same name space
on the target Server Automation
without affecting its object IDs.

“duplicate” means to create a
duplicate copy of an object with a
synthetic name when a duplicate
is detected on the target Server
Automation.

“skip” is the most conservative
policy. It aborts the import of an
object if the same object is
detected in the target Server
Automation.

For more information on import
policies for the specific content
types, see Policy on Importing
Content Types on page 37.

-del --delete Delete objects marked deleted by
the export. (In other words, this
option will only work if the -del
option was given during export.
If this option is not given, the
objects will be renamed.
The cbt Command Reference 57

-fa --folderacls Associate imported folders with
existing user groups.

If this option is not specified,
import the folders with the ACLs
inherited from the parent folder
in the destination mesh.

If this option is specified, the DET
will attempt to import the ACLs
when importing the folder. An
ACL will import only if a user
group with the same name as in
the source mesh already exists
or has been imported as part of
the current DET run. The ACLs
will become associated with the
existing user group of the same
name. When inserting a folder,
the imported ACLs with replace
any inherited from a parent
folder in the destination mesh.
When updating a folder, the ACLs
will overlay existing ACLs.

-n --noop Run the import in a “dry run”
mode. In other words, don't
modify any data. Instead, output
a summary of what changes
would be made if run normally.

-cf <file> --config <file> Read configuration from the
given file.

-d --debug Show more detailed debug
information.

-np --noprogress Don't show the progress on the
console.

-nu --noupload Don't upload unchanged
packages to the Software
Repository (the word).

The utility reports that the
package is overwritten, but the
package is untouched. Only its
unit record is updated.

-lx --logxml Create log file in XML format.

table 40 Import Options (cont’d)

Short Option long option description
58 Chapter 3

Show Export Status Option (-t)

The show export status option uses the following syntax:

cbt -t <content_dir>

Configuration File Option (-s)

The configuration file option uses the following syntax:

cbt -s [-cf <file>]

Show Version Option (-v)

The show version option uses the following syntax:

cbt -v

-em <addrs> --email <addrs> Email a summary of the import
to this comma-separated list of
addresses. In order for this
option to work, you must have
added the email notification
parameters to the DET
configuration file.

(none) --emaillog Include the entire log file in the
email.

table 40 Import Options (cont’d)

Short Option long option description

table 41 Show Export Status Options

short option Long option description

-t --showstatus Show status of export of the given
content directory.

table 42 Configuration File Options

short option Long option description

-s --showconfig Show current configuration values.

-cf <file> --confi <file> Read configuration from the given file.
The cbt Command Reference 59

Show Help Option (-h)

The show help option uses the following options:

cbt -h

DET Permissions Command, cbtperm

The cbtperm command lets you set permissions for using DET. The cbtperm permissions command uses
the following syntax:

cbtperm -u [user] -a [spike.username] -p [spike.port] -s [spike.host] -c
[ssl.trustCerts] -k [ssl.keyPairs]

table 43 Show Version Options

short option Long option description

-v --version Show the version of the DET tool.

table 44 Show Help Options

short option Long option description

-h --help Display this help message.

table 45 DET Permissions Command Options

short option Long option description

-u N/A The user to whom you want to grant
permission to use the DCML Exchange
Tool.

-a --spike.username User name for Spike authentication,
such as the SA Administrator.

-p --spike.port Spike’s listener port.

-s --spike.host Spike’s hostname or IP.

-c --ssl.trustCerts Comma-separated list of trust
certificate files to be used to
communicate with XML-RPC servers

-k --ssl.keyPairs Comma-separated list of client
certificates to be used to communicate
with XML-RPC servers
60 Chapter 3

4 IDK Overview
Overview of the IDK and ISMs

Server Automation includes the Intelligent Software Module (ISM) Development Kit (IDK). The IDK consists
of command-line tools and libraries for creating, building, and uploading ISMs. An ISM is a set of files and
directories that include application bits, installation scripts, and control scripts. You build an ISM in a local
file system and then upload the ISM into an Server Automation application policy. After uploading the ISM,
you use the HP Server Automation Client to install the ISM’s application onto managed servers.

Benefits of the IDK

The IDK offers the following benefits:

• Encapsulates best practices for managing software products, enabling standards teams to deliver
stable and consistent software builds and manage change in complex data center environments.

• Uploads modules into Server Automation, making them immediately available for installation onto
managed servers.

• Separates an application’s installation and control scripts from the bits to be installed. You can update
the scripts without having to re-install the application bits.

• Enables dynamic configuration by querying Server Automation for custom attributes.

• Automatically builds native packages (such as RPMs) from binary archives.

• Support on Unix platforms for building from source code with a common specification format.

• Provides command-line tools for developers and administrators who prefer building packages and
writing installation scripts in a shell environment.

IDK Tools and Environment

The IDK includes the following:

• ISMTool - A command-line tool that creates, builds, and uploads ISMs.

• ISMUserTool - A command-line tool that specifies the users allowed to upload ISMs.

• Environment variables - Shell environment variables accessed by the ISMTool.

• Runtime libraries - The Server Automation routines that support the IDK tools.

Supported Package Types

You can use the IDK to create the following types of packages:

• AIX LPP
61

• HP-UX Depot

• RPM

• Solaris Package

• Windows MSI

• ZIP (Windows and Unix)

Installing the IDK

It is recommended that you install and run the IDK on a managed server (a server running a server agent).
For instructions, see Installing the IDK on a Managed Server on page 62. For more information on
server agents, see the SA User Guide: Server Automation.

You can install the IDK on a core server, but do so with care. The core components share the CRYPTO_PATH
environment variable with the IDK tools. If you set the CRYPTO_PATH environment variable incorrectly, the
core components might cease to function.

You can install the IDK on an unmanaged server (a server that does not run a core component or an agent),
but the functionality of the IDK will be limited. On such a server, you can build ISMs but you cannot upload
them to the core unless you set the CRYPTO_PATH environment variable. See CRYPTO_PATH on page 108
for information on this variable. See Installing the IDK on an Unmanaged Server on page 63.

Installing the IDK on a Managed Server

To install the IDK and the ISMTool on a managed server, perform the following steps:

1 Choose a managed server to run the IDK.

2 Verify that the host where you install the IDK runs the same operating system version as the
managed servers where the ISM’s application will be installed.

For example, if you are creating ISMs for applications to be installed on Redhat Linux 7.3 managed
servers, install the IDK on a Redhat Linux 7.3 system.

3 If you are installing the IDK on a Redhat Linux Application Server, Enterprise Server, or Workstation,
then make sure that the rpm-build package is already installed. To verify that this package is
installed, enter the following command:

rpm -qa | grep rpm-build

4 If you are installing the IDK on a Solaris zone, make sure that the /usr/local directory exists and
has write access. (This directory might not exist in a sparse root zone.) You can perform this task
either with Server Automation or with the following zonecfg commands, where path is the file
system on the global zone:

zonecfg:zone-name:fs> add fs
zonecfg:zone-name:fs> set dir=/usr/local
zonecfg:zone-name:fs> set special=path
zonecfg:zone-name:fs> set type=lofs

5 In the SA Client, search for a software policy with a name that contains “ismtool.”

6 In the list of software policies displayed, right-click the policy for the platform where you will run the
IDK, and then select Attach Server.

7 On the Attach Server window, select the managed server where you will run the IDK.
62 Chapter 4

8 Make sure that the Remediate Servers Immediately check box is selected.

9 Click Attach.

10 Unix: In a terminal window, log in as root to the host where you are installing the IDK and set the
PATH environment variable to include the following value.

/usr/local/ismtool/bin

(On Windows the PATH is set automatically, but will not take effect until you log in again.)

11 In a terminal window, check the IDK installation by entering the following command:

ismtool --myversion

Installing the IDK on an Unmanaged Server

It is recommended that you install and run the IDK on a managed server (a server running a server agent).
For instructions, see Installing the IDK on a Managed Server on page 62.

You can install the IDK on an unmanaged server (a server that does not run a core component or an agent),
but the functionality of the IDK will be limited. On such a server, you can build ISMs but you cannot upload
them to the core unless you set the CRYPTO_PATH environment variable. See CRYPTO_PATH on page 108
for information on this variable.

To install the IDK and the ISMTool on an unmanaged server, perform the following steps:

1 Choose a managed server to run the IDK.

2 Verify that the host where you install the IDK runs the same operating system version as the
managed servers where the ISM’s application will be installed.

For example, if you are creating ISMs for applications to be installed on Redhat Linux 7.3 managed
servers, install the IDK on a Redhat Linux 7.3 system.

3 If you are installing the IDK on a Windows managed server, set the CRYPTO_PATH environment
variable as described in CRYPTO_PATH on page 108.

4 If you are installing the IDK on a Redhat Linux Application Server, Enterprise Server, or Workstation,
then make sure that the rpm-build package is already installed. To verify that this package is
installed, enter the following command:

rpm -qa | grep rpm-build

5 If you are installing the IDK on a Solaris zone, make sure that the /usr/local directory exists and
has write access. (This directory might not exist in a sparse root zone.) You can perform this task
either with Server Automation or with the following zonecfg commands, where path is the file
system on the global zone:

zonecfg:zone-name:fs> add fs
zonecfg:zone-name:fs> set dir=/usr/local
zonecfg:zone-name:fs> set special=path
zonecfg:zone-name:fs> set type=lofs

6 In the SA Client, search for a software policy with a name that contains “ismtool.”

7 Locate and open the policy that matches the target server platform.

8 Select the Policy Items view to see all the packages in the policy.

9 Locate and open the package that matches the OS and architecture of the target server.

10 Download the package to the target server using the Actions > Export Software menu.

11 Manually install the package onto the target server.
IDK Overview 63

12 Unix: In a terminal window, log in as root to the host where you are installing the IDK and set the
PATH environment variable to include the following value.

/usr/local/ismtool/bin

(On Windows the PATH is set automatically, but will not take effect until you log in again.)

13 In a terminal window, check the IDK installation by entering the following command:

ismtool --myversion

IDK Quick Start

This section shows how to create, build, and upload a simple ISM. After the upload operation, you can run
the SA Client and examine the software policy containing the uploaded ISM.

Perform the following steps in a terminal window of the host where you’ve installed the IDK. Unless
otherwise noted, the commands are the same on Unix and Windows.

1 Unix: Log in as root to the server where you installed the IDK.

If you cannot log in as root, then log in as another Unix user and set the CRYPTO_PATH environment
variable as described in CRYPTO_PATH on page 108.

2 Windows: Open a terminal window and make sure that the CRYPTO_PATH environment variable is set.

3 Grant your user the privilege to upload ISMs by entering the ismusertool command, for example:

ismusertool --addUser johndoe

This command asks you to confirm that you are contacting the core through an agent gateway:

Using an agent gateway to reach an Opsware Core.
Is this correct? [y/n]: y

Next, the command prompts for the Opsware admin user name and password:

Enter Opsware Admin Username: admin
Enter admin's Opsware Password:

For more information, see ISMUserTool on page 110.

4 Create a new ISM.

For example, to create an ISM named foo, enter the following command:

ismtool --new foo

This command creates a directory named foo at the current directory level. The ISM is made up of the
contents of the foo directory. You’ll specify the foo ISM in the subsequent ismtool commands.

5 Add the application files to the ISM.

One way to add the application files is to copy one or more archives to the bar subdirectory. For
example, if the application bits are in a file named mytest.zip, you might add them to the ISM as
follows:

Unix:

cp /tmp/mytest.zip foo/bar

Windows:

copy c:\temp\mytest.zip foo\bar
64 Chapter 4

6 Set the path to the software policy that will contain the ISM you upload in a later step.

Note: You must have Write Objects Within Folder permission to the folder that contains the software
policy. Folder permissions are set on the Folder Properties window of the SA Client.

