
HPE Enterprise Maps
Software Version: 3.10
Windows and Linux Operating System

Customization Guide

Document Release Date: April 2016
Software Release Date: April 2016

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions
contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notice
© Copyright 2003 - 2016 Hewlett Packard Enterprise Development LP

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright ©
1995-2002 Jean-loup Gailly and Mark Adler.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To check for recent updates or to verify that you are using the most recent edition of a document, go to:
https://softwaresupport.hp.com

This site requires that you register for an HPE Passport and sign in. To register for an HPE Passport ID, go
to: https://hpp12.passport.hpe.com/hppcf/createuser.do

Or click the the Register link at the top of the HPE Software Support page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HPE sales representative for details.

Support
Visit the HPE Software Support Online web site at: https://softwaresupport.hp.com

This website provides contact information and details about the products, services, and support that HPE
Software offers.

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support website to:

Customization Guide

HPE Enterprise Maps (3.10) Page 2 of 182

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HPE support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require that you register as an HPE Passport user and sign in. Many also require a
support contract. To register for an HPE Passport ID, go to:

https://hpp12.passport.hpe.com/hppcf/createuser.do

To find more information about access levels, go to:

https://softwaresupport.hp.com/web/softwaresupport/access-levels

HPE Software accesses the HPE Software to explore Enterprise Solutions that meet your business needs,
and a full list of Enterprise Software Products and Services. The URL for this website is
https://www.hpe.com/us/en/software.html.

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple
topics from the help information or read the online help in PDF format. Because this content was originally
created to be viewed as online help in a web browser, some topics may not be formatted properly. Some
interactive topics may not be present in this PDF version. Those topics can be successfully printed from
within the online help.

Customization Guide

HPE Enterprise Maps (3.10) Page 3 of 182

https://www.hpe.com/us/en/software.html

Contents

Chapter 1: Customizing HPE EM 9

Chapter 2: Data Model 10
System Data Model 10

Artifact Type Documentation 11
Property Documentation 12
Property Group Documentation 13

Model Changes 15
Artifacts 16

Versioning Schema 18
Policy Artifacts 21

Policy Schema 22
How to Edit Relationship Attribute Annotation 22

Chapter 3: Using DQL 25
Introduction to DQL 25

Primitive Properties 25
Complex Properties 26
Artifact Inheritance 26
Categorization Properties 27
Fixing Multiple Properties 28
Relationships 28
Shortcuts 30
Modifiers 31
Virtual Properties 31
Embedding SQL Queries 32

DQL Reference 33
Properties in DQL 33
DQL and SQL 36
DQL_Grammar 36

DQL With Third-Party Products 42
DQL JDBC Driver 42
DQL in SQL Designers 43
DQL in MS Access 43

Evaluating DQL 44

Chapter 4: Data Sources 46
DQL-Based Data Sources 47
Closure Definition-Based Data Sources 48

Chapter 5: Scripting 60
Dashboard Customization 60
General Catalog Customization 63
<html> Tag 64
<server> Tag 70

Customization Guide

HPE Enterprise Maps (3.10) Page 4 of 182

Executing Code on Server Startup/Shutdown 75
Javascript-Based repository Event Handlers 76
Lifecycle-Triggered Script Execution 77
Tips 78
Scripted Task Execution 79

Overview 79
First Steps 79
More Examples 82

Shortcut Definition Scripting 86
Survey Definition 87

Property Mapping Question 91
Relationship Question 92
Shortcut Question 93
Button Question 93
Score Calculation 94
Post Processing 95
Example Script 97

Chapter 6: XML Publishing 103
Creating Scripted XML Artifacts 103
Importing and Publishing a Book File 104
Script Properties 104

Enhanced Script Components 104
Script Elements and Attributes 105

Artifact Recognition 105
Extractors 105
Artifact Properties 107
Relation Property 108
Recognition Order 109
Variables 110

Scripted XML Samples 110
Sample 1: Publish a Book With All Its Chapters 110
Sample 2: Cross-Reference to Another Book 112
Sample 3: Ignore Some Book Files or Document Types 112
Sample 4: Books Share the Same Author 113

Chapter 7: CSV Import and Export Tools 114
CSV Import Tool 114

Installation 114
Command Line 114
Header Parameter Syntax 117
Data Content 119
CSV File Creation 121
Frequently Occurring Errors 122
Useful Logging Settings 123

CSV Export Tool 124
Remote DQL Command Line Tool 124
Remote Execution 124
DQL Command 124

Customization Guide

HPE Enterprise Maps (3.10) Page 5 of 182

DQL Execution Parameters 125

Chapter 8: WebDAV Compliant Publishing 126

Chapter 9: HPE EM Extension for Inkscape 128
Installing the HPE EM Extension for Inkscape 128
Using the HPE EM Extension for Inkscape 128
Applying a New SVG File to Your EM Home Page 130
Using Log Files for EM Extension for Inkscape 130

Chapter 10: Atom-Based REST Interface 132
Workspaces 133

SDM Collections Workspace 133
Publishing Locations Workspace 134
System Collections Workspace 134

Feeds 134
Artifact Collection Feeds 134

Filtering Feeds 136
Viewing Entry Content in Feeds 136
Domains in Feeds 136
Property Based Searching 137
Feed Ordering 138
Feed Paging 138
Bulk GETs 138

Publishing Location Feeds 139
Artifact Relationships Feed 140
Artifact History Feed 140
Artifact Comments Feed 141
Full Text Search 141

Entries 141
Artifact Atom Entries 141
Artifact History Entries 144
Atom Entry Property Descriptors 144

Primitive Properties Atom Representation 145
Category Properties Atom Representation 146
Relationship Properties Atom Representation 146
Special Properties Atom Representation 147

Artifact Data 148
Resource Identification 148

Category Documents 149
Atom REST Operations 149

CREATE 150
UPDATE 150
DELETE 151
UNDELETE 151
PURGE 151

Atom REST ETags 151
Conditional GET 151
Conditional PUT and POST 152

Atom REST Client 152

Customization Guide

HPE Enterprise Maps (3.10) Page 6 of 182

Classpath 153
First Steps 154
Important Classes 154
Demos 155

Atom REST Client Demo 155

Chapter 11: Lifecycle Remote Client 157
Process Management 157
Artifact Governance 157
Classpath 158
First Steps 158
Important Classes 159

Chapter 12: Validation Client 161
Assertion Demo 161
Validation and Report Rendering Demo 161

Chapter 13: Report Creation 163
Defining the Query in Artifact Reports 163
Defining Policy Reports 168
Calculating Policy Report Results 170
Creating a Heat Map Portlet 170
Creating a Structure Map 171
Create a Custom Report 172
Creating a Custom Report with Ordering 179

Customization Guide

HPE Enterprise Maps (3.10) Page 7 of 182

Page 8 of 182HPE Enterprise Maps (3.10)

Customization Guide

Chapter 1: Customizing HPE EM
This is a Customization Guide forHPE EnterpriseMaps and describes additional features and methods to
enable developers to better interact with HPE EM.

This guide contains the following chapters:

l "Data Model" on page 10
Describes the Data Model changes.

l "Using DQL" on page 25
Describes how to use DQL to write queries.

l "Data Sources" on page 46
Describes how to use data sources that are predefined queries used by reports for visualization and data
collection.

l "Scripting" on page 60
Describes how to extend the current customization framework so that custom UI components can be
included in the catalog pages.

l "XML Publishing" on page 103
Describes how to extend publishing with script artifacts.

l "CSV Import and Export Tools" on page 114
Describes how to use the CSV Import and Export tools to import and export CSV files.

l "WebDAV Compliant Publishing" on page 126
Describes how to use WebDav clients with the publishing location space.

l "HPE EM Extension for Inkscape " on page 128
Describes how HPE EM integrates with the open source Inkscape vector graphics editing tool via an
extension module.

l "Atom-Based REST Interface" on page 132
Describes the Atom REST Interface.

l "Lifecycle Remote Client" on page 157
Describes how to use a remote client for lifecycle manipulation.

l "Validation Client" on page 161
Describes the Validation Client command-line tool for policy compliance validation.

l "Report Creation" on page 163
Describes how to create reports.

HPE Enterprise Maps (3.10) Page 9 of 182

Chapter 2: Data Model
This section covers the following topics:

l "System Data Model" below
l "Model Changes" on page 15
l "Versioning Schema" on page 18
l "Policy Artifacts" on page 21
l "How to Edit Relationship Attribute Annotation" on page 22

SystemData Model
The System Data Model is a schema describing the hierarchy of artifact types in HPE EM.

The model consists of a hierarchy of artifact types with each artifact type defining the set of properties
applicable to it. The hierarchy enables properties to be defined for a higher level artifact and then inherited by
the artifact types beneath it. Common properties are also organized into property groups which are assigned
to artifact types.

The installation directory contains a full description of all the default artifact types, property groups, and
properties accessible at EM_HOME/doc/advanced/sdm/index.html or http://host:port/hpe-em-
doc/advanced/sdm/index.html.

The documentation provides a set of menus on the left and artifact type, property group, or property
descriptions in the main pane on the right.

Note: All menu content uses the artifact type, property, and property group localnames.

Use the top menu to control the content of the menu below using the following links:

HPE Enterprise Maps (3.10) Page 10 of 182

l All Artifacts
View the list of all artifacts in the default model split into Public and System models. Artifact types in italics
are abstract artifact types which do not have instances in the Catalog, but instead act as collective artifact
types, such as Implementations, to group artifact types with instances, such as SOAP Services and Web
Applications, and for property inheritance purposes.

l All Properties
View the list of all properties in the default model.

l Property Groups
Click a property group to view a list of all the artifact types that use the property group.

Click an artifact type, property, or property group name to view its details in the main pane and view the
following sections for details:

l "Artifact Type Documentation" below
l "Property Documentation" on the next page
l "Property Group Documentation" on page 13

Artifact Type Documentation
The documentation for an artifact type displays the following information:

l The title showing the artifact localname. System artifacts are denoted with (system) and abstract artifacts
denoted with (abstract).

l The hierarchy of artifact types that the artifact belongs to.
l The property groups applicable to the artifact type. Click a property group to view its details.
l Any directly associated sub-artifacts.
l The description showing the label used in the user interface and a description of the artifact type.
l The set of properties applicable to the artifact type divided into the following:

l Properties Summary - These properties are directly associated with the artifact type in the model.

l Properties inherited from property groups - Lists the set of properties applicable to the artifact
defined by property groups assigned to the artifact type. Each applicable property group displays in its
own table.

l Properties inherited from parent artifacts - Lists the set of properties inherited from artifact types
higher in the hierarchy, Each artifact type displays in its own table.

l Each table shows the following information about each property:
o Name - Click the property name to view its details.
o Type - The property type. For details, see "Property Types" on page 14.
o Cardinality - The number of times the property can occur for an artifact type with the following

possible values:
l [0..1] - Optional property that can occur only once.
l [0..*] - Optional property that can occur multiple times.
l [1..1] - Required property that only occurs once.
l [1..*] - Required property that must occur at least once.

Customization Guide

HPE Enterprise Maps (3.10) Page 11 of 182

Property Documentation
The documentation for a property displays the following information:

Customization Guide

HPE Enterprise Maps (3.10) Page 12 of 182

l The title showing the property localname.
l The description showing the label used in the user interface and a description of the property.
l The property type. For more details, see "Property Types" on the next page.
l The set of artifact types and property groups that the property belongs to displaying the following

information:
l Name - Click the artifact name to view its details.

l Cardinality - The number of times the property can occur for an artifact type with the following possible
values:
o [0..1] - Optional property that can occur only once.
o [0..*] - Optional property that can occur multiple times.
o [1..1] - Required property that only occurs once.
o [1..*] - Required property that must occur at least once.

Property Group Documentation
The documentation for a property groups displays the following information:

l The title showing the property group localname.
l The description showing the property group label used in the user interface.
l The set of artifact types that the property group applies to. Click an artifact type name to view its details.
l The set of properties in the group displaying the following information:

l Name - Click the property name to view its details.

l Type - The property type. For details, see "Property Types" on the next page.

l Cardinality - The number of times the property can occur for an artifact type with the following possible
values:
o [0..1] - Optional property that can occur only once.
o [0..*] - Optional property that can occur multiple times.

Customization Guide

HPE Enterprise Maps (3.10) Page 13 of 182

o [1..1] - Required property that only occurs once.
o [1..*] - Required property that must occur at least once.

Property Types
HPE EM uses the following property types.

Type Description

address A full postal address

boolean Boolean value - TRUE or FALSE

category Used to assign several categories from a taxonomy to the artifact

categoryBag Categorizes an artifact by taxonomies

dailyInterval A time interval defined by a start day and end day, e.g. Monday to Friday

dateTime A specific date and time

documentRelationship Used to reference other artifacts etc.

identifierBag Identifies the artifact by taxonomy. For categorization, use category bag
instead

instanceDetail Property type used by UDDI integration.

integer Integer number

double A double precision floating point number

nameUrlPair URL with an optional name assigned

nameValuePair A name and value pair

Property Types

Customization Guide

HPE Enterprise Maps (3.10) Page 14 of 182

Type Description

plainText One-line text, suitable for textual information such as names

portDocumentRelationship Port-document relationship

qnamedDocumentRelationship Used to reference parts of WSDLs, WS-Policies, etc.

scheduled Property type used to display scheduling information for task

selector Property type used to display selector for a task

text One-line text, suitable for machine readable information such as e-mail
addresses

textarea Multi-line text, suitable for information such as descriptions

xqueryParameter Property type used to display parameters for executing an XQuery

encryptedPassword Encrypted Password

Property Types, continued

Model Changes
The following major changes have been done to the SDM Model between Enterprise Maps 2.00 and
Enterprise Maps 3.10:

l Survey management:modeling survey questions, answers and data storage.
l CSA Reference Model:modeling Cloud Service Automation artifacts.
l Spreadsheet Template: new template artifacts for Spreadsheet Import.
l Cloud Transformation: extends existing Application Component artifacts to hold Cloud assessment

data.
l PPM extended properties: extends existing Project and Porfolio Management artifacts.
The following sections list the specific changes to the model:

l "Collection Changes" below
l "Artifacts" on the next page
l "Property Groups" on the next page
l "Properties" on the next page

Collection Changes
l deploymentArtifacts: now contains new deploymentSpecifications.
l deviceArtifacts: now contains new serverArtifacts, serverClassArtifacts and serverProfileArtifacts.
l locationArtifacts: now contains new dataCenterArtifacts.
l systemSoftwareArtifacts: now contains new operatingSystemArtifacts.

Customization Guide

HPE Enterprise Maps (3.10) Page 15 of 182

Artifacts
added:

l deploymentSpecification
l dataCenterArtifact
l operatingSystemArtifact
l serverArtifact
l serverClassArtifact
l serverProfileArtifact
l surveyArtifact
l surveyDefinitionArtifact
l csvTemplateArtifact

Property Groups
added:

l c_applicationDeploymentCostEstimation
l c_cloudAssessment_BusinessAlignment
l c_cloudAssessment_TechnicalAlignment
l c_cloudDeploymentCompatibilityScores
l c_serverFinancialProfile
l c_serverHardwareProfile

Properties
added:

l properties:
l estimatedNetworkTraffic

l estimatedNumberOfServers

l geographyAlignment

l regulatoryAlignment

l securityAlignment

l serviceAvailabilityAlignment

l vendorSupportAlignment

l workloadVariabilityAlignment

l architectureAlignment

Customization Guide

HPE Enterprise Maps (3.10) Page 16 of 182

l cloudOperatingModelAlignment

l hpCSAAlignment

l infrastructureRequirementsAlignment

l internetAccessAlignment

l performanceRequirementsAlignment

l businessAlignment

l financialAlignment

l technicalAlignment

l businessAlignmentInformationQuality

l financialAlignmentInformationQuality

l technicalAlignmentInformationQuality

l expectedLifetime

l perHourCost

l totalCostOfAcquisition

l cpuCores

l ramSize

l storageSize

l targetContactRole

l deploymentSpecificationType

l networkingCostFormula

l osType

l serverType

l dateStarted

l expectedCompletionDate

l surveyProgress

l surveyStatus

l artifactSelectionCustomizationID

Customization Guide

HPE Enterprise Maps (3.10) Page 17 of 182

l surveyAccess

l transformationCost

l currentHwCostEstimate

l minEstimatedHwCost

l domainType

l cloudTransformationStrategy

l disposition

l id

l applicationType

l applicationArchitecture

l numberOfUsers

l virtualized

l relationships:
l recommendedDataCenter / recommendToApplications

l serverClass/ usedByApplicationComponents

l usedOperatingSystem/ osUsedByApplications

l defaultServerProfile/ defaultProfileForDataCenter

l surveyDefinition/ surveysDefinitionOf

l surveyedArtifacts/ surveys

l New <attribute label=”” mappedTo=”” major=””> in relationship annotation

Versioning Schema
HPE EM uses versioning strategy configurations in XML format described by the following versioning
schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://hp.com/2009/11/systinet/platform/versioning/schema"
targetNamespace="http://hp.com/2009/11/systinet/platform/versioning/schema"
elementFormDefault="qualified">

<xs:complexType name="mask">
<xs:simpleContent>

Customization Guide

HPE Enterprise Maps (3.10) Page 18 of 182

<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:ID" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="maskref">
<xs:attribute name="ref" type="xs:IDREF"/>

</xs:complexType>

<xs:simpleType name="separator">
<xs:restriction base="xs:string">

<xs:length value="1"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="group">
<xs:simpleContent>

<xs:extension base="xs:positiveInteger">
<xs:attribute name="separator" type="separator" default="."/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="groupLocation">
<xs:simpleContent>

<xs:extension base="group">
<xs:attribute name="prefix" type="xs:string" default=""/>
<xs:attribute name="suffix" type="xs:string" default=""/>
<xs:attribute name="mandatory" type="xs:boolean" default="true"/>
<xs:attribute name="primary" type="xs:boolean" default="false"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="groups">
<xs:sequence>

<xs:element name="group" type="groupLocation" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="maskOrMaskref">
<xs:sequence>

<xs:choice>
<xs:element name="mask" type="xs:string"/>
<xs:element name="maskref" type="maskref"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

Customization Guide

HPE Enterprise Maps (3.10) Page 19 of 182

<xs:complexType name="sourceMask">
<xs:complexContent>

<xs:extension base="maskOrMaskref">
<xs:sequence>

<xs:element name="group" type="group" minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="property" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:simpleType name="operator">
<xs:restriction base="xs:string">

<xs:enumeration value="prefix"/>
<xs:enumeration value="suffix"/>
<xs:enumeration value="contains"/>
<xs:enumeration value="full"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="other">
<xs:complexContent>

<xs:extension base="sourceMask">
<xs:sequence>

<xs:element name="match" type="xs:string" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="operator" type="operator" default="prefix"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="source">
<xs:sequence>

<xs:element name="version" type="sourceMask"/>
<xs:element name="other" type="other"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="location">
<xs:complexContent>

<xs:extension base="maskOrMaskref">
<xs:sequence>

<xs:element name="version" type="groups"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="masks">

Customization Guide

HPE Enterprise Maps (3.10) Page 20 of 182

<xs:sequence>
<xs:element name="mask" type="mask" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="schema">
<xs:sequence>

<xs:element name="masks" type="masks" minOccurs="0"/>
<xs:element name="source" type="source"/>
<xs:element name="location" type="location"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:element name="versioningSchema" type="schema"/>

</xs:schema>

Policy Artifacts
Policy Manager entities (Technical Policy and Assertion) are represented in HPE EM by artifacts. These
artifacts are Technical Policy Artifact (hpsoaTechnicalPolicyArtifact) and Assertion Artifact
(assertionArtifact).

Policy Manager entities are related to each other. A technical policy can reference both technical polices and
assertions. The references are included in the entity data. The technical policy data contains references to
other technical policies and to assertions. Since the entity data is in the artifacts, the references are included
in the artifact data.

In addition these references between policy manager entities are represented by relations between Policy
Manager artifacts. The details of the relations are listed in the following table.

Source (Referencing)
Artifact

Outgoing Relation
Property on Source

Incoming Relation
Property on Target

Target (Referenced)
Artifact

hpsoaTechnicalPolicyA
rtifact

r_
referencedTechnicalP
olicy

r_
referencedTechnicalPolicyI
nverse

hpsoaTechnicalPolicyA
rtifact

hpsoaTechnicalPolicyA
rtifact

r_
referencedAssertion

r_
referencedAssertionInverse

assertionArtifact

The relations are created during the creation and update of the source artifact. The relations just reflect the
references in the data. In the case that a user creates or deletes relations, the references in the artifact data
stay unchanged. This creates an inconsistency between the references in the data and the relations between
artifacts. The relations are created, based on the references, when the source artifact is saved (created or
updated).

Customization Guide

HPE Enterprise Maps (3.10) Page 21 of 182

Policy Schema
The policy schema structure defines technical policies. HPE EM uses the WS-Policy specification as a
modeling framework for technical policies. Technical policies are prepared by Architects and Policy
Developers who codify them as requested by the line-of-business managers, architectural councils,
operational managers, etc.

Note: In WS-Policy terms, a technical policy = WS-Policy + name + documentation. HPE EM policies are
covered by the WS-PolicyAttachment specification.

Policy structure consists of a wsp:Policy element wrapping any number of assertion elements, as shown in
“Policy Definition Structure”. HPE EM does not support wsp:All or wsp:ExactlyOne.

Policy Definition Structure

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:ex="http://www.example.com/assertions">

<ex:Assertion1/>
<ex:Assertion2 param="value" />
<ex:Assertion3/>
<ex:Assertion4/>

</wsp:Policy>

How to Edit Relationship Attribute Annotation
1. Go to path EM_HOME/extensions/com.hp.soa.systinet.ext.core.jar/EXTENSION-

INF/sdm/sdmConfig.xml.
2. Find <artifactDescriptor> that has uri matches artifact type we want to edit its relationship annotation.
3. Navigate to <annotation> which has ‘relationships’ in the inner <name>.
4. Edit relationship annotation in the inner <value>.
5. Stop server.
6. Run Setup tool “Apply Extensions” scenario.
7. Start server.

Caution: Relationship annotation value must be in encoded form.

For instance to change the value of ‘mappedTo’ (attribute of ‘accesses’ relationship between Application
Service and Data Object artifacts) from ‘description’ to ‘useType’, follow the encoded annotation below:

<relationships
xmlns="http://ea.manager.hp.com/2013/04/model/annotations"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<accesses label="Accessed Data Objects"
priority="600" localName="dataObjectArtifact"
skeleton="true">

<attribute label="Method"
mappedTo="description " major="true"/>

</accesses>
<relationships;

Then replace with following annotation:

Customization Guide

HPE Enterprise Maps (3.10) Page 22 of 182

http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-policyattachment.asp

<relationships
xmlns="http://ea.manager.hp.com/2013/04/model/annotations"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<accesses label="Accessed Data Objects"
priority="600" localName="dataObjectArtifact"
skeleton="true">

<attribute label="Method"
mappedTo="useType " major="true"/>

</accesses>
<relationships;

Thereafter, follow the instructions given below to update the customization of Application Service artifact:

1. In Customization menu, click Customize UI and select Manage Artifacts.

2. Locate Application Service artifact. In the Catalog column select Generate from SDM option.

3. Click Apply button at the bottom of the page.
Changes in SDM are propagated to UI as follows:

Customization Guide

HPE Enterprise Maps (3.10) Page 23 of 182

<component componentName="/core/layout/relationshipItemComponent" id="accesses_4_
ItemComponent" xmlns:c="http://soa.systinet.hp.com/2009/02/ui/customization">

<parameter name="relationshipName">accesses</parameter>
<parameter name="label">Accessed Data Objects</parameter>
<parameter name="artifactTypes">dataObjectArtifact</parameter>
<parameter name="attrLabels">Method </parameter>
<parameter name="attrMappedTargets">useType </parameter>
<parameter name="attrMajors">true </parameter>
<parameter name="attrTypes">string </parameter>

</component>

Note: attrTypes parameter (comma-separated values) shows data types of relationship attributes in
sequence. It is obtained throughGenerate from SDM selection and cannot be edited.

Customization Guide

HPE Enterprise Maps (3.10) Page 24 of 182

Chapter 3: Using DQL
The DQL query language provides a simple query solution for the System Data Model (SDM). It enables you
to query all aspects of the model – artifacts, properties, relationships, governance, and compliance.

This chapter describes DQL in the following sections:

l "Introduction to DQL" below
l "DQL Reference" on page 33
l "DQL With Third-Party Products" on page 42
l "Evaluating DQL" on page 44

Introduction to DQL
DQL is an SQL-like language that enables you to query the repository of artifacts in HPE EM defined by the
SDM model. DQL preserves SQL grammar, but uses artifacts instead of tables, and artifact properties
instead of table columns. As DQL is based on SQL you can apply your SQL knowledge to DQL.

A simple example is to return the name and description of all business service artifacts.

select name, description
from businessServiceArtifact

In HPE EM, you can use DQL queries in the following use cases:

l To create reports in HPE EM Report Editor. For details, see theHPE EnterpriseMaps Workbench -
Report Editor Guide.

l You can also use DQL in any SQL designer using the DQL JDBC driver. For more details, see "DQL in
SQL Designers" on page 43.

The following sections contain DQL examples:

l "Primitive Properties" below
l "Complex Properties" on the next page
l "Artifact Inheritance" on the next page
l "Categorization Properties" on page 27
l "Fixing Multiple Properties" on page 28
l "Relationships" on page 28
l "Shortcuts" on page 30
l "Modifiers" on page 31
l "Virtual Properties" on page 31
l "Embedding SQL Queries" on page 32

Primitive Properties
Primitive properties are simple properties, such as numbers, characters, and dates, that may occur once or
multiple times for an artifact depending on the cardinality as defined in the SDM.

HPE Enterprise Maps (3.10) Page 25 of 182

For example, in the SDM Model, each person is represented by a person artifact. The person artifact includes
a name property with single cardinality and an email property with multiple cardinality.

The following query returns the name and all emails for each person in the repository.

select name, email
from personArtifact

Instances of primitive properties with multiple cardinality are all returned as comma separated values. For
example, all the emails for a person return as a concatenated, comma-separated string. If there is no instance
of the property for an artifact, a null value is returned.

The following query returns the name, description, and version of all business service artifacts whose version
is 2.0.

select name, description, version
from businessServiceArtifact
where version = '2.0'

Note: By default, DQL queries return the latest revisions of artifacts unless you specify revision
modifiers. For details, see "Modifiers" on page 31.

Complex Properties
Complex properties are composed of one or more single or multiple-valued sub-properties (for example,
address contains sub-properties addressLines in multiple cardinality, country in single cardinality, etc. The
sub-property addressLines is also a complex sub-property, containing a value and useType.). It is only
possible to query the sub-property components of primitive types. Components of sub-properties are
separated by . (in MS Access you can use $ as a separator).

select address.addressLines.value, address.country
from personArtifact
where address.city = 'Prague'

For a full reference of all complex properties in the default SDM, see "System Data Model" on page 10.

Artifact Inheritance
Artifacts in HPE EM form a hierarchy defined by the SDM model. Artifacts lower in the hierarchy inherit
properties from higher abstract artifact types. artifactBase is the root abstract artifact type in the SDM
hierarchy. All other artifacts are below it in the hierarchy and inherit its properties. You can query abstract
artifacts and return a result set from all the instances of artifact types lower in the hierarchy.

Property groups function in a similar way, querying a property group returns results from all artifact types that
inherit properties from the group.

The following query returns results from all implementation artifacts; SOAP Services, XML Services, and
Web Applications.

select name, serviceName
from implementationArtifact

Customization Guide

HPE Enterprise Maps (3.10) Page 26 of 182

Notice that in this query, serviceName is a specific property of SOAP Service artifacts. In the result set,
name is returned for all implementation artifacts but serviceName is only returned for SOAP service artifacts.
For other implementation types, the serviceName is NULL.

Caution: Different artifact types may define the same properties with different cardinalities. In cases
where two artifact types define the same property with different cardinality, querying a shared parent
abstract artifact for these properties may fail. Examples that fail includeSELECT environment FROM
artifactBase andSELECT accessPoint FROM artifactBase.

Categorization Properties
Categorization properties are a special case of complex properties.

Categorization properties have the following sub-properties:

l val - machine readable name of the category.
l name - human readable name of the category.
l taxonomyURI - identifies the taxonomy defining the category set.

Note: TaxonomyURI is not defined for named category properties.

HPE EM uses categorization properties in the following ways:

l Named category properties (for example, business service criticality).
The following query returns the names, descriptions, and versions of all business service artifacts which
are categorized using the named criticality categorization property with a high failure impact.

select name, description, version
from businessServiceArtifact
where criticality.val =

'uddi:systinet.com:soa:model:taxonomies:impactLevel:high'

Note: TaxonomyURI is not defined for named category properties. The name of the category property
implies the taxonomy.

l categoryBag
categoryBag is a complex property that includes sub-property categorieswhich is a categorization
property and categoryGroups. categoryGroups also contains categorization sub-property categories
and a taxonomyURI defining the meaning of the group. HPE recommends querying _category instead of
categoryBag to ensure that all categories are queried.
The following query returns the names, descriptions, and versions of all business service artifacts which
are categorized by the Gift certificate category (14111608) of the
uddi:uddi.org:ubr:categorization:unspsc taxonomy.

select name, description, version
from businessServiceArtifact
where categoryBag.categories.taxonomyURI =

'uddi:uddi.org:ubr:categorization:unspsc'
and categoryBag.categories.val = '14111608'

Customization Guide

HPE Enterprise Maps (3.10) Page 27 of 182

l identifierBag
identifierBag is a complex property similar to categoryBag that includes sub-property categories.
identifierBag does not contain the categoryGroups subproperty. HPE recommends querying _
category instead of identifierBag to ensure that all categories are queried.

l _category
This generic categorization property holds all categorizations from categoryBag, identifierBag, and all
named categorization properties from the given artifact type.
The following query returns the names, descriptions, and versions of all business service artifacts which
are categorized with a high failure impact.

select name, description, version
from businessServiceArtifact
where _category.val =

'uddi:systinet.com:soa:model:taxonomies:impactLevel:high'
and _category.taxonomyURI =

'uddi:systinet.com:soa:model:taxonomies:impactLevel'

Caution: When you use the generic _category property you must specify the taxonomy using the _
category.taxonomyURI sub-property. When you use a named categorization property the taxonomy
is implicitly known and does not need to be specified.

