
HP Propel

Software version 2.10

Service Exchange SDK

Documentation release date: February 2016

Software release date: December 2015

 SX SDK Legal Notices . 2
 SDK Overview . 4

 HP Service Exchange Overview . 6
 Adapters in HP SX . 13

 Content packs . 26
 Supplier configuration . 35

 SX HP OO plugin . 36
 Case Exchange . 38

 Overview . 38
 Concepts . 39

 Configuration . 54
 Operations . 63

 OO flows . 65
 Change Detections . 71

 Push Handlers . 76
 Provided content packs . 76

 How to extend HP SX Content (HP SM Problem entity) . 78
 How to develop an adapter (JIRA) . 116

 JIRA Request Support use case . 118
 Case exchange use case . 129

 JIRA Request to fulfill use case . 146
 Aggregation in HP SX . 167

 How to create CX content (HP SM Problem entity) . 180
 Appendix A: Service Exchange - API . 195

 Appendix B: Operation executors . 231
 Appendix C: Support Request operations messages . 239

 Appendix D: Per instance operation definition . 245
 Appendix E: HP SX operations reference . 246

 Appendix F: Development UI . 255

2

SX SDK Legal Notices

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HPE shall not be liable for technical or editorial
errors or omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Copyright Notice
© Copyright 2014-2016 Hewlett Packard Enterprise Development Company, L.P.

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

RED HAT READY™ Logo and RED HAT CERTIFIED PARTNER™ Logo are trademarks of Red Hat, Inc.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or registered trademarks of OpenStack Foundation in the
United States and other countries, and are used with the OpenStack Foundation’s permission.

Documentation Updates
The title page of this document contains the following identifying information:

Software Version number, which indicates the software version.
Document Release Date, which changes each time the document is updated.
Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to the following URL and sign-in or register:
https://softwaresupport.hpe.com/

Use the function at the top of the page to find documentation, whitepapers, and other information sources. To learn more about using theSearch
customer support site, go to:

https://softwaresupport.hpe.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your Hewlett Packard
Enterprise sales representative for details.

Support
Visit the Hewlett Packard Enterprise Software Support Online web site at . https://softwaresupport.hpe.com/

This web site provides contact information and details about the products, services, and support that HPE Software offers.

3

HPE Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support
tools needed to manage your business. As a valued support customer, you can benefit by using the support web site to:

Search for knowledge documents of interest
Submit and track support cases and enhancement requests
Download software patches
Manage support contracts
Look up HPE support contacts
Review information about available services
Enter into discussions with other software customers
Research and register for software training

To learn more about using the customer support site, go to:
. https://softwaresupport.hpe.com/documents/10180/14684/HP_Software_Customer_Support_Handbook/

Disclaimer
Hewlett Packard Enterprise Software provides full support for the product functionality as provided. Customer owns the necessary servicing and
repair of any development created with the SDK tool.

4

1.

2.

3.

SDK Overview
This chapter describes the content supplied in the SDK package. It also explains how to setup your development environment with the SDK.

SDK contents description
Within the SDK you will find the following directory structure and files:

doc
HP Propel Service Exchange SDK.pdf

javadoc
m2-repo
sx-content

JIRA
sm-problem
sm-problem-cx

sx-ui-war

javadoc - contains sx-api.jar and sx-adapter-api.jar javadocs. These are the APIs that you can use to develop a custom java adapter to add
support for a new backend system type that HP SX interacts with.

m2-repo - contains a maven repository with all the dependencies needed to develop your custom content. The most significant artifacts contained
are listed in the table below.

artifactId description

sx-api Core HP SX api.

sx-adapter-api Adapter-related HP SX api.

oo-sx-plugin This is a crucial artifact for HP OO flows development in HP SX. It contains the implementation for the HP OO operation
that enables you to send messages to HP SX AMQP queues within your HP OO flow.

sx-maven-plugin A useful development tool that allows for deploying development content in an automated fashion.

sx-content - contains source code for the example implementations. It is referenced in the HP Propel Service Exchange SDK. Under each
subdirectory you will find an example maven project that builds an HP SX content pack. The content pack is built into content-<project_name>
module's target.

sx-ui-war - contains a testing UI web application war file.

Development setup
In this section you will learn how to setup a maven project to develop your custom content.

Prerequisites

Running HP SX instance - It is presumed that you have access to an HP SX instance dedicated to your development.

Setting up your project

Populate your maven repository with SDK artifacts - Copy the contents of the m2-repo directory into your local maven repository (it is
usually in). By doing so you have maintained all the necessary dependencies to compile<your home directory>/.m2/repository
your HP SX content pack and to run HP SX development tools.
Setup your maven project - The specific structure of the maven project depends on the use case that you would like to implement. In
the most general case you will setup a maven project that contains three sub modules. The content sub module, oo content pack sub
module, and sx adapter sub module. Use the example implementation as a starting point. JIRA provides the most complex example,
containing a new backend system adapter implementation. See .How to develop an adapter (JIRA)
If you need to create your own OO flows in HP OO Studio you have to also populate a OO maven repository with SDK artifacts. Copy the
contents of the m2-repo directory into the OO maven repository (it is usually in).<your home directory>/.oo/data/maven

5

a.

Development using sx-maven-plugin

The SDK provided artifact is a tool that simplifies content development. It provides an automated way to deploy your contentsx-maven-plugin
i.e. you do not need to build an HP SX content pack and upload it. Instead you only need to run the maven build and your content is ready to be
tested in your HP SX instance.

See where its setup and usage is described in more detail.How to extend HP SX Content (HP SM Problem entity)

HP SX testing UI

In the directory of the SDK package you will find a war file containing a developer testing UI.sx-ui-war

Deploy this war into your development HP SX instance Jetty application server. The web application will be available under context i.e./sx-ui
the following URL:

-uihttps://sx_host:9444/sx

The HP SX testing UI needs to be configured in a similar way as the HP SX administration UI that is part of HP SX itself. Proper configuration is
needed for these files:

/opt/hp/propel/sxDevUI/WEB-INF/classes/config/users.json

/opt/hp/propel/sxDevUI/WEB-INF/classes/config/ .jsoninfrastructure

users.json - the configuration is the same as in the native HP SX administration UI. See the HP SX Configuration Guide for details. By default
the user admin of the Provider organization has the UI role which enables access to the development features.

The valid roles in the HP SX testing UI are:

UI
ADMINISTRATOR

NOTE: When enabling the UI role in the HP SX testing UI you need to enable the role in the native HP SX administration UI as well (i.e. add the
role in located in .)users.json sx.war

infrastructure.json - here you need to configure a single value - secretKey. This must match the of the IDM instance that yoursecretKey
HP SX instance uses.

{
 "AUTHENTICATION": {
 "secretKey": "<your_secret_key>"
 }
}

HP SX testing UI use cases

Generally it can be said that the HP SX testing UI enables development without the need to enter the Propel portal. It mainly supports the
following use cases:

Submit order requests: test a request to fulfill use case
Submit ticketing requests: test a ticket management use case
Notifications monitor and handling: this is where you can monitor the request state and perform approve/deny actions.

Development UI
With HP SX testing UI you also get access to Development UI. See Appendix F: Development UI

Where to go next
In case you need to:

Develop HP SX content for a system already supported by HP SX (for example HP SM). In this case you do not need any

infrastructure.json

6

a.

b.

java adapter coding. You will need to provide operation definitions and optionally HP OO flows. Read How to extend HP SX
.Content (HP SM Problem entity)

Add support for a system type not yet supported OOB. In this case you need to implement the java adapter for your system,
see . This chapter presumes that you have a basic understanding of the development setupHow to develop an adapter (JIRA)
explained in .How to extend HP SX Content (HP SM Problem entity)

HP Service Exchange Overview

Service Exchange Architecture
Service Exchange Architecture

Overview
High level architecture

Adapter role
Content packs
AMQP
HP SX use cases

Ticketing
Request to fulfill (R2F)
Case Exchange (CX)

HP SX lifecycle

Overview
HP SX is an extensible and customizable framework that allows clients to integrate with any backend system without the need to implement a
specific exchange format for each system. Clients communicate with HP SX through SX REST APIs and use a unified data format independent of
the target backend system. HP SX then processes the request, transforms it into a backend system-specific data format, and sends it to the
system. During the processing of the request, HP SX notifies the client about progress and results.

7

High level architecture
The powerful HP SX features like extensibility and customizability are achieved through software architecture utilizing " and "adapters" content

.packs"

Adapter role

An HP SX adapter is a component that interacts with a particular and makes this underlying system accessible to HP SXunderlying system
functionality. An example of an underlying system is: HP SM, HP CSA, SAP or any other similar product. Such underlying systems will be called

 in this document. In order to enable a - make it accessible by HP SX - one needs to implement an .backend systems backend system adapter
The adapter then adapts a particular to HP SX paradigms (queues, notifications, operation execution, etc.) As a result, HP SXbackend system
enables multiple different and makes their functionality available to HP SX clients, for example Propel catalog.backend systems

Content packs

HP SX content packs are the key customization components. They contain the high level process definition modeled in HP Operation
Orchestration flows (OO flows), and definitions of backend system interactions (operations). They provide business logic to the specific adapter.
For example the approval process of an order is modeled in OO Flow. The create order, approve operations etc. must be defined.

OO Flow implementation and the operations that have to be defined depend on the specific features that the content pack supports.

The operations are defined in a special HP SX JSON notation that is interpreted by the adapter's component called . Theoperation executor

8

operations typically define a set of calls to backend systems' APIs. These calls (steps of the operation) are executed sequentially. The operation
definition framework uses Freemarker templates to compose URLs, request bodies, transform responses and others. The Freemarker templates
are also a part of content packs.

Content packs can be deployed into HP SX at runtime.

AMQP

The adapters interact with surrounding components through AMQP. The chosen AMQP implementation is RabbitMQ ().http://www.rabbitmq.com/

HP SX use cases

HP SX is designed to support the following use cases:

Ticketing - synchronization of ticket (i.e.,) data between request service (Propel catalog) and ticketing system.support request
Request to fulfill (R2F) - catalog based self-service fulfillment. Applies to .service requests
Case Exchange (CX) - exchanging records across multiple systems to facilitate collaboration across silos.

Ticketing

HP SX provides a framework to enable synchronization of data between request service (Propel catalog) and ticketing system,support request
such as HP SM, JIRA, Bugzilla and Service Anywhere ("backend"). In the backend system, a "ticket" is represented by a system-specific entity
(for example, a ticket can be a "support request" in Service Anywhere or a "problem" in JIRA). Changes synchronized include: support request
creation and update, request comment create, request attachment create, and actions performed on request. Synchronization of data is
bidirectional: HP SX periodically polls both the request service and backend for request (ticket) changes, and keeps data in sync between them.

For illustration, if ticketing was enabled for SAW backend then:

When the user creates a support request in Propel, a support request with same data is created in SAW, and vice versa.
When the user adds a comment to a support request in SAW, the same comment is added to the corresponding support request in
Propel, and vice versa.
And so on.

SX contains a generic polling mechanism and syncing service that the adapter for a backend system can reuse. A must definecontent pack
required operations (so that SX can perform concrete actions - ticket create, add comment, etc. - in the backend). There is no OO flow involved in
this use case.

For ticketing operations reference see . For guidance on how to implement ticketing for a newAppendix C: Support Request operations messages
backend system, see the topic.JIRA Request Support use case

9

1.
2.

Request to fulfill (R2F)

HP SX provides a public R2F API so that clients (for example Propel portal) may integrate with any fulfillment system supported by HP SX.
Fulfilment system here means a backend system as defined above that participates in R2F use case. The client sends a request containing all the
information needed to fulfill the request (fulfillment system instance id, requested item id ...) and HP SX immediately sends the response with the
generated request ID. The client then waits for the incoming notifications from HP SX. HP SX accepts the incoming request and sends it to the
Operation Orchestrations server, causing the associated OO flow to execute. The OO flow decides which HP SX operation should be executed
based on the input data, and instructs HP SX to run the operation by sending it an asynchronous message. HP SX executes the operation via its

 causing an interaction with the fulfillment system and invoking the corresponding operation on the fulfillment system side.Operation Executor
After the operation is finished, there might be data changes on the fulfillment system that HP SX and the client are interested in. Here the backend
system specific component becomes involved, detecting such data changes and processing them when they occur. Each dataChange Observer
change is handled by the Change Observer in the following way:

A notification about the change is sent to the client.
The corresponding OO flow is executed to determine if further action is necessary.

For more details about the SX API, see SX API Docs.

10

11

Case Exchange (CX)

HP SX provides a framework to implement automatic data exchange between two or more backend systems.

The typical implementation of this usecase in HP SX enables automatic incident delegation from one service desk system into another service
desk system. The automatic delegation here means new linked incident creation in the other service desk system. The linked incidents are then
kept aware of each others updates and their states are changed based on the changes occurring in the linked incidents.

CX workflow is similar to R2F workflow except there is no initial request from a client (for example Propel portal.) The initiation comes from a
defined change in the backend system that HP SX is configured to watch for. CX boots when HP SX is booted. Special CX components - Change
Observers - listen for changes in specified backend systems, and for each change they execute the corresponding OO flow which determines the
sequence of operations to be executed. The main difference between R2F and CX is that in CX there is no client request and the CX OO flows
have a different logic in them. For more details see .Case Exchange documentation

12

HP SX lifecycle

In the following it is presumed that HP SX prerequisites are fulfilled. They include:

running RabbitMQ
running HP OO

An HP SX instance can be in one of the following stages:

Starting - in this stage, the following actions are performed:
checking if important RabbitMQ queues exist and creating them if they do not
starting of RabbitMQ listeners
loading and parsing of all available configuration files
loading and initialization of content packs

content pack initialization includes the check for oo flow versions and possibly the uploading of a new oo flow.
Running

instance is initialized and all APIs listen for incoming requests
all change observers wait for events in fulfillment systems.
content packs are reloaded dynamically this applies to HP OO flows too they are redeployed into HP OO with the content pack
upload.

Closing
closing of RabbitMQ listeners
shutdown.

13

1.

2.

Stopped - this stage is important for configurations that cannot be loaded dynamically within the running state. The examples follow
configure HP SX infrastructure (RabbitMQ, HP OO, SMTP server)
configure backend system instances
deploy new adapters for backend systems

Adapters in HP SX

Adapters in HP SX
Working queues in HP SX
A typical HP SX R2F message flow
com.hp.ccue.serviceExchange.adapter.Adapter

Adapter identification and /request message decoration
Extending AdapterAbstract
com.hp.ccue.serviceExchange.adapter.pipeline.Pipeline
AdapterPipelineBuilder

com.hp.ccue.serviceExchange.adapter.pipeline.PipelineBlock
com.hp.ccue.serviceExchange.adapter.pipeline.ExecutionContext
Variables
Writing custom blocks
Default variable binding
Placing a block into a pipeline
Connecting several blocks together

Change observers
Operation executors

Adapters in HP SX
This chapter is an introduction to the HP SX adapter API. You should be able to implement your own custom adapter after reading it.

The main role of an adapter is that it adapts an existing backend system to HP SX paradigms.These are the main components of each adapter:

com.hp.ccue.serviceExchange.adapter.Adapter implementation: adapter interaction manager, capable of boot/shutdown
pipeline: pipelines are used for the processing of AMQP messages, are made of blocks any of which might be custom blocks. Generic
blocks are provided.
change detector: detects changes in the backend system and initiates further processing
operation executor: influences operation execution (from operations.json)
case exchange adapter: if you want to enable the backend system for case exchange functionality.

All components except the (which glues them together) are optional. Butcom.hp.ccue.serviceExchange.adapter.Adapter implementation
before leaving out a particular component, make sure that it will not be needed once the adapter is booted. Most likely the Operation Executor will
be needed - without it an adapter is not able to do anything. There are cases where the pipeline is not needed, mostly where adapters execute
operations on request, not as a result of AMQP messages received (these are ticketing adapters.)

Working queues in HP SX

There are three working queues in HP SX :

CN - queue for submitting catalog notifications. Messages published to this queue are forwarded to catalog (catalog notification.)
OO - queue for submitting OO flow requests. Messages published to this queue are fowarded to OO (Operations Orchestration engine.)
SX - queue for passing messages to adapter pipelines. Messages come from: OO, /operation RESTful endpoint and change
observers/pollers.

The logic behind CN and OO queues could be invoked directly (the logic which is performed by queue consumers/listeners), but most of the time
the natural is not a problem. Actually it is desired, and simplifies the whole program workflow. The listener on the SX queue firstasynchronicity
determines which adapter is interested in the received message, and then passes it to the adapter.

A typical HP SX R2F message flow

To demonstrate the cooperation of the adapter components a description of the message flow for an R2F use case is provided here.

This is the typical flow of an message in HP SX, indicating which queue plays which role:order

The incoming order request is submitted through the HP SX RESTful interface (/request REST endpoint.) After some decoration it goes
directly to the OO queue, and OO decides what to do next.

14

2.
3.
4.

5.

6.
7.

8.
9.

After the message is processed in OO it goes directly to the HP SX queue.
The adapter is chosen based on the properties of the incoming message (builtin AMQP property)type.
The adapter chooses a pipeline for the message processing. For messages from OO, this is usually a pipeline, which just PLAIN

 an (via OperationExecutor.) This involves an interaction with the underlying system (for example HP CSA, HP SM)executes operation
during the operation execution. HP SX remembers that is created in the underlying system and sets up constant monitoring ofan entity
changes of this entity (RESTful polling, RESTful callback notification,...)
Whenever a change of the monitored entity occurs, a message is published into the HP SX queue with the type set to
'{adapter}:CHANGE'.The message about the change from the HP SX queue is dispatched by executing CHANGE pipeline (based on
message properties/type.) This pipeline usually , (CN queue), and possibly (OOexecutes operation notifies catalog invokes OO flow
queue.)
[Point 2 extension]: OO might also decide to send an email (approve/reject/close request) instead of publishing a message.
Clicking a link in such an email invokes /operation RESTful endpoint, which in turn passes the message to the HP SX queue and sets the
message type to '{adapter}:OPERATION'.
The OPERATION pipeline usually: and .executes operation notifies catalog
The steps 2, 3, 4, 5, 6, 7 occur in iterations untill depending on the specific implementation

This diagram shows the static relationship between queues. It uses the OOB available HP SM adapter as an example:

Here is a detailed diagram of an HP SX adapter, again using the HP SM adapter as an example:

15

 Here you see that an adapter interacts with:

backend system via REST/SOAP/HTTP (green lines)
the rest of SX via AMQP queues (orange lines.)

com.hp.ccue.serviceExchange.adapter.Adapter

A fully qualified package name is used here in order to clearly differentiate between the adapter and the Adapter class implementation. The
Adapter java class processes incoming AMQP messages, which are pre-processed by the SX Message Listener (the classic implementation of an
AMQP listener.)

All adapter instances in the system are available via instances of com.hp.ccue.serviceExchange.adapter.AdapterRegistry. This registry is
scanned by SX Message Listener in order to find an adapter which is in the processing of the received message. interested Each incoming AMQP

 has its - sample type values are CSA:PLAIN, CSA:CHANGE, SM:OPERATION. These types must be set by any SX queuemessage type
publishing code (for example OO.) The first part of (before the colon) is called throughout the API docs. The defaulttype major type
implementation of returns true if major type matches an adapter name. AisInterested() fter the adapter is chosen, its processMessage() method
is called.

Here is a non-default implementation of the isInterested() method:

16

@Component
public class OperationCentricAdapter extends AdapterAbstract {

 @Override
 public boolean isInterested(String majorType, MessageProperties properties) {
 // this is more complicated - we inspect operation name (not the majorType)
 final String operationName = extractOperationName(properties);
 return getOperationExecutor().isOperationRecognized(operationName);
 }

 ...

}

NOTE: The first adapter in the row is ALWAYS SxInternalAdapter (named SX), which is used to implement core HP SX functionality. It is
necessary to not pass the message to other adapters if it is an internal message.

Regarding AMQP message processing, the entry point to an adapter is the processMessage() method. It is given:

the body of the AMQP message parsed as JSON
AMQP message headers
an initial data context.

public interface Adapter {

 /**
 * Handles the given AMQP message.
 *
 * @param properties message properties
 * @param message AMQP/JSON message to be handled/processed
 * @param initialContextData initial data context, may be null
 *
 * @return execution context after the processing finishes
 */
 public ExecutionContext processMessage(MessageProperties properties, Map<String,
Object> messageBody, @Nullable Map<String, Object> initialContextData);

 ...

}

Adapter identification and /request message decoration

An adapter instance in the registry is also identified by its or . Name and system type are usually the same. Name is usedname system type
mainly for internal SX identification purposes (e.g. HP SM, HP CSA, EMAIL). System type is directly referenced in an incoming RESTful /request
message, under a key. The /request message uses the identified adapter for /request message decoration. Sample existing system_type

 are given here:names/system types

SM/SM
CSA/CSA
EMAIL/urn:propel:email

Extending AdapterAbstract

When writing a custom adapter, it is recommended to use the provided implementation

17

 (see javadoc). This class takes in constructor:com.hp.ccue.serviceExchange.adapter.provided.AdapterAbstract

pipeline builder: see below.
name: identifies adapter - make sure it is unique.
[opt] operation executor: see below.
[opt] subsystem type: identifies adapter in incoming /request message. Same as if not provided.name

An adapter implementation should have its annotation in order to have it spring-enabled.@org.springframework.stereotype.Component

It might then also its internal fields.@Autowire

IMPORTANT: It is crucial to not ommit the execution of . This call registers an adapter to the adapter registry.afterPropertiesSet()

Here is a simple working adapter implementation:

@Component
public class MyAdapter extends AdapterAbstract {

 @Autowired
 public MyAdapter(MyOperationExecutor operationExecutor, MyPipelineBuilder
pipelineBuilder) {
 super(Constants.MY_ADAPTER_NAME, operationExecutor, pipelineBuilder);

setRequestMessageHeaderTemplate("my-r2f/sx/templates/generateMessageHeader.ftl");
 }
}

NOTE: The invocation of setRequestMessageHeaderTemplate() signals that this adapter is interested in /request message decoration. The result
of decoration should be aligned with message format expectations as described in .SX Messages

com.hp.ccue.serviceExchange.adapter.pipeline.Pipeline

An adapter uses a for message processing, and can have any number of pipelines. Pipelines are an internal abstraction of an adapter.pipeline
When choosing the appropriate pipeline, by default the adapter just takes the second part of the AMQP message property and uses it for thetype
pipeline name. NOTE: If the type is CSA:PLAIN the CSA adapter extracts the pipeline name 'PLAIN' - this can be overriden in

). getPipelineNameForMessage()

AdapterPipelineBuilder

If the pipeline is about to be used for the first time, it is built using the constructor-given AdapterPipelineBuilder (lazy construction). Here is a
simplistic method implementation:buildPipeline()

18

@Component
public class MyPipelineBuilder implements AdapterPipelineBuilder {

 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {
 // we can build only a single pipeline: OPERATION
 switch (name) {
 case Names.PIPELINE_OPERATION:
 return buildOperationPipeline(factory);
 default:
 return null;
 }
 }

 private Pipeline buildOperationPipeline(PipelineBuilderFactory factory) {
 Builder b = factory.newBuilder(Names.PIPELINE_OPERATION);
 b.addBlock(...);
 b.addBlock(...);
 b.addBlock(...);
 return b.build();
 }

 ...

}

com.hp.ccue.serviceExchange.adapter.pipeline.PipelineBlock

Pipelines are intended for linear executions of steps during AMQP message processing. Pipeline elements are called blocks and they are
s executed linearly, ee PipelineBlock.execute(). If branching is required, it could be implemented (via isBlockInterested()), but consider first if two

pipelines sharing some common blocks might be a better solution.

See pipeline block API javadoc (com.hp.ccue.serviceExchange.adapter.pipeline). There are some provided/prebuilt blocks available in package
com.hp.ccue.serviceExchange.adapter.provided (See javadoc.)

com.hp.ccue.serviceExchange.adapter.pipeline.ExecutionContext

Before the pipeline's execute() method is invoked, an ExecutionContext is created. It serves for storing the message's processing state. Any
message processing state must be stored into the object.ExecutionContext

WARNING: Saving the message processing state to a block member variable might lead to concurrency issues. Pipelines and blocks are
intended to be ThreadSafe! Always save the state to the execution context.

There is:

operation name
arbitrary java data (map):

can be pre-initialized from above
does not have to be serializable - you can store here a reference to your action classes
the default implementation puts AMQP message headers into the data map

AMQP message as JSON (map):
message/value-centric
must be serializable to JSON.

The default implementation of the initial execution context construction is available in the method.AdapterAbstract.initContext()

Variables

19

The order of block execution is determined by their order in the pipeline. Variables are a way to make a block independent, generic, pluggable
and thus reusable. There are two kinds of variable:

block variable:
has a name (local to a block)
is IN or OUT
is strongly typed (String, Map,...)

Configured block variables named var1, var2, var3 and var4 are depicted in this diagram:

context variable:
points to some place in the execution context (for example 'message' field 'instanceConfig')
is strongly typed (String, Map,...)
does not have a name but is identified by creating an instance of
com.hp.ccue.serviceExchange.adapter.pipeline.ContextVariable
once the value is retrieved (looked up in the execution context), it is cached on a specific place in the execution context again
uses one of the provided factory methods ContextVariable.newXxx()

Instantiated context variables are depicted in this diagram:

Writing custom blocks
A pipeline block usually does a very simple thing which could be expressed with a few lines of code: it a simple Java code. Itswraps
uniqueness is that it executes in a pipeline. It therefore needs to adapt pipeline input to input which is expected by the wrapped Java logic. For
example:

You want to create a custom block which transforms JSON to JSON via a predefined ftl (Freemarker.) The ftl is the same for all inputs. The Java
code which needs to be executed looks like this:

20

private MessageTransformer mt;

 private final String templatePath;

 ...

 public Map<String, Object> transform(Map<String, Object> messageIn) {
 String transformResult = mt.transformMessage(messageIn, templatePath);
 return JsonUtils.readJsonNothrow(transformResult);
 }

To summarize the inputs and outputs needed:

one input variable typed as Map "messageIn"
one output variable typed as Map "messageOut"
one Java member variable (to store template path)
threadsafe MessageTransformer instance.

When implementing the custom block:

extend PipelineBlockAbstract: this is the easiest way to implement the custom block
declare Java fields for inputs common to all invocations
declare block variables for inputs/outputs specific to the invocation (per ExecutionContext instance)
bind the block variables to a real place in ExecutionContext (ContextVariable)
perform the wrapped Java logic in the doExecute() method.

Here is the result of this effort:

21

package com.hp.ccue.serviceExchange.adapter.provided;

import java.util.Map;
import com.hp.ccue.serviceExchange.adapter.pipeline.ExecutionContext;
import com.hp.ccue.serviceExchange.adapter.pipeline.ContextVariable;
import com.hp.ccue.serviceExchange.adapter.pipeline.impl.BlockVariable.Type;
import com.hp.ccue.serviceExchange.adapter.pipeline.impl.PipelineBlockAbstract;
import com.hp.ccue.serviceExchange.message.MessageTransformer;
import com.hp.ccue.serviceExchange.utils.JsonUtils;

/**
 * Generic message transform block.
 */
public class MessageTransformBlock extends PipelineBlockAbstract {
 // bloc variable names
 public static final String VAR_MSG_IN = "messageIn";
 public static final String VAR_MSG_OUT = "messageOut";

 // members
 private final String templatePath;
 private final MessageTransformer mt;

 protected MessageTransformBlock(MessageTransformer mt, String templatePath,
ContextVariable<Map> messageIn, ContextVariable<Map> messageOut) {
 this.mt = mt;
 this.templatePath = templatePath;
 bindBlockVariable(VAR_MSG_IN, Type.IN, messageIn);
 bindBlockVariable(VAR_MSG_OUT, Type.OUT, messageOut);
 }
 @Override
 public void doExecute(ExecutionContext context) {
 @SuppressWarnings("unchecked")
 String r = mt.transformMessage((Map<String, Object>) getVariable(context,
VAR_MSG_IN), templatePath);
 Map<String, Object> newMsg = JsonUtils.readJsonNothrow(r);
 setVariable(context, VAR_MSG_OUT, newMsg);
 }
}

NOTES:

bindBlockVariable() method creates the binding between block variable (it creates it) and context variable.
doExecute() method gets/sets the variable value via getVariable() and setVariable().
The entire block is quite universal and therefore easily reusable. The transformation source/target can be customized by providing
ContextVariable instances in the Block constructor.

Default variable binding

If a block variable will be bound to a specific place in the context in most cases, you can also provide :variable default

MessageTransformBlock

22

/**
 * Generic message transform block.
 */
public class MessageTransformBlock extends PipelineBlockAbstract {

 /**
 * Default input/output message context binding - {@link
ExecutionContext#message}.
 */
 public static final ContextVariable<Map> DEFAULT_MESSAGE_IN =
ContextVariable.newEntireMessage();
 public static final ContextVariable<Map> DEFAULT_MESSAGE_OUT =
ContextVariable.newEntireMessage();

 ...

 protected MessageTransformBlock(MessageTransformer mt, String templatePath,
ContextVariable<Map> messageIn, ContextVariable<Map> messageOut) {
 super(StringUtils.getLastSegment(templatePath, "/"));
 this.templatePath = templatePath;
 this.mt = mt;
 bindBlockVariable(VAR_MSG_IN, Type.IN, messageIn, DEFAULT_MESSAGE_IN);
 bindBlockVariable(VAR_MSG_OUT, Type.OUT, messageOut, DEFAULT_MESSAGE_OUT);
 }

}

NOTE: The bindBlockVariable() method used checks if the third argument (messageIn, messageOut) is null, and if it is it uses the fourth argument
(DEFAULT_MESSAGE_IN, DEFAULT_MESSAGE_OUT), which is considered a default/fallback.

Placing a block into a pipeline

When a block executes, it needs to bind its variables to a real place in an execution context: it needs to bind a block variable to a context variable
(connect the yellow dots). Presuming the example block is placed in a pipeline like this:

private Pipeline buildMsgTransformPipeline(PipelineBuilderFactory factory) {
 Builder b = factory.newBuilder(Names.PIPELINE_MSG_TRANSFORM);
 // just transform the message
 // we need just one ContextVariable - the input and output are the same
 ContextVariable<Map> ctxMsg = ContextVariable.newEntireMessage();
 // now create/configure the block
 b.addBlock(new MessageTransformBlock(mt,
"sx-r2f/sx/templates/ooMsgToOperationMsg.ftl", ctxMsg, ctxMsg);
 // we are done with pipeline building, the result is stored in ctx.message
 return b.build();
 }

The block is now configured to transform the entire message in the context (for both input and output). This is what was done:

23

NOTE: By default, the presence of input variables is checked during the validate() routine in PipelineBlockAbstract. If an input variable evaluates
to a null value (missing/not set), a validation exception is raised. If an input variable is intended as optional, set a boolean flag of thevalidate
bindBlockVariable() method to .false

Connecting several blocks together

To connect two blocks together (i.e. to bind their block variables), bind them to the same context variable. Here is an example:

ContextVariable<Map> catalogNotificationMessage =
ContextVariable.newDataMap("cnMessage");
 b.addBlock(new PrepareCatalogNotificationMessageBlock(
 ContextVariable.newFixedValue(RequestState.COMPLETED),
 catalogNotificationMessage));
 b.addBlock(new CatalogNotificationBlock(cnPublisher,
 // notification message
 catalogNotificationMessage,
 // entity ID is 'id' in the message
 ContextVariable.newMessageString(MessageConstants.ID),
 // notification type - always request

ContextVariable.newFixedValue(CatalogNotificationMessagePublisher.NotificationType.REQUEST)
));

There are two blocks here:

PrepareCatalogNotificationBlock: creates JSON (map) to be published to catalog (notify catalog)
CatalogNotificationBlock: publishes the given message (map) to catalog, providing it also with entity id (string) and notification type
(enum).

Clearly the output of PrepareCatalogNotificationBlock needs to be bound to one of the inputs of CatalogNotificationBlock. This is done by

24

declaring the context variable which is passed to both blocks:

: bind to OUTPUT BlockVariablePrepareCatalogNotificationBlock
: bind to INPUT BlockVariable.CatalogNotificationBlock

This diagram depicts the process:

NOTES:

The cnMessage property in the data context is initially empty/missing. Once the Prepare Catalog Notification Block sets the value, it is
created in the context.
The Catalog Notification Block does not have any output variables, it just initiates catalog notification via AMQP.
If you look at the diagram carefully, you can see that it is possible to define something like a fixedValue ContextProperty. This
property would not originate in context values but in your Java code, which is a very useful concept.
Bare in mind that a real PrepateCatalogNotifcationBlock has seven internal variables. Five are omitted in the diagram to keep it simple.

Change observers

Because of HP SX's asynchronous nature, the adapter needs to detect entity changes in the . The detection could be active -backend system
polling, or passive - an exposed endpoint receiving notifications. Once the change is detected the adapter acts accordingly. It usually sends an
AMQP message to an SX queue to be dispatched by itself, with the type {adapterName}:CHANGE. Despite the fact that change detection can be
done in several ways (for example polling or active notification from the backend system), HP SX in particular supports the polling approach in the
API.

The change observer implementation needs to implement class (which extends interface):ChangeObserver Runnable

25

@Component
public class CsaChangeObserver implements ChangeObserver {

 @Value("${adapter.csa.change.observer.interval}")
 private int pollInterval;
 ...
 public int getPollIntervalSec() {
 return pollInterval;
 };
 @Override
 public void run() {
 ...
 }
}

NOTES:

In the run() routine, the observer should check changes in all configured instances.
Property values have been injected (adapter.csa.change.observer.interval). These properties are taken from

. You can place in this file any custom content and it will be loaded automatically during applicationMETA-INF/adapter.properties

boot.

At this step in the construction of the adapter an instance of change observer needs to be set, so that the adapter schedules or unschedules the
observer during the adapter boot and shutdown. Here is an example:

@Component
public class CsaAdapter extends AdapterAbstract {

 @Autowired
 public CsaAdapter(CsaOperationExecutor operationExecutor,
 CsaPipelineBuilder pipelineBuilder,
 CsaChangeObserver changeObserver) {
 super(CsaConstants.CSA_ADAPTER_NAME, operationExecutor, pipelineBuilder);
 setChangeObserver(changeObserver);
 }

}

NOTE: Using @Autowired saved some coding.

Operation executors

An adapter is usually accompanied by an file. This file is part of the containing definiton of operations made of steps to beoperations.json content,
executed linearly. It is a similar concept to pipelines. However, these operations/steps are mainly concerned with interactions with the backend
system and the transformation of sent/received messages. The interaction and message transformation can be easily expressed in
operations.json, more easily than in Java. For more on this topic see . The interpretation of operations.jsonOperations configuration and templates
is performed by com.hp.ccue.serviceExchange.operation. .OperationExecutor

The OperationExecutor is given a (from the pipeline Execution Context.) The operation execution output (the transformed message) ismessage
subject to further pipeline execution. With regard to pipelines, there is a block which is capable of an operation execution called

. It wraps the given instance of OperationExecutor and delegates the operation execution to it. A pipeline with anOperationExecutionBlock
operation execution block might look like this:

26

 For more details on operation executors and how to extend the default HP SX ones, see .Appendix B: Operation executors

Content packs

HP SX Content packs
Overview
Content Management UI

Downloading content packs

27

1.
2.

1.
2.
3.

1.
2.
3.

Deleting content packs
Upload content packs

Content Pack Structure
File metadata.json
File sx/flows.json
File sx/operations.json
Custom operations.json files for specific instances
FreeMarker templates

Special message directives
HP OO content packs

Function sendMessageToMQ
Limitations

Java code can be changed only by writing a new HP SX Adapter
Creating new content packs

1. Create content pack structure
2. Define metadata.json
3. Define operations
4. Create the OO flow
5. Zip the content pack and upload

Creating content packs in development
See also

HP SX Content packs

Overview
Content packs are extension points to HP SX. A typical role of a content pack in HP SX is - in collaboration with adapters - to enable HP SX to
communicate with backend systems, for example, HP SM or HP CSA. They also contain the order message lifecycle modeled in HP OO flows in
R2F use case.

Technically a content pack is a zipped file containing operation definitions, FreeMarker templates, OO flows and optionally other configuration
files. Content packs can be installed/uninstalled into the running HP SX server.

Content Management UI
The HP SX Content Management UI provides an easy interface to view content packs that are currently uploaded in HP SX, download, upload
and remove them.

Upload and delete operations include the automatic upload or removal of relevant OO jar files (HP OO content packs), and the merging of HP SX
customizations into the running HP SX server.

Open the section from HP SX UI.Content Management
In the , view the available content packs with the following details:Content Management UI

version numbers
which adapter they connect to
when last uploaded
their high level features
the relevant OO content pack name.

Downloading content packs

To download a content pack, check the appropriate content pack in the column.Id/Name
Click the button.Download
When prompted, the zip. Depending on your browser settings, select the location through … or copy the Save <contentpack>. Save As

zip from the Downloads folder to another location. View and customize the files.<contentpack>.

Deleting content packs

To delete one or more content packs, check the appropriate content packs in the column.Id/Name
Click the button.Delete
A confirmation with the number of content packs deleted appears below the buttons on the top of the .Content Management UI

28

1.
2.
3.
4.

Upload content packs

To upload a content pack, click the button.Upload
Locate the .zip or .jar to be uploaded, for example, the - containing a customized file.sm case-exchange.zip case-exchange.json
Select .Open
It takes a moment for the upload to process. When it is complete a confirmation appears below the buttons on the top of the Content

 and the Upload Time for the relevant content pack is updated.Management UI

Note: When uploading a content pack that was already loaded, HP SX will automatically detect this. The content pack does not need to be
selected or specified. HP SX replaces the old version. Content pack are identified by ID attribute provided in their metadata file.

Content Pack Structure

Content packs contain the following folders and files:

[oo] - folder containing the HP OO content pack(s) of custom OO flow(s).
[sx] - folder containing HP SX-specific configuration files.

[templates] - folder containing Freemarker templates
operations.json - file containing HP SX operation definitions
flows.json - file containing the mapping of adapter and to OO flowmessage type

metadata.json - the content pack description file.

This is an example structure. The structure may differ for specific use cases and adapters. For example HP SM content packs contain an sm
folder where the customization HP SM unload files are located. Similarly ticketing content packs do not contain OO flows (HP OO content packs)
so the folder and are not present.oo flows.json

File metadata.json

Sample metadata.json

29

{
 "id": "sm-r2f",
 "name": "SM request to fullfilment",
 "description": "",
 "version": "1.0.0",
 "adapter": "SM",
 "features":[
 "r2f",
 "sm-r2f"
],
 "files": [
 {
 "path": "sm/SXR2FCustomizations.unl",
 "version": "1.01.1",
 "type": "sm_unload"
 },
 {
 "path": "sm/SXR2FDB.unl",
 "version": "1.01.1",
 "type": "sm_unload"
 },
 {
 "path": "sm/SXR2FExtAccess.unl",
 "version": "1.01.2",
 "type": "sm_unload"
 }
]
}

File is a description file of the content pack. It contains the following information:metadata.json

id - content pack's unique ID, limited to 30 characters.
name - content pack name.
description - content pack description.
version - content pack version. IMPORTANT: If you make changes to a content pack increase the version number before upload.
adapter - defines the adapter the content pack is created for.
features - list of the basic HP SX use cases that the content pack supports. When developing your custom content pack specify all use
cases that you implement ()r2f, ticketing, case-exchange
files - list of adapter-specific files where there is a need to specify a type and a version; currently used for HP SM unload files only. The
version specified here is checked by HP SX self-test.

List of currently defined features in HP SX are:

r2f - general requests for fulfilment
ticketing
case-exchange

NOTE: Customers can define new features. This is useful if a custom SX adapter wants to check whether a content pack with a specific feature is
deployed.

File sx/flows.json

File contains the mapping of the pair - adapter type and message type to OO flow - and the definition of parameters that will beflows.json
passed to the OO flow.