The following ismtool command sets the path to the software policy named Quote Policy:

Unix:

ismtool --opswpath '/My Kit/Service/Quote Policy' foo

Windows:

ismtool --opswpath "/My Kit/Service/Quote Policy" foo

On Unix you enclose the path in single quotes, but on Windows you use double quotes. For both Unix
and Windows, the path contains forward slashes.

7 Build the packages within the ISM by entering the following command:

ismtool --build foo

This command creates three packages in the foo/pkg subdirectory. On a Linux system, these
packages are as follows:

foo-1.0.0-1.i386.rpm
foo-ism-1.0.0-1.i386.rpm
ismruntime-rpm-3.0.0-1.i386.rpm

The foo-1.0.0-1.i386.rpm package contains the application bits, which in this example were
copied to the foo/bar subdirectory in step 5. The foo-ism-1.0.0-1.i386.rpm package holds
the installation hooks and control scripts. (Because this example is simple, it has no control scripts.)
The ismruntime-rpm-3.0.0-1.i386.rpm package contains the SA shared runtimes that the
Server Agent will use when it installs the package on a managed server.

Note that the package type (RPM) corresponds to the native packaging engine of a Linux System. On
Windows, the --build command creates following MSI packages in the foo\pkg subdirectory:

foo-1.0.0-1.msi
foo-ism-1.0.0-1.msi
ismruntime-msi-3.0.0-1.msi

8 Upload the ISM into the software policy by entering the following command:

ismtool --upload foo

This command generates several prompts. First, it asks you to confirm the core into which you are
uploading the ISM:

Using the following Opsware Core:

 Data Access Engine : d02 192.168.198.91:1004
 Software Repository: d02 192.168.198.91:1003
 Command Engine : d02 192.168.198.91:1018

 Is this correct? [y/n]: y

Next, the --upload command prompts for the Opsware user and password:

 Enter Opsware Username: johndoe
 Enter johndoe’s Opsware Password:
.. .
Success!

9 In the SA Client, open the software policy and verify that it contains the ISM you uploaded in the
preceding step.
IDK Overview 65

Platform Differences

In general, the IDK functions the same on packages from different platforms (operating systems).
However, there are a few differences, as explained in the following sections.

Solaris Differences

Solaris package names have a 9 character limit. By convention, the format is a set of capital letters,
followed by a set of lower case letters that identify the application. Optionally, the final character may
have a special meaning. Note that this format is a convention, not a requirement. Here are some examples
of Solaris package names:

SPROcc
SPROcmpl
SPROcodmg
SUNWgssx
SUNWgzip
SUNWhea
SUNWhiu8x
SUNWhmd
SUNWhmdu
SUNWhmdx

When the ISMTool creates a Solaris package, it must use a package name that is no more than 9 characters
in length. The package name constructed by ISMTool begins with ISM, followed by the five first characters
of the ISM's name, followed by the letter c for the control package or a digit 0 for the first part of an
application package, 1 for the second part, and so forth. For example, if the ISM name is foobar, the
package names would be the following:

ISMfooba0
ISMfoobac

If truncation occurs, ISMTool generates a warning so that the developer can rename the ISM to avoid
naming conflicts. To view the package names, use the Solaris pkginfo command.

If you upload a Solaris passthru package, the response file is not uploaded. You must manually upload the
response file.

Windows Differences

On Windows, when ISMTool creates the application and control Windows Installer (MSI) packages, it
encodes the ProductName and ProductVersion as follows:

ProductName: <name>-<version>
ProductVersion: 0.0.<app|ctl release>

The <name>, <version>, and <release> correspond to an ISM's internal information, which can be
viewed with the ISMTool’s --info command. This encoding scheme is by design and is required for the
remediation process to work correctly.
66 Chapter 4

5 IDK Build Environment
ISM File System Structure

The ISMTool --build and --upload commands operate on the ISM directory, which you create with
either the --unpack or --new commands. The --unpack command unzips a file (containing the ISM
directory contents) that was previously zipped with --pack. The --new command initially creates the
ISM directory. For example, the following command creates a new directory named ntp-4.1.2:

ismtool --new ntp-4.1.2

This command creates the following subdirectories under the ntp-4.1.2 directory:

• bar - Contains binary archives, the contents of which are used to create the application package.

• doc - A location for documentation (HTML) generated automatically during ISM build. You can also
create other documentation files in the directory.

• ism - Contains all the files needed to create the control package of the ISM. The ism directory is
where you can edit the default package hooks (pre-install, post-install, pre-uninstall, post-uninstall),
as well as add control scripts to ism/control.

• log - Holds files which keep track of the output from source transformations (compilation or local
installs), output from native packaging engines such as msi, rpm, pkgtrans, swpackage, or an SA
upload.

• pad - Contains the installation scripts (pre-install, post-install, pre-uninstall, post-uninstall) specified
by the ISMTool --addPkgProp option.

• pkg - Contains the application, control, and shared runtime packages, all of which are generated by -
-build. This subdirectory also contains copies of passthru packages.

• tmp - Used as scratch space for ISMTool operations.

• src - May optionally contain files that can control the compilation of sources into binary archives.

The following listing shows the contents of the ISM subdirectories after the following command:

ismtool --build ntp-4.1.2

The output of the source build is in the binary archive directory with the generated name __ntp-
4.1.2_src_ntp.spec.cpio. The build creates the files in the log, pkg, and tmp subdirectories, in
addition to the other files with names beginning with two underscores.

ntp-4.1.2/
 src/
 ntp-4.1.2.tar.gz
 ntp.spec
 bar/
 __ntp-4.1.2_src_ntp.spec.cpio
 __ntp-4.1.2_src_ntp.spec.cpio.meta
 pkg/
 ntp-4.1.2-3.i386.rpm
 ntp-ism-4.1.2-7.i386.rpm
67

ismruntime-rpm-2.0.rpm
 log/

. . .
doc/

 index.html
 index/
 ntp-4.1.2-3.i386.rpm.html
 ntp-ism-4.1.2-7.i386.rpm.html
 tmp/
 . . .

ism/
 ism.conf
 bin/
 ismget
 parameters
 platform
 python

env/
 ism.sh
 ism.py
 ism.pl

pkg/
 ism_check_install
 ism_post_install
 ism_post_uninstall
 ism_pre_install
 ism_pre_uninstall
 control/

pad/
ismruntime-rpm-2.0.0.i386.rpm
. . .
ntp-4.1.2-3.i386.rpm/

pkg.conf
scripts/

ntp-ism-4.1.2-7.i386.rpm/
. . .

Build Process

This section describes the following:

• When to Invoke the --build Command

• Multiple Command-Line Options

• Actions Performed by the --build Command

• Packages Created by the --build Command
68 Chapter 5

When to Invoke the --build Command

You run the ISMTool --build command after --new and before --upload. Whenever you change an
ISM with an option, you must invoke --build before --upload for the change to take effect. For
example, if you specify --opswpath, you must invoke
--build for the new software policy path to take effect before you upload the ISM.

Multiple Command-Line Options

You may invoke multiple ISMTool options on the same command-line, or you may invoke the options
separately. In the following Unix example, the command changes the native package engine to rpm3, the
version to 2.0.47b, the default install user to root, and the default install group to root for the ISM
directory named apache:

ismtool --pkgengine rpm3 --version 2.0.47b --user root --group root apache

The next sequence of commands is equivalent:

ismtool --pkgengine rpm3 apache
ismtool --version 2.0.47b apache
ismtool --user root apache
ismtool --group root apache

The ISMTool sorts command actions into the proper logical order for execution. The following command,
for example, will change the version of apache to 3.0 before the build is executed.

ismtool --build --version 3.0 apache

Actions Performed by the --build Command

The ISMTool --build command performs the following steps.

1 Performs a pre-build clean by removing all side-effect build products. However, this step will leave
any cpio archives generated during a previous build as a form of build cache.

2 Runs the optional script ism/build/ism_clean. The scripts in the ism/build subdirectory are
hooks into the build process. To use these scripts, you must create them manually.

3 Runs a checksum on the application sources and increment the application release number if the
current checksum does not match the previous checksum.

4 Runs a checksum on the control sources (the contents of the ism subdirectory) and increment the
control release number if the current checksum does not match the previous checksum.

5 Runs the optional script ism/build/ism_pre.

6 For source builds, recursively searches for .spec files in the src subdirectory, compiling and
executing each.

7 Creates the shared runtime package.

8 Creates the control package.

9 Creates the application package.

10 Generates the automatic HTML document doc/index/index.html.

11 Runs the optional script ism/buid/ism-post.
IDK Build Environment 69

Packages Created by the --build Command

The --build command creates the following packages in the pkg subdirectory:

• Application package - Created from the contents of the bar (binary archive) subdirectory, this
package contains the application bits. You copy the application archives to the bar subdirectory
before invoking the --build command. The file name of the application package has the following
syntax. The <version> is for the entire ISM, and the <release> is specific to the application
package. See ISM Name, Version Number, and Release Number on page 74 for more information.

<name>-<version>-<release>.<package-extension>

• Control package - This package contains the control and installation scripts from the ism
subdirectory. The control package file name has the following syntax:

<name>-ism-<version>-<release>.<package-extension>

• Shared runtime package - This package holds the shared runtime routines that are invoked by the
Server Agent (during installation) and by any control scripts. These runtime routines are for Server
Automation, not for the application itself. The file name of the shared runtime package has the
following syntax. (The <ctl-prefix> is included in the file name only if you’ve specified a non-
default value with the --ctlprefix option.)

ismruntime-<ctl-prefix>-<package-type>-<idk-version>.<package-extension>

• Passthru packages - You specify these packages with the --addPassthruPkg option, which copies
them into the pkg subdirectory unchanged.

Specifying the Application Files of an ISM

This section discusses the methods for getting application files into an ISM:

• Placing Archives in the bar Subdirectory

• Specifying Passthru Packages

• Compiling Source (Unix Only)

Placing Archives in the bar Subdirectory

Before running --build, you may manually copy file archives to the ISM’s bar (binary archive)
subdirectory. Alternatively, the archives in the bar subdirectory may be generated as cpio files by the
directives in the %files section of the specfile. See also Compiling Source (Unix Only) on page 71.

The --build command repackages the archives in the bar subdirectory into the application package of
the pkg subdirectory. The following table lists the types of archives that may reside in the bar
subdirectory.

table 46 Valid Binary Archive Types

File Extension Archive Type

.cpio Unix CPIO Archive

.msi Microsoft Installer

.rpm RPM Package Manager
70 Chapter 5

Specifying Passthru Packages

Unlike an archive in the bar subdirectory, a passthru package is not extracted and re-packaged. The --
addPassthruPkg command copies a passthru package unchanged into the pkg subdirectory. The
package specified by --addPassthruPkg cannot reside in the ISM directory. The following example
adds a passthru package to an ISM and designates the package for addition to the software policy:

ismtool --addPassthruPkg /tmp/bos.rte.libs.5.1.0.50.U --pkgType lpp ISMNAME
ismtool --attachPkg bos.rte.libs-5.1.0.50 --attachValue true ISMNAME

Compiling Source (Unix Only)

The --build command recursively searches the src subdirectory for specfiles (files ending in .spec)). If
found, a specfile is compiled into Bourne Shell and executed. Specfiles are written in a simplified
derivative of the RPM specfile language. The ISMTool's specfile-like language compiler allows you to use
existing RPM specfiles with minimal modifications.