Fixing Multiple Properties
Consider a business service with keywords, 'Finance' and 'Euro'. The intuitive query for finding a 'Euro
Finance' service is as follows:

select name, description, version
from businessServiceArtifact b
where b.keyword.val = 'Finance'

and b.keyword.val = 'Euro'

This query does not work as a single instance of keyword can never be both 'Finance' and 'Euro'

The solution is to fix instances of multiple properties as shown in the following query:

select name, description, version
from businessServiceArtifact b, b.keyword k1, b.keyword k2
where k1.val = 'Finance'

and k2.val = 'Euro'

Relationships
A relationship is a special kind of complex property pointing to another artifact. HPE EM uses relationships to
join artifacts.

The following queries are semantically identical and return all business services and the contact details of
their provider. These queries do not return business services that do not have providers.

l The following query is an example of anSQL92-like join which uses the USING clause.

select b.name, b.version, b.keyword.name, p.name as contact, p.email

Customization Guide

HPE Enterprise Maps (3.10) Page 28 of 182

from businessServiceArtifact b
join personArtifact p using provides

The relationship property provides leads from person artifacts to business service artifacts is specified
after the using keyword.

l The following query is an example of anSQL92-like join which uses the ON clause.

select b.name, b.version, b.keyword.name, p.name as contact, p.email
from businessServiceArtifact b
join personArtifact p on bind(provides)

The relationship property provides leads from person artifacts to business service artifacts is specified
with the bind predicate in the WHERE clause.

l The following query is an example of an old-style join which uses the BIND predicate.

select b.name, b.version, p.name as contact, p.email
from businessServiceArtifact b, personArtifact p
where bind(p.provides, b)

The BIND predicate specifies that the provides relationship of the person artifact points to business
service artifacts.

The following query also returns all business services and the contact details of their provider. This query is
an example of a LEFT JOIN. The LEFT JOIN extends the previous queries by also returning business
services that do not have providers.

select b.name, b.version, p.name as contact, p.email
from businessServiceArtifact b
left join personArtifact p using provides

Each relationship has the following sub-properties which you can query:

l rType - the SDM QNames of the relationship type.
l useType - the values of the useType relationship property
l target - the UUIDs of the artifact the relationship points to (deprecated).
It is possible to specify a particular provider type using useType. The following queries return all business
services and their contact details where the provider is an architect.

select b.name, b.version, p.name as contact, p.email
from businessServiceArtifact b, personArtifact p
where bind (p.provides, b)

and p.provides.useType = 'architect'

select b.name, b.version, p.name as contact, p.email
from businessServiceArtifact b
join personArtifact p on bind(p.provides, b)

and p.provides.useType = 'architect'

It is possible to traverse several relationships using several old-style joins or SQL-92-like join clauses in the
same query. The following example queries business services in applications, which are also part of a
project.

select b.name, b.description, a.name as Application, p.name as Project

Customization Guide

HPE Enterprise Maps (3.10) Page 29 of 182

from businessServiceArtifact b
join hpsoaApplicationArtifact a using hpsoaProvidesBusinessService
join hpsoaProjectArtifact p using contentRelationshipType

In cases where artifacts may be joined by multiple properties, you can use a generic _relation property
together with the additional rType condition.

select A.name as A_name, B.name as B_name
from hpsoaApplicationArtifact A left join artifactBase B on bind(A._relation)

and A._relation.rType in (
'{http://systinet.com/2005/05/soa/model/property}hpsoaProvidesBusinessService',
'{http://systinet.com/2005/05/soa/model/property}r_providesBusinessProcess'

);

You can use the target relationship sub-property to bind the source and target of a relationship.

select b.name, b.version, p.name as contact, p.email
from businessServiceArtifact b, personArtifact p
where p.provides.target = b._uuid

Caution: The target property and this style of comparison is deprecated and its use is not
recommended. Use the bind predicate instead.

Shortcuts
HPE EM makes it possible to use shortcut in DQL to query the artifacts defined in shortcut definition.

As given below the queries are semantically identical and return names of application components defined in
the shortcut definition:

<shortcut id="projectToAppShortcut" relationshipType="realizes" autoApprove="true"
label="Realized components" inverseLabel="Realized by projects"
delayedCalculation="true">

<source localName="projectArtifact" relationshipType="realizes" />
<intermediate localName="deliverableArtifact" relationshipType="realizes" />
<target localName="applicationComponentArtifact" />

</shortcut>

Using Shortcut Id

l The following query is an example of anSQL92-like join which uses the USING clause.

select b.name
from projectArtifact a
join applicationComponentArtifact b using a.projectToAppShortcut

l The following query is an example of anSQL92-like join which uses the ON clause.

select b.name
from projectArtifact a
join applicationComponentArtifact b on bind(a.projectToAppShortcut)

Using Relationship Type

Customization Guide

HPE Enterprise Maps (3.10) Page 30 of 182

l The following query is an example of anSQL92-like join which uses the USING clause.

select b.name
from projectArtifact a
join applicationComponentArtifact b using a.realizes (shortcut)

l The following query is an example of anSQL92-like join which uses the ON clause.

select b.name
from projectArtifact a
join applicationComponentArtifact b on bind(a.realizes) (shortcut)

Modifiers
Modifiers define primary sets of objects (artifacts and their revisions) to query. If no modifier is specified, the
last revisions of undeleted artifacts for which the user has read access are queried.

The following modifiers are available:

l Revision related modifiers (mutually exclusive):
l all_rev - queries all revisions of artifacts.

l last_approved_revision - queries the last approved revisions of artifacts.

l Security related modifiers (mutually exclusive):
l my - queries artifacts belong to the user.

l writable - queries artifact the user has write permission for.

l no_acl - queries all artifacts regardless of security.

l Shortcuts related modifiers:
l relation - relationship type is used to query relationship.

l shortcut - relationship type is used to query shortcut.

l Other modifiers:
l include_deleted - queries all instances, including deleted artifacts.

l force_all_domains – queries artifacts from all domains regardless of domain selection in UI.

You can use multiple comma-separated modifiers.

The following query returns all business services that you own that are marked as deleted.

select b.name, b.version, b.keyword.name
from businessServiceArtifact b (my, include_deleted)
where _deleted = '1'

Virtual Properties
DQL defines virtual properties, that are not defined by the SDM. HPE EM stores or calculates these
properties enabling DQL to query meta information about artifacts. These virtual properties provide
information about lifecycle, compliance, domains, etc.

Customization Guide

HPE Enterprise Maps (3.10) Page 31 of 182

The following example returns lifecycle details from the last approved revisions of all business service
artifacts, ordered by lifecycle stage.

select name, _lastApprovedStage.name Stage, _revision
from businessServiceArtifact(last_approved_revision)
order by Stage

The following example returns the name and compliance status of last approved revisions of all business
services which a compliance status of at least 80%.

select b.name, b._complianceStatus
from businessServiceArtifact b (last_approved_revision)
where b._complianceStatus >= 80

HPE EM repository content exists within a domain structure where each artifact exists within only one
domain. The default functionality of DQL queries all domains but HPE EM provides virtual properties enabling
you to query artifacts within a particular domain. The following example returns business service names and
the domain details of all business service artifacts that exist within the EMEA domain.

select A.name, A._domainId, A._domainName
from businessServiceArtifact A
where A._domainId="EMEA"

DQL provides the following macros for querying within domain hierarchies:

l #SUBDOMAINS('domainId')
Queries the specified domain and all its sub-domains.

l #SUPERDOMAINS('domainId')
Queries the specified domain and all its parent domains.

The following query returns all business services in the EMEA domain and any of all of its sub-domains.

select A.name
from businessServiceArtifact A
where A._domainId in #SUBDOMAINS('EMEA')

The following query returns the name and virtual properties artifactTypeName and owner from the latest
revisions of consumer properties (the property group for all consuming artifact types).

select name, _artifactTypeName, _owner
from consumerProperties

For details of all virtual properties, see "Properties in DQL" on the next page.

Embedding SQL Queries
DQL works with SDM entities (artifacts and properties) only and cannot directly access database tables. In
some cases it is necessary to obtain values from outside the SDM (for example, system configuration). You
can use an SQL subquery in a NATIVE clause of a DQL query. By default, DQL expects SQL to return an
unnamed single column of values.

The following example returns business services owned by the administrator using the name defined during
installation:

select name,description, version

Customization Guide

HPE Enterprise Maps (3.10) Page 32 of 182

from businessServiceArtifact
where _owner in (

native {select svalue from systemConfiguration
where name='shared.administrator.username'})

You can use NATIVE clauses instead of expressions, as a condition in WHERE clauses, as a column in
SELECT clauses, and as a artifact reference in FROM clauses. For details, see "DQL_Grammar" on page 36
.

If you use a NATIVE clause to formulate part of a FROM clause, you must specify parameters to bind
columns defined by SQL to properties used by DQL.

Each parameter consists of the following:

l The property name defines how DQL addresses columns returned from the NATIVE SQL statement.
l The property type which may be returned by the metadata of a column is optional and if not specified is

assumed to be a text string.
The parameters are enclosed in brackets in the native clause, delimited by commas, and the type is
separated from the name using whitespace.

The following example shows a query with NATIVE SQL in a DQL FROM clause.

select B.p_id, B.s_val, A.name, B.state_index
from (

native(s_val, s_name, state_index integer, p_name, p_id)
{select S.val as s_val, S.name as s_name, S.state_index as state_index,

P.name as p_name, P.id as p_id
from rylf_state S, rylf_process P
where S.fk_rylf_process=P.id and P.name='Application Lifecycle'}) B

left join artifactBase A on A._currentStage.val = B.s_val
order by B.p_id, B.state_index

The NATIVE statement returns the following columns; s_val, s_name, p_name, and p_id of type String, and
state_index of type Integer.

Note: Native clauses can not contain variables (? or :<variable>).

DQL Reference
This section provides a reference to properties and DQL grammar in the following sections:

l "Properties in DQL" below
l "DQL and SQL" on page 36
l "DQL_Grammar" on page 36

Properties in DQL
Artifact (property group) properties hold values which may be queried in DQL expressions.

DQL recognizes the following properties:

Customization Guide

HPE Enterprise Maps (3.10) Page 33 of 182

l SDM Properties
Properties defined in the SDM Model. For details, see "System Data Model" on page 10.

l Virtual, System, and Other Properties
Properties holding metadata about artifact instances.

Properties may be one of the following:

Property Kind Description

Primitive Holds string, number, or boolean values. For example, name, description, version. A
primitive property is defined in DQL statements by the artifact type name or alias, the
property delimiter (. or $), followed by the property name. For example,
personArtifact.name. The artifact name or alias is optional (with the delimiter) when
the property is specific to a single artifact type in the query.

Complex Hold complex structures such as address. Only primitive sub-properties of complex
properties may be queried. Properties and sub-properties are separated by . or $. For
example, personArtifact.address.city.

Categorization Hold categorization data and are handled in a similar way to complex properties.
Categories consist of name, val, and taxonomyURI components. For example,
businessServiceArtifact.criticality.name.

Relationships Properties that specify a directional relationship to other artifacts.

All values that you can query are of a particular data type. The following table describes these data types, and
gives examples of how to use them in a query.

Data Type Description Example

Number Numeric values _revision = 1

String Text values _revisionCreator = 'admin'

Date Time Date and Time (ms since 00:00 1/1/1970) _revisionTimestamp > 1274447040124

/* revisions made since 15:04 21/5/2010 */

Boolean True or False flags _deleted = '1'

Properties may have the following cardinalities:

Property Cardinality Description

Single Only one instance of the property exists for an artifact and it may be optional or
required.

Multiple The property is a list of values and so occurs multiple times for an artifact. In
WHERE clauses, using multiple properties returns particular artifacts if any
instance of the multiple property matches the condition. In SELECT clauses,
using multiple properties returns all instances of the multiple property as a
concatenated, comma-separated string.

DQL uses the following system properties:

Customization Guide

HPE Enterprise Maps (3.10) Page 34 of 182

System Property Description

_artifactTypeName The human readable name of the artifact type (the SDM label of the artifact).
HPE recommends using _sdmName in conditions, and _artifactTypeName in
SELECT clauses.

_category All categorizations for an artifact with name, val, and taxonomyURI
components.

_deleted The deletion marker flag (boolean).

_id The database ID of an artifact instance (number, deprecated - use _uuid).

_longDescription HPE EM supports a long description including HTML tags up to 25000
characters by default. HPE recommends using the description property in
DQL queries instead as queries using _longDescription may affect performance
and the HTML tags may corrupt report outputs. description contains only the
first 1024 text characters of _longDescription (may vary according to your
database type).

Note: The platform.repository.max.description.length property
determines the maximum length of _longDescription. You can modify this
property in EM_HOME/conf/setup/configuration-propeties.xml.

_owner The user, group, or role designated as the artifact owner.

_ownerName The human readable name of the user (taken from the use profile), group, or role
artifact.

_path Legacy REST path of the artifact (string, deprecated - use _uuid).

_relation A generic virtual property that may be used to specify all outgoing relationships.

_revision The revision number of an artifact instance.

_revisionCreator The user who created the revision of the artifact.

_revisionTimestamp The date and time the revision was created.

_sdmName The local name of the artifact type. HPE recommends using _sdmName in
conditions, and _artifactTypeName in SELECT clauses.

_uuid The unique artifact indentifier.

DQL uses the following virtual properties:

Property
Class Property Description

UI
Property

_isFavorite Marked by the user as favorite flag (boolean).

_rating The average rating of the artifact (double).

Security
Property

_shared Indicates that the artifact is shared and visible to users in the
Sharing Principal role (boolean). For more details, see "How to

Customization Guide

HPE Enterprise Maps (3.10) Page 35 of 182

Share Artifacts" in theUser Guide.

_writable User write permission flag (boolean).
Note: Using this property may have a performance impact. If
possible, use thewritablemodifier instead. For details, see
"Modifiers" on page 31.

Contract
Property

_enabledConsumer The artifact is a valid consumer artifact type.

_enabledProvider The artifact is a valid provider artifact type. The artifact must also be
marked as 'Ready for Consumption'.

Domain
Property

_domainId Value of the domainId property defined for the domain artifact that
the artifact belongs to.

_domainName The readable name of the domain.

Lifecycle
Property

_currentStage Current working stage of an artifact.

_governanceProcess process applicable to the artifact.

_isApproved Lifecycle approval flag (boolean).

_lastApprovedRevision Revision number of the last approved revision (number).

_lastApprovedStage The name of the last approved stage.

_
lastApprovalTimestamp

Timestamp for the last approval (number, ms since 00:00 1/1/1970).

_lifecycleStatus The status of the current lifecycle stage.

Policy
Manager
Property

_complianceStatus Lifecycle compliance. Defined as a percentage of successful
technical policy validations performed in the current lifecycle stage.

DQL and SQL
DQL supports most features of SQL with the following exceptions:

l SELECT * is not supported.
l RIGHT and FULL OUTER JOIN are not supported.
l It is not possible to use properties with multiple cardinality in GROUP BY, HAVING, or ORDER BY

clauses.

DQL_Grammar
A DQL query consists of the following elements with their grammar explained in the following sections:

l "Select" on the next page
l "FROM Clause" on page 38
l "Conditions" on page 38

Customization Guide

HPE Enterprise Maps (3.10) Page 36 of 182

l "Expressions" on page 40
l "Lexical Rules" on page 41
Typographical Conventions

Convention Example Description

KEYWORDS SELECT A reserved word in DQL (case-insensitive).

parsing rules expr Name of a parsing rule. A parsing defines a fragment of DQL which consists
of keywords, lexical rules, and other parsing rules.

LEXICAL
RULES

ID Name of a lexical rule. A lexical rule defines a fragment of DQL which
consists of letters, numbers, or special characters.

[] [AS] Optional content.

[...] [, select_
item, ...]

Iterations of optional content.

| ASC |
DESC

Alternatives.

{ } { + | - } Group of alternatives.

.. 0..9 A range of allowable characters.

Select
select :
subquery [ORDER BY order_by_item [, order_by_item

...]]

subquery :
subquery [set_operatorsubquery ...]
| (subquery)
| native_sql
| subquery_base

subquery_base :
SELECT [DISTINCT] select_item [, select_item ...]
FROM from_clause_list
[WHERE condition]
[GROUP BY expression_list

[HAVING condition]
]

select_item :
expr [[AS] alias]

alias :
ID | QUOTED_ID

Customization Guide

HPE Enterprise Maps (3.10) Page 37 of 182

order_by_item :
expr [ASC | DESC]

set_operator :
UNION ALL | UNION | INTERSECT | EXCEPT

native_sql :
NATIVE [(column_name [column_type] [, ...])]
{ sql_select }

Explanation:

l The { } around the sql_select are required and sql_select is an SQL query.
l The column_name and column_type specify parameters to pass from the SQL query to the DQL query.

FROM Clause
from_clause_list :

{ artifact_ref | subquery_ref | fixed_property | native_sql }
[from_clause_item ...]

from_clause_item :
, { artifact_ref | subquery_ref | fixed_property | native_sql }
| [LEFT [OUTER]] JOIN

{ artifact_ref | subquery_ref } join_condition

artifact_ref :
artifact_name [alias] [(artifact_modifiers)]

subquery_ref :
(subquery)alias

fixed_property :
property_refalias

artifact_modifiers :
ID [,ID ...]

artifact_name :
ID

join_condition :
| USINGproperty_ref

Conditions
condition :
condition_and [OR condition_and ...]

condition_and :
simple_condition [AND simple_condition ...]

Customization Guide

HPE Enterprise Maps (3.10) Page 38 of 182

simple_condition :
(condition)
| NOT simple_condition
| exists_condition
| like_condition
| null_condition
| in_condition
| simple_comparison_condition
| native_sql
| bind

simple_comparison_condition :
exprcomparison_opexpr

comparison_op :
= | <> | < | > | <= | >=

like_condition :
expr [NOT] LIKE like_expression [ESCAPE

STRING]

like_expression :
STRING
| variable_ref

null_condition :
expr IS [NOT] NULL

in_condition :
expr [NOT] IN({ subquery | expression_list })
| macro

exists_condition :
EXISTS(subquery)

bind :
BIND(property_ref [, alias])

macro :
macro_name [(expression_list)]

macro_name :
#ID

Explanation:

l Conditions can be evaluated to true, false, or N/A. condition consists of one or more condition_and that are
connected by theOR logical operator.

l condition_and consists of one or more simple_condition connected by theAND
l simple_condition is one of following:

Customization Guide

HPE Enterprise Maps (3.10) Page 39 of 182

l condition in parentheses.

l Negation of simple_condition.

l exists_condition

l like_condition

l null_condition

l in_condition

l simple_comparison_condition

l native_sql

l simple_comparison_condition is a comparison of two expressions using one of the comparison operators:
=, <>, <, >, <=, >=

l like_condition compares an expression with a pattern. Patterns can contain wildcards:
l _means any character (including numbers and special characters).

l % means zero or more characters (including numbers and special characters).

l ESCAPE <char> where <char> is used to prefix _ and % in patterns so that these characters are
interpreted as they are and not as wildcards.

Note: <char> must be a single character. For example: '!'.

l alias references the target artifact.

Expressions
expr :
term [{ + | - | CONCAT } term ...]

term :
factor [{ * | / } factor ...]

factor :
(select)
| (expr)
| { + | - } expr
| case_expression
| NUMBER
| STRING
| NULL
| function_call
| variable_ref
| property_ref
| native_sql

case_expression :

Customization Guide

HPE Enterprise Maps (3.10) Page 40 of 182

CASE case_item [case_item ...]
[ELSE expr]

END

case_item :
WHEN condition

THEN expr

function_call :
ID([DISTINCT] { [*] | [expression_list] })

property_ref :
{ ID | QUOTED_ID } [{ . | $ } { ID | QUOTED_ID } ...]

expression_list :
expr [,expr ...]

variable_ref :
? | :ID

Explanation:

l Variables are of two kinds:
l Positional variables - ? in DQL.

l Named variables - :<name_of_variable>

l When variables are used in DQL, each variable must have a value bound to the variable.

Lexical Rules
CONCAT :
||

STRING :
[N | n] ' text '

NUMBER :
[[INT] .] INT

INT :
DIGIT [DIGIT ...]

DIGIT :
0..9

ID :
CHAR [{ CHAR | DIGIT } ...]

CHAR :
a..z | A..Z | _

Explanation:

Customization Guide

HPE Enterprise Maps (3.10) Page 41 of 182

l ID is sequence of characters, numbers and underscores beginning with a character or underscore.
l QUOTED_ID is text in quotes.
l CONCAT means a concatenation of strings - syntax ||

DQLWith Third-Party Products
DQL is provided by a JDBC driver which you can use with common SQL designers supporting 3rd-party
JDBC drivers (or ODBC with an ODBC-JDBC bridge).

The following sections describe the driver and its use with 3rd party products:

l "DQL JDBC Driver" below
l "DQL in SQL Designers" on the next page
l "DQL in MS Access" on the next page

DQL JDBCDriver
The DQL JDBC driver translates DQL queries into SQL queries and executes them using the underlying
JDBC driver for the used database. The translation is provided by a remote invocation of HPE EM.

All the required JAR files for the DQL driver are available in EM_HOME/client/lib/jdbc:

l pl-dql-jdbc.jar

l hessian-version.jar

l Database driver JAR files are copied here during installation (for example, ojdbc6.jar).
The following table describes the driver configuration required to use the driver with third-party products.

DQL JDBC Driver Configuration

Property Description

Connection String jdbc:systinet:http(s)://<username>@<host:port>/<context>[|schema=schema
name][|model=list of allowed models] l

l <username> is the Enterprise Maps username who executes the DQL query
using Enterprise Maps permissions security.

l <host:port> are the connection details of your Enterprise Maps installation
(for example, localhost:8080 for HTTP or secure:8443 for HTTPS.

l <context> is the application server context, the default is soa.
|schema=schema name is the schema of the user who owns HPE EM database
tables. This parameter is optional. When omitted it is supposed that the user
account used to access the database is also the owner of HPE EM tables. In
case a common user or read-only user is used, use the power user schema
name, unless the DQL JDBC Driver cannot provide metadata regarding artifacts
and properties.

|model=list of allowed models is optional and represents a comma-separated list
of models. Only artifacts from allowed models are provided in JDBC metadata
as tables. The available models are sys and public. By default, only artifacts
from the public model are provided.

Customization Guide

HPE Enterprise Maps (3.10) Page 42 of 182

Property Description

For example,
jdbc:systinet:http://admin@demoserver.acme.com:8080/soa|schema=SOA320

DB Credentials The database username and credentials used for direct access to the HPE EM
database. In most cases it is the user who owns all tables for HPE EM - called
the power user. In case of "Manual Database Arrangement" with a power user
and a common user (who has only read/write access to tables, but can not
create other tables), use the common user account. In case the common user is
still too powerful to be shared, the DB administrator can create another - "read-
only user" with read-only access to HPE EM tables. Note that the read-only user
must also have created synonyms/aliases for HPE EM tables to pretend that
HPE EM tables are in the schema of the read-only user. For more details, see
Installation and Configuration Guide, sectionDatabase Installation Types under
Preparing Databases .

DQL JDBC Classname com.hp.systinet.dql.jdbc.DqlDriver

Note: The DQL JDBC driver must be able to connect to the database from the client. Use the full
hostname for your database used during installation or setup. In the event of connection problems, verify
the firewall settings between the local server and the database server.

DQL in SQL Designers
SQL Designer software can use the DQL driver if the designer is JDBC-aware.

To configure a JDBC-aware SQL Designer:

1. Add the DQL JDBC JAR files to the classpath.
2. Create a JDBC connection using the properties described in "DQL JDBC Driver" on the previous page.

After you establish the DQL JDBC connection, the following functionality should be available in your SQL
Designer:

l Schema introspection, browsing the list of artifact types and property groups as tables, and their properties
as columns.

l DQL query execution.

DQL in MS Access
MS Access 2007 can execute DQL queries using an ODBC-JDBC bridge. Before using MS Access, you
must configure the ODBC datasource in Windows.

To configure an ODBC-JDBC bridge:

1. Download and install an ODBC-JDBC bridge. For example, Easysoft ODBC-JDBC Gateway.
2. Configuration typically consists of:

l JDBC driver configuration using the properties described in "DQL JDBC Driver Configuration" on the

Customization Guide

HPE Enterprise Maps (3.10) Page 43 of 182

previous page.

l Bridge configuration. For details, see the documentation for the bridge software.

DQL syntax varies from the examples given in "Introduction to DQL" on page 25 in the following cases:

l Complex properties must use $ notation and be enclosed by [].
personArtifact.[address$addressLines$value], personArtifact.[address$country]

l To use modifiers such as (include_deleted) use the Pass-Through option in MS Access.
l Left Joins do not work. Use plain joins instead.
l For fixed properties, use the Pass-Through option in MS Access.
l For timestamps, use the Pass-Through option in MS Access.
l Native queries do not work in MS Access.
l For property aliases, do not use quoted aliases.

Evaluating DQL
DQL query can be executed directly using web browser HTTP POST. The URL and parameters (x-www-
form-urlencoded) are as follows:

http://host:port/em/remote/query?dql=<query>...</query>[&limit=-1][&start=0]

Parameter Description Default Value

dql Required. The DQL query must be wrapped in <query></query>.

start Offset in the returned dataset (0 is no offset). 0

limit Limits the results returned. Set to -1 to return all results. 15

HTTP basic authentication is required to authenticate the remote user. Named parameters can be passed
into DQL query by HTTP parameters.

HTTP POST Client

The image below is an example of using Chrome’s Postman extension to execute DQL:

<query>select a.name as name from artifactBase a where a.name like :LIKE order by
a.name</query>

Customization Guide

HPE Enterprise Maps (3.10) Page 44 of 182

Customization Guide

HPE Enterprise Maps (3.10) Page 45 of 182

Chapter 4: Data Sources
Data sources are predefined queries wherein their results are consumed by reports for visualization. The
advantage of this concept is that the data visualization and data collection process is separated and a single
data source can be used by multiple reports.

Data sources are defined using theAdministration tab > Customization > Manage Scripts > Data
sources option in the UI.

There are two basic types of data sources:

l "DQL-Based Data Sources" on the next page
l "Closure Definition-Based Data Sources" on page 48
Data Sources Parameters

The query results of a data source can be customized by parameters. A typical example is to limit the data in
a report to show only artifacts from particular domain(s).

Parameter Description Example

domainTypes l List of domainTypes separated by
comma. For example: Reference
Models, As-is/To-be Architecture,
Demo Data.

l Can be used with domainIDs
simultaneously.The result is an
intersection. For example:
l Domain A (type: Reference

Models, id: domA)

l Domain B (type: Reference
Models, id: domB)

l Domain C (type: Demo Data, id:
domC)

If domainTypes='Reference
Models' and domainIDs='domA,
domC', the result is Domain A.

l If both parameters are missing then
domainTypes is treated as "any
domain except Reference ones"
(Reference Models).

<parameter name="domainTypes"
label="domainTypes"
type="string"
defaultValue="Reference Models,
As-is/To-be Architecture"/>

domainIDs List of domain IDs separated by
comma.

<parameter name="domainIDs"
label="domainIDs" type="string"
defaultValue="defaultDomain"/>

Evaluating Data Sources

HPE Enterprise Maps (3.10) Page 46 of 182

The data source content can be accessed directly from the web browser. The URL for the data source looks
like the following:

http://host:port/em/web/query?dataSource=/scripts/ApplicationComponents.xml[&limit=-1]

Parameter Description Default Value

dataSource Required. Location of the data source script to be evaluated.

limit Limits the results returned. Set to -1 to return all results. 15

DQL-Based Data Sources
DQL based data sources are defined using the DQL language (DOC: create link here). See the following
example:

<query>

select a._uuid,a.name from applicationComponentArtifact a where a.name=:pattern

</query>

The query is just wrapped between the <query> xml element. The query requires a pattern parameter.

The configuration of <query> element is defined as below:

Name Type
Default
Value Description

orderBy element N/A Specifies a comma separated list of field names
that is used for sorting the results. For example:

maxResults attribute 200 The report processing thread quits after producing a
specified number of results. For example:

Examples:

orderBy:

<query>
<orderBy>f.name asc</orderBy>
select f.name as name, f._uuid as uuid from businessFunctionArtifact f

</query>

or defined in client side via sort parameter:

Ext4.create('EA.model.tools.DataSourceStore', {
dataSource: this.config.dataSource,
extraParams: {

sort: [{"property":"surveyName","direction":"asc"}]
}

});

or passed directly in the request URL as following:

Customization Guide

HPE Enterprise Maps (3.10) Page 47 of 182

https://[host:port]/[context]/web/query?dataSource=/scripts/[script_name]&sort=
[{"property":"sdmName","direction":"asc"},{"property":"name","direction":"desc"}]

maxResults:

<query maxResults="5">
select f.name as name, f._uuid as uuid from businessFunctionArtifact f

</query>

or defined in client side via pageSize parameter:

Ext4.create("EA.model.tools.DQLStore", {
query: " ",
pageSize: 10,
sorters: sorters

});

or passed directly in the request URL as following:

https://[host:port]/[context]/web/query?dataSource=/scripts/[script_name]&limit=10

Closure Definition-Based Data Sources
Closure Definition-based data sources are described in the following sections:

l "ClosureQuery Configuration Reference" below
l "Performance Considerations" on page 55
l "Displaying the Closure Query Result in a Custom UI Table" on page 55

ClosureQuery Configuration Reference
The data source takes two basic parameters:

l The traversal rules specified with an XML configuration (see the <closure> tag for reference).
l The seed parameter of seedQuerywhich specifies the artifacts the impact report is created for.
seed parameter

The seed parameter specifies the uuid of the artifact you are interested in.

seedQuery parameter

The seedQuery parameter specifies a dql query which is expected to return a result set of one column with a
list of uuids.

<closure> element

The wrapping element of the configuration. It defines the following:

Name Type
Default
Value Description

maxDepth attribute 5 Maximum distance of the result from the
seed artifact specified in the number of
traversed relationships.

maxResults attribute 200 The report processing thread quits after
producing a specified number of results.

Customization Guide

HPE Enterprise Maps (3.10) Page 48 of 182

Name Type
Default
Value Description

maxProcessingTime attribute 60000 The report processing thread quits its
operation after the specified time in
miliseconds.

nice attribute 0 The report processing thread sleeps every
100 processed results for the given
number of miliseconds. Expected to be
used for longer running reports that may
jam the server for other users.

debug attribute true When true, detailed tracing information is
written into the log file.

orderBy element N/A Specifies a comma separated list of field
names that is used for a sort of the results.
For example: "severity DESC
,investmentRequired".

resultArtifacts element required Artifacts that form the result.

traversableArtifacts element N/A Artifacts that can be walked through when
creating the report. Only one of
traversableArtifacts,artifactStopList can
be specified.

artifactStopList element N/A Artifacts that cannot be walked through
when creating the report. Only one of
traversableArtifacts
,artifactStopList can be specified.

traversableRelations element N/A Relationships that can be walked through
when creating the report. Only one of
traversableRelations
,relationStopList can be specified.

relationStopList element N/A Relationships that cannot be walked
through when creating the report. Only one
of
traversableRelations
,relationStopList can be specified.

defaultSeedQuery element N/A A dql query returning a set of uuids that
should serve as seeds for the query; it is
overriden by the seed parameter.

seedsAsResults attribute false Indicates an artifact as provided by
defaultSeedQuery that will be included
as a result artifact. It is valid if the
resultArtifacts defines that kind of
artifact.