Sample metadata.json

30

{
 "<adapterType>": {
 "<messageType>": {
 "flowId": "<flowId>",
 "compressMessage": true|false,
 "parameters": [
 {
 "name": "<parameterName>",
 "valueSelector": "<valueSelectorExpression>",
 "source": "<sourceType>"
 }
]
 }
 }
}

This file specifies the following:

adapterType - same as the in the content pack description.adapter
messageType - HP SX can receive several types of messages. A user can specify different flows for different types - they are matched
to the messageType received in http request body on the /reqeust REST endpoint. See Appendix A: Service Exchange - API
flowId - identifier of OO flow that is invoked to process a message. The HP OO content pack containing the flow is located in the /oo
folder of the content pack.
compressMessage - tells HP SX whether it should compress a message before sending it to OO.
parameters - array of input parameters of flow:

parameterName - parameter name, the flow receives the parameter with this name during invocation.
valueSelectorExpression - expression that references the value of the configuration. It uses dot notation to get subproperties
(i.e. JsonPath).
sourceType - source of the value, which can be one of:

infrastructure - find value in configuration file: sx.war/WEB-INF/classes/config/infrastructure.json
oo-properties - find value in configuration file: sx.war/WEB-INF/classes/config/oo/properties.json
message - find value in the input JSON message to be sent to OO.

Here is an example:

Structure of flows.json

31

{
 "SM": {
 "order": {
 "flowId": "95b152da-9666-4c05-883c-593e45bffaa5",
 "compressMessage": true,
 "parameters": [
 {
 "name": "sxConfiguration.jmsBroker",
 "valueSelector": "$.JMS_BROKER.endpoint",
 "source": "infrastructure"
 },
 {
 "name": "sxConfiguration.smtpServer",
 "valueSelector": "$.smtpServer",
 "source": "oo-properties"
 },
 {
 "name": "orderInfo.id",
 "valueSelector": "$.orderInfo.id",
 "source": "message"
 }
]
 }
 }
}

File sx/operations.json

File contains operation definitions that are interpreted by the adapter's operation executor. An operation is list of step operations.json
definitions. Invoking an operation means invoking all the steps the operation consists of. The steps are invoked sequentially in the order they are
defined.

{
 "<operation_1>": [
 <stepDefinition_1>,
 ...
 <stepDefinition_n>
],
 "<operation_2>": [
 <stepDefinition_1>
]
}

Step definition format can differ depending on the adapter type, but the must be unique to the adapter type. There is though aoperationName
base implementation that adapters extend. See for the operations definition format provided by the baseAppendix B: Operation executors
implementation.

Example:

Sample flows.json

Structure of operations.json

32

{
 "checkSubscription": [
 {
 "label": "Retrieve subscription",
 "requestUrlTemplate": "subscriptionUrl.ftl",
 "responseTemplate": "subscriptionResponse.ftl",
 "method": "GET"
 },
 {
 "label": "Retrieve service instance",
 "requestUrlTemplate": "serviceInstanceUrl.ftl",
 "responseTemplate": "serviceInstanceResponse.ftl",
 "method": "GET"
 },
 {
 "label": "Retrieve root component",
 "requestUrlTemplate": "rootComponentUrl.ftl",
 "responseTemplate": "rootComponentResponse.ftl",
 "method": "GET"
 },
 {
 "label": "Create subscription notification",
 "resultTemplate": "subscriptionNotification.ftl"
 }
]
}

Custom operations.json files for specific instances

HP SX allows you to change the behavior of any operation for specific instances, by overriding operations. For more info see:

Appendix D: Per instance operation definition

FreeMarker templates

FreeMarker templates are used to transform messages to and from the HP SX JSON format. Templates are written in FTL (FreeMarker template
language).

Example of a template transforming the JSON format to XML (In the example it is presumed that an HP SX order message is transformed):

Sample operations.json

33

<#switch orderInfo.orderType>
 <#case "change">
 <#if orderInfo.subscription.subscriptionId??>
 <Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/"><Body>
 <RetrieveSXSubscriptionRequest xmlns="http://schemas.hp.com/SM/7">
 <model>

<keys><subscriptionID>${orderInfo.subscription.subscriptionId}</subscriptionID></keys>
 <instance/>
 </model>
 </RetrieveSXSubscriptionRequest>
 </Body></Envelope>
 </#if>
 <#break>
 <#case "quote">
 <#break>
</#switch>

Example of a template transforming XML to the JSON format (The output of this transformation is HP SX order message):

<#ftl ns_prefixes={
 "soap":"http://schemas.xmlsoap.org/soap/envelope/",
 "sm":"http://schemas.hp.com/SM/7"}
>
<#switch message.orderInfo.orderType>
 <#case "change">
{
 "orderInfo":{
 "subscription": {
 <#if
doc["soap:Envelope/soap:Body/sm:RetrieveSXSubscriptionResponse/@returnCode"]=="9">
 "status": "Deleted",
 "displayName": ""
 <#else>
 "status":
"${doc["soap:Envelope/soap:Body/sm:RetrieveSXSubscriptionResponse/sm:model/sm:instance/sm:Status"]}",
"displayName":
"${doc["soap:Envelope/soap:Body/sm:RetrieveSXSubscriptionResponse/sm:model/sm:instance/sm:DisplayName"]}"
</#if>
 }
 }
}
 <#break>
 <#case "quote">
 <#break>
</#switch>

Special message directives

HP SX also supports a few special JSON directives. These can influence message processing in the following operation steps when set in the

Sample template: JSON to XML

Sample template: XML to JSON

34

1.
2.
3.

a.
b.

4.
a.
b.

5.

output JSON message.They are also useful to influence the message processing in the adapter's pipeline blocks that follows the operation
executor block executing the operation.

These directives are:

skipProcessing - JSON boolean property. If in the JSON message the step output is skipped, both the following steps of the operation
and pipeline processing are skipped.
skipProcessingReason - JSON text property. Describes the reason why the processing was skipped.
stopListening - JSON text property. If set in the JSON message then HP SX will stop listening for changes of this entity. This is mainly
used by EntityChangeCleanupBlock (see javadoc).
skipFlowRun - JSON boolean property. If set in the JSON message the OO flow is not called at the end of the operation.

HP OO content packs

HP SX content packs usually come with custom HP OO flows, which are designed in . The output of HP OOHP Operation Orchestration Studio
Studio is the HP OO Content Pack which is a jar file. This jar file must be put into the HP SX content pack's folder. When an HP SX contentoo/
pack is uploaded to the HP SX server the HP OO Content Packs are automatically deployed on the HP OO server defined in

.infrastructure.json

IMPORTANT: If you make changes to an HP OO Content Pack you need to manually increase its version number. This is required for the content
pack changes to be detected and re-deployed to the HP OO sever. The content pack version is kept in a file thatcontentpack.properties
can be found in the HP OO studio project folder.

Function sendMessageToMQ

To send messages from OO flow back to HP SX use function from plugin . This plugin adds a new messagesendMessageToMQ oo-sx-plugin
into HP SX's AMQP queue.

This function's input properties are:

brokerUrl - set value to (passed to OO flow after defined in flows.json)${sxConfiguration.jmsBroker}
brokerUsername - set value to (passed to OO flow after defined in flows.json)${sxConfiguration.jmsBrokerUsername}
brokerPassword - set value to (passed to OO flow after defined in flows.json)${sxConfiguration.jmsBrokerPassword}
queueName - assign from input parameter (always passed to OO flow by HP SX)queueName
operationName - name of the HP SX operation
messageText - JSON message to be sent as message body
messageCompressed - whether the messageText should be zip compressed.

Limitations
Content packs of the current HP SX version have the following limitations:

Java code can be changed only by writing a new HP SX Adapter

Currently there is no way to customize the Java implementation of existing HP SX adapters. That means if you want, for example, to extend the
HP SM adapter with a feature which is totally different from creating an order or from case exchange then you cannot do it without defining a new
adapter.

Creating new content packs
Creating a new HP SX content pack involves these steps:

Create the content pack structure
Define metadata.json
Define operations:

Declare in sx/operations.json
Create FreeMarker templates in sx/templates/

Create the OO flow:
Design the OO flow in HP OO Studio
Define sx/flows.json

Zip the content pack and upload to the HP SX server.

The steps in detail:

1. Create content pack structure

Create the content pack folder structure based on .Content Pack Structure

35

a.
b.

c.

d.

2. Define metadata.json

Create the file in the root folder of your content pack and fill in the fields according to . Make sure that youmetadata.json File metadata.json
choose an ID which is unique in the whole HP SX system. Select the HP SX features your content pack will implement. If you are writing a new
content pack for a new adapter, you can also define a new feature (with a unique name).

3. Define operations

First create a new file and according to the specifications in define your new operations and operationsx/operations.json File sx/operations.json
steps. Then create the referenced FreeMarker templates in the folder.sx/templates

4. Create the OO flow

 If your new content pack requires an OO flow too, use HP OO Studio to design the OO flow.
 When complete, export your design into the HP OO content pack (which is a jar file), and copy that file into the oo/ folder of the
content pack. Use the menu item in HP OO Studio.Create new content pack
Next, map your new OO flow to an existing adapter and message type in the file. Create the file according to sx/flows.json

 specifications.sx/flows.json
Set the to the ID of your new OO flow (find it in the root element of the flow XML file, or the tab in HP OOflowId Properties
Studio), and fill the input parameters to be passed to the OO flow.

5. Zip the content pack and upload

Zip your content pack into one file and using the HP SX Content Management UI upload it.

Creating content packs in development

When developing your content you do not need to follow the above manual process. A more convenient approach for the content developer is the
setup maven build that uses HP OO SDK maven plugin to create the HP OO content pack, and packs it together with SX files into the HP SX
content pack archive. See Creating an HP SX content module in for a detailed descriptionHow to extend HP SX Content (HP SM Problem entity)
of how to setup such a maven project, or see the example content implementations provided with the SDK package.

See also
How to extend HP SX Content (HP SM Problem entity)

Supplier configuration

Supplier instance configuration
Until it is set-up, an instance of a backend system ("supplier") such as HP SM, JIRA or Service Anywhere cannot be used with SX (and therefore
not with HP Propel). Configurations vary for suppliers but typically involve service endpoint(s), integration user credentials, network proxy settings,
and so on.

SX provides an administration UI for supplier configuration, and this is the preferred way to configure a supplier in production environment. To
support this administration UI a for the particular supplier must define the operation so that the UI can correctlycontent pack getInstanceForm
render the instance configuration form. See for more details.Appendix E: HP SX operations reference

Configuration can be also provided in file. There can be one file per backend type in instances.json
 (for example: <PROPEL_INSTALLATION>/sx/WEB-INF/classes/config/<BACKEND_TYPE>

) with content as follows:/opt/hp/propel/sx/WEB-INF/classes/config/saw/instances.json

36

{
 "mySawSupplier" : {
 "defaultCategory" : "10816",
 "defaultRegisteredForActualService" : "11311",
 "endpoint" : "https://msalb003sngx.saas.hp.com",
 "organization" : "*********",
 "r2fEnabled" : true,
 "user" : {
 "loginName" : "***",
 "password" : "ENC(***)"
 }
 }
}

After making changes in configuration resources, SX must be restarted (e.g.,).service jetty-sx restart

When the SX service boots, it parses files and puts supplier instances configurations into the SX database. If a provider hasinstance.json
previously been configured in the administration UI, the configuration is overridden with content (therefore it is not advised toinstances.json
intermix the two approaches for configuration - UI and - for one supplier). Note that removing a provider from the instances.json

 file doesn't result in removal of the configuration from the SX database.instances.json

Supplier configuration is accessible within adapter javacode; simply autowire bean in your Spring bean, and call Configuration
 method. For example, to retrieve a boolean property for configuration above,use thegetConfiguration r2fEnabled mySawSupplier

following code fragment:

@Autowired
private Configuration configuration;

...

Map<String, Object> instances = configuration.getConfiguration("saw/instances");
Map<String, Object> config = instances.get("mySawSupplier");
boolean r2fEnabled = JsonUtils.getBooleanField(config, "r2fEnabled");
...

JsonUtils is a utility class providing convenient static methods to work with JSON data representation (Map<String, Object>), and is commonly
used in SX API code and adapter implementations. method traverses a map to retrieve a value in the specified path and cast thegetXXField
result to .XX

While implementing Freemarker templates for OperationExecutor operations (see) instance config is accessibleAppendix B: Operation executors
from model variable , as in the following example:instanceConfig

<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>
/rest/ess/request/${message.entityId}?userAction=accept
</#escape>

37

1.

2.
a.
b.
c.
d.

SX HP OO plugin

SX HP OO plugin

Introduction

SX HP OO plugin (oo-sx-plugin artifact provided in SDK's maven repository) is a key component for OO flows in HP SX. It provides a way for the
OO flow to interact with SX by sending a message into SX Rabbit AMQP.

It is an extension to HP OO, implementing a single operation. Its parameters are listed in the table below:sendMessageToMQ

parameter description

brokerHostname JMS broker URL. The Rabbit AMQP used by your HP SX.

brokerUsername Rabbit AMQP user.

brokerPassword Rabbit AMQP password.

queueName Name of the Rabbit queue the message will be sent to, it is based on the configuration in sx.properties.

messageType Usually in the format 'ADAPTER_NAME:TYPE', typically this parameter is used to determine the pipeline that will
process the message (for example SM: PLAIN will be handled by PLAIN pipeline.)

operationName Optional - put into AMQP message header when there is content.

messageText The message itself when compression is not used (development.)

messageCompressed The message itself Base64 encoded.

The parameters brokerHostname, brokerUsername, brokerPassword, queueName are HP SX configuration parameters.

Configuring the SX HP OO plugin in HP OO Studio

To use the plugin operation in HP OO Studio when designing your OO flows, follow these steps.sendMessageToMQ

Add the plugin into the maven repository of your HP OO Studio instance. The simplest method is to copy the contents of the m2-repo
directory from your SDK package into the HP OO Studio repository: ().<your_home_dir>/.oo/data/maven
Perform the operation import into your specific OO flow project.

Under the folder of your OO project, create a new folder for the operation. It is named JMSsender in the example below.Library
In the created folder right click .> New > Operation
Find com.hp.ccue.serviceExchange:oo-sx-plugin and sendMessageToMQ in the list. See the screenshot below.
Click .OK

38

1.
2.
3.

a.
b.
c.

Case Exchange
Overview
CX is a subsystem of HP SX, designed for exchanging entity data between two or more external systems. The aim is to have some entity data, for
example Incidents, automatically synchronized between two different systems without the need for human intervention.

CX does all the work of data transformation including connecting systems of different types, for example HP SM and HP SAW. In addition, CX
removes the need to setup the two systems to communicate directly with each other, which helps simplify the security and environment setup.
Instead of having to provide an adapter for each possible system-type pair combination, it is sufficient to implement CX between system A and HP
SX, and system B and HP SX.

CX works in the following way:

A pairing between source and target system is defined.
The source system is observed for changes CX is interested in.
Once an interesting entity change is detected (Creation, Update, Status change), CX performs the following:

Retrieves any important entity data from the source system.
Transforms the entity data to the canonical model representation.
Changes the data of a connected entity on a target system in the way defined by the configuration.

Example:
There is an HP SM instance called SM03 and an HP SAW instance called SAW02.

To set up CX to clone any new Incident created on SM03 to SAW02 systems:

39

1.

2.

Create a CX pairing (see External systems and entities pairing) between SM03 and SAW02, where SM03 is a source system and
SAW02 is the target system.
Set up cloning of new incidents for the pairing.

Once finished with the configuration, any new Incident created on SM03 is automatically cloned to SAW02.

When a new system type adapter (for example for Remedy) is being written, the adapter can be implemented to support CX. What needs to be
done to accomplish this is described in the following example, see . Once CX is enabled for the new system type, it canCase exchange use case
participate in CX together with all the other systems supporting CX, without any need to change any existing systems.

Concepts
Canonical Model

Canonical Model Format
Common canonical model parts
Entity specific canonical model parts

Canonical Model Translation
Example mappings

ES property name -> SX property name
ES property value -> SX property value
external system alias name -> SX external system name
SX entity name -> ES entity name
SX property name -> ES property name
SX property value -> ES property value

Single or Multiple linkedEntity
External systems and entities pairing
Change Observation
Symmetry

Canonical Model

HP SX can exchange entities (incidents, tasks, etc) between different external systems (HP SM, HP SAW,
JIRA, etc.) Every system uses its own entity format. HP SX translates from these formats to a universal HP SX
format - a canonical model. The canonical model contains information about entities, external systems and
event.

40

1.
2.
3.

a.
b.

4.

How it works:

 A change observer detects a change in external system A. It creates an event, for example, incidentResolved. The format of an event message
is adapter/system specific. A set of possible events is the same for one entity type (for example, Incident.)

HP SX retrieves the entity from system A. The entity is in an adapter-specific format.
HP SX translates the entity + event message + information about external systems to the canonical model.
The OO flow decides which operations will be called in external systems A and B.

The most frequent scenario:
Copy some properties of the entity to system B (first operation.)
Update the external status of entity in system A (second operation.)
Operation messages contain two main parts: entity and linkedEntity both represented in the canonical model.

The entity part contains information about the source system (A), and about the entity in the source system.
The linkedEntity part contains information about the target system (B), and the entity in the target system

HP SX runs the operations. The canonical model is transformed to the adapter-specific format during the operations.

Canonical Model Format

41

{
 "event":"incidentResolved",
 "entity":{
 "instanceType":"SAW",
 "instance":"msalb003sngx",
 "entityType":"Incident",
 "entityId":"19423",
 "properties":{
 "Title":"Window was broken",
 "Description":"An angry employee broke the window",
 "Urgency":"U3",
 "Status":"Resolved",
 "Impact":"I4",
 "Solution":"We buy new window and installed it.",
 "CompletionCode":"Resolvedbyfix",
 "Attachments":[
 {
 "id": "3987",
 "name": "window",
 "type": "image/png",
 "size": 723454
 },
 {
 "id": "3987",
 "name": "window_detail",
 "type": "image/png",
 "size": 901211
 }
],
 "Comments":[
 {
 "id": "121",
 "author": "jim.breaker",
 "content": "I send you picture of the window."
 }
]
 }
 },
 "linkedEntity":{
 "instanceAlias":"supportSM",
 "instanceType":"SM",
 "instance":"mpavmsm12",
 "entityType":"Incident",
 "entityId":"IM12391",
 "properties":{
 "Status":"Complete"
 }
 }
}

Common canonical model parts

These parts are the same for all entities (incidents, tasks, problems, ...). All fields except "linkedEntity.entityId" are mandatory. Each entity type is
a common name for the entity, for example probsummary in HP SM is not represented as probsummary, but Incident, as this is the canonical

Canonical model Example

42

model system-independent name for the entity.

json field description

event Event name must exist in a set of events for the given entity type.

entity Describes the source system and entity which was changed.

entity.instanceType Type of source system/adapter (e.g. HP SM, HP SAW, JIRA.)

entity.instance ID of the specific source external system. HP SX has mapping from this ID to URLs for communication with the
system.

entity.entityType Entity type (for example, Incident, Task, Problem.) Every entity type has its own set of events and specific
properties.

entity.entityId ID of entity in source system.

linkedEntity or
linkedEntities

Describes the entity and target system, where the entity will be cloned or refreshed.

linkedEntity.instanceAlias User of source system uses this alias to identify the target system, HP SX has mapping between aliases and real
external systems.

linkedEntity.instanceType Type of target system/adapter (for example, HP SM, HP SAW, HP JIRA.)

linkedEntity.instance ID of the specific target external system. HP SX has a mapping from this ID to URLs for communication with the
system.

linkedEntity.entityType Entity type in the target system. It can be different from entity.entityType. For example: Incidents from HP SAW
are cloned as Tasks to HP SM.

linkedEntity.entityId ID of entity in the target system. It can be empty before cloning.

Entity specific canonical model parts

These parts are specific to each entity (incident, task, problem, ...)

json field description

entity.properties Set of properties, specific for a given entity type.

entity.properties.attachments List of attachments which were added from the last event. HP SX copies it to the target external system.
Now attachments are used for the Incident entity type only, but it can be used elsewhere.

entity.properties.attachments.id ID of the attachment in the external system.

entity.properties.attachments.name Name of the attachment.

entity.properties.attachments.type MIME type, for example, "image/gif" or "application/xml".

entity.properties.attachments.size Attachment size in bytes.

entity.properties.comments List of comments which were added from the last event. HP SX copies them to the target external
system. Now comments are used for the Incident entity type only, but they can be used elsewhere.

entity.properties.comments.id ID of the comment in the external system.

entity.properties.comments.author Author of the comment.

entity.properties.comments.content The comment.

linkedEntity.properties Set of properties. They can be specific for a given entity type, but typically there is only "Status". These
properties are only copied to external reference fields, see .pairing

HP SX content developer note: If you add a new adapter (for example Bugzilla), but you work with an existing entity (for example)incidents
you have to conform to both common and entity-specific parts of the canonical model. If you are newly adding support for an entity (for example

), and there is no canonical model specified for it yet, you need to specify the entity-specific part of the canonical model.change requests

Canonical Model Translation

HP SX translates entity names, property names, property values and external system names and the canonical model.to from

43

The following table shows where and how HP SX does these translations (note that for simplicity, ES replaces ‘external system’ in the table):

Translation Translation executed by ... Example

ES entity name -> SX
entity name

ChangeObserver. JIRA ChangeObserver listens for
change of issues and creates an
Incident event

ES property name -> SX
property name

convert*ToCanonicalModel freemarker template. see example

ES property value -> SX
property value

convert*ToCanonicalModel freemarker template. It uses
*-mappings.json configuration.

see example

external system alias
name -> SX external
system name

convert*ToCanonicalModel freemarker template. The template uses
the FindExternalSystemForAlias class.

see example

SX entity name -> ES
entity name

freemarker template during running operation. see example

SX property name -> ES
property name

freemarker template during running operation. see example

SX property value -> ES
property value

freemarker template during running operation. It can use
*-mappings.json configuration.

see example

SX external system name
-> external system alias
name

freemarker template, before it updates external references in the
source system. The template uses the FindAliasForExternalSystem
class.

prepareInputAfterOperation.ftl in
content-sm-case-exchange

Example mappings

ES property name -> SX property name

44

<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign
findKey='com.hp.ccue.serviceExchange.adapter.freemarker.FindKeyForValue'?new()/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>
<#assign sawMapping=loadConfig(context.contentStorage,
"saw-case-exchange/saw-mappings") />
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>

<#assign secondExternalSystem=findExtSystemForAlias(context.appContext,
entityChange.instanceType, entityChange.instance, data.externalInstanceAlias)!"" />
{
 "event": "${message.entityChange.changeReason}",
 "entity": {
 "instanceType": "${message.entityChange.instanceType}",
 "instance": "${message.entityChange.instance}",
 "entityType": "Incident",
 "entityId": "${message.entityChange.entityId}",
 "properties": {
 "Title":"${message.entityChange.data.response.properties.DisplayLabel}" //
property DisplayLabel in SAW format is mapped to property Title in canonical model
 ,"Description": "${message.entityChange.data.response.properties.Description}"
 ,"Urgency": "${findKey(sawMapping.Incident.Urgency,
message.entityChange.data.response.properties.Urgency)}"
 ,"Status": "${findKey(sawMapping.Incident.Status,
message.entityChange.data.response.properties.Status)}" // property Status has same
name in SAW format and canonical model
 }
 },
 "linkedEntity": {
 "instanceAlias": "${message.entityChange.data.externalInstanceAlias}",
 "instanceType": "${secondExternalSystem.targetInstanceType}",
 "instance": "${secondExternalSystem.targetInstance}",
 },
}

ES property value -> SX property value

It translates by the convertIncidentToCanonicalModel freemarker template, and uses the saw-mappings.json configuration.

convertIncidentToCanonicalModelResult.ftl

45

//function for loading config from content pack
<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
//load value mapping config (SAW<->SX) to hashMap
<#assign sawMapping=loadConfig(context.contentStorage,
"saw-case-exchange/saw-mappings") />
//function for finding key by value in hashMap
<#assign
findKey='com.hp.ccue.serviceExchange.adapter.freemarker.FindKeyForValue'?new()/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>

<#assign secondExternalSystem=findExtSystemForAlias(context.appContext,
entityChange.instanceType, entityChange.instance, data.externalInstanceAlias)!"" />
{
 "event": "${message.entityChange.changeReason}",
 "entity": {
 "instanceType": "${message.entityChange.instanceType}",
 "instance": "${message.entityChange.instance}",
 "entityType": "Incident",
 "entityId": "${message.entityChange.entityId}",
 "properties": {
 "Title":"${message.entityChange.data.response.properties.DisplayLabel}"
 ,"Description": "${message.entityChange.data.response.properties.Description}"
 ,"Urgency": "${findKey(sawMapping.Incident.Urgency,
message.entityChange.data.response.properties.Urgency)}" //convert Urgency SAW value
to Urgency SX value by sw-mapping.json config
 ,"Status": "${findKey(sawMapping.Incident.Status,
message.entityChange.data.response.properties.Status)}"//convert Satus SAW value to
Status SX value by saw-mapping.json config
 }
 },
 "linkedEntity": {
 "instanceAlias": "${message.entityChange.data.externalInstanceAlias}",
 "instanceType": "${secondExternalSystem.targetInstanceType}",
 "instance": "${secondExternalSystem.targetInstance}",
 },
}

convertIncidentToCanonicalModelResult.ftl

46

{
 "Incident": { //property value mapping for entity Incident
 "Status": { //mapping for Status property, key is value in SX, value is value
in SAW
 "Open": "Ready",
 "WorkInProgress": "InProgress",
 "PendingChange": "Pending",
 "PendingOther": "Suspended",
 "Complete": "Complete"
 },
 "Urgency": { //mapping for Urgency property, key is value in SX, value is
value in SAW
 "U4": "NoDisruption",
 "U3": "SlightDisruption",
 "U2": "SevereDisruption",
 "U1": "TotalLossOfService"
 }
 }
}

external system alias name -> SX external system name

It translates by the convertIncidentToCanonicalModel freemarker template, and the template uses the FindExternalSystemForAlias class. The
class is found in external-system.json.

saw-mapping.json

47

<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign
findKey='com.hp.ccue.serviceExchange.adapter.freemarker.FindKeyForValue'?new()/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>
<#assign sawMapping=loadConfig(context.contentStorage,
"saw-case-exchange/saw-mappings") />
//this method find in of second external system by its alias in first external system
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>
//find id of second external system by its alias in first external system
<#assign secondExternalSystem=findExtSystemForAlias(context.appContext,
entityChange.instanceType, entityChange.instance, data.externalInstanceAlias)!"" />
{
 "event": "${message.entityChange.changeReason}",
 "entity": {
 "instanceType": "${message.entityChange.instanceType}",
 "instance": "${message.entityChange.instance}",
 "entityType": "Incident",
 "entityId": "${message.entityChange.entityId}",
 "properties": {
 "Title":"${message.entityChange.data.response.properties.DisplayLabel}"
 ,"Description": "${message.entityChange.data.response.properties.Description}"
 ,"Urgency": "${findKey(sawMapping.Incident.Urgency,
message.entityChange.data.response.properties.Urgency)}"
 ,"Status": "${findKey(sawMapping.Incident.Status,
message.entityChange.data.response.properties.Status)}"
 }
 },
 "linkedEntity": {
 "instanceAlias": "${message.entityChange.data.externalInstanceAlias}",
 "instanceType": "${secondExternalSystem.targetInstanceType}",//using of found
secondExternalSystem by alias
 "instance": "${secondExternalSystem.targetInstance}",//using of found
secondExternalSystem by alias
 },
}

convertIncidentToCanonicalModelResult.ftl

48

 {//this file is used by findExtSystemForAlias method from
convertIncidentToCanonicalModelResult.ftl
 "externalSystemAliases": [
 {
 "sourceInstanceType": "SAW",
 "sourceInstance": "msalb003sngx",
 "targetInstanceType": "SM",
 "targetInstance": "mpavmsm10",
 "targetAlias": "SM"
 }
]
}

SX entity name -> ES entity name

<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>
/9/rest/sxce_incidents/${message.args.linkedEntity.entityId}/action/update
//sxce_incident url part says that entity Incident in SX is mapped to entity
sxce_incidents in SM
</#escape>

SX property name -> ES property name

<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign smMapping=loadConfig(context.contentStorage, "sm-case-exchange/sm-mappings")
/>
<#-- @ftlvariable name="message" type="java.util.Map" -->
<#assign entity=message.args.entity/>
{
 "Incident" : {
 "Status": "Resolved"
 ,"ClosureCode":
"${smMapping.Incident.CompletionCode[entity.properties.CompletionCode]!""}"
//CompletitionCode property in SX is mapped to ClosureCode property in SM
 ,"Solution": "${entity.properties.Solution}"
 ,"Category":"incident"
 }
}

SX property value -> ES property value

external-systems.json

resolvedIncidentUrl.ftl

resolveIncidentRequest.ftl

49

//function for loading config from content pack
<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>

//load value mapping config (SM<->SX) to hashMap
<#assign smMapping=loadConfig(context.contentStorage, "sm-case-exchange/sm-mappings")
/>
<#-- @ftlvariable name="message" type="java.util.Map" -->
<#assign entity=message.args.entity/>
{
 "Incident" : {
 "Status": "Resolved"
 ,"ClosureCode":
"${smMapping.Incident.CompletionCode[entity.properties.CompletionCode]!""}"//convert
CompletionCode SM value to CompletionCode SX value by sm-mapping.json config
 ,"Solution": "${entity.properties.Solution}"
 ,"Category":"incident"
 }
}

{
 "Incident": { //property value mapping for entity Incident
 "CompletionCode": { //mapping for CompletionCode property, key is value in SX,
value is value in SM
 "SuccessfulDiagnosis": "",
 "NoFaultFound": "",
 "NoUserResponse": "",
 "NotReproducible": "Not Reproducible",
 "OutofScope": "Out of Scope",
 "RequestRejected": "Request Rejected",
 "Resolvedbyfix": "Solved by Change/Service Request",
 "ResolvedWorkaround": "Solved by Workaround",
 "UnabletoSolve": "Unable to solve",
 "WithdrawnbyUser": "Withdrawn by User",
 "SolvedByUserInstruction":"Solved by User Instruction",
 "AutomaticallyClosed":"Automatically Closed"
 }
 }
}

Single or Multiple linkedEntity
One entity in an external system can be mapped to several entities in other external systems.

Example:

resolveIncidentRequest.ftl

sm-mapping.json

50

1.

2.

There are two ways to handle this in HP SX. If you write a new adapter you need to choose one method:

If an incident changes in system A, ChangeObserver generates two events: one for system B, one for system C. The rest of the scenario
is the same. There is still one linkedEntity section in the canonical model. This is the method used in the SAW adapter.
If an incident changes in system A, ChangeObserver generates one event. HP SX receives the entity with several external references
and transforms them to the canonical model with several linkedEntities. Then HP SX automatically converts it to two canonical models
with one linkedEntity and calls the OO flow twice. This is the method used in the SM adapter.

The following example shows the canonical model with several external references:

51

{
 "event":"incidentResolved",
 "entity":{
 "instanceType":"SAW",
 "instance":"mpavmsm12",
 "entityType":"Incident",
 "entityId":"IM12030",
 "properties":{
 "Title":"Window was broken",
 "Description":"An angry employee broke the window",
 "Urgency":"U3",
 "Status":"Resolved",
 "Impact":"I4",
 "Solution":"We buy new window and installed it.",
 "CompletionCode":"Resolvedbyfix",
 "Attachments":[],
 "Comments":[]
 }
 },
 "linkedEntities":[
 {
 "instanceAlias":"externalJIRA",
 "instanceType":"JIRA",
 "instance":"kpj00765a",
 "entityType":"Incident",
 "entityId":"SE-64",
 "properties":{
 "Status":"Complete"
 }
 },
 {
 "instanceAlias":"citSAW",
 "instanceType":"SAW",
 "instance":"msalb003sngx",
 "entityType":"Incident",
 "entityId":"32711",
 "properties":{
 "Status":"Complete"
 }
 }
]
}

External systems and entities pairing

References from an entity in external system A to an entity in external system B are not stored in HP SX, they are stored in the external systems.
HP SX needs on an entity: "external_system_alias" and "external_entity_id". A better solution is a :at least two fields table with columns
"external_system_alias", "external_entity_id" and "external_entity_status". Each row of the table corresponds to one external system.

 SX content developer note: If you do not use an external reference "table" for your system/adapter, you can still integrate by case exchange,
but you cannot exchange to a number of other systems at the same time. See .Single or Multiple linkedEntity

Canonical model with several external referencies

52

 Examples:

SM - External references are stored in the SX custom table "SXRegisteredEntitiesV2".
JIRA - External reference is stored as JSON in field "Environment".
SAW - External references are stored in an internal table accessed by REST.

External system pairing is configurable in . There are sections for every external system pair (most oftenexternal_system.json
bi-directionally).

"externalSystemAliases": [
 {
 "sourceInstanceType": "SM",
 "sourceInstance": "mpavmsm10",
 "targetInstanceType": "SAW",
 "targetInstance": "msalb003sngx",
 "targetAlias": "lobSAW"
 },
 {
 "sourceInstanceType": "SAW",
 "sourceInstance": "msalb003sngx",
 "targetInstanceType": "SM",
 "targetInstance": "mpavmsm10",
 "targetAlias": "supportSM"
 }
]

Basic linking scenario:

external_system.json

53

1.
2.
3.
4.

a.
b.

5.
6.

 User of system A fills the ext_alias field of an entity.
 HP SX detects the change of the entity.
 HP SX translates system B alias to the ID of system B by external_system.json mapping.
 HP SX creates a new entity in System B.

 HP SX fills ext_alias of system A.
 HP SX fills ext_id of incident in system A

 System B returns the ID of the new incident.
 HP SX fills ext_id of the incident in system B.

Change Observation
See .Change Detections

Symmetry

There are three ways to define a set of events for a given entity type:

Symmetrical (Default)
Non-symmetrical
Mixed.

54

Symmetrical:

This is the default method.
Every event can be thrown from both paired systems, for example, an entity is cloned from system A to B and also from B to A.
There is one and both paired systems share it.eventGroup

Example: Incident case exchange for SAW<->SM.

Non-symmetrical:

There are two sets (groups) of events: incoming and outgoing.
Incoming and outgoing events can have different implementations.
First system has incoming events only, the second has outgoing events only.

Example: Problem case exchange for SM<->SM.

Mixed:

There is one set of events.
There are two event groups, each for one of any paired systems, for example, an entity is cloned from system A to B only, the entity is
resolved in system B and then CX resolves it in system A only.

Example: Incident case exchange for JIRA<->SM.

55

Configuration
Table of Contents:

Overview
external-systems.json
case-exchange.json
*-mappings.json

Entity name mappings
Property value mappings
Freemarker code

Configuration concepts
External systems
External system pairs
Entity types to be case exchanged
Events
Event filters
Event groups
Event and Event Group actions

Overview
This configuration section describes how the CX framework is configured to communicate with backend systems and to perform entity data
exchange from one system to another. It includes:

Which configuration files are involved in setting up CX operations.
How various concepts of CX (like Events and Event Groups) are set up, including real-life examples of JSON configuration to illustrate
what is being described.

Configuration files

There are two configuration files involved in CX configuration: and external-systems.json

..The data format of both files is JSON.case-exchange.json

external-systems.json

There is one external-systems.json file in the HP SX war. In its first section, externalSystems, it contains the definitions for individual external
 one by one in an array. In the second section, , it contains definitions of external system pairs.systems externalSystemAliases

Here is an example from the file:external-systems.json

56

1.

{
 "externalSystems": [// definitions of external systems, each item of the array
defines one external system instance
 { // the first external system instance
 "instanceType": "SAW", // the type of the defined system
 "instance": "msalb003sngx", // the name of the external system
 "registeredEventGroups": [// the array of event groups that should be
observed on the external system
 "IncidentCaseExchangeEvents"
]
 },
 { // the second external system instance
 "instanceType": "SM",
 "instance": "mpavmsm08",
 "registeredEventGroups": [
 "IncidentCaseExchangeEvents"
]
 }
],
 "externalSystemAliases": [// definitions of external system pairs, each item of
the array defines one external system pair
 { // first external system pair
 "sourceInstanceType": "SM", // the type of source external system of the
pair
 "sourceInstance": "mpavmsm08", // the name of the source external system
instance
 "targetInstanceType": "SAW", // the target external system type
 "targetInstance": "msalb003sngx", // the target external system name
 "targetAlias": "saw" // the alias used in source external system to
identify the target external system, eg. the target external system alias in the
source external system
 },
 { // second external system pair
 "sourceInstanceType": "SAW",
 "sourceInstance": "msalb003sngx",
 "targetInstanceType": "SM",
 "targetInstance": "mpavmsm08",
 "targetAlias": "SM08"
 }
]
}

case-exchange.json

While there is only one file, there are typically multiple files. Their content is combined as ifexternal-systems.json case-exchange.json
there was a single file.
NOTE: If some case-exchange.json files contain incompatible content, the resulting configuration is non-deterministic and may cause problems.
Each file may contain the following sections:case-exchange.json

Events. Events are defined on the level of the external system type, for example, HP SM. The events recognized by the CX framework
are defined in this section:

external-systems.json

57

1.

2.

3.

 "events": { // the "events" section
 "SM": { // the identifier of the external system whose events we are
defining
 "incidentExternalReferenceCreated": { // the name of the defined
event
 "entityType": "probsummary", // the native (eg. external system
specific) entity type
 "entityFilter": "RECORD['vendor']!=null &&
RECORD['reference.no']==null && (ISCREATE || ISUPDATE &&
OLDRECORD['vendor']!=NEWRECORD['vendor'])", // the filter defining event trigger
condition
 "changeType": ["create", "update"] // optional Service manager
specific field
 },
 "incidentUpdated": {
 "entityType": "probsummary",
 "entityFilter": "RECORD['vendor']!=null &&
OLDRECORD['vendor']==NEWRECORD['vendor'] &&
(OLDRECORD['brief.description']!=RECORD['brief.description'] ||
OLDRECORD['action'].toString()!=RECORD['action'].toString() ||
OLDRECORD['severity']!=RECORD['severity'] ||
OLDRECORD['initial.impact']!=RECORD['initial.impact'])",
 "changeType": ["update"]
 }
 ...
 }

eventGroups. In this section, event groups are defined by specifying a list of contained events for each of them:

"eventGroups": { // the "eventGroups" section
 "IncidentCaseExchangeEvents": [// the name of the event group being defined
 "incidentExternalReferenceCreated", // the name of the first event
belonging to the group
 "incidentUpdated", // the name of the second event belonging to the group
 "incidentResolved", // ...
 "incidentReopened",
 "incidentClosed",
 "incidentOwnershipAssigned",
 "incidentOwnershipAccepted",
 "incidentRejected",
 "incidentCancelled"
],
 "TaskCaseExchangeEvents": [// the name of another event group
 "taskExternalReferenceCreated" // this group only contains one event
]
}

eventActions. The action or sequence of actions to be performed once an event is triggered. The order of execution when merging
event actions from multiple configuration files is not defined. Each Action represents one of two currently supported action types:

executeOperation – An HP SX operation is executed. Based on the value of the backendSystemType property, the operation

events

eventGroups

58

3.

4.

definition is searched for in content packs associated with the respective backend system type.
executeOoFlow - An OO Flow is executed. Based on the value of the backendSystemType property, the flow is executed on
behalf of the corresponding backend system. The flow to be executed is determined by the value of the messageType property.
The message type is used to search for flow information in the file.flows.json

"eventActions": { // the "eventActions" section
 "incidentClosed": { // the event we're defining actions for
 { // the first action to be executed when the event is triggered
 "action": "executeOperation", // action = execute operation
 "backendSystemType": "SM" // the backend system to be
searched for the operation (each content pack's metadata.json file contains
the "adapter" property assigning the content pack to the respective backend
system)
 "operationName": "retrieveIncident" // the name of the
operation to be executed
 },
 { // the second action to be executed when the event is triggered
 "action": "executeOperation",
 "backendSystemType": "SX"
 "operationName": "convertAssignmentGroupToInstance"
 },
 { // the third action to be executed when the event is triggered
 "action": "executeOoFlow", // action = execute OO flow
 "backendSystemType": "SX", // the backend system on whose
behalf the OO flow will be executed
 "messageType": "IncidentCaseExchangeFlow" // the type of the
message to be sent to the OO flow; also determines which OO flow should be
used - corresponds to the key in the flows.json configuration file
 }
 }
}

eventGroupActions - The action or sequence of actions to be performed once an event from the given event group is triggered. The
order of execution between event actions and event group actions is not deterministic, so it is not recommended to mix event actions and
event group actions together when the order of execution is important. Both the syntax and semantics of the eventGroupActions is the
same as for the eventActions

*-mappings.json

Each external system type participating in CX has its own set of entities, its own vocabulary, and its own property names and values. To allow CX
to communicate between different types of systems, the vocabulary, entities and properties, and their values, have to be unified. The CX
implementation uses a common data format for the exchanged data called the Canonical Model. As a helper for data transformation between the
canonical model and the external system native data model, each external system can provide a mapping file to aid the translations.