For more information about the specfile language, see the Maximum RPM document, located at the
following URL:

http://www.rpm.org/max-rpm/index.html

Example Specfile

Here is an example of a simple ISM specfile for NTP 4.1.2:

###
Common Preamble
###

%define ismname %(../ism/bin/ismget name)
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

Name: %{ismname}
Version: %{version}

###
prep, build, install, files
###

Source: http://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-4.1.2.tar.gz

%prep

.tar Tape Archive

.tar.bz2 bzip2 compressed Tape Archive

.tar.gz gzip compressed Tape Archive

.zip Info-Zip compatible Zip

table 46 Valid Binary Archive Types

File Extension Archive Type
IDK Build Environment 71

%setup -n ntp-4.1.2

%build

%ifos Solaris2.7
echo ‘‘do something Solaris2.7 specific’’
%endif

%ifos Linux
echo ‘‘do something Linux specific’’
%endif

./configure --prefix=%prefix
make

%install
/bin/rm -rf $ISM_BUILD_ROOT
make install prefix=$ISM_BUILD_ROOT/%{prefix}

%files
%defattr(-,root,root)
%prefix

Specfile Preamble

The preamble specifies information to be fetched from the ISM with the program ismget. The following
lines fetch the name, version, and prefix of the ISM.

%define ismname %(../ism/bin/ismget name)
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

This fetched information can be useful in the set up and compilation of sources. However, the %define
commands are optional. The only required tags in the preamble are Name and Version.

%prep

The %prep section is designed to prepare sources for compilation. This involves uncompressing and
untaring source distributions. A single source file is identified with the Source tag. A list of sources are
identified by a vector of tags: Source0, Source1, Similarly, patches are identified by either a Patch
tag or a vector of tags: Patch0, Patch1, The ISMTool duplicates the macro functionality as
documented in Maximum RPM. The %setup macro controls how sources are unpacked. The %prep section
can also manage patching using the %patch macro.

%build

The shell script commands in the %build section will transform the sources into binaries. Compiling from
source usually involves running ./configure -prefix=%{prefix} and make. It is possible to
perform configuration switching based on the platform (operating system). The platform tags are
designed for backward compatibility to RPMs found in real-world installations. The following platform
strings are some examples that can be used in ISMTool specfiles for platform branching:

Linux
RedHat
RedHat-Linux-7.2
72 Chapter 5

RedHat-Linux-AS2.1
Solaris
Solaris2.8
Solaris-2.8
SunOS
SunOS5.7
SunOS-5.7
hpux
hpux11.00
hpux-11.00
HPUX
HPUX11.00
HPUX-11.00
aix
aix4.3
aix-4.3
AIX
AIX4.3
AIX-4.3

%install

The %install section specifies the copying of files from the build to a virtual install location. For
example, if the %prefix is set to /usr/local, the following line would install NTP into /usr/local/
bin:

make install prefix=$ISM_BUILD_ROOT/%{prefix}

The variable $ISM_BUILD_ROOT (or equivalently $RPM_BUILD_ROOT) is the location of a temporary
directory inside the ISM's tmp directory. This temporary directory will serve as the virtual install root
where the directives in the %files section will be applied.

The %install section also indicates where the files from a binary install could be extracted. In a binary
install, the files resulting from a binary install on a development server can be packaged into the virtual
install location. However, if that is not possible then a binary installer could be transported to the end
system and installed with an ISM post-install hook. In this case, you would create a binary archive of the
installer and copy it to the ISM's bar subdirectory.

%files

In the specfile, the output of the source transformation phase is a set of files indicated by the directives in
the %files section. These files are archived into a cpio in the ISM’s bar subdirectory.

The final phase of the source transformation is to select the files installed into the $ISM_BUILD_ROOT.
The directives in the %files section are a subset of the selection mechanisms documented in Maximum
RPM. These directives specify a list of files or directories (which are recursively gathered) relative to
$ISM_BUILD_ROOT. In this example, the install is into the path $ISM_BUILD_ROOT/%{prefix}. To
select these files for packaging, you would simply give the %prefix as the directory to package.

In addition to selecting files by naming files or directories, meta information can be described. The line
%defattr(-,root,root) tells the archive engine to use the modes it finds in the file system, but to
create the archive replacing the file ownerships it finds in the file system with root,root. For full
documentation of %defattr() and %attr(), see Maximum RPM.
IDK Build Environment 73

ISM Name, Version Number, and Release Number

This section includes the following:

• Initial Values for the ISM Name, Version, and Release

• ISM Version and Release Numbers Compared

• Upgrading the ISM Version

Initial Values for the ISM Name, Version, and Release

The --new command creates a directory for the new ISM and specifies the internal base name of the ISM.
For example, the following command creates the mystuff directory in the file system, sets the internal
base name to mystuff, and sets the version number to 1.0.0.

ismtool --new mystuff

In most cases, you specify the version number with --new. The following command creates a directory
named ntp-1.4.2, sets the internal base name to ntp, and sets the version number to 1.4.2:

ismtool --new ntp-1.4.2

To view the internal base name, version number, and release numbers, use the --info command:

ismtool --info ntp-1.4.2.

The output generated by the preceding command includes the following:

. . .
name: ntp
version: 4.2.1
appRelease: 0
. . .
ctlRelease: 0
. . .

ISM Version and Release Numbers Compared

ISM version and release numbers differ in several ways. You may specify the version number with either
the --new or --version commands. The ISMTool automatically generates the release numbers; you
cannot specify them. The version number applies to the entire ISM. The application and control packages
each have separate release numbers. The --build command increments the release numbers whenever
it re-generates the packages. Because application and control packages can be built independently, the
packages may have different release numbers.

The names of the application and control packages include the internal base name, version number, and
release number. For example, the ntp-4.1.2-3.i386.rpm application package has a version number
of 4.1.2 and a release number of 3. See also Packages Created by the --build Command on page 70.

To display the version of the IDK (not the ISM), enter the following:

ismtool --myversion
74 Chapter 5

Upgrading the ISM Version

Although you may modify the internal base name (with --name) and the version number (with --
version), this practice is not recommended because it does not automatically change the directory
name. If you change the internal base name or version, to avoid confusion you should also rename the
directory containing the ISM.

The recommended practice is to use a matching internal base name, version number, directory name, and
software policy path. For example, to upgrade foo-1.2.7 to foo-1.2.8, you would follow these steps:

1 At the same directory level as foo-1.2.7, create a new ISM directory:

ismtool --new foo-1.2.8

2 Copy archives to the foo-1.2.8/bar directory or specify passthru packages.

3 Set the path to the software policy at the same level as the previous version.

Unix:

ismtool --opswpath ‘MyFolder/{$NAME}/{$VERSION}’

Windows:

ismtool --opswpath "MyFolder/{$NAME}/{$VERSION}"

The --opswpath command replaces the NAME variable with foo and the VERSION variable with
1.2.8. To see the current values of the variables, use the --info command. For more information on
variable substitution, see ISMTool Variables on page 100.

4 Build and upload the foo-1.2.8 ISM with the ISMTool.

5 In the SA Client, detach the foo-1.2.7 policy from the managed servers.

6 (Optional) Remove the foo-1.2.7 policy.

7 Remediate managed servers against the new software policy.
IDK Build Environment 75

76 Chapter 5

6 IDK Scripts
Overview of ISM Scripts

ISM scripts are Unix shell or Windows command-line scripts that reside in the ISM directory. The sections
that follow describe the different type of ISM scripts:

• Installation Hooks: Bundled into the ISM’s control package by the ISMTool --build command, the
installation hooks are run by the native packaging engine (such as rpm) on the managed server.
Installation hooks may invoke control scripts.

• Control Hooks: Also bundled into the ISM’s control package, the control scripts perform day-to-day,
application-specific tasks such as starting software servers.

• Installation Scripts: Not contained in the control package, but instead stored in the Software
Repository, installation scripts can be viewed on the Properties of a package in the SA Client.

The overall process for developing and running installation hooks and control scripts follows:

1 invoke the ISMTool --new command, which creates the default installation hooks.

2 With a text editor, create the control scripts.

3 With a text editor, modify the default installation hooks, which may call control scripts.

4 With the ISMTool, build and upload the ISM.

5 In the SA Client, install the application contained in the ISM onto a managed server. During the
installation, the pre-installation and post-installation hooks are run on the managed server.

6 During the production lifetime of the application, run or schedule the control scripts.

7 At the end of the application’s life cycle, with the SA Client, uninstall the application. During the
uninstallation, the pre-uninstallation and post-uninstallation hooks are executed on the managed
server.

Installation scripts have a different overall process than installation hooks and control scripts. For more
information, see Installation Scripts on page 87.

An ISM script cannot call program (such as rpm or pkgadd) that locks the package associated with the
script.

Installation Hooks

The installation hooks are scripts that reside in the ism/pkg subdirectory. (Some documents refer to the
installation hooks as “packaging scripts.”) The installation hooks are run at certain stages during the
installation and uninstallation of applications on managed servers.
77

Creating Installation Hooks

The ISMTool --new command creates the following installation hooks:

Unix:

ism/pkg/
 ism_check_install
 ism_post_install
 ism_post_uninstall
 ism_pre_install
 ism_pre_uninstall

Windows:

ism\pkg\
ism_post_install.cmd

 ism_post_uninstall.cmd
 ism_pre_install.cmd
 ism_pre_uninstall.cmd

To customize the installation hooks, you modify them with a text editor. Although you may edit the
installation hooks, you cannot change their file names.

The default ism_pre_install and ism_post_uninstall hooks are just stubs; they perform no
actions. The default ism_post_install hook calls the ism_configure and ism_start control
scripts. The default ism_pre_uninstall hook calls the ism_stop control script. Note that the control
scripts are not created automatically by the ISMTool; you must create them with a text editor. (See Control
Scripts on page 82.)

For the contents of the default installation hooks created by the --build command, see the following
sections:

• Default Installation Hooks for Unix on page 80

• Default Installation Hooks for Windows on page 81

Check Installation Hook

Some native packaging engines support the ism_check_install hook directly; others do so implicitly
with the ism_pre_install hook. The ISMTool maps the check_install feature onto the native
packaging engine. If the check_install script returns a non-zero code, the install is halted.

Invocation of Installation Hooks

When you install (or uninstall) the application of an ISM onto a managed server, the native packaging
engine on the server invokes the installation hooks. (You do not run the installation hooks directly.) For
example, on a Linux system, the rpm utility invokes ism_pre_install immediately before it installs the
application bits and invokes ism_post_uninstall right after it removes the bits.

See also Invocation of Installation Scripts and Hooks on page 88.

Installation Hooks and ZIP Packages

Unlike some other packaging engines, the ZIP packaging engine used by Server Automation does not
support installation hooks. If the ZIP packaging engine is specified and the installation hook files are not
empty, the ISMTool generates a warning and ignores the installation hook files.
78 Chapter 6

ZIP Packages and Installation Directories

The ZIP packages created by the IDK are not relocatable. In other words, the same ZIP package cannot be
used to install multiple instances of an application in different directories on a single managed server.
Therefore, if the end user changes the ZIP package’s Install Path field in the SA Client, the package
installation will fail. To change the installation directory, the ISM developer specifies a new path with the -
-prefix or --ctlprefix option, builds a new ISM, and uploads the new ISM to the core. (For Windows
NT4, these options are required and cannot specify variables.)

As a best practice for ZIP packages, the ISM developer should include a warning in the ISM’s description
similar to the following: “WARNING: Do not change the Install Path of this package.”

Installation Hook Functions

You can customize the installation hooks to perform actions such as those listed in the following table.

Scripts for Control-Only ISMs

If you specify the --skipApplicationPkg option, the ISMTool will not build the application package,
enabling the creation of a control-only ISM. You can use this feature to build a controller for an application
that is not installed or packaged with the ISMTool. Examples are controllers for core operating system
functions, currently running applications that cannot be packaged, and specialized hardware.