Customization Guide

HPE Enterprise Maps (3.10) Page 49 of 182

Name Type
Default
Value Description

parameters element N/A Declares the required parameters to this
data source that can be used within
nested DQL statements.

nodesTraversedOnlyOnce attribute false When true, a single artifact is the result at
the most once.

When false, a single artifact can be the
result multiple number of times, if each
occurrence has a different parent in the
result tree.

l You can combine the traversableArtifact section with traversableRelations or relationStopList.
If you do so conditions of both settings will be applied. In the same way you can combine
artifactStopList.

l Result artifacts are not traversable by default; they are added to results when reached according to
specified rules. If you want to traverse relationships leading from these artifacts you have to add them to
the list of traversable artifacts.

<artifact>

The list of artifact types that form the results. Each artifact result type may define a set of fields that will form
the result. (name,description,domainId are the default fields added automatically).

<artifact sdmName="businessServiceArtifact" filter="from businessServiceArtifact a
where a.consumable='1' and a._uuid=:uuid">

<field name="implementationCount" query="select count(i._uuid) from
businessServiceArtifact b join implementationArtifact i using service where b._
uuid=:uuid"/>

</artifact>

l Using the optional filter attribute you can filter matching artifact instances. The 'artifact' tag can be
nested within traversableArtifacts, artifactStopList or resultArtifacts. The artifact instance is
matched when the query returns at least 1 result. You need to utilize the 'uuid' parameter in the query
which holds the artifact UUID which is subject to the matching.

l You can use abstract artifacts in place of sdmName. In that case the rule will apply to all artifact which
extend the specified artifact in addition.

l You can use the optional reachedUsingattribute which can filter traversed artifacts based on the
relationship these have been reached. There are the following options of the value of the attribute:

incoming The traversed artifact will be treated by the engine only if it was reached over
an incoming relationship. The artifact will be treated as non existing otherwise.

outgoing The traversed artifact will be treated by the engine only if it was reached over
an outgoing relationship. The artifact will be treated as non existing otherwise.

comma separated list
of relationships

The traversed artifact will be treated by the engine only if it was reached over
relationship which sdm name is present within one of the values of the list

Customization Guide

HPE Enterprise Maps (3.10) Page 50 of 182

defined by this attribute. The artifact will be treated as non existing otherwise.

In the following example the report is launched from the endpoint artifact (which is linked to a
webServiceArtifact). It will traverse through the webServiceArtifact using the endpointOf relationship (which
is an incoming relationaship inside SDM). If you would change the value of reachedUsing to 'incoming', the
traversal through webServiceArtifact would happen as well. If you would change it to 'outgoing' you would not
get any results.

<closure maxDepth="20" maxResults="1000" maxProcessingTime="60000" debug="true">

<resultArtifacts>

<artifact sdmName="businessServiceArtifact"/>

<artifact sdmName="endpointArtifact"/>

</resultArtifacts>

<traversableArtifacts>

<artifact reachedUsing="endpointOf" sdmName="implementationArtifact"/>

</traversableArtifacts>

</closure>

<field>

The field element specifies an extra field in the result row and can be used as child of the artifact tag
within resultArtifacts. There are two ways to specify the field:

l via dql query

<field name="implementationCount" query="select count(i._uuid) from
applicationServiceArtifact b join applicationInterfaceArtifact i using uses where b._
uuid=:uuid"/>

l via property sdm name specification

<field name="consumable" property="consumable"/>

The second variant has much better performance and should be used where possible. Note that to make the
field actually visible you have to add an extra column to the table definition and link the field to it. Check the
examples with the environment property.

There are several predefined fields (artifact fields) that you do not need to explicitly define :

_domainId

_domainName

_owner

name

description

lastApprovedStage

The field tag accepts the following attributes:

Customization Guide

HPE Enterprise Maps (3.10) Page 51 of 182

Name
element/
attribute Type

Default
Value Description

query element or
attribute

string N/A dql query that is given the uuid
parameter. The query may return a
single value or even a list of
multiple rows.

closure element XML N/A Nested closure definition that will
be executed with the current result
artifact as the seed artifact.

relationAttribute attribute string N/A Returns specified attribute value of
the relationship that led to
discovery of the current result
artifact.

multipleResults attribute boolean false Indicates that the query returns
multiple rows. The field value than
will be a list of objects where
properties will correspond to query
column values.

limitResult attribute integer 20 Maximum number of results to
include in the resulting JSON, if
query parameter is set.

description element string N/A Complete description of the
meaning of the field, so that this
text is used within the UI.

property attribute string N/A Returns the value of a property of
the current result artifact.

For more information, see the DQL documentation or the SDM model documentation.

<relation>

Specifies a relation and can be used with the relationStopList tag and traversableRelations tag.

<relation sdmName="composedOf"/>

The relationship tag has the following attributes:

Attribute Description

sdmName SDM name of the relationship (to DOC: please create a crosslink
here)

sourceArtifact match the relationship only if the relationship is a property of given
source artifact(s) - comma separated

targetArtifact match the relationship only if the relationship is referencing given
target artifact(s) - comma separated

<parameters>

Customization Guide

HPE Enterprise Maps (3.10) Page 52 of 182

The data source may require parameters to evaluate. These are defined within the parameters section of the
data source definition.

<parameters>

<parameter name="plateau" label="Plateau" type="uuid"
artifactLocalName="plateauArtifact">Required to display
....</parameter>

<parameter name="minimumCost" label="Min. Cost" type="number"/>

</parameters>

The parameter tag has the following attributes:

Attribute Description

name Name of the parameter as it is referenced from DQL.

label Short name of the parameter (as used in UI dialogs).

type If the type is 'uuid', this attribute further determines the artifact type
whose UUID may be passed as the value of the parameter.

Examples
Example 1

List all reachable artifacts from the seed artifact:

<closure maxDepth="5" maxResults="1000" maxProcessingTime="60000" debug="true">

<resultArtifacts>

<artifact sdmName="artifactBase"/>

</resultArtifacts>

</closure>

Example 2

Show all contacts having a contract on the seed business service:

<closure maxDepth="5" maxResults="100" maxProcessingTime="60000" debug="false">

<resultArtifacts>

<artifact sdmName="contactArtifact"/>

</resultArtifacts>

<traversableArtifacts>

<artifact sdmName="contractArtifact" query="from contractArtifact a where a._
uuid=:uuid and a.contractState.val =
'uddi:systinet.com:soa:model:taxonomies:contractAgreementStates:accepted'"/>

Customization Guide

HPE Enterprise Maps (3.10) Page 53 of 182

</traversableArtifacts>

</closure>

Example 3

Show all business services that the seed one is transitively referencing using the relationship composed of:

<closure maxDepth="5" maxResults="100" maxProcessingTime="60000" debug="false">

<resultArtifacts>

<artifact sdmName="businessServiceArtifact"/>

</resultArtifacts>

<traversableRelations>

<relation sdmName="composedOf"/>

</traversableRelations>

</closure>

Example 4

Use of nested closure definition:

<closure maxDepth="2" maxResults="10000" maxProcessingTime="30000" debug="false"
seedsAsResults="true">

<defaultSeedQuery>select a._uuid from applicationComponentArtifact
a</defaultSeedQuery>

<resultArtifacts>

<artifact sdmName="applicationComponentArtifact">

<field name="services">

<closure maxDepth="2">

<resultArtifacts>

<artifact sdmName="applicationServiceArtifact"/>

</resultArtifacts>

</closure>

</field>

</artifact>

</resultArtifacts>

</closure>

Example 5

Accessing relation attributes:

Customization Guide

HPE Enterprise Maps (3.10) Page 54 of 182

<closure maxDepth="2" maxResults="10000" maxProcessingTime="30000" debug="false"
seedsAsResults="true">

<defaultSeedQuery>select a._uuid from plateauArtifact a</defaultSeedQuery>

<resultArtifacts>

<artifact sdmName="applicationComponentArtifact">

<field name="cost" relationAttribute="cost"/>

</artifact>

</resultArtifacts>

</closure>

Performance Considerations
For good performance it is required to specify the traversable artifacts / relations so that parts of the
repository which will not produce any result will not be searched. The report is being built fairly quickly when
the "query" attributes are not used frequently - even on a notebook running the database and the repository
simultaneously it is able to produce 100 results per second. In the debug mode you can check the report
generation times and trace the search for the artifact closure.

Memory requirement aren't a big deal - when the 200 result set is built it is hardly possible to detect the
change in memory used within the server. The debug log looks like the following:

Displaying the Closure Query Result in a Custom UI Table
This section describes what needs to be done to include a simple impact/dependency report on the main
business service artifact page.

To add a table on the overview tab:

Customization Guide

HPE Enterprise Maps (3.10) Page 55 of 182

1. Add the table component into the business service artifact overview tab.
2. Switch to customization mode and navigate to a business service.
3. Click theCustomize link under context actions:

4. Add the following as the last component in an existing or new group:

<group id="table">
<component componentName="/core/table" id="closureTable">
<parameter>
name="customizationId">provider.viewArtifact.businessServiceArtifact.impact.table</p
arameter>
</component>
</group>

Customization Guide

HPE Enterprise Maps (3.10) Page 56 of 182

5. Thereafter, click theCustomize link above the newly added table:

Customization Guide

HPE Enterprise Maps (3.10) Page 57 of 182

6. Replace the definition with the following to show Business Services that have relationship (direct or
indirect) with current artifact:

<?xml version="1.0" encoding="UTF-8"?>
<customization xmlns="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:cust="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="cust
table.xsd">

<datasource>
<type>dataSource.composite.report</type>
<parameter name="seed">${artifact._uuid}</parameter>
<parameter name="configuration"><![CDATA[

<closure maxDepth="20" maxResults="1000" maxProcessingTime="60000"
debug="true" nodesTraversedOnlyOnce="true">

<resultArtifacts>
<artifact sdmName="businessServiceArtifact"/>

</resultArtifacts>
</closure>

]]>
</parameter>

Customization Guide

HPE Enterprise Maps (3.10) Page 58 of 182

</datasource>
<table selectionModel="multiple">

<rowId queryColumn="id"/>
<column id="name" label="Name">

<content queryColumn="name"/>
</column>
<column id="type" label="Artifact">

<content queryColumn="_sdmName"/>
</column>
<column id="_domainName" label="Domain">

<content queryColumn="_domainName"/>
</column>
<rowPreview id="description">

<content queryColumn="description"/>
</rowPreview>

</table>
</customization>

7. The table is updated as follows:

Customization Guide

HPE Enterprise Maps (3.10) Page 59 of 182

Chapter 5: Scripting
Scripting allows you to extend the current customization framework so that custom UI components can be
included in the catalog pages. These components might be used to integrate platform with other applications;
it should be possible to access datasources of other applications and display it's data correlated with
repository content. Other usecase might be that the information to be displayed is obtained via an web service
call.

It allows small manipulations with catalog UI via javascript and the browser DOM. For example add an
explanatory comment above a property display component or hide some unwanted components/buttons etc.
which can't be removed via the main customization framework.

It allows execution of custom code during artifact repository operations; allow to build custom repository
event handlers to perform validation;prefill artifact property values

It allows execution of custom code during lifecycle promotions. This is intended to be used to prefill some
artifact properties, change artifact access rights when artifact changes lifecycle stage.

Dashboard Customization
Ext JS 4.2.1

The dashboard is based on Ext JS library - each portlet is an Ext JS component.

Check the following links for information about Ext JS:

Ext JS widgets http://www.sencha.com/products/extjs/examples/

API documentation http://docs.sencha.com/extjs/4.2.2/

Ext JS home http://www.sencha.com/products/extjs/

HPE EM provide extension classes on top of Ext JS so that you can access the data within EM easily. The
full documentation of these classes can be found at EM_HOME/doc/javascript-api.

Ext JS 3

HPE EM use Ext4 namespace prefix for referencing Ext 4 classes. The 'Ext' namespace is reserved due to
backward compatibility reason for Ext version 3 classes. Do not use the Ext 3 classes because such support
may be removed from the product without any further notice.

Creating Custom Portlets

To create a custom portlet:

1. Create a new portlet script by opening Administration/Customization/Manage scripts and selecting it to
be of script portlet type.

2. The script will have to contain a Ext JS class that will be inherited from 'EA.portal.Portlet'.
3. The name of the class must start with "EA.scripts" namespace prefix. All classes in this namespace are

loaded from the collection of scripts.
4. The rest of the name after "EA.scripts" is converted to the location attribute of the script artifact and a

'.js' suffix is added. For example, if the class name is 'EA.scripts.demo.LayerStatisticsChart' the script
name should be '/demo/LayerStatisticsChart.js'

HPE Enterprise Maps (3.10) Page 60 of 182

Check the following example. It shows the number of artifacts in individual archimate layers.

Ext4.define('EA.scripts.demo.LayerStatisticsChart', {

extend: 'EA.portal.Portlet',

requires: [
'Ext4.data.JsonStore',
'Ext4.chart.theme.Base',
'Ext4.chart.series.Series',
'Ext4.chart.series.Line',
'Ext4.chart.axis.Numeric'

],

initComponent: function() {

var dqlStore=Ext4.create('EA.model.tools.DQLStore', {
query: "<query>(select 'Business Layer' as name, count(a._uuid) as

artifactCount,'business' as layer
from c_businessArchitectureElement a) union "+

"(select 'Application Layer' as name, count(a._uuid) as
artifactCount,'application' as layer
from c_applicationArchitectureElement a) union"+

"(select 'Technology Layer' as name, count(a._uuid) as
artifactCount,'technology' as layer
from c_technologyArchitectureElement a) union"+

"(select 'Motivation' as name, count(a._uuid) as
artifactCount,'motivational' as layer
from c_motivationalArchitectureElement a) union"+

"(select 'Implementation and Migration' as name, count(a._uuid) as
artifactCount,'implementation'
as layer from c_implementationAndMigrationElement a) order by artifactCount "+

"</query>",
fields: [

{
name: 'name',
type: 'string'

},
{ name: 'artifactCount' },
{ name: 'layer' }

]
});

dqlStore.load();

Ext4.apply(this, {
layout: 'fit',
height: 300,
items: {

xtype: 'chart',
animate: true,
style: 'background:#fff',

Customization Guide

HPE Enterprise Maps (3.10) Page 61 of 182

shadow: false,
store: dqlStore,
axes: [{

type: 'Numeric',
position: 'bottom',
fields: ['artifactCount'],
label: {

font:'HPSimplified',
renderer: Ext.util.Format.numberRenderer('0')

},
title: 'Artifact count',
minimum: 0

}, {
type: 'Category',
label: {

font:'HPSimplified'
},
position: 'left',
fields: ['name']

}],
series: [{

type: 'bar',
axis: 'bottom',
xField: 'name',
yField: ['artifactCount'],
renderer: Ext4.create

('EA.model.tools.LayerToColorConvertor').getChartColorRenderer(function(record)
{ return record.get('layer');})

}]
}

});
this.callParent(arguments);

}
});

Overriding Behaviour of Existing Portlets

The extensibility described above doesn't apply to whole portlets. You may extend the existing structure
maps and Heat Map with new functionality. See the following structure map portlet definition:

{
id: 'capabilityToProjectMapping',
dataSource: '/scripts/BusinessFunctions.xml',
visualizations: [{

label: 'Background Color',
items: [{

type: 'EA.portlets.visualization.NumberBasedColorVisualization',
field: 'plannedCost',
name: 'Project planned costs'

Customization Guide

HPE Enterprise Maps (3.10) Page 62 of 182

}]
}]

}

Notice the reference to EA.portlets.visualization.NumberBasedColorVisualization. This is an HPE
EM built-in class - you can replace this one with your own. For example you may create a class
EA.scripts.visualization.MoneyBasedColorVisualization that will change the behaviour of the built-in
visualization class - it will render currency symbols:

Ext4.define('EA.scripts.visualization.MoneyBasedColorVisualization', {
extend: 'EA.portlets.visualization.NumberBasedColorVisualization',

getDescription : function (lowerMargin, higherMargin) {
if (lowerMargin == null) return 'Cost N/A';
var description = '$' + layoutManager.addCommas(lowerMargin.toFixed(0)) + '

- $' + layoutManager.addCommas(higherMargin.toFixed(0));
return description;

},
getTextValue: function(node) {

var value = node.data[this.getField()];
return (value == null || value == '') ? 'N/A' : (value == 0 ? value : '$' +

value);
}

});

All you need to do to use the new visualization you have change the type in the portlet declaration:

{
id: 'capabilityToProjectMapping',
dataSource: '/scripts/BusinessFunctions.xml',
visualizations: [{

label: 'Background Color',
items: [{

type: 'EA.scripts.visualization.MoneyBasedColorVisualization',
field: 'plannedCost',
name: 'Project planned costs'

}]
}]

}

To understand the API and features you may utilize when you create new script extensions, please check the
documentation in EM_HOME/doc/javascript-api.

General Catalog Customization
It is possible to enter custom html fragments inside the platform UI customization file. This way you can add
extra explanation labels above property declarations, context actions etc. You can also place javascript

Customization Guide

HPE Enterprise Maps (3.10) Page 63 of 182

fragments there and extending the platform UI with you own dialogs. There are two tags used for this: <html>
tag and <server> tag

If you want to try these examples yourself, switch the repository into the UI customization mode, and click on
the customize link just under theCatalog tab. Paste the here mentioned code snippets as the first child of the
first html element you will find

?xml version="1.0" encoding="UTF-8"?>
<customization xmlns="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:cust="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="cust
columns.xsd">

<columns>
<column id="leftColumn">

<!-- PLACE YOUR CUSTOMIZATION CODE HERE -->
<server id="my_server_code">

<script>
function calculateArtifactCount() {

var result=queryService.query("<query>select count(*) as cnt
from artifactBase a where a.name like

:pattern</query>", { pattern: '%' });
return result.records[0].cnt;

}
</script>

</server>
<html id="my_extension">
....

<html> Tag
As mentioned earlier the first tag you can use within customization files is the <html> tag.

<column ...>
<html id="my_extension">

<include>
<script>

alert('Hello');
</script>

Here is some text !
</include>

</html>
</column ...>

This is a very basic example of an extension HTML - it will place the content of the element into the page.
When the page with this customization is being rendered, first the the alert() javascript function is executed:

Customization Guide

HPE Enterprise Maps (3.10) Page 64 of 182

And then the "Here is some text !" is placed at the beginning of the page:

The html element can be placed inside <column>,<group> and <contextActions> elements of the
customization files.

If the customization is a bigger one you can place the extension HTML file into an include file like this:

Using Include File/Properties

<html id="my_extension">
<import location="/scripts/common2.js"/>
<include>

..
</include>

Customization Guide

HPE Enterprise Maps (3.10) Page 65 of 182

</html>

You can include the fragment from multiple places and edit it by selectingAdministration > Manage
scripts.

You can place the script code into a platform system/configuration property as well. The code using this
property will be something like the following:

<html id="my_extension">
<import property="platform.scripts.my-customization-script"/>
<include>

..
</include>

</html>

Passing Parameters to the Code Inside the html Tag

On pages showing/editing an artifact you can pass parameters into the code within the html tag.

<html id="my_extension">
<parameter name="artifactUUID">${artifact._uuid}</parameter>
<include>

<script>
Ext4.onReady(function () {

Ext4.Msg.show({
title: 'Info',

Customization Guide

HPE Enterprise Maps (3.10) Page 66 of 182

msg: 'Showing artifact with uuid:'+my_extension.artifactUUID,
buttons: Ext.MessageBox.OK,
icon: Ext.MessageBox.INFO

});
});

</script>
<div style="font-style:italic;margin-top:5px">
You need to change this property to 'Yes' so contract can be created for this

service !
</div>

</include>
</html>

When executed, you will get the following result (if the customization is placed on the view implementation
page, not the catalog home as other examples):

In this case all the parameters must be serializable to String - you cannot pass the whole artifact instance.
This example also demonstrates a piece of javascript that gets executed after the whole web page has been
downloaded from the server (use of the Ext4.onReady function).

Manipulating Web Page DOM

You can also manipulate the page DOM from javascript. For example to following fragment will make the
'Change WSDL link disappear':

<html id="my_extension">
<include>

<script>
Ext.onReady(function () {

Customization Guide

HPE Enterprise Maps (3.10) Page 67 of 182

var e=Ext4.get('root_content_props_customized_overview_customized_
rightColumnX002econtextButtons_customized_changeWsdllink');

e.setVisibilityMode(Ext.Element.DISPLAY);
e.setVisible(false);

});
</script>
Here is some text !

</include>
</html>

You can use the Firebug plug-in (or other similar tools available for major HTML browsers) to search for id of
the item you want modify. The link below shows the id of the "Change WSDL" link located using the "Inspect"
function of Firebug. You will see the following result: (if the customization is placed on the view
implementation page, not the catalog home as other examples).

Here is another example which hides "end governance" and "set lifecycle process" links in the artifact life
cycle tab for non-admin users. Include this script into one of the groups of the left side menu - customizations
in this place will execute for all catalog tab pages:

<server id="admin_detection">
<script>

function isAdmin()
{

return Packages.com.hp.em.security.auth.SecurityContext.current().isInRole
("Administrator");

}
</script>

</server>
<html id="my_extension">

<parameter name="user">admin</parameter>

Customization Guide

HPE Enterprise Maps (3.10) Page 68 of 182

<include>
<script>

Ext4.onReady(function () {
var endGovernance=Ext.get('root_content_props_customized_lifecycle_

columns_customized_rightColumnX002ebuttonPanel_
lifecycleTabX002eendGovernanceungovernLink');

if (endGovernance!=null)
{

endGovernance.setVisibilityMode(Ext.Element.DISPLAY);
endGovernance.setVisible(false);
var setProcess=Ext.get('SetProcess_handler');
setProcess.setVisibilityMode(Ext.Element.DISPLAY);
setProcess.setVisible(false);
isAdmin(function(isAdminValue)

{
setProcess.setVisible(isAdminValue=='true');
endGovernance.setVisible(isAdminValue=='true');

});
}

});
</script>

</include>
</html>

Here is one more example which shows you a mechanism how to build new layout of the edit/view artifact
pages based on the existing property widgets:

<customization xmlns="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:cust="http://soa.systinet.hp.com/2009/02/ui/customization"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="cust artifactDetail.xsd">
<content>

<group id="properties" label="">
<property id="name" name="name"/>
<property id="description" name="description"/>
<property id="version" name="version"/>
<html id="example">

<include>
<table>

<tr>
<td>XXX</td><td><table><tr id="new_version"/></table></td>

</tr>
</table>
<script>

var version=Ext4.get("version");
var new_version=Ext4.get("new_version");
new_version.dom.innerHTML=version.dom.innerHTML;
version.dom.innerHTML='';

</script>

Customization Guide

HPE Enterprise Maps (3.10) Page 69 of 182

</include>
</html>

<property id="r_serviceType" name="r_serviceType"/>
<property id="criticality" name="criticality"/>
<property id="readyForConsumption" name="readyForConsumption"/>

<server> Tag
The server tag can be used to define custom business logic executed on the server side. Check the following
example:

...
<server id="my_server_code">

<script>
function test1(param) {
return { aaa: [param, 'a','b','c', 1, repositoryService] };
}

</script>
</server>

<html id="my_extension">
<include>

<script>
function responseListener(result)
{

alert(Ext4.encode(result));
}
test1('Hello world parameter',responseListener);

</script>
</include>

</html>
...

When such customization is evaluated (request for rendering is placed) the content of the server tag is
compiled and stored on the server and only function stubs are put into the resulting html. When such a stub is
invoked it sends it's parameters to the server (in the example above it is the 'Hello World' string) where the
previously compiled function is executed. Results are then returned back to the browser.

The results of the previous customization looks like this:

Customization Guide

HPE Enterprise Maps (3.10) Page 70 of 182

You can see that the repository service has not been sent to the browser, the java toString() method has been
used to serialize it and the result has been sent instead.

All this is done asynchronously and the client must provide a call back function (responseListener in our
example) to the stub which is reponsible for processing function results.

Server Side Execution Environment

The javascript interpreter on the server side is implemented by the Rhino engine. You can use java based
runtime Enterprise Maps platform APIs in your scripts, check the following documentation on interfacing java
with Rhino: http://www.mozilla.org/rhino/ScriptingJava.html

You can use the following objects from the script:

JS Object Java Object

UUID com.hp.em.repository.util.PropertiesUtil

beanFactoryHelper com.hp.em.spring.BeanFactoryHelper

repositoryService com.hp.em.repository.RepositoryService

artifactFactory com.hp.em.repository.sdm.ArtifactFactory

queryService com.hp.em.sc.ui.scripting.dataService.DqlJsQueryService

repositoryPreListeners com.hp.em.sc.ui.scripting.events.ScriptedEventListener

repositoryPostListeners com.hp.em.sc.ui.scripting.events.ScriptedEventListener

log org.apache.commons.logging.Log

Check the separately provided javadoc to see methods provided by these objects.

Customization Guide

HPE Enterprise Maps (3.10) Page 71 of 182

Reading System Configuration From a Server Script

It is possible to access system configuration from the server scripts. Like on the following example:

...
log.info('Java version:'+environment.getConfigurationProperty('java.version'));
log.info('Platform url base:'+environment.getConfigurationProperty

('platform.url.base'));
...

If the property cannot be found within the platform system configuration a search within the environment
variables is performed.

Executing DQL in <server>

The following example shows how the execute DQL from the tag:

<server id="my_server_code">
<script>

function calculateArtifactCount() {
var result=queryService.query("<query>select count(*) as cnt from

artifactBase a where a.name like :pattern</query>", { pattern: '%' });
return result.records[0].cnt;

}
</script>

</server>

<html id="my_extension">
<include>

<div style="font-size:24px">Artifacts in the repository:</div>

<script>
Ext.onReady(function () {
function responseListener(result)
{

Ext4.get('resultContainer').dom.innerHTML=result;
}
calculateArtifactCount(responseListener);

});
</script>

</include>
</html>

The result of this customization is the following:

Customization Guide

HPE Enterprise Maps (3.10) Page 72 of 182

Note that with the server tag you need to escape <, & characters as these are included within an XML file. If
you would place the above text into an imported file you wouldn’t do that. Also note that the query function is
intended to be used for smaller data load. For huge data use the queryAsString method which returns an
JSON string or check the Ext JS grid example below. Client side javascript execution environment

In the example above it is also demonstrated that you can use the Ext JS libraries on the client side within the
tag. This is a very prowerful feature since you can load Ext JS stores with DQL queries and use any of the
Ext JS components to visualize it.

Using Platform DQL/JSON Query Service

Platform provides two endpoints that can be used to query the repository content; the first one is used to
execute DQL and the other one for obtaining taxonomy data.

Ext JS Grid Filled by AsynchronouslyLoaded Data From Server

Check the example below how to use the Ext JS grid withEnterprise Maps. Here a DQL query is used to fill
Ext JS data store. The query is passed to a servlet which in return sends JSON data back. The servlet
supports standard paging parameters of ext js stores as well.

<html id="my_extension">
<include>

<div id="reportContainer"></div>
<script>

Ext4.onReady(function () {

var testStore=Ext4.create('EA.model.tools.DQLStore', {
query: "<query>select a._uuid as uuid, a.name as name, a.description as

Customization Guide

HPE Enterprise Maps (3.10) Page 73 of 182

description from personArtifact a</query>",
fields: [

{
name: 'uuid',
type: 'string'

},
{

name: 'name',
type: 'string'

},
{

name: 'description',
type: 'string'

}]
});
testStore.load();

var testGrid = new Ext4.grid.Panel({
store: testStore,
renderTo : 'reportContainer',
width: 'auto',
height:500,
emptyText: 'No results to display',
autoExpandColumn: 'name',
columns: [

{
id: 'name',
text: 'Name',
dataIndex: 'name',
sortable: true

},
{

id: 'description',
text: 'Description',
dataIndex: 'description',
width: 150,
sortable: true

}
]

});

});

</script>
</include>

</html>

The result of this customization is the following:

Customization Guide

HPE Enterprise Maps (3.10) Page 74 of 182

Querying Taxonomy Data

In a very similar way you can load taxonomy data into an Ext js store:

var environments = new Ext.data.JsonStore({
autoDestroy: true,
url: SERVER_

URI+'/../../taxonomy?taxonomy=uddi:systinet.com:soa:model:taxonomies:environments',
root: 'records',
idProperty: 'key',
fields: ['key', 'value']

});
environments.load();

From this example you can see that there are two new endpoints/servlets available on the platform server. All
use ui authentication (so the results returned correspond to permissions of the currently logged user and you
can use them separately - only from the platform user interface). One is used to process DQL queries and
return JSON data and the other one is used to list taxonomy data.

Executing Code on Server Startup/Shutdown
Using Administration/Customization/Manage scripts you can create scripts that are executed during server
startup/shutdown. In the example blow you can see how that works; the script must define the onStartup
function which is executed on the server startup or the script update. You can also define onTearDown
function that is executed on server shutdown or before the script is updated. The example below registers two
listeners for artifact related actions. This way you can implement some custom integrity constraints and so
on.

var onStartup=function() {
repositoryPreListeners.add('demo-listener-pre-id',function (event) {

log.info('pre listener: '+event.getType()+' sdmName:'+event.getSdmName()+

Customization Guide

HPE Enterprise Maps (3.10) Page 75 of 182

' artifact:'+event.getArtifact());
});

repositoryPostListeners.add('demo-listener-post-id',function (event) {
log.info('post listener: '+event.getType()+' sdmName:'+event.getSdmName()+

' artifact:'+event.getStoredArtifact());
});

}

var onTearDown=function() {
repositoryPreListeners.remove('demo-listener-pre-id');
repositoryPostListeners.remove('demo-listener-post-id');

}

Handler/on Startup Script Processing Mode

It is important that those scripts are written correctly - a single error may lead to completely inaccessible
repository. Therefore repository can operate in the following modes (You can change the mode on the
'Manage Scripts' UI page):

DEBUG Scripts are executed in a safe mode, when a compilation failure occurs or an
exeception is raised from a script it is ignored.

PRODUCTION Scripts are executed with no limitations.

DISABLED Scripts executed on server startup and artifact event handlers are not executed
at all.

