

HPE Service Activator
System Integrator’s Overview

for Microsoft Windows Server 2012 R2®, and Red Hat
Enterprise Linux 6.7 operating systems

Release: 8.0

March 14, 2016

Notices

Legal notice

© Copyright 2001-2016 Hewlett Packard Enterprise Development LP

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HPE products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions
contained herein.

Printed in the US

Trademarks

Java™ is a registered trademark of Oracle and/or its affiliates.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Oracle® and Java™ are registered trademarks of Oracle and/or its affiliates.
EnterpriseDB® is a registered trademark of EnterpriseDB.
Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.
JBoss® is a registered trademark of Red Hat, Inc. in the United States and other countries.
WildFly® is a registered trademark of Red Hat, Inc. in the United States and other countries.
UNIX® is a registered trademark of The Open Group.
Microsoft® is a U.S. registered trademark of Microsoft Corporation.
Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are hereby
acknowledged.

Document id: p158-pd001213

 2

Contents

Notices ... 1

Contents ... 2

List of tables .. 7

List of figures .. 8

Install Location Descriptors... 10

Conventions .. 11

In This Guide .. 12

Chapter 1 Introducing HPE Service Activator ..13
1.1 Positioning an HPE ServiceActivator Solution ... 13

 Positioning in the Provider’s Environment ... 13
 Positioning in the TMF NGOSS Maps .. 14
 Positioning in the HPE OSS Blueprint .. 15

1.2 HPE Service Activator Component Architecture ... 15
 Workflows ... 16
 Plugins and activation tasks ... 16
 Solution Data Repositories (Inventory) .. 17
 Northbound interface ... 17

1.3 Solution Packages ... 17
1.4 A Typical Workflow .. 17
1.5 HPE Service Activator Documentation .. 19

Chapter 2 Solution Component and Tools ... 21
2.1 Database Repositories .. 21
2.2 Solution Data Repositories (Inventory) ... 22
2.3 Plug-Ins and Activation Tasks .. 24

 Plug-In Development .. 25
 Customizing Control Templates for Generic Plug-ins .. 27

2.4 Workflows .. 28
 Workflow Structure .. 30
 Workflow Manager Architecture .. 30

2.5 User Interface and Roles .. 31
2.6 Interfaces for Integration .. 32
2.7 Integration with Other HPE NGOSS Products: NNMi, NA, uCMDB .. 32
2.8 Solution Deployment .. 33

Chapter 3 An Example Solution: Intro_Example .. 34
3.1 Contents of the Intro_Example ... 34
3.2 Deploying the Example .. 36
3.3 Examining Components of the Intro_Example Solution ... 36

 3

3.4 Running the Intro_Example Solution Workflows ... 39

Chapter 4 Solution Planning and Analysis .. 41
4.1 Activities in a Project to Build a Solution ... 41
4.2 Analysis .. 42

Chapter 5 Solution Design .. 44
5.1 Solution Labelling .. 44
5.2 Queuing Sub-System ... 44

 Configurable aspects of queues .. 45
5.3 Connection Pools .. 46

 How pools work ... 46
 Configurable aspects of pools .. 46
 Pools and target locking .. 47
 Design considerations for the use of pools ... 47

5.4 Plug-Ins .. 48
 Customized Use of Generic Plug-ins .. 48
 Creating New Plug-ins ... 48
 Target Locking ... 49
 Secure Communication with Targets .. 49
 Plug-ins for Web Services and Corba Interfaces .. 49

5.5 User Interface and Roles .. 50
 UI Integration Using LWSSO or SPNEGO .. 51
 UI Integration Without LWSSO ... 52
 A Note on Workflow Start Role Attribute ... 52
 Viewing Jobs During Activation .. 52

5.6 Encrypted Passwords .. 53
5.7 Data Models .. 53
5.8 External Inventory Integration .. 53
5.9 Workflow Processes .. 54

 Controller Workflow Pattern ... 54
 Activation Workflow Structure: Before - Activate - After .. 54
 Workflow States ... 54
 Business Processes ... 55
 Using Cache with Inventory... 55
 Starting Workflow from Inventory UI .. 55
 Interworking with NNMi and NA ... 56
 Workflow Job Persistence ... 56
 Business Calendars .. 56
 Considerations for Custom Workflow Nodes ... 56

5.10 Solution Monitoring .. 56
 OIDs for Traps Emitted from HPESA ... 57

5.11 Northbound Interface ... 57
 Workflow Contract ... 57
 Using Listener and Sender Modules .. 58

 4

 Using Web Service Servlets .. 58
 Service Order Registry .. 59

5.11.4.1 Modes of Operation .. 59
5.11.4.2 Idempotency ... 60
5.11.4.3 Retention Policy.. 61
5.11.4.4 Life-Cycle States .. 61

Chapter 6 HPE Service Activator Platform ... 62
6.1 Cluster Platform ... 62
6.2 Cluster Installation and Setup .. 63
6.3 Workflow Load Distribution .. 64

 Internal Load Balancing, Virtual IP Address ... 65
 External Load Balancing .. 66

6.4 Standby Sites for Disaster Recovery .. 66
6.5 Internet Protocol Versions (IPv4, IPv6) .. 67
6.6 Managing an HPE Service Activator Cluster ... 67

 User Interface Functions for Cluster Nodes.. 67
 Synchronizing Time on Cluster Nodes ... 67

Chapter 7 Roles, Privileges and Authentication .. 68
7.1 System User and Predefined Roles .. 69
7.2 Assigning Privileges to Roles ... 69

 User Interface .. 70
 Workflows ... 70
 Inventory ... 70
 Deploying Plug-ins.. 70

7.3 Authentication and Assigning Roles to Users ... 70
 Native Authenticator Module ... 71
 OS-based Authenticator Modules .. 71
 Role Mapping ... 71
 LDAP Authenticator Module ... 71
 Role Mapping .. 72

7.4 Organizing Users in Teams .. 73
7.5 Light Weight Single Sign On ... 73
7.6 SPNEGO... 74

Chapter 8 Common Network Resource Model .. 75
8.1 Adapting the CNRM for a Solution .. 75
8.2 CNRM Workflows ... 76
8.3 CNRM on the Inventory User Interface ... 76
8.4 Model Configuration Data ... 76
8.5 Object Classes of the CNRM ... 77

 Bean Class Component... 79
 Bean Class Zystem ... 79
 Bean Class NetworkElement ... 81
 Bean Class ElementComponent .. 82

 5

 Bean Class Interface .. 83
 Bean Class Location ... 85
 Bean Class Network ... 86
 Bean Class NetworkAttachment ... 87
 Bean Class Link ... 87

8.6 Configuring CNRM Dataload from NNMi... 89
 Model Enrichment ... 91

Chapter 9 Web Service Designer .. 93
9.1 Defining a Web Service ... 93
9.2 Web Service Designer Tool .. 95

 Defining a Web Service Method ... 95
 Using a Template for Method Input as XML Document... 96
 Build and Deploy Web Servlet .. 98

9.3 Extracting WSDL Definition .. 99

Chapter 10 Usage Monitoring .. 100
10.1 Introduction ... 100
10.2 Configuration .. 100
10.3 User Interface.. 100
10.4 Threshold Violations ... 101
10.5 Usage Reports... 102

 Usage Records .. 102
 Generating a Usage Report ... 103
 Usage Report Example... 103

Chapter 11 Integration with NNMi .. 105
11.1 Positioning of NNMi ... 105
11.2 Summary of Benefits of Integration with NNMi .. 105
11.3 Readily Available Capabilities with NNMi ... 106

 Loading and Synchronizing of the CNRM .. 106
 UI Cross Launch from HPE Service Activator to NNMi .. 106
 UI Cross Launch from NNMi to HPE Service Activator .. 106

11.4 Components for Customized Integration with NNMi ... 106
 NNMLiaison plug-in .. 106
 SNMP trap module .. 107
 NNMi module.. 107
 Dataload module ... 107
 Workflow Nodes ... 107

11.5 Summary of Techniques for Configuring Integration on NNMi .. 107
11.6 Customizing and Configuring HPE Service Activator to Work with NNMi ... 107

 Workflows to Interwork With NNMi .. 108
 UI Cross Load ... 108

Chapter 12 Integration with NA .. 109
12.1 Positioning of NA ... 109

 6

12.2 Summary of Benefits of Integration with NA .. 109
12.3 Readily Available Capabilities with NA .. 110
12.4 HPE Service Activator Components for Customized Integration with NA ... 110
12.5 Summary of Techniques for Configuring Integration on NA ... 110
12.6 Customizing and Configuring HPE Service Activator to Work with NA ... 111

 Workflows to Interwork With NA .. 111
 Monitoring Integrity of Constructs Configured on Devices ... 111

Chapter 13 Development Hints .. 112
13.1 Configuring Database Credentials ... 112
13.2 Configuring Injection of Request Messages for Test... 112
13.3 Workflow Testing and Debugging... 112

Chapter 14 System Configuration .. 114
14.1 Number of Threads and Memory Usage ... 114
14.2 Data Sources .. 115

Chapter 15 Localization ... 116
 Localizing the Main UI Window and some other views .. 116
 Localizing JSFs ... 116
 Localizing Inventory UI ... 117
 Custom UI Files in Solution Source Hierarchy .. 117

 7

List of tables

Table 8-1 Fields of Component Bean ... 79

Table 8-2 Fields of Zystem Bean ... 80

Table 8-3 Fields of NetworkElement Bean .. 82

Table 8-4 Fields of ElementComponent Bean ... 82

Table 8-5 Fields of Interface Bean ... 84

Table 8-6 Fields of Location Bean ... 85

Table 8-7 Fields of Network Bean .. 86

Table 8-8 Fields of NetworkAttachment Bean ... 87

Table 8-9 Fields of Link Bean ... 87

 8

List of figures

Figure 1-1 Positioning of HPE Service Activator Activation System ... 14

Figure 1-2 HPE Service Activator in the eTOM Map .. 14

Figure 1-3 HPE Service Activator in HPE NGOSS Solutions ... 15

Figure 1-4 HPE Service Activator Components and Interfaces.. 16

Figure 1-5 Typical Service Activation Workflow .. 18

Figure 2-1 Network Architecture Modelled by Common Network Resource Model .. 23

Figure 2-2 Inventory User Interface Screenshot .. 24

Figure 2-3 Components Involved in Target Interactions ..25

Figure 2-4 Atomic Task in Service Builder... 26

Figure 2-5 Parameter Value Substitution for Generic Plug-in ... 27

Figure 2-6 Workflow Designer ... 29

Figure 2-7 Workflow Manager Architecture ... 30

Figure 2-8 User Interface Screenshot .. 31

Figure 3-1 Deployment Manager, Import Solution .. 34

Figure 3-2 Intro_Example Solution Directories ... 35

Figure 3-3 Deployment Manager, Deploy Solution ... 36

Figure 3-4 Intro_Controller Workflow in Workflow Designer ... 37

Figure 3-5 Intro_CreateConnection Workflow .. 38

Figure 3-6 Intro Tree in Inventory Tree Designer .. 39

Figure 3-7 User Interface with Test Messages ... 40

Figure 5-1 Javadoc for Class PARPlugin ... 48

Figure 5-2 Workflow in Designer with State ..55

Figure 5-3 State View of Workflow in Designer ...55

Figure 6-1 HPE Service Activator Platform Stack ... 62

Figure 6-2 HPE Service Activator Distributed Workflow Engine.. 63

 9

Figure 6-3 Internal Load Balancing .. 65

Figure 6-4 External Load Balancing .. 66

Figure 7-1 LDAP Directory Tree .. 72

Figure 8-1 Model Configuration Data Classes ... 77

Figure 8-2 Common Network Resource Model Objects ... 78

Figure 8-3 NNMi Dataload Branch of CRModel/Parameters Tree ... 89

Figure 9-1 Web Service Designer, Global properties ... 95

Figure 9-2 Web Service Designer, Method properties and parameters .. 96

Figure 9-3 Web Service Designer Tools menu .. 98

Figure 10-1 Usage Information View ... 101

Figure 10-2 System Status Indicating a Threshold Violation ..102

Figure 10-3 Usage Record example ..102

Figure 13-1 Debug Interaction Window ... 113

 10

Install Location Descriptors

The following names are used to define install locations throughout this guide.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of HPE Service Activator.
The UNIX® location is /opt/OV/ServiceActivator
The Windows® location is
<install drive>:\HP\OpenView\ServiceActivator

$ACTIVATOR_ETC The install location of specific HPE Service Activator files.
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\etc

$ACTIVATOR_VAR The install location of specific HPE Service Activator files.
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\var

$ACTIVATOR_BIN The install location of specific HPE Service Activator files.
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is
<install drive>:\HP\OpenView\ServiceActivator\bin

$JBOSS_HOME The install location for WildFly.
The UNIX location is /opt/HP/jboss
The Windows location is <install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the HPE Service Activator JEE components.
The UNIX location is
/opt/HP/jboss/server/standalone/deployments
The Windows location is
<install drive>:\HP\jboss\server\standalone\deployments

$JBOSS_EAR_LIB Location for libraries (Java *.jar files) to be executed by the HPESA engine
(workflow manager and resource manager):
$JBOSS_DEPLOY/hpsa.ear/lib

$JBOSS_ACTIVATOR More specific location of HPE Service Activator UI components deployed in
WidFly:
$JBOSS_DEPLOY/hpsa.ear/activator.war

 11

Conventions

The following typographical conventions are used in this guide.

Font What the Font Represents Example
Italic Book or manual titles, and

manpage names
Refer to HPE Service Activator, Workflows and the
Workflow Manager and the Javadocs for more information

Provides emphasis,
introduces a new term

You must follow these steps.

Identifies a variable or
parameter

Run the command:
InventoryBuilder <sourceFiles>

The assigned_criteria parameter returns an ACSE response.
Location descriptor $JBOSS_DEPLOY

Computer Text and items on the
computer screen

The system replies: Press Enter

Command names Use the InventoryBuilder command
Method names The get_all_replies() method does the

following…
File and directory names Edit the file

$ACTIVATOR_ETC/config/mwfm.xml
Window/dialog box names In the Test and Track dialog…

Computer Bold Text that you must type At the prompt, type: ls -l
Keycap Keyboard keys Press Return
[Button] Buttons on the user

interface
Click [Delete].

Click the [Apply] button.
Menu Items A menu name followed by a

colon (:) means that you
select the menu, then the
item. When followed by an
arrow (->), a cascading
menu follows.

Select Locate:Objects->by Comment

 12

In This Guide

This guide provides an overview of the HPE Service Activator product, including its architecture and components, and
provides information to help plan and design Service Activated-based solutions.

Audience

The audience for this guide is the Solutions Integrator (SI) who will plan and deliver solutions, particularly Sis with
architect roles. It is not intended for the end user. IMplementors will need additional detail from manuals for the different
components of tools within the HPE Service Activator product. The SI is expected to have some or all of the following
background:

• Understanding and working knowledge of:

o UNIX® commands

o Windows® system administration

• Familiarity with Java™ and XML

• Understanding of security issues

• Understanding of the customer’s problem domain

Introducing HPE Service Activator 13

Chapter 1
Introducing HPE Service Activator

HPE Service Activator is a customizable product that performs tasks to activate services offered by providers of
converged IT and network communications services. It can perform any activation task on elements of any infrastructure
comprising network elements and IT servers, when the targets can be configured through command or request interfaces,
whether they use command lines, web services, or any other protocol. The product is typically deployed to perform highly
repetitive activations where automation brings a significant advantage in terms of cost saving, speedup and ensuring
correct activation, but it is possible to use HPE Service Activator to automate any process that requires the execution of a
sequence of automated command interactions.

The core of HPE Service Activator is a generic workflow engine. To build a solution for activation of services in a specific
domain the core must be supplemented with customized data models, workflows and plug-ins for interaction with the
elements in the provider’s environment. Workflows must implement the activation processes needed to add, modify or
terminate services for each of the provider’s customers. The product includes tools to assist the SI in the customization
process.

This overview manual introduces the way HPE Service Activator works in a deployed solution as well as the tool set and
the customization process that the SI must go through in a solution delivery project.

1.1 Positioning an HPE ServiceActivator Solution

Described here is the positioning of HPE Service Activator for use as an activation system in fulfillment solutions. It should
be noted that this positioning is not exclusive. Due to the flexibility of HPE Service Activator workflows and plug-ins, it is
possible to customize solutions also for other domains, notably network configuration as well as test and diagnostics, also
known as network troubleshooting applications.

 Positioning in the Provider’s Environment

An activation system built with HPE Service Activator will typically be part of a complete service fulfillment solution driven
by requests from a CRM (Customer Relationship Management) system. The fulfillment solution may comprise also order
management (OM) and resource inventory, and it may be integrated with other Operation and Business Support Systems
(OSS and BSS) outside of fulfillment.

The HPE Service Activator-based activation system typically has a built-in data repository commonly referred to as
inventory: resource inventory, which is used to allocate resources in the network and keep data about devices which are
activated, and service inventory which records services and their parameters as they are activated. Alternatively, if
required, the activation system can access the inventory data in an external inventory system.

The positioning of the activation system between a BSS system, which drives it with requests for service activation, and
the network and service infrastructure on which services are activated is shown in Figure 1-1. In this diagram the flow of
control is from north to south. The network and service infrastructure may contain many different kinds of network
elements and data servers. The latter can belong to a service infrastructure, for example GSM or IMS: HLR, HSS, servers
for voice mail, SMS, MMS, etc. They can also be related to Internet data services: DHCP, RADIUS, email, etc. In general any
server which needs to be activated with information about a new customer/subscriber can be part of the infrastructure
that is known to the HPE Service Activator system.

Introducing HPE Service Activator 14

Figure 1-1 Positioning of HPE Service Activator Activation System

 BSS: CRM or
Service Order Management/Provisioning

System

HPSA Activation
System

Network and Service Infrastructure

MiddlewareData ServerElement
Manager

Voice
softswitch

Network
Element

Network
Element

Provider’s network and customer devices

Network
Element

Network
Element

Provider’s network and customer devices

Inventory
System

Other OSS

It is typical, but not mandatory that HPE Service Activator is driven by requests forwarded by an external BSS system, as
discussed above. It is also possible to implement a stand-alone system where requests to start workflows are entered
directly from the user interface on HPE Service Activator.

 Positioning in the TMF NGOSS Maps

For the reader who is familar with TMF’s (NGOSS) eTOM map of the processes which are executed by a communications
service provider to plan, deliver and maintain services, HPE Service Activator can be characterized by its position on the
map as shown in Figure 1-2. HPE Service Activator helps to automate the processes designated in eTOM as ‘Service
Configuration & Activation’.

Figure 1-2 HPE Service Activator in the eTOM Map

HP
Service

Activator

Introducing HPE Service Activator 15

HPE Service Activator can also be positioned on TMF’s emerging Telecom Application Map (TAM). TAM describes a
number of so-called applications (with considerable overlap), grouped in domains and sub-domains, from which a
complete OSS can be constructed. The functions of HPE Service Activator fall mainly in the sub-domains of Resource
Inventory Management, Resource Order Management and Service Order Management.

 Positioning in the HPE OSS Blueprint

HPE offers a range of OSS solutions, all derived from an overall blueprint, which is similar to the TM Frameworx maps, as
shown in Figure 1-3.

Figure 1-3 HPE Service Activator in HPE NGOSS Solutions

R
es

ou
rc

e
Se

rv
ic

e
Cu

st
om

er

Product &
Commercial

Customer
Mgmt

Customer &
Resource

Service
Mgmt

Resource
Mgmt

Product
Catalog

Customer Management

Product to
Service
Catalog

Subscription
Inventory

Customer
Impact

Management

SLA
Dashboard

Service Order
Management

Change
Management

Service
Catalog

Customer
Service

Inventory Incident and
Problem

Management

Service
Impact

Management

Service
Quality

Management

Customer
Experience
Assurance

Design & Assign

Service Activation

Workforce
Management

Configuration
Management

Resource
Catalog

Resource
Inventory

Fault
Management Performance

Management
Probe

AnalysisIP / IT / EMS
Domain Mgmt

Fulfillment AssuranceCommon Data

Test &
Diagnostics

Service
Hierarchies

Customer Help Desk
Interaction Mgmt

SLA Management
Reporting

Decomposition and Orchestration

Multi-Channel Access (Back Office, Customer, eBonding)

Customer Order Entry

Customer Order Management

Discovery &
Reconciliation

Design & Assign, comprising the selection and reservation of resources for shared or exclusive use by a service instance,
and Service Activation, comprising the interactions with network elements or systems in the provider’s service
infrastructure that are needed to activate a service instance, are identified in the blueprint as separate functional building
blocks. HPE Service Activator is normally always used to implement Service Activation, and it is used to implement Design
& Assign when that function is automated. It is recommended for solutions intended to be reusable to clearly separate the
two functionalities, i.e. not combine them in the same workflows.

HPE Service Activator also has some capabilities in the Common Data column, identified as the Service Inventory and
Resource Inventory functional building blocks. Generally these capabilities are not used to build master inventory
systems, but primarily to build data models for internal purposes of the solution that is based on HPE Service Activator.
Solutions may integrate and synchronize with external inventories.

1.2 HPE Service Activator Component Architecture

In Figure 1-1 there is a single box ‘HPESA Activation System’. This box has a number of interfaces. Here we open the box
and consider the components inside it. The various interfaces into the box are handled by different internal components.
Figure 1-4 shows the major components: the workflow manager, the resource manager, and the web server, all of which
run on the JEE platform WildFly. The web server is actually part of WildFly, whereas the other components are HPE
Service Activator additions to the platform. For further discussion of the platform and how HPE Service Activator can
scale by using a cluster of servers (Note: not based on WildFly clustering).

Introducing HPE Service Activator 16

This section only scrapes the surface. For more information about the components and the associated development tools,
read the next chapter and then go to the dedicated manuals as needed.

The workflow manager and the resource manager together make up the workflow engine of HPE Service Activator. The
workflow engine does the process work of the activation system by executing workflow jobs.

 Workflows

A workflow is a definition of an executable process. The definition is at a detailed algorithmic level, suitable for control of
interactions with activation targets. HPE Service Activator workflows should not be confused with business process
workflows as supported by languages like BPEL. It is possible, however, to implement processes which interact with
human operators as well as external system and have significant duration in HPE Service Activator. Workflows are
composed from a set of action primitives known as workflow nodes. They are executed by the workflow manager, one
node at a time. The crucial step in an activation workflow is the Activate node. This node executes an activation task
which is where the actual interaction with activation targets take place.

 Plugins and activation tasks

Activation tasks consist of one or more atomic tasks; each atomic task interacts with a specific activation target and is
implemented as an element of the plug-in for that target, for example a specific type of network element (vendor and
model) or IT server, for example LDAP, or a voice softswitch. A plug-in is a pluggable component which is managed by
the resource manager. A task that consists of more than one atomic task is called a compound task. A compound task is
executed as a transaction: the atomic tasks are executed sequentially, and if one of them fails, any atomic tasks that have
already finished successfully will be undone by executing their “undo” parts, so that the net effect of the compound task
will be nil. The undo part of each atomic task restores the state of the target as it was before the atomic task was
executed.

Figure 1-4 HPE Service Activator Components and Interfaces

Workflow Manager

wf wf wf

Workflow Manager

wf wf wf

Resource Manager

plug-in plug-in

Resource Manager

plug-in plug-in

Data repositories
(Oracle)

Web Server

CRM System

Infrastructure
activation targets

Web Browser

Introducing HPE Service Activator 17

HPE Service Activator includes a few generic plug-ins, which are not for specific devices or target systems, but for a
certain of type of interface, such as a command line interface (CLI) or HTTP message exchange interface. When a generic
plug-in is used, it will have pre-implemented atomic tasks which handle the communications protocol, but must be
customized with additional control information that determines the specific commands or messages that are exchanged.
In these cases a plug-in dedicated to a specific activation target comprises the generic plug-in plus the additional
customization. Such plug-ins occur frequently.

To save time for connection establishment and session authentication it is often desirable to allow several successive
activation dialogs with a target equipment, i.e. to activate different service instances, to occur within a single session
between HPE Service Activator (a plug-in) and the equipment. This mode of operation is facilitated by supporting pools
of reusable connections (preauthenticated sessions) within the resource manager.

Plug-ins may be reusable from one solution to another, and a list of plug-ins that have been built is maintained as a “plug-
in library”. However, plug-ins are typically designed to fit the requirements of a particular provider’s solution. To limit the
implementation effort they are not generally designed to be able to control all features of the target, and may therefore
require additional work when reused for a different project.

 Solution Data Repositories (Inventory)

It will often be necessary as steps of activation processes implemented with workflows to access data describing
resources in the provider’s infrastructure as well as the services (instances) that have been activated. HPE Service
Activator has the capability to model and maintain repositories of data that is needed by the solution, commonly referred
to as resource and service inventory data. There is also a user interface for working with inventory data.

 Northbound interface

The native northbound interface of the workflow manager is a Java RMI interface which supports a range of methods to
inspect and control the state of the workflow manager. In particular it is possible to request the workflow manager to start
a workflow job, specified by name and with parameters. The RMI is normally not used directly by an external requester,
but all other NBIs are based on it.

1.3 Solution Packages

For frequently occurring types of activation solutions pre-customized packages of plug-ins, workflows and more, are
maintained and made available for delivery projects. These packages allow rapid delivery of solutions. Depending on the
provider’s environment some customization will still be required, to adapt to the provider’s specific network architecture,
processes and service definitions, to develop any additional plug-ins needed for targets not already supported, and to
integrate with other systems.

Solution packages exist for layer 2 (Metro Ethernet) and layer 3 (IP) VPN services and for residential services delivered
over IP networks (Internet access, IPTV, etc.).

1.4 A Typical Workflow

Workflows for activation of services typically follow a pattern as depicted in Figure 1-5.

Introducing HPE Service Activator 18

Figure 1-5 Typical Service Activation Workflow

activate service

provision
service

begin
activation

derive
parameters

execute
tasks

store
results

generate
messages

service infrastructureservice infrastructure

end

inventory

In an actual workflow, each box as shown in Figure 1-5, will require several workflow nodes, the number depending on the
complexity of the details of the process. At the high level, as shown, the process is typically as follows:

• A customer order is entered into a CRM system, where it is validated, approved and forwarded to the next level
of processing. In a simple case it can go directly to Service Activation. In a more complex case, an order
management process may be needed to decompose an order which is for a bundle of services and to separate
the request for automatic activation, which can be handled by HPE Service Activator, from other tasks which
must be performed manually or passed on to partners of the provider.

• The activation system based on HPE Service Activator receives the request for activation of a service, maps to
the appropriate workflow and starts an instance of the workflow as a job.

• The workflow job inspects the parameter values from the request and calculates or gathers additional necessary
parameter values.

o For example, if a service type is specified as ‘Gold’ or ‘Silver’, the corresponding technical values for
bandwidth and similar parameters will be looked up. For a complex technology, the derivatioin can also
be complex.

o Resources needed to satisfy the request, such as an access port, for example on a DSLAM, where
customer premises equipment can be connected, are allocated from resource inventory. Resource
identifiers will also be activation parameters. Allocated resources are recorded in resource inventory.

o Parameter values, for example selection of a device or port, can also be obtained from a dialog with an
operator.

• When all parameters are ready, the necessary activations are executed, ideally as a single task, which may be
compound.

o If an atomic task within a compound task fails, any preceeding atomic tasks are automatically rolled
back. This logic is not visible in the workflow.

• If the activation was successful, the newly activated service will be recorded in service inventory. If it failed, any
reserved resources are again released.

• A summary of the action of the workflow, including service id, main parameter values, success or failure, is
recorded in HPE Service Activator’s audit trail.

• A response message to be returned to the requester is prepared. Success or failure indication and any relevant
parameters that were derived by the workflow are included in the message. The message is forwarded according

Introducing HPE Service Activator 19

to the protocol of the northbound interface. This may be done by a sender module or by the web service
interface after the workflow terminates.

• The response message is processed by the order handling system or CRM system. This is outside the scope of
the activation system

In actual implementations process logic is often divided over several workflows. A parent workflow can start instances of
child workflows and synchronize with their completion. An architecture is recommended where the northbound
communication to receive and respond to incoming request messages is separated from activation details that will differ
for each type of request. This topic will be discussed in Chapter 5.

1.5 HPE Service Activator Documentation

This manual provides an introduction and overview:

• Chapter 2 describes in more detail each of the components of HPE Service Activator that were introduced above
along with the tool(s) for customizing the corresponding part of a solution.

• Chapter 3 walks through a simple (not real) solution containing components of all the kinds introduced in the
first chapters.

• Chapter 4 provides a brief guide for planning a solution delivery project and identifies the topics to be covered in
the analysis phase which may be needed as a pre-sales activity to scope the delivery project.

• Chapter 5 discusses some design topics for the different components of a solution.
• Chapter 6 describes how HPE Service Activator can be deployed on a cluster of JBoss platforms for scalability

and high availability.
• Chapter 7 describes the use of roles to control access and customize the user interface for different groups of

users.
• Chapter 8 describes the Common Network Resource Model.
• Chapter 9 describes the Web Server Designer, a tool to generate a web service servlet dedicated to a solution.
• Chapter 11 describes the integration of HPE Service Activator and HPE NNMi.
• Chapter 12 describes the integration of HPE Service Activator and HPE Network Automation (NA).
• Chapter 13 gives some useful hints about testing and debugging.
• Chapter 14 gives advice about configuring an HPE Service Activator system.
• Chapter 15 gives an overview of the process of localizing an HPE Service Activator solution.

For further familiarization with HPE Service Activator it will be useful to study some of the example material that is
provided as part of the installable kit. A simple example is introduced in Chapter 2. A more thorough example - using
management of layer 2 VPN services as use case - complete with inventory data model, workflows and plug-in code is
fully documented in a separate manual, Putting HPE Service Activator to Work: A Sample Service Scenario for VPLS.

For an actual customization and solution delivery project, detailed manuals are provided for installation on each
supported operating system platform and for the major components of HPE Service Activator and the associated
customization tools:

• HPE Service Activator, Workflows and the Workflow Manager provides all the information needed to understand
workflows in detail, including descriptions of the workflow node and workflow manager module libraries, how to
extend the libraries with new nodes and modules, and the workflow designer tool.

• HPE Service Activator, Inventory Subsystem explains how to customize a solution data repository model with
definitions of each entity class (database table) and the user interface to present the data model. This manual
also describes the Inventory Builder, the tool used to process inventory definitions.

• HPE Service Activator, XMaps explains how to customize a solution to use a graphical representation to model
solution data. The manual also described the XMap Designer, a too used to configure XMaps.