During the installation and uninstallation of a control-only ISM, the ism_ctl_post_install and
ism_ctl_pre_uninstall scripts are run. (The scripts are run for all ISMs, but typically you specify
them only for control-only ISMs.) Because these scripts are not generated by the ISMTool, you must create
them before running the --build command. The following listing shows the required names and
locations of these scripts:

Unix:

ism/pkg/
 . . .

ism_ctl_post_install
ism_ctl_pre_uninstall

Windows:

ism\pkg\
. . .
ism_ctl_post_install.cmd
ism_ctl_pre_uninstall.cmd

table 47 Installation Hook Functions

Install hook common functions

ism_pre_install create required directories, create users, set
directory permissions

ism_post_install call ism_configure control script, call
ism_start control script (to start a web server,
for example)

ism_pre_uninstall call ism_stop control script (to stop a server)

ism_post_uninstall do any required clean up
IDK Scripts 79

Location of Installation Hooks on Managed Servers

On your development system, the --build command bundles the installation hooks into the ISM's
control package. On the managed server, the contents of the control package are installed into the
directory indicated by the ctlprefix of the ISM. By default, the installation hooks are installed into the
following directory:

Unix:

/var/opt/OPSWism/<ism-name>/pkg

Windows:

%ProgramFiles%\OPSWism\<ism-name>\pkg

To change the default directory of the installation hooks, specify the --ctlprefix option before
building and uploading the ISM. If you specify the ctlprefix as follows, for example, the installation
hooks will be installed in /usr/local/ntp-4.1.2/pkg:

ismtool --ctlprefix /usr/local ntp-4.1.2

Default Installation Hooks for Unix

The default ism_pre_install hook:

#!/bin/sh
#
ISM Pre Install Script
#
. ‘dirname $0‘/../env/ism.sh

The default ism_post_install hook:

#!/bin/sh
#
ISM Post Install Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_configure]; then
${ISMDIR}/control/ism_configure
fi
if [-x ${ISMDIR}/control/ism_start]; then
${ISMDIR}/control/ism_start
fi

The default ism_pre_uninstall hook:

#!/bin/sh
#
ISM Pre Uninstall Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_stop]; then
${ISMDIR}/control/ism_stop
fi

The default ism_post_unininstall hook:

#!/bin/sh
#

80 Chapter 6

ISM Post Uninstall Script
#
. ‘dirname $0‘/../env/ism.sh

Default Installation Hooks for Windows

The default ism_pre_install.cmd hook:

@echo off
REM
REM ISM Pre Install Hook
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
ENDLOCAL

The default ism_post_install.cmd hook:

@echo off
REM
REM ISM Post Install Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
REM
REM Call the ISM’s configure script
REM
IF EXIST "%ISMDIR%\control\ism_configure.cmd"
call "%ISMDIR%\control\ism_configure.cmd"
REM
REM Call the ISM’s start script
REM

IF EXIST "%ISMDIR%\control\ism_start.cmd"
call "%ISMDIR%\control\ism_start.cmd"
ENDLOCAL

The default ism_pre_uninstall.cmd hook:

@echo off
REM
REM ISM Pre Uninstall Hook
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
IDK Scripts 81

call %1
REM
REM Call the ISM’s stop script
REM
IF EXIST "%ISMDIR%\control\ism_stop.cmd"
call "%ISMDIR%\control\ism_stop.cmd"
ENDLOCAL

The default ism_post_unininstall.cmd hook:

@echo off
REM
REM ISM Post Uninstall Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1

Control Scripts

The ISM control scripts reside in the ism/control directory. Control scripts perform housekeeping or
maintenance tasks for an application after it has been installed.

Installation hooks can run control scripts. If a task is performed during an installation (or uninstallation)
but might also be performed on a regular basis, it should be coded as a control script. For example, the
ism_post_install hook can invoke the ism_start control script to start an application immediately
after installation. Also, the ism_pre_uninstall hook can invoke the ism_stop control script to
shutdown the application.

Users can run control scripts from the ISM Control window of the SA Client. Advanced users can run control
scripts from the command line in the Global Shell.

Creating Control Scripts

Unlike installation hooks, control scripts are not created by the ISMTool; you create control scripts with a
text editor. You may add any number of control scripts to the ism/control subdirectory. By convention,
the file names for control scripts are as follows:

Unix:

ism/control/
 ism_start
 ism_stop
 ism_configure
 ism_reconfigure

Windows:

ism\control\
 ism_start.cmd
 ism_stop.cmd
 ism_configure.cmd
82 Chapter 6

 ism_reconfigure.cmd

The control script name might appear differently in the ISM Control window of the SA Client. The Action
field of the ISM Control window displays the name of the control script, but without the leading ism_ or
the file type extension. For example, a control script named ism_start.cmd appears in Action field as
start. The Action field displays only the first 25 characters of a control script name. Therefore, the first
25 characters of the names should be unique. For both Unix and Windows, the leading ism_ must be lower
case; otherwise, the Action field displays the prefix.

For Unix, make sure that the control scripts under ism/control are executable. Otherwise, they will not
appear in the SA Client.

Control Script Functions

Control scripts are for repetitive tasks needed to manage an application. The following table summarizes
typical uses for control scripts.

Location of Control Scripts on Managed Servers

Like installation hooks, control scripts are bundled into the control package by the
--build command. On the managed server, control scripts reside in the directory indicated by the ISM
ctlprefix value. By default, control scripts are installed in the following directory on a managed server:

Unix:

/var/opt/OPSWism/<ism-name>/control

Windows (except for NT4):

%ProgramFiles%\OPSWism\<ism-name>\control

To change the default directory, specify the --ctlprefix option with ISMTool. For Windows NT4, --
ctlprefix must be specified and cannot contain variables.

Dynamic Configuration with ISM Parameters

The ISM parameter utility enables control scripts and installation hooks to access the values of SA
custom attributes. The key of an ISM parameter matches the name of its corresponding custom attribute.
The value of a custom attribute determines the value of the parameter. The source of a custom attribute is
an SA object such as a facility, customer, server, or device group.

table 48 Control Script Functions

Control Script common functions

ism_start notifies any companion or dependent servers, starts the application

ism_stop notifies any companion or dependent servers, stops the application

ism_configure performs configuration operations

ism_reconfigure similar to ism_configure, but calls ism_stop first and
ism_start afterwards
IDK Scripts 83

Set with the SA Client, a custom attribute is a name-value pair that holds configuration information. For
example, to designate the port number of an Apache web server, a custom attribute named
APACHE_1.3_PORT could have a value of 80. If an ISM has a parameter named APACHE_1.3_PORT, a
control script could access the current value of the custom attribute.

Using the ISM Control window of the SA Client, an end-user can view the source (SA object) of a parameter,
view the parameter value, and override the parameter value.

Development Process for ISM Parameters

The overall process for developing and using ISM parameters follows:

1 With the ISMTool, add a new parameter.

2 With a text editor, write a control script (or modify an installation hook) to access the parameter.

3 With the ISMTool, build and upload the ISM.

4 In the SA Client, install the application contained in the ISM onto a managed server.

5 In the SA Client, create a custom attribute with the same name as the parameter.

6 In the SA Client, run the control script on the managed server. At runtime, the script retrieves the
parameter (control attribute) value from Server Automation.

Adding, Viewing, and Removing ISM Parameters

The ISMTool --addParam command creates a new parameter, which may be fetched by any script in the
ISM. A parameter is a tuple with four fields, each specified by an ISMTool option. The following table lists
the fields and their corresponding options.

The following Unix command adds a parameter named NTP_SERVER to the ntp-4.2.1 ISM:

ismtool --addParam NTP_SERVER \
--paramValue 127.0.0.1 \
--paramType 'String' \
--paramDesc 'NTP server, default to loopback' ntp-4.2.1

To view the parameters that have been added to the ntp-4.2.1 ISM, enter the following:

ismtool --showParams ntp-4.2.1

To remove the parameter added in this example, you enter the following command:

table 49 ISM Parameter Fields

Parameter field ISMTool option Description

Name --addParam The name of the ISM parameter, which must match
the name of the custom attribute.

Default Value --paramValue The default value of the parameter. The script uses
the default value if a matching custom attribute is
not found.

Type --paramType The data type of the parameter. Allowed values:
‘String’
‘Template’

Description --paramDesc Text describing the parameter.
84 Chapter 6

ismtool --removeParam NTP_SERVER ntp-4.2.1

Accessing Parameters in Scripts

After you’ve added a parameter with ISMTool, you can write an ISM control script to access the
parameters. The supported scripting languages follow:

• Bourne Shell

• Korn Shell

• Windows command shell

• Python

• Perl

Shell scripts access the parameters through environment variables, Python scripts through dictionaries,
and Perl scripts through hash tables.

The ISM parameters Utility

To fetch parameters, a control script runs the parameters utility, which resides in the ISM shared
runtime package. Only those parameters defined with the --addParam command can be fetched.

The parameters utility has the following syntax:

parameters [options]
--scope <scope> ; server|servergroup|customer|facility|

; servicelevel|os|custapps|webserver|appserver|
 ; dbserver|systemutilities|osextras|install|
; default (default is all)

-s/--sh ; Bourne Shell syntax
-k/--ksh ; Korn-Shell syntax
-p/--python ; Python repr'ed dictionary
-l/--perl ; PERL map
-c/--cmd ; Windows Cmd syntax
-b/--vbscript ; Windows VBScript syntax
-h/--help ; Help
-v/--version ; Version

The --scope option limits the search for the custom attribute to the specified area of Server Automation.
For example, if you specify --scope facility and a custom attribute has been defined for both the
facility and the customer, then the custom attribute of the customer is not considered. See also: Search
Order for Custom Attributes on page 86.

If the parameters utility encounters an error during retrieval, it returns a special parameter named
_OPSW_ISMERR, which contains a brief description of the error encountered.

Example Scripts

The following Bourne Shell example is a control script that configures the NTP time service on Unix. The
parameters utility retrieves two parameters, NTP_CONF_TEMPLATE and NTP_SERVER, that have been
defined for the ISM.

#!/bin/sh
. ‘dirname $0‘/../env/ism.sh
IDK Scripts 85

eval ‘${ISMDIR}/bin/parameters‘
echo $NTP_CONF_TEMPLATE | \
sed "s/NTP_SERVER_TAG/$NTP_SERVER/" > /etc/ntp.conf

The following control script, written in Python, also configures NTP.

#!/usr/bin/env python
import os
import sys
import string
ismdir=os.path.split(sys.argv[0])[0]
cmd = ’%s --python’ % (os.path.join(ismdir,’bin’,’parameters’))
params = eval(os.popen(cmd,’r’).read())
template = params[’NTP_CONF_TEMPLATE’]
value = params[’NTP_SERVER’]
conf = string.replace(template,’NTP_SERVER_TAG’,value)
fd=open(’/etc/ntp.conf’,’w’)
fd.write(conf)
fd.close()

The following example shows a configuration control script for Windows. In this example, for 32 bit
Windows operating systems, each parameter is output in the form of name=value (one per line).

The Windows FOR command sets each parameter as an environment variable. (In the listing that follows,
the FOR command is split into two lines, but in the actual script, the FOR command must be on a single
line.) Finally, the parameters are passed to an NTP configuration script named
WindowsNTPConfigureScript.cmd.

@echo off
SETLOCAL
cd /d %ISMDIR%
for /f "delims== tokens=1,2" %%i in ('""bin\parameters.cmd""') do set
%%i=%%j WindowsNTPConfigureScript.cmd %NTP_CONF_TEMPLATE% %NTP_SERVER%
ENDLOCAL

Search Order for Custom Attributes

With the SA Client, you can set a custom attribute in several places. For example, you could set a custom
attribute named APACHE_1.3_PORT to 8085 for a managed server named foo.hp.com, and you could
set the same custom attribute to 80 for the Widget Corp. customer, which is associated with the
foo.hp.com server. At runtime, if a control script on foo.hp.com accesses the APACHE_1.3_PORT
parameter, which value will it fetch? In this case, the value will be 8085 because a custom attribute for a
server occurs first in the search order.

Note that if a custom attribute is not found, the script uses the default parameter value that you set with
the ISMTool --paramValue option.