Javascript-Based repository Event Handlers
You can define custom repository event handler - events are generated for every artifact
create/update/delete/purge/get/find operation. You can enhance the customization capabilities of HPE EM
capabilities in several ways:

1. Performing data integrity / constraints checks before artifact create/update
2. Prefill default values for certain artifact properties, even based on the data already entered into the

modified artifact
3. Custom security constraints even on property level by hooking the get operation
Handler Template

You may utilize the following template when writing a new repository handler.

/**
* Startup function MUST define repository handler code as well
* the registration of the handler using a specified handler
* identifier.
*/

var onStartup=function() {
// 0. specify event handler identifier (replace all occurences in this file)

Customization Guide

HPE Enterprise Maps (3.10) Page 76 of 182

var eventHandlerId = 'TODO-SPECIFY-HANDLER-ID';
// 1. Specify an array containing event types to trigger, posible elements are
// GET, GET_DATA, CREATE, DELETE, UNDELETE, UPDATE, PURGE, CHANGE_OWNERSHIP
var eventTypes = ['CREATE', 'UPDATE'];
// 2. Specify artifact SDM name according to sdm model
var sdmName = 'businessServiceArtifact';
// 3. Implement handler code
var handler = function(event){

log.info('TODO implement handler');
}

// A helper function that cares about about exception handling
// and event filtering
var handlerWrapper=function(event){

try{
// implement handler
var type = event.getType();
var eventMatch = false;
for(var i=0; i<eventTypes.length; i++){

if (eventTypes[i] == type){
if (event.getSdmName() == sdmName){

handler(event);
}
break;

}
}

} catch(e){
log.error(e);

}
}

// registration of the handler for pre and/or post execution
// pre/post handlers have different identifier namespaces
repositoryPreListeners.add('TODO-SPECIFY-HANDLER-ID',handlerWrapper);
// repositoryPostListeners.add('TODO-SPECIFY-HANDLER-ID',handlerWrapper);
}

/**
* Teardown function is used to unregister the handler, the same
* identifier must be used to unregister the handler.
*/

var onTearDown=function() {
repositoryPreListeners.remove('TODO-SPECIFY-HANDLER-ID');
repositoryPostListeners.remove('TODO-SPECIFY-HANDLER-ID');

}

Lifecycle-Triggered Script Execution
Using Administration/Customization/Manage scripts you can create scripts that are executed during lifecycle
approval process. There is an automatic action called 'Execute Script' (see screen shot below) that is able to

Customization Guide

HPE Enterprise Maps (3.10) Page 77 of 182

execute those script (those must be of type 'Lifecycle action'). It is also possible to define an extra script in
the lifecycle action which is executed in the same environment and prior to the main script. It is intended to be
used to pass parameters to the main script.

The very basic script might look like as simple as this:

System.err.println('Governance record:'+governanceRecord);
log.info('Governance record:'+governanceRecord);

You can see that there is a com.hp.em.platform.lifecycle.GovernanceRecord passed via the reference
named governanceRecord to the script.

Tips
Sometimes there is a repository object/API in which there is no documentation. In that case, the following
function might help you to introspect the properties of such an object:

// declare functions that are used by the handler code
var dumpObject = function(o){

var properties = java.beans.Introspector.getBeanInfo(o.getClass
()).getPropertyDescriptors();

for(var i=0; i<properties.length; i++){
var prop = properties[i];
var value = null;
if (prop.getReadMethod()!=null){

try{
value = prop.getReadMethod().invoke(o,null);

} catch (e){
// ignore

Customization Guide

HPE Enterprise Maps (3.10) Page 78 of 182

log.error(e);
}

}
if (value!=null){

log.info(" "+prop.getName()+'='+value);
}

}
}

Scripted Task Execution

Overview
"Scripted task execution" is a concept that allows to easily introduce new implementations of EM tasks using
embedded scripts. New task implementation can be created/modified/deleted anytime without the need of
EM restart. Embedded scripts can be then scheduled (or executed ad-hoc) as any other EM tasks.

First Steps
To create a new type of task, you need to create a task script. After a task script is created, you can schedule
an HPE EM task that allows both scheduled and ad-hoc execution.

Create a Task Script

1. Login as Administrator and select theAdministration tab > Customization > Manage Scripts to open
the Script Management page.

2. From theSystem tab, click theCreate new script icon to open the Create New Script editor.

3. Fill in the script properties. Add a unique name (for example, "Hello World Task")and select Javascript
as theScript language and Task as theExecute on type. Click Save.

Customization Guide

HPE Enterprise Maps (3.10) Page 79 of 182

4. Click Edit Script to add the script content and click Save.
The script content must be a JavaScript function execute(). The function should return a string value that
is a short description of the execution result, as shown in this example:

function execute(){
return 'Hello World!';

}

5. The Task script is created.

Create an HPE EM Task That Will Execute a Task Script

1. Login as Administrator and select theAdministration tab > Configuration > Tasks to open the Tasks
Management page.

Customization Guide

HPE Enterprise Maps (3.10) Page 80 of 182

2. Click theCreate new task icon and click Add Javascript Task.

3. Fill in the task properties and click Save:
a. Task Implementation: (Required) Select theScript Execution Tool.
b. Name: (Required) Add a unique name -- for example: HelloWorld Scripted Task.
c. Description: (Optional) Add a description of what the task does.
d. Schedule: (Optional) Can be specified as with any other task.
e. Domain: (Optional) Parameter can be specified to set a working domain (domain identifier) for task

execution. topLevelDomain is used if no domain is specified.
f. ScriptArguments: (Optional) Parameter can be used to setup script arguments. It must carry a

comma-separated name=value pairs. The execute function (of the embedded task script) is then
called with specified arguments.

g. Process Artifacts Defined by: (Required) Select List of Artifacts, Add, andEmbedded script.

Customization Guide

HPE Enterprise Maps (3.10) Page 81 of 182

4. The Task is created. You can run the task immediately to test it. Click Run and then confirm that you
want to run it in the confirmation dialog.

5. The Task's execution history shows that the task was executed.

Modify the Script Anytime

You can modify the task script any time without restarting the server. This is also a way to debug/tune your
task. Try to change the task script to return "Hello Europe!" and run the task again.

More Examples
Example 1:Script that executes HPE EM publishing.

function execute(){
/* *** */
/* Setup repository location of published resource(s) */
/* *** */
var repoLocation = '/test';

/* ******************************* */
/* Create temporary directory */
/* ******************************* */
// setup a temporary directory of your choice, it is required
var tmpDir = new Packages.java.io.File(System.getProperty

("java.io.tmpdir")+'/s4tmp_'+System.currentTimeMillis());
tmpDir.mkdirs();

/* ******************************* */
/* Create publisher input */
/* ******************************* */
// 1. publish zip file from URL
// var input =

Customization Guide

HPE Enterprise Maps (3.10) Page 82 of 182

Packages.com.hp.em.publishing.struct.PublisherInput.lazyZip
('http://blabla',repoLocation);

// 2. publish non-zip file from URL
// var input = new Packages.com.hp.em.publishing.struct.PublisherInput

('http://blabla',repoLocation);
// 3. publish zip file from filesystem (it has to be uploaded to tmpDir)
var srcFile = new Packages.java.io.File('c:\\tmp\\hello\\hello1.zip');
var tmpFile = new Packages.java.io.File(tmpDir,srcFile.getName());
Packages.org.apache.commons.io.FileUtils.copyFile(srcFile, tmpFile);
var input = Packages.com.hp.em.publishing.struct.PublisherInput.lazyZip

(tmpFile,repoLocation);
// 4. publish non-zip file from filesystem (has to be uploaded to tmpDir)
//var srcFile = new Packages.java.io.File('c:\\tmp\\hello\\1\\hello.wsdl');
//var tmpFile = new Packages.java.io.File(tmpDir,srcFile.getName());
//Packages.org.apache.commons.io.FileUtils.copyFile(srcFile, tmpFile);
// var input = new Packages.com.hp.em.publishing.struct.PublisherInput

(tmpFile,repoLocation);

/* ******************************* */
/* Customize publisher input */
/* ******************************* */
// *** synchronization policy is used by synchronization task, when scheduled

//input.setSyncPolicy

(Packages.com.hp.em.publishing.struct.SyncPolicy.NONE);
//input.setSyncPolicy

(Packages.com.hp.em.publishing.struct.SyncPolicy.APPROVE);
input.setSyncPolicy

(Packages.com.hp.em.publishing.struct.SyncPolicy.AUTO);
// *** keep or overwrite changes during publishing ***
//input.setOverwriteChanges

(Packages.com.hp.em.publishing.Publisher.CollisionSetting.KEEP);
input.setOverwriteChanges

(Packages.com.hp.em.publishing.Publisher.CollisionSetting.OVERWRITE);
// *** disable duplicate resolution, we cannot ask the user to resolve duplicates

input.setDuplicateResolution(false);
// *** setup credentials that might be required to get HTTP resources ***
//var creds = new Packages.org.hp.em.http.CredentialsList();
//creds.addCredentials(new Packages.org.hp.em.http.BasicCredentials(/*

URI */ null, 'user', 'password');
//input.setCredentialsList(creds);
// *** specify whether update of artifacts should be performed with the

identity of their owner ***
//input.setUpdateAsOwner(false);

/* ******************************* */
/* Create/Setup publishing options */

Customization Guide

HPE Enterprise Maps (3.10) Page 83 of 182

/* ******************************* */
var options = beanFactoryHelper.getBean

(Packages.com.hp.em.publishing.options.OptionsManager).getDefaultOptions();
// *** customize bpel options ***
var bpelOptionsFactory = beanFactoryHelper.getBean

(Packages.com.hp.em.publishing.options.BpelOptionsFactory);
var bpelOptions = bpelOptionsFactory.fromOptionsList(options);
//bpelOptions.setDecomposition

(Packages.com.hp.em.publishing.options.BpelOptions.DecompositionType.BUSINESS_
PROCESS);

bpelOptions.setDecomposition
(Packages.com.hp.em.publishing.options.BpelOptions.DecompositionType.NONE);

var newBpelOptions = bpelOptionsFactory.toOptions(bpelOptions);
options.remove(newBpelOptions);
// remove old options (options are equal if they are of the same type)
options.add(newBpelOptions);
// *** customize wsdl options ***
var wsdlOptionsFactory = beanFactoryHelper.getBean

(Packages.com.hp.em.publishing.wsdl.WsdlOptionsFactory);
var wsdlOptions = wsdlOptionsFactory.fromOptionsList(options);
//wsdlOptions.setDecomposition

(Packages.com.hp.em.publishing.wsdl.WsdlOptions.DecompositionType.ALL);
//wsdlOptions.setDecomposition

(Packages.com.hp.em.publishing.wsdl.WsdlOptions.DecompositionType.IMPLEMENTATIONS);
wsdlOptions.setDecomposition

(Packages.com.hp.em.publishing.wsdl.WsdlOptions.DecompositionType.NONE);
wsdlOptions.setServiceType(new Category

('uddi:hp.com:soa:model:service:type', 'Business service', 'businessService'));
//wsdlOptions.setServiceType(new Category

('uddi:hp.com:soa:model:service:type', 'Application service', 'applicationService'));
//wsdlOptions.setServiceType(new Category

('uddi:hp.com:soa:model:service:type', 'Infrastructure service',
'infrastructureService'));

var newWsdlOptions = wsdlOptionsFactory.toOptions(wsdlOptions);
options.remove(newWsdlOptions); // remove old options (options are equal if

they are of the same type)
options.add(newWsdlOptions);

/* ******************************* */
/* Start publishing asynchronously */
/* ******************************* */
// setup temporary directory, will be deleted by publisher
input.setRootDir(tmpDir);
// run publishing
var asyncPublisher = beanFactoryHelper.getBean

(Packages.com.hp.em.publishing.async.AsyncPublishing);
var report = asyncPublisher.publish(input, options);
return "Publishing started asynchronously, see

/em/platform/rest/artifact/reportArtifact"+report.substring(report.lastIndexOf

Customization Guide

HPE Enterprise Maps (3.10) Page 84 of 182

('/'));
}

Example 2:Parametrized script that starts the (OS) process.

function execute(command, arg1, arg2, arg3, arg4){
if (command == null){

return "No command specified!";
}
list = new Packages.java.util.ArrayList(5);
if (arg1!=null) list.add(arg1);
if (arg2!=null) list.add(arg2);
if (arg3!=null) list.add(arg3);
if (arg4!=null) list.add(arg4);
process = new Packages.java.lang.ProcessBuilder(list).start();
return "Process was started: "+list.toString();
// return "Process finished with exit code: "+process.waitFor();

}

Example 3:Script that recalculates Top Reports.

function execute(){

function getArtifact(reportDefinitionName) {
var artifacts = repositoryService.findArtifacts(

new Packages.com.hp.em.repository.command.FindCommand(
'hpsoaBirtReportArtifact',
new Packages.com.hp.em.repository.criteria.filtering.PropertyFilter

('r_reportDefinitionName',new Packages.java.lang.String(reportDefinitionName)),
Packages.com.hp.em.repository.structures.ArtifactPartSelector.ALL_

PROPERTIES));
return artifacts.get(0);

}

function recalculate(hpsoaBirtReport) {
var definitionId =

Packages.com.hp.em.report.ui.impl.birt.BirtReportHelper.NONE_DEFINITION_ID;
if(hpsoaBirtReport.getR_reportDefinitionName()!=null) {

definitionId = hpsoaBirtReport.getR_reportDefinitionName();
}
var reportDocBean =

Packages.com.hp.em.report.ui.impl.birt.BirtReportHelper.createReportDocumentFromXml
(hpsoaBirtReport.getR_reportRequestContent());

Packages.com.hp.em.report.ui.impl.birt.BirtReportHelper.executeReport
(Packages.com.hp.em.report.ui.impl.birt.BirtReportHelper.getReportingUrl
(),definitionId,reportDocBean);

}

var hpsoaBirtReport = getArtifact('top_reports');
recalculate(hpsoaBirtReport);

Customization Guide

HPE Enterprise Maps (3.10) Page 85 of 182

return "recalculated: "+hpsoaBirtReport.getName();
}

Shortcut Definition Scripting
Shortcut definition is an XML script which defines how a shortcut instance is created. Shortcut is a term for
its short form reference.

Shortcut definition structure:

<shortcutsDefinition xmlns="urn:com.hp.eam.shortcuts.definition:1.0">
<shortcut id="infraServiceToSoftware" canBeEntered=”true”

relationshipType="associatedWith"
autoApprove="true" label="Associated Software" inverseLabel="Associated

Deployments"
delayedCalculation="true">

<source localName="infrastructureServiceArtifact" relationshipType="realizedBy"
/>

<intermediate localName="serverArtifact" relationshipType="assignedTo"
generateName="${source.name}

Server"/>
<target localName="systemSoftwareArtifact"/>

</shortcut>
</shortcutsDefinition>

Shortcut definition attributes

Name Applicable to Description

id <shortcut> The id is unique. You can not define
multiple shortcuts with the same id.

relationshipType <shortcut> <source>
<intermediate>

Defines the relationship between
source and target artifacts, or between
two adjacent artifacts in the path.

autoApprove <shortcut> If set to true, shortcuts without a path
will be set to “Approved” state. Else,
they will remain as “Unresolved”
shortcuts.

Default value is false.

delayedCalculation <shortcut> If set to true, shortcut path must be
calculated manually or by the system
task “Shortcuts Consolidating Task”.
Else, whenever a shortcut is created or
modified, the path will be calculated
immediately.

Default value is true.

Customization Guide

HPE Enterprise Maps (3.10) Page 86 of 182

canBeEntered <shortcut> If set to true, it enables a user to create
a shortcut directly in the relationship
editor (For details see "How to Create
Shortcut", inUser Guide).

Default value is true.

label <shortcut> Relationship label displayed on source
artifact.

inverseLabel <shortcut> Relationship label displayed on target
artifact.

localName <source> <intermediate>
<target>

SDM name of artifacts in the shortcut.

hierarchyRelationshipType <target> Defines the relationship used for
implied shortcut (Refer "Implied
Shortcut" below)

Implied Shortcut

Implied shortcut is an exceptional shortcut where we do not need to specify the intermediate artifacts in the
shortcut path. These artifacts are “implied” by the target artifact and a relationship defined by
“hierarchyRelationshipType” attribute.

Example of shortcut definition:

<shortcut id="projectToBFunctionShortcut" relationshipType="realizes"
autoApprove="true"
label="Realized business functions" inverseLabel="Realized by projects"
delayedCalculation="true">

<source localName="projectArtifact" relationshipType="realizes" />
<target localName="businessFunctionArtifact"

hierarchyRelationshipType="composes"/>
</shortcut>

Example of artifacts with relationships:

l Project 01 realizes Business Function 01
l Business Function 01 composes Business Function 02
In this example there are 2 shortcuts betweenProject 01, Business Function 01 andBusiness Function 02:

l Project 01--> Business Function 01
l Project 01 --> Business Function 01 --> Business Function 02
l The shortcut betweenProject 01 andBusiness Function 02 is “implied” by Business Function 01.

Survey Definition
In Enterprise Maps, a survey is designed after its definition represented by a Survey Definition Artifact in the
catalog, which is a specialization of Script Artifact. The survey definition itself is a JSON structure stored as

Customization Guide

HPE Enterprise Maps (3.10) Page 87 of 182

artifact attachment. For more details, see the following topics:

l "Property Mapping Question" on page 91
l "Relationship Question" on page 92
l "Shortcut Question" on page 93
l "Button Question" on page 93
l "Score Calculation" on page 94
l "Post Processing" on page 95
l "Example Script" on page 97
Survey Structure

Here is an overall design of a survey structure in JSON:

The above structure is illustrated by jsonviewer.stack.hu.

Names Description

background theme color of the survey

icon theme icon of the survey

predefinedType defines a default question type. It is used if a question has no type

predefinedValues defines values for the predefined type

processing mapping of score questions into artifact properties. The same score may be calculated

JSON Values

Customization Guide

HPE Enterprise Maps (3.10) Page 88 of 182

http://jsonviewer.stack.hu/

from multiple questions, however it is mapped to a single artifact property only once in
the same block.

steps grouping of questions for a particular domain. For example: security, mobility, etc.

questions all the questions in a step

onCompletion defines a function to be called once user clicks Finish button.

JSON Values, continued

Question Structure

The above structure is illustrated by jsonviewer.stack.hu.

Type Description

single-
choice

represented by radio buttons

multi-
choices

represented by check boxes

Question Type

Customization Guide

HPE Enterprise Maps (3.10) Page 89 of 182

http://jsonviewer.stack.hu/

text

textarea multiple-line text which can be mapped into artifact discussion.

number maps to artifact properties that are of type integer, float or double.

taxonomy single choice represented by a combo box.

relationship represented by the relationship editor for a particular relationship (refer "Relationship
Question" on page 92).

shortcut represented by a particular shortcut defined in EM (refer "Shortcut Question" on page 93).

button answers the question when you click a button.

Question Type, continued

Mapping

The answer to a question can be mapped to properties of the surveyed artifact. The supported mapping type
is as follows :

l Score: to calculate the scores based on the answers and save the score into the artifact (refer "Score
Calculation" on page 94).

l Financial Property: to save the answers into the properties of the financial artifact associated with this
artifact (refer "Property Mapping Question" on the next page).

l Property: to save the answers into artifact properties (refer "Property Mapping Question" on the next page).
l Relationship: to add relationship between surveyed artifact and others. This mapping is implied when

question type is ‘relationship’ (refer "Relationship Question" on page 92).
Values

These are pre-defined values which are answers for taxonomy, single-choice or multi-choices questions.

Disabled Questions

Questions can be disabled based on the answers respondents have given to some of other questions simply
because it is not required anymore. For example: a user does not need to answer the question "Is storage
encrypted?", if they have already answered "No" for another question "Is security required?".

To disable "Is storage encrypted?", set doNotAnswerWhen element as follows:

{ question: 'Is storage encrypted ?',
doNotAnswerWhen: [{ questionID: 'securityRequired', values:['false']}],
…
}

A question's answer can lead to disabling other questions in the same step or in subsequent steps. If all
questions in the subsequent step are disabled, the particular wizard containing these steps itself is skipped.

Showstopper Questions

A question can be defined as a showstopper question to end the survey if no further answers are required.
Once a showstopper is triggered, it disables not only all the questions behind it within the same step but also
the steps behind the current one.

Showstopper is applicable only to single-choice, multiple-choice and taxonomy questions. If multiple
answers are defined as showstoppers in the same question then showstopper is triggered by any of them.

Customization Guide

HPE Enterprise Maps (3.10) Page 90 of 182

Showstopper questions are defined as below:

{
question: ‘Enter the business function type’,
type: ‘taxonomy’,
id: ‘businessFunctionType’,
values: [

{‘commodity’: ‘Commodity’},
{‘innovation’: ‘Innovation’,

showStopper: true
}]

}

PropertyMapping Question
Answers to a survey can be stored inside artifact properties or its financial profile properties using ‘mapping’
tag. This tag can be used for data types such as number, text and textarea question.

The following attributes are accepted under ‘mapping’ tag:

Attribute Description

type Type of this property mapping. It must be ‘property’ or ‘financial-property’.

property SDM property name of the surveyed artifact or its financial profile.

Property Mapping

Maps answers to a property of the surveyed artifact

Example:

{
question: 'How many servers are utilized for this application ?',
id: 'numberOfServers',
type: 'number',
mapping: {

type: 'property',
property: 'estimatedNumberOfServers'

}
}

Financial Property mapping

Maps answers to a property of financial profile of the surveyed artifact.

Note: This mapping can be used only if the surveyed artifact has associated financial profile (For
example: Application Component and Project). If the surveyed artifact has no financial profile at the time
the survey is taken, a new profile is created automatically upon completion of the survey.

{
question: 'What are the current annual 3rd party software license costs related to

this application ?',
id: 'currentAnnualCostSw',
type: 'number',

Customization Guide

HPE Enterprise Maps (3.10) Page 91 of 182

mapping: {
type: 'financial-property',
property: 'annualCostSw'

}
}

Relationship Question
A relationship question is represented by the relationship editor for a particular relationship. Respondents
answer the questions by linking or removing artifacts from the relationship defined for the question. This
allows respondents to make real changes to the surveyed artifact. The changes are effective immediately
even before the survey is over.

How to Define a Relationship Question

Relationship question is defined below:

{
question: 'Please specify the sub-components of artifact:',
type: 'relationship',
id: 'subComponents',
mapping: {

relationshipName: 'composedOf',
label: 'Sub-Components',
artifactTypes: ['applicationComponentArtifact'],
tableViewOnly: true,
readOnly: false,
deleteOnly: false,
usedType: 'some value'

}
},

Name Description
Default
Values

relationshipName relationship type defined in SDM

artifactTypes SDM names of target artifacts

tableViewOnly switches the relationship editor between inline and pop up table view false

readOnly enables/disables editing in the relationship editor false

deleteOnly allows the erase action only false

useType defines the value of useType attribute for the created relationship.

When used with providedBy relationship, the relationship editor displays only
contacts with the same useType. If useType is invalid, all contacts are
displayed.

label allows to set display name for this relationship in popup mode
(tableViewOnly=false).

Customization Guide

HPE Enterprise Maps (3.10) Page 92 of 182

Shortcut Question
A shortcut question allows respondents to answer a question by creating shortcuts between the surveyed
artifact and target artifact. As is the case with relationship question, changes to a shortcut question are
effective immediately, even before the survey is over.

How to Define a Shortcut Question

As given below:

{
question: 'Please specify the application services realized by this component: ‘,
type: ‘shortcut’,
id: ‘realizedAppService’,
mapping: {

shortcutld: ‘appComponentToAppService’,
label: ‘Realized Application Services’,
showLabel: ‘true’

}
},

Name Description Default Values

type must be 'shortcut'

shortcutid shortcut ID defined in EM

label overwrites the label defined in the shortcut

showLabel shows or hides the shortcut label (true/false) true

Button Question
A button question is defined as follows:

{
question: 'Download the spreadsheet template from the following link, fill it in and

use the same page to upload the result into Enterprise Maps',
id: 'downloadSpreadsheetAppDeployment',
type: 'button',
extraParams: {

label: 'Import application deployments',
icon: 'arrow-right',

url: 'SERVER_URI/../../../service-
catalog/common/imports/csvImport?taskLabel=Spreadsheet&artifactType=infrastructureServic
eArtifact',

click: '$("#done-button").trigger("click")'
}

}

Name Description Default Values

Customization Guide

HPE Enterprise Maps (3.10) Page 93 of 182

type must be 'button'

extraParams defines attributes of the
button

label label of the button

icon icon for the button

url opens the URL when you
click the button

click method to call when you click
the button

click Finish button of the
survey

 , continued

Score Calculation
Score is a measure from 0 to 100 of the capability or suitability of an artifact. It is calculated based on multiple
questions. Each of the answers to a score question have a value assigned to it. When multiple users answer
a common question for the same artifact the score is calculated cumulatively using an aggregation operator -
minimum, maximum or average (by default).

Score of a given artifact is calculated from the sum of scores of individual questions aggregated from the
respondent’s answers, divided by sum of the question’s scores, taking the highest value for each question,
multiplied by 100.

It is also possible to calculate the score of questions even if skipped or not answered by the respondent. Use
‘skipped’ keyword to define such scores.

For example :

Assuming we have 2 questions that define ‘technicalScore’ as follows :

Question 1:
technicalScore: { aggregationOperator: 'avg', 'true': 50, 'false': -20,
'undefined': 0, 'skipped': -30 }
Question 2:
technicalScore: { aggregationOperator: 'max', 'true': -10, 'false': 0,
'undefined': 0, 'skipped': -25 }

The system then computes the predefined values of this survey for 'technicalScore' as follows :

l SurveyMinScore = max(0, question 1 min + question 2 min) = max (0, -20 -10) = 0
l SurveyMaxScore = max(0, question 1 max + question 2 max) = max (0, 50 + 0) = 50

Questions Scores by User A Aggregated Scores

Question1 (Average) 50 Avg(50) = 50

Question2 (Max) -10 Max(-10) = -10

After the first respondent answers true/true, the total score
must be :

Customization Guide

HPE Enterprise Maps (3.10) Page 94 of 182

SurveyAbsoluteScore = Max(0,50 -10) = 40

SurveyTotalScore = (SurveyAbsoluteScore – SurveyMinScore) / (SurveyMaxScore – SurveyMinScore) X
100% = (40-0) / (50-0) X 100% = 80%

Questions Scores by User B Aggregated Scores

Question1 (Average) -20 Avg(50,-20) = 15

Question2 (Max) 0 Max(-10, 0) = 0

After the second respondent answers false/false, the total score
must be :

SurveyAbsoluteScore = Max(0,15+0) = 15

SurveyTotalScore = (SurveyAbsoluteScore – SurveyMinScore) / (SurveyMaxScore – SurveyMinScore) X
100% = (15-0) / (50-0) X 100% = 30%

Score mapping is a special case of property mapping in which the calculated scores are directly stored into
properties (using "processing" block) of the surveyed artifact or are further computed and stored (used
onCompletion function). For more details, see "Post Processing" below.

Note: Score values can only be mapped to the artifact properties with type Double.

Post Processing
In a survey definition, it is possible to manipulate the calculated scores after a respondent finishes the
survey. This manipulation must be defined in onCompletion function as below. The method is invoked after
the respondent completes the survey and before the data gets saved into HPE EM.

onCompletion: function(surveyedArtifact, questions, calculatedScores) {
var avgScore = calculateGroup('avg', surveyedArtifact, 'c_cloudAssessment_

TechnicalAlignment');
setProperty(surveyedArtifact, 'technicalAlignment', avgScore);

}

Predefined Objects

The following predefined objects simplify the usage of this function. Some are required as arguments to this
function.

surveyedArtifact

l The artifact being surveyed. An instance of com.hp.systinet.repository.sdm.ArtifactBase
l Required as an argument
questions

l All questions included in the surveys. An instance of org.json.JSONObject
l For answers to a particular question, use its type (via invoking relevant functions) and id. For example: to

get the answer of a text question with id storageEncryption, use questions.getString
('storageEncryption')

l Supported functions: getString(), getBoolean(), getDouble(), getInt(), getLong()

l Required as an argument

Customization Guide

HPE Enterprise Maps (3.10) Page 95 of 182

calculatedScores

l All the scores defined in the survey definition. An instance of org.json.JSONObject. Basically, it is a key-
value object storing the score and its value: {"technicalScore":100,"financialScore":0}

l To get the score, use the score name. For example: to get the score calculation of technicalScore, use
calculatedScores.getDouble(‘technicalScore’)

Others

Since server-side script (Rhino context) is used, we can leverage on other useful utilities such as
repositoryService, scriptEnvironmentUtils etc. as in Javascript assertions.