Introducing HPE Service Activator 20

• HPE Service Activator, Developing Plug-Ins and Compound Tasks explains the concepts of plug-ins, atomic
tasks and compound tasks, and how to use the Service Builder tool to build plug-ins and customize compound
tasks.

• HPE Service Activator, Solution Separation and the Deployment Manager explains how customized solutions can
be managed on a target system: installed, inspected, removed. The Deployment Manager is the tool to use for
managing solutions.

There is one manual describing the HPE Service Activator and its user interface in a generic way for users and system
administrators: HPE Service Activator, User’s and Administrator’s Guide. You should read that manual as an introduction
and to understand how you can supply solution specific information.

Solution Component and Tools 21

Chapter 2
Solution Component and Tools

In Chapter 1 the components of HPE Service Activator were introduced: workflow manager, resource manager, data
repositories. Correspondingly, a customized solution will contain different components: workflows implementing
activation processes, plug-ins implementing target interactions, and definitions for the required data model. On top of the
workflows it will generally be necessary to add a northbound interface for receiving and responding to service activation
requests. Depending on specific requirements it may also be necessary to integrate with other OSS/BSS systems.

HPE Service Activator comes with a set of tools which make the process of customization a joy. They will be introduced in
this chapter and each one is thoroughly documented in one of the manuals listed at the end of Chapter 1. Here is an
overview of this chapter:

• The first section, “Database Repositories”, describes the key role that is played by the prerequisite database to
hold a number of repositories that are used by HPE Service Activator.

• The second section, “Solution Data Repositories ”, introduces the capabilities of HPE Service Activator to manage
repositories of resource and service data, also known as inventory, including the tree-structured inventory user
interface. The tools in this area are the Inventory Builder and the Inventory Tree Designer

• The third section, “Plug-Ins and Activation Tasks”, introduces the concepts of HPE Service Activator plug-ins,
including plug-ins that are developed as new Java source code by the solution integrator as well as generic plug-
ins that can be customized. The tool in this area is the Service Builder.

• The fourth section, “Workflows”, explains the capabilities and architecture of the workflow manager and
introduces the construction of workflows. The tool for building workflows is the Workflow Designer.

• The fifth section, “User Interface and Roles”, introduces the user interface of HPE Service Activator.
• The sixth section, “Interfaces for Integration”, describes how an HPE Service Activator solution is integrated with

other OSS/BSS systems, primarily how to construct a northbound interface for receiving and responding to
service activation requests. There is no tool dedicated to building NBIs.

• The seventh section, “Integration with Other HPE NGOSS Products: NNMi, NA, uCMDB”, introduces the
components which are present in HPE Service Activator to enable integration with the mentioned products.

• The final section, “Solution Deployment”, describes how to organize, package and deploy all the components of a
solution. The Deployment Manager is the tool that is used to deploy and manage one or more customized
solutions on the HPE Service Activator platform

The next chapter, “An Example Solution: Intro_Example”, walks through a small example solution which does not activate
devices in a real environment, but includes examples of all the solution components that have been discussed in sections
of this chapter as material for study.

2.1 Database Repositories

HPE Service Activator uses several data repositories, all stored in tables of one or more databases, for different purposes.
The first five repositories listed here are held in predefined tables that are created when HPE Service Activator is installed.
These five repositories must all be store in the same database schema, known as the system database.

• Static Repository - customized items deployed on the system: workflows, plug-ins, compound tasks, inventory
presentation tree definitions; the static repository for atomic and compound tasks is also called the task
repository,

• Workflow Job Repository - state information about running workflow jobs and about cluster nodes
• Auxiliary Repository - temporary data for use under workflow control

Solution Component and Tools 22

• Audit and Message Repository - audit trail collected from running workflow jobs and modifications of inventory
data, messages shown to operators

• SOR Messages – service order requests from external systems that might expect a response when the request is
processed

• Statistics Repository - server usage and workflow job statistics
• Solution Data Repository (Inventory) - the data model defined by the SI, primarily intended but not restricted to

store data pertaining to infrastructure resources (network elements, servers, applications, etc.).

The database product used to manage all the repositories is a prerequsite for installing and running HPE Service
Activator. Two options exist for the database product to use: Oracle Database and Postgres Plus Advanced Server
(PPAS) from EnterpriseDB. Both of these products are compatible with HPE Service Activator in terms of the SQL
statements and responses that are exchanged over JDBC connections and both options are supported.

By default, all the repositories are held in the system database which is defined when HPE Service Activator is installed.
The solution data (inventory) repository can be held in another databases, or even across multiple databases. To control
the use of database servers and of physical disk space it is possible to organize the tables in different tablespaces.

The different components of HPE Service Activator all use JDBC database connections to the repositories that they need
to access. Database connections are organized in pools, known as data sources. A base set of pools are configured with
names and sizes when HPE Service Activator is configured at installation time. The standard configuration can be
changed to accommodate additional needs in a solution (see “Data Sources” in Chapter 5).

2.2 Solution Data Repositories (Inventory)

Repositories of data representing resources and services, or indeed anything that is needed, can be incorporated in an
HPE Service Activator solution. Such repositories can be accessed from workflows as well as from the user interface. Data
repositories are commonly referred to as resource inventory and service inventory, but these concepts and the distinction
between them are not implied by the tools that are used.

The HPE Service Activator core product includes a Common Network Resource Model (CNRM) which is suitable for
frequently managed new generation networks based on IP, Ethernet and MPLS technology. The network architecture
that the CNRM is intended for is depicted in Figure 2-1.

Such networks may be used for a number of purposes, implying the CNRM can be used in several different activation
solutions:

• to provide corporate VPN services;
• to carry the traffic between (residential and business) customer sites and provider platforms for a range of

services: Internet access, VoIP, IPTV;
• to carry other provider traffic, for example between different platforms in the provider’s service network such as

mobile backhaul from BST to BSC.
• to support a virtualization over different components and elements from the provider’s network.

Solution Component and Tools 23

Figure 2-1 Network Architecture Modelled by Common Network Resource Model

CE Router

CE Router

CE Router
PE Router

Provider MPLS
Core Network

PE Router

PE Router

Provider Access
Network

Agg switch

Agg switch

Access
switch

L2 Access
topology

Access
switch

VODVODIP-TVIP-TV

Internet

PE Router

The CNRM can be used, possibly with extensions and adaptations, for solutions in the NGN space. For solutions in other
spaces a different model must be built as needed. For example, a solution to activate mobile services will need to model
the various servers involved, like HLR, etc., which must receive information about subscribers, but the solution has no
need to know the radio and backbone transmission networks.

In general the data model must contain the entities that are needed by the activation processes. It must be defined in
terms of entity classes. The solution designer may define any desired entity classes.

The data for each entity class will be stored in a separate table in the underlying database, and data entities can be
accessed through Java bean objects from workflows. On the user interface different forms are used to create, display and
edit entities of different classes.

Entity class definitions, known as “resource definitions” or “resource bean definitions” (the name does not imply that every
entity must represent a resource), are given as compact XML-formatted files, one file per entity class. The definition
format has a number of powerful features to allow the definition of fields, search keys, entity relationships, etc.
Relationships between different entities are represented with foreign keys, i.e. inter-table pointers. Inheritance can be
used to define an entity class which extends and modifies an existing entity class.

Deploying a data model from its definition in terms of entity classes is done with a tool, the Inventory Builder. The
Inventory Builder reads the definitions and generates all the code that is needed for deployment: SQL statements that will
create the database tables with indexes etc., Java code for beans to access the data for each entity class, and Java Server
Pages (JSPs implemented with Struts) for forms to access the data from the user interface. The beans are used by the
JSPs as well as by workflows. A number of workflow nodes are available in the built-in node library to create, query,
reserve, release, update and delete repository data by means of the beans. The customizer will be aware that the beans
and JSPs are created and deployed, but does not normally need to look into them.

HPE Service Activator’s user interface for accessing data in the repositories, known as the inventory user interface, is
based on an explorer-style expandable tree structure where data entities are associated with branches of the tree. Entity
relationships are used to define the child branches which appear when a branch is expanded. An example screenshot
from the CNRM is shown in Figure 2-2. There is a graphical tool, the Inventory Tree Designer, to build tree definitions,
branch by branch. A solution can include one or more tree definitions.

Solution Component and Tools 24

Figure 2-2 Inventory User Interface Screenshot

For a description of the inventory user interface, see the chapter “Inventory User Interface” in HPE Service Activator,
User’s and Administrator’s Guide.

To build a working acquaintance with resource definitions, refer to example material introduced in Chapter 4 For a full
description of the details of resource definitions, tree definitions and the tools to manage them, refer to HPE Service
Activator, Inventory Subsystem.

For some solutions it may be necessary to integrate HPE Service Activator with an external inventory. Approaches to
address such a requirement are discussed in Chapter 4.

2.3 Plug-Ins and Activation Tasks

In activation processes controlled by HPE Service Activator workflows, interactions with target devices or systems,
possibly through element managers, take place in Activate nodes. Activate nodes execute activation tasks. Two
components of HPE Service Activator are involved in the execution of an activation task: the workflow manager and the
resource manager, as shown in Figure 2-3. Also shown are plug-ins and optional connection pools that exist within the
resource manager.

Solution Component and Tools 25

Figure 2-3 Components Involved in Target Interactions

resource manager

...

workflow manager
workflows

plug-in plug-in plug-in

connection
pool

Network and service
infrastructure

The task can be a single atomic task, or it can be a compound task, i.e. a list of atomic tasks. To execute an activation task
the workflow manager will retrieve the definition of the task from the task repository and, if it is a compound task, control
the sequencing of atomic tasks and rollback if a failure occurs. Parameters of a compound task are mapped to parameters
for each atomic task. Each atomic task invokation with parameters is passed to the resource manager which will retrieve
the corresponding plug-in Java class method from the task repository and execute it. During rollback, atomic tasks will be
invoked in undo mode. Atomic tasks are responsible for communication with target devices or systems and pass to them
for execution all appropriate commands or messages.

To execute an atomic task a plug-in will generally first setup an authenticated session with the target in question and
then execute a command-response dialog with the target through the session. Authenticated sessions may be reused
over multiple activation dialogs. In this case the plug-in will return the session to a connection pool after use, and for new
dialogs reacquire a session from the connection pool. Connection pooling is a built-in capability of the resource manager.
Connection pools can be set up statically, as a system administrative task, or they can be created dynamically, when
needed by plug-ins.

For each solution one or more plug-ins will be needed depending on the set of targets on which services must be
activated. In many cases it will be possible to use one of the generic plug-ins, in other cases it may be possible to reuse a
dedicated plug-in from a previous solution. Otherwise it will be necessary to develop a new dedicated plug-in.

 Plug-In Development

Development of a new plug-in entails the writing of the atomic tasks as Java methods. The Service Builder tool is a
graphical development environment that supports this work. Figure 2-4 gives an idea of how the Service Builder works
and what must be added to implement a plug-in. Before the time of the screenshot a new plug-in called doc.Example
has been defined in a popup form, then an atomic task called sample_atomic has been initiated using another popup
form. The code that is shown (including the prefix task_ for the method name) has then been generated by Service
Builder with placeholders for comments that will be used to generate plug-in documentation as Javadoc, and for the code
to implement the actions of the atomic tasks in the do and undo modes, respectively. The sample_atomic task takes
two parameters named param0 and param1 (thus defined in the popup screen, any names can be used), the runtime
values for which must be supplied by the invoking Activate node in the workflow that initiates execution of the task.

Solution Component and Tools 26

Figure 2-4 Atomic Task in Service Builder

The do mode (case DO_AND_CHECK) of an atomic task must always be implemented with appropriate Java code. The
undo mode must also be implemented if it shall be possible to use the atomic task in a compound task in any sequential
position other than the very last one. If there is no such requirement, implementation of the undo case can be omitted.

An atomic task, when executed in the do mode, may fail, when for some reason it is not possible to complete the
necessary interactions with the targets. If possible, the atomic task must fail cleanly, the target should be left in the same
state as when execution of the task began. As Figure 2-4 shows, an atomic task must return an ExecutionDescriptor.
The ExecutionDescriptor makes it possible to distinguish between success and failure, and between clean failure and
“dirty” failure, i.e. the second order failure, when a change that was made to the target cannot be removed. The
ExecutionDescriptor also includes a descriptive text field. The information collected from all atomic tasks that are
executed in the forward path (do mode) of an activation task is passed back to the calling workflow and may
subsequently be processed in the continuation of the workflow. Result information from atomic tasks executed in the
rollback path (undo mode) is not made available to the workflow.

The Service Builder packages a plug-in as a single file in an archive format known as a plug-in archive identified by the file
name suffix .par. To make use of existing Java libraries in a plug-in, the .jar files can be included in the LIB folder of the
plug-in archive. Plug-in archives can be deployed into the task repository of an HPE Service Activator system.

Compound tasks do not belong to plug-ins. Typically a compound task will include atomic tasks from more than one plug-
in. The Service Builder can also be used to build static compound tasks, i.e. compound tasks with fixed member atomic
tasks. An XML-formatted file which describes the compound task is produced for distribution.

The Service Builder can also deploy plug-ins and compound tasks into HPE Service Activator’s task repository from the
distribution files (.par and .xml, respectively).

Solution Component and Tools 27

 Customizing Control Templates for Generic Plug-ins

Three generic plug-ins are supplied as part of the HPE Service Activator core product: the generic CLI plug-in, the generic
HTTP plug-in and the LDAP plug-in. These plug-ins implement communication protocols for command line interface
communication, for HTTP, and for LDAP respectively. But they do not include information about commands or HTTP
messages to send or what to expect as responses. The controlling information must be prepared by the calling workflow
and supplied in the form of task parameters.

The CLI plug-in is controlled by an XML-formatted dialog control document. A dialog, for example with a complex router
device, may comprise a large number of commands, and so the control document may be quite large. The control
document will contain information about how to establish a session (log in) with the device, a sequence of command-
response exchanges, and finally how to terminate the session. The specification for each command response exchange
includes the exact command line to be sent, the expected response (next prompt) and patterns that allow recognition of
possible error responses. Note that even a long dialog with many commands is executed as a single atomic task. In order
to ensure clean failure of the task when an error response is received for a command, the CLI plug-in supports rollback of
the command sequence (sub atomic task rollback). Command sequence rollback uses rollback commands that can be
specified for each command-response exchange that is part of the sequence.

The HTTPPost atomic task supported by the generic HTTP plug-in makes a single HTTP Post call to a specified target.
It supports features such as HTTPS with exchange of certificates and use of a proxy. The main parameter to achieve the
intended effect is the HTTP Post message body, typically in SOAP format. This plug-in can be used when all necessary
message formats are well known and simple enough that it is convenient to prepare templates for them and decode the
responses by parsing XML in the workflow.

The LDAP plug-in can retrieve information from an LDAP directory and create, modify and delete entries. The dialog it
performs with the directory service is also controlled by an XML-formatted dialog control document.

The generic CLI and HTTP plug-ins are quite different. But in both cases, there is a main parameter which takes the form
of a document, the command sequence dialog control document and the HTTP message body, respectively. And in both
cases the document will typically include a number of strings whose values must be sourced from variables of the
workflow job that invokes the atomic task, representing items such as: user name and password for authentication of the
session/request by the target, names of devices, ports, interfaces and other objects that exist and must be manipulated
on the target. The way to handle this situation is to prepare a template document with replaceable placeholders for
variable values, and to use a workflow node to substitute the actual values for the placeholders to obtain the final
document to submit to the plug-in. The resulting workflow logic will be as shown in Figure 2-4, where the TransformXML
node is used to achieve the parameter value substitution. For simple cases the ComposeMessage node can also be used.

Figure 2-5 Parameter Value Substitution for Generic Plug-in

CLI
plug-in

device

template (.XSL):
parameterized
description of
dialog

template (.XSL):
parameterized
description of
dialog

workflow execution

login sequence

CLI command-reply
dialog

parameter
values
parameter
values

TransformXML

actual dialog
(XML)
actual dialog
(XML)

workflow continuationActivate

Solution Component and Tools 28

In summary, when a generic plug-in is used, the target specific interaction control information will be found, not in the
plug-in, but in the control document templates.

2.4 Workflows

Workflows are programs which define the activation processes of an HPE Service Activator solution. An execution of a
workflow is called a job. The workflow manager is the operating system for workflow jobs: it starts new jobs when called
upon to do it, it executes the workflow nodes of running jobs in the proper sequence, it persists and safeguards the states
of running jobs, and it manages the sharing of a number of execution threads by all concurrent jobs. Refer to chapter
Chapter 6 for a description of how the workflow engine can scale by deploying the workflow manager on a cluster of HPE
Service Activator servers.

As programs, workflows consist of a number of directionally connected nodes. Each node performs a basic action. The
workflow manager executes one node at a time:

• select a ready job
• run the next node for the selected job
• save the state of the job to the workflow job repository

Persisting the states of workflow jobs between node executions makes the workflow engine robust. It allows HPE Service
Activator to stop and restart at any time, whether intended or unintended, and workflow jobs will just continue from the
point where they were persisted. In practice it is not necessary to persist the state after every single node, therefore it is
possible per workflow node to disable saving of the job state to optimize on processing time.

The state of a workflow job consists primarily of its case packet: the values of a set of variables, some common ones are
predefined for all workflows, others are added as part of the workflow definition.

A library of workflow nodes are available that can be used to compose workflows. Workflows are composed with the
Workflow Designer, a tool with a user interface that displays a workflow as a directed graph, with nodes connected by
arrows to represent their algorithmic sequence. Two special types of nodes allow the introduction of branching in the
sequencing logic, based on values of variables: rule nodes, for two-way branches, and switch nodes, for n-way branches.
Figure 2-6 is a snapshot of the Workflow Designer, with the library from which nodes can be picked on the left and the
workflow chart with nodes, arrows and branches on the right.

Solution Component and Tools 29

Figure 2-6 Workflow Designer

The built-in node library covers the functions which are generally needed in activation workflows. Nodes range from very
powerful ones which accomplish significant tasks, like transformations of XML documents, to simple ones, like comparison
of two values or simple string manipulation. Functions accomplished with nodes include:

• inventory operations: create, query, update, delete repository data using beans
• reserve and release resources
• execute activation tasks
• spawn child workflow jobs
• wait to get data from outside the workflow job: from an operator through a popup dialog, from another workflow

job, or from an external source via a programmatic interface
• send message (or email) to an external system
• receive service order requests, process them and eventually send a response to the external system, assuring

that the same incoming message request will not be processed twice
• various transformations of documents, typically XML formatted, for parsing of incoming request messages and

preparation of messages to be sent
• post messages to be shown to operators, process log entries for troubleshooting purposes and audit trail records
• liaison functions for integration with other relevant HPE products, (uCMDB).

Data manipulated by a workflow is held in variables that are passed to and from workflow nodes as input and output
parameters. Typically, the request message whose receipt triggers execution of a workflow is passed into the workflow job
in a preinitialized variable, the first nodes of the workflow will extract field values from the message into other, simpler
variables. Some of these values will be used as keys for retrieving data from repositories, and retrieved data will be placed
in further variables, etc., until all the parameters that are needed for the actual activation are held in a set of variables,
from where they are passed to the activation task through an activation node.

A number of types are supported for variables, reflecting those of the underlying Java language: String, Boolean, Integer,
Float, Object. Objects can be beans, maps, arrays and vectors.

The input and output parameters for each node in a workflow are specified as constants or mapped to workflow variables
by means of the Workflow Designer.

Solution Component and Tools 30

 Workflow Structure

Workflow jobs can spawn child jobs to execute other workflows. The parent may initialize variables of the child and may
also synchronize with the child to retrieve result values back into its own variables. A single workflow job is restricted to a
single string (thread) of node executions. Parallel algorithms can be realized by spawning multiple child jobs to work
concurrently, for example to optimize activation of multiple independent devices.

Multiple workflows working in parent-child relationships can also be used to architect complex processes in layers. A good
practice is to use one workflow, designated as the controller workflow, to deal with northbound communication and
process orchestration, and use dedicated workflows, spawned from the controller, to deal with service and device specific
details.

 Workflow Manager Architecture

The workflow manager has a core which is concerned with the execution of workflows, one node at a time, as described
above. Other functions of the workflow manager are implemented as pluggable workflow manager modules. Modules are
used for all functions which interface the workflow manager to its environment, like synchronizing with external sources of
input, sending messages and emails, accessing the database, interacting with the transaction manager to execute
activation tasks, etc., as illustrated in Figure 2-7. All tasks which involve wait points are generally performed by modules
which run in separate threads from nodes of active jobs, to avoid depleting and potentially even deadlocking the power of
the core engine.

Other examples of functions performed by workflow manager modules are management of scheduled workflows,
authentication of users and RMI connections, writing of logs and audit trails, job distribution within a cluster (see Chapter
6), and collection of statistics.

Figure 2-7 Workflow Manager Architecture

workflow manager

workflow
states

resource
manager

controller
workflow

activation
workflow

listener
module

sender
module

database
module

database

activation
module

request

persistence
module

log

log
module

WFManager interface

Algorithms residing in workflow manager modules can easily be replaced, because modules are pluggable. In some cases,
like authentication, several modules are provided in the product distribution, making the choice configurable.

Each workflow node is implemented as a Java class, extending a base node class with specializations for process nodes,
rule nodes and switch nodes, and similarly with modules. As with nodes there is a built-in library of modules, providing a

Solution Component and Tools 31

wide range of generic capabilities. The libraries can be extended by adding new nodes and modules. Extensions can be
provided in solution packages (see below), or they can be implemented as customizations for a delivery project.

2.5 User Interface and Roles

HPE Service Activator supports a web browser based user interface, which does not rely on any components to be
installed on the client side. It is implemented as a collection of web pages which are executed in the web server
component of the HPE Service Activator platform. The pages are implemented in multiple technologies: plain HTML, Java
Server Pages and Java Server Faces.

The inventory user interface that was mentioned under “Solution Data Repositories (Inventory)” above is launchable from
the main window of the HPE Service Activator user interface as a separate window. A special feature that can be
customized in the inventory UI is an operation to start a workflow job with input parameters that can be sourced from
entities in the repository or entered by the user.

Other functions are available within the working area of the main window, selected from menus in the left hand side.
Figure 2-8 shows the menu with the active jobs list (empty) selected and displayed in the working area. The Work Area
and Tools menus can be customized; the ones shown here are the installation defaults.

Figure 2-8 User Interface Screenshot

The user interface allows operators to monitor activity within the workflow engine, including active activation transactions.
Information about active jobs can be filtered by values of key characteristic variables of the job, such as order id (identifier
of the request that triggered the job), service id (identifier of the service being activated) and type and state of the
workflow.

Some HPE Service Activator solutions require operators to interact with workflow jobs through the user interface. There
are also a number of housekeeping functions (Self Management) for the system administrator. The menu and other
capabilities that each user gets via the user interface is controlled through roles that are established through log-in
authentication. Only the admin role has access to the Self Management functions, other users may be specialized to
interact with certain workflows, but not with others. The data that users may view and edit via the inventory user interface
can also be controlled by roles.

The texts that are displayed on the user interface are organized as resource bundles and can be translated and localized
by the system integrator.

For a general description of HPE Service Activator’s user interface, see HPE Service Activator, User’s and Administrator’s
Guide.

Solution Component and Tools 32

2.6 Interfaces for Integration

The main integration of HPE Service Activator for a solution is normally the northbound integration to the CRM / Order
Management system which is the source of activation requests. Northbound integration may be realized in different ways
depending on the requirements.

The “classical” northbound interface for HPE Service Activator uses workflow manager modules for listening to request
messages and sending response messages. This approach is illustrated in Figure 2-7. Listener and sender modules, which
can receive and send messages in any format, are provided in the built-in workflow manager module library for TCP
sockets and for JMS. With this approach, receiving and sending are done on separate connections and are asynchronous.
Such decoupling is desired whenever workflow jobs can have non-neglible duration, to avoid occupying connection
resources while workflows are running.

Sender and listener modules can also be used to implement peer interfaces to other OSS systems, with one-way
notifications or two-way interactions as required.

An alternative to listener and sender modules is to use a web service interface, so that requests are received by the web
server component of the platform and handled by a servlet which can start workflows. A tool is provided, the Web Service
Designer, which can generate the servlet that will expose a collection of workflows as web service methods that allow
them to be run conveniently by a client. A WSDL document defining the exposed interface for import to a client system
can be generated.

The native generic RMI for the workflow manager is also available in a web service version. With this interface the method
to start a workflow job can be called by forwarding a SOAP formatted request specifying the name of the workflow to run
and initial values for workflow variables as parameters. A web service as described in the preceeding paragraph is just a
convenient specialization of the capabilities of this interface.

The section “Northbound Interface” in Chapter 5 elaborates on the two approaches to northbound integration that have
been outlined here.

2.7 Integration with Other HPE NGOSS Products: NNMi, NA,
uCMDB

An important aspect of HPE Service Activator is the support for solutions which include also HPE NGOSS products such
as NNMi, NA and UCMDB, and where the products work seemlessly together and mutually enhance each other’s
capabilities.

As of HPE Service Activator V5.1 support for interworking with NNMi V9.10, UCMDB V8.0 and NA V9.10 is included.

The HPE Service Activator product kit includes a number of components which serve to bind the products together,
mostly in the form of hooks such as workflow nodes and plug-ins dedicated to interaction with the other products in order
to allow the building of integrated solutions, but also readily usable capabilities such as UI crosslaunch with single sign-on
and workflows which can load data into the Common Network Resource Model from NNMi.

Chapter 11 is about integration with NNMi, and Chapter 12 about integration with NA. These two chapters have similar
organization, discussing the positioning of the product concerned to set the scene for integration, the potential benefits
of integration, the integration capabilities that are available out-of-the-box, the components (hooks) that facilitate
customized integration, and how to customize and configure an integrated solution.

Solution Component and Tools 33

There is not a chapter about integration with UCMDB. The components for UCMDB integration are a number of workflow
nodes (Create/Delete/Query/Update UCMDBCIsandRelations) which can be used to access data in a UCMDB data
repository with similar power to those nodes which are used to access the native inventory of HPE Service Activator for
the case where the inventory for a solution will consist of data managed with UCMDB.

2.8 Solution Deployment

An HPE Service Activator solution comprises different customized parts that are separate from and added on top of the
core product framework: inventory data model, workflows, plug-ins, etc. All these parts have source files, mostly different
XML documents, which are prepared using the appropriate specialized tools. To become operational on a running HPE
Service Activator system, all the customized parts of a solution must be deployed into the static repository and file
structures where they are accessed at runtime.

Deployment can be done with the specialized tools: the Workflow Designer can deploy workflows, the Inventory Builder
can deploy resource definitions, etc. An entire solution can be deployed in a single operation with the Deployment
Manager. The Deployment Manager is an umbrella for the specialized tools, it will use each one of them as needed.

In order to be managed with the Deployment Manager the source files for a solution must be arranged in a directory
hierarchy which obeys a certain structure. The Deployment Manager can create the structure, and it can import entire
solutions from zip or tar archives of the structure. You are not forced to keep your source files in a solution hierarchy, but
it is strongly recommended to name and use a solution structure.

See Chapter 3 for illustrations of the solution directory structure and screenshots of the Deployment Manager.

It is possible to have multiple independent solutions on a single HPE Service Activator platform. All sources for each
solution must include a short name of the solution, which is used to keep the deployed solutions separate, and must obey
some naming conventions to avoid name clashes, for example of database tables. The Deployment Manager can deploy
and undeploy each solution in turn.

The Deployment Manager is particularly useful with clustered platforms, where HPE Service Activator is running
symmetrically on multiple servers. It will ensure that a solution is identically deployed on all servers within the cluster. The
Deployment Manager can also manage versions of solutions, where some of the source files are updated.

An Example Solution: Intro_Example 34

Chapter 3
An Example Solution: Intro_Example

This section walks you briskly through a very simple example solution, too simple to be realistic, which has components of
all the types that have been described. A larger example with more substance, yet still only an example for study, not
activating real services, is described in a separate manual, Putting HPE Service Activator to Work: A Sample Service
Scenario for VPLS. Both examples are found as zip files in the $ACTIVATOR_OPT/examples directory when HPE Service
Activator has been installed, named Intro_Example.zip and VPN_Example.zip, respectively.

The Intro_Example is our subject here. The service that it activates is a point-to-point connection terminating on two
switches assumed to be customer facing. The switches with the ports where the connections terminate are modelled as
resources. There are workflows to create and delete connections, working through a plug-in that activates the service by
configuring the endpoint switches. It doesn’t really do that, it only writes some log entries. The Intro_Example uses the
socket listener and sender modules to implement its northbound request interface. The listener module receives request
messages and then starts the controller workflow.

Throughout this section you will be instructed to use the different HPE Service Activator tools to investigate the solution
components. This assumes you have installed HPE Service Activator. After installation on a Windows platform you can
launch the tools, the documentation and the user interface (in a browser) from the start -> all programs -> HPE
Service Activator menu, or from desktop icons. For other platforms, consult the installation guide in question.

3.1 Contents of the Intro_Example

To access the source files of the Intro_Example, launch the Deployment Manager, select Deployment -> Import
Solution, and browse to the zip file, as shown in Figure 3-1. Click [Import].

Figure 3-1 Deployment Manager, Import Solution

The zip file contents will be unpacked into dedicated directories for the different solution components, according to the
conventions of the Deployment Manager, under $ACTIVATOR_OPT/solutions/Intro_Example, see Figure 3-2. We will
reference the component directories with their names relative to this solution root directory.

An Example Solution: Intro_Example 35

Figure 3-2 Intro_Example Solution Directories

Browsing the various component directories, you will find:

• In plugins, the plug-in archive file Intro.Switch.par. This is the plug-in for switch devices in deployable
plug-in archive format. It has two atomic tasks:

o createConnectionEndPoint, intended to create a unilateral connection from a customer facing port
on one switch to a port on another switch; both switches and ports are identified by parameters

o deleteConnectionEndPoint, intended to delete a unilateral connection from a customer facing port
on one switch to a port on another switch; again both switches and ports are identified by parameters

• In CT, deployable definitions of two compound tasks that are invoked from the workflows:
Intro.CreateConnection and Intro.DeleteConnection. Both tasks take parameters specifying two
endpoints, each given by a switch and a port on that switch. The first task creates a bilateral connection as two
unileateral connections between the two endpoints. The second task similarly deletes a bilateral connection.