Default Search Order

The default search order for custom attributes is as follows:

1 Server

2 Device Group

3 Customer

4 Realm
86 Chapter 6

5 Facility

6 Operating system.

7 ISM (created in the software policy during the upload operation)

8 Patch Policy

9 Software Policy

Multiple device groups and service levels are searched alphabetically. For example, if a server belongs to
the ABC and XYZ groups, the ABC group is searched for the custom attribute before the XYZ group. A server
group that is a subgroup does not inherit the custom attributes of its parent group.

 Installation Scripts

The installation scripts reside in the pad subdirectory. Like installation hooks, the installation scripts are
run at specific stages during the installation and uninstallation of an application on a managed server.

Differences Between Installation Scripts and Hooks

Although they serve a similar purpose, installation scripts and hooks have several differences, as noted in
the following table.

Creating Installation Scripts

Although the ISMTool creates the pad subdirectory structure, it does not create default installation
scripts. For each package created with --build or added with
--addPassthruPkg, the ISMTool creates a subdirectory as follows:

pad/<package-name>/scripts

For example, on Linux the --build command would create the following subdirectories for an ISM named
ntp-1.4.2:

pad/ismruntime-rpm-2.0.0-1.i386.rpm/scripts
pad/ntp-ism-4.2.1-1.i386.rpm/scripts
pad/ntp-4.2.1-1.i386.rpm/scripts

table 50 Differences Between Installation Scripts and Hooks

installation scripts installation hooks

Displayed by the Properties of the package in the
SA Client.

Displayed by the Contents of the package in the SA
Client. (Only RPMs are displayed.)

Reside in the pad subdirectory. Reside in the ism/pkg subdirectory.

Stored in Model Repository (after an upload). Bundled in the control package, installed on the
managed server in the directory specified by
ctlprefix.

Run by the Server Agent. Run by the native packaging engine.

Can be defined for each package in the ISM. Defined for the entire ISM.
IDK Scripts 87

With a text editor, you create the installation scripts in the scripts subdirectory. For example, you could
create installation scripts for the ntp-4.2.1-1.i386.rpm package as follows:

pad/ntp-4.2.1-1.i386.rpm/scripts/
preinstallscript
pstinstallscript
preuninstallscript
pstuninstallscript

The file names of the installation scripts must match the preceding example. For example, the script
invoked immediately after the installation must be named pstinstallscript.

Invocation of Installation Scripts and Hooks

If an ISM has both installation scripts and hooks, when an application is installed on a managed server,
Server Automation performs tasks in the following order:

1 Installs the ISM runtime package.

2 Installs the ISM control package.

3 Runs preinstallscript (installation script).

4 Runs ism_pre_install (installation hook).

5 Installs the application package (the application bits).

6 Runs ism_post_install (installation hook).

7 Runs ism_configure (control script).

8 Runs ism_start (control script).

9 Runs pstinstallscript (installation script).

During the uninstallation of an application on a managed server, Server Automation performs actions in
the following order:

1 Runs preuninstallscript (uninstallation script).

2 Runs ism_pre_uninstall (uninstallation hook).

3 Runs ism_stop (control script).

4 Uninstall the application package (the application bits).

5 Runs ism_post_uninstall (uninstallation hook).

6 Runs pstuninstallscript (uninstallation script).

7 Uninstalls the ISM control package.

8 Uninstalls the ISM runtime package.
88 Chapter 6

7 IDK Commands
ISMTool Argument Types

Table 51 defines the argument types that are used in the ISMTool commands defined in the rest of this
chapter. The ISMNAME argument type, for example, is specified by the syntax of the ISMTool --new
command.

table 51 ISMTool Argument Types

Argument Type Description Example

PATH Absolute file system path. /foo/bar

STRING Text string with no spaces. foobar

TEXT Arbitrary quoted text. On Unix you enclose the
text in single quotes; on Windows use double
quotes.

'This is some text'

BOOL Boolean. true or false

ISMFILE Path to a valid .ism file in the file system. This
file would unpack into an ISMDIR.

/foo/bar/name.ism

ISMDIR Path to a valid extracted ISMFILE or to a
newly created ISM.

xyz
/home/sam/xyz

ISMNAME Name for a newly-created ISM. The ISMNAME
can have the format STRING or STRING-
VERSION.

ntp
ntp-4.1.2

VERSION A STRING that represents the version of the
ISM. The VERSION cannot contain spaces and
must be a legal version string for the native
packaging engine.

1.2.3
4.13
0.9.7b

HOST[:PORT] Host and optional port. www.foo.com
www.foo.com:8000
192.168.1.2:8000

BYTES Integer number of bytes. 42

SECONDS Integer number of seconds. 300

PARAMTYPE Expected type of the parameter data. The only
allowed values are the constants ‘String’
and ‘Template’. On Unix you enclose the
values in single quotes; on Windows use double
quotes.

‘String’
‘Template’
89

ISMTool Informational Commands

This section describes the ISMTool commands that provide information about the build environment.

--help

Display the ISMTool command-line help.

--env

Display the locations of system-level tools found in the environment. This command is helpful for
investigating build problem and for verifying that the environment variable ISMTOOLBINPATH is set
correctly. For example, on a Unix system --env might display the following:

% ismtool --env
bzip2: /usr/local/ismtool/lib/tools/bin/bzip2
cpio: /usr/local/ismtool/lib/tools/bin/cpio
gzip: /usr/local/ismtool/lib/tools/bin/gzip
install: /usr/local/ismtool/lib/tools/bin/install
17
patch: /usr/local/ismtool/lib/tools/bin/patch
python: /usr/local/ismtool/lib/tools/bin/python
pythonlib: /usr/local/ismtool/lib/tools/lib/python1.5
rpm2cpio: /usr/bin/rpm2cpio
rpm: /bin/rpm
rpmbuild: /usr/bin/rpmbuild
tar: /usr/local/ismtool/lib/tools/bin/tar
unzip: /usr/local/ismtool/lib/tools/bin/unzip
wget: /usr/local/ismtool/lib/tools/bin/wget
zip: /usr/local/ismtool/lib/tools/bin/zip
zipinfo: /usr/local/ismtool/lib/tools/bin/zipinfo
pkgengines: [’rpm4’]

--myversion

Display the version of the ISMTool.

--info ISMDIR

Display an overview of the internal information about the ISM contained in the directory ISMDIR. After the
build is completed, more detailed information is available, which can be viewed in browser at this URL:

<ISMDIR>/doc/index/index.html

--showParams ISMDIR

Display the name, default value, type, and description for each control parameter.
90 Chapter 7

--showPkgs ISMNAME

Display the list of all packages managed by the ISM. This list includes the control package, the application
package, all passthru packages, and all inner packages contained in passthru packages. Examples of inner
packages are Solaris package instances contained in Solaris packages, or an update fileset contained in a
AIX LPP package. For each managed package, the package name, type, attached status and all meta data
that can be set will be listed.

--showOrder ISMNAME

Display the current install order of attached packages managed by the ISM.

--showPathProps ISMNAME

This option is deprecated in Server Automation 6.0.

Displays the values currently specified for software policy meta data.

ISMTool Creation Commands

This section describes the ISMTool commands that generate the ISM directory structure.

--new ISMNAME

Create a new ISM, which consists of directory that contains subdirectories and files. The value of ISMNAME
specifies the name of the newly-created ISM directory. The internal ISM name varies with the format of
ISNAME.

For example, the following command creates an ISM directory called foobar. The internal name of the
ISM is foobar and the initial version of the ISM defaults to 1.0.0.

% ismtool --new foobar

The next command creates an ISM directory called ntp-4.1.2. The internal name of the ISM is ntp and
the initial version of the ISM is 4.1.2. Note that the internal name of the ISM does not include -
VERSION.

% ismtool --new ntp-4.1.2

The name of the ISM directory is independent of the internal ISM name. For example, if the developer
renames the ntp-4.1.2 directory to myntp, the internal name of the ISM is still ntp and the version of
the ISM remains 4.1.2.

--pack ISMDIR

Creates a ZIP archive of the ISM contained in ISMDIR. The name of the archive will be <ismname-
version>.ism. Note that the contents of ISMDIR must be less than 2GB. (If the size is greater than 2 GB,
then use the zip or tar utility instead.) An example of --pack follows:

Unix:

% ismtool --new tick
IDK Commands 91

% ismtool --version 3.14 tick
% ls
tick/
% mv tick spooon
% ls
spooon/
% ismtool --pack spooon
% ls
spooon/ tick-3.14.ism

Windows:

% ismtool --new tick
% ismtool --version 3.14 tick
% dir
11/21/2003 10:17a <DIR> tick
% move tick spoon
% dir
11/21/2003 10:17a <DIR> spoon
% ismtool --pack spoon
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism

--unpack ISMFILE

Unpacks the ISM contained in the ZIP file named ISMFILE. The ISM is unpacked into the ISMDIR that was
specified when the ISMFILE was created with the --pack command. The following example uses the
ISMFILE created in the --pack example:

Unix:

% ls
spooon/ tick-3.14.ism
% rm -rf spooon
% ls
tick-3.14.ism
% ismtool --unpack tick-3.14.ism
% ls
spooon/ tick-3.14.ism

Windows:

% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% rmdir /s /q spoon
% dir
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% ismtool --unpack tick-3.14.ism
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism
92 Chapter 7

ISMTool Build Commands

This section describes the ISMTool commands that build and modify an ISM.

--verbose

Display extra debugging information.

--banner

Suppress the display of the output banner.

--clean

Clean up all files generated as a result of a build. This removes temporary files and all build products.

--build

Builds the ISM, creating the packages in the pkg subdirectory.

The primary purpose of the build command is to create the packages contained in the ISM. Optionally, the
build command may invoke source compilation and run pre-build and post-build scripts.

--upgrade

Upgrade the ISM to match the currently installed version of the ISMTool.

New releases of the ISMTool may fix defects or modify how it operates on an extracted ISMDIR. If the
version of the currently installed ISMTool is different from the version of the ISMTool that created the ISM,
the developer may need to perform certain actions. Note that minor and major downgrades are not
allowed. For example, if version 2.0.0 of the ISMTool created the ISM, then version 1.0.0 of the ISMTool
cannot process the ISM. Table 52 lists the developer actions if the currently installed and previous
versions of ISMTool are not the same.
IDK Commands 93

--name STRING

Change the internal name of the ISM to STRING. The ISMDIR, the top level directory of an extracted ISM,
can have a different name than the internal name of the ISM. To change both names, use the ISMTool --
name command to change the internal name and a file system command to change the directory name. If
the STRING format is not valid for the native packaging engine, the problem will not be found until a --
build is issued and the packaging engine throws an error.

--version STRING

Change the internal version field of the ISM. The STRING cannot contain spaces. The --version
command performs no other checks on the STRING format. If the STRING format is not valid for the native
packaging engine, the problem will not be found until a --build is issued and the packaging engine
throws an error.

--prefix PATH

Change the install prefix of an ISM. The PATH is used by the build-from-source feature of the ISMTool and
also by the drivers for the packaging engines. During installation on a managed server, the application
files packaged in the ISM are installed in the location relative to the PATH. In the SA Client, the PATH
appears in the Install Path field in the package’s properties. In the following Unix example, the developer
begins with this .tar file:

% tar tvf ntp/bar/ntp.tar

table 52 ISMTool Upgrade Actions

ISMTool
Version
Currently
Installed

ISMTool
Version
Used to
Create
the ISM Developer Action

1.0.1 1.0.0 PATCH increment. Developer action is not needed. This is considered
a simple automatic upgrade which is forward AND backward
compatible.

1.0.0 1.0.1 PATCH decrement. Automatic downgrade. No action needed.

1.1.0 1.0.0 MINOR increment. The developer must apply the --upgrade
command to the ISM. There may be small operational differences or
enhanced capability. Warning: This operation is not reversible. Minor
upgrades are designed to be as transparent as possible.