Predefined Functions

calculate(operator, artifact, String[] properties)

l Calculates the score based on individual scores mapped to artifact properties
l Supported operators: ‘avg’, ‘min’, ‘max’

Example: score mapping

processing: {
scores: [{// declare the scores defined by the questionnaire and map
them to properties

name: 'regulatoryScore',
property: 'regulatoryAlignment'

},
{

name: 'vendorSupportScore',
property: 'vendorSupportAlignment'

},
{

name: 'geographyScore',
property: 'geographyAlignment'

},
{

name: 'serviceAvailabilityScore',
property: 'serviceAvailabilityAlignment'

},
{

name: 'workloadVariabilityScore',
property: 'workloadVariabilityAlignment'

},
{

name: 'securityScore',
property: 'securityAlignment'

}]
},
Business alignment score can be calculated and set to businessAlignment property as below:

var businessAlignmentScore = calculate('avg', surveyedArtifact,
['regulatoryAlignment',
'vendorSupportAlignment',
'geographyAlignment',

Customization Guide

HPE Enterprise Maps (3.10) Page 96 of 182

'serviceAvailabilityAlignment',
'workloadVariabilityAlignment',
'securityAlignment']);

setProperty(surveyedArtifact, 'businessAlignment', businessAlignmentScore);

calculateScores(operator, surveyDefinitionUuid, art, String[] scores)
l Calculates the score based on individual scores defined in the survey definition.

l surveyDefinitionUuid: uuidstring of the survey definition. For the current definition, use it literally as
surveyDefinitionUuid.

var businessAlignmentScore = calculateScores('avg', surveyeDefinitionUuid,
surveyedArtifact,

['regulatoryScore',
'vendorSupportScore',
'geographyScore',
'serviceAvailabilityScore',
'workloadVariabilityScore',
'securityScore']);

setProperty(surveyedArtifact, 'businessAlignment', businessAlignmentScore);

calculateGroup (operator, art, propertyGroup)

l Calculates the score based on individual scores mapped to artifact properties and defined by a property
group. For example:

var businessAlignmentScore =n calculateGroup('avg', surveyedArtifact,
'c_cloudAssessment_BusinessAlignment');
setProperty(surveyedArtifact, 'businessAlignment', businessAlignmentSconre);

setProperty(artifact, propertyName, newValue)

Sets a value for the property of an artifact

getPrimitiveValue(artifact, propertyName)

Returns the value (must be primitive type) for a property of an artifact

Example Script
Here is an example of how survey is created :

/*
********* SURVEY SAMPLE ************
**
** Survey STRUCTURE:
**
** predefinitions: type, value
** processing: mapping properties of scores
** steps: each step will have 1-many questions
**
**
** Question TYPES:

Customization Guide

HPE Enterprise Maps (3.10) Page 97 of 182

**
** 'single-choice' : radio buttons with default values: { 'Yes' : true, 'No' : false,

'Don\'t know': undefined }
** 'textarea' : mapped to string property (long text)
** 'text' : mapped to string property (short text)
** 'number' : mapped to integer or double property
** 'button' : open in UI only
**
** Question MAPPING:
** An answer of question or its calculated score can be saved to artifact property
**
** Question DEPENDENCY (Conditional Questions)
** Question dependency is applicable to single-choice and taxonomy questions only. A

question can be defined as dependent on other questions as below:
** doNotAnswerWhen: [{questionID:'id1', values:['false']}, {questionID:'id2', values:

['yes']}]
**
** Default VALUES:
**
** predefinedType: if question has no type, it will use the default
** predefinedValues: predefined option values of default type
**
** SCORES:
** question[@type='score']: each question which type is score will have 1-many type

of scores: technical score, financial score,...
** Each type score, 1 of 4 ways calculation can be set: { 'avg' : average score,

'min' : minimum score, 'max': maximum score, 'first': first answer }
** avg is default
**
** COLOR PATTERNS:
**
** Theme: blue(default): #5fa2dd, green: #9cc96b, purple: #986291, orange: #ebaa4b,

red: #f76c51, jade green: #4ebcda
** Icons: cloud, user, info, home, heart, gift, signal, gear, file, trash, clock-o,

road, lock, inbox, flag, tags, list
** or all the icons which defined in font awesome. See more:

http://fortawesome.github.io/Font-Awesome/icons/
*/

{
/*

You can custom background/buttons by predefined theme values: 'primary', 'success',
'info', 'mint', 'purple', 'pink', 'dark', 'warning', 'danger'

*/
theme: 'primary',
icon: 'cloud',
predefinedType: 'single-choice',
predefinedValues: [{

'true': 'Yes'
},
{

'false': 'No'

Customization Guide

HPE Enterprise Maps (3.10) Page 98 of 182

},
{

'undefined': 'Don\'t know'
}],
processing: {

scores: [
{

name: 'technicalScore',
property: 'technicalAlignment'

}]
},
steps: [
{

name: 'Score Question',
description: 'Scores are calculated based on answers and can be
mapped into artifact properties using \'processing\' block',
icon: 'info',
background: '#ebaa4b',
questions: [{

question: 'Please choose an option. Technical alignment
is updated accordingly.',
id: 'scoreQuestion',
type: 'single-choice', //if not defined, default value
is 'single-choice'
mapping: {

type: 'score',
scores: {

technicalScore: {
aggregationOperator: 'avg',
'true': 2,
'false': 1,
'undefined': 0

}
}

}
}]

},
{

name: 'Property Question',
description: 'Property questions have answers mapped to artifact
properties',
icon: 'signal',
background: '#9cc96b',
questions: [
{

question: 'Please describe this artifact',
type: 'textarea',
id: 'textareaQuestion',
mapping: {

type: 'property', // save the answer into description
of artifact
property: 'description'

Customization Guide

HPE Enterprise Maps (3.10) Page 99 of 182

}
},
{

question: 'Please enter ROI',
type: 'number',
id: 'numberQuestion',
mapping: {

type: 'financial-property',
property: 'returnOnInvestment' // number can be
mapped to integer/float property

}
},
{

question: 'Please enter estimated number of servers',
type: 'number',
id: 'numberOfServers',
mapping: {

type: 'property', // save the answer into Estimated
Number of Servers
property: 'estimatedNumberOfServers'

}
}]

},
{

name: 'Relationship Question',
description: 'Relationship questions form new relationships between
surveyed artifact with other artifacts. This take effect immediately
even without the survey submitted.',
icon: 'sitemap',
background: '#f76c51',
questions: [
{

question: 'What are the sub-components of this application
component',
type: 'relationship',
id: 'relationshipQuestion1',
mapping: {

relationshipName: 'aggregatedBy',
label: 'Sub-Component of',
artifactTypes: ['applicationLayerArtifact'],
tableViewOnly: true,
readOnly: false,
deleteOnly: false

}
},
{

question: 'Please specify the Business Owner for this
application component',
type: 'relationship',
id: 'relationshipQuestion2',
mapping: {

relationshipName: 'providedBy',

Customization Guide

HPE Enterprise Maps (3.10) Page 100 of 182

label: 'Business Owner',
artifactTypes: ['personArtifact'],
useType: 'businessExpert',
tableViewOnly: false

}
},
{

question: 'What the business functions this project realizes',
type: 'shortcut',
id: 'shortcutQuestion',
mapping: {

shortcutId: 'projectToBFunctionShortcut', // only
for Project
label: 'Realized Business Function',
showLabel: false

}
}]

},
{

name: 'Show-stopper Question',
description: 'Show stopper questions end survey immediately when a
show-stopper choice is answered.',
icon: 'signal',
background: '#9cc96b',
questions: [
{

question: 'Is there a business motivation?',
type: 'single-choice',
id: 'showstopperQuestion',
values: [{

'true': 'Yes'
},
{

'false': 'No',
showStopper: true

}]
}]

},
{

name: 'Disabled Question',
description: 'Disabled questions are skipped based on answers of
other questions',
icon: 'lock',
questions: [
{

question: 'Is encryption required?',
id: 'disabledQuestion1'

},
{

question: 'Are the application\'s data encrypted?',
id: 'disabledQuestion2',
doNotAnswerWhen: [{questionID:'disabledQuestion1',

Customization Guide

HPE Enterprise Maps (3.10) Page 101 of 182

values:['false']}]
}]

},
{

name: 'Finish',
description: 'Thank you for participating in this survey',
icon: 'check',
background: '#4ebcda'

}]
}

Customization Guide

HPE Enterprise Maps (3.10) Page 102 of 182

Chapter 6: XML Publishing
HPE EM supports "Scripted XML Publishing" which extends HPE EM publishing by using script artifacts.
These script artifacts contain instructions that recognize and parse new XML document types that are
imported from the HPE EM UI.

The script artifacts have the following capabilities:

l Can be created, modified, or deleted any time.
l Can modify the HPE EM publishing pipeline immediately without the need of applying extra extensions or a

server restart.
l Can be easily bundled (by PSO) in a model extension to provide a default way of publishing new document

types/artifacts.
l Are written in an XML format using the XML schema (XSD). Your XML editor can easily be configured to

provide hints and help regarding script structure.
l Are controlled for XML schema validation and pass semantic analysis upon every change (create/update).

Invalid scripts cannot be published.

Creating Scripted XML Artifacts
The script can be published to HPE EM using the following simple steps.

To create a scripted XML artifact:

1. Select theAdministration Tab > Customization > Manage Scripts.
2. Click theCreate new script icon to open the Managed Script editor.
3. Enter a unique name (spaces are OK) and an optional description.
4. ForScript Language, select XML.
5. ForExecute On, select XML Data Import.
6. Click Save. A view page of the script opens.
7. Click theEdit Script button on the right to open a blank Edit script dialog.
8. Enter the script content and click Save. You can copy and paste the script from a text file.

For example, you could enter the following script:

<publisherConfiguration xmlns="urn:com.hp.systinet.publishing.xml:1.0"
name="simpleBook">
<artifact sdmName="documentationArtifact">
<recognition>
<rootElement name="book" namespace=""/>
</recognition>
<stringProperty sdmName="name">
<text>BOOK: </text>
<xpath>name/text()</xpath>
</stringProperty>
</artifact>
</publisherConfiguration>

HPE Enterprise Maps (3.10) Page 103 of 182

Every successfully saved script is active immediately. You can now import and publish a book file. See
"Importing and Publishing a Book File" below.

Importing and Publishing a Book File
To import a book file:

1. Select theCatalog tab > Import > File.
2. Change File toURL and enter the URL of the simple book.
3. Click Import. A documentation artifact is created.

Example:

If the script content of the book is the following:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="urn:simpleBook">
<name>Dunno on the Moon</name>
</book>

A documentation artifact is created and the name of the created artifact is BOOK: Dunno on the Moon.

Script Properties
This topic describes:

l "Enhanced Script Components" below
l "Script Elements and Attributes " on the next page

Enhanced Script Components
The script is enhanced with the following parts:

l namespace is urn:com.hp.systinet.publishing.xml:1.0
l root element is publisherConfiguration

l The root element should have the name attribute to identify the script by name. The name must be
unique between all publishing scripts.

l optional registration element is important during recognition of a document/file type. For details see
"Recognition Order" on page 109.

l optional namespaceContext element defines mapping from prefix to namespace. This mapping is
supplied to all xpath elements (xpath,select) in the script.

l recognition and parsing of input filesare controlled by nested artifact elements, which are optional (but a
script without artifact elements is useless).
l each artifact must have the sdmName attribute that matches an existing SDM artifact type name.

l an artifact element can be marked with enabled='false' to ignore the artifact during publishing.

Customization Guide

HPE Enterprise Maps (3.10) Page 104 of 182

Script Elements and Attributes
The script is supported by the following elements and attributes:

l "Artifact Recognition " below
l "Extractors" below
l "Artifact Properties " on page 107
l "Relation Property" on page 108
l "Recognition Order" on page 109
l "Variables" on page 110

Artifact Recognition

The recognition element defined in the artifact element is used to describe how the publisher can recognize
the input document/file. The recognition element can contain multiple sub-elements. The artifact element
recognizes the input if all recognition's children elements evaluate to true.

The following recognition elements are supported:

l and is a container element that returns true only if all nested recognition elements returns true. The
artifact's recognition element is an and in fact.

l or is a container element that returns true only if at least one nested recognition element returns true.
l not returns true if the mandatory nested recognition element returns false.
l rootElement can contain namespace and name attributes, returns true only if (all) the following

conditions are true.
l name attribute is not supplied or root element local-name (name without namespace prefix) equals to

name attribute value.

l namespace attribute is not supplied or root element namespace equals to namespace attribute value.

l xpath contains text with an xpath expression, returns true only if the xpath expression is true (non-empty
node-set also yields to true).

l empty is a container element that returns true only if all nested extractors create empty value.
l extension contains text with a required extension. Returns true only if the input file extension is exactly

the same. the extension always start with ".", for example ".xml" or ".doc".
l any can contain nested extractor element, it returns true only if

l it does not contain a nested extractor element.

l or the extractor extracts a non-empty string.

l xml returns true only if the input document was fully parsed and it is a valid XML file.

Extractors

Extractors are used to extract string data out of the input (file/document or document part). Extractor
elements are obviously used to define artifact property value, but they can be also used to recognize data
(using empty or any recognition elements described in the Artifact recognition section) or define variables
(see "Variables" on page 110).

The following extractors are supported:

Customization Guide

HPE Enterprise Maps (3.10) Page 105 of 182

l all is a container extractor that returns concatenation of values that are created by nested extractors.
l first is a container extractor that returns the value of the first nested extractor that creates a value.
l for-each is a container extractor that returns concatenation of nested extractors evaluated against each

node in the node list defined by the select element; it has to contain:
l select element as a first element with a text defining an xpath to extract a node list.

l at least one extractor element to extract data for an element in the node list.

l xpath returns a string value that is a result of xpath evaluation, where xpath is a text value of this element;
xpath value may only use namespace prefixes defined by namespaceContext element (defined as a
direct child of the root element of the script).

l regexp is a container extractor that concatenates the output of all nested extractors and then applies a
regular expression pattern to the extracted value. The pattern must be specified in the pattern attribute. It
returns a value only if the pattern matches. The value is then either the first substitution group found in the
pattern or the whole matched string if there is no substitution group in the pattern.
l example1: input "file.xml", pattern ".xml$" ... does not match

l example1: input "file.xml", pattern "^.*\.xml$" ... matches and output is "file.xml"

l example2: input "file.xml", pattern "^(.*)\.xml$" ... matches and output is "file"

l replace is a container extractor that concatenates the output of all nested extractors and then replaces all
occurrences of supplied regular expression pattern (using mandatory pattern attribute) by the value
supplied in the mandatory replacement attribute.

l text returns the value of the text content.
l example: <text>This is a constant value</text>

l location returns the location of the input file as it would appears in the repository location space.
l variable returns the value of the variable. It supports the following attributes:

l name is a mandatory variable name.

l default is an optional default value if the variable is not defined.

l scope is an optional scope to look for variables (local, shared, all).

l substituteVariables is a container extractor that concatenates the output of all nested extractors and then
replaces all occurrences of supplied regular expression pattern (using mandatory pattern attribute) by
variables. The mandatory pattern attribute must contain a substitution group to know the name of the
variable.
l Example:

If you input: "This is ${NAME}", pattern is "\$\{.*\}"; if NAME variable is defined to "Pavel".
Then the output is: "This is Pavel", otherwise the output is "This is ${NAME}."

l if extracts a value when a condition matches, it has to contain nested
l condition element that with the condition expressed as recognition element, it is in fact an and

extractor container.

l value element that with the value, it behaves as all extractor container.

Customization Guide

HPE Enterprise Maps (3.10) Page 106 of 182

Artifact Properties

There are several types of artifact properties, the handling of the property depends on the property type. The
way how the properties are set to artifact is defined by any of the supported property element of the script's
artifact element. These are:

l stringProperty defines string/text property with single occurrence(0..1 or 1..1)
l is an instance of all extractor element, nested elements extracts a text value that is set, the property

value depends on property type:
string — the text is set as property value
boolean — the value is true only if the text is "true", false otherwise
category — the text is a category value, which is used to create a category value
nameUrlPair — text is set to the URL portion of the property value

l booleanProperty defines boolean property with single occurrence
l is an instance of and recognition element, nested elements evaluate the input as either true or false.

l integerProperty defines integer property with single occurrence
l is similar to stringProperty, but the value is parsed to be an integer

l dateProperty defines date property with single occurance, it has
l zero, one more format elements that are used to try parsing the value in the order that they appear, the

content of the format element is a string, one of the following values are accepted:

l epoch - a long value is expected as a count of milliseconds from epoch (the date is then constructed
using new java.util.Date(millis))

l current independently on value, it result in a current Date

l default default format is ISO8601 (SimpleDateFormat with yyyy-MM-dd'T'HH:mm:ss.SSS'Z' pattern
in "UTC" timezone and lenient parsing)

l any other value is used as a pattern to create java.text.SimpleDateFormat

l the format element can have the following attributes
l lenientmeans that the parsing will try some heuristics with inputs that do not strictly match the pattern,

true by default

l timezone is a timezone string see java.util.TimeZone for details

l value is an all extractor that specifies the value to extract from
l categoryProperty defines a category property by using either

l only a value attribute is used to specify a category value, associated category's tModelkey and name
are obtained from the property descriptor and HPE Enterprise Maps database. The category value is
validated during creation of the script, it has to be a category of a checked taxonomy.

l a val element can be used to specify an all extractor that extracts the category value from the input;
name (3rd) and taxonomyUri (1st) are other optional elements that are all extractors as well.

Customization Guide

HPE Enterprise Maps (3.10) Page 107 of 182

l if the taxonomyUri is not specified, category's taxonomyURI is obtained from associated property
descriptor (recommended)

l if the name is not specified, category's value is queried from the HPE Enterprise Maps database using
taxonomyURI and value

l relation defines relational property with single occurrence and it is quite complex to understand, see
"Relation property" section below.

l multiProperty defines property with multiple occurrences (?..n) using nested select element and one
'single occurrence' property. The select element must be the first, it defines an xpath expression that used
to split the present input into a node list, where each node is then used to parse a single occurrence
property.

Each 'single occurrence' property has an 'sdmName' attribute that carries the name of the property according
to SDM model, it can also contain a flag attribute identifier. All artifact's properties that are marked as
identifiers are considered to be a composed identifier of the artifact, which is used when finding duplicates. A
new artifact is considered as a duplicate if it has the same SDM name and identifiers of another artifact that
already exists.

Relation Property

Unlike other properties, the value of the relation property is not known from the input. The value value of the
relational property represents a connection to another artifact, that need not exists during the publishing. The
process of creating a relation can typically create also a target artifact.

Each relation element must have sdmName attribute to define property name in the SDM model. There are
the following type of relation properties:

l relation to local artifact means that relation's second side (target) is an artifact instance that exists (or is
created) locally for this artifact. It is defined with
l targetType attribute undefined or set to "localArtifact".

l Nested artifact element that defines the target artifact; in order to resolve duplicates, at least one
property should be marked by identifier attribute set to true.

l Semantical example: book with chapters where
o chapters are local to the book
o more chapters with the same name can exist in the repository

l file reference means that a relation is represented by another file in the input. It is defined with
l targetType attribute undefined or set to "importedResource"

l Nested import element that defines how to include the resource. The import element must contain
these elements:
o relativeLocation element being an all extractor that is supported to create relative or absolute URL

that can be used to download the resource.
o targetSdmName elements can follow, each with a text value that must be an SDM name of

expected target artifact; targetSdmName elements can be only used to enforce specific target
artifact sdm names, when no targetSdmName is present, the target types are taken from the
relationship descriptor.

Customization Guide

HPE Enterprise Maps (3.10) Page 108 of 182

l Semantical example: a library references a large number of books. An HTML page references images
and CSS files.

l relation to shared artifact, it means that relation's second side (target) must be a shared artifact
instance. It is defined with the following:
l targetType is used to set up a method of how to find a shared artifact.Following are methods used:

o repositoryReference - a matching artifact is searched the repository.
o sharedReference - a matching artifact searched in the publisher input; if it is not found, use

repositoryReference.
l publisher input contains all resources that were recognized in the "still running" processing;

including locally decomposed artifacts, imported resources, and all files in the zip file.
o sharedArtifact - if no sharedReference is found, create a new artifact

l Nested artifact element that defines the target artifact; in order to resolve duplicates, at least one
property should be marked by identifier attribute set to true.

l Semantical example: book with author where
o author is assumed to be only one author in the repository.
o author is shared between books.

Recognition Order

The publishing pipeline internally manages a list of DocTypeFactory instances. These instances are called (in
the list order) to create DocType instances that are asked to recognize the input.

l The first DocType that recognizes the input is used to parse the data and eventually create artifact(s).
l A DocTypeFactory instance is created by runtime for every publishing script. The factory creates

DocType for every artifact element in the script (in the same order).
l The server log contains INFO messages that describe the order of DocTypeFactory instance. These INFO

messages are generated during HPE EM EAR initialization or upon a change in publishing scripts
(create/delete/update).
14:17:09,369 INFO [PublishingScriptsRegistration] Registering factories:
14:17:09,369 INFO [PublishingScriptsRegistration] ScriptedDocTypeFactory
[bookWithChapters_withVariables]
14:17:09,370 INFO [PublishingScriptsRegistration] ScriptedDocTypeFactory
[simpleBook]
14:17:09,370 INFO [PublishingScriptsRegistration] ScriptedDocTypeFactory
[helloworldPublisher]
14:17:09,370 INFO [PublishingScriptsRegistration] ScriptedDocTypeFactory
[simpleUddiPublisher]
14:17:09,371 INFO [PublishingScriptsRegistration] DocTypeFactoryImpl[sc-
publishing-ext.docTypes]
14:17:09,371 INFO [PublishingScriptsRegistration] DocTypeFactoryImpl[sc-
publishing-sca.docTypes]
14:17:09,371 INFO [PublishingScriptsRegistration] DocTypeFactoryImpl[sc-
publishing-wsdl.docTypes]
14:17:09,372 INFO [PublishingScriptsRegistration] DocTypeFactoryImpl[sc-
publishing.docTypes.default]

DocTypeFactoryImpl instances are built-in factories that are used to recognized documents such as WSDL,
SCA, and XPDL. These are by default at the bottom of the list. The ScriptedDocTypeFactory instances are

Customization Guide

HPE Enterprise Maps (3.10) Page 109 of 182

created out of publishing scripts. The order in which DocType instances are asked if they recognize the input
can be changed in the script.

You can do the following:

l Add a registration element as a first child of the publishing script's root element. This element can contain
multiple after or before elements, both with mandatory text content that should be the factory name (script
name in the case publishing script), for example
<after>helloworldPublisher</after><before>simpleUddiPublisher</before>. Note that the names are listed
in the log. You may also use the names of built-in DocTypeFactoryImpl instances if required.

l Change the order of artifact elements in the particular publishing script will change the recognition order
managed by the ScriptedDocTypeFactory.

Variables

Variables can be used to simplify and/or speed up the script execution. A variable can be set using optional
setVariable element that can occur multiple times as a first child of the artifact element. The setVariable
element contains

l Optional scope element that identifies the scope of the defined variable(s), local means local for the
published file/document, shared means a variable that is visible between all published files

l Mandatory name element is an all extractor and defines variable name
l Mandatory value element is an all extractor and defines variable value
l Optional select element can be used to set up multiple variables, the select element text must be an xpath

expression that is used to create node list, each node in the list is then used to define variable (using
extractors of setVariable's name and value elements)

Variables are used in variable or substituteVariables extractors, which are explained in the "Extractors"
section above.

Read more supported elements and attributes in publisherConfiguration_1.0.xsd.

Scripted XML Samples
The following topics provide different use-case samples:

l "Sample 1: Publish a Book With All Its Chapters" below
l "Sample 2: Cross-Reference to Another Book" on page 112
l "Sample 3: Ignore Some Book Files or Document Types" on page 112
l "Sample 4: Books Share the Same Author" on page 113

Sample 1: Publish a Book With All Its Chapters
You want to publish a book with all its chapters, which are artifacts connected to the book. A single input
book file now differs:

l The book file has a namespace: "urn:bookWithChapters"
l It has children element chapters. Each chapter has the attribute "name" with chapter name

<book xmlns="urn:bookWithChapters">
<name>Dunno on the Moon</name>

Customization Guide

HPE Enterprise Maps (3.10) Page 110 of 182

<chapter name="The mystery of moon stone"/>
<chapter name="Upside down"/>
<chapter name="Start"/>
<chapter name="Landing"/>
<chapter name="The first day on the Moon"/>

</book>

The associated script is:

<publisherConfiguration
xmlns="urn:com.hp.systinet.publishing.xml:1.0"
name="bookWithChapters"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:com.hp.systinet.publishing.xml:1.0
publisherConfiguration_1.0.xsd">
<namespaceContext>
<namespace prefix="b" uri="urn:bookWithChapters"/>
</namespaceContext>
<artifact sdmName="documentationArtifact">
<recognition>
<extension>.xml</extension>
<rootElement name="book" namespace="urn:bookWithChapters"/>
</recognition>
<stringProperty sdmName="name">
<text>BOOK: </text>
<xpath>b:name/text()</xpath>
</stringProperty>
<multiProperty>
<select>b:chapter</select>
<relation sdmName="r_consistsOf" targetType="localArtifact">
<artifact sdmName="documentationArtifact">
<stringProperty sdmName="name" identifier="true">
<text>CHAPTER '</text>
<xpath>@name</xpath>
<text>' of '</text>
<xpath>/b:book/b:name/text()</xpath>
<text>'</text>
</stringProperty>
</artifact>
</relation>
</multiProperty>
</artifact>
</publisherConfiguration>

Create the script using the Administration tab in HPE EM. Then import an example file (Catalog tab >
Import > File). The result is a documentation artifact BOOK: Dunno on the Moon that has a relation that
consists of' 5 documentation artifacts named:

l CHAPTER 'The mystery of moon stone' of 'Dunno on the Moon'
l CHAPTER 'Upside down' of 'Dunno on the Moon'
l CHAPTER 'Start' of 'Dunno on the Moon'

Customization Guide

HPE Enterprise Maps (3.10) Page 111 of 182

l CHAPTER 'Landing' of 'Dunno on the Moon'
l CHAPTER 'The first day on the Moon' of 'Dunno on the Moon'

Sample 2: Cross-Reference to Another Book
Assume that the book requires another book in order to know the context before reading. A book XML file is
now modified with reference to another book (as a relative/absolute URL). using readAfter elements:

<book xmlns="urn:bookWithChapters">
<name>Dunno on the Moon</name>
<chapter name="The mystery of moon stone"/>
<chapter name="Upside down"/>
<chapter name="Start"/>
<chapter name="Landing"/>
<chapter name="The first day on the Moon"/>
<readAfter ref="./bookWithChapters_sunCity.xml"/>
</book>

The associated changed publishing script adds the following property definition:

<multiProperty>
<select>b:readAfter</select>
<relation sdmName="r_dependsOn">
<import>
<relativeLocation>
<xpath>@ref</xpath>
</relativeLocation>
<targetSdmName>documentationArtifact</targetSdmName>
</import>
</relation>
</multiProperty>

Use the administration UI to update the script with the reference. Then you can re-import (Catalog tab,
Import/File). Now the publishing includes also the reference, the result now contains:

l A new 'BOOK: Dunno in Sun City' documentation artifact with 2 chapters (document artifacts) that are
connected.

l 'BOOK: Dunno on the Moon' now has relationship 'r_dependsOn' to 'BOOK: Dunno in Sun City'.

Sample 3: Ignore Some Book Files or Document Types
In some cases, HPE EM may need to ignore some book files or document types during publishing. This
usecase is also supported by scripted publishing.

An artifact element can have attribute enabled set to false to ignore the recognized input file. For example: the
following artifact element in your script will ignore books that have no chapters:

<artifact sdmName="documentationArtifact" enabled="false">
<recognition>
<xpath>/b:book[not(b:chapter)]</xpath>

Customization Guide

HPE Enterprise Maps (3.10) Page 112 of 182

</recognition>
</artifact>

Modify the existing to have the above artifact element as a first artifact and then import data file. The
publishing will result with a message "No modification". The file bookWithoutChapters.xml will not be
imported, and thus ignored.

Sample 4: Books Share the Same Author
Authors (unlike chapters) are shared between books, the author is a sharedArtifact between all books in the
repository.

The associated changed publishing script adds the following property definition:

<multiProperty>
<select>b:author</select>
<relation sdmName="documentationOf" targetType="sharedArtifact">
<artifact sdmName="personArtifact">
<stringProperty sdmName="name" identifier="true">
<xpath>text()</xpath>
</stringProperty>
</artifact>
</relation>
</multiProperty>

Create the script using administration UI. Then import an example file:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="urn:bookWithChapters">
<name>Dunno on the Moon</name>
<author>Nikolay Nosov</author>
<chapter name="The mystery of moon stone"/>
<chapter name="Upside down"/>
<chapter name="Start"/>
<chapter name="Landing"/>
<chapter name="The first day on the Moon"/>
<readAfter ref="bookWithChapters_sunCity.xml"/>
</book>

The books will then contain a shared reference to a person artifact Nikolay Nosov.

Customization Guide

HPE Enterprise Maps (3.10) Page 113 of 182

Chapter 7: CSV Import and Export Tools
This chapter describes the CSV import and export tools in the following sections:

l "CSV Import Tool" below
l "CSV Export Tool" on page 124

CSV Import Tool
The CSV Import tool is an HPE EM utility that imports data from a CSV file to the HPE EM server.

l "Installation" below
l "Command Line" below
l "Header Parameter Syntax" on page 117
l "Data Content" on page 119
l "CSV File Creation" on page 121
l "Frequently Occurring Errors" on page 122
l "Useful Logging Settings" on page 123

Installation
EM_HOME is the variable which contains the absolute path to the HPE EM Client installation.

The CSV Importer files must be located in the following directories:

File Directory

csvimport.jar EM_HOME\client\lib

log4j-
csvimport.config

EM_HOME\ client\conf

csvimport.bat EM_HOME\ client\bin

csvimport.sh EM_HOME\ client\bin

Command Line
The import tool is located in the following folder:

EM_HOME\client\bin

Usage:

csvimport.bat/.sh [options]

l To import data from a csv file, follow this example:

csvimport.bat/.sh -user xxx -password yyy -file artifact.csv -sdmName artifactName

HPE Enterprise Maps (3.10) Page 114 of 182

l To import data directly from command line, follow this example:

csvimport.bat/.sh -user xxx -password yyy -sdmName artifactName -header
”header1,header2” -data ”value1,value2”

Option Description

-user [user] Description:
Username (required)
Default value:
Admin
Example:
-user admin

-password
[password]

Description:
Password (required)
Default value:
changeit
Example:
-password changeit

-host [host] Description:
HPE EM URL (optional)
Default value:
Value obtained from the HPE EM configuration file.
Example:
http://localhost:8888/em/

-file [path&filename] Description:
Path to the csv import file (required to import a csv file)
Default value:
none
Example:
- file c:\data\webServiceArtifact.csv

-sdmName
[sdmName]

Description:
SDM Name of the importer artifact (optional)
Default value:
Taken from the file name.
Example:
-sdmName webServiceArtifact

-header Description:
Header row when importing directly from the command line

l When using this type of import. The sdmName must be specified. (required)
l When this argument and specified data are not imported from the file but are

imported from the command line. (optional)
Default value:
none
Example:
-header "name,description"

Customization Guide

HPE Enterprise Maps (3.10) Page 115 of 182

Option Description

-dateFormat [yyyy-
MM-dd HH:mm:ss]

Description:
String representation of date in imported files
Default value:
yyyy-MM-dd HH:mm:ss
Example:
-dateFormat 2014-06-14 17:25:10

-data Description:
Data row when importing directly from the command line. (sdmName must be
specified when using this type of import). Multiline text is supported through HTML
code such as
. (optional)

Default value:
none
Example:
-data "My name,My description"

- ignoreUnknown
[Yes|No]

Description:
By default (-ignoreUnknown Yes), CSV Importer validate the header of the CSV
file (first line of the CSV file) - checks the existence of the all the columns
(properties) in SDM. If the column (property) validation fails, the data in that
column will be ignored (not imported). This functionality is operational at the value
Yes.

If the parameter is set to No (-ignoreUnknown No), CSV Importer tries to set each
column without validation. This could cause the artifacts with invalid column
names (properties) will be not imported. (optional)

Default value:
Yes
Example:
- ignoreUnknown No

-token Description:
A delimiter between multiple values of the same column
Default value:
|
Example:
-token #

-separator Description:
A delimiter between column headers or column values
Default value:
,
Example:
- separator ;

-mode
[Insert|Update|Ignore]

Description: Artifacts will be modified based on the selected mode. (optional)

l Insert - artifacts are always created (create duplicates if the imported artifacts
already exist)

l Update - artifacts are updated and if artifact does not exist then it is created

Customization Guide

HPE Enterprise Maps (3.10) Page 116 of 182

Option Description

l Ignore - only artifacts missing in repository are newly created. Existing ones are
not updated.