The name of the mapping file is in the form of , for example sm-mappings.json. It may contain<external_system_type>-mappings.json
translation tables for entity names and property values. The translation tables can be used by content packs to make easy transformations, most
importantly in Freemarker templates. Property names are not typically translated via translation table as it is much easier to perform their
translation directly in Freemarker templates. In the next paragraphs, we will show an example of each of the mappings.

Entity name mappings

In this section of the mapping file, the native entity names are mapped to canonical model entity names:

eventActions

59

"entityType": { // the section start
 "Incident": "probsummary", // pair of Canonical Model/native external system
entity name
 "IncidentTask": "imTask" // another pair for another entity
 }

Property value mappings

For each entity, a mapping for some of its property values between the Canonical Model and the native external system values may be provided:

"Incident": { // the name of the entity
 "Status": { // the name of the property in Canonical Model whose values will
be translated via this table
 "Open": "Ready", // pair of Canonical Model/native external system
property value
 "WorkInProgress": "InProgress", // another pair
 "PendingChange": "Pending",
 "PendingOther": "Suspended",
 "Complete": "Complete"
 },
 "Urgency": { // another property whose values will be translated
 "U4": "NoDisruption",
 "U3": "SlightDisruption",
 "U2": "SevereDisruption",
 "U1": "TotalLossOfService"
 }
}

Freemarker code

Once the mapping is defined in the mapping file, the mapping can be used to translate the value within a Freemarker template:

Entity Name Mappings

Property Value Mappings

60

<#assign
findKey='com.hp.ccue.serviceExchange.adapter.freemarker.FindKeyForValue'?new()/> //
declare the findKey function defined in Java code of Service Exchange API for Adapters
<#assign sawMapping=loadConfig(context.contentStorage,
"saw-case-exchange/saw-mappings") /> // declare the sawMapping variable containing the
mapping for Service Anywhere (SAW) system

{
 "properties": {
 "Urgency": "${findKey(sawMapping.Incident.Urgency, entityProperties.Urgency)}", //
use the Service Exchange provided findKey() function to perform the translation of
Urgency to Canonical Model specific value
 "Status": "${findKey(sawMapping.Incident.Status, entityProperties.Status)}" // use
the Service Exchange provided findKey() function to perform the translation of Status
to Canonical Model specific value
 }
}

Configuration concepts
When configuring a CX framework for HP SX content, the following items need to be configured:

External Systems
External System Pairs
Entity Types to be Case Exchanged
Events
Event Filters
Event Groups
Event and Event Group Actions

External systems

In order to have an external system participate in CX, it must be present in the external system configuration. The configuration entry must
contain:

the system type (for example HP SM, JIRA), the name of the system instance (corresponding to the name assigned to it in
the instances.json configuration file for the respective external system type.)
the array of event groups CX will handle for this particular external system.

Here is an example of an external system configuration:

{
 "instanceType": "SM", // the type of the external system
 "instance": "mpavmsmapp01", // the name of the concrete external system instance
 "registeredEventGroups": [// the event groups activated for this system instance
 "TaskCaseExchangeEvents",
 "TaskCaseExchangeIncidentEvents"
]
}

Freemarker Code

External System

61

External system pairs

To configure CX to perform entity data exchange between two particular systems, it is necessary to create an external system pair for them. In the
pair definition:

source system must be specified by its type and name
target system must be specified by its type and name
an alias to be used by users in the source system to identify the target system.

Here is an example of an external system pair configuration:

{
 "sourceInstanceType": "SM", // the source external system type
 "sourceInstance": "mpavmsm08", // the source external system name
 "targetInstanceType": "JIRA", // the target (receiving) external system type
 "targetInstance": "mpavmint01", // the target (receiving) external system name
 "targetAlias": "jira" // the alias used for the target system instance in the
source system
}

Entity types to be case exchanged

The entity types to be case exchanged are not specified directly. Instead, for each external system, an array of event groups is specified to be
watched for in the system. See the External Systems section for an example of such a configuration. Each event group consists of several
individual events, typically all associated with a specific entity type. See the Event Groups section for an example of an Event Group configuration
and the Events section for an event configuration example. In this way, this indirect specification determines which entities are processed for the
particular external system.

Events

The operation of the CX framework is based on events. Depending on the external system type and the changed entity type, the set of potential
events that can occur is defined. The source external system is being watched for changes. Once an entity change occurs, CX is notified by the
external system Change Observer. For each applicable event, its filter is checked and if its filter condition is satisfied by the entity change, the
corresponding event is triggered. See the Event Filters section for more detail. As a result, each entity change can trigger one or more events.
Here is an example event definition:

"incidentUpdated": { // the name of the event being defined
 "entityType": "probsummary", // the native type of the entity the event is
defined for; probsummary is Service Manager's type for Incident
 "entityFilter": "RECORD['vendor']!=null &&
OLDRECORD['vendor']==NEWRECORD['vendor'] &&
(OLDRECORD['brief.description']!=RECORD['brief.description'] ||
OLDRECORD['action'].toString()!=RECORD['action'].toString() ||
OLDRECORD['severity']!=RECORD['severity'] ||
OLDRECORD['initial.impact']!=RECORD['initial.impact'])", // the filter containing
boolean expression for the event triggering; Service Manager Change Observer provides
information about entity value before (OLDRECORD) and after (RECORD) the change
 "changeType": ["update"] // this field is optional and is used by Service
Manager Change Observer to determine whether the event should be triggered for new,
existing or both type of records
}

External system Pair

Event

62

Event filters

The definition of each event contains one or more filters. The filters are conditional expressions operating over changed entity data, written in
Javascript syntax. Once an entity change is being processed by the CX framework, the filters for each potential event are evaluated. If at least
one of them is evaluated to true, the respective event is triggered, ready for further processing. The input parameters for the condition vary
between external system types because they are heavily depending on the entity change data, which in turn is generated by the system's Change
Observer, and their format and content are not standardized.
Here is an example of an event filter definition for HP SM:

"RECORD['assignment']!=null && (ISCREATE || ISUPDATE &&
OLDRECORD['assignment']!=NEWRECORD['assignment'])"

Event groups

Events may be grouped together to form an Event Group. All the events in a group need to be applicable to the same entity. Event groups have
two purposes:

To allow assigning a common action to a set of events.
To configure which events should be observed on a particular system.

Only event groups may be assigned to a target external system. Therefore, the only way to observe an event on a particular external system is to
create an event group containing that event and add the event group to the registeredEventGroups property array in the external system
configuration. An event may be part of different Event Groups.
Here is an example of an Event Group definition:

"IncidentCaseExchangeEvents": [// the name of the Event Group
 "incidentExternalReferenceCreated", // an array of individual Events to be part
of the Event Group, identified by their name
 "incidentUpdated",
 "incidentResolved",
 "incidentReopened",
 "incidentClosed",
 "incidentOwnershipAssigned",
 "incidentOwnershipAccepted",
 "incidentRejected",
 "incidentCancelled"
]

Here is an example of how to assign the Event Group to an external system instance:

Filter Expression

Event Group

63

{
 "instanceType": "SM", // the External System type
 "instance": "mpavmsm09", // the External System name
 "registeredEventGroups": ["problem.ReferringEntityEvents"] // an array of Event
Groups to be observed for this External System instance
}

Event and Event Group actions

The last piece of the configuration is to define what the CX framework should perform after an Event is triggered. The execution units in HP SX
are called . For each event, the user can define a set of operations to be executed once the Event is triggered. Another set ofoperations
operations can be configured for a whole . If operations are defined for the Event Group and for an Event from such a group, theevent group
group operations execute first, and then the event operations execute.
Here is an example of an Event operation definition:

"IncidentCaseExchangeEvents": [
{
 "action": "executeOperation",
 "operationName": "retrieveIncident"
},
{
 "action": "executeOperation",
 "operationName": "convertIncidentToCanonicalModel"
},
{
 "action": "executeOoFlow",
 "backendSystemType": "SX",
 "messageType": "IncidentCaseExchangeFlow"
}]

The same block of configuration can be used to configure operations for an Event Group.

Operations
Introduction
Whenever the CX framework needs to interact with an external system, it uses an HP SX operation. An operation is a set of steps, where each of
the steps represents a network interaction with a target system (typically a REST call.) The output of an operation is a JSON message available to
other HP SX components.
See for information about operation definitions, their format and properties.Appendix B: Operation executors
The CX actions for Incident events are configured in the following way:

Event Group assignment

Event Group Actions

64

1.
2.
3.

"eventGroupActions": {

 "IncidentCaseExchangeEvents": [
 {
 "action": "executeOperation",
 "operationName": "retrieveIncident"
 },
 {
 "action": "executeOperation",
 "operationName": "convertIncidentToCanonicalModel"
 },
 {
 "action": "executeOoFlow",
 "backendSystemType": "SX",
 "messageType": "IncidentCaseExchangeFlow"
 }
]
}

The meaning of this configuration is:
Once a change is detected and an Incident event is triggered, then:

Operation 'retrieveIncident' is executed.
Operation 'convertIncidentToCanonicalModel' is executed.
'IncidentCaseExchangeFlow' OO flow is executed.

Each adapter willing to participate in Incident CX must provide its own implementation of the two operations, and retrieveIncident
. The Incident OO Flow is standardized across various systems and there is no need to customize it.convertIncidentToCanonicalModel

In addition, there is one more important operation involved in CX: the default implementation of ChangeObserver uses the operation
 to periodically poll an external system for any changes on observed Incidents.getChangedIncidents

Any adapter using a Change Observer extending the to check for changes in an external system, must alsoPollingChangeObserverBase
provide the implementation of the operation.getChangedIncidents
In the following section, each of the three operations in described in detail.

'getChangedIncidents' operation
This operation only needs to be implemented for adapters having a change observer extending the class. ThePollingChangeObserverBase
result of this operation should contain the array of changes in an external system instance, one array item per changed entity. The concrete
format is customizable, as any logic working with changed entity data is left to be implemented by the adapter-specific change observer. See the
Javadoc java class for more detail. This operation is executed from within the PollingChangeObserverBase classPollingChangeObserverBase
common code to check for changes in the external system entities that have happened in the time interval since the last check.
By default, the input message contains a ' ' field and a ' ' field. The input of the operation can bemessageHeader.targetInstance lastUpdateTime
customized by overriding the () method in the class.customizeGetChangedEntitiesMessage PollingChangeObserverBase
As already stated, the output of this operation is not strictly defined and must be aligned with the particular implementation forChangeObserver
the adapter.

'retrieveIncident' operation
This operation is called by the CX framework whenever an event has been triggered for a particular Incident to retrieve the incident properties.
The input for the operation looks like this:

eventGroupActions

65

{
 "entityChange": { // the structured information about the changed event
 "instanceType": "SM", // the external system type
 "instance": "mpavmsm04", // the name of the external system
 "entityType": "Incident", // the type of the changed entity
 "entityId": "IM03245", // the ID of the changed entity
 "changeType": "update", // the type of the change (create vs. update)
 "changeReason": "caseExchange", // the reason of the change (the value will
typically be caseExchange)
 "changeArgs": "aaa", // optional property - the arguments of the change
 "data": {} // the data associated with the change
}

The operation is responsible for issuing a request to the external system and retrieving all the changed entity properties. In this way it is possible
to create an entity representation in the canonical model, which is the next operation in line.

'convertIncidentToCanonicalModel' operation
The CX framework is designed to work with many external system types. Obviously, each external system uses its own data format to represent
its entities. The CX framework is introducing a common data format for representing entities from different external systems in a uniform way, see

. The ' ' operation returns the entity data in its native format. The ' ' operationCanonical Model retrieveIncident convertIncidentToCanonicalModel
is responsible for converting the Incident data from the native format to the canonical format, so that the data can be freely exchanged with other
external system types. The ' ' operation is executed before the Incident OO flow is invoked, as the OO FlowconvertIncidentToCanonicalModel
expects the data to be in canonical format.
The input of the ' ' operation is determined by the output of the ' ' operation and may varyconvertIncidentToCanonicalModel retrieveIncident
from external system to external system.
The output is a canonical model representing the entity and its properties, together with any linked entity if applicable.

Event/Entity specific operations
Besides the common operations described above, CX defines one or more operations specific to any particular event. For example, if an

 event is triggered, the operation on the target external system is invoked. Which operation orincidentUpdated updateLinkedIncident
operations are invoked is determined by the specific OO Flow.

For each event, the OO flow decides which operation on which external system is invoked, and in which order. For the external system to be able
to participate in CX for the respective entity, it must implement all the operations defined by the respective OO Flow associated with the
respective entity type. Each entity type must have exactly one OO Flow associated with it. A set of operations needed by a specific OO flow is
part of its documentation and is not described here.
The arguments for each such operation are determined by the OO flow as well.

OO flows
Overview
Case exchange OO flow description
About Incident flow

Overview
OO flow is part of the CX configuration. The main function of the flow is deciding which operations will be called in external systems.

Main facts:

For every entity type (Incident, Task, Problem etc) there is one CX OO flow.

OO flow runs after an event is triggered in a source external system.
OO flow works with messages in the canonical model only, see .Canonical Model
OO flow decides which HP SX operations to call in source and target external systems.
OO flow decides which adapters process operations.
OO flow can decide to do nothing: for example, where an entity was rejected but it was not yet cloned to an external system.
If an entity in a source system is mapped to several external systems, OO flow will run once for every external system, see Single or

.Multiple linkedEntity

'retrieveIncident' operation input

66

OO flow calls HP SX by sending JMS messages.

Case exchange OO flow description
The following section explains how the OO flow is executed and which conditions/operations are called. Here is a screenshot of a real Incident CX
flow:

0. Message in canonical model is sent to OO flow.

67

{
 "event":"incidentUpdated",
 "entity":{
 "instanceType":"SM",
 "instance":"mpavmsm10",
 "entityType":"Incident",
 "entityId":"IM13087",
 "properties":{
 "Title":"Window was broken",
 "Description":"An angry employee broke the window",
 "Status":"PendingVendor",
 "Urgency":"I4",
 "Impact":"I2",
 "Attachments":[]
 }
 },
 "linkedEntity":{
 "instanceAlias":"saw",
 "instanceType":"SAW",
 "instance":"msalb003sngx",
 "entityType":"Incident",
 "entityId":"19822",
 "properties":{
 "Status":"Complete",
 "Attachments":[]
 }
 }
}

1. The first OO step parses the message and splits it into many OO context variables (for example, entity.instance, entity.properties.Title). The
other OO steps use these context variables directly, and do not parse the json message again.

2. This step checks if the event is incidentUpdate

$('event') == 'incidentUpdated'

3. This step checks if the incident is linked to an external system

nonEmptyString($('linkedEntity.instanceType')) &&
nonEmptyString($('linkedEntity.instance'))

4. This step checks if the incident is linked to any other incident in the external system. If it is not, the incident will be cloned, or else the incident
will be updated. A similar scenario is used for most events, because a user can work with an incident in the source system and link the incident to
an external system in any phase of the lifecycle (for example, during resolving). This means the clone operation has to switch the cloned incident
to the right state.

Input message of the flow

condition:

condition:

68

nonEmptyString($('linkedEntity.entityId'))

5. This step calls the cloning operation in the external system and the updating operation in the source system. A batch operation is used. The
typical implementation in the adapter is: SX creates a new incident in the target system. The operation returns ID + state of the new incident and
adds it to the message. The second operation copies this information back to the source system.

In the following example you can see unfilled parts of the message, which will be filled by the first operation. You can also see how the adapter is
chosen by target system type.

condition:

69

{ // placeholders ${xxx} will be replaced by OO context variables from input message.
First step of the flow prepared it.
 "operations":[
 { //first operation for target system
 "operationName":"cloneIncident",
 "messageType": "${linkedEntity.instanceType}:PLAIN", //messageType
(adapter) is choosen by information in input message
 "message":{
 "messageHeader":{
 "backendSystemType":"${linkedEntity.instanceType}",
 "targetInstance":"${linkedEntity.instance}"
 },
 "args":{
 "event":"${event}",
 "entity":${entity},
 "linkedEntity":{
 "instanceType":"${linkedEntity.instanceType}",
 "instance":"${linkedEntity.instance}"
 }
 }
 }
 },
 { //second operation for source system
 "operationName":"updateLinkedIncidentInfo",
 "messageType": "${entity.instanceType}:PLAIN",
 "message":{
 "messageHeader":{
 "backendSystemType":"${entity.instanceType}",
 "targetInstance":"${entity.instance}"
 },
 "args":{
 "event":"${event}",
 "entity":{
 "instanceType":"${entity.instanceType}",
 "instance":"${entity.instance}",
 "entityType":"${entity.entityType}",
 "entityId":"${entity.entityId}"
 },
 "linkedEntity":{
 "instanceAlias":"${linkedEntity.instanceAlias}",
 "instanceType":"${linkedEntity.instanceType}",
 "instance":"${linkedEntity.instance}",
 "TODO:entityType":"TODO: overwrite in cloneIncident", //these
parts will be filled by output of the first operation
 "TODO:entityId":"TODO: overwrite in cloneIncident",
 "properties":{
 "TODO:Status": "TODO: overwrite in cloneIncident"
 }
 }
 }
 }
 }
]
}

messageText

70

6. This step calls the updating operation in the external system and the source system. The content is similar to step 5, but there is only a single
operation for the target system.

{
 "messageHeader":{
 "backendSystemType":"${linkedEntity.instanceType}",
 "targetInstance":"${linkedEntity.instance}"
 },
 "args":{
 "event":"${event}",
 "entity":${entity},
 "linkedEntity":${linkedEntity}
 }
}

This is a description of one incident flow branch. Other branches are very similar.

About Incident flow
Incident CX flow is shared for all incidents exchanging between every type of system (i.e. it is shared across all backend system adapters). Here
is a conversion table between events and SX operations:

 incident was cloned already incident was not cloned yet

event name operation in target
system

operation in source
system

operation in
target system

operation in source
system

incidentExternalReferenceCreated -- -- cloneIncident updateLinkedIncidentInfo

incidentUpdated updateLinkedIncident -- cloneIncident updateLinkedIncidentInfo

incidentClosed closeIncident updateLinkedIncidentInfo cloneIncident updateLinkedIncidentInfo

incidentResolved resolveIncident updateLinkedIncidentInfo cloneIncident updateLinkedIncidentInfo

incidentReopened reopenIncident updateLinkedIncidentInfo cloneIncident updateLinkedIncidentInfo

incidentOwnershipAssigned assignOwnershipToIncident updateLinkedIncidentInfo cloneIncident updateLinkedIncidentInfo

incidentOwnershipAccepted acceptOwnershipOfIncident updateLinkedIncidentInfo cloneIncident updateLinkedIncidentInfo

incidentRejected rejectIncident updateLinkedIncidentInfo -- --

incidentCancelled cancelIncident updateLinkedIncidentInfo -- --

All events are symmetrical, see: .Symmetry

message format for updateLinkedIncidentInfo operation:

messageText

71

"message":{
 "messageHeader":{
 "backendSystemType":"${entity.instanceType}",
 "targetInstance":"${entity.instance}"
 },
 "args":{
 "event":"updateLinkedIncidentInfo",
 "entity":{
 "instanceType":"${entity.instanceType}",
 "instance":"${entity.instance}",
 "entityType":"${entity.entityType}",
 "entityId":"${entity.entityId}"
 },
 "linkedEntity":{
 "instanceAlias":"${linkedEntity.instanceAlias}",
 "instanceType":"${linkedEntity.instanceType}",
 "instance":"${linkedEntity.instance}",
 "entityType":"${previousOperationResult.entityType}",//filled by previous
operation
 "entityId":"${previousOperationResult.entityId}",//filled by previous
operation
 "properties":{
 "Status": "${previousOperationResult.Status}"//filled by previous
operation
 }
 }
 }
}

message format for all other operations (cloneIncident, updateLinkedIncident, closeIncident, resolveIncident, reopenIncident,
assignOwnershipToIncident, acceptOwnershipOfIncident, rejectIncident, cancelIncident):

"message":{
 "messageHeader":{
 "backendSystemType":"${linkedEntity.instanceType}",
 "targetInstance":"${linkedEntity.instance}"
 },
 "args":{
 "event":"${event}",
 "entity":${entity},
 "linkedEntity":${linkedEntity}
 }
}

Change Detections
Table of Contents:

message

message

72

Overview
Polling Scenario

ChangeObserver implementation
Overriding CxPollingCommand
Overriding SxPollingByAliasCommand

Push Scenario
PushAuthenticator implementation
PushHandler implementation

Constructor parameters
Overwriting methods
Change detecting and CX event triggering

This section offers:

 An overview of change detection.
 Difference between polling and pushing scenario
 Describes the support for change detection in the existing code.
 Outlines the way to use change detection with new HP SX adapters.
 Gives a specific example of how change detection is implemented in the HP SAW adapter using the Polling Command.
 Describes what should be the outcome of a brand new implementation of change detection not based on existing code.

Overview

Each external system type participating in CX must be able to perform relevant change detection in the external system. The mechanism can be
either based on periodical polling of the external system, or on having the changes pushed back to the adapter. In the first (polling) case, the
external system adapter willing to participate in CX must provide its implementation of the ChangeObserver interface provided by the CX API. The
implementer of the system-specific Change Observer can chose to reuse an existing polling based system and only override methods for system
specific execution, or implement the change observation completely from scratch. In the second (pushing) case, the external system adapter must
provide its implementation of the PushHandler interface provided by the CX API.

In either case, the Change Observer or Push Handler is responsible for:

Collecting information about changed entities.
Checking event filters for each change.
Sending a CX message to the respective pipeline of the external system adapter for each triggered event.

Polling Scenario

Here is diagram how to work change detection in polling scenario with ChangeObserver:

ChangeObserver/CXPollingCommand is polling changed entities from backend system
If there are some changed entities. ChangeObserver/CXPollingCommand transforms entities to internal json format and send it to
EventFilterEvaluator
EventFilterEvaluator get rules from CaseExchangeRuleStore and check if some rule match against the trasformed entity
if some rule matches, ChangeObserver/CXPollingCommand sends CX event (JMS)

73

1.

ChangeObserver implementation

The existing implementation of ChangeObserver can be found in the CompositeChangeObserver Java class. The class is abstract and anyone
wanting to use it as a base for his own implementation must create a subclass. The implementation of the class is fairly simple. In its constructor,
the class is expecting a List of Commands (Runnables). The commands are then sequentially executed when checking the external system for
changes. The subclass is expected to pass its own list of commands to the CompositeChangeObserver constructor.

There are no restrictions on the nature of the Runnables passed as commands. However, to facilitate the existing code in the CX framework for
change polling, the implementer is expected to extend the PollingBaseCommand or one of its subclasses - or CxPollingByAliasCommand

. These two classes differ in their mode of operation:CxPollingCommand

CxPollingByAliasCommand issues one request per alias, whose source external system type matches the ChangeObserver's external
system type.

: The SawChangeObserver is polling HP SAW systems for changes. There are three aliases defined inAn example
. The first alias connects an HP SAW system to an HP SM system, the second alias connects an HP SMexternal-systems.json

system to an HP SAW system, and the third alias connects an HP SAW system to another HP SAW system. Only the first and third alias

74

1.

2.

is processed by the SawChangeObserver, because the source external system type of these aliases is HP SAW. When polling those
systems, one polling request is issued to the source external system of the first alias and the other request is issued to the source
external system of the third alias.
CxPollingCommand processes all the systems present in the configuration file for the corresponding external systeminstances.json
type (for example JIRA.) For each instance, it checks whether the system is defined in the external-systems.json file as well. If it is, the
CxPollingCommand polls the respective external system for changes.

Once the changes are detected, the mechanism for processing them is the same for both implementations:

Each event defined for the entity type that has been changed in the external system has an event filter defined in the configuration. The
event filter is an expression containing variables whose value is determined by the entity change. If the filter evaluates to true for the
particular change, the respective event is triggered.
The triggered event is placed into a message. The message is sent to HP SX for further processing. The pipeline for processing the
message is set to .CaseExchangePipeline
The makes sure the actions defined for the event or its event group are executed, and typically at the end of theCaseExchangePipeline
processing a message to Operations Orchestration is sent.

Overriding CxPollingCommand

The most important method to override in the Polling Change Observer based on CxPollingCommand is the constructor. Several parameters have
to be passed to the CxPollingcommand constructor:

The String representing the type of the external system to be polled, for example SAW.
The String representing the (adapter-specific) entity type to be polled, for example probsummary.
The name of the instances configuration file for the external system type.
The name of the HP SX operation to be called to poll the remote system for changes.
The Operation Executor to be used to execute the operation.
The rule store for the particular external system type. It stores the events and event filters for the respective system and returns them as
a List of Listeners
The Filter Evaluator to be used for event filter evaluations.

Another method to be overridden by the subclass is (). It is called to extract the list of changed entities from a MapextractChangedEntities
representing the polling operation result. Note that the output of the operation is not standardized and may hugely differ between external system
types.

For proper entity ID extraction from a changed entity representation, the () method is called. It gets a Map of the entity JSONextractEntityId
object as its argument.

The last abstract method to override is (). This method is called to prepare a message to be sent to theprepareMessageForCustomDataCx
CaseExchangePipeline, representing the event generated by the change in the external system entity.

Overriding SxPollingByAliasCommand

While the mode of operation of SxPollingByAliasCommand is different to CxPollingCommand, the set of methods to be overridden is the same,
including the constructor and its parameters.

Push Scenario

Here is diagram how to work change detection in pushing scenario:

Backend system sends notification about change to universal push endpoint in service exchange.
}https://${popel_machine_hostname}:{port}/sx/api/notification/${adapter_name}/${change_type

SX chooses right adapter, authenticates the call by PushAuthenticator and then calls all push handlers from it.
CXPushHandler transforms entity to internal json format and send it to EventFilterEvaluator
EventFilterEvaluator gets rules from CaseExchangeRuleStore and check if some rule match against the trasformed entity
if some rule matches, CXPushHandler sends CX event (JMS)

75

PushAuthenticator implementation

If your adapter use pushing scenario for change detections, you need an implementation of PushAuthenticator to authenticate call from backend
system to SX. You should implement PushAuthenticator interface or extend PushAuthenticatorAbstract (this class expect name/password in
supplier parameters loginNameForPush/passwordForPush) or use existing PushAuthenticatorBasic which implement basic http authentication.

PushHandler implementation

The existing implementation of PushHandler can be found in the CxPushHandler Java class. The class is abstract and anyone wanting to use it
as a base for his own implementation must create a subclass. The implementation of the class is fairly simple.

Constructor parameters

Several parameters have to be passed to the PushHandler constructor:

systemType representing the type of the external system to be polled, for example SAW.
entityType representing the (adapter-specific) entity type to be polled, for example probsummary.
operationName is name of the HP SX operation to be called to transform input from backend system.
operationExecutor is used to execute the operation.
ruleStore for the particular external system type. It stores the events and event filters for the respective system and returns them as a List

76

of Listeners
filterEvaluator is used for event filter evaluations.

Overwriting methods

For proper entity ID extraction from a changed entity representation, the extractEntityId() method is called. It gets a Map of the entity JSON object
as its argument. PushHandler expect input from backend system in JSON format by default. If you need change it to SOAP/XML you must
overwrite method: acceptXmlContent(){return true}.

Change detecting and CX event triggering

Change detecting is the same as for polling by ChangeObserver. If you need only default behavior of change detecting, you should extend
EventFilterEvaluator and MemoryCaseExchangeRuleStore (useful examples are in JIRA adapter)

Each event defined for the entity type that has been changed in the external system has an event filter defined in the configuration. The
event filter is an expression containing variables whose value is determined by the entity change. If the filter evaluates to true for the
particular change, the respective event is triggered.
The triggered event is placed into a message. The message is sent to HP SX for further processing. The pipeline for processing the
message is set to CaseExchangePipeline.
The CaseExchangePipeline makes sure the actions defined for the event or its event group are executed, and typically at the end of the
processing a message to Operations Orchestration is sent.

Push Handlers

Provided content packs

OOB content packs
HP SX contains the following out-of-the-box content packs:

sx-base - the base content for HP SX. This content pack is required and cannot be removed.
csa-r2f - the content pack providing files for HP CSA requests-to-fulfillment.
sm-r2f - the content pack providing files for HP SM requests-to-fulfillment.
sm-case-exchange - the content pack providing files for HP SX CX customizations.
sm-test-ui-support - the content pack providing files for HP SM related functions of HP SX UI.
csa-test-ui-support - the content pack providing files for HP CSA related functions of HP SX UI.
mock-r2f - an empty content pack.
email-r2f – the content pack providing files for email requests-to-fulfillment.
saw-case-exchange – the content pack providing files for HP SAW CX customizations.

Apart from the system or testing content pack, OOB content packs implement the business functionality outlined in the table below.

 Content pack Description

csa-r2f Enables request-to-fulfill (R2F) use case for CSA offerings aggregated into the Propel portal catalog.

Contains support for portal actions:

 approve/deny request
 check subscription
 cancel subscription

Provides support for the ticketing use case with HP SM as the ticketing backend system.

Supports standard ticketing management operations: create, add comment, add attachment, close etc.

sm-r2f Enables R2F use case for HP SM catalog items aggregated into Propel portal catalog.

It implements notification emails. Notification emails are sent to

approver after the user submits the request
requester notifying the approval/denial
requester notifying fulfillment

77

1.
2.
3.

email-r2f Provides support for items that are considered to be fulfilled by confirmation in UI.

Scenario:

User requests an item.
An email is sent to the appropriate person. The email sent contains links to confirm or deny the request.
The request is finished/denied by clicking the confirm/deny link.

case-exchange This content pack contains backend system-type independent CX configuration and operations.

It supports mainly:

Incident case exchange - where incidents are exchanged between systems
Incident task case exchange - where tasks created under an incident are exchanged. The main
advantage with this is that multiple tasks under a single incident can be assigned to different systems
simultaneously.

 sm-case-exchange This content pack contains backend system-type specifics: CX configuration and operations specific to HP SM, that
support generic configuration in content-case-exchange.

This includes mainly case exchange event definitions.

saw-case-exchange

This content pack contains backend system-type specifics: CX configuration and operations specific to , thatHP SAW
support generic configuration in content-case-exchange.

This includes mainly CX event definitions.

SDK provided content packs

These are content packs provided within the SDK package in directory:sx-content

 Content
pack

Description

78

jira

Ticketing

--

Provides support for the ticketing use case with JIRA as the ticketing backend system.

Supports standard ticketing management operations: create, add comment, add attachment, close etc.

Create ticket operation results in the creation of an ISSUE entity in JIRA.

The exposed JIRA ISSUE properties that are submitted as ticket properties are:

summary
description
project
issuetype
priority
reporter
asignee

R2f

--

The user creates an order in Propel. When creating an order, the user chooses a project to create the task in and specifies the
properties of the task (title, description, reporter, priority.) As a result, a task in JIRA is created with status and a mail is sentOpen
to the lead of the JIRA project (who is acting as the Approver). Additionally, a notification is sent to the catalog.

The lead invokes the approve operation in Propel. As a result, the task status is set to and a notification email is sentIn Progress
to the reporter. Additionally, a notification is sent to the catalog.

A developer resolves the task in JIRA. As a result, the reporter receives an email. Additionally, a notification is sent to the catalog.

A developer closes the task in JIRA. As a result, SX stops listening to changes of this task.

Case-exchange

--

Contains support for CX events and operations in the JIRA backend system type.

The use case supported:

1. An Incident clone is triggered in a linked external system, an incident is cloned in JIRA as a linked issue.

2. When the JIRA linked issue is resolved, the original incident will be automatically resolved as well.

How to extend HP SX Content (HP SM Problem entity)

HP SX content overview

HP SM configuration
SOAP API configuration and testing
REST API configuration and testing
Additional API needed
Setup Problem entity update triggers
Creating SM unload files

Defining messages
HP SX content module
OO flow

Configure OO Studio
Prepare Maven OO build
Create an OO project
Define OO flow inputs
Design OO flow

HP SX Adapter configuration

79

Prepare Maven content build
Content pack structure
Flow configuration
Operations configuration and templates

Testing and Troubleshooting
Content management UI
Content upload maven plugin
Testing using the SX REST interface
HP SX log files
HP OO UI

This section demonstrates how to extend HP SX content capabilities.

The example shows the the implementation of an HP SX content pack for OOB provided HP SM adapter. To demonstrate HP SX capabalities the
HP SM entity called was chosen. The example extends HP SX functionality to:Problem

support the operation for Problem entitycreate
monitor its state
send notifications about it back to the Propel catalog
when the Problem is solved, inform the submitter via email.

To explain the create operation in more detail. After the implementation of this example HP SX will be able to handle an icoming POST request on
its /request REST resource that represents a request to create a Problem entity in HP SM. This is basically what the R2F use case of HP SX is
called. It is presumed that the icoming request is issued by Propel portal but there is no dependency to it so the request could be issued by any
kind of HP SX client.

HP SX content overview

In this overview section a general brief overview is repeated for readers convenience. The aspects of HP SX that are most important to
understand the example implementation are highlighted.

HP SX in the HP Propel stack acts as a communication platform with fulfillment systems such as HP SM or CSA. As HP SM is so widely
customizable HP SX cannot supply a one-size-fits-all solution. Usually, for a specific HP SM instance specific content matching has to be created.

HP SX content consists of two main parts:

OO Flow
 This describes high-level interaction state actions. For example, if a request is closed inform the submitter, or if an entity does
not exist yet, create it.

Adapter operation definitions
 These translate high-level operations, such as , into a sequence of low level system calls using REST orcreateProblem
SOAP interfaces on a target system.

HP SX request processing:

1. The processing starts when a message arrives at an HP SX request REST endpoint. The incoming message is in the form of a JSON file
containing information such as:

 the fulfillment system type
 the fulfillment system instance
 the requestor
 the requested items identification
 selected user options.
Based on this information HP SX decides which OO flow to invoke.

2. The OO flow usually starts by checking if the request already has an ID in the external system. If not, a operation is invoked back oncreate
the SX adapter

3. The SX adapter performs the series of calls needed to create an entity in an external system, and as a last step usually registers to listen out
for changes of the just-created entity. As part of the notification registration it determines which adapter operation will be used for the checking of
the entity state.

4. When a change occurs in the external system, HP SX invokes a check operation. This check retrieves all the required information about the
affected entity in the form of a JSON representing the state of the entity.

5. The OO flow is invoked again, taking this state as an input. The flow decides if the change is worthy of interest, and if any actions are needed.
For example, it could invoke another operation or create and send an email notification.

6. The entity lifecycle normally ends in a closed state - if this state is detected, HP SX stops listening out for specific entity changes.

80

HP SM configuration
In HP SM Problem entities are kept in the rootcause table. This table is exposed via SOAP and REST endpoints as well. Find this configuration
from the HP SM UI, by going to .Tailoring > Web services > Web service configuration

NOTE: The preferable method is to use REST endpoints. It may in some cases be a better option to use SOAP, so this is explained here too.

SOAP API configuration and testing

On the Web service configuration page you see that the Problem entity is exposed using a service called . This serviceProblemManagement
name also represents the WSDL name of your service. This WSDL is accessible using the following URL:
http://sm_host:13080/SM/7/ProblemManagement.wsdl

You can test the operation using a SOAP client such as the Wizdler extension for Google Chrome. When it is installed, web servicecreate
operations can be invoked using the wizdler icon at the end of the address bar, as you see in this screenshot:

When the operation is invoked without providing any input, the following errors occur:CreateProblem

Please provide an Area.
Please provide a Subarea.
Please provide a Description.
Invalid Assignment Group
Message fc-1501 Could not be found:
Please provide a Service.
Please provide a Title.
Please provide an Impact.

81

Please provide an Urgency.

By default these mandatory fields are not exposed on the web service and need to be added manually.

Go to the Problem web service configuration and add fields according to the following table:

Field Caption Type

brief.description Title

description Description

initial.impact Impact

severity Urgency

subcategory Area

category Category

affected.item AffectedService

assignment AssignmentGroup

product.type Subarea

Now it is possible to create the problem entity without validation errors. Invoke the operation using Wizdler and pass theCreateProblem
following message as an input:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <CreateProblemRequest xmlns="http://schemas.hp.com/SM/7">
 <model>
 <keys/>
 <instance>
 <Title>Sample Problem</Title>
 <Description>
 <Description>It doesn’t work at all.</Description>
 </Description>
 <Impact>4</Impact>
 <Urgency>2</Urgency>
 <Service>Applications</Service>
 <AssignmentGroup>Application</AssignmentGroup>
 <Area>data</Area>
 <Subarea>data or file incorrect</Subarea>
 </instance>
 </model>
 </CreateProblemRequest>
 </Body>
</Envelope>

The element now informs of the successful problem creation:messages

Create Problem request

82

<messages>
 <cmn:message type="String">Problem PM10031 has been opened.</cmn:message>
 <cmn:message type="String">Problem record added.</cmn:message>
</messages>

You can also see the ID of the newly created problem entity in the keys element:

<keys>
 <Id type="String">PM10031</Id>
</keys>

The newly created problem is also visible in the HP SM UI, for example using Problem Management > Problem Control > Search Problems.

REST API configuration and testing

Since version 9.32, HP SM supports REST APIs. Use them for checking the Problem entity state in this example. To do this, expose a few more
fields in the response.

The fields are summarized in the following table:

Field Caption Type

current.phase CurrentPhase

status Status

opened.by OpenedBy

root.cause RootCause

expected.resolution.time Resolution Time

In Problem web service you see that the rootcause table is exposed under the problem’s collection name. The Rest URL of the detail of the
just-created Problem entity looks like this:
http://<sm_host>:13080/SM/9/rest/problems/PM10031

Test the REST endpoint using a REST client. For example, the DHC – REST HTTP API Client available from the Google Chrome app store.

Response messages

Resposne Problem ID

83

In order to get a proper response you need to provide an Authorization header containing the username and password of an HP SM operator user
in your organization. The REST call should return properties of the Problem entity in the form of a JSON structure such as this:

84

1.

2.

1.
2.
3.
4.

{
 "Messages": [
],
 "Problem": {
 "Area": "data",
 "AssignmentGroup": "Application",
 "Category": "BPPM",
 "CurrentPhase": "Problem Detection, Logging and Categorization",
 "Description": [
 "It doesn\u2019t work at all."
],
 "Id": "PM10031",
 "Impact": "4",
 "OpenedBy": "falcon",
 "Service": "Applications",
 "Status": "Open",
 "Subarea": "data or file incorrect",
 "Title": "Sample Problem",
 "Urgency": "2"
 },
 "ReturnCode": 0
}

Additional API needed

In order to notify the submitter about the problem’s solution the submitter’s email address is needed. This can be retrieved using the existing
operator SOAP API in HP SM. It is available in the web service. The operation takes the operator nameFSCManagement RetrieveOperator
as an input and returns the email address in the Email property.

Setup Problem entity update triggers

HP SX needs to know about any changes occurring with the problem entity in HP SM. This is done through update triggers added to relevant HP
SM data tables: the table that stores the problem entity.

lib.SX_EntityChangeV2.entityAfterUpdate

The update triggers usually call common HP SX trigger code - . This procedure performs lib.SX_EntityChangeV2.entityAfterUpdate
the following:

Checks whether the change is of interest, which requires listening to the changed entity. This information is stored in the
 table.SxRegisteredEntitiesV2

If there is some registration matching, the given entity ID of the new record is stored in the table.SxEntityChangesV2

HP SX performs periodic polling for records in . This polling is done through HP SM-defined external access to the table,SxEntityChangesV2
which makes the polling a REST call. If change polling finds a record, HP SX starts processing it and removes the record when complete.