2.0.0 1.0.0 MAJOR increment. The developer must apply the --upgrade
command to the ISM. There may be large operational differences.
The developer will probably need to perform other actions specified
in release notes.

1.0.0 2.0.0
or 1.1.0

MAJOR or MINOR decrement. This downgrade path is not allowed.
The ISM cannot be processed with the installed version of the
ISMTool.
94 Chapter 7

-rw-r--r-- root/root 1808 2002-11-22 09:20:36 etc/ntp.conf
drwxr-xr-x ntp/ntp 0 2003-07-08 16:22:38 etc/ntp/
-rw-r--r-- root/root 22 2002-11-22 09:22:08 etc/ntp/step-tickers
-rw-r--r-- ntp/ntp 7 2003-07-08 16:22:38 etc/ntp/drift
-rw------- root/root 266 2001-09-05 03:54:42 etc/ntp/keys
-rwxr-xr-x root/root 252044 2001-09-05 03:54:43 usr/sbin/ntpd
-rwxr-xr-x root/root 40460 2001-09-05 03:54:43 usr/sbin/ntpdate
-rwxr-xr-x root/root 70284 2001-09-05 03:54:43 usr/sbin/ntpdc
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/ntp-genkeys
-rwxr-xr-x root/root 66892 2001-09-05 03:54:43 usr/sbin/ntpq
-rwxr-xr-x root/root 12012 2001-09-05 03:54:43 usr/sbin/ntptime
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/ntptimeset
-rwxr-xr-x root/root 19244 2001-09-05 03:54:43 usr/sbin/ntptrace
-rwxr-xr-x root/root 1019 2001-09-05 03:54:39 usr/sbin/ntp-wait

In this example, a --prefix of '/' would build an application package such that all the files would be
installed relative to the file system root.

% ismtool --build --prefix '/' --pkgengine rpm4 ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-1.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /etc/ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /etc/ntp.conf
-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /etc/ntp/drift
-rw------- 1 root root 266 Sep 5 2001 /etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /etc/ntp/step-tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/ntp-genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/sbin/ntp-wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/sbin/ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/sbin/ntpdc
-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/sbin/ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/sbin/ntptrace

It is easy to change the install prefix to '/usr/local':

% ismtool --build --prefix '/usr/local' ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-2.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /usr/local/etc/ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /usr/local/etc/ntp.conf
-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /usr/local/etc/ntp/drift
-rw------- 1 root root 266 Sep 5 2001 /usr/local/etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /usr/local/etc/ntp/step-
tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/usr/sbin/ntp-
genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/local/usr/sbin/ntp-wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/local/usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/local/usr/sbin/ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/local/usr/sbin/ntpdc
IDK Commands 95

-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/local/usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/local/usr/sbin/ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/usr/sbin/
ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/local/usr/sbin/ntptrace

On Windows, there is no standard way to tell an MSI where to install itself. Therefore, application packages
built from MSI files found in the bar directory will ignore the --prefix setting. However, for Windows
application packages built from ZIP files, the ISMTool will use the --prefix setting. On Windows the
prefix must be in this form: driveletter:\directoryname (for example, D:\mydir). On Windows
NT4, --prefix is required and cannot contain variables.

On Unix, the default value of PATH is /usr/local. However, on Solaris 11, the default value is /usr/app.

--ctlprefix PATH

Change the install prefix of the control files. Note that this command is not recommended and that you
should instead rely on the default values. During installation on a managed server, the control files
packaged in the ISM are installed in the location relative to the PATH. In the SA Client, the PATH appears in
the Install Path field in the package’s properties. On Windows the prefix must be in this form:
driveletter:\directoryname (for example, D:\mydir). On Windows NT4, --ctlprefix is
required and cannot contain variables.

The default value for PATH follows:

Unix:

/var/opt/OPSWism

Windows:

%ProgramFiles%\OPSWism

On Solaris, if you specify --ctlprefix on Solaris, you will be prompted for the name of the shared run-
time package.

--user STRING (Unix only)

Change the Unix user owner of the files in the application package to STRING. When the files in the
package are installed on the managed server, they will be owned by the specified Unix user.

--group STRING (Unix only)

Change the Unix group owner of the files in the application package STRING.

--ctluser STRING (Unix only)

Change the Unix user owner of the files in the control package to STRING. The default value is root.
When the files in the package are installed on the managed server, they will be owned by the specified
Unix user.

--ctlgroup STRING (Unix only)

Change the Unix group owner of the files in the control package to STRING. The default value is bin.
96 Chapter 7

--pkgengine STRING (Unix only)

Change the native packaging engine. On systems that have multiple packaging engines available, use this
command to switch between them. To view the available engines, issue the --help or --env commands.

Note that if you change the native packaging engine, no packages will be added to the software policy
during the --upload operation.

--ignoreAbsolutePaths BOOL (Unix only)

Ignore the absolute paths in the archive. For example, the following is a binary archive with absolute
paths:

% tar tvf test/bar/foo.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 /foo/bar/baz.conf

If the --prefix is set to /usr/local then the install path is ambiguous: Should ISMTool install
baz.conf as /foo/bar/baz.conf or /usr/local/foo/bar/baz.conf? If the answer is /foo/
bar/baz.conf, then the developer must set the --prefix of the ISM to '/'. However, if the answer is
/usr/local/foo/bar/baz.conf, then the developer must specify the --ignoreAbsolutePaths
command.

--addCurrentPlatform (Unix only)

Add the current platform to the ISM's supported list. Note: This command does not make the ISM cross-
platform. ISMs can be constructed on different SA-supported platforms. A platform is the combination of
OS type and version. Example platforms are: Redhat-Linux-7.2, SunOS-5.9, Windows-2000. To view the
currently supported platforms for an ISM use the --info command.

--removeCurrentPlatform (Unix only)

Removes the current platform from the ISM's supported platform list.

--addPlatform TEXT (Unix only)

Add to the ISM's supported platform list the platform specified by the TEXT. Because platform support and
identification are dynamic, no error checking is done for --addPlatform. For this reason, the
recommendation is to use --addCurrentPlatform instead of --addPlatform.

--removePlatform TEXT (Unix only)

Removes from the ISM's supported platform list the platform specified by the TEXT.

--target STRING (Unix only)

Warning: This command should only be used by experts.

Allow cross-platform packaging of the application package for the RPM packaging engine. The --target
command must be used with --skipControlPkg. The format of the STRING is <arch-os>, for
example, i686-linux or sparc-solaris2.7.
IDK Commands 97

--skipControlPkg BOOL

Prevent the building of the control package. This command allows the ISMTool to support the packaging of
files that have no need for a structured application control package.

--skipApplicationPkg BOOL

Prevent the building of the application package. This command allows the ISMTool to support the creation
of a control-only ISM package. This feature can be used to build a controller for an application that is not
installed or packaged with the ISMTool. Examples are controllers for core operating system functions,
currently running applications that cannot be packaged, and specialized hardware.

--chunksize BYTES (Unix only)

Limits the number of bytes that will be inserted into an application package. (Heuristics are used to
compensate for compression factors.) The binary archive (bar) directory may contain many archives from
which to build the application package. If the chunksize is exceeded, then the application archives are
grouped into several bins and each bin is turned into a-sub application package. The algorithm is a
standard bin-packing heuristic. The movable units are binary archives within the bar directory.

For example, suppose that the output package format is an RPM and has five binary archives: a.tgz
(100M), b.tgz(100M), c.tgz (200M), d.tgz (300M), and e.tgz(50M). If the chunksize is set to 314572800
(300M) then the output application bins will be:

part1(a.tgz, b.tgz, e.tgz) == 250M
part2(c.tgz) == 200M
part3(d.tgz) == 300M

This would result in three application packages:

foobar-part0-1.0.0.i386.rpm
foobar-part1-1.0.0.i386.rpm
foobar-part2-1.0.0.i386.rpm

In general, the chunksize is not a problem unless the application package is almost a gigabyte in size. At
that point, some package engines start breaking. The default chunksize is one gigabyte (2 ^30 bytes).

--solpkgMangle BOOL (SunOS only)

Prevent the ISMTool from changing the name of the application package to conform to Solaris
requirements. For more information, see Solaris Differences on page 66.

When creating a Solaris package, ISMTool must use a package name that conforms to the 9-character
limit. However, it may be desirable to prevent ISMTool from changing (“mangling”) the package name
during the --build process. When --solpkgMangle false is specified, ISMTool will use the ISM name
when creating the application package. The control package name will continue to be mangled. Note that
when --solpkgMangle is false, the ISM name must be 9 characters or less and there cannot be
multiple application packages.

--embedPkgScripts BOOL

Embed the contents of the ISM packaging scripts (installation hooks) in the application package. This
option must be used with --skipControlPkg and --skipRunTimePkg.
98 Chapter 7

By default, the application package is built to call out to the ISM packaging scripts installed by the control
package. The --embedPkgScripts option overrides this behavior by embedding the contents of the
scripts found in the ism/pkg directory inside the application package. These scripts are invoked during
the pre and post phases of the application package install and uninstall.

If one or more of the scripts in the ism/pkg directory are not needed, delete the scripts before the --
build process. Note that RPM and LPP packaging engines do not have a checkinstall phase so the
ism_check_install file is ignored when building RPMs and LPPs.

--skipRuntimePkg BOOL

Specify whether to build runtime packages during subsequent --build operations.

A runtime package is built by default. If --skipRuntimePkg true is specified, the runtime package will
not be built during subsequent operations until
--skipRuntimePkg false is specified. ISM utilities such as the parameters interface will fail if the
runtime package cannot be located. Do not specify --skipRuntimePkg true unless you are sure the
runtime package already exists on the managed server on which you’ll install the ISM.

ISMTool Interface Commands

This section describes the ISMTool commands that interact with SA.

--upload

Upload the ISM contained in the ISMDIR to the software policy specified by
--opswpath. If you specify a software policy that does not exist, it will be created automatically during
the upload process. To specify which SA core to connect to, use either command-line arguments (such as -
-softwareRepository) or the environment variables listed in Table 53.

The --upload command prompts for an SA user name and password. Before the upload operation, this
user must be granted permission with ismusertool. Also, this user must have write permission on the
folder containing the software policy.

--noconfirm

Suppress confirmation prompts, which require a y or n reply. For example, the ISMTool has the following
confirmation prompt:

Do you wish to proceed with upload? [y/n]:

If --noconfirm is set, the prompts are suppressed and the ISMTool behaves as if the answer is y. The --
noconfirm option affects only the current invocation of the ISMTool.

--opswpath STRING

Specify the path of the software policy that will contain the uploaded ISM. Note that the path always
contains forward slashes, even on Windows.
IDK Commands 99

If you specify a software policy that does not exist, it will be created automatically during the upload
process. If you specify a folder (a path not terminated by a policy), an error occurs because you cannot
upload an ISM into a folder.

The ISMTool supports the construction of cross-platform ISMs. An example of such an ISM is the Network
Time Protocol (NTP) daemon, which can be built from source on a variety of platforms. To make uploading
of cross-platform ISMs easier, the ISMTool supports variable substitution within the --opswpath
STRING. These variables represent the internal settings of the ISM. Table 53 lists the variables
recognized by the ISMTool.

Unix example:

% ismtool --opswpath '/System Utilities/${NAME}/${VERSION}/${PLATFORM}'
ntp

Possible expansion:

'/System Utilities/ntp/4.1.2/Redhat Linux 7.2'

Windows example:

% ismtool --opswpath "/System Utilities/${NAME}/${VERSION}/${PLATFORM}"
ntp

Possible expansion:

"/System Utilities/ntp/4.1.2/Windows 2000"

--commandCenter HOST[:PORT]

For an upload to a folder, use the Opsware Command Center core component located at HOST[:PORT].

--dataAccessEngine HOST[:PORT]

For the upload, use the SA Data Access Engine located at HOST[:PORT].