• In etc/workflows, three workflows:
o Intro_Controller, controller workflow which is started by the socket listener. It parses the request

message, extracts the fields (tagged elements) of the message to variables, and uses the value of the
action field as the name of a workflow to run as a child job; it must be one of the other two workflows.

o Intro_CreateConnection, workflow for creating a connection, specified by variables initialized from
the controller.

o Intro_DeleteConnection, workflow for deleting a connection, similarly.
• In inventory, resource definitions for two resource data entity classes, IntroSwitch and IntroPort, where a

port belongs to a switch identified by a foreign key on the port entity.
• In etc/sql, scripts to populate the resource inventory with a few switches and their ports.
• In etc/config/inventoryTree/intro-Tree.xml, the definition of a simple tree in which switch and port

data is made accessible on the inventory user interface.
• In etc/tests/message/Intro_Example, sample request messages (intro-Message-1.xml and intro-

Message-2.xml) with format definition in etc/config/intro-Message.dtd. You can use HPE Service
Activator’s regular user interface to select one of these messages and inject it for processing (send it to the port
configured for the socket listener module). This feature must be enabled in the configuration file for the user
interface ($JBOSS_ACTIVATOR/WEB-INF/web.xml) by setting the value of the parameter named tests to
true. Do this before or after you deploy the Intro_Example solution, but before you start HPE Service Activator.

• In etc/template_files/Intro_Example, templates for response messages to be sent after processing of a
request (ERROR_intro.template and OK_intro.template) and for an information pane to be shown to an
operator.

• In newconfig/mwfm.xml, a fragment to be copied into the configuration file for the workflow manager
($ACTIVATOR_ETC/mwfm.xml) to configure the socket receiver and sender modules. Do this before or after you

An Example Solution: Intro_Example 36

deploy the Intro_Example solution (peruse the long configuration file in an editor to find a proper place for the
fragment), but before you start HPE Service Activator.

3.2 Deploying the Example

Once you have unpacked the solution zip file as described above, use the Deployment Manager to deploy the complete
solution. First you must configure the Deployment Manager to be able to access the system database; select
Preferences -> Configure Database Connection, enter the username and password for your HPE Service
Activator installation, and click [OK]. Then select Deployment -> Deploy Local Solution and then in the drop-
down list labelled Solution name:, which shows all undeployed solutions present (unpacked under
$ACTIVATOR_OPT/solutions) on the server, select Intro_Example. Check the Create Inventory Tables field
and click [Deploy solution].

Figure 3-3 Deployment Manager, Deploy Solution

The Deployment Manager will then deploy all components of the solution into HPE Service Activator’s internal directories
and static repository (database tables).

Make sure you have changed the configuration files for the workflow manager (mwfm.xml) and for HPE Service
Activator’s user interface (web.xml) as described above under “Contents of the Intro_Example”. In the workflow manager
configuration file you should also enable the auditor module: search for auditor, uncomment the <Module> element for
the DBAuditModule; set the parameter store_audit to have value “true”. This module is used to write audit trail
records, and the workflows in the example generate such records.

When this has been done, you must start HPE Service Activator (restart, if it is already running) to be able to run the
solution.

3.3 Examining Components of the Intro_Example Solution

We will now take a closer look at the components of the Intro_Example solution.

An Example Solution: Intro_Example 37

The plug-in can be imported from the archive file Intro.Switch.par into the Service Builder and studied at the source
code level, if desired. You will need to create a Service Builder project as a workspace to import the plug-in. We will not go
into the details here, refer to HPE Service Activator, Developing Plug-Ins and Compound Tasks. The plug-in is
documented with Javadoc, which you can study to understand the atomic tasks, their parameters and actions. To access
the Javadoc you can extract the contents of the archive with Winzip, go to the doc directory, and double-click on the html
file to open it in a browser.

The compound task definition files can also be imported and studied in the Service Builder which has dedicated
functions for editing compound tasks. Alternatively, the xml files, which are quite straightforward, can be studied in a text
editor. Be sure to understand the sequence of parameters of each compound task.

To study the workflows, launch the Workflow Designer, and open the workflow definition files. The initial location of the
file open window will be $ACTIVATOR_ETC/workflows, you will need to navigate to the solution’s workflow directory to
open the files. With the Intro_Controller workflow open, the Workflow Designer appears as in Figure 3-4.

Figure 3-4 Intro_Controller Workflow in Workflow Designer

The workflows are simple. It is possible to understand the algorithms by inspecting them, node by node. Some clues are
given here:

In Figure 3-4 the first node of the controller workflow, an XML mapper node, is selected. It extracts from the request
message, which has been received by the listener module and passed to the workflow job, several values identified by
XPath-like tag sequences to workflow variables. You can decipher this from the Action Parameters shown in the lower
right corner (variable names in Name column, tag sequences in Value column). Take a closer look at one of the sample
messages (in etc/tests/messages/Intro_Example) to understand how the tag sequences relate to the message
format. You may note the use of the variables WORKFLOW_ORDER_ID and SERVICE_ID to hold the identifiers for the
order and the service, respectively. These predefined variables are used by convention to make it possible in a general
way to display information from running workflow jobs. The same is true for WORKFLOW_STATE, whose value is
intended to give the observer an idea of how far the workflow job has progressed whenever it is inspected. The values of
these predefined variables are automatically inherited to child workflows.

An Example Solution: Intro_Example 38

The controller workflow starts one of the other workflows to do the actual work that was requested. The name of the
workflow is extracted literally from the request message. In a more complete implementation it would be appropriate to
perform a database lookup to validate the request.

The child workflow in its final Sync node (true for both child workflows) returns a status that is inspected by the controller
to determine if the child completed its task successfully.

The ComposeMessage nodes in the controller substitute variable values for placeholders in templates to create response
messages which the controller will send back to the originator of the request. The PutMessage node posts the response
message into the message area of the user interface, so you can easily see it when the workflow has run. Inspect the
message template files (in etc/template_files/Intro_Example) to understand how the value substitution works.

The Intro_CreateConnection workflow (shown as screenshot in Figure 3-5) begins by allocating and reserving ports for
the A and Z ends of the connection on switch devices which are specified by values that originate from the request
message and have been passed from the controller workflow. This is done with ReserveResource nodes. Then follows the
activation which invokes the compound task that will configure the switches. The workflow has looping logic to repeat the
attempt after a failure. The GenericUIDialog andAskFor nodes synchronize with an operator; the one in the Retry loop will
ask the operator to decide whether a retry is appropriate. The node labelled “Ask for confirmation” posts an information
panel with a description of the connection that will be created, and waits for the operator to read the information and
perform the required cabling before allowing the workflow to proceed, but does not take any input from the operator.

Figure 3-5 Intro_CreateConnection Workflow

After a successful activation information about the newly created service is recorded as a simple service instance. Service
instances are generic and predefined, the system integrator does not need to prepare a definition; they are stored in a
database table that is created at installation time, not by the Inventory Builder. A service instance includes a unique
identifier (database key) and contains the names and values of a number of additional variables, identified by name. This
predefined capability can be used if services are simple and you have no special requirements for a service data
repository, its structure or presentation. Finally, the sync node at the end of the workflow passes information back to the
operation_status and operation_description variables of the controller workflow where they are used to determine the
choice and contents of the response message.

When you have understood the process to create a service, the Intro_DeleteConnection workflow will be straightforward.
It is supplied with the service identifier, retrieves all additional information about the service to be deleted from the
service instance and unravels everything that was done during creation.

The resource definitions for resource data entity classes can be processed with the Inventory Builder. But to inspect
these XML files you must use an editor. During deployment some instances of switch and port data were populated into

An Example Solution: Intro_Example 39

the tables defined by the resource definitions. After you have launched HPE Service Activator’s main user interface (when
you are running the solution, see below) you can view this data in the inventory user interface which is controlled by the
tree definition that was also deployed, from file /etc/config/inventoryTree/intro-Tree.xml. The
InventoryTreeDesigner tool can be used to inspect the tree definition itself as shown in Figure 3-6.

Figure 3-6 Intro Tree in Inventory Tree Designer

3.4 Running the Intro_Example Solution Workflows

With HPE Service Activator running, launch the user interface in a browser and log in; if you have not configured an
authentication module, you will not need to type a password.

Inspect inventory. In the left hand menu of the main user interface window click Inventory, and the inventory user
interface opens in a dedicated window. In this window select Instance Views -> Intro Example/Intro Tree.
Then expand the tree and click in the sensitive area of a switch or port branch (or right-click to get an operations menu)
to view the forms that display the field value data for the entity associated with the branch. Compare the data you see in
the view forms to the fields defined in the resource definitions. If you inspect the tree after you have created a connection
you will notice the ports that have been reserved for the activated service are marked with an r.

Make request to run workflow. You can select and inject one of the sample request messages to run the workflows. In
the left hand menu, open the Self Management part at the bottom by clicking the little triangle. Then select Test
Messaging. A list of the two sample messages will appear in the work area as shown in Figure 3-7. The first message
contains a request to create a connection, the second message a request to delete the same.

Now right-click on one of the two message names, and then click Start Test in the single-item pop-up menu that
appears. The message will be sent to the listener module, which will start the controller workflow. The resulting workflow
job will read and process the message. The controller job will start a child job to do the requested work.

As you know from examining the workflows, they contain AskFor nodes that synchronize with an operator. To perform
this interaction, select Jobs at the top of the left hand menu. In the job list that appears, select the tab labeled Intro (the
tab label is specified by a parameter of the AskFor node). You will see a list of jobs waiting for interaction. Unless you have
injected more than one request message, there will be just one job in the list. Right-click on it, and select Interact with
job in the pop-up menu that appears. Study the pop-up window and click [Submit] to close it and signal to the
workflow job to proceed.

An Example Solution: Intro_Example 40

Figure 3-7 User Interface with Test Messages

Inspect effects of workflow. The simplest way to study the result of running the workflow is to view the request
response message. The sender module will attempt to send it, but since no application is waiting for it, the sending will
fail. It is also posted in the message list on the user interface, and you can view it there. Select Messages in the left hand
menu to see the message display. The posted messages will appear under the tab Intro (the tab is specified by a
parameter of the PutMessage node in the controller workflow). Compare the message you see to the template from which
it was generated.

When a request has been successfully it is documented with an audit record which you can inspect in the Audit Record
view (select Audit Messages in the left hand menu).

When a service has been created you can inspect the service instance record that has been stored to hold information
about it. In the left hand menu, click the ‘+’ to expand Service Instances, then click Open Instance. A special
window will then open; click the ‘+’ to expand the list of service instances, and click on the service identifier of the branch
line to view the details.

Another effect you can study is the warning messages written by the atomic tasks in the log of the resource manager.
Select Logs in in the left hand menu, then select the RESMGR tab at the top of the work area, and then the
resmgr_active file name at the bottom. Scroll down the file to see the yellow entries (these entries are written as
warnings, hence the yellow color, so they will be easy to spot). If you study the Java source code of the plug-in you can
find the statements that log the warnings. The other entries are written by the resource manager itself. Try to make out
what they document. You can also view the log of the workflow manager (Logs -> WWFM -> mwfm_active); here you will
see error entries in red color written by the sender module when it fails to send the request response message.

Finally you can inspect the inventory user interface to find the ports that are reserved and used when a connection
service is created.

Solution Planning and Analysis 41

Chapter 4
Solution Planning and Analysis

This chapter gives an overview of the activities that must be undertaken in a project to build a solution based on HPE
Service Activator and explains the aspects of a solution that must be analyzed early on to establish a solid base for
scoping and planning a delivery project.

4.1 Activities in a Project to Build a Solution

Some solution delivery projects will start with a solution that exists more or less off the shelf, in the form of a solution
package or a similar solution that has been delivered previously. Other projects will start from scratch or with very little in
the form of reusable customization. Even when a rich solution package is used, it must generally be expected that the
customer has requirements which are not met with the existing solution, so that the package must be enhanced or
changed.

In general a solution delivery project can be broken into these phases, which are quite generic:

• Analysis: determine and understand all requirements in sufficient detail to develop a general description of the
solution and plan the work to build it. The amount of work in the subsequent phases will depend heavily on the
scope of the services that must be activated, the number of activation targets and complexity of the interfaces to
control them, as well as the complexity of other process and integration requirements.

If a solution package or another existing solution is used as starting point, the analysis work will take the form of gap
analysis, where the required capabilities are compared to what is already supported.

• Design: drawing board work to identify and determine full details of all components to be built, so that they can
be described and the ideas for building each one developed. Components of a solution will include:

o Northbound interface to receive orders from CRM system or other system which is the source of orders.
o Workflows to execute the processes to configure and control activation of services.
o Activation tasks to interact with target devices and systems for activation of services.
o Operational model for resource repository. You can build a data model of the resources needed for the

solution using HPE Service Activator’s inventory capability. You will then need to design a way load data
into the resource repository when the solution is installed and keep the repository regularly
synchronized with the network; the source of the data can be an existing resource inventory system, or
it can be the network devices directly. Alternatively, if there is a requriement to interface directly with an
existing external inventory system and you are building a solution from scratch, then you can build such
an interface using an API supported by that system.

o Data model for resource and service data repositories.
• Implementation and testing: use HPE Service Activator tools to build all components according to design; test

them as units and as a complete solution. In this phase the interworking of the components with external
systems and devices must also be tested. Also latest in this phase documentation and plans for use of the
solution must be prepared along with training of the user’s of the solution.

• Install the solution in the production environment, perform appropriate tests to ensure it works properly, train the
users, commission and hand over for production use.

Solution Planning and Analysis 42

4.2 Analysis

The following information must be collected, clarified, documented and understood as part of the analysis of an activation
solution:

• Full definitions of the services to be activated including the underlying technology, the packaging and
organization of the services, the detailed features, and the intended evolution of the services.

• The tasks involved in activating services. Understand all activation targets that are involved in each service, the
protocols for interacting with them, and the command-response or message exchange interactions that must
take place in the activation processes.

In order to fully understand activation tasks it may be necessary to study the network architecture to identify devices with
different roles. This can be the background for understanding which devices need to be activated for a specific service.
For example, when end customer’s equipment is attached to the provider’s network through some access device such as
a DSLAM or access switch, where there is a port or interface dedicated to the customer then it will typically be necessary
to reserve the port or interface in the resource data model and also to perform some action to enable the customer’s
traffic across the access port. Whether it will also be necessary to enable functions per customer on devices further
towards the core of the network, such as aggregation devices and MPLS edge devices, will vary depending on the service
and the network architecture.

• How activation processes are initiated. Normally these processes are triggered by XML messages received via a
northbound interface from a an order management or CRM system. Various flavors of XML interfaces, including
web services, are possible. Alternatively, in some solutions, there can be a requirement to support a user interface
for entry of orders directly into HPE Service Activator.

• How the solution will fit into the provider’s overall OSS/BSS environment, apart from order entry. Which other
systems will it interface to, what data will be exchanged? At what point in the activation processes will there be
interactions with other systems?

• Requirements for integrating with an external inventory system, initially or at a later stage. The provider may
enforce as a policy that all data of a given type, for example resource inventory, is maintained in a single
inventory system, and that other systems, including the activation system, must retrieve and update the data by
interfacing to that inventory system. Such a requirement is fundamental to the way HPE Service Activator must
be customized and must be made clear very early in the project.

• Requirements for maintaining resource and service data in HPE Service Activator’s data repositories. Such a
requirement may be explicitly stated, or it may be implicit that the data will be needed by activation processes. It
is generally easier to customize HPE Service Activator to maintain resource and service data in its own
repositories than to integrate with an external inventory system.

• A very important point to decide and understand is how data describing physical and logical resources that must
be held in HPE Service Activator’s resource data repository shall be loaded and kept synchronized with the
actual state of the resources. One possible way is to include workflows that can upload device details from
devices in the network. Another possible way is to refresh data from an external system that is already
synchronized with the network.

• Volumes of activation orders to be processed and of data to be managed. Number of users performing web
interactions with the solution and nature of interactions. This information is needed to determine the processing
capacity that is needed.

• Requirements for the time allowed to process orders. The analysis of the implication of this requirement
combined with volume of orders will involve the activation targets and their ability to execute the implied
interactions in a timely fashion. HPE Service Activator is rarely the bottleneck in a solution.

• High availability requirement. This requirement together with transaction volume may justify / necessitate
deployment of the solution on a cluster of servers.

• User interface requirements, for example: entering orders, monitoring activity, browsing/editing data in HPE
Service Activator repositories. If several user functions shall be available, there may be requirements to use roles
and privileges to differentiate between users.

Solution Planning and Analysis 43

A special aspect of user interface is localization of messages from English to local language.

• Audit trail requirement: what information is required to be stored as historical information about completed
orders.

With all requirement information collected and organized it is possible to characterize the solution and to identify and
estimate work items for the delivery project.

Solution Design 44

Chapter 5
Solution Design

This chapter provides information that is intended to help you as system integrator in the solution design phase, after you
have collected complete information in the analysis, before you embark on implementation of the components of your
solution using the HPE Service Activator tools. It is not a textbook on high level solution design, more collection of useful
bits of information, for example it does not tell you how to design activation processes. You will also need to consult the
manuals for the individual components and tools, as listed at the end of Chapter 1. When you consider tasks that require
Java programming, you must consider in addition to the PDF-formatted manuals also the Javadoc which describes a
range of interfaces and classes and can be accessed when HPE Service Activator has been installed by selecting (on
Windows) start -> all programs -> HPE Service Activator -> Docs -> JavaDoc. On Unix systems the
location is /opt/OV/ServiceActivator/docs/javadoc. An example page is shown in Figure 5-1.

We explain here some best practices, discuss some possible ways to solve common problems, and discuss some
considerations that will have an impact on how the operating solution will be experienced by operators.

5.1 Solution Labelling

In order to be able to manage and keep separate different solutions, or parts of a large solution, it is strongly
recommended that you use the source file organization supported by the Deployment Manager for all the source files of
your solution(s) and that you use a well-chosen short string to uniquely label all the parts of the solution, as follows:

• As the name space part of the name of plug-ins and compound tasks.
• As the value of the <Solution> element in definitions of resource beans and inventory trees (required for

deployment).
• As prefix for database table names for resource beans.
• As the solution name in the workflow settings of each workflow and also as prefix for the name of each workflow.

5.2 Queuing Sub-System

The queuing sub-system makes it possible to control how many jobs of a given type is running in parallel at the same
time. By calling the rmi method startQueueJob instead of the standard startJob method the queuing sub-system will
ensure only the configured number of jobs for this queue is running. If more jobs are tried to be started they will be
waiting in the queue until there is free capacity.

What can be a type of a queue is up to the solution developer to select. It could be a given service type like at DSL service
or a given target system.

There is no limitation about how many queues can be defined for a give solution. It makes sense to not have a very high
number as you will then be splitting the capacity of HPE Service Activator in to small pieces. The full system capacity will
not be possible to use unless the max capacity of all queues is used.

In future version it will be possible to configure listener module to call the startQueueJob method instead of the startJob
method and in 7.0 the rmi interface can be used or the SOAP interface.

By using queuing it will be possible to ensure free capacity for high important tasks by defining dedicated queues. Also it
would be possible to build the solution in such a way so it will be possible to stop activation of a certain activation types.

Solution Design 45

It is possible from the HPE Service Activator UI to lock a queue to accept new incoming request but still continue to
process the already received requests. It is also possible to lock a queue to not process received request, but still continue
to receive new incoming requests.

Request received in the queuing sub-system which have not yet been started as jobs in HPE Service Activator are saved
in the database and will picked up by the other cluster nodes in the system in case of a failover. A request will be deleted
from the database when the job is started.

It is possible to configure a number of requests to stay in a cache. The reason for having a cache is to make it faster to
start jobs. Also the queuing sub-system will ensure to read new request from the database so the queue threads can start
jobs immediately when there is free capacity.

The queuing sub-system requires the queue and the queue persistence modules to be configured.

 Configurable aspects of queues

A queue can be configured via the HPE Service Activator UI or by means of the $ACTIVATOR_OPT/bin/queuetool,
which use an xml file as input. The xml file must follow the schema defined in queues.xsd. Apart from this then queues
can also be configured as part of the deployment of a solution by defining the queues in an xml file and specify the file in
the deployment descriptor.

A queue must be configured with the following parameters:

Solution name – the name of the solution this queue belongs to.

Name – the name of the queue.

Queue class – the class in the queuing system which should be used for this queue. Two different queues can be used;
com.hp..ov.activator.mwfm.engine.module.queuing.WeightedBlockingQueue and
java.util.concurrent.PriorityBlockingQueue.

Threads – how many threads in the queuing system should be created to start jobs based on the received requests.

Max jobs – how many jobs can be running in parallel per HPE Service Activator cluster node.

Cache – indicating how many of the received requests should stay in memory along with also being saved in the
database.

Locked input– indicating if the queue should, when created, accept to receive requests or not.

Locked output– indicating if the queue should, when created, start to process requests or not.

TTL – how long time a request should be staying in the queue before it is deleted. The value must be provided in
seconds and the default value is 0 indicating that it would stay forever.

Description – a text string which can be used to tell what is this queue used for.

Solution Design 46

5.3 Connection Pools

An introduction to connection pools was given in Chapter 2, through Figure 2-3 and its explanatory text. Connection pools
can be used as the foundation for high performance deployments of the generic CLI plug-in. The basic mechanism is
general and is described here as such. In future product versions connection pooling may be supported for additional
plug-ins.

Connection pools are actually session pools, as the active connections in a pool will generally be authenticated sessions
with the target equipment. Authentication does not happen by magic, the dialog to perform must be configured (or
customized as part of dialog control documents) for each pool.

 How pools work

Each connection pool is associated with a plug-in and contains sessions for use with a specific activation target. When the
execution of an atomic task within the plug-in is requested (from a workflow job) it will refer to the pool rather than
directly to target. The plug-in will then interact with the connection pool to acquire a session for the duration of the
implied dialog with the target. Three scenarios are possible:

• if an unused session exists in the pool it will be allocated and used;
• otherwise, unless the maximum number of sessions for the pool has been reached, a new session will be created,

initialized, allocated and used
• if the maximum number of sessions are already active, the new atomic task is queued until a session becomes

available.

Once a session has been aquired by the plug-in it will use it directly, without pool management involvement, to conduct
its dialog with the target.

After the dialog it is the responsibility of the plug-in to restore the session to its initial state (context, prompt level) before
releasing it to the pool.

There is a special case for clustered platforms, where the resource manager may need to redirect an atomic task to be
executed on the cluster node where the pool resides; see the description of unlimited pools below.

 Configurable aspects of pools

A pool must be configured with instructions for initial and final actions after a connection has been created and before it
is closed, as well as some timeout values and optionally a maximum number of connections that may exist in the pool. At
runtime the resource manager will use the plug-in assocated with the pool to execute the instructions for initial and final
actions.

A pool consists of subpools, at least one. Some of the configurations belong to subpools. This means they can be different
for different subpools.

A maximum time – the Acquire timeout – for an atomic task to wait to acquire a session can be configured; if it is
exceeded the atomic task will fail.

A maximum time for the entire pool to be idle – the Pool timeout – can also be configured. When this timeout happens
the pool will be cleaned out from memory. It will be reinstantiated when needed.

Solution Design 47

The following configurations belong to subpools.

Unused sessions are held for a configurable maximum time – the Idle timeout – then destroyed.

A maximum for the duration of an atomic task’s dialog with the target – the In use timeout – can also be configured. If the
timeout expires while a dialog is ongoing the atomic task will terminate with an error.

The maximum number of connections (sessions) for each subpool is configurable.

A multiline text parameter known as ‘Session management’ is also configurable per subpool. This text is actually
processed by the plug-in, so its syntax and specific meaning will depend on the plug-in. For the CLI plug-in it must
include the <Connect>, <Disconnect> and <Validate> elements of the dialog control document. The <Connect> element
contains the target URL and the dialog to be executed to authenticate and initialize a session; this element must include
any credentials required by the target. The <Disconnect> element contains any final dialog to be executed before the
connection is destroyed. For more details refer to the Javadoc for the generic CLI plug-in.

Refer to HPE Service Activator, User’s and Administrator’s Guide for a description of how a system administrator
configures pools and manages their states.

 Pools and target locking

When you use a pool of connections to a target you will generally want to allow multiple sessions to be active in parallel.
The standard behaviour of the resource manager, to lock the target during a session and not allow additional sessions (as
described in the session below on Plug-Ins), will be undesirable. Instead, the size of the pool should put the limit on the
number of parallel sessions. The Activate workflow node supports a parameter called ignore_locking_argument. Set this
parameter to ‘true’ to disable the standard resource locking of the resource.

 Design considerations for the use of pools

You should generally choose to use connection pools if your solution must satisfy performance requirements which
render unacceptable the overhead of creating and authenticating a fresh connection for each atomic task. Then you have
a couple of additional design decisions to make.

Each connection pool you use can be either static or dynamic:

• static pool The pool is created with complete configuration by a system administrator action before it is
used.

• dynamic pool The pool is created as a side effect of the first atomic task that will need it; the configuration
of the pool is included with the parameters for the atomic task. On subsequent atomic tasks,
pool configuration parameters will be ignored.

Depending on its configuration a pool will be either limited to a maximum number of connections or not limited in this
respect. The difference is important when the pool is deployed on a clustered platform (see Chapter 6 for a description of
clusters):

• limited pool A limited pool will exist on only one server (cluster node); if a task that will use the pool is
invoked on another cluster node, it will be redirected to the one where the pool resides; this
will happen within the resource manager.

• unlimited pool An umlimited pool will be instantited on every cluster node where a task needs to use it in
accordance with configuration for load balancing; the total number of connections within the
pool will be the sum over all nodes in the cluster.

Solution Design 48

5.4 Plug-Ins

 Customized Use of Generic Plug-ins

As described in Chapter 2 if your activation target is controlled by a command line dialog you will not need to construct a
new plug-in. Instead you will customize control document templates to be used with the generic CLI plug-in. Similarly if
your activation target supports HTTP and it is convenient to prepare template files for each message you will need to
send, then you can use the generic HTTP plug-in. In both of these cases you will need to read the documentation for the
generic plug-in you are using. It will be found as Javadoc.

A question that will come up for command-line interfaces is how many commands to include in a single command
document template, so that it is executed as an atomic task. Since there may be significant overhead in establishing a
session and committing changes on the target device you should strive to accomplish the complete activation of all
aspects of a service within a single atomic task. Combinations of multiple smaller files can be accomplished with include-
files and the XSL call-template construct. The result may well be large control documents containing many commands.

 Creating New Plug-ins

When the generic plug-ins are not sufficient, you will need to create your own plug-in(s). Then refer to HPE Service
Activator, Developing Plug-Ins and Compound Tasks which gives you the details about plug-in programming using the
Service Builder. Some general points relevant for plug-in design are briefly stated here:

All plug-ins extend a base class called PARPlugin. For detailed information, refer to the Javadoc (see Figure 5-1). From
class PARPlugin all plug-ins have available a context field with a set of callable methods.

Figure 5-1 Javadoc for Class PARPlugin

In principle every atomic task must be implemented for both the do and undo modes. However, if you don’t use
compound tasks, the undo mode will never be used, so you can skip it. Even if compound tasks are used, this is also true

Solution Design 49

for an atomic task that will not be used in any compound task or only be in the last sequential position, because then the
atomic task will never be called in the undo mode.

As you design the implementation of undo mode you may need information about the state of activation targets before
the do mode of the atomic task was executed, so that you can restore it. Such information may have been passed as one
or more parameters to the atomic task, or you may have retrieved it from the activation target before its state is changed
(in do mode). You can use the methods of the TransactionStateSaver (or AtomicTaskStateSaver) interface which are
inherited by the context to save the information for later retrieval, should the atomic task be called in the undo mode as
part of unrolling the transaction. However, don’t overdo it; it may not always be meaningful to attempt to do a perfect job
in the undo mode: in a task intended to destroy a service a best effort approach may be the right one. When a service can
only be partially destroyed, your best choice may be to design the destroy method to be idempotent, i.e. record the
partially destroyed state and finish the job when the destroy method is called a second time.

If you write significant amounts of Java code, note that you can conveniently use the Service Builder in combination with a
more powerful Java development environment, for example Eclipse.

 Target Locking

A question you will confront when you create a new plug-in is target locking. Some targets will not be able to engage in
multiple sessions concurrently, and even if the target does not have a problem, you may want to eliminate concurrency at
the session level. The resource manager supports locking of a target. To determine when two calls to any atomic tasks in
the plug-in address the same target, the resource manager looks at the first arguments (param0, param1, ...). You should
think about this aspect when you define the arguments for the atomic tasks in your plug-in. You must define for the
entire plug-in (not per atomic task) how many parameters to use for logging, with a minimum of one, and these
parameters should then have the same meaning for all atomic tasks in the plug-in.

As an example, the first parameter may be the IP address/hostname of an element manager and the second parameter
may identify a device in the communication with the element manager. If you will accept multiple concurrent sessions to
the element manager, but you want to prevent two workflow jobs from configuring the same device concurrently, the
number of locking arguments for the plug-in shall be two. It would then be natural to use the third argument to identify
the function to perform and subsequent arguments to be function-specific.

As an alternative to locking on a set of argument values when one atomic task is actively using them, you can set a limit
higher than one on the number of concurrent activations that you will allow.

 Secure Communication with Targets

The resource manager has a general capability to use ssh, secure shell, to communicate with targets. It is used by the
built-in NNMi plug-in (see Chapter 11) and optionally by the built-in generic CLI plug-in; it can also be used by plug-ins
that you develop. To use it you must prepare and install keys for the secure communication and run the ActivatorConfig
utility to configure the resource manager. These topics are covered in HPE Service Activator, Installation Guide.

 Plug-ins for Web Services and Corba Interfaces

A frequently occurring case is an activation target which exposes a web service NBI described in WSDL form. The
recommended approach to build a plug-in for such a target is to use the WildFly Web Service utility WSConsume which is
available as part of the HPE Service Activator installation to generate from the WDSL a Java class where the web service
methods are callable as stubs and then incorporate the generated class into the plug-in as an auxiliary Java class. The
simplest approach to complete the plug-in is then to wrap each web service method as an atomic task method, but you
may also want to call multiple methods, possibly with looping and branching, within a single atomic task.

Solution Design 50

A very similar process will apply to a Corba interface defined in the form of IDL. You can generate a class with stubs that
can call the Corba methods and then wrap them as atomic task methods. Use this link for further information on Java IDL
technology: http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html.

5.5 User Interface and Roles

The system integrator of an activation solution must understand the user community, how it can be divided into users
with different roles, and the requirements each role has for viewing data, monitoring activity and interacting with
processes. For more information on roles and what you can restrict and organize by means of them, see Chapter 7.