Defining an update trigger

In order to enable change listening for the Problem entity in this example, a new update trigger needs to be defined.

NOTE: A new trigger can only be defined using an HP SM standalone client, not through the web interface.

Go to rootcause.System Definitions > Tables >
Click in the section.New… Associated triggers
Enter a new trigger name, for example, SX.rootcause.after.update.
Choose Update Trigger Type and enter the following text into the Script area:4-After

Response Problem detail

85

4.

5.

lib.SX_EntityChangeV2.entityAfterUpdate('id', oldrecord, record);

Click .Save

This new trigger calls the HP SX common trigger code every time a Problem entity is created or updated.

Creating SM unload files

When HP SM customizations are complete, back them up somewhere and move them across all of your HP SM installations. HP SM supports “
” files for this purpose.unload

You can define an unload on one system, export it, and then import it to another system.

Defining and creating an HP SM unload:

1. In the HP SM UI go to .System Administration > Ongoing Maintenance > Unload Manager > Create Unload

2. Enter values according to the following table:

Name Value

Defect Id SXProblem_1.01

Summary SXProblem

Apps version SM9.32

Hotfix type Official

3. Define the content of your unload file. This is all that is necessary to change at this point (problems web service and new problem trigger):

Object Type Query

triggers trigger.name="SX.rootcause.after.update"

extaccess service.name="ProblemManagement" and object.name="Problem"

4. Click to save the unload definition.OK

5. To download a new unload file now:

a. Click .Proceed

b. Provide a file name and click again.Proceed

Applying an HP SM unload

1. Go to .System Administration > Ongoing Maintenance > Unload Manager > Apply Unload

2. Choose the just-downloaded unload file.

3. Provide a backup file name.

4. NOTE: There could be a conflict during the application of the unload which has to be solved manually. Perform the conflict resolution using the
HP SM Client only, not the web interface.

For each line in conflict:

a. Double click the line in conflict and fix the content in the right column.

b. When complete, check the checkbox and click .Reconciled Save

5. When all conflicts are reconciled, finish the unload application wizard.

At this point the HP SM instance is prepared, and you are ready to create the sample content.

86

Defining messages
HP SX is a message driven system. If you want something from HP SX your request has to be passed in the form of a JSON message. These
messages are consumed by your adapter definitions or OO. HP SX itself only needs to understand a few important message parts. They are

 and (system type, target instance). For a operation you can reuse an existing messagemessageType routing properties CreateProblem
format, one used for R2F use cases.

An example CreateProblem message:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType":"problem",
 "name" : "My problem",
 "description" : "Problem desc",
 "urgency" : "1",
 "items" : [
 {
 "route" : {
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:route",
 "system_type" : "SM",
 "target_instance" : "http://<sm_host>:13080/SM"
 }
 }
]
}

This message will be available as a message source for HP SX’s OO flow input bindings, as shown later. It will also be used as an input into an
adapter operation. The create message is only one message going through HP SX in this example scenario. A representationCreateProblem
of the Problem entity state also needs to be produced by the operation. It is called every time the specific problem entity changescheckProblem
in HP SM, and again if it is used as an input for an OO flow. This message is fully under HP SX’s control as it is not exposed outside its system.

This example chooses a simple JSON structure named , containing all relevant properties. Notice also the message header in thisproblemInfo
example, which is system generated:

Create problem message

87

{
 "messageHeader" : {
 "backendSystemType" : "SM",
 "externalId" : "b91f09f4-0eb7-48ea-afa9-252f1d8d91ba",
 "messageType" : "problem",
 "targetInstance" : "mpavmsm10"
 },
 "problemInfo" : {
 "contact" : "falcon",
 "contactEmail" : "petr.fiedler@hp.com",
 "contactFullName" : "FALCON",
 "id" : "PM10032",
 "phase" : "Problem Prioritization and Planning",
 "status" : "Open",
 "title" : "My problem"
 }
}

HP SX content module
This example uses Apache Maven () for building the HP SX content pack.http://maven.apache.org/index.html

At least two modules are needed, the first for the OO content pack and the second for the SX content pack. Also a common parent POM module
needs to be defined for the two. The directory structure will look like this:

sx-demo-content
content-sm-problem

pom.xml
oo-sm-problem-cp

pom.xml
pom.xml

In the parent the version of dependent libraries is defined, also some further configuration is added:pom.xml

Problem status message

88

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.hp.propel.serviceExchange</groupId>
 <artifactId>service-exchange-content-pom</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Service Exchange Content</name>

 <properties>
 <oosdk.version>10.10.9</oosdk.version>
 <sx.version>1.0.1</sx.version>
 <sx-messaging.version>1.0.1</sx-messaging.version>
 </properties>
 <modules>
 <module>content-sm-problem</module>
 <module>oo-sm-problem-cp</module>
 </modules>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.hp.propel.serviceExchange</groupId>
 <artifactId>oo-sm-problem-cp</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>com.hp.ccue.serviceExchange</groupId>
 <artifactId>oo-sx-plugin</artifactId>
 <version>${sx-messaging.version}</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
</project>

The properties element captures versions of HP OO SDK, core HP SX components, and the version of the SX plugin for HP OO. It is also
necessary to populate the maven repository with SX and OO artifacts.

To do so, copy the artifacts from the SDK package directory into the local maven repository in your home folder, usually at: c:\Usersm2-repo
 for Windows or for Linux.\user_name\.m2\repository /home/user_name/.m2/repository

OO flow
An OO flow in HP SX is used for high level business process modeling. In this example it is used for:

problem creation
submitter notification about problem closure.

NOTE: For OO flow creation, HP OO Studio 10.10 needs to be installed.

Parent pom.xml

89

Configure OO Studio

Prior to starting, you need to add the SX OO plugin artifact (maven artifactId) and all its dependencies into your OO internaloo-sx-plugin
maven repository. Copy your full local repository () into the directory used by OO (). Note thathome/.m2/repository home/.oo/data/maven
a symlink won't work, OO Studio won't be able to see any operations. The following procedure presumes that you have already copied the

 directory of the SDK package into your local maven repository.m2-repo

The Base 1.3.0 OO Content pack (oo10-base-cp-1.3.0.jar) needs to be uploaded into your HP OO studio. If it is not listed in the Content packs
panel, upload it using the button on the panel toolbar. It can be found on OO iso, seeImport content pack
SOFT_INCOMING\OO\oo-10.20-46\content.

Prepare Maven OO build

The OO project will be placed in the following directory:

sx-demo-content/oo-sm-problem-cp/src/main/resources/oo-sm-problem-project

The Maven file is also needed for the module. It is responsible for packaging the OO project into an OO Contentpom.xml oo-sm-problem-cp
pack deployable to an OO Central server. A Maven plugin from the OO SDK is used for this packaging.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.hp.propel.serviceExchange</groupId>
 <artifactId>service-exchange-content-pom</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 </parent>
 <artifactId>oo-sm-problem-cp</artifactId>
 <packaging>jar</packaging>
 <dependencies>
 <dependency>
 <groupId>com.hp.ccue.serviceExchange</groupId>
 <artifactId>oo-sx-plugin</artifactId>
 </dependency>
 </dependencies>
 <build>
 <resources>
 <resource>

<directory>${project.basedir}/src/main/resources/oo-sm-problem-project</directory>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <includeEmptyDirs>true</includeEmptyDirs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>com.hp.oo.sdk</groupId>

OO Content Pack pom.xml

90

<artifactId>oo-contentpack-maven-plugin</artifactId>
<version>${oosdk.version}</version>
<executions>

<execution>
<id>generate-contentpack-plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-contentpack</goal>
</goals>

</execution>
</executions>
<configuration>

<destinationFolder>${project.build.outputDirectory}</destinationFolder>
<artifactItems>

<artifactItem>
<groupId>com.hp.ccue.serviceExchange</groupId>
<artifactId>oo-sx-plugin</artifactId>
<version>${sx-messaging.version}</version>

</artifactItem>
</artifactItems>

</configuration>
</plugin>

</plugins>

 </build>
</project>

91

Create an OO project

1. Open OO Studio.
2. Click the New Project icon in the section.Projects
3. Enter as a project name. It has to match the project directory name specified in the resources section of .oo-sm-problem-project pom.xml
4. Specify as the location.sx-demo-content\oo-sm-problem-cp\src\main\resources
5. Now OO Studio creates an empty project.
6. Under the folder of your project, create a new folder using the right mouse menu and choosing Name it JMSsender.Library New > Folder…
7. Under this folder create a new Operation. After a moment the dialog appears listing all the available operations in the OOCreate Operation
internal Maven repository. Choose under com.hp.ccue. , as in the example below:sendMessageToMQ serviceExchange:oo-sx-plugin:1.1.0.0

Define OO flow inputs

To design the flow:

1. Create a new folder under , call it for example SXFlows.Library

92

2. Choose from the context menu for this folder. Enter a flow name such as SMProblemFlow. A new empty flow is now created.New > Flow

3. Now to define input parameters. Input parameters are not required, however it is a good practice to declare them explicitly. Input parameters
can be divided into three categories:

• SX internal

• SX configuration

• Custom ones.

4. Switch to the tab and define the input parameters according to the following table:Properties

Input Required From Meaning

queueName yes Prompt
User

Messaging queue used for communication with adapter.

messageType yes Prompt
User

Identifies adapter pipeline used to handle message.

messageCompressed yes Prompt
User

Contains message which will be passed back to SX, for performance reasons
message is compressed.

sxConfiguration.jmsBroker yes Prompt
User

Rabbit MQ hostname.

sxConfiguration.jmsBrokerUsername yes Prompt
User

User name for authentication in Rabbit MQ.

sxConfiguration.jmsBrokerPassword yes Prompt
User

Password used for authentication in Rabbit MQ.

sxConfiguration.smtpServer yes Prompt
User

Mail server hostname.

sxConfiguration.smtpPort yes Prompt
User

Mail server port.

sxConfiguration.smtpUser no Optional mail server username if authentication is switched on.

sxConfiguration.smtpPassword no Optional mail server password if authentication is switched on.

sxConfiguration.mailFrom yes Prompt
User

Sender address used for notification emails.

problemInfo.id no ID of problem entity for HP SM or blank for new entity.

problemInfo.title no Problem title.

problemInfo.phase no Problem workflow current phase.

problemInfo.status no Problem status such as Open or Closed.

problemInfo.contact no Submitter full name.

problemInfo.contactEmail no Submitter email address.

problemInfo.rootCause no Problem solution description.

problemInfo.resolutionTime no Problem resolution time.

NOTE: These inputs have to match the definitions provided in the file, in the adapter content step created later.flows.json

The screenshot below shows fully defined flow inputs:

93

Design OO flow

Now the flow inputs are defined you can start the OO flow design.

The flow is responsible for two main things:

1. It invokes the create operation on the adapter if the problem entity is new.

2. It notifies the submitter via email if the problem is closed.

The initial node of the flow checks if the parameter is empty or not. Use the Equal operation from the Base content for this.problemInfo.id
Choose and from the Content Pack's panel and drag them intoBase/Library/Utility Operations/Math Comparison/Simple Evaluators/Equal
the flow design area. Fill in inputs according to this table:

Input Assign from Variable Otherwise Constant Value

value1 <not assigned> Use Constant ${problemInfo.id}

value2 <not assigned> Use Constant

operation <not assigned> Use Constant ==

When the ID check succeeds the flow will send a message back to HP SX, using the sendMessageToMQ operation created earlier. Drag it from

94

the section and move it into the design area. Enter the input bindings according to the following table:Projects

Input Assign from Variable Otherwise Constant Value

brokerUrl sxConfiguration.jmsBroker Use Constant

brokerUsername sxConfiguration.jmsBrokerUsername Use Constant

brokerPassword sxConfiguration.jmsBrokerPassword Use Constant

queueName queueName Use Constant

operationName <not assigned> Use Constant createProblem

messageText <not assigned> Use Constant

messageCompressed messageCompressed Use Constant

messageType messageType Use Constant

When the ID check fails (ID is not empty), another check has to be performed. This time it needs to check if the problem status is . Again,Closed
use the Equal operation from the Base content pack. Enter the input bindings according to the following table:

Input Assign from Variable Otherwise Constant Value

value1 <not assigned> Use Constant ${problemInfo.status}

value2 <not assigned> Use Constant Closed

operation <not assigned> Use Constant ==

When the status is HP SX will notify the submitter that this is the case via email. Drag the closed Base/Library/Operations/Email/Send Mail
component from the panel. Input bindings are described in the following table:Content Pack

Input Assign from Variable Otherwise Constant Value

hostname <not assigned> Use Constant ${sxConfiguration.smtpSever}

port <not assigned> Use Constant ${sxConfiguration.smtpPort}

from <not assigned> Use Constant ${sxConfiguration.mailFrom}

to <not assigned> Use Constant ${problemInfo.contactEmail}

subject <not assigned> Use Constant Problem was solved: ${problemInfo.title}

body <not assigned> Use Constant See bellow

htmlEmail <not assigned> Use Constant true

username <not assigned> Use Constant ${sxConfiguration.smtpUser}

password <not assigned> Use Constant ${sxConfiguration.smtpPassword}

95

<html>
 <body>

<h3>Your problem was solved: ${problemInfo.title}</h3>
<table border="1">

<tr>
<td>Root Cause</td>
<td>${problemInfo.rootCause}</td>

</tr>
<tr>

<td>Resolution Time</td>
<td>${problemInfo.resolutionTime}</td>

</tr>
</table>

 </body>
</html>

With the key flow steps configured, the last step is to connect them all together and add the appropriate flow results. The screenshot below shows
the fully designed flow:

Email body

96

The flow is now complete. In order to test it you need to design an adapter operation, as described in next section.

HP SX Adapter configuration
This section describes how to implement an HP SX adapter configuration. I.e. it describes the configuration that needs to be present in the
content pack so that the HP SM adapter uses the content.

Prepare Maven content build

The content project will be placed in the directory:

sx-demo-content/content-sm-problem/src/main/resources.

The module's is responsible for packaging our content together with the OO content pack into one content archive, uploadable intopom.xml
a running HP SX instance.

97

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>

<artifactId>service-exchange-content-pom</artifactId>
<groupId>com.hp.propel.serviceExchange</groupId>
<version>1.1.0-SNAPSHOT</version>

 </parent>
 <artifactId>content-sm-problem</artifactId>
 <dependencies>

<dependency>
<groupId>com.hp.propel.serviceExchange</groupId>
<artifactId>oo-sm-problem-cp</artifactId>

</dependency>
 </dependencies>
 <build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>

<execution>
<id>copy-dependencies</id>
<phase>compile</phase>
<goals>

<goal>copy-dependencies</goal>
</goals>
<configuration>

<outputDirectory>${project.build.directory}/classes/oo</outputDirectory>
<overWriteReleases>false</overWriteReleases>
<overWriteSnapshots>false</overWriteSnapshots>
<overWriteIfNewer>true</overWriteIfNewer>
<excludeTransitive>true</excludeTransitive>

<includeGroupIds>com.hp.propel.serviceExchange</includeGroupIds>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

 </build>
</project>

Content pack structure

The content pack structure consists of three JSON configuration files:

1. A JSON configuration file for the content pack metadata definition.

2. A JSON configuration file for the flow invocation.

SX Content Pack pom.xml

98

3. A JSON configuration file for the operation step definitions.

There are also Freemarker template files for the transformation of requests and responses from external system APIs. They can also contain HP
SM unload files and other proprietary content not directly interpreted by HP SX.

The file structure under the directory should look like this:sx-demo-content/content-sm-problem/src/main/resources

sm
SXProblem.unl (exported from SM earlier)

oo (OO content pack is placed here during the build, it does not have to exist in the source directories)
sx

flows.json
operations.json
templates

Freemarker templates
metadata.json

Metadata.json contains basic content pack metadata such as id, name, description and version. It also contains the version of the nested HP
SM unload file.

{
 "id": "sm-problem",
 "name": "SM problem demo content",
 "description": "Demo Service Exchange content dealing with problem entity
lifecycle in Service Manager",
 "version": "1.0.0",
 "adapter": "SM",
 "features":[
],
 "files": [

{
"path": "sm/SXProblem.unl",
"version": "1.01",
"type": "sm_unload"

}
]
}

Flow configuration

Flow configuration is expressed in a file. It specifies which flow will be invoked for problem entity operations, and bindings of flowflows.json
inputs to different information sources in HP SX. These could be input messages or various configuration files. The Flow ID could be obtained
from the tab of the SMProblemFlow detail page in . For each flow input parameter one structure in the parameters list mustProperties OO Studio
be provided. The structure contains names which have to match the flow input names. It also contains source property, possible values are
described in the following table:

Source Purpose

message Used for values coming from an SX input message. This has a default value when no source is provided.

infrastructure Provides infrastructure configuration values such as messaging server connection settings, or various SX REST endpoint
URLs. The configuration is in the file.sx.war/WEB-INF/classes/config/infrastructure.json

oo-properties Contains OO configuration properties such as SMTP server settings. The configuration is in the
 file.sx.war/WEB-INF/classes/config/oo/properties.json

The property holds a JSONPath expression selecting a specific value from a selected source. It has a similar syntax to XPath. ItValueSelector
usually starts with and contains dot delimited property names. For example, if you want to select a contact email value from a problem status$
message, JSONPath will look lthis way: . See for more examples. It is$.problemInfo.contactEmail http://code.google.com/p/json-path/
necessary to bind several properties for JMS settings (used for passing messages back to HP SX), SMTP server settings (used for sending email
notifications), and Problem entity status properties from the status message defined earlier.

Content pack metadata

99

{
 "SM": {

"problem": {
"flowId": "06370fea-f11f-4c0f-ae2a-a6fc789ed81f",
"compressMessage": true,
"parameters": [

{
"name": "sxConfiguration.jmsBroker",
"valueSelector": "$.JMS_BROKER.endpoint",
"source": "infrastructure"

},
{

"name": "sxConfiguration.jmsBrokerUsername",
"valueSelector": "$.JMS_BROKER.loginName",
"source": "infrastructure"

},
{

"name": "sxConfiguration.jmsBrokerPassword",
"valueSelector": "$.JMS_BROKER.password",
"source": "infrastructure"

},
{

"name": "sxConfiguration.smtpServer",
"valueSelector": "$.smtpServer",
"source": "oo-properties"

},
{

"name": "sxConfiguration.smtpPort",
"valueSelector": "$.smtpPort",
"source": "oo-properties"

},
{

"name": "sxConfiguration.smtpUser",
"valueSelector": "$.smtpUser",
"source": "oo-properties"

},
{

"name": "sxConfiguration.smtpPassword",
"valueSelector": "$.smtpPassword",
"source": "oo-properties"

},
{

"name": "sxConfiguration.mailFrom",
"valueSelector": "$.mailFrom",
"source": "oo-properties"

},
{

"name": "sxConfiguration.emailBcc",
"valueSelector": "$.emailBcc",
"source": "oo-properties"

},
{

"name": "problemInfo.id",
"valueSelector": "$.problemInfo.id",
"source": "message"

},
{

"name": "problemInfo.title",
"valueSelector": "$.problemInfo.title",
"source": "message"

},
{

"name": "problemInfo.phase",
"valueSelector": "$.problemInfo.phase",
"source": "message"

},
{

"name": "problemInfo.status",
"valueSelector": "$.problemInfo.status",
"source": "message"

100

},
{

"name": "problemInfo.contactFullName",
"valueSelector": "$.problemInfo.contactFullName",
"source": "message"

},
{

"name": "problemInfo.contactEmail",
"valueSelector": "$.problemInfo.contactEmail",
"source": "message"

},
{

"name": "problemInfo.rootCause",
"valueSelector": "$.problemInfo.rootCause",
"source": "message"

},
{

"name": "problemInfo.resolutionTime",
"valueSelector": "$.problemInfo.resolutionTime",
"source": "message"

}
]

}

 }

 }

101

Operations configuration and templates

Two operations are needed for the example content:

1. will be responsible for the creation of the entity in HP SM.createProblem Problem

2. will retrieve the current status of the entity from HP SM.checkProblem

For each of these operations it is necessary to define a sequence of steps that correspond to the individual SOAP or REST calls invoked on the
target HP SM instance.

CreateProblem operation

For the create operation, one SOAP request (the that was tested earlier) is needed. Typically for SOAP calls it isCreateProblemRequest
necessary to provide the to get the URL, the for request transformation, the response template forrequestUrlTemplate requestTemplate
the server response transformation, and a few http headers as well.

{
"createProblem": [

{
"label": "Create problem",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "createProblem.ftl",
"responseTemplate": "createProblemResponse.ftl",
"header-SOAPAction": "Create",
"header-Accept": "text/xml"

},
…

]
}

The result of the request transformation should be a SOAP request containing all the relevant information, which is then sent to the HP SM server.
In this example problem title, description and urgency values are entered.

Templates are written using Freemarker, a powerful template language good for generating text output. A Freemarker manual is available here:
.http://freemarker.org/docs/index.html

Each transformation takes input in the form of structured hash (or in Java terminology.) It contains key value pairs. is always a string, Map Key
 could be a primitive type (String, Boolean, Number or another Map or List.)value

In your template include values from the input using the following syntax: . An could be a simple dot delimited key${expression} expression
name or something more complicated. See the Freemarker Manual expressions section of

 for a full reference.http://freemarker.org/docs/dgui_template_exp.html#exp_cheatsheet

For more complicated template operations such as iteration over lists or conditions there are Freemarker directives. They have xml-like element
syntax, and the element name starts with the # character. In the example below an escape directive is used, which ensures that all expression
results included into the template are properly encoded for XML output. For example, is replaced by the XML entity . For a full directive< >
reference see http://freemarker.org/docs/ref_directive_alphaidx.html

NOTE: The message is available in the template input under the message key.

Create problem operation

102

<#-- @ftlvariable name="message" type="java.util.Map" -->
<#escape x as x?xml>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>

<CreateProblemRequest xmlns="http://schemas.hp.com/SM/7">
<model>

<keys/>
<instance>

<Title>${message.name}</Title>
<Description>

<Description>${message.description}</Description>
</Description>
<Impact>4</Impact>
<Urgency>${message.urgency}</Urgency>
<Service>Applications</Service>
<AssignmentGroup>Application</AssignmentGroup>
<Area>data</Area>
<Subarea>data or file incorrect</Subarea>

</instance>
</model>

</CreateProblemRequest>
 </Body>
</Envelope>
</#escape>

After the SOAP request is processed by an HP SM server, HP SX will receive back a SOAP response. Usually it is necessary to be able to use
information from the response in the later steps of the operation. It is a task for response template transformation. It is passed the original
message and server response as an input. Freemarker has native support for working with XML inputs, for example XPath queries can be used
for selecting values from the response. The result of response transformation has to be a JSON structure. HP SX will merge this structure into the
original message and use the result as an input for the next operation step. See the directive defining the XML namespaces in the exampleftl
below. They are then used in an XPath query selecting the ID of the just-created problem entity. ID is placed under the id property of the
problemInfo structure. Also note that the server response is available in the template input under the doc.result key

<#ftl ns_prefixes={
 "soap":"http://schemas.xmlsoap.org/soap/envelope/",
 "sm":"http://schemas.hp.com/SM/7"}
>
<#escape x as x?json_string>
{
 "problemInfo":{

"id":
"${doc.result["soap:Envelope/soap:Body/sm:CreateProblemResponse/sm:model/sm:keys/sm:Id"]}"
}
}
</#escape>

To summarize: after the first step of the operation, a problem entity is created in HP SM and its ID is made available in the inputcreateProblem

createProblem template

createProblemResponse template

103

message.

The goal of the next step is to register HP SX as a listener for any problem entity changes. To make this happen some information is needed.

Property Description

notifyTemplate This template is used to generate the input message that is later passed as the input for a checkProblem operation
every time the problem entity is changed in HP SM.

callbackTemplate This template creates a notification for the Propel catalog when a change occurs in HP SM.

operationName Name of the operation invoked when the problem entity changes.

idSelector JSONPath expression selecting the ID of the problem entity being watched.

firstRunImmediately If set to true, the first check operation executes immediately.

entityTypeSelector Name of the HP SM data table containing the problem entity.

{
"createProblem": [

…
{

"label": "Watch interaction changes",
"notifyTemplate": "checkProblem.ftl",
"callbackTemplate": "callbackNotify.ftl",
"operationName": "checkProblem",
"idSelector": "$.problemInfo.id",
"firstRunImmediately": true,
"entityTypeSelector": "rootcause"

}
]
}

The operation is now complete..createProblem

CheckProblem operation

The goal of the operation is to retrieve various problem entity properties from HP SM. This time the SM REST interface will becheckProblem
used. For REST calls you first have to obtain the URL in . The http method also needs to be provided, which is GET inrequestUrlTemplate
this case. In addition is needed.responseTemplate

{
"checkProblem": [

{
"label": "Retrieve problem",
"requestUrlTemplate": "retrieveProblemUrl.ftl",
"responseTemplate": "retrieveProblemResponse.ftl",
"method": "GET",
"header-Accept": "application/json"

},
…

The Request URL template takes input consisting of message and instance configuration (in this example an HP SM instance.) The instance

Create problem operation cont.

Check problem operation

104

configuration is used as the base URL and appended by the HP SM REST problem collection context. At the end there is the ID of a specific
problem entity.

<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>/9/rest/problems/${message.problemInfo.id}
</#escape>

For the http GET operation there is no request body, so the request template is missing here. The Response transformation is easier also, as HP
SM produces a JSON response which easily maps into Freemarker hash input. Notice that Freemarker is strict about results. If${expression}
the expression produces null, it causes a processing error. See the usage of the directive bellow which deals with this problem. #if

<#escape x as x?json_string>
{
 "problemInfo": {

"title": "${doc.result.Problem.Title}",
"phase": "${doc.result.Problem.CurrentPhase}",
"status": "${doc.result.Problem.Status}",
"contact": "${doc.result.Problem.OpenedBy}"
<#if doc.result.Problem.RootCause?? && doc.result.Problem.RootCause?size >

0>
,"rootCause": "${doc.result.Problem.RootCause?join("\n")}"

</#if>
<#if doc.result.Problem.ResolutionTime??>

,"resolutionTime": "${doc.result.Problem.ResolutionTime}"
</#if>

 }
}
</#escape>

The next step in the operation is to fetch the email address and the full name of the given operator (property.) ThecheckProblem Contact
existing SOAP API is used here.

{
"checkProblem": [

…
{

"label": "Retrieve submitter email",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "retrieveOperator.ftl",
"responseTemplate": "retrieveOperatorResponse.ftl",
"header-SOAPAction": "Retrieve",
"header-Accept": "text/xml"

}
]

The request template fills the operator name into the request.

retrieveProblem response template

Check problem operation cont.

105

<#escape x as x?xml>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>

<RetrieveOperatorRequest xmlns="http://schemas.hp.com/SM/7">
<model>

<keys>
<Name>${message.problemInfo.contact}</Name>

</keys>
<instance/>

</model>
</RetrieveOperatorRequest>

 </Body>
</Envelope>
</#escape>

The response template extends the structure by the full name and email.problemInfo

<#ftl ns_prefixes={
 "soap":"http://schemas.xmlsoap.org/soap/envelope/",
 "sm":"http://schemas.hp.com/SM/7"}
>
<#escape x as x?json_string>
{
 "problemInfo":{

"contactFullName":
"${doc.result["soap:Envelope/soap:Body/sm:RetrieveOperatorResponse/sm:model/sm:instance/sm:FullName"]}",
"contactEmail":
"${doc.result["soap:Envelope/soap:Body/sm:RetrieveOperatorResponse/sm:model/sm:instance/sm:Email"]}"
}
}
</#escape>

Callback notification

The goal of the notification callback is to inform the catalog about changes in HP SM. For this example it is not needed as the HP Propel Catalog
is not aware of the Problem entity and therefore will ignore such notifications.

However, this functionality is explained here in case it is required.

The following statuses are reported in notifications:

Status Description

submitted Problem in HP SM is in phase 'Problem Detection, Logging and Categorization' or 'Problem Prioritization and Planning'

completed Problem in HP SM is closed

retrieveOperator template

retrieveOperator response template

106

in_progress For all other Problem phases

Notifications have to contain an HP SX request ID, and can in addition contain other optional attributes, for example displayName or externalId.

<#escape x as x?json_string>
{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id": "${message.messageHeader.externalId}",
 "remoteId": "${message.problemInfo.id}",
 "displayName": "${message.problemInfo.title}",
 "submitter": "${message.problemInfo.contact}",
 <#if message.problemInfo.status == 'Closed'>

"state" : "completed"
 <#elseif message.problemInfo.phase == 'Problem Detection, Logging and
Categorization' || message.problemInfo.phase == 'Problem Prioritization and Planning'>

"state" : "submitted"
 <#else>

"state" : "in_progress"
 </#if>
}
</#escape>

Testing and Troubleshooting
At this point the HP SX example content is complete, it now needs to be tested.

To build the content, call:

mvn clean install

The newly built content pack will be in:

content-sm-problem\target\content-sm-problem-1.1.0-SNAPSHOT.jar.

Deploy it either using the Content management UI, or the HP SX content upload maven plugin.

Content management UI

The Content Management UI is available using the following URL:

https://sx_host:9444/sx/contentManagement.jsp

Procedure to upload a content pack:

a) Upload the content pack using the button.Upload

b) Select the file.content-sm-problem\target\content-sm-problem-1.1.0-SNAPSHOT.jar

c) Click .OK

Content upload maven plugin

Another way of uploading content is by using the HP SX content upload maven plugin from the command line. In order to do this you need a
properly configured in your root file. The configuration contains the following properties:sx-maven-plugin pom.xml

Property Default value Description

107

idmUrl https://catalog_host:9600/idm-service URL of the IdM service on the Propel catalog machine

idmTransportUser idmTransportUser User used for authorization of API calls on the IdM service

idmTransportPassword idmTransportUser User password used for authorization of API calls on the IdM service

sxUrl https://sx_host:9444/sx URL of SX service on HP Propel SX machine

username admin HP SX Administrator User with permission to upload SX content packs - it
has to have the ADMINISTRATOR role within the selected tenant

password propel Password of the HP SX Administrator User

tenant Provider Organization name of the HP SX Administrator User

When configured properly it is possible to upload an HP SX content pack using the following command, executed in the content-sm-problem
directory:

mvn install com.hp.ccue.serviceExchange:sx-maven-plugin:uploadContent

When the operation completes content metadata is returned by the HP SX server. You can find it in .sx.log

{
 "id" : "sm-problem",
 "files" : [{
 "path" : "sm/SXProblem.unl",
 "version" : "1.01",
 "type" : "sm_unload"
 }],
 "description" : "Demo Service Exchange content dealing with problem entity lifecycle
in Service Manager",
 "name" : "SM problem demo content",
 "features" : [],
 "ooContent" : {
 "name" : "oo-sm-problem-project",
 "version" : "1.0.0"
 },
 "uploadTime" : "2014-09-12T16:59:30+0200",
 "adapter" : "SM",
 "version" : "1.0.0",
 "_links" : {
 "self" : {

"href" : "/sx/api/content/sm-problem"
 }
 }
}

Sometimes it is useful (no change in OO flow) and faster, to upload HP SX content and not update the OO flow in the OO Central server. To do
so use the parameter from the command line:-DskipOOUpload=true

Content upload maven plugin output

108

mvn install com.hp.ccue.serviceExchange:sx-maven-plugin:uploadContent
-DskipOOUpload=true

Testing using the SX REST interface

When the new content pack is uploaded you can use for example the DHC client again, to test it.

A POST request has to be submitted to the endpoint. The request content has to contain the JSON messagehttp://sx_host:8080/sx/api/request
described earlier.

109

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType":"problem",
 "name" : "My First Problem",
 "description" : "This problem was published using SX",
 "urgency" : "2",
 "items" : [

{
"route" : {

"@type" : "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type" : "SM",
"target_instance" : "http://sm_host:13080/SM"

}
}

]
}

If the request is successful, HP SX will return a request ID.

{
 "id":"38628a16-1728-4e61-aab2-befc75f63172"
}

In case of an error, troubleshoot the issue by inspecting the log files, see the HP SX log files section.

HP SX log files

Log files for the HP SX instance are placed in directory./var/log/propel/jetty-sx/

There are several files containing log messages from different components and using different log levels:

File name Purpose

sx.log General SX log containing info and error messages from all components

sx-messages.log Contains incoming messages as they entered SX

notification.log Outgoing catalog notification log

adapter type
-messages.log

Detailed log for given adapter type, containing full communication with external system (request, responses, operation
inputs/outputs,…) . For example, an HP SM file is named sm-messages.log

sx-trace.log Detailed log aggregating trace messages from all adapters

When an issue occurs, checking the is a good starting point as overall information about what HP SX is doing, together with all errors (ifsx.log
they occurred), is contained there.

For a more detailed analysis of issues communicating with external systems, use the adapter-specific log file. For HP SM it is the file
. In the log shown below you can see the create problem message dispatches successfully. At first HP SX sent a messagesm-messages.log

Create problem request

Create problem response

110

saying ‘execute problem OO flow into Rabbit MQ’. Then the OO message listener picked up this message and executed the flow on the OO
Central server. Based on the message the OO flow decided that CreateProblem needs to be invoked back on SX, and so it is executed. In
addition, the registration states that the entity status should be checked immediately, so a checkProblem operation is executed too. As a result of
this operation a notification is issued saying that the problem is in the state.submitted

2014-10-08 17:28:03.450 INFO [com.hp.ccue.serviceExchange.oo.OoUtils] - Compressing
oo message original:680 compressed:472 ratio:69.411766
2014-10-08 17:28:03.463 INFO [com.hp.ccue.serviceExchange.jms.RabbitMqSenderImpl] -
connecting to rabbit_sx@mpavmoo02.hpswlabs.adapps.hp.com
2014-10-08 17:28:03.780 INFO [com.hp.ccue.serviceExchange.rest.RequestResource] - SX
response: {
 "id" : "942aec34-80eb-47e1-918e-ac21832e485a"
}
2014-10-08 17:28:04.097 INFO [com.hp.ccue.serviceExchange.oo.OoFlowMessageListener] -
OO flow successfully executed, uri =
http://mpavmoo02.hpswlabs.adapps.hp.com:8080/oo/rest/executions/221752429/summary
2014-10-08 17:28:04.261 INFO [com.hp.ccue.serviceExchange.adapter.sm.SmAdapter] -
executing pipeline PLAIN
2014-10-08 17:28:04.264 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - Executing operation
'createProblem'
2014-10-08 17:28:05.657 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - register entity:
mpavmsm10:PM10160
2014-10-08 17:28:05.977 INFO [com.hp.ccue.serviceExchange.adapter.sm.SmAdapter] -
executing pipeline SX_MANAGED_CHANGE
2014-10-08 17:28:05.989 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - Executing operation
'checkProblem'
2014-10-08 17:28:06.731 INFO [com.hp.ccue.serviceExchange.oo.OoUtils] - Compressing
oo message original:555 compressed:432 ratio:77.83784
2014-10-08 17:28:06.808 INFO [com.hp.ccue.serviceExchange.oo.OoFlowMessageListener] -
OO flow successfully executed, uri =
http://mpavmoo02.hpswlabs.adapps.hp.com:8080/oo/rest/executions/221752445/summary
2014-10-08 17:28:07.241 INFO [com.hp.ccue.serviceExchange.rest.CatalogResource] -
Received notification ({
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "displayName" : "My test ticket",
 "id" : "942aec34-80eb-47e1-918e-ac21832e485a",
 "remoteId" : "PM10160",
 "state" : "submitted",
 "submitter" : "falcon"
})
2014-10-08 17:28:07.250 INFO
[com.hp.ccue.serviceExchange.catalog.CatalogNotificationMessageListener] -
Notification to http://localhost:8080/sx/api/catalog was successful.

When a change occurs in HP SM, for example the problem entity is moved to the next phase, HP SX detects this change and the checkProblem
operation is invoked again. In this case it notifies the catalog about an problem state.in_progress

Create problem in sx.log

111

2014-10-08 17:30:00.217 INFO
[com.hp.ccue.serviceExchange.adapter.sm.db.SmChangeObserver] - SM change
rootcause/PM10160/sxManaged/null/update from mpavmsm10 is processing
2014-10-08 17:30:00.356 INFO [com.hp.ccue.serviceExchange.adapter.sm.SmAdapter] -
executing pipeline SX_MANAGED_CHANGE
2014-10-08 17:30:00.363 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - Executing operation
'checkProblem'
2014-10-08 17:30:01.304 INFO [com.hp.ccue.serviceExchange.oo.OoUtils] - Compressing
oo message original:598 compressed:464 ratio:77.59197
2014-10-08 17:30:01.723 INFO [com.hp.ccue.serviceExchange.oo.OoFlowMessageListener] -
OO flow successfully executed, uri =
http://mpavmoo02.hpswlabs.adapps.hp.com:8080/oo/rest/executions/221752473/summary
2014-10-08 17:30:02.285 INFO [com.hp.ccue.serviceExchange.rest.CatalogResource] -
Received notification ({
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "displayName" : "My test ticket",
 "id" : "942aec34-80eb-47e1-918e-ac21832e485a",
 "remoteId" : "PM10160",
 "state" : "in_progress",
 "submitter" : "falcon"
})
2014-10-08 17:30:02.293 INFO
[com.hp.ccue.serviceExchange.catalog.CatalogNotificationMessageListener] -
Notification to http://localhost:8080/sx/api/catalog was successful.