--commandEngine HOST[:PORT]

For the upload, use the SA Command Engine located at HOST[:PORT].

table 53 ISMTool Variables

Variable Example

${NAME} ntp

${VERSION} 4.1.2

${APPRELEASE} 3

${CTLRELEASE} 7

${PLATFORM} Redhat Linux 7.2

${OSTYPE} Redhat Linux

${OSVERSION} 7.2
100 Chapter 7

--softwareRepository HOST[:PORT]

For the upload, use the SA Software Repository located at HOST[:PORT].

--description TEXT

Provide descriptive text for the ISM. During the upload, this text is copied to the description field on the
software policy.

--addParam STRING

Add a parameter named STRING to the ISM. Usually, the commands --paramValue, --paramDesc, and -
-paramType are also specified. For example:

% ismtool --addParam NTP_SERVER \
 --paramValue 127.0.0.1 \
 --paramType 'String' \
 --paramDesc 'NTP server, default to loopback' ntp

% ismtool --addParam NTP_CONF_TEMPLATE \
 --paramValue /some/path/ntp.conf.template \
 --paramType 'Template' \
 --paramDesc 'Template for the /etc/ntp.conf file' ntp

--paramValue TEXT

Set the default value for the parameter. The --addParam command must also be specified. If the
parameter type is 'String' then the value is the string specified by TEXT. If the parameter type is
'Template' then TEXT is interpreted as a PATH to a configuration template file. The data in the template
file is loaded as the default value. If the --paramValue and --paramType are not specified, then the
default value is the empty string.

--paramType PARAMTYPE

Set the type of the parameter. The --addParam command must also be specified. The PARAMTYPE must
be either 'String' or 'Template'. The default type is 'String'.

--paramDesc TEXT

Set the descriptive text for the parameter. The --addParam command must also be specified. The default
value is an empty string.

--removeParam STRING

Remove the parameter named STRING.
IDK Commands 101

--rebootOnInstall BOOL

Tag the application package with the SA package control flag reboot_on_install. If --
rebootOnInstall is set to true, then the managed server will be rebooted after the package is
installed. If the ISM has multiple application packages, the last package in the list is tagged.

--rebootOnUninstall BOOL

Tag the application package with the SA package control flag reboot_on_uninstall. If --
rebootOnUninstall is set to true, then the managed server will be rebooted after the package is
uninstalled. If the ISM has multiple application packages, the first package in the list is tagged.

--registerAppScripts BOOL (Windows only)

Register the ISM packaging scripts (installation hooks) with the application package.

By default, ISM packaging scripts are encoded in the application MSI to run at pre-installation, post-
installation, pre-uninstallation, and post-uninstallation. When --registerAppScripts is specified,
the ISM packaging scripts are instead registered as SA package control scripts during the upload. The
package control scripts are registered in the Model Repository and are viewable from theHP Server
Automation Client.

The --registerAppScripts command is required if the ISM packaging scripts contain actions that
conflict with the application MSI installation. For example, a conflict could occur if a post-install script
contains a call to msiexec.exe. Since the Microsoft Installer does not allow concurrent installs, a script
containing a call to msiexec.exe will not complete successfully. By registering the ISM packaging scripts
as SA package control scripts, the scripts are called outside of the MSI installation and uninstallation.

--endOnPreIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPreIScriptFail and --registerAppScripts are both set to true, then the installation
will abort if the ISM pre-install script returns a non-zero exit code.

--endOnPstIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPstIScriptFail and --registerAppScripts are both set to true, then the installation
will abort if the ISM post-install script returns a non-zero exit code.

--endOnPreUScriptFail BOOL (Windows only)

Register to end subsequent uninstalls with the application package.

If --endOnPreUScriptFail and --registerAppScripts are both set to true, then the uninstall will
abort if the ISM pre-uninstall script returns a non-zero exit code.
102 Chapter 7

--endOnPstUScriptFail BOOL (Windows only)

Register to end uninstalls with the application package.

If --endOnPstUScriptFail and --registerAppScripts are both set to true, then the uninstall will
abort if the ISM post-uninstall script returns a non-zero exit code.

--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME

Specifies that the package identified by {PathToPkg} should be treated as a passthru package. The
supported package type {PkgType} depends on the platform, as shown by Table 54.

{PathToPkg} can be either a full or relative path to the package, but the package must exist at the time
the --addPassthruPkg option is specified. {PathToPkg} cannot specify a package in the current
ISM's directory structure. For example, the control package, the application package, or a package in the
bar directory cannot be specified as a passthru package.

Note that by default, the upload operation does not add the passthru package (specified by --
addPassthruPkg) to the software policy. To add the passthru package, you must specify the --
attachPkg option.

If you upload a Solaris passthru package, the response file is not uploaded. You must manually upload the
response file.

The following table lists the allowed values of {PkgType} (package type) for each platform.

The following example shows how to add a passthru package to an ISM and specify the package for
addition to the software policy:

% ismtool --addPassthruPkg /tmp/bos.rte.libs.5.1.0.50.U --pkgType lpp ISMNAME
Inspecting specified package: ...
bos.rte.libs.5.1.0.50.U (lpp)

table 54 Supported Package Types for Passthru Option

Platform (OS) Allowed Value for {Pkgtype}

AIX lpp
rpm
zip

HP-UX depot
zip

Linux rpm
zip

SunOS rpm
solcluster
solpatch
solpkg
ips
zip

Windows hotfix
msi
sp
zip
IDK Commands 103

 bos.rte.libs-5.1.0.50 (update fileset)
 IY42527 (apar)
Done.
% ismtool --attachPkg bos.rte.libs-5.1.0.50 --attachValue true ISMNAME

--removePassthruPkg {PassthruPkgFileName} ISMNAME

Specify that an already registered passthru package is no longer a passthru package.

ISMTool will do the following:

1 Delete {PassthruPkgFileName} from the ISMs directory structure.

2 Record in ism.conf that {PassthruPkgFileName} is no longer a passthru package.

3 During the next upload and all subsequent uploads, if the package is added to the
--opswpath software policy, it will be removed.

Note that an ISM remembers all packages that have been removed as a passthru package. If a package
was added to the software policy via the SA Client or a previous upload operation, the package will be
removed from the policy on the next upload operation.

--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME

Specify whether a package managed by an ISM should be added to the software policy identified by --
opswpath.

By default, when control or application packages are built, these types of packages are marked for
addition to the software policy. However passthru packages and inner packages are not marked for
addition until the --attachPkg option is specified.

{PkgName} is the name of the package as listed by the --showPkgs command. If
--attachValue is true, a package is marked for addition to the softare policy. If
--attachValue is false, a package will be uploaded into the Software Repository but it will not be
added to the software policy. If --attachValue is false and the package already resides in the software
policy, the package is marked for removal from the policy. A package is added or removed during an --
upload operation. The following table lists the package types that can be added to a softare policy.

table 55 Package Type Properties

Package type
Can this package type
contain scripts?

Can this package type be
added to a software policy?

AIX LPP no no

AIX Base Fileset yes yes

AIX Update Fileset yes yes

AIX APAR no yes

HP-UX Depot no no

HP-UX Fileset yes yes

HP-UX Patch Fileset no no

HP-UX Product no yes

HP-UX Patch Product no yes
104 Chapter 7

--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME

Change the install order of attached packages managed by the ISM.

{OrderPos} is an integer that specifies the new install order for the package identified by {PkgName}.
{OrderPos} is 1 (not 0) or the first package to be installed. To display the install order, use the ismtool --
showOrder command.

The following example shows how to display and change the install order:

% ismtool --showOrder ISMNAME
[1] test-ism-1.0.0-1.rpm
[2] test-1.0.0-1.rpm
[3] bos.rte.libs-5.1.0.50
[4] IY42527

% ismtool --orderPkg IY42527 --orderPos 1 ISMNAME
[1] IY42527
[2] test-ism-1.0.0-1.rpm
[3] test-1.0.0-1.rpm
[4] bos.rte.libs-5.1.0.50

--addPathProp {PathProp} --propValue {PropValue} ISMNAME

Specific a value for a property (meta data) of the software policy.

IPS Package no yes

RPM yes yes

Solaris Package no no

Solaris Package Instance yes yes

Solaris Patch yes yes

Solaris Patch Cluster no yes

Windows Hotfix yes yes

Windows MSI yes yes

Windows Service Pack yes yes

Windows ZIP File yes yes

table 55 Package Type Properties (cont’d)

Package type
Can this package type
contain scripts?

Can this package type be
added to a software policy?
IDK Commands 105

To display the current values, use the --showPathProps command. The following table lists the allowed
values and types for the --addPathProp command.

The following example commands show how to set the description property:

% ismtool --addPathProp description --propValue 'This policy does something'
ISMNAME
% ismtool --showPathProps ISMNAME
description: This policy does something

--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue}
ISMNAME

Specify a value for a given package meta data property.

{PkgName} identifies the package to update; it can be any of the package names listed using the --
showPkgs command. The following table lists the allowed values for {PkgProp}.

table 56 Allowed values for {PathProp}

{PathProp} Allowed Value {PropValue} Type Example

description TEXT ‘This does something
important’

Deprecated:
notes

TEXT ‘And so does this’

Deprecated:
allowservers

BOOLEAN false

table 57 Allowed values for {PkgProp}

{PkgProp} allowed value Description {PropValue} type

deprecated Deprecated status for package BOOLEAN

description Description for package TEXT

endonpreiscriptfail Remediation ends on pre- install
script failure

BOOLEAN

endonpreuscriptfail Remediation ends on pre-
uninstall script failure

BOOLEAN

endonpstiscriptfail Remediation ends on post-install
script failure

BOOLEAN

endonpstuscriptfail Remediation ends on post-
uninstall script failure

BOOLEAN

installflags Install flags for package TEXT

notes Notes for the package TEXT
106 Chapter 7

The endonXXXscriptfail values are set only if a pre/post install/uninstall script has been defined for a
package. These scripts reside in the ISMNAME/pad subdirectory.

Note that not all package types support all the {PkgProp} values listed in the preceding table. The
supported {PkgProp} values for each package type can be seen by viewing the package property details in
the SA Client. In addition, the following table lists {PkgProp} values supported by specific package types.

The productversion, productname, and servicepacklevel must be set before performing an -
-upload operation. The productname and productversion cannot be changed after an --upload
operation. If you modify the productname or productversion and then perform another --upload
operation, the modified values will not be applied.

The following example shows how to specify the description of a package:

% ismtool --editPkg bos.rte.libs.5.1.0.50 --addPkgProp description --
propValue 'This is a fileset' ISMNAME

rebootoninstall Package requires a reboot after
install

BOOLEAN

rebootonuninstall Package requires a reboot after
uninstall

BOOLEAN

uninstallflags Uninstall flags for package TEXT

table 57 Allowed values for {PkgProp}

{PkgProp} allowed value Description {PropValue} type

table 58 {PkgProp} Allowed Values by Package Type

{PkgProp} allowed value
Package
Type Description {PropValue}

upgradeable RPM Package is upgradeable BOOLEAN

productname Windows MSI MSI product name STRING

productversion Windows MSI MSI version number STRING

servicepacklevel Windows OS
Service Pack

Service Pack version
number

INTEGER

installdir Windows ZIP Installation directory STRING

postinstallscriptfilename Windows ZIP Post install script
filename

STRING

postinstallscriptfilenamefail Windows ZIP Remediation ends on
post install script failure

BOOLEAN

preuninstallscriptfilename Windows ZIP Pre uninstall script
filename

STRING

preuninstallscriptfilenamefail Windows ZIP Remediation ends on
pre uninstall script
failure

BOOLEAN
IDK Commands 107

ISMTool Environment Variables

The ISMTool references the shell environment variables described in this section.

CRYPTO_PATH

This environment variable indicates the directory that contains the files agent/agent.srv and agent/
opsware-ca.crt.