Default value:
Update
Example:
-mode Insert

-dropRelations
[Yes|No]

Description:
Drop existing relations before adding new relations from CSV. (optional)
Default value:
No
Example:
- dropRelations Yes

-h Description:
Display help on tool usage. (optional)
Default value:
none
Example:
-h

-updateEmptyFields
[Yes|No]

Description:
Update property value to empty value. (optional)
Default value:
No
Example:
-updateEmptyFields Yes

Note: Make sure you add a quote for separator in Linux. An example is given below:

[root@sgatvm0047 bin]# ./csvimport.sh -user admin -password changeit@123 -data
"Business Service;Description" -header "name;description" -separator ";" -sdmName
businessServiceArtifact

Header Parameter Syntax

Primitive Property/Taxonomy
<property>|[key=true]|[createMissingCategories=true|false]

< > - mandatory

[] - optional

Header Element Description

property sdm name of the property

key The CSV Import tool will use key properties as criteria to search for

Customization Guide

HPE Enterprise Maps (3.10) Page 117 of 182

Header Element Description

corresponding artifacts before processing to import/update. Any property can
be used as a key, we can have more than one key. By default Name is used as
a key property unless a key is defined in the header.

createMissingCategories If set to true; import adds new categories to taxonomy if not already available.
Else, a warning is reported when the categories are not found in taxonomy
which is the default when this option is not used. Only the administrator can
use this option in CSV.

Note: System property (such as _delete) is read-only, you cannot import system properties to HPE
EM.

Relationship Property

<relationship>|[target=artifact_sdm_name]|<property=property_sdm_name>|
[attribute=attributeName]|[incoming=true|false]|[key=true|false]

< > - mandatory

[] - optional

Header
Element Description

relationship sdm name of the relationship, for example: composedOf

target target artifact type, for example: businessFunctionArtifact

property property of the target artifact, for example: name

attribute Relationship attribute, for example: usetype

key The CSV Import tool will use key properties as criteria to search for the target artifacts before
processing to import/update. Any property can be used as a key, we can have more than one
key. By default Name is used as a key property unless a key is defined in the header.

Keyword Description

owner Sets the owner of the artifact, if empty – owner is the user starting the script or
the existing one when there is no change.

lifecycleProcess Name of the Lifecycle process.

lifecyleStage Name of the Stage in the lifecycle process.

lifecycleStageApproved True/False

attachment Valid path according to the OS.

Reserved Names

Customization Guide

HPE Enterprise Maps (3.10) Page 118 of 182

Attribute Description

cost Cost transferred for selected relationship.

internalEffort Internal effort value transferred for selected relationship.

externalEffort External effort value transferred for selected relationship.

prerequisite Prerequisite value transferred for selected relationship.

Common Relationship Attributes

Example (plateauArtifact.csv)

The following CSV creates a plateau that is a to-be architecture for an application (associates the application
with it and sets the ‘cost’ and ‘prerequisite’ attributes). The application must exist prior to importing this CSV.

name|key=true,description,aggregates|target=applicationComponentArtifact|property=nam
e,aggregates
|target=applicationComponentArtifact|property=name|attribute=cost,aggregates|target=a
pplicationComponentArtifact|
property=name|attribute=prerequisite
FinPlanner CSV Demo Plateau, Created by CSV import demo ,FinPlanner
Application,15000, false

Data Content
Imported CSV must comply with the formatting rules. Their usage is described in the following chapter. The
CSV file must have encoding UTF8 without BOM. Values shall be separated by ',' by default, but separator
can be specified by 'separator' argument of the import tool.

The first row represents names of properties, for the header line syntax see "Header Parameter Syntax" on
page 117.

The second and next rows contain values of properties to set on creation. Format is as follows:

Property Type

Valid
Input
Format Examples

Primitive Properties

addressPropertyType A set of
recipient,
city, state,
province,
postal
code,
country

recipient=hp&stateProvince=hcmc&postalCode=70000&co
untry=us

booleanPropertyType 1 = TRUE
0 = FALSE

dailyIntervalPropertyType A triple of dayName=everyDay&from=01:15.00&to=01:30.00

Customization Guide

HPE Enterprise Maps (3.10) Page 119 of 182

Property Type

Valid
Input
Format Examples

Primitive Properties

day name,
form and to

dateTimePropertyType yyyy-MM-
dd
HH:mm:ss
tbd

2011-08-31 22:33:44

doublePropertyType A double
value

123.456

encryptedPasswordProperty
Type

Any
characters,
user is
responsible
for
encrypting
it

integerPropertyType An integer
value

123

nameUrlPairPropertyType A pair of
name and
url

name=home&url=http://abc.123

nameUuidPairPropertyType A pair of
name and
uuid

name=aaa&uuid=f6f4826f-7ec9-4067-b7c0-f70acebf82b7

nameValuePairPropertyType A pair of
name and
value

name=abc&val=123

plainTextPropertyType Plain text

textareaPropertyType Multiline
text is
supported
through
HTML code
such as

.

Taxonomy Properties Property
Value as it
is defined

businessService

Customization Guide

HPE Enterprise Maps (3.10) Page 120 of 182

Property Type

Valid
Input
Format Examples

Primitive Properties

in the
SDM.
tModelKey
is taken
from
property
descriptor,
but value
has to be
specified.

Relationship Properties Depending
on the
relationship
mapping
definition –
see the
"Relations
hip
Property"
identifier for
the
relationship
match, in
"Header
Parameter
Syntax" on
page 117.

Cardinality specifics:

l Optional — single value in a valid format.
l Required — single value in a valid format.
l Multiple — multiple property values are separated with '|'. This can be changed by the 'token' argument of

the import tool.

CSV File Creation
The CSV Importer accept only well-formatted CSV format in UTF-8 without BOM encoding. The following
chapter describe one of the way how to do it from the MS Excel® format (xls).

Download and install the latest version of the LibreOffice. (http://www.libreoffice.org/download/).

To generate an appropriate CSV file:

Customization Guide

HPE Enterprise Maps (3.10) Page 121 of 182

1. Open the MS Excel® sheet in LibreOffice Calc and select the spreadsheet to be exported to CSV.
2. Select File > Save As to open the Save As dialog.

a. Select the appropriate file name for the CSV file (usually the sdm_name of the imported artifact).
Extension should be .csv.

b. Save as type: choose Text CSV (.csv) (*.csv).
c. Click Save and select Use Text CSV in the dialog. The CSV Export dialog opens.

3. Do the following in the CSV Export dialog:
a. Enter the following field values:

o Charset: Select Unicode (UTF-8)
o Field delimiter: Input char , (or your separator)
o Text delimiter: Input char “

b. Click OK.
The CSV file is ready to import.

Frequently Occurring Errors
l ERROR: impexp.GenericArtifactImporter - Error processing line '1':
com.hp.utils.CSVReaderException: ERROR: Invalid Column Name descripton Line #1
The column name does not match the System Data Model (SDM). Property name is validated against the
SDM.
Hint: Check the name of the property.

l ERROR: impexp.GenericArtifactImporter - Error processing line '1':
com.hp.utils.CSVReaderException: ERROR: The CSV have incopatible format (line #1) has more
data columns than heeader columns.
The number of the columns in the header and in the data row do not fit. Usually because of the separator
character in the data.
Hint: Check the content on the appropriate row.

l ERROR: SDM Name 'xyzArtifact' not found in repository.
The artifact type xyzArtifact does not exist in System Data Model (SDM).
Hint: Artifact name is extracted from file name (without extension) or value of parameter -sdmName .
Please check if the value is correct.

l ERROR com.hp.tools.importer.GenericArtifactImporter - Error while processing row: 2, Artifact
UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. Unable to set column xyz to value: v1|v2|v3 - error:
Cannot import multiple values into single cardinality property for Artifact UUID: xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx.
Cardinality of property xyz is single, cannot import multiple value to this property.
Hint: Multiple value is declared by following format:

value1|value2|value3|…

Please review if you use this kind of value for single cardinality property.
l ERROR com.hp.tools.importer.GenericArtifactImporter - Error while processing row: 2, Artifact
UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. Unable to set column xyz to value: - error: Cannot
import empty value into required property for Artifact UUID: xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx.
Cardinality of property xyz is required, cannot import an empty value to this property.

Customization Guide

HPE Enterprise Maps (3.10) Page 122 of 182

Hint: check if you have used an empty value for this property in csv file.
l ERROR com.hp.tools.importer.GenericArtifactImporter - Error while processing row: 2, Artifact
UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. Unable to set column xyz to value: abc - error:
Cannot find target of required relation for Artifact UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
Relationship property xyz is required. This error happens when the importer could not find any target
artifact for relationship property xyz.
Hint: check if your search criteria for property xyz in your csv is correct and relevant. These criteria must
match at least one target artifact.

l ERROR com.hp.tools.importer.GenericArtifactImporter - Error while processing row: 2, Artifact
UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. Unable to set column xyz to value: abc - error:
Taxonomy category name could not be resolved. Property type 'category'. (column:xyz -
value:abc).
You have used a wrong category name for taxonomy property xyz.
Hint: check if category name according to the taxonomy used by xyz property.

l ERROR com.hp.tools.importer.GenericArtifactImporter - Error initializing repository client.
Server error, your EM server has been down or not running.
Hint: check server status, access the self-test page to check if there is no problem.

l ERROR com.hp.em.repository.remote.client.impl.RepositoryClientImpl - Server error: 401 –
Unauthorized
Invalid user name or password.
Hint: check if your credential is valid.

l ERROR com.hp.tools.ImportTool - File parameter cannot be combined with header or data
parametres
Importer only accepts data from csv file or from command line. Use of both modes is not supported.

l ERROR com.hp.em.repository.remote.client.impl.RepositoryClientImpl -
com.hp.em.repository.exceptions.RepositoryException: Value of required property 'xxx' in
artifact 'businessServiceArtifact' is not set nor default value is not provided
Data in your CSV must be compliant to HPE EM SDM. ‘xxx’ is a mandatory property, you must provide at
least one value for this property.

Useful Logging Settings
Log4j configuration is stored in file client/conf/log4j-csvimport.config. You can modify it to suit your
needs. Followings are some predefined settings:

l Log to a file in folder csvimpoort/log:
log4j.rootLogger=INFO, Appender
log4j.appender.Appender=org.apache.log4j.RollingFileAppender
log4j.appender.Appender.File=csvimpoort/log/sample.log

log4j.appender.Appender.layout=org.apache.log4j.PatternLayout
log4j.appender.Appender.layout.ConversionPattern=%p: %c{2} - %m%n

l Log to a file in folder csvimpoort/log and to console
log4j.rootLogger=INFO, Appender1,Appender2
log4j.appender.Appender1=org.apache.log4j.ConsoleAppender
log4j.appender.Appender2=org.apache.log4j.RollingFileAppender

Customization Guide

HPE Enterprise Maps (3.10) Page 123 of 182

log4j.appender.Appender2.File= csvimpoort/log/sample.log

log4j.appender.Appender1.layout=org.apache.log4j.PatternLayout
log4j.appender.Appender1.layout.ConversionPattern=%p: %c{2} - %m%n

log4j.appender.Appender2.layout=org.apache.log4j.PatternLayout
log4j.appender.Appender2.layout.ConversionPattern=%p: %c{2} - %m%n

CSV Export Tool
The platform provides an endpoint that returns JSON data for a DQL query supplied. HTTP execution can be
demonstrated with a help of UNIX's wget utility:

wget --user admin --password changeit --no-check-certificate -qO - --post-
data="dql=<query>select A.name from personArtifact A</query>"
http://localhost:8080/em/remote/query/

Comparing to a single execution of wget, the tool gets a complete result (all rows) and converts JSON data to
a CSV format.

This endpoint is used by the Remote DQL command line tool (described below), which is provided with the
CSV import distribution.

Remote DQL Command Line Tool
The remote DQL command line tool executes DQL queries against running the HPE EM server and writes the
result in a CSV format.

The following options are available:

-h, --help Display this help

Remote Execution
The following three options are mandatory to execute DQL with a running HPE EM:

--url <baseurl> HPE EM base URL, such as http://localhost:8080/em—Use the same URL that is
configured in HPE EM.

--user <user> user name

--password <password> password

DQL Command
You can specify DQL using a non-option argument (with no option before the command) or with the --in option
with a file containing DQL query.

--in <file> plain text file with a DQL command

Output

Customization Guide

HPE Enterprise Maps (3.10) Page 124 of 182

The output is printed to console by default, unless you specify --out option. The out option can be specified
multiple times, the n-th occurrence of the –out option with be used an output of the n-th --in option. CSV
format is used.

--out <file> Output file to write the result

DQL Execution Parameters
You can also use DQL with parameters, for example: select name from artifactBase where name like :LIKE

All parameters must be bound before execution -- use either of the following options:

--param LIKE=%a Parameter LIKE is set to %A

-PLIKE=%a Parameter LIKE is set to %A

Examples
1. Execute a DQL with one parameter name LIKE, save the result to a file.

remoteDql.bat --url http://localhost:8080/em --user admin --password changeit -
PLIKE=a% "select count(1) as totalCount from artifactBase where name like :LIKE"
--out countA.csv

2. Execute a SQL by wrapping it into DQL -- administrator rights are required.

remoteDql.bat --url http://localhost:8080/em --user admin --password changeit
"select name,sValue from (native(name,sValue){select name,sValue from
systemConfiguration where domain='topLevelDomain' and ownerName='<all>' and
sValue not like '<%' order by name}) N"

Customization Guide

HPE Enterprise Maps (3.10) Page 125 of 182

Chapter 8: WebDAV Compliant Publishing
HPE EM uses a WebDAV compliant workspace to store data content uploaded to the repository using the
publishing functionality.

HPE EM supports WebDAV Level 1 (no locking). For details, see http://www.ietf.org/rfc/rfc4918.txt.

Caution: WebDAV functionality is unavailable for HPE EM integrated with CA Single Sign On because
CA Single Sign On does not support the WebDAV protocol.

The WebDAV protocol enables document access in a file-system manner. You can access, create, modify,
and delete documents using a WebDAV compliant client.

The publishing location is available at the following URL which varies depending on the authentication and
transport security you use:

l Authenticated (username/password required)
http://SERVER:PORT/em/platform/restSecure/location

https://SERVER:SSLPORT/em/platform/restSecure/location

l Anonymous (username/password not required)
http://SERVER:PORT/em/platform/rest/location

https://SERVER:SSLPORT/em/platform/rest/location

Tip: In Linux clients you may need to use webdav or davs as the protocol instead of http(s).

HPE recommends using the authenticated URL. HPE EM permissions apply to operations performed in the
publishing location using WebDAV.

You can use the URL in your WebDAV client, for example, in any of the following ways:

l As a publishing location in your IDE.
For example, Eclipse or Visual Studio with appropriate WebDAV plugins, specifically, Plugin for Eclipse
and Plugin for Visual Studio.

l As a mapped web folder in Windows.

Note: Windows requires the KB907306 patch for the correct client functionality:

http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-
987622ED1D64&displaylang=en

HPE recommends deploying HPE EM using standard HTTP/HTTPS ports (80/443) to ensure the correct
client functionality.
In Windows Vista, a file from the publishing workspace opened in MS Office applications may appear as
read-only. In this case, make a local copy and resubmit it to the server after you make your changes.

l Using a 3rd party file manager program with the appropriate plugin. For example, Total Commander with
the plugin available at http://ghisler.fileburst.com/fsplugins/webdav.zip.

Note: Use multi-step upload methodmust be disabled in Total Commander or any file is
published as a documentation artifact. Restart Total Commander after changing any plugin settings.

HPE Enterprise Maps (3.10) Page 126 of 182

http://www.ietf.org/rfc/rfc4918.txt
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=17C36612-632E-4C04-9382-987622ED1D64&displaylang=en
http://ghisler.fileburst.com/fsplugins/webdav.zip

Consult your WebDAV client documentation for details of their WebDAV functionality.

WebDAV access enables you to work with documents published to the repository using the publishing
location like a file system (depending on the client). HPE EM handles create and update operations using its
publishing functionality, so relationships between documents are established and maintained with respect to
the document content (for example, when a WSDL references an XSD, HPE EM publishes the XSD and a
relationship between them is established). These details are available in the HPE EM UI in the document
artifact details.

WebDAV publishing is an alternative to UI-based publishing. Unlike the configuration of UI publishing (for
example, what artifacts to create), WebDAV publishing can only be configured globally using the
configuration described in "Configuration Management" in theAdministration Guide.

The most common WebDAV client operations are:

l Retrieving the content of published documents.
For example, import a WSDL to your IDE client for service implementation development.

l Publishing new documents.
For example, publish a WSDL to the repository from your IDE client. HPE EM uses its publishing feature
to create the document and associated artifacts. Relationships are automatically maintained.

l Republishing documents.
For example, importing a WSDL to your IDE client, modifying it, and then republishing. HPE EM uses its
publishing functionality to update the document and maintain associated artifacts and relationships.

l Deleting documents.
For example, using your IDE client to delete an obsolete WSDL. HPE EM uses Delete instead of Purge
enabling retrieval of the document if required.

l Changing document locations.
WebDAV clients can use the MOVE operation to change the server location for an artifact in the
repository. HPE EM maintains metadata and history. This functionality enables remote management of
the publishing location.

l Creating, renaming, and deleting directories.
The publishing location is effectively a file system, enabling you to organize your documents in the
publishing location using your WebDAV client.

l Copying documents or whole directories.
Create duplicates of publishing folders or documents in the publishing location.

Customization Guide

HPE Enterprise Maps (3.10) Page 127 of 182

Chapter 9: HPE EM Extension for Inkscape
HPE EM integrates with the open source Inkscape vector graphics editing tool via an extension module. By
using the HPE EM Extension for Inkscape, you can easily edit SVG graphic files and other graphical
elements residing in the HPE EM data models.

HPE EM Extension for Inkscape is described in the following sections:

l "Installing the HPE EM Extension for Inkscape " below
l "Using the HPE EM Extension for Inkscape" below
l "Applying a New SVG File to Your EM Home Page" on page 130
l "Using Log Files for EM Extension for Inkscape" on page 130

Installing the HPE EM Extension for Inkscape
Before you install the HPE EM Extension for Inkscape, make sure that you have the following on your
system:

l Inkscape 0.48.5-1 32-bit for Windows (You can download Inkscape from: www.inkscape.org.)
l JDK/JRE 7 (32-bit) or later
To install the HPE EM Extension for Inkscape:

1. Execute hpe-em-inkscape-3.10.msi

Note: Inkscape MUST be installed before launching the installer.

2. After installation is finished, the following files must be present:

File Name Directory

addArtifact.inx INKSCAPE_HOME\share\extensions\

addLayer.inx INKSCAPE_HOME\share\extensions\

publishToEAM.inx INKSCAPE_HOME\share\extensions\

eamanager.py INKSCAPE_HOME\share\extensions\

eamanager(folder) INKSCAPE_HOME\share\extensions\

3. Restart Inkscape. HPE Enterprise Maps appears in Extensions menu bar.

Using the HPE EM Extension for Inkscape
By using the HPE EM Extension for Inkscape, you can add artifacts or layers or publish your graphics directly
to EM.

To add an artifact:

HPE Enterprise Maps (3.10) Page 128 of 182

http://www.inkscape.org/

1. Click Extensions > Enterprise Maps > Add Artifact.
2. Input the exact values for the Label and the Artifact Local Name in theAdd Artifact fields.
3. Click Apply to create the new artifact. Alternatively, you can click Close to exit without creating a new

artifact.
To add a layer:

1. Click Extensions > Enterprise Maps > Add Layer.
2. Input the exact values for the Label and the Artifact Local Name in the Add Layer fields.
3. Click Apply to create the new layer. Alternatively, you can click Close to exit without creating a new

layer.
To publish to HPE EM:

1. Click Extensions > Enterprise Maps > Publish to EM.
2. Input the exact values for the Viewpoint Name, HPE EM URL, Username, and Password fields.

WARNING: HPE EM password is stored by Inkscape in plain text. Open this dialog and remove the
password before exiting Inkscape.

3. Click Apply to publish the new file to HPE EM. Alternatively, you can click Close to exit without
publishing.

4. You can publish a single SVG file multiple times. Based on the file name, HPE EM will do one of the
following actions:
a. Publish the new file if there is no SVG artifact having the same name already, or
b. Update the existing file if there is an artifact with that name.

5. After you publish, you can view the SVG artifacts in the HPE EM Catalog.
The new artifact and layer will appear in HPE EM.

Customization Guide

HPE Enterprise Maps (3.10) Page 129 of 182

You can also view artifacts in the Catalog.

Applying a New SVG File to Your EMHome Page
You can apply any SVG file you choose to appear on your HPE EM home page.

To apply a new SVG file to Your HPE EM home page:

1. Log in to HPE EM.
2. Go to the Catalog showing the list of SVG files and open the artifact that you want to use.
3. Copy its UUID to the clipboard.
4. Go to theAdministration tab > Customization > Manage Scripts, and then open the Archimate

Introductory Viewpoint.
5. Click Edit Script, and then paste the UUID into the config.viewPointuuid value. When you finish, save

the script.

6. Go to theCatalog tab and right click on your home page dashboard. The context menu will be displayed.
7. Click Archimate Introductory Viewpoint and the new file will display.

Using Log Files for EM Extension for Inkscape
You can use log files to track or investigate any errors that occur. The log files are located at:

Customization Guide

HPE Enterprise Maps (3.10) Page 130 of 182

INKSCAPE_HOME\share\extension\em\log

There are two log files to use:

l The file inkscape.log contains the trace output for adding artifacts and layers.
l The file publish.log contains trace output for publishing of SVG files to HPE EM.

Customization Guide

HPE Enterprise Maps (3.10) Page 131 of 182

Chapter 10: Atom-Based REST Interface
HPE EM uses an ATOM-based REST interface.

Access the HPE EM platform service document using the following URL:

http://hostname:port/context/platform/rest

Hostname, port, and context are set during installation. For example, if you used the default settings and
installed to your local machine, use the following URL:

http://localhost:8080/em/platform/rest

If set up during installation, an HTTPS secure endpoint is available which requires credentials to access.

A default secure endpoint uses the following URL:

https://localhost:8443/em/platform/rest

Note: Use restSecure instead of rest if you are using HTTP basic authentication.

The service document consists of workspaces, which in turn contains feeds made up of entries, as shown in
the following example:

Platform Service Document

<?xml version="1.0" encoding="UTF-8"?>
<app:service xml:base="http://localhost:8080/em/platform/rest/"

xmlns:app="http://www.w3.org/2007/app">
<app:workspace>
<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">SDM collections</atom:title>
<app:collection href="./artifact/reportArtifact">
<app:accept/>
<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">Collection of Reports</atom:title>
<app:categories href="./category-document/

uddi:systinet.com:systinet:model:taxonomies:artifactTypes:_artifactType"/>
<app:categories href="./category-document/

uddi:systinet.com:systinet:model:taxonomies:reportTypes:reportType"/>
<app:categories href="./category-document/

uddi:systinet.com:systinet:model:taxonomies:reportCategories:reportCategory"/>
<app:categories href="./category-document/

uddi:systinet.com:systinet:model:taxonomies:reportStatus:reportStatus"/>
<app:categories href="./category-document/

uddi:systinet.com:systinet:model:taxonomies:reportResultCodes:reportResultCode"/>
</app:collection>
...

</app:workspace>
<app:workspace>
<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">Publishing Locations</atom:title>

HPE Enterprise Maps (3.10) Page 132 of 182

<app:collection href="./location">
<app:accept/>

</app:collection>
</app:workspace>
<app:workspace>
<atom:title type="text"

xmlns:atom="http://www.w3.org/2005/Atom">System Information</atom:title>
<app:collection href="./system">
<app:accept/>

</app:collection>
</app:workspace>

</app:service>

The interface is described in the following sections:

l "Workspaces" below
l "Feeds" on the next page
l "Entries" on page 141
l "Category Documents" on page 149
l "Atom REST Operations" on page 149
l "Atom REST ETags" on page 151
l "Atom REST Client" on page 152

Workspaces
The platform service document consists of the following workspaces:

l "SDM Collections Workspace" below
The System Data Model (SDM) workspace reflects the structure of the SDM and defines feeds for the
collections in the HPE EM repository (read-only).

l "Publishing Locations Workspace" on the next page
The locations workspace reflects the structure of attached data content in HPE EM created by the
publisher.

l "System Collections Workspace" on the next page
The system workspace contains system information used by HPE EM (read-only).

SDM CollectionsWorkspace
The SDM collections workspace contains a collection for each artifact type in the SDM for which an instance
can be created within its artifact hierarchy.

Note: Customization Editor can be used to modify the SDM, so your configuration may vary from
specific examples in this documentation. For details, see theHPE EnterpriseMaps Workbench -
Customization Editor Guide.

Each collection in the workspace consists of the following:

Customization Guide

HPE Enterprise Maps (3.10) Page 133 of 182

l <app:collection href="./artifact/artifactType">
The reference defines the URL used for the feed for that particular artifact type collection. For details, see
"Artifact Collection Feeds" below.

l <app:categories href="./category-documents/taxonomy">
Categories can occur in feed entries and some feed readers can perform filtering according to these
categories.

Publishing LocationsWorkspace
The publishing locations workspace consists of a single collection. This collection is an atom feed made up of
entries where the entry can be one of the following types:

l Subcollection
l Resource
The subcollections and resources reflect content uploaded to HPE EM using its publication feature.

This location is available as a feed and is accessible with a WebDAV client.

For details, see "Publishing Location Feeds" and "WebDAV Compliant Publishing" on page 126.

SystemCollectionsWorkspace
The system collections workspace contains a single collection. This collection contains information about the
running system.

Feeds
You can access the content of the repository using feeds.

l "Artifact Collection Feeds" below
l "Publishing Location Feeds" on page 139
l "Artifact Relationships Feed" on page 140
l "Artifact History Feed" on page 140
l "Artifact Comments Feed" on page 141
l "Full Text Search" on page 141

Artifact Collection Feeds
Every artifact type collection in the SDM is accessible as a feed.

Use the reference defined in the SDM collections workspace to access a collection feed.

For example, the WSDL collection feed is accessed with URL:

http://localhost:port/context/platform/rest/artifact/wsdlArtifact

WSDL Collection Feed

<feed xml:base="http://localhost:8180/platform/rest/artifact/wsdlArtifact"

Customization Guide

HPE Enterprise Maps (3.10) Page 134 of 182

xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"
xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifacts:sdm:wsdlArtifact</id>
<updated>2009-06-19T14:54:11.614+02:00</updated>
<title type="text" xml:lang="en">Collection of WSDLs</title>
<opensearch:itemsPerPage>50</opensearch:itemsPerPage>
<opensearch:startIndex>1</opensearch:startIndex>
<link href="artifactBase" type="application/atom+xml;type=feed"

rel="urn:hp.com:2009:02:systinet:platform:artifacts:parent"
title="parent sdm feed"/>

<link href="wsdlArtifact?start-index=1&page-size=50"
type="application/atom+xml;type=feed"
rel="self" title="feed self"/>

<author>
<name>system:restadmin</name>

</author>
<generator>HPE Enterprise Maps</generator>
<entry>

<id>urn:hp.com:2009:02:systinet:platform:artifact:4465c1e1-f214-47c5-a958-
d3202ab20dfa</id>

<updated>2009-06-09T10:06:35.443+02:00</updated>
<title type="text" xml:lang="en">paymentMethod.wsdl</title>
...

</entry>
...

</feed>

Each artifact type collection feed consists of the following descriptors:

Descriptors Description

id The feed identification.

updated The last update time.

title The name of the feed.

link A set of links with the following link types indicated by the rel attribute:

l urn:hp.com:2009:02:systinet:platform:artifacts:parent

Links to collection feeds for super artifacts in the inheritance category.
l urn:hp.com:2009:02:systinet:platform:artifacts:child

Links to collection feeds for descendant artifact types.

entry The set of entries in the feed. For more details, see "Artifact Atom Entries" on
page 141.

opensearch:startIndex Starting point for the feed relative to index entries. The first indexed item is 1.

opensearch:itemsPerPage Number of items per page.

You can modify the output of the feed as described in the following sections:

Customization Guide

HPE Enterprise Maps (3.10) Page 135 of 182

l "Filtering Feeds" below
l "Viewing Entry Content in Feeds" below
l "Domains in Feeds" below
l "Property Based Searching" on the next page
l "Feed Ordering" on page 138
l "Feed Paging" on page 138
l "Bulk GETs" on page 138
You can also combine these output methods.

Separate each term with "&".

For example, to get artifacts 10-79 which contain policy in the description, ordered primarily by their name in
descending order and then by description in ascending order, and displaying properties defined in
artifactBase, use the following URL:

http://host:port/context/platform/rest/artifact/artifactBase?p.description=*policy*&star
t-index=10&page-size=70&order-by=name-,description&inline-content

Filtering Feeds

Feeds are presented in the REST interface as a set of equivalent collections.

Examples of feeds include:

l http://localhost:port/context/platform/rest/artifact/implementationArtifact

l http://localhost:port/context/platform/rest/artifact/xmlServiceArtifact

l http://localhost:port/context/platform/rest/artifact/webServiceArtifact

l http://localhost:port/context/platform/rest/artifact/businessServiceArtifact

l http://localhost:port/context/platform/rest/artifact/wsdlArtifact

Viewed in this way, the feeds form a flat structure. However, there are established relationships between
feeds in terms of an inheritance hierarchy.

The root of the hierarchy is http://localhost:port/context/platform/rest/artifact/artifactBase.

You can use abstract artifact type feeds to obtain all artifact types lower in the hierarchy. For example, the
implementationArtifact feed contains all SOAP service, XML service, and web application artifacts.

The relationships between feeds are realized via
urn:hp.com:2009:02:systinet:platform:artifacts:parent and
urn:hp.com:2009:02:systinet:platform:artifacts:child links.

Viewing Entry Content in Feeds

You can use feeds to obtain multiple artifact entry content as well.

Add ?inline-content to the collection feed URL to obtain the full content for each entry in the feed.

Note: The properties displayed in the content for an entry are determined by the artifact type used in the
feed URL. Properties specific to an artifact type lower in the hierarchy are not displayed.

Domains in Feeds

The domain can be specified using a domain parameter in the /artifact/ segment or the feed URL.

Customization Guide

HPE Enterprise Maps (3.10) Page 136 of 182

For example,
http://localhost:port/context/platform/rest/artifact;domain=defaultDomain/wsdlArtifact
shows all WSDLs in the Default Domain.