HPE Service Activator’s main user interface window has functions to display information about ongoing activity as well as
messages and audit trails produced by the workflow jobs and user activity in the past. Such information is shown in the
various windows available in the Work Area menu. As system integrator you should be familiar with how these windows
work, and you should plan how you intend your users will use them. Such a plan will guide you to decide the details of the
information which you can control by customization. To become familiar with the user interface, read the pertinent
chapters in HPE Service Activator, User’s and Administrator’s Guide and work the UI on a running system.

You can customize the items that appear in the Work Area and Tools parts of the left hand menu of the main UI window;
see HPE Service Activator, User’s and Administrator’s Guide for more information.

Four common case-packet variables are present in all workflows intended to hold

1) an identifier of the order being processed (WORKFLOW_ORDER_ID),

2) an identifier of the service being activated (SERVICE_ID),

3) the type of the workflow (WORKFLOW_TYPE), and

4) the state of the workflow (WORKFLOW_STATE).

The values of these variables can be shown in several of the lists (jobs, messages, audit records, including the service
order view) available on the user interface. They can also be used to search for jobs and other related items. You should
use them properly in your workflows to ensure that meaningful information is shown in these UI views. Use the type to
classify your workflows, first of all by solution, and within each solution as you see fit. When a workflow passes through
several phases the state can be used to indicate how far along a job is, particular when it is waiting for something time
consuming such as operator input, an activation task, or other external interaction. The values you assign to these
variables can be chosen freely.

General recommendations are:

• Use messages shown in the Message window (generated by PutMessage nodes in workflows) for debugging
during development, and when the solution is in operation only for well thought out diagnostic information that
will make the user aware of problems that have occurred and point to causes that the user can repair.

• Use audit records generated explicitly using the Audit node in workflows to create an accurate audit trail. In
addition to a number of standard fields of audit records you can add any needed information from case-packet
variables, to properly document what has been accomplished by your workflow. Audit records should always be
written at the end of a workflow.

All strings shown on the user interface are collected in resource bundles to allow localization. See Appendix A for more
information.

http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html

Solution Design 51

 UI Integration Using LWSSO or SPNEGO

Part of the integration of HPE Service Activator with other HPE NGOSS products such as NNMi and NA is GUI integration
involving cross launching from the GUI of one application to that of another.

One way of GUI interworking is the use of HPE’s Light Weight Single Sign On (LWSSO)) to eliminate the need for the user
to log in to each application; see the section “Light Weight Single Sign On” in Chapter 7.

NOTE NA does not support LWSSO and hence it is not possible to crosslaunch from NA to HPE Service Activator as
described in this section.

A second way of GUI interworking is to use SPNEGO to provide the same function as LWSSO; see the section “SPNEGO”
in Chapter 7

Another aspect is to configure one system to know the relevant URLs for contextual views of a launched application. In
order to be able to set up cross launch capability from another application supporting LWSSO to HPE Service Activator
views you will need to know the relevant URL formats. They are described here in the following.

The general format is

http://<hostname>:<port>/activator/<activator-subsystem>?<parameters>

where <hostname> must be an IP address or name of the servier hosting HPE Service Activator, and <port> is the port
number configured at system installation for access to HPE Service Activator’s web server (default is 8080).

<activator-subsystem> defines the view you want to launch. Values are:

• views as shown in Work Area jsp/<jsp-file-name>
• Service Order View jsf/sov/serviceOrderView.jsf?<parameters>
• Inventory UI OpenInventoryFG.do?<parameters>

Look in the menu configuration file $ACTIVATOR_ETC/config/menu.xml for <jsp-file-name> for the Work Area views.

<parameters> take the standard form for a URL: <name>=<value>, with multiple occurrences separated by &

For service order view the following parameters can be used to specify the filter and the tab to select: jobId, serviceId,
orderId, type, state, resultsTab (value shall be one of: jobsTab, messagesTab, auditTab, transactionsTab). Example:

http://<host-name>:<port>/activator/jsf/sov/serviceOrderView.jsf?
serviceId=site001&resultsTab=auditTab

For inventory UI the context must be specified as a specific instance branch to be selected using the following
parameters; all are mandatory except operation:

• solution name of solution the tree belongs to
• view name of tree definition
• cl =true (to indicate cross launch)
• operation to invoke an operation on the branch
• branchPath sequence of branch names from tree definition leading to the desired branch, separated

by ‘|’ characters
• pk primary key of the instance to be selected

Solution Design 52

Example (from CNRM):

http://<host-name>:<port>/activator/OpenInventoryFG.do?
solution=CRModel&view=Equipment&cl=true&operation=view&
branchPath=Catalog|Region|Network|PEs|PE&pk=100

NOTE In the definition of the inventory tree all <Branch> elements in the branch path must include the <Parent-Find-
By> child element. This is to allow the branch to be shown in its lineage (with all ancestors). Normally the <Parent-Find-
By> element is not needed in tree definitions, so this is a significant extra requirement for the definition of an inventory
tree.

 UI Integration Without LWSSO

You may also want to cross-launch HPE Service Activator UI windows from external non-HPE applications which do not
support HPE LWSSO. In this case, you can use the URL for logging in to HPE Service Activator, including credentials for
authentication, with a redirect parameter to indicate the page you want to access:

http://<SA-host>:<SA-port>/activator/jsp/login.jsp?redirect=<page>
&hpsa_user=<username>&hpsa _password=<password>

where <page> is the path part of the URL for the page you want to display, i.e. /activator followed by the path of the
page file relative to $JBOSS_ACTIVATOR (i.e. the activator.war directory), for example
activator/jsp/saRunningJobs.jsp for the page to display running jobs. This scheme will also work for pages in the
UI part of a customized solution.

Note that the slash characters appearing in the <page> part must be escaped (because the slash character is a special
delimiter in a URL) as the sequence %2F. So, if the SA-host is SAhost.mycompany.com, the SA-port is 8080, the
username is foo and the password is bah, and you want to display running jobs, the complete URL will be:

http://SAhost.mycompany.com:8080/activator/jsp/login.jsp
?redirect=%2Factivator%2Fjsp%2FsaRunningJobs.jsp
&hpsa_user=foo&hpsa_password=bah

If you prefer to transfer the password in encrypted form, change the parameter name to HPEsa_encrypted_password
and use the crypt utility in $ACTIVATOR_OPT/bin to encrypt it.

 A Note on Workflow Start Role Attribute

Most workflows do not get started from the workflows list on the user interface, but driven from an external message, for
example through the socket listener, or as child jobs of other workflow jobs. To prevent users from accidentally starting
such a workflow you can set the start (or default) role attribute in the workflow definition.

 Viewing Jobs During Activation

Workflow jobs engaged in activation transactions (while executing an Activate node) will be visible on the activation
queue in the Active Jobs view by users who have the ‘internal’ role. This role is normally not assigned to human users, but
you can modify this behavior by setting the role attribute on the Activate node (using the Workflow Designer). The
activation queue tab will then be visible to users with the specified role, and they will be able to select ‘View Activation’
from the right-click menu to launch the Transaction Details window.

Solution Design 53

You will not want users to be able to actually interact with a job during an activation transaction (that would allow the
workflow job to continue as if the activation had completed). It can be prevented by configuring the user interface to hide
the ‘Interact with Job’ item from the right-click menu of jobs on the activation queue.

5.6 Encrypted Passwords

One of the data items you may need to model for an activation target is a password that will be used to authenticate HPE
Service Activator when it establishes a session with the target. You will want to avoid to store the password in clear text in
resource inventory, log files, etc., so you will need to be able to encrypt the password after it is entered, for example on the
inventory UI, using an encryption scheme that allows you to decrypt it again before transmission to the target, where it
may be encrypted again using the key appropriate for that particular connection.

You can configure fields of resource beans for the inventory to be treated as passwords that must be encrypted upon
entry. There are a number of ways to decrypt passwords (encrypted strings) when needed: by a workflow node (Decrypt),
by a context method for use in workflow manager modules, by a context method for use in plug-ins, by an attribute in a
control document for the CLI plug-in.

5.7 Data Models

To create a data model for resource and service inventory you must apply entity relationship analysis to the data you
need to represent in order to determine entity classes and the foreign keys you need to represent relationships.

The inventory subsystem, i.e. the Inventory Builder and the beans and JSPs it generates, has many features that you
should be aware of:

• a range of field data classes, including passwords as described above, with several control attributes

• inheritance, which lets you define resource superclasses and then subclasses by adding fields to a
superclass

• flexible definition of keys that can be used to retrieve desired entity instances by resulting findBy methods,
including foreign keys which represent relationships between different entity classes

• use of entity relationships to define keys comprising fields from inter-related entity classes (database joins)

For inventory trees and forms presented on the inventory UI there is also a rich set of features to control the structure
and appearance of the trees and the operations that can be performed by users with different roles.

Consult the inventory manual, HPE Service Activator, Inventory Subsystem, for detailed information.

5.8 External Inventory Integration

You may need to integrate your solution with a preexisting inventory system.

If the inventory is held in a database with known table definitions, and the HPE Service Activator system can access the
data at the SQL level, you can integrate by creating resource definitions that match the existing data, then use the
resulting beans in your workflows to access the external inventory.

If the inventory is accessible only through a higher level API, one approach you can take is to design and build a number
of workflow nodes to access the data in a way that will be convenient to use from your workflows: create, query, update,

Solution Design 54

etc., as needed. Such nodes will typically use a tailor-made workflow module to maintain a session with the external
inventory.

A set of nodes providing a liaison to HPE’s uCMDB product are available in the built-in library.

5.9 Workflow Processes

 Controller Workflow Pattern

The section “A Typical Workflow” in Chapter 1 and the example in Chapter 2 give you some general ideas of what you can
do with workflows. The pattern that you see in the Intro example with a controller workflow that handles the northbound
communication and separate workflows to handle each type of request (in this case, create and delete service) is often
useful. This pattern is a refinement of the single process that was described as “a typical workflow”.

 Activation Workflow Structure: Before - Activate - After

When you have complex activations involving several targets it is generally recommended to use compound tasks in
order to simplify the error recovery logic in the workflow. A workflow with an activation task should have a clear before-
and-after structure: before the activation only preparations, like retrieval, calculation and selection of parameters for the
activation, possibly including resource reservations take place; after the activation come service inventory updates, output
of informative messages, writing of audit records. If the activation fails, it should fail cleanly, and the updates that need to
be undone or changed should be minimized.

 Workflow States

Depending on the logic, a workflow job may go through a sequence of states, for example “preparation”, “activation”, “data
updating”, as described in the preceding paragraph.

NOTE State, as discussed here, is the value of a single variable, and should not be confused with the complete state of a
workflow job which comprises the values of its entire case-packet, as discussed in the section “Workflows” in Chapter 2.

All workflows have a common case-packet variable WORKFLOW_STATE, intended to reflect the current state of a
workflow job. The value of this state variable is visible for monitoring on HPE Service Activator’s web user interface in the
same way as the variables for order id, service id and workflow type; see “User Interface and Roles” earlier in this chapter.

The WORKFLOW_STATE variable can be set in the same way as other variables in workflows, but there is also another
feature that makes it easy to associate states with nodes of a workflow and view the association. A value can be set for
each node as the attribute State; it will be automatically assigned to the WORKFLOW_STATE case-packet variable when
the node is executed. When a node is selected, all other nodes which have the same State attribute value are highlighted
(in light blue), as shown by the example in Figure 5-2.

Solution Design 55

Figure 5-2 Workflow in Designer with State

There is not a predefined set of values for the workflow state variable. The values can be freely chosen as part of solution
design. In the example in Figure 5-2 three values were used as shown in the drop-down list that appears expanded from
the tools bar. A reduced view of the workflow to show the possible state transitions as control passes through the nodes
can be selected by the State View tab as shown in Figure 5-3 (for the workflow that was shown in Figure 5-2).

Figure 5-3 State View of Workflow in Designer

 Business Processes

Although workflows are primarily intended to implement activations, it is also possible using interactions with operators
and possibly external systems to implement business processes of some complexity and duration.

 Using Cache with Inventory

Hint: frequent queries to very stable database tables may be optimized by using the Inventory Caching Module; it works
together with the QueryInventory workflow node. Look for details in HPE Service Activator, Workflows and the Workflow
Manager.

 Starting Workflow from Inventory UI

Although it is generally expected that most workflow processes are initiated by receipt of request messages from a
northbound system, it is also possible to start workflow jobs from the Inventory UI. You can use this feature for example if
you have some processes which are not service oriented requests, for example device configuration or inventory
maintenance. You can also provide an emergency route to initiate service activations, for situations where the northbound

Solution Design 56

system is out of operation. It is possible to initialize case-packet variables of the workflow job that is started with values
that are sourced from inventory or entered by the user.

 Interworking with NNMi and NA

Through the liaisons for NNMi and NA workflows can access devices and invoke actions on NA and NNMi to perform a
number of functions. Refer to the dedicated chapters, Chapter 11 and Chapter 12.

 Workflow Job Persistence

In a workflow definition you determine for each node whether the state of a job executing the workflow shall be stored
(“persisted”) in the database after execution of the node. Should the workflow manager be restarted while the workflow is
running, the job will be restarted at the last point of persistence. It is not necessary to persist after every single node;
there is a performance cost associated with storing the data. Nodes which only change state internally in the workflow
manager generally do not require persistence; they can be reexecuted after a restart, which will in reality happen very
rarely, or never.

 Business Calendars

A dedicated set of workflow nodes - IsTimeIncluded, GetNextIncludedTime, GetBusinessHoursAfterDuration,
GetTimeRangesOfBusinessDay, GetCalendarTimezone - allows workflows to consult a business calendar defined for
a solution with weekly working days and hours per day as well as annual holidays to avoid undesired activity outside of
business hours. Business calendars are created and edited from the user interface. It is configurable whether the editor
shows time of day in 12 hour (am/pm) or 24 hour format.

 Considerations for Custom Workflow Nodes

You can extend the library of built-in workflow nodes by implementing custom nodes. The same is true for workflow
manager modules. Information about these topics is found in HPE Service Activator, Workflows and the Workflow
Manager.

There is a golden rule to observe: a workflow node must never occupy a workflow thread when it is waiting for an external
event.

5.10 Solution Monitoring

In addition to monitoring the operation of HPE Service Activator on the UI it is also possible to use HPE OM (using OM
notification messages) or any monitoring system that is based on receiving SNMP traps. HPE Service Activator includes a
self-monitoring module, which can be configured on the workflow manager, to monitor a set of conditions and emit traps
when they occur. The supported conditions are:

• JVM heap size exceeds configured threshold
• number of running job exceeds threshold
• cluster node is internally suspended, i.e. lost connectivity to system database
• cluster node is down

Alternatively, if there is no external system to monitor HPE Service Activator, the self monitoring module can be
configured to write information into audit records or log messages. Refer to HPE Service Activator, Workflows and the
Workflow Manager for detailed information about this module.

Solution Design 57

Additional traps or OM messages can be sent by workflows based on any condition that can be detected by the workflow
logic. The typical reason to send such a message / trap would be an unusual negative response from an activation target.
It is up to the solution designer how to use this capability.

 OIDs for Traps Emitted from HPESA

You can use the workflow node SendSNMPTrap in conjunction with the workflow manager module SNMPSenderModule
to send out SNMP traps. Traps will include one or more OIDs and a trap message.

The OID branch assigned to the HSPA product for sending traps is:

iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) HP(11) nm(2) HPSA (52)

or in short: 1.3.6.1.4.1.11.2.52.

Some sub-branches of this branch are used for system generated traps (as described above). For solution generated
traps you should select a value >= 100 for the next branch and build a further OID sub-tree as needed to distinguish
between different traps from the solution.

5.11 Northbound Interface

In most cases an HPE Service Activator solution will need to be integrated northbound with an Order Management or
CRM system which will be the originator of requests to create, modify or terminate services. The activation system will
then respond to each request with one or more messages to acknowledge receipt and to indicate progress and
completion of the requested process.

The general assumption is that the activation system is implemented as a collection of workflows that can accomplish a
set of tasks which the originator or client system will request. In other words, each request from the client to perform a
task can be translated to: run a specific workflow with some case-packet variables initialized with parameter values
supplied by the client as values of elements in the message.

Two approaches to implementing the northbound integration were introduced in the section “Interfaces for Integration” in
Chapter 2:

• using listener and sender modules of the workflow manager
• using web services implemented with servlets

The choice of which approach to take will depend on circumstances and specific requirements.

A description of how to configure secure communication on the northbound interface is included as an appendix in HPE
Service Activator, Installation Guide.

 Workflow Contract

When a workflow is invoked either on a northbound interface or internally by a parent workflow, we speak of the contract
of the workflow as defining:

input the set of case-packet variables which are expected to be initialized by the invoker, with some of them
marked as mandatory; the request to start a workflow job will fail if values mandatory input values are
missing (empty values, for example empty strings, are permitted)

Solution Design 58

output the set of case-packet variables whose final values will be returned to the invoker; on the RMI interface of
the Workflow Manager the case-packet is returned as a map containing the output variables (with the
names as keys)

The workflow contract is defined by means of the Workflow Designer.

 Using Listener and Sender Modules

Two pairs of listener and sender modules are available: the socket module pair and the JMS module pair. The
interworking between modules and workflows follows the same pattern in both cases. An instance of the listener module
is configured to listen at an access point of the underlying communication service for an incoming message and start a
named workflow each time a message arrives. The message is stored in a temporary database entry, and access to it is
provided to the workflow job through one initialized case-packet variable. In both cases, socket and JMS, a message is
sent back to the client by using the SendMessage workflow node with two parameters: one identifying the sender module
instance, another holding or identifying the message.

In the case of the socket listener and sender modules the underlying communication service is TCP. The access points are
ports, and the messages are exchanged as raw TCP messages. In the JMS case the underlying communication service is a
MOM (message-oriented middleware) supporting a JMS interface. The access point are JMS destinations, and messages
are exchanged as MOM/JMS messages. See Appendix C for more information on using JMS.

With the listener/sender module approach parsing of incoming request messages is left to the workflow job that is started
by the listener module. It is recommended to use a controller workflow to handle the parsing (at least of the general
message fields such as order identifier, customer identifier, service identifier and request type which are not specific to the
type of request) and determine the appropriate workflow to handle the specific request.

The Intro example described in Chapter 3 follows this recommendation with one controller workflow and a separate
workflow for each request type. The example shows how to implement parsing of request messages with the XMLMapper
node and how to use templates of response messages where values of case-packet variables are substituted for
placeholders. This pattern represents a recommended best practice.

If you have multiple solutions with unrelated request message streams and formats, it is recommended to use a separate
instance of the listener module for each solution, each one listening on a separate port.

 Using Web Service Servlets

The second approach uses servlets deployed in WildFly, more specifically they are deployed with JBossWS which is part
of the WildFly platform that HPE Service Activator runs on. The servlet for a service can be generated with the Web
Service Designer tool which is provided as part of the HPE Service Activator core product. This tool and its use is
described in Chapter 8. When the generated servlet has been deployed, a description of its interface in WSDL can be
extracted from JBossWS on the running platform - see Chapter 8 for more detail - and imported in a client system to
support generation or configuration of the necessary interface component on the client side.

In this approach a set of web service methods are exposed, where each method will run a specific workflow. Incoming
messages will be parsed by the servlet and parameters of the method are assigned as initial values to case-packet
variables of the workflow job.

The method may just start the workflow job and return the job identifier to the calling web service client, or it may wait for
the job to complete, and return a response message including final values of case-packet variables. In the latter case the
call-return communication synchronizes the caller with the activation system. In the former case the activation job may
run asynchronously with continued activity on the client side, and will typically need to send one or more notification

Solution Design 59

messages to inform the client of progress and final status of the activation job. Such messages can be implemented
according to the sender module approach as described above, or can be sent over HTTP using the generic HTTP plug-in.

Synchronous calls are not recommended when there may be many jobs with long or unpredictable duration. Servlets are
not fault tolerant; the relationship between a running job and the client that requested it will be lost in the case of server
host failure.

With this approach there is no obvious need for a controller workflow. Compared to the first approach the servlet takes on
the role of the controller workflow.

 Service Order Registry

HPE Service Activator comes with a Service Order Registry (SOR) in which request messages received from north-bound
system may be stored. A module named service_order_registry must be configured in the Workflow Manager’s
configuration, also if the Service Order Registry is not used. The service_order_registry is enabled by default when
installing HPE Service Activator.

In order to make use of the SOR, either the RMI method receiveMessage() or receiveMessageAndWait() must be
used. The receiveMessage() and receiveMessageAndWait() methods are somewhat similar to the startJob()
and startAndWaitForJob() methods, in the sense that they can be used to launch workflows – asynchronously or
synchronously.

The RMI methods receiveMessage() or receiveMessageAndWait() both require that the transactionId and the
systemName parameters are set. The combination of transactionId and systemName is used to uniquely identify the
received message; if multiple messages carry the same transactionId and systemName they will be considered to be
identical regardless of the content of the messages.

The Service Order Registry will, upon reception of a message, persist the message using (transactionId, systemName)
as a unique identifier, and then it will launch the requested workflow in the Workflow Manager. In the synchronous case
(when using the receiveMessageAndWait() method), the calling thread will be blocked until the execution of the
requested workflow is finished. In the asynchronous case (when using the receiveMessage() method) the method will
respond immediately after the message has been persisted and the workflow job has been started; the immediate
response will contain a generated UUID as well as two counters that keep track of the number of times the same message
has been resent.

NOTE Please study the Javadoc for the RMI methods receiveMessage() and receiveMessageAndWait() for more
details about how to use these methods.

5.11.4.1 Modes of Operation

The two modes of operation – synchronous and asynchronous – are fundamentally different in the requirements that
they pose on the solution developer. In general, using the asynchronous mode of operation require considerably more
from the solution developer in order to operate as intended.

When using the synchronous mode of operation, receiveMessageAndWait(), the behavior of the Service Order
Registry is as follows:

1. The message is persisted
2. The requested workflow is started and the SOR waits until the workflow is finished executing
3. The persisted message is updated with the workflow result (i.e. the workflow’s case-packet is stored with the

persisted message)

Solution Design 60

4. The receiveMessageAndWait() returns the workflow’s case-packet

So, from the solution developer’s point-of-view, the receiveMessageAndWait() method can be used almost identically
to the startAndWaitForJob() method; they both block until the executed workflow is finished, and the result from the
workflow job is returned in the format of a map containing all case-packet variables as key-value pairs.

When using the asynchronous mode of operation, receiveMessage(), the behavior of the Service Order Registry and
the invoked workflow (developed by the solution developer) is as follows:

1. The message is persisted as a SOR entry
2. The requested workflow is started; an internal identifier that is used to identify the SOR entry is automatically

written to the workflow’s system case-packet variable named SOR_ID
3. The receiveMessage() method exits and returns a generated UUID
4. When the workflow has finished its task and calculated a result, the workflow must do the following:

a. The SORSaveMessage node or SORSaveMessageHandler must be executed to update the registry
with the result; please read the description of the workflow node or the handler in the document HPE
Service Activator Workflows and the Workflow Manager. Note, that it is possible to set the state of the
SOR entry by setting the sor_state parameter (see section 5.11.4.4). Also, for correct operation the
sor_id parameter must be set to SOR_ID. Finally, it is very important to remember to set the
send_workflow parameter; this parameter is used to tell SOR which workflow to invoke if the same
request message is received again. More details about this topic will be given in section 5.11.4.2.

b. The SendMessage node of SendMessageHandler must be executed to send back the asynchronous
response to the caller. For correct operation, the parameter use_sor_id must be set to true. Currently,
the only module shipped with HPE Service Activator that has the capabilities needed to support the
asynchronous mode of operation is the HTTPSenderModule.

The solution developer must be very careful when implementing the functionality sketched in the steps 4a and 4b in the
above description. Any deviation from these recommendations may cause the asynchronous mode of operation to
malfunction.

5.11.4.2 Idempotency

In addition to serving as a registry for received messages, the Service Order Registry can be used to guarantee that for a
given value of (transactionId, systemName) the requested workflow will only be invoked once even if the same
request is received several times. Moreover, this mechanism can used to secure that for a given request message the
response will always be the same. This feature is known as idempotency.

The way to ensure that the system will always send back the same response for the same input data is different for the
two modes of operation:

• Synchronous In this mode of operation idempotency is obtained automatically. If the Service Order Registry
detects that the message is known, identified by (transactionId, systemName), then it will
simply read the stored result in the SOR entry and immediately return that result to the calling
thread.

• Asynchronous In this mode of operation the solution developer needs to design a “resend workflow”; i.e. the
workflow to be invoked if the SOR sees the same request message again. The “resend
workflow” that will be called is the one that was specified in the SORSaveMessage workflow
node using the send_workflow parameter (see section 5.11.4.1). The Service Order Registry
will set the value of the SOR_ID case-packet parameter in the “resend workflow” so that the
SOR entry containing the result from the execution of the original request can be uniquely
identified. This means that in the “resend workflow” the solution developer must use either

Solution Design 61

the SendMessage node of SendMessageHandler and set the parameter use_sor_id to
true to trigger a re-send of the result to the caller.

5.11.4.3 Retention Policy

The Service Order Registry is not designed to keep received message indefinitely. SOR messages should be cleaned up
on a regular basis, either automatically og manually from the web UI.

To enable automatic clean-up of SOR messages, the service_order_registry module in the mwfm.xml configuration
file needs to have the parameters time_window and sleep_interval set. The time_window parameter specifies the
number of hours for which to keep SOR message (from the current time and back), and the sleep_interval specifies
how often to initiate a clean-up cycle. The sleep_interval parameter is also specified in hours.

The following example will lead to a daily clean-up cycle where all SOR messages older than one week will be deleted:

 <Module>
 <Name>service_order_registry</Name>
 <Class-Name>
 com.hp.ov.activator.mwfm.engine.module.sor.ServiceOrderRegistryModule
 </Class-Name>
 <Param name="time_window" value="168"/>
 <Param name="sleep_interval" value="24"/>
 </Module>

NOTE If the time_window and sleep_interval parameters are not speficied, the SOR messages will never be
automatically cleaned up.

5.11.4.4 Life-Cycle States

The Service Order Registry supports the following life-cycle state for SOR messages:

Received Message request has been received but has not been yet processed
Running Message request is being processed (the workflow is running)
Responding Response message is being sent back to the north-bound system
Finished Message request has been successfully processed
Gave Up Message request has been processed but the response message could not be sent

back and the number of retry attempts (if using retry) has been exceeded
Incomplete Message request has resulted in an incomplete state
Gave Up Incomplete Message request has finished in an incomplete state and the response message could

not be sent back and the number of retry attempts (if using retry) has been exceeded

In case of no errors, the life-cycle states for a SOR message will be:

• Received  Running  Responding  Finished

HPE Service Activator Platform 62

Chapter 6
HPE Service Activator Platform

As described in chapter 1 the core component of an HPE Service Activator production system is a workflow engine. The
workflow engine comprises the workflow and resource managers.

The workflow engine runs in the framework of WildFly (version 9.0.2). WildFly is a JEE platform which can run on a range
of hardware and operating system platforms. HPE Service Activator is specifically supported on Red Hat Enterprise Linux
on x86-64 processor, and on Windows 2012 R2 Servers on any hardware platform. In addition to WildFly, the operating
system, and the processor hardware, HPE Service Activator requires access to a database server via JDBC connections.

The complete stack comprising the workflow engine on top of the required platform is shown in Figure 6-1.

Figure 6-1 HPE Service Activator Platform Stack

6.1 Cluster Platform

As described above, HPE Service Activator can be deployed on a range of different hardware, from small and inexpensive
to large, very powerful processing systems. HPE Service Activator-based systems can also be deployed on clusters of
separate servers, interconnected within a segment of a local area network. The term cluster node (or just node) is used to
designate a server in a cluster.

Cluster configurations provide three important benefits:

• Extreme scalability: the workload of the HPE Service Activator solution can be distributed over all the nodes in a
cluster; when a node is added, the total processing power is enhanced.

• High availability: if one of the nodes in a cluster suffers a failure and ceases to function or is taken out operation,
all running workflow jobs will continute to run and are redistributed over the remaining nodes (one or more).

• Easy configuration of server nodes on standby sites for disaster recovery.

The unit of work for an HPE Service Activator system is a workflow job. A cluster node is selected to run a workflow job
when the job is started. The job will remain on the selected node until it completes, except when a node failure occurs. All
the processing of the workflow job, including activation transactions down to atomic tasks takes place on the same node.
But when a job starts a child job, a different node may well be selected for the child job.

At any point in time when an HPE Service Activator production system is running, there will be a number of jobs running
on each of the nodes. The distribution of work will change when jobs terminate, and when new jobs are started. The
system administrator can view the running jobs and their assignment to cluster nodes.

Workflow jobs are executed as a sequence of workflow nodes (note: a different meaning of the word node!) determined
by the control logic of the workflow, with branching controlled by rule nodes. As the execution of each workflow node

Server Hardware

Operating System

JBoss J2EE Server

HPSA Workflow
Engine

HPE Service Activator Platform 63

completes, the state of the workflow job may be persisted, allowing execution of the job to be restarted from the next
node. After a node which has no external impact, persistence may be omitted to enhance performance. Workflow nodes
which have external impact are those which perform activation tasks, update the database (inventory or audit trail), post
messages to queues, send messages to other systems, or perform any other action which causes something to change
outside of the workflow engine itself. The persistence property as described here allows a workflow job to be restarted, if
the cluster node it runs on suffers a failure or is halted, while the job is running. Restarting can take place without any
startup costs on any node in the cluster.

To allow completely symmetric assignment of workflow jobs to cluster nodes, all the information that is needed to run a
job is held in database repositories that can be accessed by all the nodes. This includes the static information: workflows,
compound and atomic tasks (plug-ins), inventory tree definitions, as well as the dynamic states of workflow jobs, including
values of case packet variables, and of active compound transactions, including locks on activation targets.

As a result of the symmetry and the single database, a cluster of workflow engines will appear and behave like a single
distributed engine as illustrated in Figure 6-2 for a cluster comprising 3 nodes. Operators and external systems can
interact with a running workflow through the web service interface of any node in the cluster.

Figure 6-2 HPE Service Activator Distributed Workflow Engine

Given the equal access to persisted workflows from all nodes in the cluster, it could be considered to monitor the relative
loads on differents nodes and migrate jobs between nodes to balance the load. There would be a performance penalty,
since a job that remains on the same node benefits from having its state cached in the workflow engine. Assuming most
workflows are short lived, the benefit would not be great. In HPE Service Activator workflow jobs only migrate upon node
failure.

In the event of a node failure, it will be detected by the other nodes in the cluster. One of them will then automatically
assume the role of redistribution manager. The redistribution manager will restart all workflow jobs that were active on
the failed node. For each job a new cluster node is chosen to execute it. In this way the load of the failed node will be
shared over all the remaining functional nodes.