CRYPTO_PATH, agent.srv and opsware-ca.crt are required only if you are uploading the ISM from a
server not managed by SA (that is, a server that has no Server Agent.)

To connect to the SA core during the upload of an ISM, the ISMTool needs the client certificates (the
agent.srv and opsware-ca.crt files) that were generated during the installation of HP Server
Automation.

Keep in mind that using these certificates with the ISMTool invokes a different security mechanism than
the one used by the SA Client. As a result, you might have increased or reduced permissions. You might
have access to servers belonging to customers that you usually do not have access to.

Also, you might be able to perform operations that you cannot perform with the SA Client. Therefore, in
this situation use the ISMTool with caution to avoid unintended consequences caused by a possible change
in security permissions.

To obtain the agent.srv, opsware-ca.crt files and set the CRYPTO_PATH environment variable,
perform the following steps:

1 Log in to the SA core server as root and locate the following file:

/var/opt/opsware/crypto/agent/agent.srv
/var/opt/opsware/crypto/agent/opsware-ca.crt

2 Copy agent.srv and opsware-ca.crt to the server where you have installed the IDK, to the
following directory:

<some-path>/agent

The <some-path> part of the directory path is your choice, but the subdirectory containing
agent.srv and opsware-ca.crt must be agent.

3 Set the CRYPTO_PATH environment variable to <some-path>.

For example, on a Unix server, suppose that the full path name of agent.srv and opsware-
ca.crt is as follows:

/home/jdoe/dev/

In csh you would set the environment variable as follows:

setenv CRYPTO_PATH /home/jdoe/dev/

On Windows, perhaps agent\agent.srv and agent\opsware-ca.crt reside here:

C:\jdoe\dev\

You could set the environment variable as follows:

set CRYPTO_PATH=C:\jdoe\dev\
108 Chapter 7

ISMTOOLBINPATH

This environment variable is a list of directory names, separated by colons, where the ISMTool searches
for system-level tools (such as tar and cpio). The following search strategy is used:

1 Search the paths from the environment variable ISMTOOLBINPATH.

2 Search the complied-in binaries (if any) in /usr/local/ismtool/lib/tools/bin.

3 Search within the user's path.

ISMTOOLCC

This environment variable is the HOST[:PORT] of the Opsware Command Center core component used
during an ISMTool upload to a folder.

ISMTOOLCE

This environment variable is the HOST[:PORT] of the SA Command Engine used by the ISMTool.

ISMTOOLDA

This environment variable is the HOST[:PORT] of the SA Data Access Engine used by the ISMTool.

ISMTOOLPASSWORD

This environment variable is a STRING that specifies the SA password during an ISMTool upload.

ISMTOOLSITEPATH

This environment variable is a PATH for a “site” directory.

The ISMTool contains certain default scripts and attribute values (for example, the install prefix) which are
referenced when a new ISM is created. A developer can override the default scripts and a selected set of
attribute values by using a site directory.

The defaults.conf File

Within the site directory, a developer can create the defaults.conf file, which contains overrides for
attribute values. A line in defaults.conf has the format: <tag>:<value>. A line starting with the #
character is a comment. The following example shows the values that can be set in defaults.conf:

Unix:

prefix: /usr/local
ctlprefix: /var/opt/OPSWism
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0
ctluser: root
ctlgroup: bin

Windows:
IDK Commands 109

prefix: ???
ctlprefix: ???
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0

The templates Subdirectory

Developers can override the files in the /usr/local/ismtool/lib/ismtoollib/templates
directory by placing their own copies in a templates subdirectory located within the
ISMTOOLSITEPATH. For example, developers can override the files that are the default packaging hooks
for Windows or Unix.

The control Subdirectory

Sometimes, developers need to install a common set of tools into an ISM's control directory. The
ISMTool supports this requirement by copying all files from a control subdirectory of the
ISMTOOLSITEPATH to the ISM's control directory. If a file already exists in the ISM's control directory,
it will not be overwritten.

ISMTOOLSR

This environment variable is the HOST[:PORT] of the SA Software Repository used by the ISMTool.

ISMTOOLUSERNAME

This environment variable is a STRING that specifies the SA user name during an ISMTool upload.

ISMUserTool

The --upload command of the ISMTool prompts for an SA user name. To enable SA users to perform an
upload, run the ISMUsertool to assign privileges.

To list the users that have upload privileges:

% ismusertool --showUsers

To grant a user users upload privileges:

% ismusertool --addUser johndoe

To revoke upload privileges:

% ismusertool --removeUser johndoe

ISMUsertool allows you to specify multiple options on a single command line. For more information,
specify the --help option:

% ismusertool --help

By default, the Opsware admin user has upload privileges, which cannot be revoked.

Folders are new in version 6.0 of Server Automation. To upload an ISM into a folder, the user must have
folder privileges. By default, the admin user does not have folder privileges. In a production environment,
admin should not have folder privileges, so you should not use admin for uploads.
110 Chapter 7

IDK Commands 111

112 Chapter 7

	Content Utilities Guide
	Contents
	1 Importing and Exporting SA Content
	The DCML Exchange Utility (DET)
	The cbt Command

	DET Relationship to DCML
	Custom Fields and Custom Attributes

	2 The cbt Command Usage
	Exporting Content
	Export Filters
	Example: Export Filter File

	Application Configuration Export Filter
	Application Configuration Export Filter Example

	Application Configuration Template Export Filter
	Application Configuration Template Export Filter Examples

	Audit Filter
	Custom Extension Export Filter
	Custom Extension Export Filter Examples

	Custom Fields Schema Export Filter
	Custom Field Schema Export Filter Example

	Customer Export Filter
	Customer Export Filter Example

	Folder Export Filter
	Folder Export Filter Examples

	OS Build Plan Export Filters
	OS Build Plan Export Filter Examples

	OS Export Filter
	OS Export Filter Examples

	Package Export Filter
	Package Export Filter Example

	Patch Export Filter
	Patch Filter Examples

	Patch Policy Export Filter
	Patch Policy Export Filter Examples

	Script Export Filter
	Server Compliance Criteria (Audit Policies) Export Filter
	Server Compliance Criteria Export Filter Examples

	Server (Device) Group Export Filter
	Notes
	Server Group Export Filter Example

	Service Level Export Filter
	Service Level Export Examples

	Snapshot Filter
	Template Export Filter
	Template Export Filter Examples

	User Group Export Filter
	Notes
	User Group Export Filter Examples

	customerName Element Examples
	customerName Examples for Applications, Service Levels, Templates
	customerName Examples for Server Groups

	Importing Content
	Policy on Importing Content Types
	Import Delete Conditions
	Renamed Objects That Cannot Be Found

	Considerations When Importing Customers
	Importing Customers Workaround

	Synchronizing Multimaster Meshes with Deltas
	Delta Exports
	Delta Imports
	Mesh Synchronization Usage Scenario

	Content Directory
	Example Session
	Installing the cbt Command
	Configuring the cbt Command
	Running the cbt Command on a UNIX Host that Is Not an SA Core

	Creating a Target Mesh Configuration File

	3 The cbt Command Reference
	Export Option (-e)
	Import Option (-i)
	Show Export Status Option (-t)
	Configuration File Option (-s)
	Show Version Option (-v)
	Show Help Option (-h)
	DET Permissions Command, cbtperm

	4 IDK Overview
	Overview of the IDK and ISMs
	Benefits of the IDK
	IDK Tools and Environment
	Supported Package Types

	Installing the IDK
	Installing the IDK on a Managed Server
	Installing the IDK on an Unmanaged Server

	IDK Quick Start
	Platform Differences
	Solaris Differences
	Windows Differences

	5 IDK Build Environment
	ISM File System Structure
	Build Process
	When to Invoke the --build Command
	Multiple Command-Line Options
	Actions Performed by the --build Command
	Packages Created by the --build Command

	Specifying the Application Files of an ISM
	Placing Archives in the bar Subdirectory
	Specifying Passthru Packages
	Compiling Source (Unix Only)
	Example Specfile
	Specfile Preamble
	%prep
	%build
	%install
	%files

	ISM Name, Version Number, and Release Number
	Initial Values for the ISM Name, Version, and Release
	ISM Version and Release Numbers Compared
	Upgrading the ISM Version

	6 IDK Scripts
	Overview of ISM Scripts
	Installation Hooks
	Creating Installation Hooks
	Check Installation Hook
	Invocation of Installation Hooks
	Installation Hooks and ZIP Packages
	ZIP Packages and Installation Directories
	Installation Hook Functions
	Scripts for Control-Only ISMs
	Location of Installation Hooks on Managed Servers
	Default Installation Hooks for Unix
	Default Installation Hooks for Windows

	Control Scripts
	Creating Control Scripts
	Control Script Functions
	Location of Control Scripts on Managed Servers

	Dynamic Configuration with ISM Parameters
	Development Process for ISM Parameters
	Adding, Viewing, and Removing ISM Parameters
	Accessing Parameters in Scripts
	The ISM parameters Utility
	Example Scripts
	Search Order for Custom Attributes
	Default Search Order

	Installation Scripts
	Differences Between Installation Scripts and Hooks
	Creating Installation Scripts
	Invocation of Installation Scripts and Hooks

	7 IDK Commands
	ISMTool Argument Types
	ISMTool Informational Commands
	--help
	--env
	--myversion
	--info ISMDIR
	--showParams ISMDIR
	--showPkgs ISMNAME
	--showOrder ISMNAME
	--showPathProps ISMNAME

	ISMTool Creation Commands
	--new ISMNAME
	--pack ISMDIR
	--unpack ISMFILE

	ISMTool Build Commands
	--verbose
	--banner
	--clean
	--build
	--upgrade
	--name STRING
	--version STRING
	--prefix PATH
	--ctlprefix PATH
	--user STRING (Unix only)
	--group STRING (Unix only)
	--ctluser STRING (Unix only)
	--ctlgroup STRING (Unix only)
	--pkgengine STRING (Unix only)
	--ignoreAbsolutePaths BOOL (Unix only)
	--addCurrentPlatform (Unix only)
	--removeCurrentPlatform (Unix only)
	--addPlatform TEXT (Unix only)
	--removePlatform TEXT (Unix only)
	--target STRING (Unix only)
	--skipControlPkg BOOL
	--skipApplicationPkg BOOL
	--chunksize BYTES (Unix only)
	--solpkgMangle BOOL (SunOS only)
	--embedPkgScripts BOOL
	--skipRuntimePkg BOOL

	ISMTool Interface Commands
	--upload
	--noconfirm
	--opswpath STRING
	--commandCenter HOST[:PORT]
	--dataAccessEngine HOST[:PORT]
	--commandEngine HOST[:PORT]
	--softwareRepository HOST[:PORT]
	--description TEXT
	--addParam STRING
	--paramValue TEXT
	--paramType PARAMTYPE
	--paramDesc TEXT
	--removeParam STRING
	--rebootOnInstall BOOL
	--rebootOnUninstall BOOL
	--registerAppScripts BOOL (Windows only)
	--endOnPreIScriptFail BOOL (Windows only)
	--endOnPstIScriptFail BOOL (Windows only)
	--endOnPreUScriptFail BOOL (Windows only)
	--endOnPstUScriptFail BOOL (Windows only)
	--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME
	--removePassthruPkg {PassthruPkgFileName} ISMNAME
	--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME
	--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME
	--addPathProp {PathProp} --propValue {PropValue} ISMNAME
	--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue} ISMNAME

	ISMTool Environment Variables
	CRYPTO_PATH
	ISMTOOLBINPATH
	ISMTOOLCC
	ISMTOOLCE
	ISMTOOLDA
	ISMTOOLPASSWORD
	ISMTOOLSITEPATH
	The defaults.conf File
	The templates Subdirectory
	The control Subdirectory

	ISMTOOLSR
	ISMTOOLUSERNAME

	ISMUserTool