An example of a detailed communication with HP SM in an :sm-messages.log

2014-10-08 17:28:04.261 TRACE [com.hp.ccue.serviceExchange.adapter.sm.SmAdapter] -
initializing context for message:
{@type=urn:x-hp:2014:software:cloud:data_model:sx:request, messageType=problem,
name=My test ticket, description=My test desc, urgency=4,
items=[{route={@type=urn:x-hp:2014:software:cloud:data_model:sx:route, system_type=SM,
target_instance=http://mpavmsm10.hpswlabs.adapps.hp.com:13080/SM}}],
messageHeader={messageType=problem, backendSystemType=SM, targetInstance=mpavmsm10,
externalId=942aec34-80eb-47e1-918e-ac21832e485a}, startDate=2014-10-08T15:28:03Z,
endDate=2015-10-08T15:28:03Z}
2014-10-08 17:28:04.261 INFO [com.hp.ccue.serviceExchange.adapter.sm.SmAdapter] -
executing pipeline PLAIN
2014-10-08 17:28:04.264 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - Executing operation
'createProblem'
2014-10-08 17:28:04.270 DEBUG
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - executing step 'Create
problem'
2014-10-08 17:28:04.273 TRACE
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - using integration
account: 'true'

SM change notification in sx.log

Create problem in sm-messages.log

112

2014-10-08 17:28:04.273 TRACE [com.hp.ccue.serviceExchange.adapter.sm.HttpClientImpl]
- Sending 'POST' request to http://mpavmsm10.hpswlabs.adapps.hp.com:13080/SM/7/ws,
payload = content-type: text/xml; charset=UTF-8, content: <Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>

<CreateProblemRequest xmlns="http://schemas.hp.com/SM/7">
<model>

<keys/>
<instance>

<Title>My test ticket</Title>
<Description>

<Description>My test desc</Description>
</Description>
<Impact>4</Impact>
<Urgency>4</Urgency>
<Service>Applications</Service>
<AssignmentGroup>Application</AssignmentGroup>
<Area>data</Area>
<Subarea>data or file incorrect</Subarea>

</instance>
</model>

</CreateProblemRequest>
 </Body>
</Envelope>
.
2014-10-08 17:28:05.623 TRACE
[com.hp.ccue.serviceExchange.adapter.sm.HttpClientImpl.HttpResponse] - Response XML
<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <CreateProblemResponse xmlns="http://schemas.hp.com/SM/7"
xmlns:cmn="http://schemas.hp.com/SM/7/Common"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" message="Success" returnCode="0"
schemaRevisionDate="2014-10-01" schemaRevisionLevel="0" status="SUCCESS"
xsi:schemaLocation="http://schemas.hp.com/SM/7
http://mpavmsm10.HPSWLABS.ADAPPS.HP.COM:13080/SM/7/Problem.xsd">

<model>
<keys>

<Id type="String">PM10160</Id>
</keys>
<instance recordid="PM10160 - BPPM - Open - My test ticket"

uniquequery="id="PM10160"">
<Id type="String">PM10160</Id>
<Category type="String">BPPM</Category>
<AssignmentGroup type="String">Application</AssignmentGroup>
<Status type="String">Open</Status>
<Title type="String">My test ticket</Title>
<Description type="Array">

<Description type="String">My test desc</Description>
</Description>
<OpenedBy type="String">falcon</OpenedBy>
<Urgency type="String">4</Urgency>
<Area type="String">data</Area>
<Subarea type="String">data or file incorrect</Subarea>
<CurrentPhase type="String">Problem Detection, Logging and

Categorization</CurrentPhase>
<Impact type="String">4</Impact>

113

<Service type="String">Applications</Service>
<rcStatus type="String">Open</rcStatus>

</instance>
</model>
<messages>

<cmn:message type="String">Problem PM10160 has been opened.</cmn:message>
<cmn:message type="String">Problem record added.</cmn:message>

</messages>
 </CreateProblemResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2014-10-08 17:28:05.640 DEBUG
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - executing step 'Watch
interaction changes'
2014-10-08 17:28:05.657 INFO
[com.hp.ccue.serviceExchange.adapter.sm.SmOperationExecutor] - register entity:
mpavmsm10:PM10160
2014-10-08 17:28:05.666 TRACE [com.hp.ccue.serviceExchange.adapter.sm.db.SmDaoImpl] -
registerEntity rootcause/PM10160/'null'/sxManaged/null in mpavmsm10
2014-10-08 17:28:05.759 TRACE [com.hp.ccue.serviceExchange.adapter.sm.soap.SmClient] -
got REST response
http://mpavmsm10.hpswlabs.adapps.hp.com:13080/SM/9/rest/sxregisteredentities[POST]:
code = 200, body = {
 "Messages": ["SxRegisteredEntitiesV2 record added."],
 "ReturnCode": 0,
 "SXRegisteredEntities": {
 "entityId": "PM10160",
 "entityType": "rootcause",
 "id": "fa2835c9-f101-44dc-8e1b-c38096ca1d48",
 "reason": "sxManaged",
 "sxId": "FidoSM"
 }

}

114

HP OO UI

Sometimes you can see that OO is executed but no further operation is called back on HP SX. In the case of a operation this is an error.create

To identify what went wrong go to the OO Central UI and look at the specific flow executed there. OO is typically running on
. The default username is and the password . In the left column click and choose thehttps://sx_host:8443/oo admin changeit Run Management

row corresponding to your execution. It could be identified by name, or the Run ID displayed in the HP SX logs. The earlier log example contains
following:

2014-10-08 17:28:04.097 INFO [com.hp.ccue.serviceExchange.oo.OoFlowMessageListener] -
OO flow successfully executed, uri =
http://mpavmoo02.hpswlabs.adapps.hp.com:8080/oo/rest/executions/221752429/summary

The Run ID is the number close to the end of the URL. For example, in the example above it is 221752429. Use it for filtering on the run list, or
simply paste the ID into the column filter field.Run ID

To check the input flow parameters, click on a run row. Display it by clicking on the down pointing arrow in the middle of the top bar (containing
the execution name and status.)

115

Inspect individual step inputs and outputs within the flow execution by selecting a step in the left column and switching to in the rightStep Details
column, as in the example screenshot below:

116

How to develop an adapter (JIRA)

Developing an adapter explained with a JIRA adapter example

When to use this guide

This chapter explains how to integrate HP SX with a new backend system that is not yet supported by HP SX. If you wish to customize the
behavior of an already supported system, for example HP SM or HP CSA, it may be enough to only create a new content pack for the existing
adapter. See for creating a custom content pack.How to extend HP SX Content (HP SM Problem entity)

This section describes the implementation of three HP SX functions: ticketing, request-to-fulfilment (R2F), and Case Exchange. The procedures
start from the simplest to the more complex, explained with the example of JIRA.

Throughout this example it is presumed that a maven project is being built, and that a root maven module is set up as described in How to extend
. The modules are created under this root project. The project is included in the SDK pack under HP SX Content (HP SM Problem entity)

.sx-content/jira

For the java part of the adapter, a maven module is created according to this example:

117

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>your.parent.group.id</groupId>
 <artifactId>your-parent-artifact-id</artifactId>
 <version>your_version</version>
 </parent>
 <artifactId>sx-adapter-jira</artifactId>
 <packaging>jar</packaging>
 <name>JIRA Adapter</name>
 <dependencies>
 <dependency>
 <groupId>com.hp.ccue.serviceExchange</groupId>
 <artifactId>sx-api</artifactId>
 </dependency>
 <dependency>
 <groupId>com.hp.ccue.serviceExchange</groupId>
 <artifactId>sx-adapter-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 </dependency>
 </dependencies>
</project>

The dependencies that you need to have acces to are:

sx-api
sx-adapter-api
spring-context

Ticketing usecase

JIRA adapter example implementation - Request Support use case

Case exchange usecase

Case exchange use case

Request-to-fulfill usecase

JIRA Request to fulfill use case

Java adapter deployment

The methods to deploy the content part are described in . For development, the usage of How to extend HP SX Content (HP SM Problem entity)
 is advisable.sx-maven-plugin

The java part of the adapter is a jar file that must be deployed into the HP SX application server. Do this before you upload your content pack as
there is a validation that will not let you upload a content pack for a non existing adapter.

To deploy the adapter jar:

Adapter maven module

118

1.
2.
3.
4.

1.
2.
3.
4.
5.

Stop your SX instance server, e.g., service jetty-sx stop
Copy the adapter jar file into /opt/hp/propel/sx/WEB-INF/lib/
Restart your SX instance server, e. g., service jetty-sx start
Create a Supplier (using your adapter) configuration file in the Suppliers UI (accessible as Organization admin by default) that reflects
adapter implementation.

JIRA Request Support use case
Request Support message flow in HP SX
Adapter class
OperationExecutor and Pipelinebuilder

Operation Executor
PipelineBuilder

Polling Command
Request Support content pack

Example operation implementation - createSupportRequestAfterCreateInPropel
Input
requestUrl
 requestTemplate
responseTemplate

getSupportRequestForUpdateInPropel operation
Input

Ticket properties
Summary

Requerst Support is the simplest HP SX use case. In order to adapt a backend system to the Request Support use case it is necessary to:

 Setup an adapter class.
 Setup an operation executor class.
 Define a set of operations that are necessary to manage JIRA Support Requests through the Propel Portal.

After implementing this use case you can submit and they will be stored as in your JIRA instance. TheSupport Requests in Propel JIRA Issues
example implementation does not include support catalog aggregation as JIRA does not support this concept. However, it is still necessary to run
the support catalog aggregation to be able to submit JIRA issues through the HP Propel portal. This aggregation only aggregates a single item
that represents JIRA issues. This item is referred to as Generic Support Offering.

Request Support message flow in HP SX
The incoming Support Request is submitted through SX RESTful interface (/ticket REST resource)
The incoming message is decorated and updated according to the specific call
The incoming rest call is mapped to the appropriate operation from operations.json
The correct adapter is chosen from among the registered adapters
The operation is executed using the adapter's operation executor.

The ticket management requests are documented in the . Use the as a referenceSX API doc Appendix C: Support Request operations messages
on the format of messages to be passed to and returned from an operation execution. The set of operations that the API calls are mapped to and
that need to be defined in is listed and described in the mentioned asoperations.json Appendix C: Support Request operations messages
well.

It is necessary that you have access to the example implementation sources contained in the HP SX SDK distribution. You will need to
refer to the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates.

It is also advisable to refer to HP SX API javadoc, also contained in the SDK package under the javadoc folder.

Finally, you may also want to consult the topic which has details about manyHow to extend HP SX Content (HP SM Problem entity)
development techniques, for example:

uploading SX content packs using the SX content management UI and the SX upload maven plugin
analysis of SX log files.

119

Adapter class
The provided abstract class is used.com.hp.ccue.serviceExchange.adapter.provided.AdapterAbstract

@Component
public class JiraAdapter extends AdapterAbstract {
 @Autowired
 public JiraAdapter(JiraOperationExecutor operationExecutor, JiraPipelineBuilder
pipelineBuilder, JiraChangeObserver changeObserver,
 JiraInstanceHealthCheckFactory jiraInstanceHealthCheckFactory) {
 super(JiraConstants.JIRA_ADAPTER_NAME, operationExecutor, pipelineBuilder);
 setChangeObserver(changeObserver);
 }
}

 annotation is used in order to have it spring-enabled.@org.springframework.stereotype.ComponentThe
 name constant is introduced in a separate class. Make sure it is unique among adapter nameJiraConstants.JIRA_ADAPTER_NAME

constants.

Define the Spring framework in the context definition file placed in and with a name following the component scanning resources/META-INF
 pattern, for example: *Context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.example.adapter.package.jira"/>

</beans>

OperationExecutor and Pipelinebuilder
The adapter constructor accepts operation executor and pipeline builder. Minimal implementations are sufficient. In both cases you can extend
the provided implementation, see the example code below:

JIRA adapter class

Spring context definition file

120

Operation Executor

@Component
public class JiraOperationExecutor extends BaseOperationExecutor {

 public JiraOperationExecutor() {
 super(JiraConstants.JIRA_ADAPTER_NAME, JiraInstancesCfg.CFG_NAME);
 setDefaultHttpRequestContentType(MediaType.APPLICATION_JSON);
 }
}

Here a default content type is specified. This means that all requests defined in will be issued with thisapplication/json operations.json
content type unless another content type is specified..

It is useful to override the getDetailErrorMessage()method, see the source code for the actual implementation.

PipelineBuilder

 @Component
public class JiraPipelineBuilder implements AdapterPipelineBuilder {

 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {
 return null;
 }
}

This is the minimal adapter implementation sufficient for an HP SX Request Support use case - the Java implementation of the adapter itself is
now complete.

Polling Command
As Support Requests functionality in Propel is now asynchronous (see), it is necessary toAppendix C: Support Request operations messages
update Polling Command functionality to handle Support Requests properly. Refer to topic, seeJIRA Request to fulfill use case
JiraR2fPollingCommand.java file implementation and description in there.

Request Support content pack
The above implementation of the adapter has only defined a new backend system of type JIRA, and an adapter that will process messages for
this type of system with a default HP SX implementation. Now the set of Request Support operations must be defined. The operation definitions
are deployed in an HP SX content pack.

For the content pack, define a new maven module in your project, for example:

Operation executor

PipelineBuilder

121

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <groupId>your.parent.group.id</groupId>
 <artifactId>your-parent-artifact-id</artifactId>
 <version>your_version</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>content-jira-ticketing</artifactId>
</project>

In this module create a structure as described in . This content pack will only contain operation definitions and ftl templates, so omitContent packs
the directory.oo

`-- src
 `-- main
 `-- resources
 |-- sx
 | |-- templates
 | `-- operations.json
 `-- metadata.json

Example operation implementation - createSupportRequestAfterCreateInPropel

The operations definition is explained here using the example of the operation.createSupportRequestAfterCreateInPropel

NOTE: You can test the operations by performing corresponding actions in the Propel UI. Alternatively, you could test the REST calls in a browser
client like Postman or DHC, but the APIs require a valid IdM Token to be passed in the X-Auth-Token header. You need to perform a REST call to
the IdmServer to get such a token (using basic HTTP authentication with user idmTransportUser and password idmTransportUser), like this one:

POST /idm-service/v2.0/tokens
Authorization: Basic aWRtVHJhbnNwb3J0VXNlcjppZG1UcmFuc3BvcnRVc2Vy
Content-Type: application/json
{
 "passwordCredentials" : {
 "username" : "consumer",
 "password" : "propel"
 },
 "tenantName" : "CONSUMER"
}

According to JIRA rest API documentation you need to issue the following request to create an issue in JIRA:

Method URI Request media type Response media type

POST (/[context]?)/rest/api/latest/issue application/json application/json

Request body should look like:

Content maven module

122

{ "fields": {
 "project":
 {
 "key": "TEST"
 },
 "summary": "REST ye merry gentlemen.",
 "description": "Creating of an issue using project keys and issue type names
using the REST API",
 "issuetype": {
 "name": "Bug"
 }
 }
}

Example response, notice mainly the created Issue "key" being returned from JIRA:

{ "id":"39000",
 "key":"TEST-101",
 "self":"http://localhost:8090/rest/api/2/issue/39000"
}

So the operation is defined in the file of the content pack like this:createSupportRequestAfterCreateInPropel operations.json

{
 "createSupportRequestAfterCreateInPropel": [
 {
 "label": "Create Ticket",
 "requestUrlTemplate": "createTicketUrl.ftl",
 "requestTemplate": "createTicketRequest.ftl",
 "responseTemplate": "createTicketResponse.ftl",
 "method": "POST"
 }
]
}

The above is an example of an operation that has a single step labeled "Create Ticket". In this step it issues a POST http request to a URL
returned by requestUrlTemplate with a body returned by requestTemplate, and the response of the POST http request will be transformed by
the responseTemplate which will be the result of the operation.

The implementations of the ftl templates that are used in this operation configuration will be presented below.

The operation definition is interpreted by the operation executor. The operation executor's input is a generic HP SX message to create a Support
Request (see for detailed input information). This message together with some contextAppendix C: Support Request operations messages
information are the input to the and ftl files, whereas the response template will receive the http requestrequestUrlTemplate requestTemplate
response. For a detailed introduction to the HP SX operation executor framework see .Appendix B: Operation executors

JIRA create issue response

operations.json

123

Input

A general description of the messages passed to the HP SX operation executor is also documented in Appendix C: Support Request operations
. The example message that will be passed to the operation executor when creating a ticket is as follows:messages

Example getSupportRequestForUpdateInPropel input message

124

{
 "propelRequest" : {
 "summary" : {
 "timestamp" : 4900,
 "guid" : "31e2b0c0-8526-4702-a3b0-7746e264b42f",
 "modified" : 1447429539743,
 "created" : 1447429528640,
 "state" : "READY",
 "catalogItemId" : "dd5d58b9-0772-45d0-90f2-8362326f127d",
 "description" : "Test JIRA issue description",
 "name" : "PT00001 Test JIRA issue",
 "humanReadableId" : "PT00001",
 "recipient" : null,
 "createdBy" : "consumer",
 "subscriptionId" : null,
 "count" : null,
 "extensions" : {
 "sxProviderId" : "66jira-my-server-address",
 "sxProviderType" : "JIRA",
 "sxRemoteOfferingId" : "genericSupportOffering",
 "sxDefaultCatalogItem" : true
 },
 "tenant" : "CONSUMER",
 "icon" : null
 },
 "flatFields" : [{
 "id" : "name",
 "value" : "Test JIRA issue"
 }, {
 "id" : "description",
 "value" : "Test JIRA issue description"
 }, {
 "id" : "project",
 "value" : "SE"
 }, {
 "id" : "issuetype",
 "value" : "1"
 }, {
 "id" : "priority",
 "value" : "4"
 }, {
 "id" : "reporter",
 "value" : "consumer"
 }, {
 "id" : "assignee",
 "value" : "consumer"
 }]
 },
 "supplierRequest" : {
 "catalogItemId" : "genericSupportOffering"
 },
 "messageHeader" : {
 "backendSystemType" : "JIRA",
 "targetInstance" : "66jira-my-server-address",
 "userId" : "consumer"
 }
}

125

sxRemoteOfferingId is the ID of Generic support offering, and is an arbitrary string defined in aggregation set-up. The Support Request properties
are those that were aggregated for Generic support offering.

requestUrl

The template composes the rest call URL. It does not need any data from an incoming message. Note: The ftl transformation data model contains
the object. For a full context reference see . instanceConfig Appendix B: Operation executors

<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>
/rest/api/latest/issue
</#escape>

 requestTemplate

This transforms the message into a valid POST request body of the JIRA REST endpoint.

NOTE: The message content is accessed through the ftl data model node. See line 2 for an example.message

<#assign valueMap = {}/>
<#list message.properties as property>
 <#assign valueMap = valueMap + {property.name : property.value}/>
</#list>
<#escape x as x?json_string>
{
 "fields": {
 "summary": "${message.propelRequest.summary.name}",
 <#if message.propelRequest.summary.description?has_content>
 "description": "${message.propelRequest.summary.description}",
 </#if>
 "project": {
 "key": "${propertiesMap.project}"
 },
 "issuetype": {
 "id": "${propertiesMap.issuetype}"
 },
 "priority": {
 "id": "${propertiesMap.priority}"
 },
 "reporter": {
 "name": "${propertiesMap.reporter}"
 }
 <#if propertiesMap.assignee?has_content>
 ,
 "assignee": {
 "name": "${propertiesMap.assignee}"
 }
 </#if>
 }
}
</#escape>

createTicketUrl.ftl

createTicketRequest.ftl

126

responseTemplate

This adapts the JIRA response format to the HP SX format. Use as a reference.Appendix C: Support Request operations messages

The example response of the HP SX operation:createSupportRequestAfterCreateInPropel

{
 "supplierRequest": {
 "id": "${doc.result.key}"
 }
}

As you can see, only Support Reqeuest ID (key) is returned from JIRA and only this info is required by Propel, too. So to add real data from JIRA
Issue to Propel, we need to do it in the next operation - .getSupportRequestForUpdateInPropel

NOTE: The createSupportRequestAfterCreateInPropel operation in the example project is more complicated than what is shown here,

as it also contains permission checks for the current user. The permission checks are necessary as all REST calls are performed under the
integration user, not under the current user.

getSupportRequestForUpdateInPropel operation

In the file:operations.json

{
 "getSupportRequestForUpdateInPropel": [
 {
 "label": "Retrieve ticket",
 "requestUrlTemplate": "getTicketUrl.ftl",
 "responseTemplate": "getTicketFromJiraUpdateResponse.ftl"
 }
]
}

Method specification is not needed as the GET method is the default when the is not specified.requestTemplate

Input

NOTE: The responseTemplate gets exactly the same input as requestTemplate except that it is nested under the "doc" key in the incoming data
model. The response body is under "result".

createTicket response

operations.json

127

{
...
 "supplierRequest" : {
 "id" : "SE-206"
 },
...
}

The next step is using the ID to retrieve the issue:

<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>
/rest/api/latest/issue/${message.supplierRequest.id}?fields=summary,description,created,updated,status,project,issuetype,priority,reporter,assignee,comment </#escape>

Finally, transform the JIRA response into the HP SX format:

<#include "utils/jiraTicketingUtils.ftl"/>
<#include "utils/jiraDateUtils.ftl"/>

<#escape x as x?json_string>

<#assign result = doc.result/>
<#assign fields = result.fields/>
<#assign permissions = (message.tmp.permissions)!{}/>
{
 "supplierRequest": {
 "id": "${result.key}",
 "revision": "${result.fields.updated}",
 "comments": [
 <#list fields.comment.comments as comment>
 <#assign commentAuthor = comment.author.name/>
 <#assign commentBody = comment.body/>
 {
 "id": "${comment.id}",
 "createdBy": "${commentAuthor}",
 "created": "${convertDateFromJiraToCatalog(comment.created)}",
 "body": "${commentBody}"
 }<#if comment_has_next>,</#if>
 </#list>
]
 },

 "propelRequest": {
 "summary": {
 "name": "${fields.summary}",

getSupportRequestForUpdateInPropel operation input

getTicketUrl.ftl

getTicketFromJiraUpdateResponse.ftl

128

"description": "${fields.description!""}",
"state": "${toPropelState(fields.status.statusCategory.key)}"

},
"visibleToUsers" : ["${message.fields.reporter.name}",

"${message.fields.assignee.name}"],
"commentsPermittedForUsers" : ["${message.fields.reporter.name}",

"${message.fields.assignee.name}"],
"attachmentsPermittedForUsers" : ["${message.fields.reporter.name}",

"${message.fields.assignee.name}"],
"flatFields": [

{
"id": "project",
"value": "${fields.project.key}"
},
{
"id": "issuetype",
"value": "${fields.issuetype.id}"
},
{
"id": "priority",
"value": "${fields.priority.id}"
},
{
"id": "reporter",
"value": "${fields.reporter.name}"
}
<#if fields.assignee??>
,
{
"id": "assignee",
"value": "${fields.assignee.name}"
}
</#if>

],
"actions": [

...
]

 }
}
</#escape>

129

1.

For included and , see the SDK sources. It contains the utility functions jiraTicketingUtils.ftl jiraDateUtils.ftl
.convertDateFromJiraToCatalog and toPropelState

We have also omitted " " section, as this is needed not before you want to implement "closing" Support Request action. If you areactions
interested in this operation, see the SDK sources for details, too.

Ticket properties

The JIRA issue attributes: those properties that need to be visible in the Propel portal. Defined by the aggregation of generic support offering. See
.Aggregations in HP SX

Summary

The rest of the operations are implemented analogically. Use the as a reference on the inputAppendix C: Support Request operations messages
and output messages of individual operations and SDK Example Project sources for the possible actual implementation of them.

Case exchange use case
Use case definition
Overview
Implementation

Configuration
JIRA adapter support

Plain Pipeline
JiraAdapter class
JiraChangeObserver class

JiraCxPollingCommand
JiraCaseExchangeRuleStore
JiraEventFilterEvaluator
getChangedIncidentsForCx operation

Case exchange pipeline

This section describes how to implement a CX-capable adapter, using the example of JIRA as the ticketing system. This procedure extends the
implementation described in .JIRA Request Support use case

Use case definition

The goal of this example is to enable the following functionality.

HP SM incident is delegated to JIRA by setting incident's properties as
Status = Pending vendor
Vendor = < >your_jira_instance_alias

In this way, a new linked issue is created in your JIRA instance.

2. When the JIRA linked issue is resolved, the original HP SM incident is also automatically resolved.

Overview

It is necessary that you have access to the example implementation sources contained in the SX distribution. You will need to refer to
the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates.

It is also advisable to refer to the SX API javadoc.

Finally, you may also want to consult the topic which has details about manyHow to extend HP SX Content (HP SM Problem entity)
development techniques, for example:

uploading SX content packs using the SX content management UI and the SX upload maven plugin
analysis of SX log files.

130

1.
2.

The core actors that initiate actions in a CX use case are the change observers. The change observers periodically poll an external system for
changes and filter these changes to trigger configured events. Once an event is detected a message is generated and sent to HP SX for
processing. Appropriate actions are performed based on the configuration.

The implementation of our use case consists of two tasks:

configuration
implement the JIRA adapter CX support

Implementation

Configuration

To configure incident CX between JIRA and an HP SM instance it is necessary to register on the particularIncidentCaseExchangeEvents
instances and to pair these instances in both directions.

So in our example we need to have support for this example configuration:

"externalSystems": [
{

"instanceType": "SM",
"instance": <your_HP_SM_instance>,
"registeredEventGroups": [

"IncidentCaseExchangeEvents"
]

},
{

"instanceType": "JIRA",
"instance": <your_JIRA_instance>,
"registeredEventGroups": [

"IncidentCaseExchangeEvents"
]

}
]
"externalSystemAliases": [
{

"sourceInstanceType": "SM",
"sourceInstance": <your_HP_SM_instance>,
"targetInstanceType": "JIRA",
"targetInstance": <your_JIRA_instance>,
"targetAlias": <your_JIRA_instance_alias>

},
{

"sourceInstanceType": "JIRA",
"sourceInstance": <your_JIRA_instance>,
"targetInstanceType": "SM",
"targetInstance": <your_HP_SM_instance>,
"targetAlias": <your_HP_SM_instance_alias>

}
]

See for a complete reference of CX configuration.Configuration

The HP SM adapter is available OOB and supports Incident CX. The OOB content contains and IncidentCaseExchangeEvents
 definition. eventGroupActions

external-systems.json

131

{
 "eventGroups": {
 "IncidentCaseExchangeEvents": [

"incidentExternalReferenceCreated",
"incidentUpdated",
"incidentResolved",
"incidentReopened",
"incidentClosed",
"incidentOwnershipAssigned",
"incidentOwnershipAccepted",
"incidentRejected",
"incidentCancelled"

]
...
 },
"eventGroupActions": {
 "IncidentCaseExchangeEvents": [

{
"action": "executeOperation",
"operationName": "retrieveIncident"

},
{

"action": "executeOperation",
"operationName": "convertIncidentToCanonicalModel"

},
{

"action": "executeOoFlow",
"backendSystemType": "SX",
"messageType": "IncidentCaseExchangeFlow"

}
],
...

This configuration contains all the operations we need to support both HP SM and JIRA.

For HP SM the operations are available OOB.

For JIRA it is clear that it is necessary to implement the following

retrieveIncident
convertIncidentToCanonicalModel

The rest of the operations are derived from the OO flow. With deeper inspection of the flow you may note that forIncidentCaseExchangeFlow
this use case JIRA will only need:

cloneIncident

See , for the description.OO flows IncidentCaseExchangeFlow

In addition to the operations, the events need to be defined. The events definition for HP SM is available OOB. See
. The event is the crucial starting point forcontent-sm-case-exchange/case-exchage.json incidentExternalReferenceCreated

this use case.

For JIRA we must define the event that will trigger the action in point 2 of the use case. Create a file in theresources/case-exchange.json
JIRA content module:

content-case-exchange/case-exchange.json

132

1.
2.
3.
4.

5.

6.
7.

{
 "events": {

"JIRA": {
"incidentResolved": {

"entityType": "Incident",
"entityFilter": "Boolean(RECORD.status) && RECORD.status.to == '5'" //

a javascript condition matching updates where the issue status was set to Resolved
}

}
 }
}

incidentResolved is an event belonging to that is registered on the JIRA instance. As noted, these eventsIncidentCaseExchangeEvents
are mapped to the specific set of actions in OOB. The and content-case-exchange/case-exchange.json entityType entityFilter
fields are adapter-specific and are dependent on the implementation of change observing. See below for further information.

JIRA adapter support

To implement adapter support for CX it is necessary to add the following capabilities to the adapter:

the adapter must be able to handle a message that will execute the creation of a linked incident in JIRA (i.e. plain pipeline)
implement change observing
the adapter must handle the message generated by the change observer (i.e. case_exchange_pipeline.)

Plain Pipeline

In summary, the process that enables the use case: the creation of new linked issues in a JIRA instance, is:

HP SM adapter's change observer (implemented OOB) detects an event in HP SM.incidentExternalReferenceCreated
The event results in a CX type message being sent.
The message is handled by an adapter (the HP SM adapter in this case) in a CX pipeline.
The CX pipeline contains a CX handler block that is responsible for the execution of eventGroupActions defined in
content-case-exchange/case-exchange.json
The last action in the defined is an execution which, based on the message,eventGroupAction IncidentCaseExchangeFlow
decides that it should call a clone incident in JIRA and so sends a message to execute the operation.cloneIncident
This message is sent to the PLAIN pipeline.
At this point the JIRA adapter comes into play. Support for a PLAIN pipeline needs to be added for the JIRA adapter as it does not know
how to build a PLAIN pipeline yet.

To extend the empty implementation introduced as part of the ticketing use case:PipelineBuilder

content-jira/case-exchange.json

133

@Component
public class JiraPipelineBuilder implements AdapterPipelineBuilder {

 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {

switch (name) {
case Names.PIPELINE_PLAIN:

return buildPlainPipeline(factory);
default:

return null;
}

 }

 public Pipeline buildPlainPipeline(PipelineBuilderFactory factory) {
PipelineBuilder builder = factory.newBuilder(Names.PIPELINE_PLAIN);
builder.addBlock(new OperationExecutionBlock());
return builder.build();

 }
}

OperationExecutionBlock is now added into the PLAIN pipeline, making the pipeline capable of executing operations received in messages.

Now it is enough to implement the JIRA operation and the first part of the use case (HP SM to JIRA incident delegation) iscloneIncident
implemented:

...
 "cloneIncident": [

{
"label": "Clone incident",
"requestUrlTemplate": "createTicketUrl.ftl",
"requestTemplate": "cloneIncidentRequest.ftl",
"responseTemplate": "cloneIncidentResponse.ftl",
"method": "POST"

},
{

"label": "Get ticket after clone incident",
"requestUrlTemplate": "getTicketAfterCloneIncidentUrl.ftl",
"responseTemplate": "getTicketAfterCloneIncidentResponse.ftl",
"method": "GET"

}
],
...

See the ftl templates in the example sources for details. For your convenience, here are the and cloneIncidentRequest.ftl
templates:getTicketAfterCloneIncidentResponse.ftl

operations.json

134

<#include "jiraCaseExchangeUtils.ftl"/>
<#assign loadConfig =
'com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign findAliasForExternalSystem =
'com.hp.ccue.serviceExchange.adapter.freemarker.caseex.FindAliasForExternalSystem'?new()
/>
<#assign jiraMapping = loadConfig(context.contentStorage, "jira/jira-cx-mappings")/>
<#assign entity = message.args.entity/>
<#assign linkedEntity = message.args.linkedEntity/>
<#assign properties = entity.properties/>
<#escape x as x?json_string>
<#assign environmentValue>
[{
 "externalEntityType": "${entity.entityType}",
 "externalEntityId": "${entity.entityId}",
 "externalInstanceAlias": "${findAliasForExternalSystem(context.appContext,

linkedEntity.instanceType, linkedEntity.instance, entity.instanceType,
entity.instance)}"
}]
</#assign>
{
 "fields": {

"summary": "${properties.Title}",
<#if properties.Description?has_content>
"description": "${properties.Description}",
</#if>
"project": {

"key": "SE" <#-- hard-coded for now; use a project key in your JIRA
instead -->

},
"issuetype": {

"id": "1" <#-- Bug -->
},
"priority": {

"id": "${getMappingValue(jiraMapping.Incident.Urgency,
properties.Urgency)}"

},
"reporter": {

"name": "System.admin" <#-- hard-coded for now; use a username in your
JIRA instead -->

},
"environment": "${environmentValue}" <#-- better solution: use custom fields;

we store the externalEntity in environment field for demo purposes only -->
 }
}
</#escape>

cloneIncidentRequest.ftl

135

<#include "jiraCaseExchangeUtils.ftl"/>
<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign jiraMapping = loadConfig(context.contentStorage, "jira/jira-cx-mappings")/>
<#escape x as x?json_string>
{
 "args": {

"linkedEntity": {
"entityType": "Incident",
"entityId": "${doc.result.key}",
"properties": {

"Status": "${getMappingKey(jiraMapping.Incident.Status,
doc.result.fields.status.id)}"

}
}

 },
 "tmp": null
}
</#escape>

NOTE: HP SX is storing a reference to the HP SM entity in the property (as a JSON string). Storing the reference is actually notenvironment
needed in the first use case, but it will be important for the second.

The first use case is now implemented and can be tested like this:

Choose an existing SM incident or create a new one.
Set the status field to "Pending Vendor" and the Vendor field to "jira" (or whatever targetAlias for JIRA is in the

 file).external-systems.json
Click and .Save Exit

You should now observe that:
A JIRA issue has been created with the same title (i.e. summary) and description as the HP SM incident. Also, the issue should
have the corresponding priority.
If you open the HP SM incident again, it should have the Vendor Ticket property updated to the key of the new issue.

JiraAdapter class

The adapter needs to be capable of change observation. To modify the adapter class:

@Component
public class JiraAdapter extends AdapterAbstract {
 @Autowired
 public JiraAdapter(JiraOperationExecutor operationExecutor, JiraPipelineBuilder
pipelineBuilder, JiraChangeObserver changeObserver) {

super(JiraConstants.JIRA_ADAPTER_NAME, operationExecutor, pipelineBuilder);

 // setting change observer
setChangeObserver(changeObserver);

 }
...

Autowire the in the constructor and set it. The implementation is described below.JiraChangeObserver JiraChangeObserver

getTicketAfterCloneIncidentResponse.ftl

JiraAdapter.java

136

JiraChangeObserver class

For we use SDK's base class . This base class is used as it provides the possibility to useJiraChangeObserver CompositeChangeObserver
multiple polling commands which will be useful in an R2F use case.

@Component
public class JiraChangeObserver extends CompositeChangeObserver {
 @Value("${adapter.jira.change.listener.delayBeforeNextRun}")
 private int pollInterval;
 @Autowired
 public JiraChangeObserver(JiraCxPollingCommand cxPollingCommand) {

super(ImmutableList.<Runnable>of(cxPollingCommand));
 }
 @Override
 public int getPollIntervalSec() {

return pollInterval;
 }
}

JiraCxPollingCommand

See the following example implementation that already contains the implementation of abstract ancestor methods. is anCxPollingCommand
implementation that uses an operation of the supplied name to list changes in an external system. It then uses the property ofentityFilter
event definitions to assign the changes to configured events, and sends an internal CX type message. The abstract methods provide
customization points to change retrieval and message generation processes.

NOTE: and are autowired in the constructor.JiraCaseExchangeRuleStore JiraEventFilterEvaluator

JiraChangeObserver.java

137

@Component
public class JiraCxPollingCommand extends CxPollingCommand {
 private static final String KEY_ENTITY_ID = "entityId";
 private static final String KEY_EXTERNAL_ENTITIES = "externalEntities";
 private static final String KEY_HISTORIES = "histories";
 public static final String OPERATION_GET_CHANGES = "getChangedIncidentsForCx";
 @Autowired
 public JiraCxPollingCommand(JiraOperationExecutor operationExecutor,
JiraCaseExchangeRuleStore caseExchangeRuleStore,

JiraEventFilterEvaluator filterEvaluator) {
super(JiraConstants.JIRA_TYPE, JiraConstants.ENTITY_INCIDENT,

JiraConstants.JiraInstancesCfg.CFG_NAME,
OPERATION_GET_CHANGES,
operationExecutor, caseExchangeRuleStore, filterEvaluator);

 }
 @Override
 @Nonnull
 protected List<Map<String, Object>> extractChangedEntities(Map<String, Object>
changedEntities) {

List<Map<String, Object>> result = getField(changedEntities, KEY_HISTORIES);
return Objects.firstNonNull(result, Collections.<Map<String,

Object>>emptyList());
 }
 @Nonnull
 @Override
 protected String extractEntityId(Map<String, Object> entity) {

return getStrField(entity, KEY_ENTITY_ID);
 }
 @Override
 protected Map<String, Object> prepareMessageCustomDataForCx(Map<String, Object>
entity, final Set<String> externalInstanceAliases) {

Map<String, Map<String, Object>> externalEntities = getField(entity,
KEY_EXTERNAL_ENTITIES);

Map<String, Map<String, Object>> relevantExternalEntities =
Maps.filterKeys(externalEntities, new Predicate<String>() {

@Override
public boolean apply(@Nullable String alias) {

return externalInstanceAliases.contains(alias);
}

});
return ImmutableMap.<String, Object>of(KEY_EXTERNAL_ENTITIES,

relevantExternalEntities);
 }
}

The dependencies here are .JiraCaseExchangeRuleStore and JiraEventFilterEvaluator

JiraCaseExchangeRuleStore

For we simply extend and make it a bean.JiraCaseExchangeRuleStore MemoryCaseExchangeRuleStore

JiraCxPollingCommand.java

138

@Component
public class JiraCaseExchangeRuleStore extends MemoryCaseExchangeRuleStore {
}

This class is necessary for correct rules for loading.conten-jira/case-exchange.json

JiraEventFilterEvaluator

@Component
public class JiraEventFilterEvaluator extends EventFilterEvaluator {
 private static final String KEY_ITEMS = "items";
 @Override
 protected Map<String, Object> extractProperties(Map<String, Object> entityJson) {

return getField(entityJson, KEY_ITEMS);
 }
 @Override
 protected String extractOperation(Map<String, Object> entityJson) {

return null;
 }
}

JiraEventFilterEvaluator is a class that is responsible for the evaluation of a filter that defines events in . See thecase-exchange.json
JIRA event definition for an example. This class will perform the filter on changes detected by the change observer. SeeincidentResolved
javadoc.

getChangedIncidentsForCx operation

JiraCxPollingCommand supplies for the operation that is used to list changes. The result of this operation willgetChangedIncidentsForCx
be passed to JiraEventFilterEvaluator.

For JIRA this example implementation is recommended:

JiraCaseExchangeRuleStore.java

JiraEventFilterEvaluator.java

139

...
"getChangedIncidentsForCx": [

{
"label": "Get time zone",
"requestUrlTemplate": "getTimeZoneUrl.ftl",
"responseTemplate": "getTimeZoneResponse.ftl"

},
{

"label": "Get changed incidents for CX",
"requestUrlTemplate": "listTicketsUrl.ftl",
"requestTemplate": "getChangedIncidentsForCxRequest.ftl",
"responseTemplate": "getChangedIncidentsForCxResponse.ftl",
"method": "POST"

}
],
...

See the ftl template in the example source for details. For your convenience here are and getChangedIncidentsForCxRequest.ftl
:getChangedIncidentsForCxResponse.ftl

<#assign formatDate =
'com.hp.ccue.serviceExchange.adapter.freemarker.FormatDate'?new()/>
<#escape x as x?json_string>
{
 "maxResults": 1000, <#-- overriding as it defaults to 50; note that the count is
also limited by jira.search.views.default.max -->
 "validateQuery": true,
 "jql": "updated >= \"${formatDate(message.lastUpdateTime, "yyyy-MM-dd HH:mm",
message.tmp.timeZone)}\"",
 "fields": ["environment"],
 "expand": ["changelog"]
}
</#escape>

<#include "jiraConstants.ftl"/>
<#assign writeJson =
'com.hp.ccue.serviceExchange.adapter.freemarker.WriteJson'?new()/>
<#function isHistoryRecordRelevant history lastUpdatedTime>
 <#local timestamp = history.created?date(JIRA_TIME_FORMAT)/>
 <#local referenceTime = lastUpdatedTime?number_to_date/>
 <#return timestamp gte referenceTime/>
</#function>
<#function getExternalEntities issue>
 <#local environment = issue.fields.environment!"[]"/>
 <#attempt>

<#local externalEntities = environment?eval/>

operations.json

getChangedIncidentsForCxRequest.ftl

getChangedIncidentsForCxResponse.ftl

140

<#recover>
<#local externalEntities = []/>

 </#attempt>
 <#if externalEntities?is_sequence>

<#return externalEntities/>
 <#else>

<#return []/>
 </#if>
</#function>
<#escape x as x?json_string>
{
 "histories": [

<#assign firstItem = true>
<#list doc.result.issues as issue>

<#assign externalEntities = getExternalEntities(issue)/>
<#if externalEntities?has_content> <#-- exclude records without external

entities -->
<#list issue.changelog.histories as history>

<#if isHistoryRecordRelevant(history, message.lastUpdateTime)>
<#-- exclude records older than lastUpdateTime-->

<#if !firstItem>,<#else><#assign firstItem = false></#if>
{

"entityId": "${issue.key}",
"externalEntities": {
<#list externalEntities as externalEntity>

"${externalEntity.externalInstanceAlias}": {
"entityId": "${externalEntity.externalEntityId}",
"entityType": "${externalEntity.externalEntityType}"

}<#if externalEntity_has_next>,</#if>
</#list>
},
"items": {

<#list history.items as item>
"${item.field}": {

"from": <#noescape>${writeJson(item.from)}</#noescape>,
"to": <#noescape>${writeJson(item.to)}</#noescape>

}<#if item_has_next>,</#if>
</#list>

}
}

</#if>
</#list>

</#if>
</#list>

],
 "Date": "${doc.resultHeaders.Date}",
 "tmp": null
}
</#escape>

141

Case exchange pipeline

So far change listening and event filtering have been implemented. We have enabled that an event is triggered after a defined change, and a
message is sent to HP SX. Now it is necessary to process the message correctly.

The CX message processing needs to be assigned into a case exchange pipeline.

...
 @Override

protected String getPipelineNameForMessage(MessageProperties properties,
Map<String, Object> amqpMessage) {

final String subType = extractMessageSubtype(properties.getType());
if (MessageSubType.CHANGE.equals(subType)) {
final String reason = getStrField(amqpMessage, EntityChangeMsg.REASON);
switch (reason) {

...
case EntityChangeMsg.REASON_CASE_EXCHANGE:

return JiraConstants.PIPELINE_CASE_EXCHANGE_CHANGE;
default:

throw new IllegalArgumentException();
}

}
return super.getPipelineNameForMessage(properties, amqpMessage);

}
...