Detection of cluster node failure is done by means of keep alive timers that are monitored by keep alive modules of the
workflow managers on all active nodes in the cluster. The timers are also held in the shared database.

6.2 Cluster Installation and Setup

For details on how to install and configure an HPE Service Activator cluster, please refer to the Installation Guide. Only the
main principles are mentioned here as part of the explanation of the clustering concept:

• HPE Service Activator must be installed on each node in the cluster. This will also install WildFly on each node.
HPE Service Activator clustering does not build on WildFly clustering. The WildFly servers are independent and
not aware of each other.

Server 1

Cluster Node 1

Server 2

Cluster Node 2

Server 3

Cluster Node 3

single distributed HPSA engine

HPE Service Activator Platform 64

• When HPE Service Activator is installed on the first node, the database tables used by the workflow manager
and other parts of the HPE Service Activator platform (as opposed to the tables belonging to the customized
data model of a solution to be added on top) shall be created. When HPE Service Activator is installed on
subsequent nodes, the same database user shall be specified, but the tables shall not be created again. An
additional entry (row) will then be created in the table (CLUSTERNODELIST) that describes the nodes of the
cluster.

• HPE Service Activator must be configured on each of the nodes in the cluster. For example, the workflow
manager is configured in file mwfm.xml. The configuration shall normally be identical on all nodes of the cluster.

• Nodes can be installed on different sites. Each site is either a primary site or a standby site for disaster recovery.
The name and type of the site must be given for each node where HPE Service Activator is installed.

• Except on a Windows server a virtual IP address can be defined for the server. The virtual address must be
associated with an interface on the server. The virtual address is useful in the internal load balancing scenario
described below.

6.3 Workflow Load Distribution

The important control decision that determines the distribution of load across the cluster is the selection of the node
where each new workflow job is started.

Except for child workflows the initiative to start a workflow activity always originates outside of HPE Service Activator,
typically in a CRM or Order Management system. The external component which makes requests for workflow jobs to be
run can also be a catalog-driven workflow controller delivered by HPE as part of a solution. Service orders may also be
entered into an order portal GUI, which can translate orders directly to requests to run workflows.

Once a workflow job has been started in response to an external request, it may spawn child jobs. The complexity of the
workflows that are started by an external initiator will vary depending on the solution. In complex cases, the initial
workflow will spawn many additional jobs.

Different mechanisms can be implemented to interface the external control component to HPE Service Activator’s
workflow manager, but in the end the request to run a workflow job is always made by a call on the API of the workflow
manager: startJob (asynchronous mode) or startAndWaitForJob (synchronous mode).

NOTE The case when a user starts a workflow from the main UI or from the inventory UI is not special. The request is
passed via the WildFly web server through a call on the workflow manager’s API.

The actual API call may be implemented in different ways. It can be made directly by an external controlling component
using either the RMI or SOAP version of the API. Alternatively it can be made by a workflow manager module, such as the
socket listener, or by a web service NBI dedicated to an activation solution, i.e. a specific set of workflows exposed as web
service methods.

Regardless of these technical variants, the more significant difference has to do with the selection of the cluster node
where the job will run, as this is the decision that will affect load balancing in the cluster. The selection is made by a
module of the workflow manager which receives the API call, known as the distribution module. Three different
distribution modules implementing different selection algorithms (see below, Internal Load Balancing) are available in the
HPE Service Activator kit; the workflow manager must be configured to know which distribution module to use. When the
distribution module has selected the node to process a workflow job, it transfers the workflow job to that node.

The workflow manager can run in “stand-alone mode” (similar to versions prior to V5) with no active distribution module.

As for other workflow manager modules it is possible to extend HPE Service Activator with additional node selection
algorithms by implementing new distribution modules.

HPE Service Activator Platform 65

All distribution modules allow the node selection algorithm to be bypassed for workflows that are started by a call on the
external API.

 Internal Load Balancing, Virtual IP Address

Internal load balancing is the intended normal distribution model, where HPE Service Activator itself takes care of load
balancing. In this mode it does not matter which cluster node receives the request to start a workflow job. The originator
of the request therefore does not require any load balancing capability. It is enough to know a single node which can
receive all the calls and distribute them across the cluster, as illustrated in Figure 6-3.

Figure 6-3 Internal Load Balancing

HPE Service Activator supports the use of two IP addresses for each server in a cluster, the physical IP address and the
virtual IP address. If a cluster node fails and goes out of operation, its physical IP address will become unreachable,
whereas the virtual IP address will be taken over by one of the remaining servers in the cluster, the “failover” server. The
fail over process may take up to a minute. After fail over requests sent to the virtual IP adress of the failing cluster node
will be transparently received by the failover server, which will initiate processing in the usual way.

By default the virtual IP address will automatically move back to the node it belongs when that node again becomes
available. You can configure the keep alive workflow manager module to overrule this behaviour, if you prefer to manually
decide from the UI when the virtual IP address shall move back.

The HPE Service Activator server address known by the request originator should be the virtual IP address of the node
designated to receive the requests.

Four distribution modules, supporting different algorithms, are available as part of the HPE Service Activator standard
product distribution. The workflow manager can be configured to use any one of these. The four algorithms are:

• Plain round robin.
• Weighted round robin, where each cluster node can be assigned a different weight according to its processing

power.
• Selection of the node which has the shortest queue of workflow jobs waiting for a processing thread in the

workflow manager (a measure of the load at the time when the decision is made).
• Selection is based on the value of a pre-initialized case-packet variable of the job to be started.

 Request Originator

Workflow
Manager

Distribution

Cluster Node

Workflow
Manager

Distribution

Cluster Node

Workflow
Manager

Distribution

Cluster Node

HPSA Cluster

HPE Service Activator Platform 66

When a workflow job spawns a child job, the load balancing algorithm will again be applied, so a family of jobs with a
common ancestor are not tied to the same cluster node.

 External Load Balancing

In the external load balancing model, the cluster node that receives the external API call to start a workflow job also runs
the job. To achieve this behavior the active distribution module must be configured to run externally requested workflows
locally, i.e. the node selection algorithm is not used. This means the external originator of the requests to run workflows
will determine the distribution of processing across the cluster.

This mode of operation is supported to allow the use of request originating systems which already support a desired load
balancing algorithm. Such systems will need to know all the cluster nodes and to maintain information about them, which
requests have been dispatched to each one, etc., in order to make load balancing decisions.

When a job is started on a cluster node where the distribution function is disabled, any child jobs will run on the same
cluster node. This is a logical consequence of the balancing logic being implemented externally. However, when jobs are
redistributed after a node failure, they will still be distributed as opposed to all being executed by the node which acts as
redistribution manager.

Figure 6-4 External Load Balancing

6.4 Standby Sites for Disaster Recovery

For the case of mission critical solutions where servers must be in standby mode at a secondary disaster protection site,
HPE Service Activator cluster configuration allows cluster nodes to be associated with sites, and sites can be categorized
as primary or standby. The category is actually a modifiable state of a site. Only the nodes at the primary site need to be
running in normal operation, but the standby site(s) is also included in the installed and configured system and is visible
from the user interface.

The database server that HPE Service Activator uses may also be configured with primary and standby sites and use a
product from the database vendor to automatically maintain an up-to-date copy of the database at the standby site(s).
Alternatively independent database servers can be used at the sites and backups of the database can be regularly
transferred to the standby site(s).

 Request Originator &
Load Balancer

Workflow
Manager

(Distribution)

Cluster Node

Workflow
Manager

(Distribution)

Cluster Node

Workflow
Manager

Cluster Node

(Distribution)

HPSA Cluster

HPE Service Activator Platform 67

In the event of a disaster, i.e. the servers at the primary site become unavailable, the server(s) at the disaster site must be
started, the system administrator must connect to it (one of them) and change the state of the site from standby to
primary. Northbound systems and users must then make sure to access the (a) new primary server. A configuration
change may be needed, because the secondary site may have different host names and IP addresses from the original
primary site.

The procedure for switchback to the original primary site must be similar. The secondary site must be deactivated, the
original primary site restarted, the states of the sites must be swapped; this can be done from the system administrator
user interface, and then the system will again be ready for normal operation.

6.5 Internet Protocol Versions (IPv4, IPv6)

HPE Service Activator will run in an IPv4 or an IPv6 environment. When deployed in a cluster and/or with a separate
database server, all the machines which make up the platform, including database servers, must run the same version of
Internet Protocol and use it for the interconnection of the cluster. All of the relevant setup is done during installation, for
details see the installation guide.

For external communication, with activation targets as well as peer systems via liaisons, etc., HPE Service Activator can
use any mix of IPv4 and IPv6, independently of the version that is used for internal cluster interconnection.

6.6 Managing an HPE Service Activator Cluster

 User Interface Functions for Cluster Nodes

HPE Service Activator’s system administrator interface (see HPE Service Activator, User’s and Administrator’s Guide) has
features for managing a cluster:

• The operator can view how jobs currently running are distributed across the nodes of the cluster.
• The operator can set the state of a site to primary or standby.
• Statistics reports can be produced about the load of the nodes over a specified period of time.
• Nodes can be taken in and out of operation.

The last feature is known on the interface as locking and unlocking of a node. When a node is locked, it will no longer be a
candidate to run new workflow jobs. The load on the node will then drain as current jobs run to completion. When there is
no load left the node can be taken of operation for hardware or software maintenance.

Cluster nodes can also be suspended: all jobs are immediately suspended with saved state so they can be resumed later.
Suspension is primarily intended to be applied to a complete cluster to allow backup of a frozen database. No use case is
intended for suspending a single node.

 Synchronizing Time on Cluster Nodes

In order to allow proper cooperation between the workflow engines in a cluster, the date and time on all the servers must
be kept synchronized using a tool such as NTP (Network Time Protocol).

Roles, Privileges and Authentication 68

Chapter 7
Roles, Privileges and Authentication

Some HPE Service Activator solutions are black boxes with very few users. Others may have a larger user community. The
inventory subsystem, in particular, may allow users to perform operations on many different types of entities. It is possible,
therefore, to assign privileges to perform operations from the user interface with any desired granularity.

Privileges in HPE Service Activator are granted to roles. When a user logs in to HPE Service Activator, an authentication
takes place based on user name and password, and a list of roles is established that the user will have during the session.
The user is then permitted to perform any operation for which the privilege has been granted to one of the roles in the
list.

NOTE Authentication must be configured for the workflow manager, otherwise it will not occur, and users will not get
any roles. It is not enabled at installation time.

The user interface operations that may require privileges fall in four areas:

• Functions available as menu items in HPE Service Activator’s main UI window. The menu falls in two parts, the
Work Area and the Self Management menu. The Self Management menu as a whole is only available to users
who have the - predefined - system administrator role, normally named ‘admin’. For the work area a required role
can be assigned to each menu item.

• Workflow related operations, also performed from the main UI window: starting and stopping workflow jobs,
inspecting the state of a workflow job, interacting with a workflow job, viewing messages posted on queues by
workflow jobs.

• Inventory operations performed from the inventory UI window: view a tree; expand a branch in a tree to see more
branches; create, view, edit or delete a resource instance.

• Deploying plug-ins using the Service Builder tools. In this case the user does not log in to HPE Service
Activator’s web-based UI, but the Service Builder invokes methods to deploy plug-ins on the resource manager,
and these methods may require authorization using the user’s identity as established by the operating system.

As customizer of a HPE Service Activator solution you must define the roles that shall exist for the system, and you must
assign to roles the privileges to perform specific operations. Typically you will then leave it to the system administrator to
define users and assign roles to them. You must decide which operations shall require specific privileges. If it is not
necessary to distinguish between different categories of users, you can simplify your task by leaving many operations
available to any authenticated user. You generally do this by omitting to configure a privilege for each operation (for
example to interact with a workflow or perform an operation on the inventory UI). You must also decide the granularity of
the roles you define. If you make few large roles, each with wide privileges, you will simplify the task of the system
administrator. If you make many small roles, each with limited privileges, you enable the system administrator to assign
privileges to user groups with fine granularity.

The first section in this chapter introduces the system user and the predefined system administrator role.

The second section gives an overview, with references to additional information, of how the privileges to perform the
operations in the four mentioned areas are assigned to roles. This is done in different ways, using different tools, for each
of the four areas.

The third section gives an overview of the different modules you can choose from to authenticate users and establish
their roles at log-in, and how to configure these modules.

Roles, Privileges and Authentication 69

The fourth section describes how users can be grouped in teams, and finally there is a section that describes HPE Service
Activator’s support for HPE’s Light-Weight Single Sign On framework and SPNEGO.

Management of users, roles and privileges is done by the system administrator using the User Management view
available from the Self Management menu area of HPE Service Activator’s main UI, as described in HPE Service Activator,
User’s and Administrator’s Guide.

7.1 System User and Predefined Roles

There are two predefined roles, ‘admin’ and ‘internal’.

The ‘admin’ role, as described above, is the system administrator role with privileges to perform system administrator
functions. It is possible, but not recommended to change the name of the role by editing the configuration file for the
workflow manager, mwfm.xml, see “Setting the Workflow Manager Parameters” in HPE Service Activator, Workflows and
the Workflow Manager.

The ‘internal’ role exists for technical implementation reasons. This role has the privilege to interwork with workflow jobs
which are sleeping or waiting for activations or other software internal interactions. It is not intended to be assigned to
human users.

One special user, the system user, is created with username and password during installation (system configuration) of
HPE Service Activator. It exists primarily for technical implementation reasons and has all roles, including the predefined
ones ‘admin’ and ‘internal’. Software components (for example workflow manager modules) which need to perform
‘internal’ interactions with workflow jobs will take on the identity of the system user. When the workflow managers on
separate cluster nodes interact, they also make use of the system user.

It is not possible from the user interface to change the name or password of the system user or to revoke any roles from
it.

The system user is not intended to be used by a system administrator during normal operation, but must be used to
create at least the first ordinary user once authentication has been enabled.

NOTE If a non-native authenticator module is used (see “Authentication and Assigning Roles to Users” below), the
predefined roles and the system user are not automatically created during installation. They must then be explicitly
created in the appropriate environment (operating system or LDAP) before authentication is configured. If this is not
done, the system will malfunction.

7.2 Assigning Privileges to Roles

The privileges to perform operations related to workflows and inventory can be defined and assigned to roles with a fine
granularity as part of the customization of workflows and inventory.

Roles and also their relationships to inventory UI privileges can be described in an XML-formatted file. The schema for
the document is found in file $ACTIVATOR_ETC/config/ummData.xsd. If you have defined the roles and relationships
in the User Management view so that they are recorded in HPE Service Activator’s static repository in the system
database, you can use the UMMData script to export them to a file and include it in a solution to be deployed with the
Deployment Manager. Refer to the manual for the Deployment Manager for information on how to include the roles file in
a deployable solution.

Roles, Privileges and Authentication 70

For each of the four areas of potentially privileged operations, the information on how to define the operations with
privileges and assign them to roles is found in different manuals, as outlined here:

 User Interface

Privileges to view and select menu items in the work area of HPE Service Activator’s main UI are assigned directly to roles.
Configuration of the UI menu is described in HPE Service Activator, User’s and Administrator’s Guide.

 Workflows

For operations related to workflows, privileges are also assigned directly to roles, see “Setting Roles” in HPE Service
Activator, Workflows and the Workflow Manager. In the same manual, specifically for information about message and
request queues, see “Queues”, and for information about how to make these queues permanent using the <Permanent-
Queue> tag, see “Setting the Workflow Manager Parameters”.

 Inventory

With respect to inventory operations, see “Inventory Tree Definitions” in HPE Service Activator, Inventory Subsystem, for
information about defining the privileges, known as operation types, branch types and tree definitions. The assignment of
these privileges to roles is done as part of User Management in HPE Service Activator’s main UI.

 Deploying Plug-ins

For deploying plug-ins, there is only one privilege, it is preassigned to a role named “deployer”. The role is only required if
you have enabled authentication of plug-in deployment. For more information, see “Configuring Authentication or
Authorization” in HPE Service Activator, Developing Plug-Ins and Compound Tasks.

7.3 Authentication and Assigning Roles to Users

User authentication in HPE Service Activator is the process of validating that a supplied (user name, password) pair is
valid, determining the identity of the user, and retrieving the list of the user’s roles. It is done by a module of the workflow
manager, known as an authenticator module.

On a virgin system, after installation of HPE Service Activator, authentication is disabled. You enable it, like other functions
performed by workflow manager modules, by editing a specification of the module you want to use - its name, Java class,
and configuration parameters, into the configuration file for the workflow manager, mwfm.xml.

You have four authenticator modules to choose from, HPE Service Activator’s native recommended module, the
DatabaseAdvancedAuthModule, one for each of the four supported operating systems, Windows, and Red Hat Linux,
and finally an authenticator module that uses LDAP to access a directory service. For special requirements it is possible to
build additional authenticator modules.

NOTE If you configure a non-native authenticator module remember to define the system user and predefined roles
(with the same name and password that was defined at system installation time) within the data that is the foundation for
authentication (i.e. OS users and groups or LDAP).

Roles, Privileges and Authentication 71

 Native Authenticator Module

With the native authenticator module the user information is held in HPE Service Activator’s own database, and all user
administration functions are done through the User Management view of HPE Service Activator’s main UI.

 OS-based Authenticator Modules

The OS-based authenticator modules delegate authentication to the operating system, validating HPE Service Activator
user credentials against the same database that the operating system uses for its own users. These modules then retrieve
all user groups that the validated user belongs to and maps them to roles using the role mapping file. By default, the role
mapping file is absent, and each group name is taken directly as a role name.

When you use one of the operating system based authenticator modules, you manage HPE Service Activator users by the
same tools that you use to manage users of the operating system, including the creation of dedicated groups to
implement the roles you have defined for HPE Service Activator.

 Role Mapping

You will understand how to construct role mappings from the following example, which shows the contents of a role
mapping file that maps the two groups activ_users and activ_oper to the same HPE Service Activator role, operator,
and a third group root to the admin role.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE RoleMappings SYSTEM "role_mappings.dtd">
<RoleMappings>
 <Role>
 <Name>operator</Name>
 <Mapping>activ_users</Mapping>
 <Mapping>activ_oper</Mapping>
 </Role>
 <Role>
 <Name>admin</Name>
 <Mapping>root</Mapping>
 </Role>
</RoleMappings>

The role mapping file must be named and placed as: $ACTIVATOR_ETC/config/role_mappings.xml. After you create or
change it, reload the configuration from the Self Management menu of HPE Service Activator’s main UI to allow it to take
effect.

NOTE If you write your own authenticator module - see “Writing New Authenticator Module” in HPE Service Activator,
Workflows and the Workflow Manager - you must consider if your module needs to support role mapping.

 LDAP Authenticator Module

The LDAP-based authenticator module assumes that information about users and their roles is held in a directory which
exposes an LDAP service interface where a client can authenticate users and look up their roles.

The LDAP authenticator module is based on the following assumptions about entries in the directory tree:

• There is a root entry used to authenticate the module (HPESA) as a client of the directory service when it binds
to the service.

Roles, Privileges and Authentication 72

• HPESA users are represented by entries which are children of a single entry (the user parent), typically an
organizationUnit entry with ou=People.

• All user entries must have an attribute whose value is the HPESA username. The name of of this attribute is
configurable.

• User entries also contain the HPESA password for the user.
• Similarly HPESA roles are represented as entries which are children of a single entry (the role parent), typically

an organizationUnit entry with ou=Roles.
• All role entries must have an attribute whose value is the HPESA role name. The name of of this attribute is also

configurable.
• Each role entry has a multi-valued attribute (its name is configurable) with a value for each user who has the

role. The value equals the distinguished name of the user entry.

To illustrate these points, Figure 7-1 is a screenshot from a directory browser showing a directory that meets the
assumptions.

Figure 7-1 LDAP Directory Tree

You cannot create the entries in the directory from HPESA. It is possible to use an existing directory where user entries
already exist. Even the role entries may be reused, if a role concept is already implemented in the directory in a way that is
compatibile with the assumptions. Otherwise, the system administrator must, using the user interface provided directly by
the directory, create the entries that can be used to authenticate HPESA users and map each user’s name to the
appropriate set of roles.

To configure the LDAP authenticator module you need to provide: host and port where the directory service is running;
username and password for authentication of the session from the module (as client on HPESA) to the server; complete
distinguished names for the user and role parent entries; configurable attribute names (see the assumptions); a
specification of whether you want to use SSL to access the directory service.

If the role names held in the directory are not the actual names as used in HPESA, you can use role mapping in the same
way as for the OS-based authenticator module.

 Role Mapping

If you use OS-based authentication and you want to use HPESA role names which are different from the user group
names that have been configured on the OS, you can use role mapping.

Roles, Privileges and Authentication 73

You will understand how to construct role mappings from the following example, which shows the contents of a role
mapping file that maps the two groups activ_users and activ_oper to the same HPE Service Activator role, operator,
and a third group root to the admin role.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE RoleMappings SYSTEM "role_mappings.dtd">
<RoleMappings>
 <Role>
 <Name>operator</Name>
 <Mapping>activ_users</Mapping>
 <Mapping>activ_oper</Mapping>
 </Role>
 <Role>
 <Name>admin</Name>
 <Mapping>root</Mapping>
 </Role>
</RoleMappings>

The role mapping file must be named and placed as: $ACTIVATOR_ETC/config/role_mappings.xml. After you create or
change it, reload the configuration from the Self Management menu of HPE Service Activator’s main UI to allow it to take
effect.

NOTE Role mapping is not restricted to OS authentication. It can be used to map the names of roles that are defined in
the authentication environment, also for LDAP authentication, to HPE Service Activator role names. If you write your own
authenticator module - see “Writing New Authenticator Module” in HPE Service Activator, Workflows and the Workflow
Manager - you must consider if your module needs to support role mapping.

7.4 Organizing Users in Teams

For use on systems with many users there is a concept of teams. You can divide the user community in teams and
appoint one or more administrators for each team. A team administrator can access the user management functions in
the Self Management menu, but is restricted to manage the members of his/her own team.

Each user will belong to exactly one team. Roles must then be assigned to teams, and the team roles limit what roles can
be assigned to the users in the team. Initially there is a default team which has all roles.

NOTE The team feature is only available when configured on the native authentication module.

7.5 Light Weight Single Sign On

LWSSO is a framework that a number of HPE NGOSS (and other) products adhere to. Within this framework a user can
log in to establish a session with one product and may then execute a cross launch action that will bring up a GUI of
another product - in a separate window or in a frame of the window from which the action was launched - without having
to log in to the second product. LWSSO is based on transferring encrypted cookies between the product servers, via the
user’s browser client. The cookie will contain the user’s identity (user name), but not the password. The password is only
authenticated when the initial session is established, and the authentication mechanisms (and users’ passwords) may be
different on the various products that cooperate within the framework.

HPE Service Activator supports LWSSO. It allows cross launch to and from other products which also support LWSSO.
NNMi and UCMDB fall in this category, NA does not. When launching an NA window from HPE Service Activator, the user
will be confronted with NA’s log in dialog, but only once in a session.

Roles, Privileges and Authentication 74

The use of LWSSO must be configured for HPE Service Activator at installation time. At this time a number of parameters
concerning the encryption method, etc., must be entered. See the Installation Guide for details.

Some special considerations for the use of LWSSO must be noted: Functions which require access to the user’s password
are not possible when HPE Service Activator has been cross launched using LWSSO: user management, use of stored
filters and searches. Time skew between cooperating servers must not exceed 15 minutes.

7.6 SPNEGO

SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) is used by client-server software to negotiate the
choice of security technology. SPNEGO is used when a client application wants to authenticate to a remote server, but
neither end is sure what authentication protocols the other supports. The pseudo-mechanism uses a protocol to
determine what common GSSAPI mechanisms are available, selects one and then dispatches all further security
operations to it. This can help organizations deploy new security mechanisms in a phased manner.

HPE Service Activator can be configured to use SPNEGO to redirect to the main page. The spnego-login.jsp must be
used for this.

It is done this way to support both, common login and SPNEGO login at the same time. If the site is configured entirely
with SPNEGO then the client itself will prevent a non SPNEGO user to reach the server code making impossible both
authentication systems.

HPE Service Activator can be configured to use SPNEGO with Kerberos.The configuration is done as part of running
ActivatorConfig like with LWSSO.

Internet Explorer will only perform SPNEGO authentication against sites which are configured in the Local Intranet zone.

Firefox will only perform SPNEGO authentication against sites configured in “network.negotiate-auth.trusted-uris”
parameter.

Common Network Resource Model 75

Chapter 8
Common Network Resource Model

The Common Network Resource Model (CNRM) is a data model appropriate for a class of commonly managed new
generation networks based on IP, Ethernet and MPLS technology. The model is included in the HPE Service Activator
core product packaged as a deployable solution (designated CRModel) which can be used as a basis for a customized
solution or in fact by multiple solutions which will manage different services over the same network. The CNRM consists
of resource definitions, tree definitions for the inventory user interface and functions implemented as workflows which can
be launched from the inventory UI.

The model matches well the types of networks which are typically managed with the HPE BTO NNM and NA products. It
is eminently suitable for solutions where HPE Service Activator is integrated with these products (as discussed in Chapter
11 and Chapter 12). The CNRM can be populated by uploading data representing the network and its equipment. Data
upload can be achieved through integration with NNMi.

NOTE The modelling of classical transmission technologies (SDH, SONET, T1) for layer 1 transport is not covered by the
CNRM, but must be added to the model if needed. With respect to the MPLS core network, the model is only concerned
with edge devices. Additions will be needed to manage routing of label switched paths across core (P) routers.

The CNRM was introduced in the section “Solution Data Repositories (Inventory)” (starting on p. 22). The introduction
included a diagram of the network architecture that CNRM is suitable for and listed some services that such networks are
used for: corporate VPN services; traffic between customer sites and (provider or third party) platforms providing a range
of services (Internet access, VoIP, IPTV); interconnection of elements of provider infrastructure (mobile backhaul).

The network architecture as depicted in Figure 2-1 includes an MPLS core network and L2 (Ethernet) access networks. L2
and L3 VPN technologies are used to structure traffic across the MPLS core network. Traffic across the L2 access network
normally uses provider bridging, i.e. S-VLAN tags are used to identify the traffic for specific services. PE routers can also
have interfaces to legacy access networks (ATM, frame relay, SDH, TDM), but the model does not cover these networks.

8.1 Adapting the CNRM for a Solution

For some solutions, those which are not concerned with networks that resemble Figure 2-1, the CNRM will be not be
useful. For those solutions a different model must be created according to the requirements.

In many cases, when the network and services of the service provider requiring an activation solution, do resemble Figure
2-1, extensions or adaptations may be needed to match precisely the provider’s network architecture and the data
required to manage the equipment and services involved in a solution.

The CNRM is used as the data model basis of Service Porvisioner. In fact the model is a generalization evolved from
different solutions that have been integrated in the core product taking into account both physical and virtual devices.

The CNRM is present in the core product in the form of resource and tree definition source files, so it is possible to modify
the model in any way required for a solution. Even in cases where requirements dictate a significantly different model, it
may be useful to take the CNRM as a starting point and work with differences and modifications rather than elaborating a
complete model from scratch.

For a project where the CNRM can be used with modest modifications, considerations of support and maintenance of the
solution over time suggest that the solution should be constructed in such a way that such evolution of the CNRM as may
occur in future product releases may be incorporated smoothly. It is recommended, therefore, to strive to maintain the

Common Network Resource Model 76

resource bean definitions of the CNRM unchanged and implement any modifications in specializations of the classes of
the CNRM.

When defining a specialization you can use the <ParentField> element to define for the specialized class properties to
override the properties of the superclass (parent) fields, such as: name, label, list of values, visibility, modifiability and
formatting.

8.2 CNRM Workflows

The CRModel solution package includes the following workflows:

CRModel_ModifyChannel execute a dialog with a network element to create or delete
an aggregate or channelized interface

CRModel_NNMi_Dataload_Check_Nodes checks that data in CNRM is also in NNMi

CRModel_NNMi_Dataload_Launcher master workflow for loading CNRM data model from NNMi

CRModel_PostProcess post process workflow for dataload from NNMi

CRModel_RouterUpload loads the interfaces on a network element by direct dialog
with the network element

8.3 CNRM on the Inventory User Interface

Three inventory UI trees are included in the CRModel solution package for presentation and management of the CNRM:

CNRM/Equipment Shows the data of the CNRM

CNRM/Parameters For configuring the CNRM by editing configuration data

CNRM/NNMi Dataload For controlling dataload from NNMi

CNRM/queue_notification_failed For synchronizing with external systems

You can use these trees as you see fit for a customized solution. You can modify them according to customer
requirements and taste. Refer to HPE Service Activator, User’s and Administrator’s Guide for a description of the three
trees and the functions that can be invoked from them.

The trees use the CNRM resource beans and the forms generated from them by the Inventory Builder. They also use a
number of hand crafted JSPs for special operations like dataload from NNMi and management of aggregate and
channelized interfaces.

8.4 Model Configuration Data

A number of (resource bean) object classes are associated with the CNRM but do not model elements of a network.
These classes configure the model by defining valid values for fields of the proper network model classes. They are shown
with entity relationships in Figure 8-1. Each region object defines a valid value for the region property of a network, each
ElementType object defines a valid value for the ElementType property of a network element, etc.

Common Network Resource Model 77

An important aspect of this is that a solution may contain mappings and templates for different systems or network
elements and their interfaces which depend on interface type, OS version and element type. The configured property
values will be used as indexes for lookup of the proper mapping or template to apply for each network element or
interface. The groupings of OSVersions and ElementTypes make it possible to associate mappings and templates with
groups rather than individual OSVersions and ElementTypes without losing accuracy of the model data.

The CRModel solution package itself contains a table, RouterTemplate, which is indexed by Vendor, OSVersionGroup and
ElementTypeGroup and identifies a template for the dialog to query a network element for its interfaces and a Java class
to parse the response.

NOTE The RouterTemplate table cannot be edited via the trees that are provided on the inventory UI. To add
templates corresponding to new OS versions and element types you will need to use a different SQL tool.

Figure 8-1 Model Configuration Data Classes

Location
OSVersion

Region

ElementTypeGroup

ElementType

OSVersionGroup
InterfaceType

PWPolicy

Vendor

LinkType

ElementComponentType

There are very few fields on these objects (beans): the main one for each is simply the name which defines a valid value
of the corresponding property. In addition there are the foreign keys representing the entity relationships and description
fields.

The PWPolicy table also falls in the category of model configuration. It contains username and password for a group of
devices. This is useful when the same username and password are used for several devices and must be regularly
updated. Instead of updating them as properties of each network element object, they need to be updated only on the
PWPolicy object.