Note: Artifacts may be moved across domains using a PUT operation that specifies the system property
_domainId.

Property Based Searching

You can search for specific artifacts in a feed with property based filtering. You can filter by any property type
regardless of its type and cardinality, but the elementary conditions are always primitive values. The filtering
property must be present in the artifact type defining the feed.

The property must be one of the following elementary types:

l text
l integer
l bigInteger
l date
l double
l boolean
l uuid
To view the permitted property names for a particular artifact feed, you can examine the SDM with URL:

http://host:port/context/platform/rest/system/model.

If you want to filter by a compound property (for example, category property which has 3 compounds:
taxonomyUri, name, value) you must use dot notation. For example to search by compound val (value) of
property criticality on businessServiceArtifact use the following URL:

http://host:port/em/platform/rest/artifact/businessServiceArtifact?p.criticality.val
=uddi:systinet.com:soa:model:taxonomies:impactLevel:high

Only business services artifacts with high criticality are listed.

For text property filtering, operator case-insensitive-equals is used, but can explicitly use wildcards. To find
all service artifact with svc in their name submit the following URL:

http://host:port/em/platform/rest/artifact/businessServiceArtifact?p.name=*svc*

The following wildcards are supported:

l * for zero or more arbitrary characters.
l _ for exactly one arbitrary character.

Note: HPE EM does not support explicit boolean operators but there is an implicit AND for conditions on
different properties and an implicit OR on conditions on the same property.

The following examples show various ways to use property searching:

l Artifacts with a name starting with service and a description containing assertion:
http://host:port/context/platform/rest/artifact/artifactBase?p.name=
service*&p.description=*assertion*

l Artifacts with a name containing either starting with service or containing assertion:

Customization Guide

HPE Enterprise Maps (3.10) Page 137 of 182

http://host:port/context/platform/rest/artifact/artifactBase?p.name=
service*&p.name=*assertion*

l Deleted artifacts only.
http://host:port/context/platform/rest/artifact/artifactBase?p._deleted=true

Tip: To view the category values, open the category document, for details, see "Category Documents"
on page 149.

Feed Ordering

By default, entries in feeds are ordered by their atom:updated element.

Add ?order-by= to the collection feed URL to change the order.

l Entries ordered by name (ascending):
http://host:port/context/platform/rest/artifact/artifactBase?order-by=name

l Entries ordered by name (descending):
http://host:port/context/platform/rest/artifact/artifactBase?order-by=name-

l Entries ordered by name (descending), then description (ascending):
http://host:port/context/platform/rest/artifact/artifactBase?order-
by=name-,description

You can also use properties for ordering with the same conditions as for searching.

For details, see "Property Based Searching" on the previous page.

Feed Paging

You can also control the feed paging.

l The first ten entries:
http://host:port/context/platform/rest/artifact/artifactBase?page-size=10

l Entries 10-19 (inclusive):
http://host:port/context/platform/rest/artifact/artifactBase?page-size=10&start-
index=10

Note: The default number of entries is 50 and the maximum number of entries is 500.

Bulk GETs

A specific REST use case is a Bulk GET - getting multiple artifacts in a single request/response interaction.
This can be handled via a property based search on specific collections, presuming that the UUIDs of the
artifacts to retrieve are known.

For example, assume the following business service artifacts with UUIDs, bs1 and bs2. There are 3 web
service artifacts with UUIDs ws1, ws2, and ws3. The ATOM GET request to return all 5 artifacts at once is
as follows:

http://host:8080/em/platform/rest/artifact/artifactBase?p._uuid=bs1&p._uuid=bs2&p._
uuid=ws1&p._uuid=ws2&p._uuid=ws3&inline-content

Notice the inline-content flag, it specifies the inclusion of proprietary XML representation into atom entries.

Customization Guide

HPE Enterprise Maps (3.10) Page 138 of 182

Submitting this URL returns a feed with 5 artifacts, assuming they exist. But inside the atom content there
are only properties specific to the artifactBase artifact type. For example: businessServiceArtifact defines the
property criticality. This property is not present in the atom content because it is not declared at
artifactBase level. The properties listed in the atom content are strictly driven by artifact type, specified as
one part of the URL (in our case artifactBase).

However, there is one exception, relationship properties are always listed in the atom content regardless of
the given artifact type. The business service artifact defines a relationship property service. This property is
not declared at artifactBase level, however, it is present in the XML representation regardless of the artifact
type given in the URI.

If you want to get the full set of properties (even those specific to the given artifact type), you must perform
multiple GETs per artifact type. In our example, this requires the following 2 GETs:

http://host:8080/em/platform/rest/artifact/businessServiceArtifact?p._uuid=bs1&p._
uuid=bs2&inline-content

http://host:8080/em/platform/rest/artifact/webServiceArtifact?p._uuid=ws1&p._
uuid=ws2&p._uuid=ws3&inline-content

By submitting these two HTTP GETs, you obtain full representation of the 5 artifacts: bs1, bs2, ws1, ws2,
and ws3.

Publishing Location Feeds
The location feed enables you to browse the attached data content in the repository.

HPE EM adds this content whenever you publish an artifact associated with attached data content. .

The publishing location is accessible using a WebDAV client. For details, see "WebDAV Compliant
Publishing" on page 126.

The content feed consists of resources (the data content) organized into collections (folders). Access the
feed using the following URL:

http://localhost:8080/em/platform/rest/location

If you use a browser, this opens a view which enables you to browse the data content and interact with it.

Note: The view of a collection location only displays the resources for which you have permissions.

HPE EM publisher creates a collection within the publishing location when you upload data content. .

Open a collection by clicking its name, or download a zip file of its content by clickingDownload as
Archive. At the lowest level, the browser shows the actual data content. For the actual content, click the
content name.

Click Advanced View to open the detail view of the related artifact in HPE EM. For details, see "Artifact
View Page" in theUser Guide.

You can change the output of the location space on your browser using alternative media types:

l http://hostname:port/context/platform/rest/location

The default output as described above.
l http://hostname:port/context/platform/rest/location?alt=text/html

The HTML representation which is the default output for locations. For artifacts with non-HTML content
there is no HTML representation.

Customization Guide

HPE Enterprise Maps (3.10) Page 139 of 182

l http://hostname:port/context/platform/rest/location/foo?alt=application/zip

Output all files from a particular collection (foo) to a zip archive.
Add the following optional switches to output additional related documentation:
l &inline-desc

Includes document descriptor files in the archive (files with the .desc suffix in .meta subdirectories).

l &inline-acl

Includes ACL files in the archive (files with the .acl suffix in .meta directories).

l &zip-compat

Enable zip compatibility mode (no directory entries are created in the archive).

l http://hostname:port/context/platform/rest/location/test?alt=application/atom%2bxml

View the Atom feed for a collection location.
l http://hostname:port/context/platform/rest/location/foo?alt=application/json

Output a particular collection location as a JSon representation.
By default, the last revision of a resource or collection is shown, but you can request revisions from a
particular date using the following pattern:

http://hostname:port/context/platform/rest/location;datetime=[datetimeValue]

For example, http://hostname:port/context/platform/rest/location/foo/a.wsdl, corresponds to
the last revision of a the a.wsdl resource in the foo location.

http://hostname:port/context/platform/rest/location;datetime=2008-01-
01T12:00:00.000Z/foo/a.wsdl, corresponds to the revision of the a.wsdl resource at 12:00 on 1/1/2008.

Specifying a collection location that does not exist returns an exception.

Artifact Relationships Feed
You can view the relationships of an artifact as a feed.

For example, to view the comments feed of a WSDL artifact, use the URL:

http://host:port/context/platform/rest/artifact/wsdlArtifact/UUID/relation

The feed returns both incoming and outgoing relationships to/from the artifact. The content shows a
proprietary representation of the relationship, with the related artifact available by following the 'alternate' link.

If the related artifact is readable by the current client identity, its name is displayed, otherwise only its UUID
is shown.

Artifact History Feed
You can view the revision history of an artifact as a feed.

For example, to view the revision history of my.wsdl, use the URL:

http://host:port/context/platform/rest/artifact/wsdlArtifact/my.wsdl/history

Customization Guide

HPE Enterprise Maps (3.10) Page 140 of 182

Artifact Comments Feed
You can view the comments made about an artifact as a feed.

For example, to view the comments feed of a WSDL artifact, use the URL:

http://host:port/context/platform/rest/artifact/wsdlArtifact/UUID/comments

Full Text Search
Full text search can be run in an SDM collection feed.

Add ?fulltext=SEACHEDTEXT to the collection feed URL to perform full text search.

For example, to search for the text "lifecycle" in all artifacts:

http://host:port/context/platform/rest/artifact/artifactBase?fulltext=lifecycle

Feed Ordering and Feed Paging can be also applied to the result.

Full text search result can be only ordered by relevance, name or timestamp.

Default ordering is relevance-,name.

Note: Full text search must be enabled in the database, for more details see the Installation Guide.

Entries
The detailed information about an artifact in the repository is available as an entry.

Entries are described in the following sections:

l "Artifact Atom Entries" below
l "Artifact History Entries" on page 144
l "Atom Entry Property Descriptors" on page 144
l "Artifact Data" on page 148
l "Resource Identification" on page 148

Artifact Atom Entries

The information about each entry in the collection feed is only a summary. Each entry can be accessed
directly using its self link as referenced in the artifact feed, which is formed from either its restName or id.

For example, you can access a particular user profile entry with URL:

http://localhost:port/context/platform/rest/artifact/personArtifact/admin

Admin User Profile Entry

<entry xml:base=
"http://localhost:8180/em/platform/restSecure/artifact/personArtifact"
xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifact:d82a5dcc-d85c-4766-9967-
93eb5dc0bd0a</id>

Customization Guide

HPE Enterprise Maps (3.10) Page 141 of 182

<updated>2009-06-01T09:30:23.154+02:00</updated>
<title type="text" xml:lang="en">Administrator</title>
<summary type="text" xml:lang="en">Administrator.</summary>
<link href="personArtifact/d82a5dcc-d85c-4766-9967-

93eb5dc0bd0a?alt=application%2Fatom%2Bxml"
type="application/atom+xml" rel="self" title="artifact detail"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-93eb5dc0bd0a?alt=application%2Fxml"
type="application/xml" rel="alternate" title="XML representation"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-
93eb5dc0bd0a?alt=application%2Fatom%2Bxml"

type="application/atom+xml"
rel="urn:hp.com:2009:02:systinet:platform:artifact:last-revision"
title="last revision"/>

<link href="personArtifact" type="application/atom+xml;type=feed"
rel="urn:hp.com:2009:02:systinet:platform:artifacts:collection"
title="sdm feed"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-93eb5dc0bd0a/history"
type="application/atom+xml;type=feed"
rel="urn:hp.com:2009:02:systinet:platform:artifact:history"
title="history feed"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-93eb5dc0bd0a/acl"
type="application/xml"
rel="urn:hp.com:2009:02:systinet:platform:artifact:acl"
title="access control list"/>

<link href="personArtifact/d82a5dcc-d85c-4766-9967-93eb5dc0bd0a?alt=text%2Fhtml"
type="text/html" rel="alternate" title="UI view page"/>

<author>
<name>em:admin</name>

</author>
<category label="Active"

scheme="uddi:systinet.com:soa:model:taxonomies:accountStates:accountState"
term="S1"/>

<category label="Artifact"
scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
term="urn:com:systinet:soa:model:artifacts"/>

<category label="Content"
scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
term="urn:com:systinet:soa:model:artifacts:content"
ext:parent="urn:com:systinet:soa:model:artifacts"
xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

<category label="Contact"
scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
term="urn:com:systinet:soa:model:artifacts:content:contact"
ext:parent="urn:com:systinet:soa:model:artifacts:content"
xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

<category label="User Profile"
scheme="uddi:systinet.com:soa:model:taxonomies:artifactTypes:_artifactType"
term="urn:com:systinet:soa:model:artifacts:content:contact:person"
ext:parent="urn:com:systinet:soa:model:artifacts:content:contact"
xmlns:ext="http://schemas.hp.com/2008/symphony/atom/extensions"/>

Customization Guide

HPE Enterprise Maps (3.10) Page 142 of 182

<content type="application/xml">
...

</content>
</entry>

Each artifact entry consists of the following descriptors:

Descriptor Description

id A unique id for the artifact (uuid).

updated The last update time.

title The name of the entry.

link A set of links with the following link types indicated by the rel attribute:

l self

The atom entry details.
l urn:hp.com:2009:02:systinet:platform:artifacts:collection

The associated artifact collection feed. For details, see "Artifact Collection Feeds" on
page 134.

l urn:hp.com:2009:02:systinet:platform:artifact:last-revision

The last revision of this artifact.
l edit-media

The associated data content for an artifact.
l urn:hp.com:2009:02:systinet:platform:artifact:history

The collection feed for revisions of this artifact.
l alternate

A set of alternate views of the artifact, including:
l application/xml The bare XML representation of the content descriptor.

l text/html Points to the HPE EM UI view of the artifact.

l related

Links to related artifacts.
Note:Related artifacts may also be linked where the link has the rel attribute with a
specific relationship name. For details, see "Relationship Properties Atom
Representation" on page 146.

category A set of taxonomic values from:
l Taxonomy property values
l categoryBag and identifierBag
l sdmTypes taxonomy values

author The creator of this revision of the artifact.

content The bare XML representation of the content descriptor. For details, see "Atom Entry
Property Descriptors" on the next page.

Customization Guide

HPE Enterprise Maps (3.10) Page 143 of 182

Descriptor Description

summary An artifact description.

Artifact History Entries

By default, entries display the latest revision. You can view older revisions by adding ;rev=X to the entry
URL.

For example, the first revision of a WSDL can be obtained with the URL:

https://host:port/context/platform/rest/artifact/wsdlArtifacts/mywsdl;rev=1

Atom Entry Property Descriptors

Atom entries contains an XML representation of an artifact in the content descriptor.

Admin User Entry Content

<content type="application/xml">
<art:artifact name="personArtifact" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:p="http://hp.com/2008/02/em/platform/model/property"
xmlns:sdm="http://hp.com/2007/10/em/platform/model/propertyType"
xmlns:art="http://hp.com/2008/02/em/platform/model/artifact">

<p:primaryGroup xsi:nil="true" sdm:type="text"/>
<p:accountState name="Active"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:accountStates" value="S1"
sdm:type="category"/>

<p:designTimePolicy xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
<p:documentation xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
<p:_uuid sdm:type="uuid">d82a5dcc-d85c-4766-9967-93eb5dc0bd0a</p:_uuid>
<p:_revision sdm:type="integer">1</p:_revision>
<p:_checksum sdm:type="bigInteger">0</p:_checksum>
<p:_contentType xsi:nil="true" sdm:type="text"/>
<p:_revisionTimestamp sdm:type="date">2009-06-01T07:30:23.154Z</p:_

revisionTimestamp>
<p:keyword xsi:nil="true" sdm:type="category" p:multi="true"/>
<p:categoryBag xsi:nil="true" sdm:type="categoryBag"/>
<p:_revisionCreator sdm:type="text">em:admin</p:_revisionCreator>
<p:_artifactType name="Artifact"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
value="urn:com:systinet:soa:model:artifacts" sdm:type="category"

p:multi="true"/>
<p:_artifactType name="Content"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
value="urn:com:systinet:soa:model:artifacts:content" sdm:type="category"

p:multi="true"/>
<p:_artifactType name="Contact"

taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"

Customization Guide

HPE Enterprise Maps (3.10) Page 144 of 182

value="urn:com:systinet:soa:model:artifacts:content:contact" sdm:type="category"
p:multi="true"/>

<p:_artifactType name="User Profile"
taxonomyUri="uddi:systinet.com:soa:model:taxonomies:artifactTypes"
value="urn:com:systinet:soa:model:artifacts:content:contact:person"

sdm:type="category"
p:multi="true"/>

<p:identifierBag xsi:nil="true" sdm:type="identifierBag"/>
<p:description sdm:type="text">Administrator.</p:description>
<p:_owner sdm:type="text">admin</p:_owner>
<p:_deleted sdm:type="boolean">false</p:_deleted>
<p:name sdm:type="text">Administrator</p:name>
<p:consumptionContract xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>
<p:consumptionRequest xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>
<p:r_consumerOwner2contract xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>
<p:provides xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
<p:contactRole xsi:nil="true" sdm:type="category" p:multi="true"/>
<p:r_contactClassification xsi:nil="true" sdm:type="category"/>
<p:geographicalLocation xsi:nil="true" sdm:type="category" p:multi="true"/>
<p:languageCode xsi:nil="true" sdm:type="category"/>
<p:hpsoaApplicationContact xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>
<p:r_memberOf xsi:nil="true" sdm:type="documentRelationship" p:multi="true"/>
<p:loginName sdm:type="text">admin</p:loginName>
<p:address xsi:nil="true" sdm:type="address"/>
<p:email sdm:type="text" p:multi="true">admin@comp.com</p:email>
<p:phone xsi:nil="true" sdm:type="text" p:multi="true"/>
<p:instantMessenger xsi:nil="true" sdm:type="text" p:multi="true"/>
<p:externalDefinition xsi:nil="true" sdm:type="documentRelationship"

p:multi="true"/>
</art:artifact>

</content>

The content is effectively a list of the properties of an artifact.

The property types are described in the following sections:

l "Primitive Properties Atom Representation" below
l "Category Properties Atom Representation" on the next page
l "Relationship Properties Atom Representation" on the next page
l "Special Properties Atom Representation" on page 147

Primitive Properties AtomRepresentation

Primitive properties are represented as follows:

<p:NAMEsdm:type="TYPE">VALUE<p:NAME>

The following primitive property types use this form:

Customization Guide

HPE Enterprise Maps (3.10) Page 145 of 182

Property Type xsi:type Correspondance

date xs:dateTime

boolean xs:boolean

double xs:double

integer xs:int

bigInteger xs:integer

text xs:string

uuid xs:string

For example:

<p:phone sdm:type="text">774 789 784</p:phone>

Category Properties AtomRepresentation

Category properties are propagated in two places in the Atom entries.

The category descriptor, which also appears in collection feeds, describes the taxonomy and category as
follows:

<category label="..." scheme="..." term="..."/>

l label corresponds to the category name.
l scheme corresponds to the taxonomy URI combined with the property name.
l term corresponds to the category URI.
This is reproduced in the entry content as a property:

<p:NAME name="..." taxonomyUri="..." value="..." sdm:type="category"/>

For example, a web service with Failure Impact set to High is represented as a property in the entry for the
web service:

<p:criticality name="High"
taxonomyUri="uddi:systinet.com:soa:model:taxonomies:impactLevel"
value="uddi:systinet.com:soa:model:taxonomies:impactLevel:high" sdm:type="category"/>

Note that the property representing this taxonomic category is criticality.

The property is propagated to Atom metadata as an atom:category element:

<atom:category label="High"
scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality"
term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"/ >

Relationship Properties AtomRepresentation

Relationship properties are propagated in two places in the Atom entry.

In feeds the link exists as metadata.

The link descriptor describes the following link types:

Customization Guide

HPE Enterprise Maps (3.10) Page 146 of 182

l A generic related link.
l A specific relationship bound link where the rel attribute uses a

'urn:hp.com:2009:02:systinet:platform:artifact:relation:prefix with the relationship name.
In entries, relationships are described as a set of property atom content descriptors:

Relationship Properties

Incoming relationship example:
<p:inBusinessService xlink:href="businessServiceArtifact/1210"

sdm:type="documentRelationship" p:multi="true">
<t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>
<t:exact>false</t:exact>

</p:inBusinessService>

Exact incoming:
<p:inBusinessService xlin:href="businessServiceArtifact/1210"

sdm:type="documentRelationship" p:multi="true">
<t:source>c519d961-03b3-4303-b61b-8809b945b7ae</t:source>
<t:exact>true</t:exact>

</p:inBusinessService>

Outgoing relationship example:
<p:service xlin:href="webServiceArtifact/5"

sdm:type="documentRelationship" p:multi="true">
<t:target deleted="false">5a4aeca7-a8f9-4761-b504-82723ab2f417</t:target>

</p:service>

Exact outgoing:
<p:service xlin:href="xmlServiceArtifact/101.xml;rev=1"

sdm:type="documentRelationship" p:multi="true">
<t:target revision="1" deleted="false">72ab6f1f-e943-4fd2-a7bc-5d227e6e134a</t:target>

</p:service>

Special Properties AtomRepresentation

Special properties are defined by an XML schema which determines their structure.

HPE EM contains an XML schema which defines the following property types:

l address
l categoryBag
l identifierBag
l dailyInterval
l nameURLPair
l nameValuePair
l parameterList (XQuery parameter)
l scheduled
l selector

Customization Guide

HPE Enterprise Maps (3.10) Page 147 of 182

Artifact Data

If an artifact has associated data content, then you can directly access the data content.

For example, a WSDL artifact is usually associated with the actual WSDL file.

Access the WSDL entry with the URL:

https://localhost:8443/em/platform/rest/artifact/wsdlArtifact/mywsdl?alt=atom

WSDL Entry

<entry xml:base="http://localhost:8180/em/platform/restSecure/artifact/wsdlArtifact"
xmlns="http://www.w3.org/2005/Atom">

<id>urn:hp.com:2009:02:systinet:platform:artifact:f5aff3eb-95fd-4791-856b-
3ac551666da2</id>

<updated>2009-06-08T16:24:55.609+02:00</updated>
<title type="text" xml:lang="en">mywsdl</title>
...
<link href="../location/wsdls/mywsdl.wsdl" type="application/xml" rel="edit-media"

title="attached data" />
...

</entry>

The entry contains a link pointing to the locations workspace. The data is also available using a /data suffix.

For example, https://localhost:8443/em/platform/rest/artifact/wsdlArtifact/mywsdl/data

You can also access older revisions of the data with the URL:

https://localhost:8443/em/platform/rest/artifact/wsdlArtifact/mywsdl;rev=1/data

Caution: Using any relative references in the XML data will probably cause an error because they are
resolved relatively to the GET context. Use the location context to navigate references instead.

Resource Identification

A web service artifact with uuid 65a2b119-9a6b-491e-8353-3692f4b9e3e5 and name MyService is
available in the artifacts collection:

http://localhost:port/context/em/platform/rest/artifact/

At the following locations:

l artifactBase/65a2b119-9a6b-491e-8353-3692f4b9e3e5
l implementation/65a2b119-9a6b-491e-8353-3692f4b9e3e5
l webServiceArtifact/65a2b119-9a6b-491e-8353-3692f4b9e3e5
These URLs are not user-friendly. For newly created artifacts, HPE EM auto-generates a REST name which
in most cases is more user-friendly than the uuid.

This REST name can be used instead of the uuid in the URL.

http://localhost:port/context/em/platform/rest/artifact/webServiceArtifact/MyService

Note: If you migrate or federate resources (for example, with UDDI Registry import/export), the user-
friendly URLs are lost.

Customization Guide

HPE Enterprise Maps (3.10) Page 148 of 182

User-friendly REST names remain the same, even if you change the artifact name.

Category Documents
Atom categories are a way to categorize large amounts of data. The permitted values in Atom categories can
be either fixed or unrestricted. Category documents group permitted category values.

An example of a category group with a fixed set of values is the impact level criticality category group.

http://host:port/context/platform/rest/category-
document/uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality

Impact Criticality Category Document

<?xml version="1.0" encoding="UTF-8"?>
<app:categories xmlns:app="http://www.w3.org/2007/app"
xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:hp="http://hp.com/2008/02/em/platform/model/taxonomy"
xmlns:v355tax="http://systinet.com/uddi/taxonomy/v3/5.5"
xmlns:v350tax="http://systinet.com/uddi/taxonomy/v3/5.0" fixed="yes"
scheme="uddi:systinet.com:soa:model:taxonomies:impactLevel:criticality">

<atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:high"
label="High"/>

<atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:medium"
label="Medium"/>

<atom:category term="uddi:systinet.com:soa:model:taxonomies:impactLevel:low"
label="Low"/>
</app:categories>

HPE EM uses taxonomies, which are an abstraction almost identical to Atom categories. These taxonomies
are sometimes transferable to Atom category documents, which can be referenced from the service
document.

The categories in the taxonomy then appear as Atom categories, corresponding to the taxonomy values in
artifact entries and feeds.

AtomREST Operations
To use the Atom REST interface, applications must map each operation to an HTTP request. For details, see
Summary of Atom REST Operations.

REST
Operation

HTTP
method Query Field Notes

"CREATE" on
the next page

POST create The path specifies the containing collection and the
POST body contains an XML representation of the
artifact to create.

GET GET None Obtains the requested resources. For details, see
"Feeds" on page 134 and "Entries" on page 141.

Summary of Atom REST Operations

Customization Guide

HPE Enterprise Maps (3.10) Page 149 of 182

REST
Operation

HTTP
method Query Field Notes

"UPDATE"
below

PUT update Updates the specified resource.

"DELETE" on
the next page

DELETE delete Deletes the specified resource. GET, UNDELETE,
and PURGE operations can be run on deleted
resources.

"UNDELETE"
on the next
page

POST undelete Undeletes the deleted resource. It can then be
updated again.

"PURGE" on
the next page

DELETE purge Purge physically removes a resource.

Summary of Atom REST Operations, continued

Note: All writable operations use a proprietary XML representation for POST and PUT operations.

CREATE

Implemented by processing a POST request to the artifact type collection space. The POST body contains a
valid XML representation of the new artifact.

POST http://localhost:8080/em/platform/restSecure/artifact/businessServiceArtifact

The content of the XML representation should match an artifact Atom entry. For details, see "Artifact Atom
Entries" on page 141.

You can create artifacts conditionally using CREATE with Etags. For details, see "Atom REST ETags" on
the next page.

Note: Since this operation requires an HTTP POST request, you cannot simply enter the URL into a
browser. Typically the request is coded in an application. It is possible to use Javascript or HTTP
command line clients.

UPDATE

Implemented by processing a PUT request to the specified collection and artifact identified with its UUID.
The updated content is contained in the XML representation. For details, see "Artifact Atom Entries" on page
141.

PUT http://localhost:8080/em/platform/restSecure/artifact/
businessServiceArtifact/002374c1-3500-43ea-92a7-02322bdf6002

Note: Since this operation requires an HTTP PUT request, you cannot simply enter the URL into a
browser. Typically the request is coded in an application. It is possible to use Javascript or HTTP
command line clients.

Customization Guide

HPE Enterprise Maps (3.10) Page 150 of 182

DELETE

Implemented by sending a DELETE request to the specified collection and artifact identified using its UUID.

DELETE http://localhost:8080/em/platform/restSecure/artifact/
businessServiceArtifact/002374c1-3500-43ea-92a7-02322bdf6002

UNDELETE

Implemented by sending an empty POST request to the specific collection and deleted artifact identified
using its UUID. There is no XML representation associated with the POST operation for UNDELETE.

POST http://localhost:8080/em/platform/restSecure/artifact/
businessServiceArtifact/002374c1-3500-43ea-92a7-02322bdf6002

PURGE

Implemented by sending a DELETE request to the specific collection and artifact identified by its UUID and
its history feed URI.

Caution: This operation cannot be undone.

DELETE http://localhost:8080/em/platform/restSecure/artifact/
businessServiceArtifact/002374c1-3500-43ea-92a7-02322bdf6002/history

AtomREST ETags
ETags enable you to perform GET, PUT, and POST operations using conditions. For example, you can use
ETags to compare a response to a previously cached response to see if there are any changes to the
requested resource.

Note: Using ETags requires a REST client in order to specify the parameters.

You can use bothweak and strongETags.

Weak ETags are implemented by comparing the last modified time of an artifact in the repository with the
time from HTTP header attributes: If-Modified-Since and If-Unmodified-Since.

Strong ETags are used mainly for caching purposes when weak ETags based on timestamps are not
sufficient. For example, when an artifact has not been modified but its representation has. This happens
when there is a new, changed, or missing incoming relation. ETags are random hash-generated with every
artifact update.

Use ETags as described in the following topics:

l "Conditional GET" below
l "Conditional PUT and POST" on the next page

Conditional GET

You can apply a conditional GET to determine whether a resource has changed, and then only return the
representation if there is a change.

Customization Guide

HPE Enterprise Maps (3.10) Page 151 of 182

You can use a weak ETag specifying a time or a strong ETag specifying the tag attribute used to identify the
revision.

Specify the time using the If-Modified-Since header parameter in the HTTP request.

This time is compared to the Last Modified attribute in the response. The Last Modified attribute is always
returned and can be stored for future reference.

If cases where timestamps are not sufficient, you can use ETags to compare entry or feed revisions.

Specify the ETag value using the If-None-Match header parameter in the HTTP request.

This speoifed ETag is compared to theETag attribute in the response. TheETag attribute is always returned
and can be stored for future reference.

If the artifact has not changed, then an HTTP standard non-modified response is created with a 304 status
code and proper headers are returned.

If a header parameter is not specified the latest representation is always returned.

Conditional PUT and POST

You can apply a conditional PUT or POST to determine whether a resource has changed compared to the
revision you are updating, and then only apply your update if there is no change.

You can use a weak ETag specifying a time or a strong ETag specifying the tag attribute used to identify the
revision.

Specify the time using the If-Unmodified-Since header parameter in the HTTP request.

This time is compared to the Last Modified attribute in the response. The Last Modified attribute is always
returned and can be stored for future reference.

In cases where timestamps are not sufficient, you can use ETags to compare entry or feed revisions to
determine whether a resource has changed compared to the revision you are updating, and then only apply
your update if there is no change.

Specify the ETag value using the If-Match header parameter in the HTTP request.

This speoifed ETag is compared to theETag attribute in the response. TheETag attribute is always returned
and can be stored for future reference.

If the artifact has changed, then an HTTP standard preconditions-failed response is created with a 412 status
code and proper headers are returned.

If a header parameter is not specified your update is applied regardless of any other changes.

AtomREST Client
The Atom REST client is an untyped API to manipulate artifacts in the repository. It is a thin layer above the
Atom REST Interface.

The client provides the following features:

Model Introspection

l Enumerate Artifact types
l Enumerate Artifact properties
CRUD

Customization Guide

HPE Enterprise Maps (3.10) Page 152 of 182

l Local operations:
l Create Artifact instance

l Server Operations
l Create Artifact

l Get Artifact

l Get Artifact Data

l Update Artifact

l Update Artifact Data

l Delete Artifact

l Purge Artifact

Search

l Search criteria - name-value pairs, same property names are "ORed".
l Lists Artifacts - initialized properties depend on the given artifact type. For example, ArtifactBase has only

name, description, categoryBag.
l Pagination and ordering is supported .