The pipeline is built in :JiraPipelineBuilder

JiraAdapter.java

142

@Component
public class JiraPipelineBuilder implements AdapterPipelineBuilder {
 @Autowired
 private JiraCaseExchangeAdapter caseExchangeAdapter;
 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {
 switch (name) {
 ...
 case JiraConstants.PIPELINE_CASE_EXCHANGE_CHANGE:
 return buildCaseExchangeChangePipeline(factory);
 ...
 }
 }

 ...

 private Pipeline buildCaseExchangeChangePipeline(PipelineBuilderFactory factory) {
 final PipelineBuilder builder =
factory.newBuilder(JiraConstants.PIPELINE_CASE_EXCHANGE_CHANGE);
 builder.addBlock(new CaseExchangeChangeHandlerBlock(caseExchangeAdapter));
 return builder.build();
 }
}

The that is supplied with . is used. It isCaseExchangeHandlerBlock JiraCaseExchangeAdapter CaseExchangeChangeHandlerBlock
the crucial block that decides, based on the configuration, which actions will be performed.content-case-exchange/case-exchange.json
Basically it ensures that the correct event group action is taken. supplies the correct rulestore. See the followingJiraCaseExchangeAdapter
example:

143

@Component
public class JiraCaseExchangeAdapter extends AbstractCaseExchangeAdapter {
 private static final Logger log =
LoggerFactory.getLogger(JiraCaseExchangeAdapter.class);
 private CaseExchangeRuleStore ruleStore;
 @Autowired
 public JiraCaseExchangeAdapter(JiraCaseExchangeRuleStore ruleStore) {
 this.ruleStore = ruleStore;
 }
 @Override
 public void boot() {
 if (log.isTraceEnabled()) {
 log.trace("booting");
 }
 if (log.isTraceEnabled()) {
 log.trace("boot completed");
 }
 }
 @Override
 public void shutdown() {
 if (log.isTraceEnabled()) {
 log.trace("shutdown");
 }
 }
 @Override
 public String getAdapterType() {
 return JiraConstants.JIRA_TYPE;
 }
 @Override
 public void registerEntityChangeListener(CaseExchangeEntityChangeListener
listener) {
 ruleStore.registerEntityChangeListener(listener);
 }
 @Override
 public void
updateCaseExchangeEntityChangeListeners(Set<CaseExchangeEntityChangeListener>
listeners) {
 ruleStore.updateCaseExchangeEntityChangeListeners(listeners);
 }
 @Override
 public void unregisterEntityChangeListener(String instance, String entityType,
String entityId, String changeReason) {
 ruleStore.unregisterEntityChangeListener(instance, entityType, entityId,
changeReason);
 }
 @Override
 public void onConfigurationReloaded() {
 // not supported
 }
}

To finish the implementation of the second use case the and must be defined:retrieveIncident convertIncidentToCanonicalModel

JiraCaseExchangeAdapter

144

...
 "retrieveIncident": [
 {
 "label": "Retrieve incident",
 "requestUrlTemplate": "retrieveIndicidentUrl.ftl",
 "responseTemplate": "retrieveIndicidentResponse.ftl"
 }
],
 "convertIncidentToCanonicalModel": [
 {
 "label": "Convert incident to canonical model",
 "resultTemplate": "convertIncidentToCanonicalModelResult.ftl"
 }
],
...

The operation basically retrieves the issue and stores its data in the field in the message. Here isretrieveIncident entityChange.entity

the template:convertIncidentToCanonicalModelResult.ftl

operations.json

145

<#include "jiraCaseExchangeUtils.ftl"/>
<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.adapter.freemarker.caseex.FindExternalSystemForAlias'?new()
/>
<#assign jiraMapping = loadConfig(context.contentStorage, "jira/jira-cx-mappings")/>
<#assign entityChange = message.entityChange />
<#assign externalEntities = entityChange.data.externalEntities![]/>
<#assign entity = entityChange.entity />
<#escape x as x?json_string>
{
 "event": "${entityChange.changeReason}",
 "entity": {
 "instanceType": "${entityChange.instanceType}",
 "instance": "${entityChange.instance}",
 "entityType": "${entityChange.entityType}",
 "entityId": "${entityChange.entityId}",
 "properties": {
 "Status": "${getMappingKey(jiraMapping.Incident.Status,
entity.fields.status.id)}"
 }
 },
 "linkedEntities": [
 <#list externalEntities?keys as alias>
 <#assign aliasHash = findExtSystemForAlias(context.appContext,
entityChange.instanceType, entityChange.instance, alias)!{} />
 <#assign externalEntity = externalEntities[alias] />
 {
 "instanceAlias": "${alias}",
 "instanceType": "${aliasHash.targetInstanceType}",
 "instance": "${aliasHash.targetInstance}",
 "entityType": "${externalEntity.entityType}",
 "entityId": "${externalEntity.entityId}"
 }<#if alias_has_next>,</#if>
 </#list>
],
 "entityChange": {}
}
</#escape>

The implementation of the CX process has been described up to the point where the content-case-exchange/case-exchange.json configuration
actions will be taken. That means IncindentCaseExchangeOOFlow is invoked. This flow will send messages to execute operations in the

linked systems. In our use case the HP SM incident will be resolved.

The second use case can now be tested like this:

Choose an existing HP SM incident or create a new one. Set the status field to "Pending Vendor" and the Vendor field to "jira" (or
whatever is the targetAlias for JIRA in the file.) Click and . external-systems.json Save Exit
You should now observe that:

A corresponding JIRA issue has been created.
Resolve the JIRA issue.

If you now examine the HP SM incident, it should have the Resolved status as well.

convertIncidentToCanonicalModelResult.ftl

146

JIRA Request to fulfill use case
Use case definition
Implementation

Initial changes
OO Flow and the createOrder operation
Change listening

Support for R2F changes in JiraChangeObserver
Registering our task for change observing
Pipeline for handling R2F changes
Test of the change listening implementation

Approve/deny operation

In this chapter how to implement a request-to-fulfill (R2F) capable adapter with JIRA as an example fulfillment system is explained. This
information is extending the example implementation described in and .JIRA Request Support use case Case exchange use case

Use case definition

For the purpose of this example, fulfillment in JIRA will be interpreted as performing a JIRA task (i.e. to an issue of type Task) in a chosen project
in JIRA. Projects will play the role of catalog items. Also included is a slightly artificial approval process in order to demonstrate how to implement
support for the approve/deny operations. The use case can be summarized in the following flow:

The user creates an order in Propel. When creating an order, the user chooses a project in which to create a task and specifies
the properties of this task (title, description, reporter, priority). As a result, a task in JIRA is created with status and an email is sentOpen
to the lead of the JIRA project who is acting as the Approver. Additionally, a notification is sent to the catalog.
The lead invokes the approve operation in Propel. As a result, the task status is set to and a notification email is sent to theIn Progress
reporter. Additionally, a notification is sent to the catalog.
A developer resolves the task in JIRA. As a result, the reporter receives an email. Additionally, a notification is sent to the catalog.
A developer the task in JIRA. As a result, HP SX stops listening out for changes of this task.closes

Implementation

Initial changes

First, add "r2f" to the feature list in . Before the actual implementation, try to call thecontent-jira/src/main/resources/metadata.json
REST endpoint for creating orders in a browser REST client such as Postman - or DHC, and see what happens.http://www.getpostman.com/

It is necessary that you have access to the example implementation sources contained in the HP SX distribution. You will need to refer
to the source code to be able to fully understand the contents of this topic. Especially refer to the ftl templates and the OO flow.

It is also advisable to refer to the SX API javadoc.

Finally, you may also want to consult the topic which has details about manyHow to extend HP SX Content (HP SM Problem entity)
development techniques, including:

testing REST APIs with browser clients
uploading SX content packs using SX content management UI and SX upload maven plugin
analysis of SX log files
OO - development of new OO content packs, OO UI.

147

POST /sx/api/request
Content-Type: application/json
Authorization: Basic c3hDYXRhbG9nVHJhbnNwb3J0VXNlcjpzeENhdGFsb2dUcmFuc3BvcnRVc2Vy
{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType": "order",
 "name": "I need 'Service Exchange Task'",
 "description": "I need to perform a 'Service Exchange Task'",
 "items": [
 {
 "id": "SE",
 "name": "Service Exchange Task",
 "quantity": "1",
 "recipient": {
 "@self": "",
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
 "name": "consumer"
 },
 "properties": [
 {
 "@type":
"urn:x-hp:2014:software:cloud:data_model:property:select",
 "name": "priority",
 "value": "3",
 "displayName": "Priority"
 }
],
 "route": {
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:route",
 "system_type": "JIRA",
 "target_instance": "http://mpavmint01.hpswlabs.adapps.hp.com:8080"
 }
 }
]
}

This example uses basic HTTP authentication with the notification user. See , properties WEB-INF/sx.properties

 and , Defaults are catalog.notificationUser catalog.notificationUserPassword

Note that the Postman client (or other) can create the basic authentication headersxCatalogTransportUser/sxCatalogTransportUser.

for you.

Normal authentication - as documented in - is done with an IdM token passed via the X-Auth-Token header;Appendix A: Service Exchange - API
however, we also support basic authentication for debugging purposes.

NOTE: The key of the JIRA project (where to create the task) ("SE") is used as the id of the catalog item, and HP SX passes priority as an
example of a catalog item property.

If you now perform the REST call, you will find the following exception from the RequestResource class in the logs:

java.lang.NullPointerException: messageHeader == null

This indicates that it is necessary to set a request message header template in the JiraAdapter. For this, add the following
setRequestMessageHeaderTemplate() call to the JiraAdapter constructor:

148

...
 public JiraAdapter(JiraOperationExecutor operationExecutor, JiraPipelineBuilder
pipelineBuilder) {
 super(JiraConstants.JIRA_ADAPTER_NAME, operationExecutor, pipelineBuilder);

setRequestMessageHeaderTemplate("jira/sx/templates/generateMessageHeader.ftl");
 }
...

Then add the following template (whose structure is suggested in the javadoc of thegenerateMessageHeader.ftl

setRequestMessageHeaderTemplate() method):

<#assign route = items[0].route/>
<#escape x as x?json_string>
{
 "messageHeader": {
 "messageType": "${messageType}",
 "backendSystemType": "${route.system_type}",
 "targetInstance": "${route.target_instance}"
 }
}
</#escape>

Although it is not strictly necessary, override also the decorateRequestMessage() method in the JiraAdapter. This proactively converts a URL
passed in the POST body to an instance ID from the file:jira/instances.json

...
 @Override
 public void decorateRequestMessage(Map<String, Object> message) {
 super.decorateRequestMessage(message);
 Map<String, Object> messageHeader = getField(message,
MessageConstants.MESSAGE_HEADER);
 Map<String, Object> instances =
configuration.getConfiguration(JiraInstancesCfg.CFG_NAME);
 MessageUtils.fixTargetInstanceInMessageHeader(messageHeader, instances);
 }
...

With these changes in place, if you now perform the REST call you will get the following exception from the RequestResource class:

JiraAdapter.java

generateMessageHeader.ftl

JiraAdapter.java

149

1.

2.

3.

java.lang.RuntimeException: Failed to find flow config for JIRA adapter,
messageType=order

This is because HP SX is trying to invoke an OO flow to initiate the creation.

OO Flow and the createOrder operation

Now you must create the necessary OO flow and the related infrastructure, for details see the example sources.

Create a maven module similar to the module in oo-jira-cp oo-sm-problem-cp How to extend HP SX Content (HP SM Problem

.entity)
Modify the in to refer to pom.xml content-jira-cp oo-jira-cp, as it was done for .content-sm-problem

Create an OO project in .oo-jira-project oo-jira-cp/src/main/resource

The OO flow will look like this:

150

If the incoming message does not contain the task ID, the OO flow sends a message to HP SX, which (through the PLAIN pipeline) executes an
operation named Otherwise, if the message contains an ID, the OO flow sends a notifying email message based on the taskcreateOrder.
status. For details, see the example sources.

Next, to register the flow in HP SX and specify its input parameter bindings, add a file to flows.json
:content-jira/src/main/resources/sx

151

{
 "JIRA": {
 "order": {
 "flowId": <your_flow_id>,
 "compressMessage": true,
 "parameters": [
 {
 "name": "sxConfiguration.jmsBroker",
 "valueSelector": "$.JMS_BROKER.endpoint",
 "source": "infrastructure"
 },
 // ... and other properties coming from configuration files
 {
 "name": "orderInfo.id",
 "valueSelector": "$.orderInfo.id",
 "source": "message"
 },
 {
 "name": "orderInfo.title",
 "valueSelector": "$.orderInfo.title",
 "source": "message"
 },
 // ... and other properties coming from the input message
]
 }
 }
}

If you now call the REST request endpoint, HP SX will invoke the OO flow and return a success response similar to this:

{
 "id":"38628a16-1728-4e61-aab2-befc75f63172"
}

This is a reference ID for the request and is generated by HP SX. This document calls this id . However, the actual creation of the taskexternalId
will fail as the createOrder operation is not yet defined, which can be done in this way:

flows.json

152

"createOrder": [
 {
 "label": "Create order",
 "requestUrlTemplate": "createTicketUrl.ftl",
 "requestTemplate": "createOrderRequest.ftl",
 "responseTemplate": "createOrderResponse.ftl",
 "method": "POST"
 }
],

The step is straight-forward as you can see from the following templates:

<#assign item = message.items[0]/>
<#assign valueMap = {}/>
<#list item.properties as property>
 <#assign valueMap = valueMap + {property.name : property.value}/>
</#list>
<#escape x as x?json_string>
{
 "fields": {
 "summary": "${message.name}",
 <#if message.description?has_content>
 "description": "${message.description}",
 </#if>
 "project": {
 "key": "${item.id}"
 },
 "issuetype": {
 "id": "3"
 },
 "priority": {
 "id": "${valueMap.priority}"
 },
 "reporter": {
 "name": "${item.recipient.name}"
 }
 }
}
</#escape>

operations.json

createOrderRequest.ftl

153

<#escape x as x?json_string>
{
 "orderInfo": {
 "id": "${doc.result.key}"
 }
}
</#escape>

If you now call the REST request endpoint, the new task will finally be created in JIRA. Check that it is created with the chosen title (i.e.
summary), description, project, priority, and reporter, and that it has the initial Open status.

Change listening

Support for R2F changes in JiraChangeObserver

Now JiraChangeObserver needs to be changed so that it notifies about R2F changes:

@Component
public class JiraChangeObserver extends CompositeChangeObserver {
 @Value("${adapter.jira.change.listener.delayBeforeNextRun}")
 private int pollInterval;
 @Autowired
 public JiraChangeObserver(JiraR2fPollingCommand r2fPollingCommand,
JiraCxPollingCommand cxPollingCommand) {
 super(ImmutableList.<Runnable>of(r2fPollingCommand, cxPollingCommand));
 }
 @Override
 public int getPollIntervalSec() {
 return pollInterval;
 }
}

Now set the Change Observer in your Adapter class, like this:

@Component
public class JiraAdapter extends AdapterAbstract {
 @Autowired
 public JiraAdapter(JiraOperationExecutor operationExecutor, JiraPipelineBuilder
pipelineBuilder, JiraChangeObserver changeObserver) {
 super(JiraConstants.JIRA_ADAPTER_NAME, operationExecutor, pipelineBuilder);

 // setting change observer
 setChangeObserver(changeObserver);
 }
...

Here is the JiraR2fPollingCommand that performs the actual polling functionality:

createOrderResponse.ftl

JiraChangeObserver.java

JiraAdapter.java

154

@Component
public class JiraR2fPollingCommand extends R2fPollingCommand {
 private static final String KEY_ENTITY_ID = "entityId";
 private static final String KEY_ENTITIES = "entities";
 private static final String KEY_REQUEST_TYPE = "requestType";
 /**
 * Operation for fetching changed incidents.
 */
 public static final String OPERATION_GET_CHANGES = "getChangedIncidents";
 @Autowired
 public JiraR2fPollingCommand(JiraOperationExecutor operationExecutor) {
 super(JiraConstants.JIRA_TYPE, JiraConstants.ENTITY_INCIDENT,
JiraInstancesCfg.CFG_NAME, OPERATION_GET_CHANGES, operationExecutor);
 }
 @Nonnull
 @Override
 protected List<Map<String, Object>> extractChangedEntities(Map<String, Object>
changedEntities) {
 return getField(changedEntities, KEY_ENTITIES);
 }
 @Nonnull
 @Override
 protected String extractEntityId(Map<String, Object> entity) {
 return getStrField(entity, KEY_ENTITY_ID);
 }
 @Nonnull
 @Override
 protected String extractRequestType(Map<String, Object> entity) {
 return getStrField(entity, KEY_REQUEST_TYPE);
 }
 @Override
 protected boolean isInterested(Map<String, Object> instanceConfig) {
 return Objects.firstNonNull(JsonUtils.getBooleanField(instanceConfig,
JiraInstancesCfg.R2F_ENABLED), false) //"r2fEnabled"
 || Objects.firstNonNull(JsonUtils.getBooleanField(instanceConfig,
JiraInstancesCfg.TICKETING_ENABLED), false); //"ticketingEnabled"
 }
 }

For details about this class, see the javadoc R2fPollingCommand. In short, the command performs the following

It executes the operation which is passed the lastUpdateTime as the timestamp for which changes are to begetChangedIncidentsForR2f
retrieved.
For each changed entity whose ID is registered in HP SX for R2F polling (as if stored with DefaultNotificationSetupExecutor, see the next
section for details about registration), an entity changed message is sent to HP SX.
It extracts a new timestamp from the operation result and saves it to the database.

Here is the getChangedIncidentsForR2f operation:

JiraR2fPollingCommand.java

155

...
 "getChangedIncidentsForR2f": [
 {
 "label": "Get time zone",
 "requestUrlTemplate": "getTimeZoneUrl.ftl",
 "responseTemplate": "getTimeZoneResponse.ftl"
 },
 {
 "label": "Get changed incidents for R2F",
 "requestUrlTemplate": "listTicketsUrl.ftl",
 "requestTemplate": "getChangedIncidentsForR2fRequest.ftl",
 "responseTemplate": "getChangedIncidentsForR2fResponse.ftl",
 "method": "POST"
 }
]
...

This operation will return JIRA tasks updated or created since the last check for changes:

<#assign formatDate =
'com.hp.ccue.serviceExchange.adapter.freemarker.FormatDate'?new()/>
<#escape x as x?json_string>
{
 "maxResults": 1000, <#-- overriding as it defaults to 50; note that the count is
also limited by jira.search.views.default.max -->
 "validateQuery": true,
 "jql": "updated >= \"${formatDate(message.lastUpdateTime, "yyyy-MM-dd HH:mm",
message.tmp.timeZone)}\""
}
</#escape>

operations.json

getChangedIncidentsForR2fRequest.ftl

156

<#include "jiraConstants.ftl"/>
<#function isIssueRelevant issue lastUpdatedTime>
 <#local timestamp = issue.fields.updated?date(JIRA_TIME_FORMAT)/>
 <#local referenceTime = lastUpdatedTime?number_to_date/>
 <#return timestamp gte referenceTime/>
</#function>
<#escape x as x?json_string>
{
 "entities": [
 <#assign firstItem = true>
 <#list doc.result.issues as issue>
 <#if isIssueRelevant(issue, message.lastUpdateTime)>
 <#if !firstItem>,<#else><#assign firstItem = false></#if>
 {
 "entityId": "${issue.key}"
 }
 </#if>
 </#list>
],
 "Date": "${doc.resultHeaders.Date}",
 "tmp": null
}
</#escape>

Registering our task for change observing

It is now necessary to make sure that this task is registered for change observing, otherwise the changes will be ignored by the
JiraR2fPollingCommand.

To do this add a second step to the createOrder operation:

"createOrder": [
...
 {
 "label": "Setup notifications",
 "notifyTemplate": "notifyTemplate.ftl",
 "callbackTemplate": "callbackTemplate.ftl",
 "operationName": "checkOrder",
 "idSelector": "$.orderInfo.id"
 }
],

This step is a SetupNotifications step, see Appendix B: Operation executors topic for details. In order that the JiraOperationExecutor properly
supports this type of step, its executeNotificationSetup() method must be overridden. This is done in the following way:

getChangedIncidentsForR2fResponse.ftl

operations.json

157

...
 @Autowired
 public JiraOperationExecutor(JiraNotificationSetupExecutor
notificationSetupExecutor) {
 super(JiraConstants.JIRA_ADAPTER_NAME, JiraInstancesCfg.CFG_NAME);
 this.notificationSetupExecutor = notificationSetupExecutor;
 ...
 }
...
 @Override
 protected void executeNotificationSetup(
 String entityId, String checkOperation, Map<String, Object>
checkOperationInputMessage, String catalogCallbackTemplate,
 EntityRegistrationMode mode, Map<String, Object> context, Map<String,
Object> stepConfig) throws Exception {
 notificationSetupExecutor.executeNotificationSetup(
 entityId, checkOperation, checkOperationInputMessage,
catalogCallbackTemplate, mode, context, stepConfig);
 }
...

That is, the actual step execution is delegated to a subclass of DefaultNotificationSetupExecutor called JiraNotificationSetupExecutor:

@Component
public class JiraNotificationSetupExecutor extends DefaultNotificationSetupExecutor {
 public JiraNotificationSetupExecutor() {
 super(JiraConstants.JIRA_TYPE, JiraConstants.ENTITY_INCIDENT);
 }
}

For details of the implementation, see DefaultNotificationSetupExecutor javadocs.

In short, the step does the following:

It extracts the JIRA task ID from the input message using the JSONPath $.orderInfo.id.
It performs a FreeMarker transformation with the notifyTemplate.ftl template.
It registers the task in the SX database, namely it stores

the externalId
the JIRA task id
the operation name to be executed when changes are detected ("checkOrder" here)
the result of the notifyTemplate.ftl transformation (which will serve as input for the checkOrder operation)
the callbackTemplate property value which is the path of a FreeMarker template from which catalog notifications will be
generated.

Here is the file:notifyTemplate.ftl

JiraOperationExecutor.java

JiraNotificationSetupExecutor.java

158

<#assign route = message.items[0].route/>
<#assign messageHeader = message.messageHeader/>
<#escape x as x?json_string>
{
 "messageHeader": {
 <#list messageHeader?keys as key>
 "${key}": "${messageHeader[key]}"<#if key_has_next>,</#if>
 </#list>
 },
 "@type": "${message.@type}",
 "name": "${message.name}",
 "description": "${message.description}",
 "items": [
 {
 "route": {
 "@type": "${route.@type}",
 "system_type": "${route.system_type}",
 "target_instance": "${route.target_instance}"
 }
 }
],
 "orderInfo": {
 "id": "${message.orderInfo.id}"
 }
}
</#escape>

The checkOrder operation and the callbackTemplate.ftl template are outlined in the next section - they can be left empty for now.

Pipeline for handling R2F changes

If you now test the observer by making changes to a registered entity, you will see that the JIRA adapter will try to handle an incoming message of
subtype MessageSubType.CHANGE and a reason EntityChangeMsg.REASON_SX_MANAGED.

To add support for such a message:

notifyTemplate.ftl

159

...
 @Override
 protected String getPipelineNameForMessage(MessageProperties properties,
Map<String, Object> amqpMessage) {
 final String subType = extractMessageSubtype(properties.getType());
 if (MessageSubType.CHANGE.equals(subType)) {
 final String reason = getStrField(amqpMessage, EntityChangeMsg.REASON);
 switch (reason) {
 case EntityChangeMsg.REASON_SX_MANAGED: // Adding pipeline name
 return JiraConstants.PIPELINE_SX_MANAGED_CHANGE;
 case EntityChangeMsg.REASON_CASE_EXCHANGE:
 return JiraConstants.PIPELINE_CASE_EXCHANGE_CHANGE;
 default:
 throw new IllegalArgumentException();
 }
 }
 return super.getPipelineNameForMessage(properties, amqpMessage);
 }
...

...
 @Autowired
 private StorageFactory storageFactory;
 @Autowired
 private CatalogNotificationMessagePublisher cnPublisher;
 @Autowired
 private OoFlowMessagePublisher ooFlowMessagePublisher;
 @Autowired
 private MessageTransformer messageTransformer;
...

 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {
 switch (name) {
 ...
 case JiraConstants.PIPELINE_SX_MANAGED_CHANGE:
 return buildSxManagedChangePipeline(factory);
 ...
 }
 }
...
 public Pipeline buildSxManagedChangePipeline(PipelineBuilderFactory factory) {
 PipelineBuilder builder =
factory.newBuilder(JiraConstants.PIPELINE_SX_MANAGED_CHANGE);
 // prepare entityInfo variable
 ContextVariable<EntityInfo> entityInfo =
ContextVariable.newDataValue(EntityInfo.class, ENTITY_INFO_PROPERTY_PATH);
 // retrieve entity info from database
 // keep reference to RetrieveEntityInfoBlock - we want its VAR_TARGET_INSTANCE

JiraAdapter.java

PipelineBuilder.java

160

RetrieveEntityInfoBlock retrieveEntityInfoBlock;
builder.addBlock(retrieveEntityInfoBlock = new

RetrieveEntityInfoBlock(JIRA_TYPE, storageFactory, entityInfo));
// operation execution from entity info
builder.addBlock(new EntityInfoOperationExecutorBlock(

storageFactory,
entityInfo));

// extract target instance (it is not in the message anymore)
ContextVariable<String> targetInstance =

retrieveEntityInfoBlock.descVariable(RetrieveEntityInfoBlock.VAR_TARGET_INSTANCE,
String.class).binding;

// catalog notification
builder.addBlock(new EntityInfoAwareCatalogNotificationBlock(

JIRA_TYPE,
cnPublisher,
storageFactory,
messageTransformer,
targetInstance,
null,
entityInfo

));
// finally if not explicitly suppressed, notify OO
builder.addBlock(new OoInvocationBlock(CONDITIONAL_OO_FLOW_BLOCK_NAME_SUFFIX,

ooFlowMessagePublisher) {
protected boolean isInterested(ExecutionContext context) {

return !context.message.isEmpty() &&
!context.message.containsKey(MessageDirectives.SKIP_FLOW_RUN);

}
});
// entity change cleanup
builder.addBlock(new EntityChangeCleanupBlock(

JIRA_TYPE,
storageFactory,
targetInstance));

return builder.build();
 }
...

161

To summarize the purpose of each block added into the pipeline.

RetrieveEntityInfoBlock
Using the ID of the entity, it retrieves the information stored at the notification setup time, see the previous section.

EntityInfoOperationExecutorBlock
Executes the check operation, called "checkOrder" in this example.

EntityInfoAwareCatalogNotificationBlock
Applies the catalog notification template to the message and notifies the catalog with the resulting message.

OoInvocationBlock
Calls the OO flow.

EntityChangeCleanupBlock
Deregisters listening out for entity changes based on whether the output message of the checkOrder operation contains the
stopListenting directive.

Now, to implement the checkOrder specified in the notification setup, follow this example:

...
 "checkOrder": [

{
"label": "Get order",
"requestUrlTemplate": "getOrderUrl.ftl",
"responseTemplate": "getOrderResponse.ftl"

},
{

"label": "Get order approver",
"requestUrlTemplate": "getOrderApproverUrl.ftl",
"responseTemplate": "getOrderApproverResponse.ftl"

},
{

"label": "Get order approver info",
"requestUrlTemplate": "getOrderApproverInfoUrl.ftl",
"responseTemplate": "getOrderApproverInfoResponse.ftl"

}
],
...

The first step gets most of the task data:

operations.json

162

<#escape x as x?json_string>
<#assign fields = doc.result.fields/>
{
 "orderInfo": {

"id": "${doc.result.key}",
"title": "${fields.summary}",
"description": "${fields.description!""}",
"status": {

"id": "${fields.status.id}",
"name": "${fields.status.name}"

},
<#if fields.resolution??>
"resolution": {

"id": "${fields.resolution.id}",
"name": "${fields.resolution.name}"

},
</#if>
"resolutiondate": "${fields.resolutiondate!""}",
"reporter": {

"name": "${fields.reporter.name}",
"emailAddress": "${fields.reporter.emailAddress}"

},
"project": {

"id": "${fields.project.key}",
"name": "${fields.project.name}"

},
"itemName": "${fields.project.name} Task"

 }
 <#if fields.status.id == "6"> <#-- Closed -->
 ,
 "stopListening": "${doc.result.key}"
 </#if>
}

</#escape>

NOTE: The stopListening directive is used to unregister a task from HP SX for a task with a Closed status.

The other two steps in the checkOrder operation retrieve information about the approver and store it in under orderInfo.approver.

Here is the callbackTemplate.ftl file which is used by EntityInfoAwareCatalogNotificationBlock to create the notification message:

getOrderResponse.ftl

callbackTemplate.json

163

<#assign SUBMITTED = "submitted">
<#assign PENDING_APPROVAL = "pending_approval">
<#assign APPROVED = "approved">
<#assign IN_PROGRESS = "in_progress">
<#assign COMPLETED = "completed">
<#assign REJECTED = "rejected">
<#function toSxStatus jiraStatus jiraResolution>
 <#switch jiraStatus>

<#case "1"> <#-- Open -->
<#return PENDING_APPROVAL>

<#case "3"> <#-- In Progress -->
<#return APPROVED/>

<#case "4"> <#-- Reopened -->
<#return IN_PROGRESS/>

<#case "5"> <#-- Resolved - fall through -->
<#case "6"> <#-- Closed -->

<#switch jiraResolution>
<#case "1"> <#-- Fixed -->

<#return COMPLETED/>
<#case "2"> <#-- Won't Fix -->

<#return REJECTED/>
<#case "3"> <#-- Duplicate -->

<#return COMPLETED/>
<#case "4"> <#-- Incomplete -->

<#return REJECTED/>
<#case "5"> <#-- Cannot Reproduce -->

<#return REJECTED/>
<#case "10000"> <#-- Done -->

<#return COMPLETED>
</#switch>

 </#switch>
</#function>
<#escape x as x?json_string>
<#assign orderInfo = message.orderInfo/>
<#assign status = toSxStatus(orderInfo.status.id, (orderInfo.resolution.id)!"")/>
[
 {

"@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
"id": "${message.messageHeader.externalId}",
"remoteId": "${orderInfo.id}",
"displayName": "${orderInfo.title}",
"requestor": "${orderInfo.reporter.name}",
"state": "${status}",
<#if status == PENDING_APPROVAL>
"approvers" : [

{
"name": "${orderInfo.approver.name}"

}
],
</#if>
"subscription": {

"id": "N/A"
}

 }
]
</#escape>

Test of the change listening implementation

164

You can now test the implementation like this:

Call the create-order REST endpoint. You should now observe that:
A new task is created in JIRA.
A catalog notification has been sent reporting the status "pending_approval" and showing the project lead as Approver, which
you can check in the notification.log.

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id": "d4cac721-15bc-43f7-87ec-6ea7d3748537",
 "remoteId": "SE-6469",
 "displayName": "I need 'Service Exchange Task'",
 "requestor": "consumer",
 "state": "pending_approval",
 "approvers": [

{
"name": "joe.manager"

}
],
 "subscription": {

"id": "N/A"
 }
}

A notification mail has been sent to the Approver asking them to approve or deny the request.
Now resolve the task with the resolution Fixed in JIRA. You should now observe that:

A catalog notification has been sent reporting the status "completed":

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id": "d4cac721-15bc-43f7-87ec-6ea7d3748537",
 "remoteId": "SE-6469",
 "displayName": "I need 'Service Exchange Task'",
 "requestor": "consumer",
 "state": "completed",
 "subscription": {

"id": "N/A"
 }
}

A notification mail has been sent to the reporter.
If you now close the task in JIRA, HP SX will stop observing changes of the task. You can check this by reopening the task where you
will see that no catalog notifications have been sent.

Approve/deny operation

Approval still needs to be implemented. The approval operation is invoked through the SX RESTful API (/operation resource), as documented in
. Try to call it now with an Open task:Appendix A: Service Exchange - API

GET /sx/api/operation?messageText=<encodedMessage>
Content-Type: application/json
Authorization: Basic am9lLm1hbmFnZXI6Y2hhbmdlaXQ=

Here the encodedMessage is base64 encoding of:

165

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:invoke",
 "entityId": "d4cac721-15bc-43f7-87ec-6ea7d3748537",
 "entityType": "request",
 "operationName": "approve",
 "recipient": {

"name": "joe.manager"
 },
 "parameters": [

{
"name": "message",
"value": "Approved."

}
]
}

You can use an online encode e.g. on .https://www.base64encode.org/

NOTE: The documented POST endpoint is not used as it requires an IdM token passed via the X-Auth-Token header. Instead a GET version with
basic authentication is used, which exists for debugging purposes. If you perform the call, it will succeed, but the actual approval will fail with the
following exception in the log:

java.lang.IllegalArgumentException: pipeline OPERATION not recognized

To add support for the OPERATION pipeline to JiraPipelineBuilder:

166

...
 @Override
 public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory,
String name) {

switch (name) {
 ...
 case Names.PIPELINE_OPERATION:

return buildOperationPipeline(factory);
...

}
 }
...
 private Pipeline buildOperationPipeline(PipelineBuilderFactory factory) {

final PipelineBuilder builder = factory.newBuilder(Names.PIPELINE_OPERATION);
builder.addBlock(new OperationExecutionBlock());
ContextVariable<Map> catalogNotificationMessage =

ContextVariable.newDataMap(CATALOG_NOTIFICATION_MESSAGE_PROPERTY_PATH);
builder.addBlock(new PrepareCatalogNotificationMessageBlock(

ContextVariable.newFixedValue(MessageConstants.RequestState.COMPLETED),
catalogNotificationMessage));

builder.addBlock(new CatalogNotificationBlock(cnPublisher,
// notification message
catalogNotificationMessage,
// entity ID is 'id' in the message
ContextVariable.newMessageString(MessageConstants.ID),
// notification type - always request
ContextVariable.newFixedValue(NotificationType.REQUEST)

));
return builder.build();

 }
...

Beside the operation execution, a notification to the catalog is performed. If you now call the approval endpoint, the approval will still fail, this time
with the following exception:

java.lang.IllegalArgumentException: JIRA: invalid operation requested: 'approve'

So implement the approve operation:

JiraPipelineBuilder.java

167

...
"approve": [

{
"label": "Approve order",
"requestUrlTemplate": "approveOrderUrl.ftl",
"requestTemplate": "approveOrderRequest.ftl",
"method": "POST"

}
],
...

The REST call will simply move the task to the state and add the approval message as a new comment. In Progress

Now if you call the approval endpoint, you should observe the following:

The task is now in the status.In Progress
Catalog notifications have been sent, which you can check in :notification.log

{
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "displayName" : "approve request SE-6469",
 "state" : "completed",
 "id" : "b131bc6f-f289-4d91-8a07-c502aa4a8f16"
}
{
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id" : "d4cac721-15bc-43f7-87ec-6ea7d3748537",
 "remoteId" : "SE-6469",
 "displayName" : "I need 'Service Exchange Task'",
 "requestor" : "consumer",
 "state" : "approved",
 "subscription" : {
 "id" : "N/A"
 }
}

A notification mail has been sent to the reporter, reporting that the request has been approved.

Support for the deny operation is similar and you can find it in the example sources.

@Nonnull
@Override
protected String extractRequestType(Map<String, Object> entity) {

(entity,);return getStrField KEY_REQUEST_TYPE
}

@Override
isInterested(Map<String, Object> instanceConfig) {protected boolean

Objects. (JsonUtils. (instanceConfig, JiraInstancesCfg.),)return firstNonNull getBooleanField R2F_ENABLED false
|| Objects. (JsonUtils. (instanceConfig, JiraInstancesCfg.),);firstNonNull getBooleanField TICKETING_ENABLED false
}

operations.json

168

1.

2.
3.

Aggregation in HP SX

Overview
A working aggregation process is a prerequisite to the request to fulfill (R2F) use case as it is the aggregation process that exposes your backend
system entities to be requested (e.g., HP SM catalog items, HP CSA offerings, and so on) in the HP Propel portal. Aggregation creates offerings
that can then be published into catalogs. HP Propel portal users can order offerings from catalogs that are accessible to their organization.

With the introduction of HP Propel 1.11, the aggregation process is driven by HP SX. This chapter describes the details of implementing
aggregation in your adapter.

The Aggregation process is responsible for both service offerings and support offerings aggregation.

Aggregation in HP SX
User defines aggregation using the aggregation UI. A specific set of operations which determine aggregation properties must be
implemented (more information follows).
Aggregation is run either manually or can be set to be invoked automatically when a change in backend system is detected.
To enable automatic re-aggregation it is necessary to implement change observing, a process where the backend system is periodically
polled for changes. Every change detected generates a message of type and with reason . These messages areCHANGE aggregation
handled in a special pipeline. This pipeline can use that is provided in the HP SX API.AggregationInvocationBlock

Code excerpts from the implementation of out-of-the-box provided Service Anywhere (SAW) adapter are used throughout this chapter.

Aggregation operations
The following set of operations must be defined in to support aggregation for your system. These operations are invokedoperations.json
either at aggregation definition time or at aggregation run time.

Operation Note

listCatalogs Lists backend system catalogs. If the backend system doesn't use a "Catalogs" concept to group aggregated items
together, this operation still needs to be implemented and return an empty array.

listOfferings Lists backend system offerings. When automatic aggregations are supported also answers question if item with
given itemId match source filter.

getOffering Returns offering.

getOfferingIcon Returns the icon of an offering or category, as well as additional offering attachments.

listCategories Returns a list of all categories defined in the service catalog. (You must implement this operationexternal system
or getCategory operation.)

getCategory Returns one category defined in the service catalog. (You must implement this operationexternal system
or listCategories operation.)

getAggregationFeatures Lists aggregation features (e.g., automatic aggregation, source filter hint).

 NOTE: operation has been deprecated.listeningOnOffering

 NOTE: If you listCategories, aggregation gets all categories in the beginning and then catalog items will be aggregated. If you chooseimplement
getCategory, aggregation gets categories for every catalog item separately.

Documentation of the input and output operations format follows. The input message can be seen in the developer UI and is presented here for
the reader's convenience. The invariant parts (e.g., instanceConfig, infrastructure, context, etc.) of the input are omitted here.

Prerequisite
In this guide it is assumed that you have finished the minimal adapter classes implementation that enables the ticketing functionality.
See in the section.JIRA Request Support use case How to develop an adapter (JIRA)

169

listCatalogs

Input

{
 "messageHeader" : {

"backendSystemType" : "${backendSystemType}" ,
"targetInstance" : "${targetInstanceName}"

 }
}

Output

Return array of catalogs, or an empty array if the backend system doesn't support the concept of catalogs.

{
 "result": [

{
 "value": "${catalogId}",
 "name": "${catalogName}",
 "description": "${catalogDescription}"

},
...

]
}

listOfferings

Input

{
 "message" : {
 "language" : ${languageCode},
 "startIndex" : ${startIndex},
 "sortBy" : "itemName",
 "preview" : "true",
 "sourceFilter" : "", //filter query in language of backend system
 "pageSize" : ${pageSize},
 "messageHeader" : {

"backendSystemType" : "${backendSystemType}" ,
"targetInstance" : "${targetInstanceName}"

 },
 "offeringType" : "${offeringType}", // "SERVICE_OFFERING" or "SUPPORT_OFFERING"
 "defaultSupportOfferingIncluded" : "${defaultSupportOfferingIncluded}" //
"INCLUDED", "EXCLUDED" or "DEFAULT_ONLY"
 "sortDirection" : "ascending",
 "sourceCatalog" : "${sourceCatalogId}",
 "itemId" : "1312" // optional passed only when processing change during automatic
aggregations
 }
}

Output

170

{
 "@startIndex": ${startIndex},
 "@itemsPerPage": ${itemsPerPage},
 "@totalResults": ${itemsPerPage},
 "result": [

{
"itemId": "${itemId}", // item id is used while aggregating the item (e.g. in

getOffering)
"itemName": "${itemName}", //item name is used while fulfilling requests. For

most of systems could be the same as itemId
"itemDisplayName": "${itemDisplayName}",
"category": ["${category1}", "${category2}"], // item can belong to

multiple categories
"updateTime": "2014-07-10T14:00:05.393Z"

},
...