When the CRModel packaged solution is deployed, the Vendor class is populated with a large number of vendors whose
equipment is supported by NNMi. For some vendors OS versions and element types (and groups of both) are also
populated at this time. Further the ElementComponentType is populated with some values. Similarly a rich set of interface
types relevant for the modelled technologies are also populated. Additional objects of these classes, as well as regions,
locations and PWPolicy objects can be added via the Parameters tree on the inventory user interface.

8.5 Object Classes of the CNRM

This section describes the (resource bean) object classes of the actual CNRM. The object classes and their entity
relationships are depicted in Figure 8-2. The fields on the objects which have values constrained by the model
configuration data classes are indicated by showing relationships to greyed-out model configuration objects.

• All of a provider’s physical resources are placed in one or more regions.
• Each region will contain one or more networks; networks can also be hierarchically nested.
• The central object class is Zystem that has a location and belogs to a network. A Zystem can be composed of

other different Zystems or Components.
• The physical specialization of a Zystem is a NetworkElement (NE)

Common Network Resource Model 78

• Another relevant object in the CNRM is the Component bean, which holds the common fields extended by any
other Zystems or ElementComponents as well as the relations with the Locations.A NE can be decomposed into
ElementComponents, on which there may be interfaces which serve as termination points for traffic.

• Zystems and therefore NEs can be connected by links which terminate on interfaces.
• Zystems are of specific element types provided by vendors. The operational characteristics (command set) of

the Zystem will depend on the firmware (OSVersion); the firmware is also provided by the equipment vendor.

Figure 8-2 Common Network Resource Model Objects

Location Component ElementComponent

 Zystem /
NetworkElement

OSVersion

Region

Network

Link

Vendor ElementType

2 2

Network
Attachment

InterfaceType

PWPolicy LinkType

ElementComponetType

Interface

The model is topological in the sense that those links between network elements which are needed for activation
purposes, because the devices at their endpoints must be configured for services, are represented by objects. But the
topology does not need to be complete to support service activation: links between devices where the endpoints are not
configured for individual services do not need to be represented. Unless such devices and their links are also added, the
model cannot be used to generate a complete topological map of the provider’s network.

The properties of the object classes, including the fields, are described in the following subsections. For each class there is
a general description of the meaning of the class and a table which describes the fields of the bean.

The following conventions apply to primary key and foreign key fields:

• Every object class has a single field primary key; hence foreign keys are also single fields.
• For the real resource objects (not system parameters) the primary key is called ‘Id’. Foreign keys referencing

them have the same or a derived name ‘<class name>Id’, in some cases ‘Id’ will be preceded by an underscore.
These primary keys are generated from sequences to automatically ensure uniqueness. Most of these objects
also have a ‘Name’ field, inherited from the Component bean class, that is intended to be meaningful for users.
The convention for device interfaces is to follow the vendor’s standard naming scheme that will also be used in
device commands.

In general the bean classes have many keys; to study which findBy methods are available, refer to resource definition files
in the inventory directory of the CRModel solution package.

An ‘M’ in the type column indicates the field is mandatory.

Common Network Resource Model 79

 Bean Class Component

This object class represents elemental components. Its fields hold the common information for each of the different
components, letting the bean inheritance to be used to those specialized components. The components can be modelled
under a parent-child hierarchy allowing complex relations.

Components are the basic blocks of the CNRM and other beans like Zystem, NE, or Interfaces are build as an extension.
Thus, notice that when reviewing the Table 8-1 all the fields are common to other beans.

Table 8-1 Fields of Component Bean

Name Type Description

Id String Primary key

ParentId String Foreign key, represents relationship to
other Component objects.

Name String M Human meaningful name of the
component

Description String Additional user information about the
component

Location String Name of the location referenced in
LocationId

LocationId String Constrained by configured Locations

Network String Constrained by configured Networks

Type String Type category for the component object

State String Current status of the component object

Icon String Definition of the image to use for the
component object

DDEServiceId String Reference to the service used in Service
Provisioner

NNMi UUID String Universally unique identifier of
corresponding NNMi object

NNMi ID String Local identifier of corresponding NNMi
object

NNMi Last Update Date Time the object was last
updated/refreshed from NNMi.

 Bean Class Zystem

This object class represents individual physical or virtual systems as an specialization of the component bean. The fields
shown in Table 8-2should be reviewed together with the common fields described in component bean listed in Table 8-1.

Common Network Resource Model 80

Zystems are implemented as reservable beans to allow mutual exclusion zones to be implemented easily in workflows: the
Zystem is reserved over the section of the workflow where exclusive access is required to the model of the Zystem and its
components, or to communicate with the Zystem. Zystems are not expected to be reserved in their entirety for subscriber
services.

NOTE The Zystem class can be specialized for a solution, the subclass will then inherit the reservability property. Do not
set the maxCount attribute on the subclass.

Table 8-2 Fields of Zystem Bean

Name Type Description

IP String Primary IP address of the device

Management_IP String IP address used for management
communication with the device

ManagementInterface enumeration:
telnet, ssh

Protocol used for management
communication with the device

PWPolicyEnabled boolean True if PWPolicy is used

PWPolicy String Foreign key, references object defining
username and password information to
use for the device

UsernameEnabled boolean If true, send username to device for
authentication

Username String The username for authentication by the
device

Password String
(password)

The password for authentication by the
device

EnablePassword String
(password)

The enable password for authentication
by the device

Vendor String Constrained by configured Vendors

OSVersion String Constrained by configured OSVersions

ElementType String Constrained by configured ElementTypes

SerialNumber String Serial number of the device (inventory
information)

Role enumeration:
AccessSwitch,
BladeChassis,
BladeNetwork,
CPE,
ComputeProvid
er,CoreRouter,
EMS,
EORSwitch,

The role represented by the system
object

Common Network Resource Model 81

EventMonitor,
Hypervisor,
NetworkProvide
r,NMS, Server,
TORSwitch,
VIM,
VirtualSwitch

AdminState enumeration:
Up, Down,
Unknown,
Reserved

Administrative state, semantics defined
by solution

LifeCycleState enumeration:
Planned,
Preconfigured,
Accessible,
Ready

Life cycle state, semantics defined by the
solution that uses the CNRM, but a
NetworkElement will not be eligible as
endpoint for a Link created on the
inventory UI unless it is Ready

ROCommunity String SNMP read-only community string

RWCommunity String SNMP read-write community string

Region String Constrained by configured Networks

SystemName String (4000) M Unique system name used for Service
Provisioner

Aggregated boolean M If true, this systems is logical. If false the
system is physical.

PartOf String Foreign key, represents relationship to
other Zystem for complex systems
relations.

EMS String Element management system in control
for the object

BeanClass String Specialization class of the system

Metadata Clob Customized extra data

AuthUrl String (4000) Keystone authentication

createReferences boolean If true, this Zystem creates vendor,
elementTypeGroup and OsVersionGroup
automatically

 Bean Class NetworkElement

This object class represents individual network elements as a physical specialization of a Zystem. Its fields, defined in the
Component bean class and in the Zystem bean class, hold the information needed when management communication
takes place directly from HPE Service Activator to each NE (using CLI). Some modification may be needed if the network
elements are managed through an element manager. In simple cases it may suffice to use the Management_IP field to

Common Network Resource Model 82

hold the address of the element manager. In more complex case it may be necessary to introduce an additional object
class to model the element manager and establish a relationship between the NetworkElement and the ElementManager.

NOTE The NE class is a specialization from Zystem. As a subclass it inherits the reservability property, thus it does not
set the maxCount attribute on the subclass. Any specialization of NE, should not set the maxCount attribute either.

NEs play different physical roles in the network: PE router, CE router, aggregation switch, access switch. The role is
represented by the value of the Role field.

When comparing all the fields of the NE bean(Table 8-1, Table 8-2Table 8-2 and Table 8-3Table 8-3) to the inventory UI
forms for the NetworkElement bean beware that some of the fields have labels which deviate from the values shown in
the Name column.

Table 8-3 Fields of NetworkElement Bean

Name Type Description

Role enumeration:
PERouter,
CERouter,
AggregationS
witch,
AccessSwitch

See text above

 Bean Class ElementComponent

This specialized object class that extends the Component bean class, allows hierarchical decomposition of a Zystem,
typically into racks, slots, cards, ports, in a generic way without restriction to specific component types.

The ComponentType field is used to indicate the type of component, determining its level in the containment hierarchy.
The predefined values for this field include Slot and Port as well as Controller. An ElementComponent with
ComponentType Slot represents a slot as well as the card that it holds. The value Controller is used for a port on a
controller card which supports multiplexing of channels and has the ability to create channelized interfaces on a subset of
the channels.

The capability to create a channelized interface on a Controller port is included in the Common Resources solution and
can be invoked from the inventory UI.

The EC is reservable for the same reason that is described for NetworkElement above.

The Table 8-4 lists the specialized fields for the ElementComponent bean class, however in order to get a full
comprehension of the model, the extended Component bean should be as well inspected in Table 8-1.

Table 8-4 Fields of ElementComponent Bean

Name Type Description

RelationId String Foreign key, relationship to the Zystem
the ElementComponent belongs to

Common Network Resource Model 83

ComponentType enumeration:
Slot, Port,
Controller M

See text above

OtherType String For a given ComponentType, the
OtherType further characterizes the
component. OtherType of slot: what
cards can it holds; OtherType of card:
for example, SDH linecard, Ethernet
linecard; OtherType of port: Ethernet,
GigEth, SDH with layer rate - STM-1 etc.,
E1, etc.

By vendor convention this information
may also be part of Name field.

This field may be informative or may
have semantics according to
application.

ComponentNumber String Slot number, port number, etc. Not
expected to be globally unique, only
within the parent component.

By vendor convention this information
may also be part of Name field.

This field may be informative or may
have semantics according to
application.

Capacity int Indicates number of units of capacity on
the component.

Used with ComponentType Port or
Controller in situations where ports
reside on a daughter cards, which are
not modelled as separate
ElementComponents, and the daughter
card may comprise multiple physical
ports or is preconfigured with multiple
separate termination points (E1s within
STM-1); indicates number of physical or
logical ports

 Bean Class Interface

An interface is a resource that can be reserved for a service. In the simplest case it corresponds to a physical port on a
network element. An Ethernet interface can be divided into VLAN-specific subinterfaces; these are created when needed
as child interfaces of the port interface.

Common Network Resource Model 84

It is also possible to create aggregate interfaces with bandwidth in multiples of the port by concatenating single port
interface. Some network elements have controllers which allow channelized subinterfaces to be created for specific
multiplexing timeslots on a physical port interface. The CNRM comes with a workflow, CRModel_ModifyChannel, to
manage aggregate and channelized interface, i.e. creating and deleting them. This workflow can be launched from
appropriate branches of the CNRM/Equipment tree on the inventory UI.

Another workflow, CRModel_RouterUpload, is available to load information about ElementComponents and interfaces
from an NE, parse it and create the implied objects in the model; it is launchable from network element branches of the
CNRM/Equipment tree.

Likewise a workflow to create aggregated interfaces from interfaces on multiple ports is included with the CNRM and can
be invoked from the inventory UI.

The interface bean class is an extension of the ElementComponent bean class, that at the same time is an extension of
the Component bean class. To fully inspect the list of fields the Interface bean class has the Table 8-1, Table 8-4 and
Table 8-5 should be reviewed.

Table 8-5 Fields of Interface Bean

Name Type Description

InterfaceType String Type of interface

ParentIfRootIf String Foreign key, represents relationship to
parent interface (only used for
subinterface)

IPAddr String IP address assigned to the interface

Subtype String Subtype of interface, more specific than
type (in VPN SP set to indicate how the
interface is used for a service)

Encapsulation String For Ethernet interface: none or Eternet-
dot1q
For serial interface: FR, HDLC or PPP

Description String Uploaded from equipment

IfIndex String SNMP identification index

ActivationState enumeratiuon:
Activated,
Failed,
Undefined,
Ready

Semantics defined by solution using the
CNRM

UsageState enumeration:
Available,
SubIfPresent,
Uplink,
Reserved,
InBundle, Trunk,

Semantics defined by solution using the
CNRM

Common Network Resource Model 85

ASBRLink,
SwitchPort

VLANId String Tag for traffic belonging to the (sub-)
interface

VLANMode String

DLCI String For a frame relay interface, DLCI of the
traffic

Timeslots String For channelized interface: which time
slots

NumberOfSlots String For channelized interface: number of
timeslots

Bandwidth String Bandwidth of interface (bps)

LMIType String For FR: Cisco, ansi or q933a

IntfType String For FR: dte/dce interface type

BundleKey String Alphanumeric name of an aggregate
interface; identical on aggregate and its
members

BundleId String Numeric identifier of an aggregate
interface

 Bean Class Location

This bean class represents the elemental location site and it is extended by Region and Network bean classes. The fields
defined within this bean class are common for all kind of locations. The location type can be Location, Region or Network
and together with the ParentId foreign key is intended for refined hierarchy definition and relationship.

NOTE Region and Network are often used as the main entities representing the location hierarchy in the inventory tree,
however it is possible to use the bean Location for the same purpose.

Table 8-6 Fields of Location Bean

Name Type Description

Id String Primary key

ParentId String Foreign key, represents relationship to
other Location objects.

Name String M Meaningful name of the location site

Description String Extra information related to the
location

Type String See text above

Common Network Resource Model 86

ASN String Autonomous system number, Used
mainly in Networks.

Within String Containing location name

Autocreated boolean True when this location has been
autocreated

 Bean Class Network

This object class is used to represent a collection of Zystems or NEs and the links between them.

In general networks may be nested to any depth. A network which has nested subnetworks may also have direct member
Zystems or NEs (not members of any of the subnetworks).

The network object has a type field which can be used to distinguish different types of subnetwork, for example with
respect to nesting. The intended meaning of the predefined values is as follows (use Figure 2-1 as architectural
reference):

network A set of PE devices (Zystems) and the CE devices that are attached to them; also used for
collections of unattached or unmanaged CE devices. No nesting.

access network A collection of aggregation devices (Zystems) and the simple access topologies (nested)
attached to them. Aggregation devices will be linked by aggregation trunks to PE devices in a
network. The relationship of the PE device to the access network is modelled with a
NetworkAttachment object. S-VLAN tags assigned to attachment circuits over an access
network must be unique on an access network. If several access networks are attached to the
same PE device, uniqueness must extend to the union of such access networks (complete
flow domain).

topology A collection of access devices (Zystems) connected in a simple ring or string topology within
an access network. Nested within an access network. Aggregation switches may also be part
of the ring or string, but in the model they will belong directly to the access network with a
NetworkAttachment to represent that topologically they are part of the ring or string.

Other network types may be defined for other network structures, in particular if a solution uses nesting of networks.

Table 8-7 Fields of Network Bean

Name Type Description

Id String Primary key

Name String M User friendly name

Type enumeration:
Network,
AccessNetwork,
Topology

See text above

ASN String Autonomous system number

Common Network Resource Model 87

ParentId String Foreign key, represents relationship to
enclosing Network object

 Bean Class NetworkAttachment

This object class models an n:m relationship between NetworkElements and Networks. An object of the class exists to
represent that the NE is attached through a link to the network, which is not the one it belongs to, but may be a
subordinate one, e.g. the NE can be an aggregation switch belonging to an access network and the network an access
topology.

Table 8-8 Fields of NetworkAttachment Bean

Name Type Description

NetworkElementId String Identifies the NE

NetworkId String Identifies the Network the NE is
attached to

 Bean Class Link

In a classical layer transport network model, a connection in one (server) layer of a network is used as a link in the
topology of the next higher (client) layer. In the common network resource model the link property is the more interesting
one. Algorithms will generally configure link endpoints to allow certain traffic (typically by VLAN tag) rather than explicitly
create connections by setting up cross-connections. Cross-connections occur in the server (transmission) layers that are
beyond the scope of the model.

A link connects two interfaces, on two Zystems.

Links are typically used as trunks, i.e. traffic for many different customer services identified by different VLAN tags may
pass the same link.

Four types of links are distinguished:

• aggegation trunk, connecting a PE router to an aggregation switch
• access trunk, connecting switches in the access network
• access link, where one endpoint is on customer premises, outside of the provider network
• ASBR link, connecting PE routers in two different core networks with different ASN values

Link fields are specified in Table 8-9. Fields which are not stored, but calculated for display or other use to support a form
are not listed.

Table 8-9 Fields of Link Bean

Name Type Description

LinkId String Identifies the link

Common Network Resource Model 88

Name String

NE1 String Foreign key, represents relationship to
Zystem object at endpoint 1; shown as
name of Zystem

TP1 String Foreign key, represents relationship to
termination point object at endpoint 1;
shown as name of termination point. In
Create Link form only eligible
termination points can be selected.

Type String Constrained by configured LinkTypes;
see above.

Network String Foreign key. Network to link to.
Constrained by configured Networks

NE2 String Foreign key, represents relationship to
Zystem object at endpoint 2

TP2 String Foreign key, represents relationship to
interface object at endpoint 2

PortMode Enumeration:
SubIfPresent,
SwitchPort

Usage state of interfaces in aggregation
trunks

NNMi_UUID String Universally unique identifier of
corresponding NNMi object

NNMi_ID String Local identifier of corresponding NNMi
object

NNMi_LastUpdateDate String Time the object was last
updated/refreshed from NNMi.

The Creation form for the Link bean has wizard functionality. Field values are selected one by one, and the value selected
for one field determines what can be selected for the next field. To calculate what can be selected at the steps of the
process, each of the classes Network, NetworkElement and Interface has a method, findEligibleForLink, implementing a
special algorithm in explicit Java code.

Common Network Resource Model 89

8.6 Configuring CNRM Dataload from NNMi

The CNRM can be populated with data either directly from the network elements or from NMMi, if the latter is present
and set up to interwork with HPE Service Activator. Dataload from NNMi comprises network elements, interfaces and
links. Direct dataload is performed by the CRModel_RouterUpload workflow that fetches data from one network at a time
and can be invoked from the network element branches in the CNRM/Equipment tree.

The dataload process can be repeated regularly to update the model with new entities. One of the three trees of the user
interface for the CNRM is dedicated to controlling the dataload process. Refer to HPE Service Activator, User’s and
Administrator’s Guide for a description of that tree and how to execute the dataload process. You will need a general
understanding of the process before you study this section, which explains how to customize the process.

Before you configure the dataload process you must create the skeleton structure comprising regions, networks and
locations that the network elements will belong to. Likewise you can create password policies. This is conveniently
accomplished using the Equipment and Parameters trees on the inventory UI.

The primary tool to edit/configure the process is the subtree of the CRModel/Parameters tree which starts from the NNMi
Dataload branch, as shown in Figure 8-3.

Figure 8-3 NNMi Dataload Branch of CRModel/Parameters Tree

Two aspects of the confguration are specified using XML documents: scope and enrichment. These XML documents are
not stored in files, but in the solution data repository, i.e. database tables. Therefore they are edited using a simple editor
in the forms quadrant of the inventory UI, as the example shows. If you prefer, you can copy the document to a text editor
and paste it back after editing. The syntax definitions (.dtd files) for the two documents are found in the etc/config
directory of the CRModel solution package.

The dataload process has a number of steps:

1. Extraction of data from NNMi

Common Network Resource Model 90

2. Pre-commit enrichment; this includes transformations included in the built-in enrichment snippet to map the data to
CNRM representation, and finishes optionally with topology analysis

3. Comparison, reconciliation and commitment by the user of changes to existing data in the CNRM

4. Post-commit enrichment (optional)

5. Postprocessing (optional)

The dataload process begins with retrieval of data from NNMi, restricted by the specified scope. The scope is specified in
a document which identifies the names of the network elements to upload, as shown in Figure 8-3. The document is in the
format accepted by NNMi. Full names can be listed explicitly (Name element), or wildcards can be used (WName
element) using the syntax for the SQL LIKE construct, i.e. the percent character ‘%’ matches any sequence of 0 or more
characters, and the underscore character ‘_’ matches any single character. Devices which are not in the specified scope
will be disregarded by the NMMi dataload operation.

You can define several scope documents. One of them must be selected for each dataload operation. If the dataload
operation is large and time consuming, this is a convenient mechanism for dividing it up.

Once the data has been retrieved, it is enriched. A number of specification documents, enrichment snippets, control this
part of the process. They are applied one at a time, the built-in snippet shall be the first one. It includes a number of
transformations that serve to map the extracted data to a form compliant with the CNRM. Attributes representing
equipment vendors, element types and interface types are mapped from the NNMi values to CNRM values. The mappings
take several attributes of the loaded NMMi objects into consideration and use regular expression patterns to recognize
their values. These mappings are defined in tables that can be edited using the last three branches of the NNMi Dataload
subtree. A rich and normally sufficient set of mappings are prepopulated when the CNRM is installed.

Enrichment complements the mapped information with information that is needed for the model but cannot be retrieved
from NNMi. You can define several enrichment snippets, typically for different types of enrichment that you want to
combine. All of the defined enrichment snippets will be applied to every dataload operation. Enrichment is the most
complex part of the dataload process to customize, so it is described under a separate heading below.

The networks to include in the CNRM are not modelled in NNMi, so they must be created by the user before dataload.
The roles of network elements and the membership relations between network elements and networks are also not
known by NNMi, so you can add them by defining appropriate enrichment rules. When aggregation/access switches are
loaded with links to already known aggregation/access switches, the automatic topology analysis can determine that they
belong to the same access network/topology, allowing you to save some enrichment rules. This analysis can be disabled
by configuration on the third branch of NNMi Dataload subtree.

At this point NetworkAttachment objects are automatically created when the indicative links are created (see “Bean Class
NetworkAttachment” above).

After enrichment and topology analysis, the data that have been loaded and enriched is compared to the existing CNRM
model, and manual reconciliation must be done to handle conflicts (see the description in HPE Service Activator, User’s
and Administrator’s Guide for details). Up to this point the process has only considered a core subset of the fields of the
network element, interface and link objects. Only this core subset of the fields is present in the tables which hold the
loaded data up to the point of commitment.

After commitment of loaded data, a second round of enrichment may take place to assign values to additional attributes
that were not retrieved or mapped.

Finally, optional post processing is performed by running a workflow which has access to the intermediate dataload
objects as they appear after manual reconciliation. This makes it possible to determine which network elements have

Common Network Resource Model 91

been affected by the dataload. The workflow CRModel_PostProcess, if configured, will go through those network elements
and for each one run a direct interface upload (the workflow CRModel_RouterUpload). The reason for this is that
information about aggregate channels configured on the device cannot be extracted from NNMi, so it must be extracted
directly from each device. You can also write your own workflow to run at this time. Whether to run a postprocessing
workflow, and which one, is configured on the fourth branch of the NNMi Dataload subtree.

 Model Enrichment

Once again, the purpose of enrichment is to add the information that could not be retrieved from NNMi. For example,
CNRM networks are not modelled in NNMi, so NNMi cannot decide in which network each network element belongs. And
there are a number of fields in CNRM that cannot be derived in a generic way from information in NNMi.

Enrichment applies rules to loaded data of the classes network element, interface and link. A rule is evaluated for each
object of the class to which it applies. If a condition stated in terms of a field value is satisfied, an action is applied to the
object. The action can be:

• to assign values to fields of the object (<Assignment> element), or
• to establish a relation to another object (implemented by assigning a value to a foreign key, but that is not

explicitly stated, <Relation> element), or
• to extend the object with a specialization and assign values for the fields of the specialization (<Narrowing>

element), or
• to apply a transformation to the object implemented in a custom Java class (<Transformation> element)

Each rule defines the class of data it applies to and states the condition. The condition always refers to a single field. It can
be a field of the object itself, or of a related object. The related object can be the network element that an interface
belongs to, or it can be a network element or interface at an endpoint of a link. The condition is about the value of the
field. It can specify that the field must have a specific stated value, or no value (stated as null, this will also match an
empty string), or the value can be stated as a regular expression: if it is matched, the condition will be true. A specific
value is specified with the == operator: a regular expression with the like operator. A condition can be empty, then it is
always true, i.e. the rule is applied to all objects of the stated class.

Transformatins can be used for enrichments which are more complex than what can be expressed with rules, if a
condition is needed that cannot be stated using the value of a single field, or the value to be assigned must be computed.

Rules are divided into normal rules and extension rules. Normal rules are executed before commitment of changes,
extension rules after. Normal rules can only assign values to the core subset of object fields. Extension rules can assign
values to the fields which are not in this subset. Names of the fields in the core subset must be rendered in capital letters.
Extension fields must be rendered as specified in the resource definitions (and shown in tables above).

The core fields are the following:

NetworkElement: NAME, DESCRIPTION, MANAGEMENTINTERFACE, ADMINSTATE,
LIFECYCLESTATE, ROLE, VENDOR, LOCATION, OS_VERSION, OS_VERSION_GROUP,
ELEMENT_TYPE, ELEMENT_TYPE_GROUP, LAST_UPDATE, MANAGEMENT_IP, PRIMARY_IP,
SERIAL_NUMBER, RO_COMMUNITY, RW_COMMUNITY
Interface: NAME, DESCRIPTION, LAST_UPDATE, TYPE, ACTIVATION_STATE,
USAGE_STATE, IPADDRESS, IF_INDEX, BANDWIDTH, DLCI, VLANID, ENCAPSULATION
Link: NAME, LAST_UPDATE

Finally a snippet may also define filters to prevent specified fields to be updated with uploaded values, i.e. eliminate
changes before reconciliation (<Overwrite> element). Here is an example enrichment snippet containing some rules to
define the network membership relation and some attribute values that cannot be uploaded for two network elements:

<?xml version="1.0" encoding="UTF-8"?>

Common Network Resource Model 92

<!DOCTYPE Enrichment SYSTEM "NNMi_Dataload_Enrichment.dtd">
<Enrichment>
 <Overwrite/>
 <Rules>
 <Rule type="NetworkElement" condition="">
 <Assignment name="LOCATION" value="Lab"/>
 </Rule>
 <Rule type="NetworkElement"
 condition="NetworkElement.NAME=='c3600-1.dnk.hp.com'">
 <Relation type="Network" name="NAME" value="Lab-Core"/>
 <Assignment name="ROLE" value="PE"/>
 </Rule>
 <Rule type="NetworkElement"
 condition="NetworkElement.NAME=='c3400-1.dnk.hp.com'">
 <Relation type="Network" name="NAME" value="Lab-Ring"/>
 <Assignment name="ROLE" value="AccessSwitch"/>
 </Rule>
 </Rules>
 <Extensions>
 <Rule type="NetworkElement"
 condition="NetworkElement.NAME=='c3600-1.dnk.hp.com'">
 <Assignment name="PWPolicy" value="100"/>
 <Assignment name="PWPolicyEnabled" value="true"/>
 </Rule>
 <Rule type="NetworkElement"
 condition="NetworkElement.NAME=='c3400-1.dnk.hp.com'">
 <Assignment name="PWPolicy" value="101"/>
 <Assignment name="PWPolicyEnabled" value="true"/>
 </Rule> </Rules>
 <Extensions/>
</Enrichment>

In this example you will note that each network element is identified explicitly, and the relations and assignments are
different for each of them. By using general patterns, reflected in password policies, naming conventions, etc., it will be
possible to create more generally applicable rules. For example, if a unique prefix is used for the names of network
elements belonging to a specific network, then partial wildcarding (in a regular expression) of the network element name
can be used to build a single rule for all the network elements in each network.

For complete information on the syntax of enrichment snippets, refer to the file NNMi_Dataload_Enrichment.dtd. For
information on how to implement transformations in custom Java, see the Javadoc for the translate method of class
TransformationTranslator.

NOTE In the snippet syntax description in the dtd file the (XML) attribute that defines the class of data affected by a
rule is called type; a field of a resource bean object is called attribute; the object to which the field of a condition belongs is
called the scope of the condition; and field filters are defined with overwrite elements.

Web Service Designer 93

Chapter 9
Web Service Designer

The Web Service Designer is a tool dedicated to generating specialized servlets exposing the capability to run HPE
Service Activator workflows as web service methods. Each servlet will include a set of convenient methods mapping to the
set of workflows which are required for integration with a specific type of client. Each web service method must have
input parameters to agree with the contract of the workflow and may return as output parameters result values defined
as part of the contract. The web service method in the servlet will receive the input parameters and use them to initialize
the case-packet variables. In the case of a synchronous method the servlet will also extract the output parameters from
the case-packet when the workflow job has finished and place them in the response message.

The servlets can be deployed very simply with JBossWS on the HPE Service Activator platform. The endpoint where the
web service can be called will belong to the web service port of the WildFly server, i.e. the same port where UI requests
are served (by default port 8080).

HPE Service Activator also has a generic web service interface supporting a subset of the complete API of the workflow
manager whose primary form is RMI. Compared to the generic interface the servlets generated with the Web Service
Designer are specialized to contain dedicated methods to use for a particular application; they avoid exposing the
concept of workflows and generic methods to control them. As system integrator you will control the names of the
methods and their parameters.

Each web service is defined in an XML document, the web service definition file, which is created and edited with the tool.
Consider this file a source file in the same way as workflow, resource (bean) and tree definition files. It should not be
confused with a WSDL file (in W3C standardized web service definition language), which is used for external definition of
a web service interface. The file produced by the tool is in a private format, the schema for which is in file
$ACTIVATOR_ETC/config/wsd-config.xsd. It is concerned with both the definition of the interface and its mapping
to workflows.

With the tool you can create and edit the web service definition; you can generate the servlet Java class, you can compile
the class and build the web-application archive (.war file) containing the servlet, and you can deploy it on the HPE Service
Activator platform. Finally, when the web application has been deployed, JBossWS can generate a WSDL description of
the interface, reflecting the methods and parameters that have been specified. is predictable, Do not expect to be able to
retrofit any preexisting interface specified by existing WSDL, it may not be possible to mimick all parameter types.

Servlets generated with the Web Service Designer will use SOAP over HTTP as transport, and the style of communication
will be rpc (remote procedure call).

9.1 Defining a Web Service

The web service call to run an HPE Service Activator workflow can be synchronous or asynchronous. This choice is made
for each method; you can combine synchronous and asynchronous methods in the same servlet. In both cases the call will
start the workflow as a job. In the synchronous case it then waits for the workflow job to complete and is able to return
final values of case-packet variables as result information to the caller. In the asynchronous case the web service method
does not wait for the job to complete; the only return information is the job id. A separate mechanism will then be needed
for providing progress and result information to the caller; refer to the section “Northbound Interface” in chapter Chapter
5 for further discussion of this topic.