Classpath

JAR files are mixed with others in the installation client/lib folder.

l abdera-client-1.0.jar
l abdera-core-1.0.jar
l abdera-i18n-1.0.jar
l abdera-parser-1.0.jar
l axiom-api-1.2.5.jar
l axiom-impl-1.2.5.jar
l common-lang.jar
l commons-codec-1.3.jar
l commons-httpclient-3.1.jar
l commons-lang-2.3.jar
l commons-logging-1.1.jar
l jaxen-full-2.51.jar
l localization-1.0.0-alpha-3.jar
l pl-model-api.jar
l pl-model-impl.jar
l pl-remote-client.jar
l pl-remote-model.jar
l pl-xml-serialization.jar

Customization Guide

HPE Enterprise Maps (3.10) Page 153 of 182

l pl-xmlbeans-sdmconfig.jar
l pl-xmlbeans-serialization.jar
l saxpath-1.0-FCS.jar
l security.jar
l xmlbeans-2.3.0-patch.hp-3.jar

First Steps

This section provides code extracts that demonstrate working with the API. For more examples, see
"Demos" on the next page and the Javadocs at http://host:port/hpe-em-
doc/advanced/api/index.html.

1. Create a new RepositoryClient instance:

RepositoryClient repositoryClient =
RepositoryClientFactory.createRepositoryClient

("http://localhost:8080/em",
"demouser", "changeit", false, null, 0);

2. Create a new webService artifact instance and set its name:

ArtifactBase webService =
repositoryClient.getArtifactFactory().newArtifact

("webServiceArtifact");
webService.setName("Demo Webservice Name");

3. Store the instance on the server:

webService = repositoryClient.createArtifact(webService);

4. Get the instance from server:

webService = repositoryClient.getArtifact(webService.get_uuid().toString());

Important Classes

l Javadoc documentation is located at EM_HOME/doc/api ([host]:[port]/hpe-em-
doc/advanced/api/index.html).

l SDM Model documentation is located at EM_HOME/doc/sdm ([host]:[port]/hpe-em-
doc/advanced/sdm/index.html).

l RepositoryClientFactory
l Factory used to create RepositoryClient instances.

l The factory supports:
o SDM Model Caching - the parameter means that the factory loads the model from the server if the

cached version is older than the passed value.
o Custom authentication (custom Abdera client factory) - see

https://cwiki.apache.org/ABDERA/client.html for more information.
o Switching off server certificate validation when using HTTPS.

Customization Guide

HPE Enterprise Maps (3.10) Page 154 of 182

https://soawiki.emea.hp.com/twiki/bin/exit.cgi?url=https%3A%2F%2Fcwiki.apache.org%2FABDERA%2Fclient.html

l RepositoryClient
l This interface contains all the important methods and getters for supporting classes.

l ArtifactBase
l To get/set a particular part of an artifact use either the get or set methods.

l Common abstraction for the untyped view of any artifact in System Data Model (SDM).

l ArtifactData - Artifact data holder.
l ArtifactFactory - Factory for creating artifact instances.
l ArtifactRegistry - Registry of defined artifacts.

l ArtifactDescriptor - Introspective info about an artifact.

l PropertyDescriptor - Introspective info about an artifact's property.

l ValuesFactory
l Able to create MultiplePropertyValues, Uuid, and ArtifactData.

l Creates instances of single property values from given values.

l PropertiesUtil
l Various static helper functions for manipulating properties.

Demos

The following demo provides more code examples:

l "Atom REST Client Demo" below

AtomREST Client Demo

The purpose of this demo is to introduce the Atom REST Java client and to show how to interact with HPE
EM using this client. The basic operations CREATE, UPDATE, DELETE, UNDELETE, PURGE, GET,
search, and model introspection are demonstrated.

1. Enumerate artifact types and service properties (enumerateArtifactsAndPropertiesmethod).
2. Create web service artifact and business service artifact with relation to that web service

(createGetUpdateDeletemethod).
3. Create service and search that service by criticality (createSearchDeletemethod).

You can find the demo source code in: EM_HOME\demos\client\rest\src

To run the REST API demo:

1. Ensure that the demo is properly configured and HPE EM is running.
2. Change your working directory to: EM_HOME\demos\client\rest
3. To get help, execute: run
4. To build the demo, execute: run make

5. To run the demo, execute: run publish

Customization Guide

HPE Enterprise Maps (3.10) Page 155 of 182

To rebuild the demo, execute run clean to delete the classes directory and run make to rebuild the demo
classes.

Customization Guide

HPE Enterprise Maps (3.10) Page 156 of 182

Chapter 11: Lifecycle Remote Client
The Lifecycle Remote Client enables you to remotely manipulate lifecycle processes and manage the
governance data of artifacts.

The following topics describe the Lifecycle Remote Client:

l "Process Management" below
l "Artifact Governance" below
l "Classpath" on the next page
l "First Steps" on the next page
l "Important Classes" on page 159

Process Management
Designed for administration of lifecycle processes remotely.

All the functionality is accessible using service ProcessManagementService.

An instance of ProcessManagementService can be created using method
createProcessManagementService() on GovernanceServiceFactory

For example:

ProcessManagementService
service = GovernanceServiceFactory.createProcessManagementService

("http://localhost:8080/em","admin","changeit",true)

It contains methods for reading, creating, removing, copying, publishing, and editing lifecycle processes.

For more details, see the javadoc for ProcessManagementService.

Process information and process editing does not support all features.

Artifact Governance
Designed to manage governance of the artifact remotely.

All the functionality is accessible using service ArtifactGovernanceService.

An instance of ArtifactGovernanceService can be created using method
createArtifactGovernanceService () on GovernanceServiceFactory

For example:

ArtifactGovernanceService
service = GovernanceServiceFactory.createArtifactGovernanceService

("http://localhost:8080/em","admin","changeit",true)

It contains methods for the following:

l Starting governance
l Ending governance

HPE Enterprise Maps (3.10) Page 157 of 182

l Changing: process, stage, or process stage and approval
l Approving the requests
l Getting:

l Governance status for a list of UUIDs or for a governance tree identified by root artifact UUID,

l Current stage history record

l Voting status

l Voting details

l Artifacts on which voting is enabled

l Policies and last known validation status

l Tasks

l StageHistoryRecords for a single artifact

l Request approval for a root artifact UUID

l Canceling approval
l Marking a task as complete
l Voting
It also contains support for searching governed artifacts using the following methods:

l By Governance Process UUID
l By Current Stage
l By Last Approved Stage
l By Type
l By Lifecycle Status
l Conditions are always combined together
It always returns governance records. For more details see the javadoc for ArtifactGovernanceService.

Classpath
JAR files are mixed with others in client/lib folder.

l lifecycle-remote-api.jar
l hessian-3.1.6-patch.hp-2.jar

First Steps
This section provides code extracts that demonstrate working with the API. For more examples, see the
Javadocs at http://host:port/hpe-em-doc/advanced/api/index.html.

1. Create new Artifact Governance Service instance

ArtifactGovernanceService

Customization Guide

HPE Enterprise Maps (3.10) Page 158 of 182

service=GovernanceServiceFactory.createArtifactGovernanceService
("http://localhost:8080/em","admin","changeit",true);

2. Get Governance Status of an artifact

String artifactUuid=...
GovernanceStatus record = service.getGovernanceStatus(artifactUuid);

3. Request approval

service.requestApproval(artifactUuid,"Requesting approval.");

4. Get Stage History Record and iterate over approvals

StageHistoryRecord
historyRecord = service.getCurrentStageHistoryRecord(artifactUuid);
for (ApprovalInfo ar : historyRecord.getApprovals()) {

...
}

Important Classes
l Javadoc documentation is located at EM_HOME/doc/api ([host]:[port]/hpe-em-

doc/advanced/api/index.html).
l GovernanceServiceFactory - Factory that creates services.
l ArtifactGovernanceService - Service for getting governance details as well as managing governance of

artifacts.
l ProcessManagementService - Service for managing governance process.
There is a demo available that provides some code examples at EM_HOME/demos/client/lifecycle.

Data Structure Diagram

Customization Guide

HPE Enterprise Maps (3.10) Page 159 of 182

Customization Guide

HPE Enterprise Maps (3.10) Page 160 of 182

Chapter 12: Validation Client
The Validation Client enables you to remotely manipulate technical policies and policy reports.

The following topics describe the Validation Client:

l "Assertion Demo" below
l "Validation and Report Rendering Demo" below

Assertion Demo
This demo shows you how to develop an assertion to validate a property of EM resources. The demo utilizes
the AssertionValidator class. See the Javadoc for a full description of this class.

In this demo, you will learn how to:

l Create a custom assertion validator.
l Use the attached project and assertion to create extension in Assertion Editor.
l Apply extension to EM server.
You can find the demo source code in EM_HOME\demos\policymgr\assertionValidator

To run the validation demo:

1. Ensure that HPE EM is stopped.
2. Open a command prompt at EM_HOME\demos\policymgr\assertionValidator.
3. Enter run make to create extension.
4. Copy Demos.jar to EM_HOME\extensions
5. Enter run apply to apply extension to EM server.

Validation and Report Rendering Demo
This demo shows how to use the Policy Manager REST API to validate a resource. The demo utilizes the
ValidationClient class. See the Javadoc for a full description of this class.

In this demo, you will learn how to:

l Create a service.
l Create a policy report which uses a technical policy.
l Use this policy report to validate a service.
l View the report.
You can find the demo source code in EM_HOME\demos\policymgr\validation\src

To run the validation demo:

1. Ensure that HPE EM is running.
2. Open a command prompt at EM_HOME\demos\policymgr\validation.
3. Enter run make to compile the demo source code.

HPE Enterprise Maps (3.10) Page 161 of 182

4. Enter run run to create the artifacts and run the validation. A link to the HTML report page is printed to
the console.

Customization Guide

HPE Enterprise Maps (3.10) Page 162 of 182

Chapter 13: Report Creation
Administrators are authorized to create new reports and add them in to HPE EM. This is a complicated task
and requires extensive knowledge of various concepts such as DQL, script editing and data source definition
syntax.

This section covers the following reports:

l "Defining the Query in Artifact Reports" below
l "Defining Policy Reports" on page 168
l "Calculating Policy Report Results" on page 170
l "Creating a Heat Map Portlet" on page 170
l "Creating a Structure Map" on page 171
l "Create a Custom Report " on page 172
l "Creating a Custom Report with Ordering" on page 179

Defining the Query in Artifact Reports
Artifact reports are defined as a part of the HPE EM web UI. An administrator can change and customize the
web UI directly using web UI. In this example, we will look at how to view or modify the definition of the
Projects report.

To define an artifact report:

1. Log in to HPE EM as administrator and select the Administration tab, and then select the Customize UI
menu item from the Customization menu. The web UI switches to customization mode, in which all
pages are editable. A customization box appears on the right side of every page.

2. Click theReports tab.

HPE Enterprise Maps (3.10) Page 163 of 182

3. Once you click theReports tab, the Customization box changes to include artifact report-related items.
Click List of Reports.

A list of all artifact reports is displayed; click theProjects link from the list.
4. The artifact report page is shown in the customization mode. It renders the results and displays

Customize links at the top of each customizable section. The Customize link above the results table

Customization Guide

HPE Enterprise Maps (3.10) Page 164 of 182

opens a window that shows an XML representation of the UI customization data that defines the report.

5. Click theEdit Report link in the header of Projects report page to access the report definition in Edit
Report view.

Customization Guide

HPE Enterprise Maps (3.10) Page 165 of 182

6. In the Edit Report view, you can define and test the DQL query that creates the resulting table data. You
can preview the data as you tune the query. When you finish, click theNext button at the bottom of the

Customization Guide

HPE Enterprise Maps (3.10) Page 166 of 182

page below the project list.

7. Specify the layout of columns of the result table. You can edit column names, organize columns in
sections, reorder them, or make them visible/invisible by default. Click Next and click theRefresh
button to preview the changes. When you finish, click Finish. Alternatively, if you want to have more
control over when your changes are published to users, click Cancel.

8. If you click Cancel, you remain in the customization mode of the web UI. Changes that you made in the
web UI are visible only to you as an administrator. If you want to make your changes visible to all users,
you can release them in a page that appears when you click the Manage Customizations link in the
Customization box. Click theExit Customization Mode link when you are ready to exit customization
mode.

Customization Guide

HPE Enterprise Maps (3.10) Page 167 of 182

Defining Policy Reports
Policy reports are defined as a part of the HPE EM web UI. In this example, we will look at how to view or
modify the definition of the Archimate Compliance policy report.

To define a policy report:

1. Click theDefinition tab on the policy report page to see how the report is defined.
It shows the Search Criteria that are used to filter artifacts subject to policy validation, and a list of
Technical Policies that must be validated against the artifacts. An administrator can add or remove
technical policies using a toolbox that appears above the list.

2. Click the pen icon in the toolbox on the right side to edit the report and view other important report
definition items. The Edit page lists general fields that specify the report name, description, and target
compliance by percentage. The target compliance field is used to indicate the overall goal of the policy
report in percent of artifacts that should be compliant.

Customization Guide

HPE Enterprise Maps (3.10) Page 168 of 182

3. The Artifacts to be Validated section allows you specify a filter on which artifacts you want to validate.
You can edit, remove, add, or clear criteria using the controls in this section. By clicking the Preview
Results button, you can see artifacts that match the criteria. If required, click the Save button at the
bottom of the page to save your changes.

4. You can also create a new policy report by selecting the Reports tab, and then clicking Create > Policy
Reports. This will allow you to specify all the details of a new policy report on a single page.

Customization Guide

HPE Enterprise Maps (3.10) Page 169 of 182

Calculating Policy Report Results
Policy report results are cached in the HPE EM repository. Depending on the number of policies and
resources being validated, it can take an hour or more to calculate the results. Users who are viewing the
policy report are informed that the report might not be up-to-date. Recalculation of the policy report is started
in the following ways:

l Manually: the user manually recalculates the report. An associated action is available in the Overview tab
of the report.

l By Automatic Task: HPE EM starts a Policy Report Validation task every day around 2:30 AM. The
actual time may depend on the time zone of the server on which the HPE EM application is running.

To check automatic Policy Report Validation task details:

1. Log in to HPE EM as administrator and select the Administration tab, and then select the Tasks menu
item on the Configuration menu.

2. Click thePolicy Report Validation Task link on the Tasks page. If you cannot see it on the page,
switch to a table view by using the associated Show Task List toolbar action. The Policy Report
Validation Task page shows that the task is scheduled along with a table of the execution history.

3. Click Edit Schedule on the toolbar to open the Edit Schedule dialog in which you can view and change
the scheduling details of the task.

Creating a Heat Map Portlet
When you create a Heat Map portlet, you first need to create a Data Source Definition script to define a set of
data. Then you create a Heat Map Portlet script in JavaScriptwithHeat map as theExecute on type.

To create a Heat Map portlet:

1. On theAdministration tab, select Manage Scripts.
2. Create a data source:

a. Click Data Sources in the left panel and click theCreate new data source icon. This opens the
Data Source Definition editor.

b. Add a unique name and select XML as theScript language andDataSource Definition as the
Execute on option. Click Save.
There are two options for creating a data source script: Closure Definition-Based_Data_Sources, or
DQL-Based Data_Sources (see "Data Sources" in the Customization Guide for details).

3. Create a Heat Map portlet:
a. Click Reports & Portlets in the left panel and click theCreate new portlet icon. This opens the

Portlet Script editor.
b. Add a unique name and select Javascript as theScript language andHeat map as theExecute

on type. Click Save.

Customization Guide

HPE Enterprise Maps (3.10) Page 170 of 182

4. Click Edit Script to add the script content in JavaScript and click Save.
The following is a content example:

5. Click Save.
After you save your new Heat Map Portlet script, you can go to the Dashboard and add the Heat Map
Portlet to your dashboard view using the Dashboard menu.

Creating a Structure Map
You can use HPE EM to create structure maps, an important tool to help manage infrastructure, reduce
ongoing costs, and increase areas of investment within your enterprise architecture.

To create a Structure Map portlet, first create an embedded script with Structure Map execution on
type.

1. Follow the initial 2 steps of "Creating a Heat Map Portlet" on the previous page.
2. Create a Structure map:

a. Click Reports & Portlets in the left panel and click theCreate new portlet icon. This opens the
Portlet Script editor.

b. Add a unique name and select Javascript as theScript language andStructure Map as the
Execute on option. Click Save.

3. Click Edit Script to add the script content in JavaScript and click Save.
The following is a content example:

Customization Guide

HPE Enterprise Maps (3.10) Page 171 of 182

4. After you save your new structure map portlet script, you can go to the Dashboard and add the structure
map portlet to your Dashboard view using the Dashboard menu.

Create a CustomReport
Overview
User can create a JavaScript report which extends from EA.portlets.CustomReport, and can also use
external JavaScript libraries & CSS definitions in their custom report.

1. Creating first Custom Report:
Go toAdministration Tab > Manage Scripts > Reports & Portlets and click Create new portlet
button.

Customization Guide

HPE Enterprise Maps (3.10) Page 172 of 182

2. Create your first script:
l Name: follow the format <your report name>.js

l Script Language: JavaScript

l Execute on: JavaScript Report

Customization Guide

HPE Enterprise Maps (3.10) Page 173 of 182

See Portlet Script image.

The class name follows format EA.scripts.<your report name>

/* *** */
/* *** */
/* My First Custom Report. */
/* *** */
/* ** */
/* *** */

Ext4.define('EA.scripts.MyReport', {

Customization Guide

HPE Enterprise Maps (3.10) Page 174 of 182

extend: 'EA.portlets.CustomReport',
initComponent: function () {

this.callParent(arguments);
this.update('<h1>Hello World</h1>');

}
})

Click Save and then navigate toReportsmenu. Right click to add your portlet.

In the image above, category is not set. You can set category under ‘Functional Category’ and ‘Default
Height’. "See Portlet Script image." on the previous page.

3. Query data from EM Repository:

/* *** */
/* *** */
/* My First Custom Report. */
/* *** */
/* ** */
/* *** */

Ext4.define('EA.scripts.MyReport', {
extend: 'EA.portlets.CustomReport',
initComponent: function() {

this.callParent(arguments);
var self = this;
var dqlStore = Ext4.create('EA.model.tools.DQLStore', {

query: '<query>SELECT a.name, a._uuid FROM
businessFunctionArtifact a</query>',
fields: ['name', '_uuid'],
pageSize: 10

Customization Guide

HPE Enterprise Maps (3.10) Page 175 of 182

});
dqlStore.on('load', function(store) {

self.render(store.data.items);
});
dqlStore.load();

},

render: function(items) {
var content = '';
for (var i = 0; i < items.length; i++) {

content += '<a href="javascript:void(0)"
onclick="showArtifact(\'' + items[i].data._uuid +
'\')">' + items[i].data.name + '';

}

this.update('<div style="padding: 20px">' + content +
'</div>');

}
})

4. Visualizable Portlet:
To create visual report like Structure Map and Heatmap, refer the script below:

/* *** */
/* *** */
/* My Visualized Report. */
/* *** */
/* ** */
/* *** */

Ext4.define('EA.scripts.MyVisualizedReport', {
extend: 'EA.portal.VisualizablePortlet',

Customization Guide

HPE Enterprise Maps (3.10) Page 176 of 182

config: {
id: 'MyVisualizedReport',
dataSource : '/scripts/ApplicationCost.xml',
visualizations: [

{
label : 'Color by Cost',
items: [{

type: 'EA.portlets.visualization.NumberBasedColorVisualization',
field: 'costValue',
name: 'Application Total Cost',
description: 'Application Total Cost',

},{
type: 'EA.portlets.visualization.BackgroundColorVisualization',
field: 'density',
name: 'Status',
description: 'Application Health Status',
styleSchema: {
'Green' : {style: 'background-color:#49B250;', desc: 'strong'},
'Yellow': {style: 'background-color: #FFD800;', desc: 'medium'},
'Red' : {style: 'background-color:#F85F29;', desc: 'weak'},
'N/A' : {style: 'background-color:#999999;', desc: 'not set'}
}

}
]

}
]

},
initComponent: function() {

this.callParent(arguments);
this.update('\

<div id="' + this.config.id + '-menu" class="em-smap-menu cell-container"
style="width: 100%"></div>\

<div class = "height-scrollable em-smap" id="' + this.config.id +'-
map"></div>\

<div class="em-smap-legend" id="' + this.config.id + '-legend"></div>\
');

this.mapPrepared = false;
},
recalculateDataSource: function(){

this.clearCache = false;
if (this.legendContainer){

this.legendContainer.html('');
}
if (this.menuContainer){

this.menuContainer.html('');
}

this.loadDataSource();
},

Customization Guide

HPE Enterprise Maps (3.10) Page 177 of 182

buildMapContent: function() {
this.mapContainer.html

(this.buildNodes(this.datasource.data.items));
},
buildNodes: function(nodes) {

var content = '';
for(var i = 0; i < nodes.length; i++) {

content += this.buildNode(nodes[i]);
}
return content;

},
buildNode: function(node) {

return '<div style="' + this.buildVisualStyle(node) + ';padding:10px;border-
radius:10px;margin:4px;box-shadow:inset 0 0 3px 1px rgba(0,0,0,0.3)">' +
node.data.name + '</div>';

}
})

5. Load external JavaScript & CSS:
Invoke callback function after loading all required external resources.

Customization Guide

HPE Enterprise Maps (3.10) Page 178 of 182

layoutManager.loadStyle(['URL1’, ‘URL2’]);
layoutManager.loadScript([URL1', ‘URL2’], callback);

Creating a CustomReport with Ordering
Following is an example of Data Sources:

orderBy

This example provides a guideline on how to use the orderBy parameter from a portlet. Follow the steps given
below:

l Portlet Script
Create a Javascript report namedDataSourceOrderByTest.js

Provide below code as the script:

Ext4.define('EA.scripts.DataSourceOrderByTest', {
extend: 'EA.portal.VisualizablePortlet',
config: {

id: 'MyVisualizedReport',
dataSource : '/scripts/ApplicationCost.xml',
visualizations: [

{
label : 'Order by',
items: [

{
type: 'EA.portlets.visualization.NumberBasedColorVisualization',
field: 'name',
name: 'Name',
description: 'Name',

},{
type: 'EA.portlets.visualization.NumberBasedColorVisualization',
field: 'costValue',
name: 'Cost value',
description: 'Cost value',

},{
type: 'EA.portlets.visualization.BackgroundColorVisualization',

Customization Guide

HPE Enterprise Maps (3.10) Page 179 of 182

field: 'density',
name: 'density',
description: 'density'

}
]

}
]

},
initComponent: function() {

this.callParent(arguments);
this.update('\

<div id="' + this.config.id + '-menu" class="em-smap-menu cell-container"
style="width: 100%"></div>\

<div class = "eam-heat-map" id="' + this.config.id + '-map"></div>\
<div class="em-smap-legend" id="' + this.config.id + '-legend"></div>\

');
this.mapPrepared = false;

},

buildMenu: function() {
var self = this;

this.selectors = [];

for(var i = 0; i < this.visualizations.length; i++) {
if (this.visualizations[i].options.length > 1) {

var selector = this.buildSelector(this.menuContainer,
this.visualizations[i].label, this.visualizations[i].options, this.visualizations
[i].activeIndex);

selector.data('index',i);
selector.change(function() {

var index = $(this).data('index');
self.visualizations[index].activeIndex = this.selectedIndex;
self.visualizations[index].options

[this.selectedIndex].visualization.onSelection(self,self.datasource);

var sortField = self.visualizations[index].options[this.selectedIndex].field;
self.reload({
sort: sortField
});

});
}

}
self.buildDataSourceRecalculate(self.datasource, self.config.id + '-menu');

},

buildMap: function(config, extraParams) {
config = config != null ? config : {};

extraParams = !extraParams ? {} : extraParams;
var self = this;

if(config.loadData) {

Customization Guide

HPE Enterprise Maps (3.10) Page 180 of 182

this.buildStore(extraParams);
this.datasource.on('load',

function(store) {
if(config.buildVisualizationController) {

self.buildVisualization(store);
self.buildMenu();

}
self.datasource = store;
self.mapPrepared = true;
self.buildCachedMap();

},this);
this.datasource.load();

} else {
self.buildCachedMap();

}
},

reload: function(extraParams){
this.buildMap({loadData:true, buildVisualizationController:false},

extraParams);
},

buildStore: function(extraParams) {
this.datasource=Ext4.create('EA.model.tools.DataSourceStore', {

dataSource: this.config.dataSource,
extraParams: extraParams

}
);
this.datasource.extraParams.clearCache = true;
if (this.config.maxNode != null){

this.datasource.pageSize = this.config.maxNode;
}
this.datasource.maskElement = this.id;

},

buildMapContent: function() {
this.mapContainer.html(this.buildNodes(this.datasource.data.items));

},
buildNodes: function(nodes) {

var content = '';
for(var i = 0; i < nodes.length; i++) {

content += this.buildNode(nodes[i]);
}
return content;

},
buildNode: function(node) {

return '<div style="color:black;font-size:16px !important;">' + node.data.name +
'</div>';

}
})

Customization Guide

HPE Enterprise Maps (3.10) Page 181 of 182

l Data Source Script
Create a data source script namedApplicationCost.xml with below code:

<closure maxDepth="1" maxResults="25" maxProcessingTime="10000" seedsAsResults="true">
<defaultSeedQuery>

select f._uuid from applicationComponentArtifact f LEFT JOIN
appFinancialProfileArtifact pfp on bind(f.financialProfile) where not exists

(select 1 from applicationComponentArtifact f1 join
applicationComponentArtifact f2

using f2.composedOf where f1._uuid=f._uuid) and pfp.annualCostTotal is
not null

</defaultSeedQuery>

<resultArtifacts>
<artifact sdmName="applicationComponentArtifact">

<field name="costValue" query="SELECT pfp.annualCostTotal as costValue FROM
applicationComponentArtifact p LEFT JOIN appFinancialProfileArtifact pfp on bind

(p.financialProfile) where p._uuid=:uuid"/>
<field name="density" query="SELECT pfp.entityHealth.val as density FROM

applicationComponentArtifact p LEFT JOIN appFinancialProfileArtifact pfp on bind
(p.financialProfile) where p._uuid=:uuid"/>

</artifact>
</resultArtifacts>

<traversableArtifacts>
<artifact sdmName="applicationComponentArtifact"/>

</traversableArtifacts>

<traversableRelations>
<relation sdmName="composedOf"/>

</traversableRelations>

</closure>

l Execute
Add the created portlet to the Reports tab and test it.

Customization Guide

HPE Enterprise Maps (3.10) Page 182 of 182

	Chapter 1: Customizing HPE EM
	Chapter 2: Data Model
	System Data Model
	Artifact Type Documentation
	Property Documentation
	Property Group Documentation

	Model Changes
	Artifacts

	Versioning Schema
	Policy Artifacts
	Policy Schema

	How to Edit Relationship Attribute Annotation

	Chapter 3: Using DQL
	Introduction to DQL
	Primitive Properties
	Complex Properties
	Artifact Inheritance
	Categorization Properties
	Fixing Multiple Properties
	Relationships
	Shortcuts
	Modifiers
	Virtual Properties
	Embedding SQL Queries

	DQL Reference
	Properties in DQL
	DQL and SQL
	DQL_Grammar

	DQL With Third-Party Products
	DQL JDBC Driver
	DQL in SQL Designers
	DQL in MS Access

	Evaluating DQL

	Chapter 4: Data Sources
	DQL-Based Data Sources
	Closure Definition-Based Data Sources

	Chapter 5: Scripting
	Dashboard Customization
	General Catalog Customization
	<html> Tag
	<server> Tag
	Executing Code on Server Startup/Shutdown
	Javascript-Based repository Event Handlers
	Lifecycle-Triggered Script Execution
	Tips
	Scripted Task Execution
	Overview
	First Steps
	More Examples

	Shortcut Definition Scripting
	Survey Definition
	Property Mapping Question
	Relationship Question
	Shortcut Question
	Button Question
	Score Calculation
	Post Processing
	Example Script

	Chapter 6: XML Publishing
	Creating Scripted XML Artifacts
	Importing and Publishing a Book File
	Script Properties
	Enhanced Script Components
	Script Elements and Attributes
	Artifact Recognition
	Extractors
	Artifact Properties
	Relation Property
	Recognition Order
	Variables

	Scripted XML Samples
	Sample 1: Publish a Book With All Its Chapters
	Sample 2: Cross-Reference to Another Book
	Sample 3: Ignore Some Book Files or Document Types
	Sample 4: Books Share the Same Author

	Chapter 7: CSV Import and Export Tools
	CSV Import Tool
	Installation
	Command Line
	Header Parameter Syntax
	Data Content
	CSV File Creation
	Frequently Occurring Errors
	Useful Logging Settings

	CSV Export Tool
	Remote DQL Command Line Tool
	Remote Execution
	DQL Command
	DQL Execution Parameters

	Chapter 8: WebDAV Compliant Publishing
	Chapter 9: HPE EM Extension for Inkscape
	Installing the HPE EM Extension for Inkscape
	Using the HPE EM Extension for Inkscape
	Applying a New SVG File to Your EM Home Page
	Using Log Files for EM Extension for Inkscape

	Chapter 10: Atom-Based REST Interface
	Workspaces
	SDM Collections Workspace
	Publishing Locations Workspace
	System Collections Workspace

	Feeds
	Artifact Collection Feeds
	Filtering Feeds
	Viewing Entry Content in Feeds
	Domains in Feeds
	Property Based Searching
	Feed Ordering
	Feed Paging
	Bulk GETs

	Publishing Location Feeds
	Artifact Relationships Feed
	Artifact History Feed
	Artifact Comments Feed
	Full Text Search

	Entries
	Artifact Atom Entries
	Artifact History Entries
	Atom Entry Property Descriptors
	Primitive Properties Atom Representation
	Category Properties Atom Representation
	Relationship Properties Atom Representation
	Special Properties Atom Representation

	Artifact Data
	Resource Identification

	Category Documents
	Atom REST Operations
	CREATE
	UPDATE
	DELETE
	UNDELETE
	PURGE

	Atom REST ETags
	Conditional GET
	Conditional PUT and POST

	Atom REST Client
	Classpath
	First Steps
	Important Classes
	Demos
	Atom REST Client Demo

	Chapter 11: Lifecycle Remote Client
	Process Management
	Artifact Governance
	Classpath
	First Steps
	Important Classes

	Chapter 12: Validation Client
	Assertion Demo
	Validation and Report Rendering Demo

	Chapter 13: Report Creation
	Defining the Query in Artifact Reports
	Defining Policy Reports
	Calculating Policy Report Results
	Creating a Heat Map Portlet
	Creating a Structure Map
	Create a Custom Report
	Creating a Custom Report with Ordering