]
}

Placeholder description

itemId Backend system offering id

getOffering

Input

{
 "message" : {
 "languageCode" : null,
 "itemID" : "90b73e8d47207a2e01472092ec1100a8",
 "messageHeader" : {

"backendSystemType" : "${backendSystemType}" ,
"targetInstance" : "${targetInstanceName}"

 },
 }

Output

Following is example output from an HP SM adapter. The most complex part in this format is the offering options description. A separate section
is dedicated to offering options below. A list of attachments could be returned as well. These are fetched using operation andgetOfferingIcon
are attached to offering in HP Propel. Category sections contains itemNames for categories where current offering belongs to in external system.
It could be more than one category. See als listCategories operation below.

{
 "result" : {
 "summary" : {

"name" : {
"en" : "OATH key",
"cs" : "OATH klí"

},
"description" : {

"en" : "OAuth is an open standard for authorization. OAuth provides...",
"cs" : "OAuth je otevený standard pro authorizaci. OAuth poskytuje..."

171

},
"longDescription" : {

"en" : "**OAuth** is an [open standard][] for [authorization][]. OAuth
provides client applications a 'secure delegated access'..."

},
"state" : "STAGING",
"type" : "SUPPORT",
"extensions" : {

"sxProviderId" : "mpavmsm15_hpswlabs_adapps_hp_com",
"sxProviderType" : "SM",
"sxRemoteOfferingId" : "OATH key"

},
"initialPrice" : {

"amount" : 15,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 1,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

}
 },
 "form" : {

"fields" : [{
"id" : "NewORDeactivate",
"name" : {

"cs" : "Nový nebo Deaktivovat",
"en" : "New or Deactivate"

},
"type" : "RADIO_LIST",
"activeExpression" : "true",
"constraints" : {

"requiredExpression" : "false",
"availableValues" : [{
"id" : "New",
"name" : {

"en" : "New"
},
"initialPrice" : {

"amount" : 0,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 0.0,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

}
}, {

"id" : "Deactivate",
"name" : {

"en" : "Deactivate"
},
"initialPrice" : {

172

"amount" : 0,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 0.0,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

}
}]

}
}, {

"id" : "SerialNumber",
"name" : {

"cs" : "Sériové íslo",
"en" : "Serial Number"

},
"type" : "TEXT_INPUT",
"activeExpression" : "$form['NewORDeactivate'].value==\"Deactivate\"",
"constraints" : {

"requiredExpression" : "$form['NewORDeactivate'].value==\"Deactivate\""
}

}, {
"id" : "SecureIDORSoftID",
"name" : {

"cs" : "Chtli byste Secure ID nebo Soft ID?",
"en" : "Would you like Secure ID or Soft ID?"

},
"type" : "DROPDOWN_LIST",
"activeExpression" : "$form['NewORDeactivate'].value==\"New\"",
"constraints" : {

"requiredExpression" : "$form['NewORDeactivate'].value==\"New\"",
"availableValues" : [{

"id" : "Secure ID",
"name" : {

"cs" : "Secure ID [+5,00$]",
"en" : "Secure ID [+$5.00]"

},
"initialPrice" : {

"amount" : 5,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 0.0,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

}
}, {

"id" : "Soft ID",
"name" : {

"cs" : "Soft ID [+6,00$]",
"en" : "Soft ID [+$6.00]"

},
"initialPrice" : {

173

"amount" : 6,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 0.0,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

},
}]

}
},
// ...
{

"id" : "Department",
"name" : {

"cs" : "Vaše oddlení",
"en" : "What is your department?"

},
"initialPrice" : {

"amount" : 0,
"currency" : "USD"

},
"recurrentPrice" : {

"amount" : 0.0,
"currency" : "USD"

},
"recurrencePeriod" : {

"unitCount" : 1.0,
"timeUnit" : "YEAR"

},
"type" : "DROPDOWN_LIST",
"activeExpression" : "$form['SecureIDORSoftID'].value==\"Secure ID\"",
"constraints" : {

"requiredExpression" : "false",
"dynamicAvailableValues" : {

"dataSourceId" : "sxDataSource",
"parameters" : {

"uri" :
"'\\/optionValues/SM/mpavmsm15_hpswlabs_adapps_hp_com/Department'",

"matchTable" : "'dept'",
"matchField" : "'dept.full.name'",
"query" : "'company=' + '\\\"'+Company.value+'\\\"'"

}
}

}
},
//...
{

"id" : "dateField",
"name" {

"cs" : "Datumové políko",
"en" : "Date Field"

},
"type" : "DATE_TIME",
"activeExpression" : "true",
"constraints" : {

174

"requiredExpression" : "false",
"minExpression" : "$date('2008-07-31T06:00:00.000Z')"

}
}, {

"id" : "floatField",
"name" : {

"cs" : "Decimální políko",
"en" : "Decimal number"

},
"type" : "NUMBER_INPUT",
"activeExpression" : "true",
"constraints" : {

"requiredExpression" : "false",
"min" : "1.2",
"max" : "50.5"

}
}, {

"id" : "multiTextField",
"name" : {

"cs" : "Multitextové políko",
"en" : "MultiText Field"

},
"type" : "TEXT_AREA",
"activeExpression" : "true",
"constraints" : {

"requiredExpression" : "false"
}

}]
 }
 },
 "itemID" : "2292",
 "image" : {
 "id" : "cid:555da7d30020b04b8076b7d0",
 "fileName" : "OATH key",
 "contentType" : "image/bmp"
 },
 "attachments" : [{
 "id" : "cid:555da7d3001010498076b7d0",
 "fileName" : "Simple_Cheap_Metal_Usb_Key_ME05.jpg",
 "contentType" : "image/jpeg",
 "type" : "SCREENSHOT"
 }, {
 "id" : "cid:555da7d30013d04a8076b7d0",
 "fileName" : "1361693866_silver_key(mainpicture).jpg",
 "contentType" : "image/jpeg",
 "type" : "SCREENSHOT"
 }, {
 "id" : "cid:555dbce0001ad04c8076b7d0",
 "fileName" : "oauth-sso.pdf",
 "contentType" : "application/pdf"
 }],
 "offeringType" : "SUPPORT_OFFERING",
 "language" : "en_US",
 "category" : ["Application Support"]
}

175

HP Propel Form Model

Custom properties defined in backend system catalog items must be mapped into the Form Model in HP Propel. See form field in the previous
example. The complete description of the format can be found in .JSON schema

getOfferingIcon

You should only issue a GET request for the icon URL or additional offering attachments if your system provides such a URL or returns a stream
with the data in the result. The latter is implemented using a custom step type. See .Appendix B: Operation executors

listCategories

Input

{

 "messageHeader" : {
"backendSystemType" : "${backendSystemType}",
"targetInstance" : "${targetInstanceName}"

 },
 "offeringType" : "${offeringType}", // "SERVICE_OFFERING" or "SUPPORT_OFFERING"
 "sourceCatalog" : "${sourceCatalaog}"
}

Output

 {
 "result" : [

{
 "idForIconDownloading" : "1557",
 "itemId" : "Application Access",
 "itemDisplayName" : {

"en" : "Application Access"
 },
 "itemDescription" : {

"en" : "Contains departmental applications available for access and new
subscription requests"
 },
 "parents" : ["Business and Department Services"],
 "image" : {

"id" : "cid:466f3dee0039903a0309b460",
"name" : "Application Access",
"contentType" : "image/gif"

 }
 },

....
]
}

getCategory

176

Input

{

 "messageHeader" : {
"backendSystemType" : "${backendSystemType}",
"targetInstance" : "${targetInstanceName}"
"categoryId": "${categoryId}" //e.g. "Application Access"

 },
 "offeringType" : "${offeringType}", // "SERVICE_OFFERING" or "SUPPORT_OFFERING"
 "sourceCatalog" : "${sourceCatalaog}"
}

Output

 {
 "result" :

{
 "idForIconDownloading" : "1557",
 "itemId" : "Application Access",
 "itemDisplayName" : {

"en" : "Application Access"
 },
 "itemDescription" : {

"en" : "Contains departmental applications available for access and new
subscription requests"
 },
 "parents" : ["Business and Department Services"],
 "image" : {

"id" : "cid:466f3dee0039903a0309b460",
"name" : "Application Access",
"contentType" : "image/gif"

 }
 }
}

getAggregationFeatures

Input

{
 "messageHeader" : {

"backendSystemType" : "${backendSystemType}" ,
"targetInstance" : "${targetInstanceName}"

 }
}

Output

177

{
 "supportsSourceFilter": true, // enables filter field in aggreagation properties
 "sourceFilterHint": "Optional hint describing source filter syntax and examples could
be here. Could be formatted using HTML tags.",
 "supportsSupportOfferingAggregation": true, // when set to true, users will be
allowed to choose to aggregate support offerings
 "automaticAggregation": true // enables Automatic aggregation checkbox
}

Java adapter support

Change observer class

In order to enable automatic aggregation it is necessary to implement offering change observing. It is possible to implement a ChangeObserver
from scratch but for the majority of cases provided the HP SX SDK abstract classes can be extended.

In the following example is used to set up the change observer class. It accepts an arbitrary number ofCompositeChangeObserver
commands, and must be supplied with at least one. In this example a single command is supplied that will list offering changes.

@Component
public class SawChangeObserver extends CompositeChangeObserver {

 @Value("${adapter.saw.change.listener.delayBeforeNextRun}")
 private int pollInterval;

 @Autowired
 public SawChangeObserver(SawAggregationPollingCommand aggregationPollingCommand) {

super(ImmutableList.<Runnable>of(aggregationPollingCommand));
 }

 @Override
 public int getPollIntervalSec() {

return pollInterval;
 }
}

Aggregation polling command

The change observer command must be implemented. AggregationPollingCommand provided in the HP SX SDK is extended in this example.

Change Observer class

178

@Component
public class SawAggregationPollingCommand extends AggregationPollingCommand {

 /**
* Operation for fetching changed offerings.

 */
 public static final String OPERATION_GET_CHANGES = "getChangedOfferings";
 @Autowired
 public SawAggregationPollingCommand(SawOperationExecutor operationExecutor) {

super(SawConstants.SAW_ADAPTER_NAME, SawConstants.ENTITY_OFFERING,
SawInstancesCfg.CFG_NAME, OPERATION_GET_CHANGES, operationExecutor);
 }
}

The command is supplied with the name of an operation that will be used to retrieved changed offerings. The time of the last check for changes is
provided by the HP SX to this operation in the input message.AggregationPollingCommand

Implement the operation in .operations.json

"getChangedOfferings": [
 {
 ...
 }
...
],

Following is the changed offerings operation output format.

{
 "entityIds": [

"${entityId1}","${entityId2}",...,"${entityIdN}"
],
 "Date": "${doc.resultHeaders.Date}"
}

Be sure your change observer class is set in the adapter class. Use the same approach as in this SAW adapter code excerpt. Change observer is
injected in the constructor, and set using method.setChangeObserver

Aggregation polling command

operations.json

179

...
@Autowired
public SawAdapter(SawOperationExecutor executor, SawPipelineBuilder builder,

SawChangeObserver changeObserver) {
 super(SawConstants.SAW_ADAPTER_NAME, executor, builder);
 setRequestMessageHeaderTemplate("saw-r2f/sx/templates/generateMessageHeader.ftl");

 setChangeObserver(changeObserver);
}
...

Aggregation Pipeline

When a change is detected by the change observer, a message is generated with type and reason . A pipeline has to beCHANGE aggregation
defined to handle these messages. Your adapter should include code similar to the SAW example shown here.

In the adapter class get the pipeline name for the message:

...
@Override
protected String getPipelineNameForMessage(MessageProperties properties, Map<String,
Object> amqpMessage) {
 final String subType = extractMessageSubtype(properties.getType());
 if (MessageSubType.CHANGE.equals(subType)) {

final String reason = getStrField(amqpMessage, EntityChangeMsg.REASON);
switch (reason) {

...
case EntityChangeMsg.REASON_AGGREGATION:

return SawConstants.PIPELINE_AGGREGATION_CHANGE;
default:

throw new IllegalArgumentException();
}

 }
 return super.getPipelineNameForMessage(properties, amqpMessage);
}
...

Build the pipeline for the name in the pipeline builder.PIPELINE_AGGREGATION_CHANGE

Adapter class

Adapter class

180

...

@Autowired

private AggregationService aggregationService;

...
 @Override
public Pipeline buildPipeline(Adapter adapter, PipelineBuilderFactory factory, String
name) {
 switch (name) {

...
case SawConstants.PIPELINE_AGGREGATION_CHANGE:

return buildAggregationChangePipeline(factory);
default:

return null;
 }
}

public Pipeline buildAggregationChangePipeline(PipelineBuilderFactory factory) {
PipelineBuilder builder =

factory.newBuilder(SawConstants.PIPELINE_AGGREGATION_CHANGE);
builder.addBlock(new AggregationInvocationBlock(SAW_TYPE, aggregationService));
return builder.build();

}
...

HP SX SDK provides which handles the aggregation change merging logic.AggregationInvocationBlock

How to create CX content (HP SM Problem entity)
Introduction and purpose
HP SM database triggers
HP SM external access (Web Service Configuration)
case-exchange.json

More information
external-systems.json, Group Alias Mappings

More info
Converting to the Canonical Model
OO Flow

More info
operations.json

Problem entity retrieval
Problem entity creation
More info

Calling external systems (HP SM) and FTL templates
Problem entity retrieval
Problem entity creation

Pipeline builder class

181

Introduction and purpose
The purpose of this section is to provide a simple introduction to HP SX Case Exchange (CX) content creation based on one such existing content
- the Problem CX. Find information about this content and how to install and run it in . In thisSX Problem Case Exchange Content Installation
section, one "operation" of the existing content is used - - and using this as anthe Problem items' duplication among HP SM instances
example the whole configuration and coding process is demonstrated.

This section expects that you know the basics of HP SX functionality and content creation (including for example the OO Flow integration into HP
SX content etc.) See as a starting point if you need more basic information.How to extend HP SX Content (HP SM Problem entity)

HP SM database triggers
This example works with Problem items in HP SM, so HP SX needs to know when changes of these items occur. This is handled by using SM
database triggers. In this example, one trigger (script) for Problem items is added and one for Problem . Add the followingcreation update
triggers to the table (representing the Problem UI entity) in the HP SM Client application rootcause System Definition > Tables > rootcause >

.Triggers

lib.SX_EntityChangeV2.entityAfterAdd('id', record);

lib.SX_EntityChangeV2.entityAfterUpdate('id', oldrecord, record);

Work will also be done with items' (watching for changes). These are stored in a separate table . AddProblem Activity Lines activityproblem
the following triggers for this:

lib.SX_EntityChangeV2.onActivityCreateOrUpdate(record);

lib.SX_EntityChangeV2.entityAfterAdd('thenumber', record);

HP SM external access (Web Service Configuration)
The next step is to make all the mentioned content accessible via remote APIs (REST, SOAP).

For Problem items, the required web service is already setup in HP SM, but it needs to be modified. In the HP SM Client application go to
and search for the Object name . Add the following entries into the tableTailoring > Web Services > Web Service Configuration Problem

under the tab. It must be possible to remotely access those fields in order to create copies of Problem items with such fields filled.Fields

Field Caption

current.phase CurrentPhase

status Status

SX.rootcause.after.create trigger

SX.rootcause.after.update trigger

SX.activityproblem.before.add

SX.activityproblem.after.add

182

description Description

opened.by OpenedBy

root.cause RootCause

id Id

brief.description Title

expected.resolution.time ResolutionTime

initial.impact Impact

severity Urgency

subcategory Area

category Category

affected.item Service

assignment AssignmentGroup

product.type Subarea

rcStatus rcStatus

Now the tab needs to be updated too. Enter the following code, which is needed when updating Problem items (or other HP SMExpressions
items. By default HP SM requires that when some of the updates (like Status changes) are made, a Change is created and written as a Journal
Update. This code ensures that no is written in such a case - it would be excessive to add these each time the data is automaticallyActivity Line
updated remotely - but the proper is entered.Journal Update

cleanup($pm.activity);cleanup($rc.update);$rc.update={"external case-exchange update"}

case-exchange.json
Now to start creating the configuration file. case-exchange.json

It is assumed that the content pack build structure already exists - see topic for how toHow to extend HP SX Content (HP SM Problem entity)
create it.

The config file needs to be placed in the directory of your build module. Its content must becase-exchange.json src/main/resources
defined in relation to the operation needed - Problem items creation (duplication) in HP SM by HP SX CX. The configuration file defines the
following 3 important sections - , and .events eventActions eventGroups

In the section reactions to specific items that are of interest are defined, and their specific statuses. In this case it is necessary to reactevents
(create a Problem copy) when the source Problem Status field () changes its value to . To this end, add the following rcStatus Pending Vendor

 section to the file:events case-exchange.json

Expressions tab content for Problem web service

183

"events": {
"SM": {

"problem.referringEntityStatusChanged": {
"changeType": ["update"],
"entityFilter": "OLDRECORD['rcStatus']!=NEWRECORD['rcStatus'] &&

NEWRECORD['rcStatus']=='Pending Vendor'",
"entityType": "rootcause"

}
 }

Next is the section. Here you define the actions to be executed when a given change occurs (as defined in previous section).eventActions
In this case you need to:

Retrieve the entity (Problem) from HP SM
Convert it to the Canonical (Generic) Model
Send it to OO for further processing.

The following code ensures this. You will see more about the first two operations' definitions in the file description section.operations.json

"eventActions": {
"problem.referringEntityStatusChanged": [

{
"action": "executeOperation",
"operationName": "retrieveProblemCX",
"message": {}

},
{

"action": "executeOperation",
"operationName": "convertProblemToCanonicalModel",
"message": {}

},
{

"action": "executeOoFlow",
"backendSystemType": "SM",
"messageType": "problemCx",
"operationName": "referringEntityStatusChanged",
"message": {

"messageHeader": {
"optionalCXProblemNameAppendix": " problem copy"

}
}

}
]

 }

The last action required is pretty straightforward - it sends the parameter (and others) as the OO Flow Operation discriminator tooperationName
OO.

NOTE: The results from previous operations in this event actions block are sent to OO with this message too.

What is done with the message on the OO side is further examined in the section.OO Flow

"events" section in case-exhange.json config file

"eventActions" section in case-exchange.json config file

184

Lastly there is an section. This groups common from the previous section together, and is further used in the eventGroups eventActions
 file. It is useful that the be grouped together by default if they belong to one way of operations. As onlyexternal-systems.json eventActions

one operation is created for now, this configuration is simple:

"eventGroups": {
"problem.ReferringEntityEvents": [

"problem.referringEntityStatusChanged"
]

 }

More information

To know more about SX Case Exchange configuration, go to the topic.Configuration

external-systems.json, Group Alias Mappings
As stated in the description section, the configuration file contains the mapping of actualcase-exchange.json external-systems.json
server machines to Event Groups (from the). The section describes this:case-exchange.json externalSystems

"externalSystems": [
{

"instanceType": "SM",
"instance": "your_sm_instance_1",
"registeredEventGroups": ["problem.ReferringEntityEvents"]

}
]

As you can see, the problem.ReferringEntityEvents Event Group (the same as in) is mapped to '.case-exchange.json 'your_sm_instance_1
i.e. HP SX will be listening out for changes on the server which conform to the problem.referringEntityStatusChanged event'your_sm_instance_1'
entityFilter, and executing operations from the problem.referringEntityStatusChanged part.eventActions

Next, you need to define in this configuration file.externalSystemAliases

"externalSystemAliases": [
{

"sourceInstanceType": "SM",
"sourceInstance": "your_sm_instance_1",
"targetInstanceType": "SM",
"targetInstance": "your_sm_instance_2",
"targetAlias": "sm2directionAlias"

}
]

"eventGroups" section in case-exchange.json config file

externalSystems section from external-systems.json config file

externalSystemAliases section from external-systems.json config file

185

As you can see, is defined as a and as a and named with an 'your_sm_instance_1' source instance 'your_sm_instance_2' target instance,
'sm2directionAlias'. This alias is used in the , name it for example :alias Group Alias Mappings file smGroupAliasMappings.json

{
 "your_sm_instance_1":{

"Application": "sm2directionAlias"
 }
}

So in this file, Problem entities from 'your_sm_instance_1' server have been defined, which have the mapped'Application' Assignment Group
to 'sm2directionAlias'. This mapping is used when .converting an entity to canonical model

More info

To know more about SX CX configuration, see .Configuration

Converting to the Canonical Model
Before moving to the conversion template alone, the Problem Mapping file - - needs to be understood as it is usedproblem-mappings.json
during the conversion to the canonical model.

{
 "entityType": {

"Problem": "rootcause"
 },
 "Problem": {

"rcStatus": {
"Accepted": "Accepted",
"Open": "Open",
"PendingVendor": "Pending Vendor",
"PendingCustomer": "Pending User",
"Referred": "Deferred",
"Rejected": "Rejected",
"WorkInProgress": "Work In Progress",
"Closed": "Closed"

}
 }
}

The first part, the section, is important for the canonical model conversion as it maps the UI of the entity ('Problem' in thisentityType name
example) to the database name (here 'rootcause'.) The second part, the Problem section with the subsection in this case, contains thercStatus
mapping of the UI field's possible database values (represented as the field in the database) to its UI values. This mapping willStatus rcStatus
be used in the template too, so view it below as a whole and then the important parts willconvertProblemToCanonicalModelResult.ftl
each be explained separately.

smGroupAliasMappings.json

problem-mappings.json file

convertProblemToCanonicalModelResult.ftl template file

186

<#assign writeJson='com.hp.ccue.serviceExchange.adapter.freemarker.WriteJson'?new()/>
<#assign
loadConfig='com.hp.ccue.serviceExchange.adapter.freemarker.LoadConfig'?new()/>
<#assign
findKey='com.hp.ccue.serviceExchange.adapter.freemarker.FindKeyForValue'?new()/>
<#assign
findExtSystemForAlias='com.hp.ccue.serviceExchange.caseex.freemarker.FindExternalSystemForAlias'?new()
/>
<#assign problemMapping=loadConfig(context.contentStorage,
"sm-problem-cx/problem-mappings") />
<#assign smGroupAliasMapping=loadConfig(context.configuration,
"sm/smGroupAliasMappings") />
<#escape x as x?json_string>
{
 "event": "${message.entityChange.changeReason}",
 "entity": {
 "instanceType": "${message.entityChange.instanceType}",
 "instance": "${message.entityChange.instance}",
 "entityType": "${findKey(problemMapping.entityType,
message.entityChange.entityType)}",
 "entityId": "${message.entityChange.entityId}",
 "properties": {

<#noescape>${writeJson(message.entityChange.entity, true)}</#noescape>,
"Description": "${message.entityChange.entity.Description?join(", ")}",
"Status": "${findKey(problemMapping.Problem.rcStatus,

message.entityChange.entity.rcStatus)}"
 }
 },
 <#if message.entityChange.entity.AssignmentGroup?has_content &&
message.entityChange.changeReason == 'problem.referringEntityStatusChanged'>
 <#-- (A) NEW REFERENCE IS SET => RETURN NEW REFERENCE BASED ON MAPPINGS -->

<#assign
instanceAssignmentGroups=smGroupAliasMapping[message.entityChange.instance]!"" />

<#if instanceAssignmentGroups?has_content>
<#assign

groupCorrespondingAlias=instanceAssignmentGroups[message.entityChange.entity.AssignmentGroup]!""
/>

<#else>
<#assign groupCorrespondingAlias="" />

</#if>
<#assign alias=findExtSystemForAlias(context.appContext,

message.entityChange.instanceType, message.entityChange.instance,
groupCorrespondingAlias)!"" />

"linkedEntities": [{
"instance": "${alias.targetInstance}"
,"instanceType": "${alias.targetInstanceType}"
,"entityType": "Problem"
,"entityId": "${message.entityChange.entity.VendorTicket!""}"
,"instanceAlias": "${alias.targetAlias}",
"properties": {

"Attachments": [],
"Status": ""

}
}],

 </#if>
}
</#escape>

Expand

source

187

Firstly, notice the and "imports" in the initial section. The first one isfindExtSystemForAlias, problemMapping smGroupAliasMapping assign
an external function used to search for the destination HP SM server in order to place the created Problem copy on. The second two are
previously mentioned mappings - and - and they are used further down in theproblem-mappings.json smGroupAliasMappings.json
file.

Now you can see the input being copied into the parameter. After this comes the first largemessage.entityChange.changeReason event
important part:

"entity": {
 "instanceType": "${message.entityChange.instanceType}",
 "instance": "${message.entityChange.instance}",
 "entityType": "${findKey(problemMapping.entityType,
message.entityChange.entityType)}",
 "entityId": "${message.entityChange.entityId}",
 "properties": {

<#noescape>${writeJson(message.entityChange.entity, true)}</#noescape>,
"Description": "${message.entityChange.entity.Description?join(", ")}",
"Status": "${findKey(problemMapping.Problem.rcStatus,

message.entityChange.entity.rcStatus)}"
 }
 },

The object is created (prepared to be sent to oo) with the following important fields: entity

instanceType, instance and that are simply copied from the incoming HP SM message.entityId
entityType is searched for in the config, as the incoming UI value needs to be mapped to the outgoing databaseproblemMapping
value ('Problem' to 'rootcause' in this case).

The section is populated with all the source attributes from the incoming HP SM Problem item's representation (using the properties writeJson
call). The exceptions are the field (this is split into a multi-line array when read from HP SM with a remote call), and the fieldDescription Status
(mapped with the usage of config.) problemMapping

The next section deals with the creation of - it is called The data is used to convert them to ExternalExternal References linkedEntities.
References in the section.OO Flow

"entity" object creation

188

<#if message.entityChange.entity.AssignmentGroup?has_content &&
message.entityChange.changeReason == 'problem.referringEntityStatusChanged'>
 <#-- (A) NEW REFERENCE IS SET => RETURN NEW REFERENCE BASED ON MAPPINGS -->

<#assign
instanceAssignmentGroups=smGroupAliasMapping[message.entityChange.instance]!"" />

<#if instanceAssignmentGroups?has_content>
<#assign

groupCorrespondingAlias=instanceAssignmentGroups[message.entityChange.entity.AssignmentGroup]!""
/>

<#else>
<#assign groupCorrespondingAlias="" />

</#if>
<#assign alias=findExtSystemForAlias(context.appContext,

message.entityChange.instanceType, message.entityChange.instance,
groupCorrespondingAlias)!"" />

"linkedEntities": [{
"instance": "${alias.targetInstance}"
,"instanceType": "${alias.targetInstanceType}"
,"entityType": "Problem"
,"entityId": "${message.entityChange.entity.VendorTicket!""}"
,"instanceAlias": "${alias.targetAlias}",
"properties": {

"Attachments": [],
"Status": ""

}
}],

...

Here one important object is prepared - the field.alias

First, look to see if the incoming message contains a filled field, as the target HP SM instance will be mapped according toAssignmentGroup
it. Also note if the is as only at this moment is the mapping created.changeReason problem.referringEntityStatusChanged

Next, assign an variable (for mapping) according to and the source instance whereInstanceAssignmentGroups smGroupAliasMapping
the Problem entity was created (from which the incoming message is routed).

If such an instance mapping exists (the variable was filled), search in the for theinstanceAssignmentGroups instanceAssignmentGroups
concrete alias according to the incoming parameter. All these prepared input parameters are then sent to theAssignmentGroup
findExtSystemForAlias function, which does the search for the object.alias

Next, the field creation is done mostly by using the objects whose population was just explained.linkedEntities

OO Flow
Now, creating a simple OO Flow consisting of a parameter parsing and sending a message back to HP SX for Problem item duplicate creation,
will be explained.

For basic information about creating OO Flows for HP SX, see , the section.How to extend HP SX Content (HP SM Problem entity) OO flow

To create a simple Flow like the one in this screenshot:

"linkedEntities" creation

189

Start OO Studio and create a new empty Flow (Project).

First, add a operation. This parses incoming JSON messages and sets the parameters needed as OO Flow input parameters. In thisparseJSON
example the input parameters are important, so enter them as a comma separated values list into the event, entity and linkedEntity

field in the parseJSON step (Single Value - Constant Value.)propertyNamesToJson

For the second step, which operation should be performed now in OO must be decided. This is decided based on the incoming operationName
(as set in config). This example case is waiting for the operation. Add an 'Equal' OOcase-exchange.json referringEntityStatusChanged
Operation (located in a place like /Base [1.1.1]/Library/Utility Operations/Math and Comparison/Simple

) and enter the Constant value as value2 (value1 not set), operation is . This way, the Evaluators/Equal referringEntityStatusChanged ==
parameter existence is checked for, and if it exists, the flow moves on to the next step (the branch of thereferringEntityStatusChanged success

flow). Otherwise, it can end in an error state for now (not pictured on the screenshot, but could for example be connected to the final error step on
the right).

Now the most important step - sending a message back to SX, to do a Problem item duplication:

Add a step (just like in .) As its input, set the followingsendMessageToMQ How to extend HP SX Content (HP SM Problem entity) messageText
code into the Constant Value field. Also ensure you have set the Input to - this provides an opportunity to call moreoperationName 'x:batch
operations in a row. It is not required immediately, but will be needed in the future. For example, if an External Reference mapping creation is
called after the new Problem entity comes into existence on another HP SM server.

190

{
 "operations": [
 {

"operationName": "createProblemCX",
"message": {

"messageHeader": {
"backendSystemType": "${linkedEntity.instanceType}",
"targetInstance": "${linkedEntity.instance}"

},
"args":{

"event":"${event}",
"entity":${entity},
"linkedEntity":${linkedEntity}

},
"name": "${entity.properties.Title} problem copy",
"description": "${entity.properties.Description}",
"urgency": "${entity.properties.Urgency}",
"impact": "${entity.properties.Impact}",
"area": "${entity.properties.Area}",
"subarea": "${entity.properties.Subarea}",
"assignmentGroup": "${entity.properties.AssignmentGroup}",
"service": "${entity.properties.Service}"

}
 }
]
}

As you can see from the code itself, the first and most important part is the parameter, that says which SX operation should beoperationName
called. For the definition of the example operation - - see the config description, under the subsection createProblemCX operations.json

.Problem entity creation

Next a and backendSystemType must be set, based on the incoming parameters in the object. See its creation in targetInstance linkedEntity
 section.Converting to the Canonical Model

Next all three incoming objects are forwarded for further processing - .event, entity and linkedEntity

Lastly the Problem specific fields are set, based on the incoming object. See its creation in the Canonical Model section again, and see theentity
usage of the created fields in the operation templates later.createProblemCX

This is everything needed from the OO Flow for now, so after you have created the final 'success' and 'failure' states and the appropriate
transitions as pictured in the screenshot, close OO Studio.

More info

To know more about OO Flows in relation to CX functionality, please refer to .OO flows

operations.json

Problem entity retrieval

As described in the file description section, the following operations need to be defined: Problem entity retrieval from HPcase-exchange.json
SM and conversion to the Canonical Model.

Beginning with the retrieval operation:

Create Problem opearation call

191

"retrieveProblemCX": [
{

"label": "Retrieve SM entity details",
"requestUrlTemplate": "problemCx/retrieveSmEntityUrl.ftl",
"responseTemplate": "problemCx/retrieveSmEntityResponse.ftl",
"method": "GET"

},
{

"label": "Retrieve external references",
"requestUrlTemplate": "problemCx/retrieveExternalReferencesUrl.ftl",
"responseTemplate": "problemCx/retrieveExternalReferencesResponse.ftl",
"method": "GET"

}
]

It is necessary to fetch 2 objects:

The Problem entity itself
The , which will be used to write the mapping to the created Problem on the other HP SM server instance (External References table

 in this example.)'your_sm_instance_2'

Furthermore, the , or (which is not used in our case) can be defined. The requestUrlTemplate responseTemplate requestTemplate (FTL)
used are described in the next section.Templates

To finish the current config file:

"convertProblemToCanonicalModel": [
{

"label": "Convert Problem to canonical model",
"resultTemplate": "problemCx/convertProblemToCanonicalModelResult.ftl"

}
]

Another kind of template is used here, the . This template content is described in section.resultTemplate Converting to the Canonical Model

Problem entity creation

The following code is used for the operation basic configuration:createProblemCX

Problem entity retrieval operation definition

convertProblemToCanonicalModel operation definition

192

"createProblemCX": [
{

"label": "Create problem",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "createProblem.ftl",
"responseTemplate": "createProblemResponse.ftl",
"header-SOAPAction": "Create",
"header-Accept": "text/xml"

}
]

A SOAP message is sent to HP SM to create a Problem entity. Most importantly the (to direct into the right HP SM serverrequestUrlTemplate
host and the correct URL) and the (to send the correct data) fields are needed. The response from HP SM is parsed - in the requestTemplate

 part. Lastly, notice the parameter. It is needed to distinguish between the called operation on the HPresponseTemplate header-SOAPAction
SM side and the proper value found from the field. See the Web Service Configuration page for the appropriate HP SM object (Action Names go

 and search for Object name).to Tailoring > Web Services ->Web Service Configuration Problem

The used are described in the next section.(FTL) Templates

More info

To know more about the HP SX Operations usage for CX use cases, consult .Operations

Calling external systems (HP SM) and FTL templates

Problem entity retrieval

First, it is necessary to write the FTL templates needed for the Problem retrieval operation.

As explained in the previous section, this includes both the Problem item alone and the external references.

For the Problem entity first step, the URL from which the data will be obtained must be constructed. The fileretrieveSmEntityUrl.ftl
handles that.

<#-- @ftlvariable name="instanceConfig" type="java.util.Map" -->
<#-- @ftlvariable name="message" type="java.util.Map" -->
<#escape x as x?url>
<#if message.entityChange.entityType == 'probsummary'><#assign
entityRestCollection='sxce_incidents'>
</#if>
<#if message.entityChange.entityType == 'rootcause'><#assign
entityRestCollection='problems'>
</#if>
<#if entityRestCollection??
><#noescape>${instanceConfig.endpoint}/9/rest/${entityRestCollection}/${message.entityChange.entityId}</#noescape></#if> </#escape>

Notice that this file can be used to handle the Incident (probsummary) item too, the actual second 'if' handles the rootcause (Problem) object. The
difference to the probsummary URL is in the part behind the There is a name of the retrieved objects collection stored in the .../rest/...

 variable, in this example. The REST collection name for the object can be found in HP SM.entityRestCollection problems

In the HP SM Client application go to and search for the Object name ' '. ThenTailoring > Web Services > Web Service Configuration Problem
go to the tab and see the collection name in the field.Restful Resource Collection Name:

createProblemCX operation definition

retrieveSmEntityUrl.ftl

193

Next, parse the received file:result in the retrieveSmEntityResponse.ftl

<#assign writeJson='com.hp.ccue.serviceExchange.adapter.freemarker.WriteJson'?new()/>
<#escape x as x?json_string>
<#if message.entityChange.entityType == 'probsummary'><#assign
entityUiType='Incident'>
</#if>
<#if message.entityChange.entityType == 'rootcause'><#assign entityUiType='Problem'>
</#if>
<#if doc.result.ReturnCode==0 && entityUiType?? >
{
 "entityChange": {
 "entity": <#noescape>${writeJson(doc.result[entityUiType])}</#noescape>
 }
}
</#if>
</#escape>

Here all the input is written into the output JSON structure as the entityChange.entity object. The writeout
ensures that. There is a conditional switch first, based on <#noescape>${writeJson(doc.result[entityUiType])}</#noescape>

 ('rootcause' in this case). The variable ('Problem'), is set under the key where the data is storedmessage.entityChange.entityType entityUiType
in the incoming message (from HP SM.)

Now the External References - the retrieval code is similar to the Problem item itself, with a few minor differences:

<#-- @ftlvariable name="instanceConfig" type="java.util.Map" -->
<#-- @ftlvariable name="message" type="java.util.Map" -->
<#escape x as x?url>
<#noescape>${instanceConfig.endpoint}</#noescape>
/9/rest/sxexternalreferences/?query=${"internalEntityType=\"" +
message.entityChange.entityType + "\" and internalEntityId=\""+
message.entityChange.entityId + "\""}&view=expand
</#escape>

As you may guess, the only difference in the template is the name of the retrieved objects collectionretrieveExternalReferencesUrl.ftl
- this time.sxexternalreferences

<#assign writeJson='com.hp.ccue.serviceExchange.adapter.freemarker.WriteJson'?new()/>
<#escape x as x?json_string>
<#if doc.result.ReturnCode==0>
{
 "entityChange": {
 "SXExternalReferences": <#if doc.result.content??
><#noescape>${writeJson(doc.result.content)}</#noescape><#else>[]</#if>
 }
}
</#if>
</#escape>

retrieveSmEntityResponse.ftl

retrieveExternalReferencesUrl.ftl

retrieveExternalReferencesResponse.ftl

194

Again, the code is very similar, only this time the incoming content is re-written into the object. The resultentityChange.SXExternalReferences
does not appear in this section, but see the complete source code of Problem CX in , and noteSX Problem Case Exchange Content Installation
the template section.convertProblemToCanonicalModelResult.ftl

Problem entity creation

This example use the HP SM SOAP interface for the Problem object creation. See the SOAP interface URL from :smSoapUrl.ftl

<#-- @ftlvariable name="instanceConfig" type="java.util.Map" -->
${instanceConfig.endpoint}/7/ws

If you point your browser to the URL: (specified in the http://your_sm_intance:your_sm_port/SM/7/ProblemManagement.wsdl
 field in the HP SM section), you can see the SOAP interface WSDL and all operations, objectService Name Web Service Configuration

structures etc.. As you will see in , the operation is called:createProblem.ftl CreateProblem

<#escape x as x?xml>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>

<CreateProblemRequest xmlns="http://schemas.hp.com/SM/7">
<model>

<keys/>
<instance>

<Title>${message.name}</Title>
<Description>

<Description>${message.description}</Description>
</Description>
<Impact>${message.impact!"4"}</Impact>
<Urgency>${message.urgency}</Urgency>
<Service>${message.service!"Applications"}</Service>

<AssignmentGroup>${message.assignmentGroup!"Application"}</AssignmentGroup>
<Area>${message.area!"data"}</Area>
<Subarea>${message.subarea!"data or file incorrect"}</Subarea>

</instance>
</model>

</CreateProblemRequest>
 </Body>
</Envelope>
</#escape>

The structure needing to be sent is defined by the wsdl, it is only necessary to fill in fields required by this example:

Title
Description
Impact
Urgency
Service
Assignment Group
Area
Subarea

smSoapUrl.ftl

createProblem.ftl

195

How these input values came into existence can be seen from the OO flow operation call (code block), and the Create problem operation call
, which prepares the data for the OO flow.convertProblemToCanonicalModelResult.ftl

Appendix A: Service Exchange - API

Table of Contents
Introduction
Overview

Client's Entry Points
Resources

Requests
Create Request

Pricing
Pricing Request
Pricing Callback

Operations
Invoke operation

Callback
Request State Notification
Subscription State Notification

Service Instances
Get detail

Tickets
Create Ticket
Create Ticket Attachment
Create Ticket Comment
List Tickets
List Ticket Attachments
Get ticket attachment
Ticket Detail
Ticket Operations
Ticket Operation Descriptors
Default support catalog item
Instance for ticketing

Content Packs Management
List Content Packs
Content Pack Detail
Content Pack Delete
Content Pack Upload
Content pack archive format

CCUE API Specification

Owner: Ales Jerabek, Petr Fiedler

Status: ACTIVE

Reviewers:

Last COMPLETED revision:

Last REVIEW revision:

Revision History

Version Date Remarks

1.0 2014/Apr/7 Initial proposal.

Introduction
This is a proposal of the specification for . This API design follows with including custom media typesSX API REST architectural style principles
and HATEOAS.