Before you use the tool you must prepare the following:

Web Service Designer 94

• a list of the workflows you want to be runnable as web service methods; for each one you must name the method
you want to expose (typically the name will be similar to the name of the workflow)

• for each runnable workflow the list of case-packet variables that must be initializable from values of parameters
of the web service; alternatively the servlet can pass all parameters to the workflow job in an XML document
obtained by applying an XSL transformation to the set of parameter values

• for each synchronous method the list of case-packet variables whose final values must be returned to the caller
• for each of the input or output parameters a name for the parameter (the default choice will be the name of the

case-packet variable) and a type; the type must agree with the type of the associated case-packet variable in the
workflow (the tool does not read the types from workflow definitions; you must select them)

• for each method with multiple output parameters a decision on how to package the parameters in the result
message (see below for more information)

With the tool you must then define the methods, each one named and mapped to a workflow and with a list of input and
output parameters. From these definitions the tool will generate a Java class with your methods annotated to be callable
as web service methods. The call parameters and result types of the generated methods will be translated to input and
output messages to be exchanged between the caller and the HPE Service Activator platform.

The input parameters will be combined as named elements (like members of a bean) of the input message.

NOTE All specified input parameters will be mandatory, even if this may not be specified in the generated WSDL. Calls
with missing parameters will be rejected by the servlet.

The result returned from a servlet method must be a single object. If there is exactly one output parameter, the type of
the result message will be the type of the output parameter. If there are multiple output parameters, you can choose to
package them as a record (bean) with the parameters as named fields or as a hashmap with an entry for each parameter,
in which case the parameter name is passed as the key. The latter form is more generic: the parameter names will not
appear in the external definition (WSDL) of the interface, only as data in the messages.

You can use all the types supported for workflow case-packet variables for input and output parameters: String, Integer,
Long, Boolean, Double, Float, Data, Object, List, Map, Set, Bean. Along with List and Set collection types you must also
define a subtype, i.e. the type of the elements. Along with a Map parameter you must define two subtypes, for the keys
and values, respectively. For Object and Bean you must provide a properly annotated Java class (library) that implements
the class in question. Bean classes generated by the inventory builder can be used.

If you want to use the same multi-field response from several methods, you can define a bean class to represent the
response. Then you will not need to list the bean members as output parameters for each method, and you will avoid to
have several response bean classes generated with the same members but different names (derived from the name of
the method).

For information on how to create resource definitions and running the inventory builder to create bean classes, refer to
HPE Service Activator, Inventory Subsystem. If you create beans for the sole purpose of using them as parameters for
web service methods, you can keep them separate from any beans created to be used for managing inventory. Create the
beans before you work with the Web Service Designer to build the web service. Combine all beans you need in a jar file;
the jar file will be included in the web archive you build. Beans you use for web services do not need to be deployed.

Authentication of the calling client is mandatory. There are two ways to authenticate the caller of the web service
methods: either it is done globally, once per session, by the JBossWS authentication handler using username and
password supplied in the HTTP header when the session is opened, or it is done by each method. When the latter
mechanism is selected, username and password will be added as two parameters to each method.

Web Service Designer 95

9.2 Web Service Designer Tool

The Web Service Designer is a stand-alone tool in the family of HPE Service Activator design time tools. It is basically a UI
tool for editing a web service definition with additional capabilities to generate servlet Java classes, build web archives
and deploy them. All the functions except editing are also available as command line functions, and the tool is integrated
with the Deployment Manager for deploying web services even across a multi-node cluster platform.

As the tool is quite simple, it has no dedicated manual; it is fully described in this chapter.

Figure 9-1 shows the user interface of the Web Service Designer, where the definition of an example web service called
TriplePlay is open. The root of the web service tree is selected, allowing to edit the global properties of the web service.

Figure 9-1 Web Service Designer, Global properties

For the login property select true, if you want each method to login separately, or false, if you want session based
authentication. In the first case each method will automatically get two parameters, username and password, before any
explicitly specified parameters.

The Name property defines the name of the servlet. You must also define a package name for the Java class to be
generated. The name of the servlet class will be appended to the package name you give.

 Defining a Web Service Method

Right-click in the upper frame on the tree root (labelled WebService) to bring up a menu where you can add or paste a
method to the servlet (prepare for pasting by selecting the copy operation from the right-click menu of an existing
method).

Figure 9-2 shows the Web Service Designer UI, where the servlet has been expanded to show its methods, and one of
them (activateData) is selected, so that its properties and parameters can be edited. You can right-click on a method in
the upper frame to get a menu comprising the following operations: copy the method, delete the method, move up and
move down.

Web Service Designer 96

Figure 9-2 Web Service Designer, Method properties and parameters

To add an input or output parameter to the selected method, right-click on the root of the lower frame (labelled Method)
and select the appropriate item in the menu that appears; the same applies to the mwfmMethod and workflowName
properties of the method, which in Figure 9-2 have already been added.

The method properties are as follows:

Method the name of the method is editable

mwfmMethod selectable as startJob (asynchronous, applies if omitted) or startAndWaitForJob
(synchronous)

workflowName name of the workflow to run (Method is used if omitted)

returnType selectable as none, all (hashmap) or bean (record)

For each input or output parameter you can enter its name, add the name of the associated case-packet variable and
select its type. If you omit the name of the variable it is assumed to be the same as the parameter name.

 Using a Template for Method Input as XML Document

If you don’t want the servlet to initialize individual case-packet variables from the input parameters, you can specify an
XSL transformation to apply. The resulting XML document, which will then contain all the parameters in a format that the
workflow can parse, will be passed to the workflow job through the case-packet variable message_url. The workflow must
include logic to parse the document, typically to reextract the parameter values. To handle input parameters in this way
you must specify an input template by adding the InputTemplate element to the method. As the value of this element
you must specify the file name of the XSL file defining the transformation and two (optional) properties: storeMessage
and directory.

Web Service Designer 97

The parameters that must be present in incoming messages that invoke the method must be specified as values of the
name attribute of an <xsl:param> element appearing in the beginning of the template. A simple example of a template
with 3 parameters: id, h_param and b_param is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes" xalan:indent-amount="2"
encoding="UTF-8" xmlns:xalan="http://xml.apache.org/xslt"/>
 <xsl:param name="id"/>
 <xsl:param name="h_param"/>
 <xsl:param name="b_param"/>
 <xsl:template match="/">
 <msg msg_id="{$id}">
 <header>h_param</header>
 <body>b_param</body>
 </msg>
 </xsl:template>
</xsl:stylesheet>

If a message to invoke the example method contains the parameter values 1, 2 and 3, the resulting XML document that is
passed to the workflow job after the transformation will be:

<?xml version="1.0" encoding="UTF-8"?>
<msg msg_id="1">
 <header>2</header>
 <body>3</body>
</msg>

All parameters will be string typed.

The following details apply to the InputTemplate element and its properties:

InputTemplate The name of the XSL file. It can be an absolute file name, or it can start with and
be relative to $ACTIVATOR_ETC (the default, can be omitted),
$ACTIVATOR_OPT, $ACTIVATOR_VAR or $ACTIVATOR_SOLUTION.

storeMessage The value determines where the XML document resulting from the
transformation is placed:

database (default) the document is placed in a row in the database_message table,

file the document is placed in a file,

memory the document will be passed in its entirety through the message_url case packet
variable.

 The choice will be encoded in the message_url value, and the encoding is
supported by the workflow nodes that use it.

directory Only used when storeMessage is file; this is the directory where the file is stored.
It can be an absolute path name, or it can start and be relative to
$ACTIVATOR_VAR, $ACTIVATOR_ETC, $ACTIVATOR_OPT or
$ACTIVATOR_SOLUTION. The default is the value is omitted is
$ACTIVATOR_VAR/received/messages. The name of the individual XML
document file is autogenerated and includes a timestamp.

Web Service Designer 98

 Build and Deploy Web Servlet

When you have finished defining the servlet and its methods, you can generate the code and build the web application
archive. Select each step from the Tools menu which is shown in Figure 9-3.

Figure 9-3 Web Service Designer Tools menu

If your generated code will need to make reference to other Java classes, for example resource beans, you can place such
classes in libraries (.jar files) and add those libraries into the process in the Web Service Designer through the ‘Default
Libraries...’ operation that you can launch from the Setting menu.

To build and deploy the servlet, first select Generate from the Tools menu. This operation will generate the Java code for
the servlet. It will generate a sequence of directories, according to the Package defined, starting with classes, in the
directory where the web service definition file is located, normally <Solution>/etc/web-services. The operation also
generates a deployment descriptor file (web.xml), defining the mapping from URL to servlet code. This file is placed in the
web subdirectory, which will be a sibling to the classes directory. If you want to place the classes and web directory in a
different location (from that of the web service definition file), choose ‘Generate in’ from the Tools menu and browse to
the desired location.

Next select Build. This operation will compile the Java code with the specified libraries in the classpath and place the
resulting class file along with you have specified, in a web archive, packaged as a .war file, in the war directory. Again, if
you do not want the generated war directory to be place in the same parent directory as the web service definition file,
use ‘Build in’ from the Tools and browse to the desired location.

Finally, if you also want to deploy the web service, select the Deploy operation in the Deployment menu. This function will
retrieve the .war file from the war directory and copy it to the $JBOSS_DEPLOY/hpsa.ear directory, whereby it will be
activated when WildFly is restarted (it is not hot deployed in a subdirectory of $JBOSS_DEPLOY).

To include the web service servlet in a deployed solution, you must include either the definition file and the library files or
the generated .war file in the solution distribution archive and include in the deployment descriptor (deploy.xml) file a
description of how to (generate and) deploy the servlet.

Web Service Designer 99

9.3 Extracting WSDL Definition

To obtain the WSDL for a service, you can enter the Endpoint Address followed by ?wsdl in a web browser. For instance,
to obtain the WSDL for the Workflow Manager SOAP web service, you can enter the following URL in your web browser:

http://<SA host>:<SA port>/mwfmsoap/WFManagerService?wsdl

Usage Monitoring 100

Chapter 10
Usage Monitoring

This chapter covers the Usage Monitoring component in HPE Service Activator, that counts incoming service requests
and allows generation of so-called usage reports.

10.1 Introduction

HPE Service Activator 6.2 introduces a new way to monitor the usage of a HPE Service Activator server or cluster. A new
module, called the “Usage Monitoring Module”, counts service requests for all nodes in a cluster, analyzes the data, and
stores usage data records to the database at regular intervals. The Usage Monitoring module cannot be disabled.

DEFINITION A service request is defined as a workflow job that is launched by an external source; this includes
workflow jobs started via HPE Service Activator’s Java/RMI interface (e.g. from the web UI or using the mwfmtool).
If a workflow job starts one or more child workflow jobs (within the same HPE Service Activator cluster), the child jobs will
not be counted as service requests.

The Usage Monitoring module has been carefully designed so that it will have negligible impact on the system
performance; the number of database transactions caused by the Usage Monitoring module cannot exceed one
transaction per minute.

10.2 Configuration

The Usage Monitoring module accepts two configuration parameters that can be configured in the
“usage_monitoring_module” in the file $ACTIVATOR_ETC/mwfm.xml:

• collection_interval determines the number of seconds between two consecutive usage data collection events.
The collection interval cannot be lower than 60 seconds. (Default: 3600)

• usage_threshold determines the maximum number of service requests within a collection interval. (Default:
Unlimited)

If HPE Service Activator is running in a cluster configuration, the Usage Monitoring module configuration must be
identical on all cluster nodes.

10.3 User Interface

The Usage Information UI is launched by clicking the “Usage Information” menu item in HPE Service Activator navigation
menu (in the “Self Management” section).

An example of the Usage Information UI is shown in Figure 10-1. The Usage Information UI consist of three panels:

• Usage Summary displays the average rate, the maximum rate, the total number of processed service requests,
as well as an indication of whether or not the configured threshold has been exceeded.

• Configuration display the configuration data.
• Download Usage Report allows you to download a usage report covering the last 1, 2, 3, 6, 12, or 24 months. The

usage report is a zipped text file protected by a digital signature.

Usage Monitoring 101

NOTE If the data collection interval is set to 1 minute (which is the shortest possible collection interval), the size of a
usage report zip file covering three months will be approximately 1 megabyte.

In this example the threshold was set to 25 and the collection interval was set to 3 minutes. In addition, the UI shows that
the threshold value was exceeded twice.

Figure 10-1 Usage Information View

The Usage Information view contains two reset buttons that can be used to reset the rate values (averate and maximum
rate) and “threshold exceeded” events, respectively. Please note that pressing the reset buttons does not affect the raw
usage data in a usage report. This means that threshold violations that might have occurred before the [Reset
threshold] button was pressed will still be marked as threshold violations in the usage report.

10.4 Threshold Violations

If the configured service request threshold has been violation, the user will be notified in three different ways:

• Workflow Manager logs
o A warning message will be written with the text “Usage Threshold violation! Current breaches count N”,

where N is the number of detected threshold violations.
• WildFly server.log file

o A log message will be written with the text “Usage Threshold violation! Current breaches count N”,
where N is the number of detected threshold violations.

• HPE Service Activator web UI
o In the “System Status” area (lower-left corner of the main web UI) an exclamation mark will be displayed

to indicate threshold violations.

Figure 10-2 shows an example of the “System Status” area in the case of a threshold violation; please notice the
exclamation mark inside the green status indicator. The exclamation mark can be removed by clicking the
[Reset threshold] button in the Usage Information view; but this will not prevent threshold violations from being
displayed in usage reports.

Usage Monitoring 102

Figure 10-2 System Status Indicating a Threshold Violation

NOTE If the system is in either suspended or locked state, the “System Status” area will not display an exclamation mark
in the event of a threshold violation. However, once the system enters “normal” state, the exclamation mark will be
displayed.

10.5 Usage Reports

The usage records collected by the Usage Monitoring module are stored in the system database. If and when needed, it is
possible to generate a so-called usage report that contains the usage data records for a selected duration preceded by
some additional information. A usage report is structured as follows:

• HPE Service Activator basic information
o Header and exact HPE Service Activator version
o Report generation timestamp
o List of cluster nodes (hostnames and IP addresses)
o Java version information

• Configuration
o onfigured collection interval and threshold

• Summary
o Average and maximum rates
o Number of threshold violations

• Changes in configuration (if any)
• License information

o Detailed information about all valid HPE Service Activator licenses
• Raw data

o A list of usage records (one line per record). This section may grow very large if the collection interval is
short. The usage records are written as comma-separated values in order to make is easy to import
them into other programs for further analysis (e.g. Microsoft Excel).

• Digital signature
o Used to protect against fraud

 Usage Records

The usage records consist of a single line of comma-separated values. Figure 10-3 shows an annotated example of a
usage record; in this example the HPE Service Activator system consists of two cluster nodes.

Figure 10-3 Usage Record example

2013-10-13 18:15,185,63,"63,0",218,"104,114",25,180,THRES

Timestamp Service
Requests

(total and by
cluster node)

Sequence
number

Workflow jobs
(total and by
cluster node)

Configuration
(threshold and

interval)

Event
notification

Usage Monitoring 103

As shown in the figure, a usage record consists of:

• A time stamp for when the usage record was collected
• A monitonically increasing sequence number
• The number of processed service requests within this collection interval; specified as the total number followed

by the number of service requests per cluster node (in double quotes).
• The number of processed workflow jobs within this collection interval; specified as the total number followed by

the number of workflow jobs per cluster node (in double quotes).
o In the example shown in Figure 10-3 the two cluster nodes have been running 104 and 114 workflow

jobs, respectively. Hence, the load seems to have been distributed reasonably well. If the number of
workflow jobs varies a lot between the cluster nodes, it may indicate that the load distribution needs to
be adjusted.

• The configured threshold and collection interval
• An optional event notification string. The following events are possible:

o THRES if the threshold was exceeded in the current collection interval
o CONF if a Usage Monitoring configuration change was detected in the current collection interval
o FAILOVER if a cluster failover event was detected in the current collection interval
o If more than one of these three events occur in the same interval, they will be written as a double-

quoted list of comma-separated values.

 Generating a Usage Report

A usage report can be generated in two ways:

• From the Usage Monitoring web UI
o In the Usage Monitoring UI, select the number of months you wish to cover (counting backward from

today) and then click the [Download] button to download the usage report as a zip file.
• From command line

o Run the createUsageReport[.bat] utility and provide the number of days (counting backward from
today) you want the usage report to cover.

o Run the utility with the –help option to see a full list of supported parameters.
o The command-line utility generates a plain (unzipped) text file that can be easily searched using

standard tools.

 Usage Report Example

An example of a usage report with two consecutive threshold violations is shown below (a few parts, marked with
asterisks, have been left out):

 ==
 HPE Service Activator V80-1A Usage Report
 ==

 HPE Service Activator version: V80-1A (V80-1A)

 Report generation timestamp : 2016-03-13 18:37:29:279

 Cluster nodes
 - sa1.example.com (10.20.232.11)
 - sa2.example.com (10.20.232.12)

 Java information
 - Java HotSpot(TM) 64-Bit Server VM
 - Version: 1.6.0_29
 - Architecture: 64-bit

 Usage collection configuration
 - Threshold : 25

Usage Monitoring 104

 - Interval : 3 minutes
 - Maximum permitted rate is 25 service requests per 3 minutes

 Summary
 - Average service requests : 9.143 service requests per 3 minutes
 - Maximum rate : 63 service requests per 3 minutes
 - Threshold exceeded : Yes (2 times)

 Detected configuration changes
 2013-10-13 17:58:00:000
 - Old configuration : UNLIMITED service requests per hour
 - New configuration : 25 service requests per 3 minutes

 License information
 - License Type: Instant On
 - Expiration Date: Apr 1, 2014
 - Days Remaining: 163
 - ...

 Raw data
 ...
 2013-10-13 18:03,181,12,"12,0",55,"30,25",25,180
 2013-10-13 18:06,182,0,"0,0",40,"20,20",25,180
 2013-10-13 18:09,183,15,"15,0",113,"54,59",25,180
 2013-10-13 18:12,184,0,"0,0",92,"45,47",25,180
 2013-10-13 18:15,185,63,"63,0",218,"104,114",25,180,THRES
 2013-10-13 18:18,187,37,"37,0",134,"66,68",25,180,THRES
 2013-10-13 18:21,189,0,"0,0",40,"20,20",25,180
 2013-10-13 18:24,190,0,"0,0",40,"20,20",25,180
 2013-10-13 18:27,191,0,"0,0",40,"20,20",25,180
 2013-10-13 18:30,192,0,"0,0",40,"20,20",25,180
 2013-10-13 18:33,193,0,"0,0",40,"20,20",25,180
 2013-10-13 18:36,194,0,"0,0",40,"20,20",25,180

 >>>>50d9c654cd7554aeabe3ff622162939b53b2dad7<<<<

If the an operator has clicked the [Reset threshold] button in the Usage Monitoring UI, the number of displayed
”Threshold exceeded” events in usage report may be lower than the actual number of threshold violations.

To get an exact list of threshold violations you need to search through the usage report for occurrences of the string
”THRES”. In this way, you will also be able to see exactly when the threshold violations have occurred.

In the usage report example shown above, a search for ”THRES” will reveal that the two threshold violations happened on
October 13, 2013 at 18:15 and 18:18, respectively.

Integration with NNMi 105

Chapter 11
Integration with NNMi

This chapter covers the integration of HPE Service Activator with the HPE NGOSS product Network Node Manager
(NNMi).

The components dedicated to integration of HPE Service Activator with NNMi are licensed for use as the NNMi Liaison.
To use these components the RTU (right to use) must be purchased in addition to the license for the HPE Service
Activator core product.

11.1 Positioning of NNMi

NNMi enables a customer to monitor and manage all the devices in an IP network from a single point of control; a
graphical web browser based user interface offers the user topological and tabular views of the network and its status,
and is launch pad for control functions.

NNMi interworks with devices by means of the SNMP protocol. The product has built-in knowledge of a large number of
devices through their SNMP MIBs.

NNMi can automatically discover and build a model of a network as it is.

Fault reports from devices are received as SNMP traps and correlated to perform root cause and service impact analysis.

11.2 Summary of Benefits of Integration with NNMi

Overall, instead of two separate solutions NNMi and HPE Service Activator will appear and behave as a well-integrated
single solution for network and service management including service activation.

The capabilities of NNMi are enhanced in ways which will significantly assist operators in focusing on high priority
incidents to meet committed SLAs and provide better visibility of the state of important services.

• HPE Service Activator workflows to activate services by configuring network elements can also enrich NNMi
objects with service and customer related information. This will enable prioritization of network faults based on
evalauation of service importance. You get new possibilities to group interfaces based on the type of service that
is using each interface, or the customer that is using the interface.

• Enhanced synchronization of NNMi data model with the network, as HPE Service Activator may request NNMi to
rediscover the state of a device when a service has been activated on it.

• HPE Service Activator workflows to perform diagnostic analysis and corrective actions can be initiated from
NNMi. This will enrich the scope of control actions an NNMi operator can take when faults have been discovered,
or the action could even by fully automated.

• GUI crosslaunch from NNMi views to HPE Service Activator inventory and service order views allows an operator
to view HPE Service Activator data and activity related to known objects.

• Not only the network, but also the activation system based on HPE Service Activator can be monitored with
NNMi

Through the integration with NNMi the HPE Service Activator solution will benefit greatly from availability of consolidated
information about the network and its state:

Integration with NNMi 106

• The resource inventory data model of the network can be populated by loading data already discovered by
NNMi. Likewise the data model can be synchronized with the NMMi data model on an ongoing basis.

• HPE Service Activator workflows can obtain real-time device status from NNMi.
• GUI crosslaunch from a HPE Service Activator inventory view into NNMi topology view and status lists. For

example with HPE Service Activator resource inventory objects such as network or subnetwork as launch pad,
launch a topological view. Or from HPE Service Activator service inventory customer object, launch an NNMi
interface group view of all the device interfaces carrying the customer’s traffic.

11.3 Readily Available Capabilities with NNMi

The capabilities that are available “out of the box” without customizing items like HPE Service Activator workflows,
modules and data models include populating and synchronizing the Common Network Resource Model and mutual GUI
crosslaunch.

 Loading and Synchronizing of the CNRM

The workflow for this purpose and the definition of the inventory UI tree from which it can be launched is provided as part
of the Common Network Resource Model deployable solution pack which is described in chapter Summary of Techniques
for Configuring Integration on NNMi.

The first time the dataloader is used it will populate the CNRM data model with network elements, interfaces and links. On
subsequent runs it will update the CNRM data model to include newly discovered objects.

 UI Cross Launch from HPE Service Activator to NNMi

Cross launch from HPE Service Activator to NNMi generally requires JSP customization and incorporation in an inventory
tree or main UI menu (see below). Some cross launch functions are precustomized as part of CNRM:

• from every interface branch in the CNRM equipment tree the NNMi interface form is launchable
• from every network element branch in the CNRM equipment tree the NNMi L2 and L3 neighbor views are

launchable

 UI Cross Launch from NNMi to HPE Service Activator

Cross launch from NNMi to HPE Service Activator inventory UI is simple to configure in NNMi. It will be a menu item
associated with the relevant NNMi object type, for example node or interface. The substance of the menu item is the URL
to launch (see “Summary of Techniques for Configuring Integration on NNMi” below).

11.4 Components for Customized Integration with NNMi

The components that are available on HPE Service Activator for use as a basis for customized integration with NNMi
include a plug-in to automate configuration of NNMi as part of service activation, three workflow manager modules and
three workflow nodes. The nodes serve essentially to invoke the functions provided by the modules.

 NNMLiaison plug-in

The plug-in contains atomic tasks that can create an interface group view on NNMi.

Integration with NNMi 107

 SNMP trap module

This is a general purpose module, not restricted to integration with NNMi, which can issue an SNMP trap.

 NNMi module

This module acts as a web service client towards NNMi. It supports all needed calls from HPE Service Activator to the
NNMi web application, as used by the workflow nodes and the data load module. It can create annotations on NNMi
objects and pull data from NNMi.

 Dataload module

This module performs the task of loading and synchronizing the CNRM data model from/with NNMi using the functions
of the NNMi module to communicate with NNMi.

 Workflow Nodes

Three workflow nodes are available that can be used in solution workflows:

• GetBeans retrieves objects from NNMi’s network data model
• RediscoverHost requests NNMi to rediscover a specific network element
• UpdateCustomAttributes sets values of custom attributes on an NNMi data object

For details, consult HPE Service Activator, Workflows and the Workflow Manager.

11.5 Summary of Techniques for Configuring Integration on NNMi

To configure nodes and interfaces for cross launch of HPE Service Activator views: define for a type of NNMi object a
URL action to launch an HPE Service Activator view. Refer to the section “User Interface and Roles” in Chapter 5 for a
description of the URL formats to use to launch the various HPESA views.

The action (that you define on NNMi) may use one or more ext properties of the NNMi installation (for example
hostname and port of HPESA server) and custom attribute values of the object, such as primary key of the HPESA
counterpart object) to construct the URL.The URL action will typically include a filter to enable it when necessary custom
attributes are set. Note that HPE Service Activator has a script that can be used to set ext properties on an NNMi
installation. Consult NNMi online help for URL Actions for specific detailed information.

To create action scripts to launch HPE Service Activator workflows you can install and use the mwfm command line tool.

11.6 Customizing and Configuring HPE Service Activator to Work
with NNMi

To use the NNMi workflow manager module and the NNMi dataload module you must configure them in the
configuration file for the workflow manager. Parameters for other aspects of interactions with NNMi, including UI cross
launch, NMMi dataload, and settings for workflows are configured through the inventory UI, in the Parameters tree for
the CNRM as described in HPE Service Activator, User’s and Administrator’s Guide.

Integration with NNMi 108

 Workflows to Interwork With NNMi

You can create workflows to perform functions on HPESA that you want NNMi users to be able to perform as actions;
there are no special integration concerns for the workflow as such; integration is done by the invoking script on the NNMi
side.

In activation workflows you can use NNMi workflow nodes to retrieve infornation from NNMi, create interface groups or
annotations on NNMi objects, and invoke host rediscovery. Beware of the control parameters which are part of the
NNMiConfiguration singleton resource bean (part of the CRModel solution) as mentioned in the preceeding
paragraph. If relevant your workflows should obey these settings.

If you use the NNMLiaison plug-in, note that it can be configured in file
$ACTIVATION_ETC/config/NNMLiaisonConfig.xml (see also example file and dtd file in the same directory).

 UI Cross Load

You can create JSPs (with Struts actions) to implement cross load functions in addition to the ones already available (see
above); for this you will need to understand NNMi URLs. As an example, study the UI part of the CRModel solution, the
Struts-config and JSPs.

Integration with NA 109

Chapter 12
Integration with NA

This chapter covers the integration of HPE Service Activator with the HPE NGOSS product Network Automation.

The components dedicated to integration of HPE Service Activator with NA are licensed for use as the NA Liaison. To use
these components the RTU (right to use) must be purchased in addition to the license for the HPE Service Activator core
product.

12.1 Positioning of NA

NA maintains router configurations and enforces configuration policies.

NA connects to devices and configures them. NA also allows other system to establish connections to devices and
intercepts them to monitor and log the configuration changes. NA typically establishes a baseline configuration for each
device according to its role in the network.

NA enforces compliance of policies for configuring devices; this involves monitoring, comparing configurations to policies
applicable to a group that a device belongs to, detection of violations, alerting.

NA manages and downloads firmware versions and patches to all devices in a network and performs backup and
restoring of device configurations.

NA is generally not concerned with configuring specific interfaces on service provider devices for individual customer
services.

12.2 Summary of Benefits of Integration with NA

By combining configuration management, setting up baseline configuration of devices done with NA, and service
activation, setup of customer service specific configuration done with HPE Service Activator, the complete device/service
lifecycle is managed. NA is used heavily in the buildup of network and service infrastructure, specifically to configure
routing protocols, MPLS forwarding, core network interfaces, BGP peering, ASN, general security settings, ACLs,
passwords, QoS for the service provider’s own traffic and other aspects which are general and not specific to individual
customers’ VPNs. Once the infrastructure for a service offering is in place, HPE Service Activator will automate flow-
through configuration of devices for all aspects of customer specific services with minimal operator involvement and
elimination of the requirement for operators to master the commands needed to configure services.

HPE Service Activator workflows can be used to control and automate processes consisting of several NA actions, for
example to run test scripts, draw conclusions and take remedial actions.

NA can provide connectivity to devices that HPE Service Activator can use including tunnelling to devices that are not
easily reachable, thus eliminating the need to configure HPE Service Activator with device specific usernames, passwords.
etc., and ensuring that all device interactions to activate services are logged together with all other device interactions.

NA can ensure integrity of services configured on devices: when configuring the device HPE Service Activator will also
configure NA to monitor the setup, leveraging NA’s ability to enforce policy compliance.

Integration with NA 110

Also in the process of configuring a device for a specific customer service, HPE Service Activator can instruct NA to
backup the device configuration, after all changes have been made, and annotate the backup with a comment stating it
was requested by HPE Service Activator due to the specific service that was configured.

As a minimum, even if the functions of NA and HPE Service Activator are not combined to obtain these benefits, some
coordination is necessary to avoid counterproductive effects such as NA detecting and “repairing” by undoing the service
specific device configurations set up by HPE Service Activator as violations of policy.

12.3 Readily Available Capabilities with NA

NA, with its management of connections across the network and into shielded network domains can be used as a proxy
for network elements to provide connectivity for HPE Service Activator to establish command sessions with network
elements. The generic CLI plug-in can be configured to use this capability.

The NA user interface can be accessed by cross launch from the CNRM tree of the HPE Service Activator inventory user
interface. Note that NA does not support Single Sign On.

The platform for running HPE Service Activator and NA can be shared, including hardware, operating system, and the
database server (Oracle or PPAS). The two applications both include JBoss, and it will be necessary to configure one or
the other JBoss instance to use non-default port numbers for overlapping functions, such as web service access, etc.

12.4 HPE Service Activator Components for Customized
Integration with NA

A large number of workflow nodes are available, allowing HPE Service Activator workflows to exercise a range of the
capabilities of NA, including:

• take backup snapshot of device
• run scripts of different types
• create/delete devices and device groups, and manage group membership
• manage associations between device groups and rules, conditions and policies
• retrieve different types of information from NA to HPE Service Activator

These nodes interwork with NA by invoking its web service interface through a dedicated workflow manager module.

12.5 Summary of Techniques for Configuring Integration on NA

Where NA functions involve the running of scripts, it will be possible in a script to use the mwfm command line tool to run
a HPE Service Activator workflow.

Cross launching of HPE Service Activator UI from NA is not possible.

Integration with NA 111

12.6 Customizing and Configuring HPE Service Activator to Work
with NA

To use the NA workflow manager module you must configure it in the configuration file for the workflow manager; this
will be needed for workflows that interwork with NA as well as for GUI cross launch.

 Workflows to Interwork With NA

In general workflows can be written to perform any tasks which can be accomplished through execution of NA actions or
scripts, using the workflow nodes that are available. Such workflows can be integrated in flow-through activation systems,
or they can be launchable from the inventory UI.

If you write workflows with the capability to access devices through the CLI plug-in using NA as a proxy, you will need the
following parameters to connect to NA: protocol, hostname, port, username and password. Your workflow can get them
from the singleton resource bean named NAConfiguration which is included in the CRModel solution and edited in the
inventory UI, in the Parameters tree for the CNRM as described in HPE Service Activator, User’s and Administrator’s
Guide.

 Monitoring Integrity of Constructs Configured on Devices

When HPE Service Activator activates a service by configuring one or more devices with specific constructs, for example
Virtual Router Forwarding tables, the activation workflow can be extended to set up a rule and a policy on NA to monitor
the integrity of those constructs. The rule that defines remedial actions when the policy has been violated must be
created on NA in advance and may involve such actions as creating trouble tickets, sending email, even executing
automatic repair. NA is generally geared to manage groups of devices, not individual services, so it will be necessary to
define a dedicated “group” per service instance and add the affected device to that group. Then the policy which knows
the command pattern for the construct for the service can be defined for the group and associated with the action rule.
The activation workflow can accomplish all of that by means of the workflow nodes for NA integration.

Development Hints 112

Chapter 13
Development Hints

This chapter contains miscellaneous useful information that will be useful during development, including testing and
debugging.

13.1 Configuring Database Credentials

The Workflow Designer, Deployment Manager, Tree Deployer, Tree Designer and the Inventory Builder all require the
user name and password for the system database to deploy data. To avoid having to enter the credentials repeatedly, it is
possible to create a configuration file with this information that is read by the tools during start up. The file must be
named dbAccess.cfg and be placed in the directory $ACTIVATOR_ETC/config. An example file exists in this directory
and is named dbAccess_example.cfg.

NOTE This file must not be present in a production environment.

13.2 Configuring Injection of Request Messages for Test

If you use the socket listener to receive incoming request messages, a message injector can be configured as part of the
System Administrator menu in the navigation pane of the main UI. Files that you wish to be able to inject must be placed
in $ACTIVATOR_ETC/templates_files/<your solution>.

In the UI configuration file $JBOSS_ACTIVATOR/WEB-INF/web.xml configure these two parameters, then restart HPE
Service Activator.

tests True enables injection of messages to a socket (CRM simulation). Default
is false.

socketListener_port The socket port to which tests messages will be injected. This port must
match the configuration of the socket listener module which is to receive
the messages.

A menu item named Test Messaging will appear at the botton. When you select it a view listing available files for
injecting are shown. Right-click on the one you want and select Start Test. This will inject the message into the socket
listener which will should start your workflow.

13.3 Workflow Testing and Debugging

To avoid having to inject messages to start workflows, you can start your workflow from the Workflows view available in
the Work Area of the navigation pane of the main UI. For this to work, your workflow must be independent of pre-
initialized variables. For initial testing you can start the workflow in debug mode and initialize variables manually (see
below). When you are confident with the workflow, make the northbound integration and test the interaction with a
northbound system to start the workflow.

Development Hints 113

There are several ways to trace what is happening when you run your new and unproven workflows.

• You can output trace messages that you can read in the Messages view. A number of messages will be
generated automatically by the workflow manager when the workflow contains or does something invalid.

• You can study the log file produced by the workflow manager and resource manager. You can include entries
generated from your own workflow (Log node) or plug-in (context method). Such log entries can be directed to
dedicated files.

• You can dump the case-packet of your workflow to a file (WriteCasePacket node).
• You can place extra AskFor nodes to interact with your workflow job, thus controlling its progress.
• If you set the tests variable in the UI configuration file (see above), you can start your workflow in debug mode

from the Workflows view. It will then interact with you from a special queue, Debug, in the Active Jobs view when
it reaches a breakpoint node, initially the first node, before the breakpoint node is executed. In the debug
interaction window you can select single-step or set the next breakpoint, and you can read and edit values of
case-packet variables, for example to initialize them as discussed above. You can view the current breakpoint in a
flowchart (workflow) view, and you can dump the case-packet to a file. An example of the debug window is
shown in Figure 13-1.

Figure 13-1 Debug Interaction Window

System Configuration 114

Chapter 14
System Configuration

Most of the configurable aspects of HPE Service Activator solutions are covered in detail elsewhere:

• The resource manager has its own configuration file (resmgr.xml) which is described in detail in HPE Service
Activator, Developing Plug-Ins and Compound Tasks

• The workflow manager has its own configuration file (mwfm.xml) which is described in detail in HPE Service
Activator, Workflows and the Workflow Manager. Note that some important workflow manager modules are not
configured to be active upon installation, you must change the configuration file to use these modules:
authentication, audit, socket listener/sender, statistics collection

• The user interface is configured has a main configuration file (web.xml) and separate files for solution specific
modifications to the default Work Area menu. Both aspect are described in HPE Service Activator, User’s and
Administrator’s Guide.

• Appendix B contains a list with descriptions of all configuration files

A couple of topics deserve special mention here.

14.1 Number of Threads and Memory Usage

The amount of parallel activity that can take place in an HPE Service Activator system is configured for the workflow
manager (in file mwfm.xml). The maximum number of workflow jobs that can exist simultaneously is determined by the
parameter Max-Work-List-Length. When this number is reached, attempts to start additional jobs will fail. A typically
much smaller number of operating system threads will be used to execute the workflows, determined by the (global)
parameter Max-Threads. The assignment of threads to active jobs is managed by the Work Manager module.

When a job is waiting on a queue or for an activation, it will not occupy a workflow job thread. However, to control the
amount of parallel activation activity, the Activation module (normally named activator), manages a private pool of so-
called activation threads. The maximum number of concurrent activations will be limited by the (module) parameter
max_threads. When all these threads are in use, additional workflow jobs attempting to start activations will be queued.
Activations do not occupy operating system threads in the workflow manager, but they do in the resource manager. That
is the real significance of the max_threads parameter.

A starvation problem may occur in the resource manager: if the arrival rate of activation requests is higher than the
execution rate over a period of time, all activation threads may become busy and some activation tasks may need to wait
to acquire a thread. This is not in itself a problem, as the capacity of the activation target will necessarily set the ultimate
limit for the number of activation requests that can be processed. However, if a solution has multiple activation targets, it
may occur that all activation threads are waiting for just one or some of them, while others targets are not engaged. It
may then be advantageous to divide up the total number of activation threads and dedicate different pools for different
targets or groups of targets to let loose the full potential of parallel processing. This can be achieved by configurings
multiple instances of the Activation module, each one with a thread pool dedicated to one or more activation targets.
Activate nodes in workflows must then use the activation_module parameter to select an Activation module instance
and hence one of the thread pools.

The memory consumption of the workflow engine, i.e. workflow manager plus resource manager, will depend on the
number and size of deployed workflows and plug-ins, but even more on the number of workflow threads and activation
threads along with the sizes of their case-packets and the variables of the plug-ins. If you set the maximum numbers for
the threads very high, out-of-memory exceptions may occur at run-time. You should make sure that your system testing
goes to the limits that you have configured.

System Configuration 115

Instructions for increasing the memory size of the WildFly process that includes the workflow engine are found in HPE
Service Activator, Installation Guide.

14.2 Data Sources

Pools of JDBC database connections are known as data sources. Separate data sources are used for different data access
purposes. The configuration script for HPE Service Activator (ActivatorConfig) generates a data source configuration with
six data sources. All of the generated data sources will refer to the same database, the system database. Except for the
inventoryDB data source this must remain so.

Depending on the needs of a solution it can be appropriate to add data sources and modify the autogenerated pool sizes.
When pools are temporarily exhausted, parallel processing will be limited. If customized elements of a solution fail to
release connections to their pools, permanent pool exhaustion will cause the processing of the kind that uses the pool to
stop.

The automatically generated data sources are the following (with names used in the standalone.xml configuration file):

defaultDB for a number of internal system purposes

mwfmDB for access from the workflow manager, to persisted workflow states and by default to
inventory data (via the db database module)

resmgrDB for access from the resource manager, to resource locks, to deployed plug-ins

inventoryDB for access from UI to inventory data (solution data repository)

uiDB for all other access from UI

serviceDB for access from the workflow manager to definitions of atomic and compound tasks

The generated data source configuration shall be changed in the following cases:

• To access inventory data (solution data repository) in more than one database (for example in the case of
external inventory integration; see the section on the topic in Chapter 5). To access inventory data in more than
one database from workflows will require a database module to be configured for the workflow manager per
database (see HPE Service Activator, Workflows and the Workflow Manager), and to access the inventory data
from the inventory UI will require separate inventory tree definitions (see HPE Service Activator, Inventory
Subsystem).

• To use separate pools for data access from workflows when some of the accesses use generated beans and
others use explicit SQL code and/or custom nodes. This will facilitate troubleshooting and support by isolating
the effect of errors in the custom code.

Refer to the HPE Service Activator, User’s and Administrator’s Guide for a description of how to configure data sources.

Localization 116

Chapter 15
Localization

This chapter describes the different resource bundles that must be translated to localize an HPE Service Activator
solution.

In general the Java resource bundles you must translate are files with names ending in _en.properties. You must
make a copy of each resource bundle file, where you replace _en in the file name with the appropriate abbreviation for
the locale, like _jp or _dk.

Then you must translate the contents of each file to the language of the locale. The files must be saved encoded in the
ISO 8859-1 character set with appropriate escape sequences to represent characters that do not have 8-bit codes; the
Java utility native2ascii may be helpful to convert from a UTF character set to ISO 8859-1.

NOTE When the same English word or phrase appears in property files for several parts of the UI, make sure to
translate it consistently. On the other hand, a property may be used in several places within a single part of the UI, and
you should make sure that the translation you choose is appropriate in all of those places.

After you modify resource bundles, restart HPE Service Activator for the new resources to become available.

 Localizing the Main UI Window and some other views

The basic resource property bundles are found in $ACTIVATOR_ETC/nls.

You must create a Java archive named nls.jar contaning all the translated resource bundle files and deploy it to
$JBOSS_EAR_LIB.

There are a couple of small exceptions: column headers for the Logs view, non-default column headers for the Active
Jobs view, and non-default entries in the Work Area menu are not defined in the resource property bundles. The “non-
default” items occur only when the UI has been configured in special ways; follow the reference at the beginning of
chapter Chapter 14 to understand the options.

If you want to localize the column header for Logs views, do it directly in file $JBOSS_ACTIVATOR/xsl/saLogs.xslt.

If you define non-default columns for the Active Jobs view, you must define them exactly as you want them to appear in
file $JBOSS_ACTIVATOR/WEB-INF/web.xml.

If you introduce new items in the Work Area menu or change the label on existing ones, you must define the labels
exactly as you want them to appear in the solution menu file.

 Localizing JSFs

Some parts the UI are implemented with Java Server Faces. The resource property bundles for these parts are found in
$JBOSS_ACTIVATOR/WEB-INF/classes/jsf-resources. When you add support for a new locale, you must also add
that locale in file $JBOSS_ACTIVATOR/WEB-INF/classes/faces-config/locales.xml.

Localization 117

 Localizing Inventory UI

There are several parts to localize for the Inventory UI relating to inventory resources and tree definitions, as described in
a dedicated chapter in HPE Service Activator, Inventory Subsystem.

 Custom UI Files in Solution Source Hierarchy

In the solution source hierarchy you build, files to be deployed for the UI should be placed under the UI directory, which is
a direct child directory of the main solution directory (in Figure 3-2 there is no UI directory, but it should be at same level
as etc, inventory, plugins). The paths used under the UI directory should equal the target paths relative to
$JBOSS_ACTIVATOR

Localization 118

Appendix A
Scripts

This table contains locations and descriptions of the scripts that are available in HPE Service Activator. Unless otherwise
indicated, these files are located in the $ACTIVATOR_BIN directory. In general the scripts have help options to explain
usage, or do so when called without or with incorrect parameters.

Table A-1 HPE Service Activator Scripts

Script Description

/etc/init.d/activator Starts/stops the HPE Service Activator processes (Linux only)

ActivatorConfig[.bat] Configures HPE Service Activator for a specific environment.

AssignNonRoot Configures HPE Service Activator to run as non-root, only on
UNIX

AuditFilter[.bat] Creates audit filters

CatchSocketSenderMessages[.bat] Listens for messages on a given port and prints those messages
to stdout. This script is typically used for testing and
demonstration of the SocketSenderModule of the Workflow
Manager. By default, it listens on port 4099, but takes a single
parameter to specify the port.

checkLicence.[bat] Checks the status of the HPE OpenView AutoPass license and
prints out debug information.

CleanLogs[.bat] Deletes all but the active logs

createUsageReport[.bat] Generates a digitally signed usage report and stores the result
in a file.

crypt[.bat] Encrypts or decrypts a password for local use, to avoid storing
unencrypted passwords in the workflow manager configuration
file.

dc[.bat] Starts Data Collector, command line tool for gathering
information about the HPE Service Activator components
(Workflow Manager, Resource Manager, WildFly).

DeleteCompleteTransactions[.bat] Cleans up saved completed activation transactions.

deploymentmanager[.bat] Invokes the Deployment Manager executable.

designer[.bat] Runs the Workflow Designer tool

generateEncryptedPassword[.bat] Utility to generate an encrypted password. This can be used
when an additional data source file has to be created.

generateMD5[.bat] Calculates MD5 checksum for a file.

InventoryBuilder[.bat] Runs the InventoryBuilder tool.

Localization 119

InventoryTreeDeployer[.bat] Runs the InventoryTreeDeployer tool.

InventoryTreeDesigner[.bat] Runs the InventoryTreeDesigner tool.

modifySystemPassword[.bat] Utility to update the system user password.

mwfmtool[.bat] A command line tool for performing workflow engine tasks
such as starting workflows and viewing posted messages. If this
script is executed without any parameters, it will display a list of
all the tasks that can be performed.

NNMExtProperties[.bat] Creates ext properties on NNMi.

QueueTool[.bat] Creates queues for the queuing sub-system

remove.serviceactivator Uninstalls HPE Service Activator on UNIX.

removeClusterNode[.bat] Removes the specified cluster node from the clusternodelist
table in the system database.

servicebuilder[.bat] Invokes the Service Builder executable, either the command
line (if arguments are passed) or the GUI (if no arguments are
passed).

SorAlterTable[.bat] Adds extra columns to the Service Order Registry

TestAtomicTask[.bat] Starts an atomic task for testing purposes.

UMMData[.bat] Imports/export roles with inventory UI privileges from/to file.

updateLicence.[bat] The script lets you update your trial or existing licence for HPE
Service Activator.

ViewTransactionState[.bat] Displays the different states of a completed transaction.

WebServiceDesigner[.bat] Runs the WebServiceDesigner tool.

Localization 120

Appendix B
Configuration Files

The following table identifies and describes the configuration files that are provided with HPE Service Activator. Unless
otherwise indicated, these files are located in $ACTIVATOR_ETC/config.

Table B-1 HPE Service Activator Configuration Files

File Description

CompoundTask.dtd Document type definition (DTD) for compound task files created by
Service Builder.

par.dtd DTD for the MANIFEST/par.xml file found in the Plug-in Archive
(PAR).

resmgr.xml
(resmgr.dtd)

Configuration file for the Resource Manager and associated DTD.

CLIv4.dtd DTD for dialog control document for the Generic CLI plug-in.

LDAP.dtd DTD for dialog control document for the LDAP plug-in.

service_builder.xml Configuration file for Service Builder.

designer.xml Configuration file for the Workflow Designer.

$ACTIVATOR_ETC/
workflows/workflow.dtd

DTD for workflow definition.

inventoryTree.dtd DTD for inventory tree definition file.

mwfm.xml
(mwfm.dtd)

Configuration file for the Workflow Manager and associated DTD.

role_mappings.xml
(role_mappings.dtd)

Definition file and associated DTD for configuring role mappings.
The role mappings definition file is optional.

dm.dtd (dm.xml) Configuration file and associated DTD for the Deployment Manager.

deploy.dtd DTD for deployment descriptor.

menu.xml (menu.dtd) Default menu definition file for Work Area menu and its DTD.

audit_filter.xsd XSD for configuration of audit filters

queues.xsd XSD for configuration of queues for the queuing sub-system

sor.xsd XSD for configuration of extra columns for Service Order Registry

Localization 121

solutionmenu.dtd DTD for solution specific modifications to menu definition.

Queues.xsd XDS for queue management configuration
ummData.xsd XSD for user management data
xmaps.xsd XSD for xmaps
WebService.xsd XSD for web service definitions (SOAP)
$JBOSS_DEPLOY/
hpsa.ear/activator.war/
WEB-INF/web.xml

Configuration file for the UI and servlets. For additional information,
see the following references:

Chapter 7, the section “Other User Interface Configuration” in HPE
Service Activator, User’s and Administrator’s Guide;
Chapter 5, the beginning, in HPE Service Activator, Inventory
Subsystem;

Chapter 4, the section “AskFor” in HPE Service Activator, Workflows
and the Workflow Manager.

$JBOSS_HOME/standalone/
configuration/standalone.xml

General configuration file for WildFly. Data sources used by HPE
Service Activator are defined in this file. For additional information,
see:

Chapter Chapter 14, the section “Data Sources” in this guide;

Chapter 7, the section “Data Source Configuration” in HPE Service
Activator, User’s and Administrator’s Guide;

Chapter 4, the section “Adding a Data Source for Inventory UI”, in
HPE Service Activator, Inventory Subsystem.

$JBOSS_DEPLOY/
hpsa.ear/deployer.war/
WEB-INF/web.xml

Contains the configuration for the deployer servlet used by Service
Builder. See “Configuring Authentication or Authorization” in HPE
Service Activator, Developing Plug-Ins and Compound Tasks for a
description of the configurable parameters in this file.

Localization 122

Appendix C
Java Message Service

This appendix gives you a quick introduction to those aspects of JMS, Java Message Service, which are relevant with
respect to using this type of communication interface for an HPE Service Activator solution.

JMS is a standardized interface for access from a Java-based client to a MOM infrastructure (Message Oriented
Middleware). A MOM product is used build the infrastructure for intercommunication between applications within an
enterprise. Several MOM products come with JMS providers, i.e. a software layer that makes it possible to access the
intercommunication service over a JMS interface. When such a MOM is available it can be used for intercommunication
between HPE Service Activator and other systems that it must be integrated with.

JMS comprises two data transfer modes, using two kinds of service access points known as destinations: queues and
topics. An installation may support one or both modes. Queues are for point-to-point communication: one client, the
sender, puts a message into the queue; the other client receives the message. Topics are for one-to-many communication,
where the sender does not know the receivers. A sender client publishes a message on a topic; several clients can
subscribe to receive messages from the topic.

When one client receives request messages from another client, the queue is the appropriate mode of communication. If
the response is only of interest for the originator of the request, it is also appropriate to send it on a queue; two different
queues will be needed for requests and responses. If the response is actually a general status update which could be of
interest to multiple parties the appropriate mode will be topic. The same is the case when a client wishes to communicate
a state change which is not the result of a specific request; this situation could occur, for example, when the client is an
Element Manager detecting changes that happen on network elements, or even new network elements that are deployed
in the network.

Figure C-1 shows two JMS clients exchanging messages through two queues, one for each direction of traffic.

Figure C-1 MOM, JMS Provider and JMS Clients

MOM with JMS
Provider

Client A

Q1

Q2

Client A

Queues and topics are generally created and managed by administration of the MOM and JMS provider software, not by
client-server interactions. Clients connect to destinations which already exist through administrative configuration of the
infrastructure by making requests to a JMS connection factory to create connection objects, which will be different for
queues and topics. The client will find the connection factory and the destination by looking them up using a JNDI
naming service.

Localization 123

C.1 JMS Listener and Sender Modules

From V5.1 HPE Service Activator includes JMS listener and sender workflow manager modules which make it possible for
an HPE Service Activator-based system to act as a JMS client, i.e. to receive and/or send messages over a JMS interface.

The communicating parties on HPE Service Activator will be workflow jobs. A running job can put a message to the JMS
service by executing the SendMessage node with a parameter specifying the sender module. The listener module can
start a workflow job to process each received message.

Some administrative facts about a JMS provider must be known to its clients. These facts must be known to the JMS
listener and sender modules as configuration parameters.

Before a client can access a destination, it must connect to it. To do that, it must look up the destination through a JNDI
naming server. The basic installation specific administrative facts that any communicating client must know are: the host
name/address and port number where the JNDI server provides the lookup service, the name of the initial context class
that must be instantiated to use the JNDI server, the name of the connection factory of the JMS server, and the name(s)
of the destination(s) it will use. Finally, depending on its configuration, the JMS provider may demand that the client
authenticate the request to connect to a destination by supplying username and password.

Additional parameters of the JMS listener and sender modules control the local behaviour of the modules, internally and
vis-a-vis communicating workflow jobs. These parameters are not related to JMS as such. You will find them described in
HPE Service Activator, Workflows and the Workflow Manager, in the sections about these modules.

What is sent as a message from a workflow using the JMS sender module is conveyed as the body of a JMS message.
There are currently no means to control and use JMS message header fields (JMSDeliveryMode, JMSMessageID,
JMSTimestamp, JMSCorrelationID, JMSReplyTo, JMSRedelivered, JMSType, JMSExpiration, JMSPriority, or message
properties). Likewise it is only the body of a received JMS message which is passed to the workflow job that will process
the message.

Localization 124

C.2 Durable Topics

Queues are always store-and-forward. The MOM is expected to retain messages until they are consumed. The receiving
client is not requried to listen for messages at all times. If it is inactive for a period and then reconnects, it will receive
messages that have been sent in the meantime.

With topics, in general, listeners only receive the messages that are published while the listener is connected, but it is
possible to create a durable topic subscription, thereby requesting of the JMS provider that when the listening client
temporarily disconnects, published messages shall be retained and delivered when it reconnects. A durable topic
subscription must be identified by a unique identifier supplied by the client. A durable subscription will exist until it is
explicitly unsubscribed by the client.

Localization 125

C.3 Using HornetQ in WildFly as MOM

If you need to integrate HPE Service Activator with another application that also supports JMS, and the capabilities of
JMS are appropriate for the integration, but there is no suitable MOM in the customer’s environment, then it is possible to
use HornetQ which is available as a part of the WildFly application server that HPE Service Activator is running on.

To accomplish this, you will need to configure HornetQ to support the necessary destinations with the appropriate
security (roles, user names and password). The topic of managing HornetQ is beyond the scope of this manual. You must
find and read the applicable WildFly documentation.

You will need to add the use of HornetQ under messaging in the WildFly configuration file
$JBOSS_HOME/standalone/configuration/standalone.xml. You will need to use the utility add-user in
$JBOSS_HOME/bin to add application user(s) with role(s)

	System Integrator’s Overview
	Notices
	Contents
	List of tables
	List of figures
	Install Location Descriptors
	Conventions
	In This Guide
	Chapter 1 Introducing HPE Service Activator
	1.1 Positioning an HPE ServiceActivator Solution
	1.1.1 Positioning in the Provider’s Environment
	1.1.2 Positioning in the TMF NGOSS Maps
	1.1.3 Positioning in the HPE OSS Blueprint

	1.2 HPE Service Activator Component Architecture
	1.2.1 Workflows
	1.2.2 Plugins and activation tasks
	1.2.3 Solution Data Repositories (Inventory)
	1.2.4 Northbound interface

	1.3 Solution Packages
	1.4 A Typical Workflow
	1.5 HPE Service Activator Documentation

	Chapter 2 Solution Component and Tools
	2.1 Database Repositories
	2.2 Solution Data Repositories (Inventory)
	2.3 Plug-Ins and Activation Tasks
	2.3.1 Plug-In Development
	2.3.2 Customizing Control Templates for Generic Plug-ins

	2.4 Workflows
	2.4.1 Workflow Structure
	2.4.2 Workflow Manager Architecture

	2.5 User Interface and Roles
	2.6 Interfaces for Integration
	2.7 Integration with Other HPE NGOSS Products: NNMi, NA, uCMDB
	2.8 Solution Deployment

	Chapter 3 An Example Solution: Intro_Example
	3.1 Contents of the Intro_Example
	3.2 Deploying the Example
	3.3 Examining Components of the Intro_Example Solution
	3.4 Running the Intro_Example Solution Workflows

	Chapter 4 Solution Planning and Analysis
	4.1 Activities in a Project to Build a Solution
	4.2 Analysis

	Chapter 5 Solution Design
	5.1 Solution Labelling
	5.2 Queuing Sub-System
	5.2.1 Configurable aspects of queues

	5.3 Connection Pools
	5.3.1 How pools work
	5.3.2 Configurable aspects of pools
	5.3.3 Pools and target locking
	5.3.4 Design considerations for the use of pools

	5.4 Plug-Ins
	5.4.1 Customized Use of Generic Plug-ins
	5.4.2 Creating New Plug-ins
	5.4.3 Target Locking
	5.4.4 Secure Communication with Targets
	5.4.5 Plug-ins for Web Services and Corba Interfaces

	5.5 User Interface and Roles
	5.5.1 UI Integration Using LWSSO or SPNEGO
	5.5.2 UI Integration Without LWSSO
	5.5.3 A Note on Workflow Start Role Attribute
	5.5.4 Viewing Jobs During Activation

	5.6 Encrypted Passwords
	5.7 Data Models
	5.8 External Inventory Integration
	5.9 Workflow Processes
	5.9.1 Controller Workflow Pattern
	5.9.2 Activation Workflow Structure: Before - Activate - After
	5.9.3 Workflow States
	5.9.4 Business Processes
	5.9.5 Using Cache with Inventory
	5.9.6 Starting Workflow from Inventory UI
	5.9.7 Interworking with NNMi and NA
	5.9.8 Workflow Job Persistence
	5.9.9 Business Calendars
	5.9.10 Considerations for Custom Workflow Nodes

	5.10 Solution Monitoring
	5.10.1 OIDs for Traps Emitted from HPESA

	5.11 Northbound Interface
	5.11.1 Workflow Contract
	5.11.2 Using Listener and Sender Modules
	5.11.3 Using Web Service Servlets
	5.11.4 Service Order Registry

	Chapter 6 HPE Service Activator Platform
	6.1 Cluster Platform
	6.2 Cluster Installation and Setup
	6.3 Workflow Load Distribution
	6.3.1 Internal Load Balancing, Virtual IP Address
	6.3.2 External Load Balancing

	6.4 Standby Sites for Disaster Recovery
	6.5 Internet Protocol Versions (IPv4, IPv6)
	6.6 Managing an HPE Service Activator Cluster
	6.6.1 User Interface Functions for Cluster Nodes
	6.6.2 Synchronizing Time on Cluster Nodes

	Chapter 7 Roles, Privileges and Authentication
	7.1 System User and Predefined Roles
	7.2 Assigning Privileges to Roles
	7.2.1 User Interface
	7.2.2 Workflows
	7.2.3 Inventory
	7.2.4 Deploying Plug-ins

	7.3 Authentication and Assigning Roles to Users
	7.3.1 Native Authenticator Module
	7.3.2 OS-based Authenticator Modules
	7.3.3 Role Mapping
	7.3.4 LDAP Authenticator Module
	7.3.5 Role Mapping

	7.4 Organizing Users in Teams
	7.5 Light Weight Single Sign On
	7.6 SPNEGO

	Chapter 8 Common Network Resource Model
	8.1 Adapting the CNRM for a Solution
	8.2 CNRM Workflows
	8.3 CNRM on the Inventory User Interface
	8.4 Model Configuration Data
	8.5 Object Classes of the CNRM
	8.5.1 Bean Class Component
	8.5.2 Bean Class Zystem
	8.5.3 Bean Class NetworkElement
	8.5.4 Bean Class ElementComponent
	8.5.5 Bean Class Interface
	8.5.6 Bean Class Location
	8.5.7 Bean Class Network
	8.5.8 Bean Class NetworkAttachment
	8.5.9 Bean Class Link

	8.6 Configuring CNRM Dataload from NNMi
	8.6.1 Model Enrichment

	Chapter 9 Web Service Designer
	9.1 Defining a Web Service
	9.2 Web Service Designer Tool
	9.2.1 Defining a Web Service Method
	9.2.2 Using a Template for Method Input as XML Document
	9.2.3 Build and Deploy Web Servlet

	9.3 Extracting WSDL Definition

	Chapter 10 Usage Monitoring
	10.1 Introduction
	10.2 Configuration
	10.3 User Interface
	10.4 Threshold Violations
	10.5 Usage Reports
	10.5.1 Usage Records
	10.5.2 Generating a Usage Report
	10.5.3 Usage Report Example

	Chapter 11 Integration with NNMi
	11.1 Positioning of NNMi
	11.2 Summary of Benefits of Integration with NNMi
	11.3 Readily Available Capabilities with NNMi
	11.3.1 Loading and Synchronizing of the CNRM
	11.3.2 UI Cross Launch from HPE Service Activator to NNMi
	11.3.3 UI Cross Launch from NNMi to HPE Service Activator

	11.4 Components for Customized Integration with NNMi
	11.4.1 NNMLiaison plug-in
	11.4.2 SNMP trap module
	11.4.3 NNMi module
	11.4.4 Dataload module
	11.4.5 Workflow Nodes

	11.5 Summary of Techniques for Configuring Integration on NNMi
	11.6 Customizing and Configuring HPE Service Activator to Work with NNMi
	11.6.1 Workflows to Interwork With NNMi
	11.6.2 UI Cross Load

	Chapter 12 Integration with NA
	12.1 Positioning of NA
	12.2 Summary of Benefits of Integration with NA
	12.3 Readily Available Capabilities with NA
	12.4 HPE Service Activator Components for Customized Integration with NA
	12.5 Summary of Techniques for Configuring Integration on NA
	12.6 Customizing and Configuring HPE Service Activator to Work with NA
	12.6.1 Workflows to Interwork With NA
	12.6.2 Monitoring Integrity of Constructs Configured on Devices

	Chapter 13 Development Hints
	13.1 Configuring Database Credentials
	13.2 Configuring Injection of Request Messages for Test
	13.3 Workflow Testing and Debugging

	Chapter 14 System Configuration
	14.1 Number of Threads and Memory Usage
	14.2 Data Sources

	Chapter 15 Localization
	15.1.1 Localizing the Main UI Window and some other views
	15.1.2 Localizing JSFs
	15.1.4 Custom UI Files in Solution Source Hierarchy