196

Overview

Client's Entry Points

Resource Method URI Description

Requests POST http://[host]:[port](/[context]?)/api/request Create a new request
to fulfill

Operations POST http://[host]:[port](/[context]?)/api/operation Invoke operation

Callback POST generated Send a notification
about a request state

Service
Instance

GET http://[host]:[port](/[context]?)/api/serviceInstance/

[serviceInstanceId]

Information about
service instance

Tickets POST http://[host]:[port](/[context]?)/api/ticket Create new ticket

POST http://[host]:[port](/[context]?)/api/ticket/[id]/attachment Adds attachment into
the ticket

POST http://[host]:[port](/[context]?)/api/ticket/filter List tickets

GET http://[host]:[port](/[context]?)/api/ticket/[id]/attachment List ticket attachments

GET http://[host]:[port](/[context]?)/api/ticket/[id]/attachment/

[attachmentId]

Get ticket attachment

GET http://[host]:[port](/[context]?)/api/ticket/[id] Ticket detail

POST http://[host]:[port](/[context]?)/api/ticket/[id]/comment Add ticket comment

GET http://[host]:[port](/[context]?)/api/ticket/operationdescriptor Ticket operation
descriptors

GET http://[host]:[port](/[context]?)/api/ticket/

default-support-catalog-item

Get default support
catalog item

GET http://[host]:[port](/[context]?)/api/ticket/instance Get remote system
instance registered

as ticketing provider

Content
Packs

GET http://[host]:[port](/[context]?)/api/content/ List content packs

GET http://[host]:[port](/[context]?)/api/content/[id] Content pack detail

DELETE http://[host]:[port](/[context]?)/api/content/[id] Delete content pack

POST http://[host]:[port](/[context]?)/api/content/ Upload content pack

197

Resources

Requests
The resource allows to list existing offerings and create new one.

URI (/[context]?)/api/request

Methods POST

Create Request

Request

Method URI Request Media Types Response Media Types Description

POST (/[context]?)/api/request application/json application/json Create a new request to fulfill

Template:

198

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType": ${messageType},
 "name": ${name},
 "humanReadableId": ${humanReadableId},
 "description": ${description},
 "startDate": ${startDate},
 "endDate": ${endDate},

 "items" : [
{

"id" : ${itemId},
"name" : ${itemName},
"humanReadableId": ${humanReadableId},
"quantity" : ${quantity},
"recipient": {

"@self": ${selfToRecipient},
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name": ${userName},
"organization": ${organizationName}

},
"properties": [

...
],
"route": {

"@type": "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type": ${systemType},
"target_instance": ${targetInstance}

}
}

],
 "attachments": [

{
"_links": {

"self":{
"href": ${attachmentUrl}

}
},
"name": ${attachmentName}

}
]
}

Description:

Param Description

messageType message type, it is only " " for now.order

name order name

humanReadableId ID of the request, to be displayed alongside order name

description order description

startDate subscription start date (optional)

endDate subscription end date (optional)

itemId identifier of ordered item, back end system must know it (CSA offering id or SM catalog item name)

199

itemName human readable item name (Custom Laptop Provisioning)

quantity quantity

selfToRecipient uri to recipient (it is optional)

userName name of requester, it should be user of back end system

organization name of organization requester belongs to

systemType provider type, it is " " or " " for nowSM CSA

targetInstance URI of provider instance

 attachmentUrl URI with attachment content, SX will download content from there

 attachmentName Filename for attachment

Single request example:

POST /sx/api/request HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: NNN

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType": "order",
 "name": "Ordering new desktop",
 "humanReadableId":"12345",
 "description": "My desktop is more than 5 years old.",
 "startDate": "2014-04-09T16:00:00Z",
 "endDate": "2015-04-09T16:00:00Z",

 "items" : [
{

"id" : "Custom Desktop Provisioning",
"name" : "Custom Desktop Provisioning",
"humanReadableId":"12345",
"quantity" : 1,
"recipient": {

"@self": "https://example.org/idm/person/432423423432",
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name": "HUGHES, JULIE",
"organization": "CONSUMER"

},
"properties": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"value": "add also optical mouse please"

},
{

"@type":
"urn:x-hp:2014:software:cloud:data_model:property:multiple_select",

"name": "preinstalledPrograms",
"value": ["vlc", "firefox"]

},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:number",
"name": "memory",

200

"value": 16
},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:boolean",
"name": "withMouse",
"value": "true"

},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:select",
"name": "model",
"value": "model1"

}
],
"route": {

"@type": "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type": "SM",
"target_instance": "http://16.60.183.57:13080/SM"

}
}

],
 "attachments": [

{
"_links": {

"self":{
"href":

"/consumption/api/mpp/mpp-request/00000023/attachment/ff8081814b3857db014b548e9bfc0371/file/Koala.jpg"
}

},
"name": "Koala.jpg"

}

]
}

201

Response

Http status 202 Accepted

Content-Type: application/json
Content-Length: NNN

{
 "id": ${requestId}
}

RequestId is generated by SX, all request notifications will include it as well.

Request on behalf Example

{
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:request",
 "messageType" : "ORDER",
 "name" : "joe.manager on behalf of consumer",
 "humanReadableId" : "00000003",
 "description" : "",
 "startDate" : null,
 "endDate" : null,
 "items" : [{
 "id" : "Basic PC Package",
 "humanReadableId" : "00000003",
 "name" : "joe.manager request on behalf of consumer",
 "quantity" : 1,
 "recipient" : {

"@type" : "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name" : "consumer",
"organization": "CONSUMER"

 },
 "requestedBy" : {

"@type" : "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name" : "joe.manager"

 },
 "properties" : [],
 "route" : {

"@type" : "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type" : "SM",
"target_instance" : "http://16.60.183.57:13080/SM"

 }
 }]
}

202

Pricing

Pricing Request

Method URI Request Media
Types

Response Media
Types

Description

POST (/[context]?)/api/pricing application/json application/json Asynchronous call for getting price from pricing
service(s).

Template:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:pricing_request",
 "callbackPath": ${callbackPath},
 "preferredCurrency":"${preferredCurrency}"
 "items" : [

{
"id" : ${itemId},
"orderItemId": ${orderItemId},
"quantity" : ${quantity},
"recipient": {

"@self": ${selfToRecipient},
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"organization": ${organization},
"name": ${userName}

},
"properties": [

{
"@type": "${propertyType}",
"name": "${propertyName}",
"value": "${propertyValue}"

},
...

],
"route": {

"@type": "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type": ${systemType},
"target_instance": ${targetInstance}

}
}

]
}

Description:

Param Description

callbackPath relative path of catalog API URL for callback

preferredCurrency preferred currency in callback, backend need not use it

itemId identifier of ordered item, back end system must know it (CSA offering id or SM catalog item name)

orderItemId unique identifier (number) of item in cart. We need it, because there can be more items with the same itemId.

quantity quantity

203

selfToRecipient uri to recipient (it is optional)

organization organization of recipient

userName name of requester, it should be user of back end system

 @type property type

 name property name

 value property value

systemType provider type, it is " " or " " for nowSM CSA

targetInstance URI of provider instance

Pricing request example:

204

POST /sx/api/pricing HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: NNN

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:pricing_request",
 "callbackPath": "req/12345",
 "preferredCurrency": "USD"
 "items" : [

{
"id" : "Custom Desktop Provisioning",
"orderItemId": 1,
"quantity" : 2,
"recipient": {

"@self": "https://example.org/idm/person/432423423432",
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"organization": "CONSUMER"
"name": "HUGHES, JULIE"

},
"properties": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"value": "add also optical mouse please"

},
{

"@type":
"urn:x-hp:2014:software:cloud:data_model:property:multiple_select",

"name": "preinstalledPrograms",
"value": ["vlc", "firefox"]

},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:number",
"name": "memory",
"value": 16

},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:boolean",
"name": "withMouse",
"value": "true"

},
{

"@type": "urn:x-hp:2014:software:cloud:data_model:property:select",
"name": "model",
"value": "model1"

}
],
"route": {

"@type": "urn:x-hp:2014:software:cloud:data_model:sx:route",
"system_type": "SM",
"target_instance": "mpvmasm15"

}
}

]
}

205

Response

Http status 202 Accepted

Pricing Callback

 We expects that calling system provides following rest endpoint to the SX. Relative path will be defined in price request (field: "callbackPath").
Items with the same pricing service will be grouped.

Pricing Callback Request

Method URI Request Media Types Response Media Types Description

POST generated application/json n/a Send a notification about item(s) price

Template:

206

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:pricing_request_callback",
 "itemGroups": [
 {

"itemGroupPrice": {
"initialPrice": {

${initialPrice}
},
"recurrentPrices": [

{
"recurrentPrice": {

${recurrentPrice},
},
"recurrencePeriod": {

${recurrencePeriod}
}

},
...

]
},
"items" : [

{
"id" : ${itemId},
"quantity" : ${quantity},
"singleItemPrice" : {

"initialPrice": {
${initialPrice}

},
"recurrentPrices": [

{
"recurrentPrice":
{

${recurrentPrice},
},
"recurrencePeriod": {

${recurrencePeriod}
}

},
...

]
},

{
"id" : ${itemId},
"quantity" : ${quantity},
"singleItemPrice" : {
"errorCode": ${errorCode},

},
],
...

 },
 ...
]
}

Description:

207

Param Description

initialPrice initial price of item or itemGroup (pair "amount" and "currency") (optional)

recurrencePrice recurrence price of item or itemGroup (pair "amount" and "currency") (optional)

recurrencePeriod recurrence period of item or itemGroup (pair "unitCount" and "timeUnit") (optional)

itemId identifier of ordered item, back end system must know it

quantity quantity

errorCode error code (will be specified later)

Pricing Callback Request Example:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:pricing_request_callback",
 "itemGroups": [
 {

"itemGroupPrice": {
"initialPrice": {

"amount": 10,
"currency": "USD"

},
"recurrentPrices": [

{
"recurrentPrice": {

"amount": 5,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 2,
"timeUnit": "YEAR"

}
},
{

"recurrentPrice": {
"amount": 2.5,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 1,
"timeUnit": "MONTH"

}
}

]
},
"items": [

{
"id": "abc123",
"quantity": 2,
"singleItemPrice": {

"initialPrice": {
"amount": 5,

208

"currency": "USD"
},
"recurrentPrices": [

{
"recurrentPrice": {

"amount": 10,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 1,
"timeUnit": "YEAR"

}
},
{

"recurrentPrice": {
"amount": 0.5,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 1,
"timeUnit": "WEEK"

}
}

]
}

},
{

"id": "xyz789",
"quantity": 1,
"singleItemPrice": {

"initialPrice": {
"amount": 2,
"currency": "USD"

},
"recurrentPrices": [

{
"recurrentPrice": {

"amount": 2,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 1,
"timeUnit": "YEAR"

}
}

]
}

}
]

 },
 {

"items": [
{

"id": "rts555",
"quantity": 1,
"singleItemPrice": {

"initialPrice": {
"amount": 33,
"currency": "USD"

209

},
"recurrentPrices": [

{
"recurrentPrice": {

"amount": 1,
"currency": "USD"

},
"recurrencePeriod": {

"unitCount": 1,
"timeUnit": "YEAR"

}
}

]
}

},
{

"id": "bpd77",
"quantity": 1,
"singleItemPrice": {

"errorCode": 415
}

}
]

 }
]
}

210

Operations

Invoke operation

Request

Method URI Request
Media Types

Response
Media Types

Description

POST (/[context]?)/api/operation application/json application/json Invoke operation such as cancel subscription or
custom operation on realized components

Template:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:invoke",
 "entityId": ${entityId},
 "entityType": ${entityType},
 "operationName": ${operationName},
 "recipient": {

"@self": ${selfToRecipient},
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name": ${userName},
"organization": ${organizationName}

 },

 "parameters": [
{

"@type": ${parameterType}
"name": ${parameterName},
"value": ${parameterValue}

}
]
}

Description:

Param Description

entityId id of affected entity such as subscription id or realized component id

entityType type of entity allowed values are , ,request subscription ticket

operationName name of operation to invoke e.g. cancel, approve, deny

selfToRecipient uri to recipient (it is optional)

userName name of approver, it should be user of back end system

organizationName org name where approver belongs to

parameters optional operation parameters

Example:

211

POST /sx/api/operation HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: NNN

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:invoke",
 "entityId": "CSA:CSAPrague:287237842384523",
 "entityType": "subscription",
 "operationName": "cancel",
 "recipient": {

"@self": "https://example.org/idm/person/432423423432",
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name": "joe.manager",
"organization": "CONSUMER"

 },
 "parameters" : [
]
}

Response

Http status 202 Accepted

Content-Type: application/json
Content-Length: NNN

{
 "id": ${requestId}
}

RequestId is generated by SX, all request notifications will include it as well.

Supported operations and their parameters

Request
approve (message)
deny (message)
closeOrder (no parameters)

Subscription
cancel (no parameters)

Service instance
component operations described in service instance

212

POST /sx/api/operation HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: NNN

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:invoke",
 "entityId": "CSA:CSAPrague:90b73e8d4cbabbe6014d2487b4eb1a42", //service instance id
 "entityType": "serviceInstance",
 "operationName": "Add_server_May 5, 2015 11:00:16 AM UTC", //action name
 "recipient": {

"@self": "https://example.org/idm/person/432423423432",
"@type": "urn:x-hp:2014:software:cloud:data_model:sx:person",
"name": "joe.manager",
"organization": "CONSUMER"

 },
 "parameters" : [

{
"@type":"urn:x-hp:2014:software:cloud:data_model:property:text",
"name":"subscriptionId",
"value":"CSA:CSAPrague:287237842384523" //subscription id

},
{

"@type":"urn:x-hp:2014:software:cloud:data_model:property:text",
"name":"componentId",
"value":"9246837462378" //component id

},
//action parameters bellow
{

"@type":"urn:x-hp:2014:software:cloud:data_model:property:text",
"name":"stringInput",
"value":"blabla"

},
...

]
}

Callback
We expects that calling system provides following rest endpoint to the SX, there will be one endpoint for all notifications coming to single calling
system (e.g. single CCUE catalog instance).

URI generated

Methods POST

Request State Notification

Request

Method URI Request Media Types Response Media Types Description

Service instance component operation invocation

213

POST generated application/json n/a Send a notification about a request state

Template:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id": ${requestId}
 "remoteId": ${requestRemoteId}
 "state" : ${requestState},
 "subscription": {

"id": ${subscriptionId}
 },
 "message": "${errorMessage}"
}

Description:

Param Description

requestId request id

requestRemoteId backed id of request ("human readable"). It is not mandatory.

requestState request state, see State code bellow

subscriptionId id of subscription, it is combination of fulfillment system identifier and id in external system separated by :

when fulfillment system doesn't create subscription id is reported as "N/A"

message optional error message

State codes:

Items can be in the following states:

submitted
pending_approval
approved
rejected - (end state)
in_progress
completed - (end state)
failed - (end state)
cancelled - (end state)

States can come in any order, but they have semantic order defined by previous list. Consumption will create subscription if state later than
pending_approval (approved) comes and subscription id is present (some id or "N/A" for quotas).

Example, single item request:

Length: NNN
{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id": "1783512783512873",
 "remoteId": "SD10396",
 "state": "completed",
 "subscription" : {
 "id" : "CSAPrague:90b73e8d456ace310145704d17142db1"
 }
}}

Pending approval notification:

Contains list of approvers for current approvalLevel. approvalLevel is optional, and is available only for some backend systems. approvalHistory
lists all historical approvals for all levels. It is optional, and available only for some backend systems. approvalComment contains the

214

message provided during approve/deny operation.

{
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "id" : "27b94f9e-2dcf-46f5-9782-3c80dc29699b",
 "remoteId" : "SD49033",
 "displayName" : "POR5395-PR1321 I need 'Docking Station'",
 "state" : "pending_approval",
 "approvers" : [{
 "name" : "groupapprover1"
 }, {
 "name" : "groupapprover2"
 }, {
 "name" : "groupapprover1delegated"
 }],
 "approvalLevel" : "SD49033_2",
 "approvalHistory" : [{
 "level" : "SD49033_1",
 "approver" : "sdapprover",
 "action" : "approve", //approve or deny
 "date" : "2015-06-30T04:36:47+02:00",
 "approvalComment": "ok from sdapprover"
 }, {
 "level" : "SD49033_1",
 "approver" : "joe.manager",
 "action" : "approve",
 "date" : "2015-06-30T04:37:02+02:00"
 }]
}

Response

Http status 200 when notification was properly consumed. Anything else will cause another attempt for notification in future.

Subscription State Notification

Request

Method URI Request Media Types Response Media Types Description

POST generated application/json n/a Send a notification about a subscription state

Template:

215

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:subscriptionNotification",
 "remoteSubscriptionId": ${remoteSubscriptionId},
 "state": ${state},
 "name": ${name},
 "description": ${description},
 "organization": ${organization},
 "owner": ${owner},
 "startDate": ${startDate},
 "endDate": ${endDate},
 "serviceInstanceId": ${serviceInstanceId},
 "modifiable": ${modifiable}
}

Description:

Param Description

remoteSubscriptionId id of subscription

state state of subscription

name name of subscription

description description of subscription (optional)

organization name of organization which subscription belongs to

owner user name of subscription owner

startDate subscription start date (optional)

endDate subscription end date (optional)

serviceInstanceId id of service instance (optional)

modifiable if subscription should be editable in propel (optional)

State codes:

Subscription can be in the following states:

pending
active
expired - (end state)
cancelled - (end state)
terminated - (end state)

Example:

Length: NNN
{
 "@type" : "urn:x-hp:2014:software:cloud:data_model:sx:notification",
 "state" : "active",
 "subscription" : {
 "remoteSubscriptionId" : "CSA:CSAPrague:90b73e8d456ace310145704d17142db1",
 "state" : "active",
 "serviceInstanceId" : "CSA:CSAPrague:90b73e8d473933df014762efe60662a4"
 }
}}

Response

216

Http status 200 when notification was properly consumed. Anything else will cause another attempt for notification in future.

Service Instances

Get detail

Request

Method URI Request
Media Types

Response Media
Types

Description

GET (/[context]?)/api/serviceInstance/[serviceInstanceId] hal+application/json Returns service
instance detail.

Response

Http status 200

{
 "_links" : {
 "self" : {

"href" :
"/sx/api/serviceInstance/CSA%3ACSAPrague%3A90b73e8d4cbabbe6014d2487b4eb1a42"
 }
 },
 "name" : "f4654bd8-d063-4eee-941c-af09300421ed",
 "displayName" : "Big Platform",
 "id" : "CSA:CSAPrague:90b73e8d4cbabbe6014d2487b4eb1a42",
 "state" : "active",
 "_embedded" : {
 "components": [{
 "name" : "PLATFORM_SERVICE__Sat May 31 15:45:34 CEST 2014",
 "displayName" : "Platform Service",
 "id" : "834162781246127846",
 "icon" : "/sx/api/csa/.....",
 "properties" : [{

"name" : "deploymentName",
"displayName" : "Deployment Name",
"value" : "Deployment X"

 }],
 "actions" : [{

"name" : "Redeploy_May 5, 2015 11:04:44 AM UTC",
"displayName" : "Redeploy",
"description" : "Redeploys whole platform",
"parameters" : []

 }],
 "_embedded" : {

"components": [{
"name" : "INFRASTRUCTURE_SERVICE__Sat May 31 15:46:35 CEST 2014",
"displayName" : "Application Server Cluster",
"id" : "9246837462378",
"icon" : "/sx/api/csa/.....",
"properties" : [{

"name" : "AppType",
"displayName" : "AppType",
"value" : "tomcat"

}, {

217

"name" : "HttpPort",
"displayName" : "HTTP Port",
"value" : "8080"

}, {
"name" : "Secure",
"displayName" : "Secure",
"value" : "false"

}],
"actions" : [{

"name" : "Remove_Server_May 5, 2015 2:18:17 PM UTC",
"displayName" : "Remove Server",
"description" : "Decrease the utilization of one or more resources in a

resource pool by the values of the measurable properties configured on a resource
binding",

"parameters" : []
}, {

"name" : "Add_server_May 5, 2015 11:00:16 AM UTC",
"displayName" : "Add server",
"description" : "Adds additional node to cluster",
"parameters" : [{

"name" : "booleanInput",
"displayName" : "Boolean Input",
"description" : "Input value of the type Boolean",
"type" : "boolean",
"defaultValue" : "false"

}, {
"name" : "integerInput",
"displayName" : "Integer Input",
"description" : "Input value of the type Integer",
"type" : "integer",
"defaultValue" : "0"

}, {
"name" : "stringInput",
"displayName" : "String Input",
"description" : "Input value of the type String",
"type" : "string",
"defaultValue" : null

}]
}],
"_embedded": {

"components": []
}

 }]
 }
 }]
 }
 }

218

Tickets
The resource allows to list existing tickets and create new one. All ticketing related calls are authenticated using IdM token passed in
X-Auth-Token header.

Headers

Name Value Description

X-Auth-Token JWT IdM
token

token used for authorization, token is validated using shared secret key and also checked for expiration
date

Create Ticket

Request

Method URI Request Media Types Response Media Types Description

POST (/[context]?)/api/ticket application/json application/hal+json Create a new ticket

Template:

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:ticket",
 "name": "${name}",
 "description": "${description}",
 "properties": [

{
"@type": "${propertyType}",
"name": "${propertyName}",
"value": "${propertyValue}"

}
],
 "catalogItemId": "${catalogItemId}" // optional - if undefined, the default support
catalog item is assumed
}

Response

219

Content-Type: application/hal+json
Content-Length: NNN

{
 "_links": {/*...*/},
 "name": "asdasd",
 "description": "asdasdasd",
 "properties": [
]
}

Create Ticket Attachment

Request

Method URI Request Media Types Response Media
Types

Description

POST (/[context]?)/api/ticket/[id]/attachment depends on attachment
type

application/hal+json Adds attachment to
ticket

Headers

Name Value Description

Content-Disposition attachment;filename=[filename]; pass original file name which is later used as name of attachment presented to user

Response

Http status 201 (Created)

Content-Type: application/hal+json
Content-Length: NNN

{
 "_links": {

"@self": {
"href": "${attachmentUri}"

}
 },
 "id": "cid:28735123782",
 "name": "foo.jpg",
 "type": "image/jpg",
 "length": 347523
}

Create Ticket Comment

Request

Method URI Request Media Types Response Media Types Description

POST (/[context]?)/api/ticket/[id]/comment application/json application/hal+json Adds comment to ticket

220

{
 "description": "New comment text"
}

Response

Same as get ticket response.

List Tickets

Request

Method URI Request Media Types Response Media Types Description

POST (/[context]?)/api/ticket/filter application/json application/json List tickets

Query parameters

Param Description

start-index Index of first row returned, 1 = first row

page-size Maximum number of rows returned

Template:

{
 "sort": {

"field": "${sortField}",
"direction": "${sortDirection}"

 },
 "filter": {

"status": ["${ticketStatus}","${ticketStatus2}"],
"nameAndDescription": "${textSearch}"

 }
}

Response

221

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links": {

"self": {
"href": "/sx/api/ticket/filter"

}
 },
 "@startIndex": 1,
 "@itemsPerPage": 10,
 "@totalResults": 34,
 "_embedded": [

{
"_links": {

"self": {
"href": "/sx/api/ticket/SD10348"

}
},
"id": "SD10348",
"name": "My laptop is broken",
"description": "It doesn't work at all.",
"openTime": "2014-05-13T19:38:18+00:00",
"updateTime": "2014-05-14T09:08:30+00:00",
"status": "completed",
"catalogItem": { // optional - if undefined, the default support catalog

item is assumed
"guid": "${catalogItemId}",
"itemMainImage": "${itemMainImageId}" // optional for support catalog

items with itemMainImage
}

}
]
}

List Ticket Attachments

Request

Method URI Request Media
Types

Response Media
Types

Description

GET (/[context]?)/api/ticket/[id]/attachment N/A application/hal+json List ticket
attachments

Response

222

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links": {

"self": {
"href": "/sx/api/ticket/SD65466/attachment"

}
 },
 "_embedded": [
 {

"_links": {
"self": {

"href": "/sx/api/ticket/SD65466/attachment/cid:12836712468"
}

},
"name": "foo.jpg",
"id": "cid:12836712468",
"type": "image/jpeg",
"length": 134124

 }
]
}

Get ticket attachment

Request

Method URI Request
Media Types

Response
Media Types

Description

GET (/[context]?)/api/ticket/[id]/attachment/[attachmentId] N/A attachment
media type

Get ticket
attachment

Response

Headers:

 Content-type:

 Content-disposition:

Body: attachment

Ticket Detail

Request

Method URI Request Media Types Response Media Types Description

GET (/[context]?)/api/ticket/[id] N/A application/json Ticket detail

Response

223

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links": {

"self": {
"href": "/sx/api/ticket/SD78364"

},
"attachments": {

"href": "/sx/api/ticket/SD78364/attachment"
},
"createComment": {

"href": "/sx/api/ticket/SD78364/comment"
},
"uploadAttachment": {

"href": "/sx/api/ticket/SD78364/attachment"
},
"close": {

"href": "/sx/api/operation"
}

 },
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:ticket",
 "id": "SD78364",
 "name": "asdasd",
 "description": "asdasdasd",
 "properties": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:select",
"name": "contactMethod",
"value": "email"

}
],
 "status": "completed",
 "openTime": "2007-09-06T08:06:00+00:00",
 "updateTime": "2008-09-18T17:11:06+00:00",
 "catalogItem": { // optional - if undefined, the default support catalog item is
assumed

"guid": "${catalogItemId}",
"itemMainImage": "${itemMainImageId}" // optional for support catalog items

with itemMainImage
 },
 "comments": [// assumed to be sorted by time (descending)

{
"id": "002136128746",
"author": "falcon",
"time": "2007-09-06T08:06:00+00:00",
"description": "New information here",
"createdByCurrentUser": false // optional (this info may not be available

for some systems); whether the comment was created by the current user
}

]
}

Links in ticket detail

The "_link" section of ticket detail (see the Response example above) contains links to resources and available "actions". Their absence signifies
that the resource/action is not available for current user. Attempts to visit such (missing) resources/actions will most likely result in 404 or 403
HTTP errors.

224

Link Name Link Description

self Link to itself (ticket detail)

attachments Resource listing all the attachments of the ticket (see)List Ticket Attachments

createComment Resource allowing to create new comments (see)Create Ticket Comment

uploadAttachment Resource allowing to upload new attachments (see)Create Ticket Attachment

ticket operation name (e.g. close) Operation resource you can use to execute the given ticket operation (see)Ticket Operations

Ticket Operations

See for general information about operations. Unlike request-to-fulfill-related operations, ticket operations return ticket detail reflectingOperations
the state after operation finished. Ticket operation calls are synchronous.

See for how to list the descriptor of possible operations for a given tenant and locale. Which operations are actuallyTicket Operation Descriptors
available for a given ticket at a given moment can be seen from the _link section in a ticket ticket detail response - see .Links in ticket detail

Here is an example of an operation invocation:

POST /sx/api/operation HTTP/1.1
Host: example.com
Content-Type: application/json
Content-Length: NNN

{
 "@type": "urn:x-hp:2014:software:cloud:data_model:sx:invoke",
 "entityId": "SD78364",
 "entityType": "ticket",
 "operationName": "close",
 "parameters" : [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"value": "I have already solved this issue."

}
]
}

Ticket Operation Descriptors

The following endpoint is used to list ticket operation descriptors; see Ticket Operations for general information about ticket operations.

Request

Method URI Request
Media Types

Response
Media Types

Description

GET (/[context]?)/api/ticket/operationdescriptor N/A application/json List ticket operation descriptors
for the given tenant

Additional request headers

Name Value Description

Accept-Language language tag Used to localize the descriptor (by default)en

225

Response

The response looks like this:

Content-Type: application/hal+json
Content-Length: NNN

{
 "_links": {

"self": {"href": "/sx/api/ticket/operationdescriptor"}
 },
 "_embedded": [// may be empty

{
"name": ${operationName},
"displayName": ${operationDisplayName},

 "style": ${operationStyle}, // optional
"parameters": [// may be empty

{
"@type": ${parameterType},
"name": ${parameterName},
"displayName": ${parameterDisplayName},
"length": ${maxParameterLength}, // optional
"required": ${isParameterRequired} // optional (default to false)

},
 ...

]
},

 ...
]
}

For backward compatibility for older SX adapter versions, the _embedded array is allowed to be empty, which is to be interpreted as if it contained
a close operation like the one in the example below.

Value Explanation

operationName Operation name (see)Operations

operationDisplayName Display name of the operation (can be used e.g. as a UI button text)

operationStyle A flag used as a hint about the operation semantics (can be used e.g. to choose UI button color); currently the
following values are planned to be used in existing SX adapters: close_style, accept_style, reject_style,
reopen_style.

parameterType Type of the parameter , taking the same values as ticket property types (see (see Operations) Ticket Property
); currently only Descriptors the text type is planned to be used in existing SX adapters

parameterName Operation parameter name (see Operations).

parameterDisplayName Display name of the parameter (can be used e.g. a UI label)

maxParameterLength Maximum allowed parameter length; used with properties of the type text.

isParameterRequired Whether the parameter is required.

Example:

226

Content-Type: application/hal+json
Content-Length: NNN

{
 "_links": {

"self": {"href": "/sx/api/ticket/operationdescriptor"}
 },
 "_embedded": [

{
"name": "close",
"displayName": "Close",

 "style": "close_style",
"parameters": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"displayName": "Comment",
"required": true

}
]

},
{

"name": "accept",
"displayName": "Accept",

 "style": "accept_style"
"parameters": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"displayName": "Comment",
"length": 2000,
"required": false

}
]

},
{

"name": "reject",
"displayName": "Reject",
"style": "reject_style",
"parameters": [

{
"@type": "urn:x-hp:2014:software:cloud:data_model:property:text",
"name": "description",
"displayName": "Comment",
"length": 2000,
"required": false

}
]

}
]
}

Default support catalog item

Request

227

Method URI Request
Media Types

Response
Media Types

Description

GET (/[context]?)/api/ticket/default-support-catalog-item N/A application/json Get default support
catalog item

Response

If no default support catalog item is available (e.g., because no support aggregation has been performed yet), a 404 HTTP status is returned.

Content-Type: application/json
Content-Length: NNN
{
 "guid": "${defaultSupportCatalogItemId}"
}

Instance for ticketing

Request

Method URI Request Media
Types

Response
Media Types

Description

GET (/[context]?)/api/ticket/instance N/A application/json Get remote system instance registered as
ticketing provider

Response

Content-Type: application/json
Content-Length: NNN
{
 "id": "${id}",
 "systemType": "${systemType}"
}

Content Packs Management
The resource allows to list existing content packs and upload new one. All calls are authenticated using IdM token passed in X-Auth-Token
header.

Headers

Name Value Description

X-Auth-Token JWT IdM
token

token used for authorization, token is validated using shared secret key and also checked for expiration
date

List Content Packs

Request

Method URI Request Media Types Response Media Types Description

GET (/[context]?)/api/content N/A application/hal+json List content packs

228

Response

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links":{

"self":{
"href":"/sx/api/content"

}
 },
 "_embedded":[

{
"_links":{

"self":{
"href":"/sx/api/content/csa-r2f"

}
},
"id":"csa-r2f",
"name":"CSA request to fullfilment",
"description":"",
"adapter":"CSA",
"version":"1.0.0",
"features":[

"r2f",
"csa-r2f"

],
"ooContent":{

"name":"oo-csa-r2f-cp",
"version":"1.2.0"

}
}

]
}

Content Pack Detail

Request

Method URI Request Media Types Response Media Types Description

GET (/[context]?)/api/content/[id] N/A application/hal+json Content pack detail

Response

229

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links":{

"self":{
"href":"/sx/api/content/csa-r2f"

}
 },
 "id":"csa-r2f",
 "name":"CSA request to fullfilment",
 "description":"",
 "adapter":"CSA",
 "version":"1.0.0",
 "features":[

"r2f",
"csa-r2f"

],
 "ooContent":{

"name":"oo-csa-r2f-cp",
"version":"1.2.0"

 }
}

Content Pack Delete

Request

Method URI Request Media Types Response Media Types Description

DELETE (/[context]?)/api/content/[id] N/A N/A delete content pack

Response

Http status 204 No Content

Content-Type: NNN
Content-Length: NNN

Content Pack Upload

Request

Method URI Request Media Types Response Media Types Description

POST (/[context]?)/api/content application/octet-stream application/hal+json Upload Content pack

Stream is zipped content pack archive.

Response

230

Content-Type: application/hal+json
Content-Length: NNN
{
 "_links":{

"self":{
"href":"/sx/api/content/csa-r2f"

}
 },
 "id":"csa-r2f",
 "name":"CSA request to fullfilment",
 "description":"",
 "adapter":"CSA",
 "version":"1.0.0",
 "features":[

"r2f",
"csa-r2f"

],
 "ooContent":{

"name":"oo-csa-r2f-cp",
"version":"1.2.0"

 }
}

Content pack archive format

Content pack contains configurations for specific part of SX functionality. It does not contain java code.

Structure

path is
required?

description

/metadata.json yes File in json format. It contains basic information about SX content pack.

/oo/[cpName].jar no OO content pack. SX can upload it to oo server automatically. Update policy
depends on sx.content.oo.upload property.

/sm/[unloadName].unl no Unload files exported from SM. User have to unzip the files and import it to SM
manually.

/sx/flows.json no Mapping between operations and oo flows in json format.

/sx/operations.json yes Mapping between operations and freemarker templates in json format.

/sx/templates/[freemarkertemplateName].ftl no Freemarker templates transform SX canonical format to external systems formats
(SM, CSA, ...)

/sx/[configName].json no More json configurations for specific part of SX functionality.

Metadata example

231

{
 "id": "sm-r2f-change",
 "name": "SM request to fullfilment by change",
 "description": "",
 "version": "1.0.0",
 "adapter": "SM",
 "features":[

"r2f",
"sm-r2f",
"sm-r2f-change"

]
}

Metadata structure

property description

id id must be unique

name content pack name

description content pack description

version content pack version

adapter Adapter specifics which external system the CP uses. Now SX contains CSA and SM adapters.

features Features which CP provides. SX uses this information for enabling/disabling its REST APIs.

Appendix B: Operation executors
Overview of step properties recognized by BaseOperationExecutor

Properties common for all step types
Properties for SubmitHttpRequest step type
Properties for SetupNotifications step type
Properties for PerformFtlTransformation step type
Properties for CacheResults step type

More about BaseOperationExecutor step types
Notes applying to more step types

Message merging
Repeated step execution
FTL transformation

PerformFtlTransformation step type
SubmitHttpRequest step type
SetupNotifications step type
CacheResults step type

232

Operation executors
com.hp.ccue.serviceExchange.operation.OperationExecutor interprets . Here is an example operations.json

 content:operations.json

{
 "getCatalogItems": [

{
"label": "Get catalog items - changes",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "retrieveCatalogItemsChanges.ftl",
"responseTemplate": "retrieveCatalogItemsChangesResponse.ftl",
"header-SOAPAction": "RetrieveKeysList",
"header-Accept": "text/xml"

},
{

"label": "Get catalog items - changes",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "retrieveCatalogItemsChanges2.ftl",
"responseTemplate": "retrieveCatalogItemsChangesResponse.ftl",
"header-SOAPAction": "RetrieveKeysList",
"header-Accept": "text/xml"

},
{

"label": "Get catalog items - quotes",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "retrieveCatalogItemsQuotes.ftl",
"responseTemplate": "retrieveCatalogItemsQuotesResponse.ftl",
"header-SOAPAction": "RetrieveKeysList",
"header-Accept": "text/xml"

}
],
 "createOrder": [

{
"label": "Create cart",
"requestUrlTemplate": "smSoapUrl.ftl",
"requestTemplate": "createCart.ftl",
"responseTemplate": "createCartResponse.ftl",
"header-SOAPAction": "Create",
"header-Accept": "text/xml"

},
 ...
}

More about the file format can be found in . As you can see, an operation is named and itoperations.json HOWTO Sample SX Content
consists of steps. The operation executor is able to this file and execute operation/steps one by one. It has a method for operationinterpret simple
execution and an method for determining whether the operation is recognized:introspective

233

public interface OperationExecutor {
 /**

* Executes named operation with the given execution context.
* The execution context is to be used during backend-specific step execution.
* It is not intended to hold data values - data values are to be put
* into message.

 *
* @param operationName operation to be executed
* @param message message to be processed and returned
* @param context execution context (may be null)

 *
* @return processed message

 */
 public Map<String, Object> executeOperation(String operationName, Map<String,
Object> message,

Map<String, Object> context);

 /**
* @param operationName name of the operation to recognize
* @return true if the operation is recognized (and can be executed), false

otherwise
 */
 public boolean isOperationRecognized(String operationName);

}

The subject for the operation is always the and optionally the .JSON message, Java context

BaseOperationExecutor basics

The default implementation of OperationExecutor is in .com.hp.ccue.serviceExchange.operation.BaseOperationExecutor

BaseOperationExecutor can interpret these step types:

SubmitHttpRequest step: used for executing an HTTP request, while performing FreeMarker transformations when creating inputs and
processing outputs of the HTTP request.

BaseOperationExecutor recognizes a step as a SubmitHttpRequest step if the requestUrlTemplate step property is supplied.
SetupNotifications step: used for setting up listening for changes of an entity in the external system.

BaseOperationExecutor recognizes a step as a SetupNotifications step if it is not recognized as a SubmitHttpRequest step and
the notifyTemplate step property is supplied.

PerformFtlTransformation step: used for performing a FreeMarker transformation only.
BaseOperationExecutor recognizes a step as a PerformFtlTransformation step if it is not recognized as a SubmitHttpRequest or
a SetupNotifications step. and the step resultTemplate property is supplied.

custom step: used for subclass-specific steps.
BaseOperationExecutor recognizes a step as a custom step if is not recognized as a step of the three above types.

NOTE: Steps of all types can be if set up using the inputSelector and inputName step properties.executed repeatedly

When implementing an SX adapter, you can either use this default implementation of you can extend it. The BaseOperationExecutor provides the
final implementation of the executeOperation method of the OperationExecutor interface. Its constructor needs:

 (String, e.g. SM, CSA,...) adapter type
instances.json config path (because this file is read and passed to particular steps as part of an FTL data model.)

It has the following overridable methods to customize its behavior:

addStepDecorator: Any step can be decorated via (add/remove properties) before being executed, whether the step isStepDecorator
to be decorated or not is determined by StepFilter.
beforeExecuteOperation: Invoked before the actual execution of operation steps. Override this method if you need a pre-invocation

234

hook. Default implementation is empty.

afterExecuteOperation: Invoked after the actual execution of operation steps. Override this method if you need a post-invocation hook.
Default implementation is empty.

finallyAfterExecuteOperation: Invoked in the final clause of a try-finally block surrounding the execution of operation steps (including
beforeExecuteOperation and afterExecuteOperation invocations.) Exceptions thrown by this method are not propagated, they are only
logged. Override this method if you need a tear-down hook. Default implementation is empty.

executeNotificationSetup: Invoked when executing the SetupNotifications notification step - see below for the SetupNotifications step
type. You will need to override this method so that your operation executor supports the SetupNotifications step type. Default
implementation of this method throws an UnsupportedOperationException.

executeCustomStep: Invoked to execute a subclass-specific operation step. You will need to override this method for your operation
executor to support steps of a custom type. Default implementation of this method throws an UnsupportedOperationException.
handleAuthentication: Invoked to populate an HTTP request with authentication data before the request is submitted. The default
implementation adds an HTTP basic authentication header if appropriate attributes (,) are found in user.loginName user.password

. Override this method if you need to implement a custom authentication concept (such as passing an authentication tokeninstance config
in the HTTP header).
Others (see JavaDoc): , handleProxy setDefaultHttpRequestContentType, skipLoggingForOperation, beforeHttpRequestSubmit,
checkProcessingError, afterHttpResponseReceived, recognizeResponseError, getDetailErrorMessage, isResponseSuccess,
createDefaultFtlDatamodel.

Overview of step properties recognized by BaseOperationExecutor

Properties common for all step types

Property Description

label Step display name used for logging purposes

inputSelector Allows iteration over items in input message. Contains JSONPath expression. Current step is invoked for each item separately

inputName Specifies input key name during input selector iteration. Currently processed item is available with this key in the input
message

Properties for SubmitHttpRequest step type

Property Description

requestUrlTemplate FreeMarker template for request URL

requestContentSelector Selects request body using JSONPath directly from the input message

requestHeaderTemplate FreeMarker template for JSON object containing additional request headers

requestTemplate FreeMarker template for request body

method Http method used for REST requests (GET/POST/PUT/DELETE), defaults to POST for operations with
header-SOAPAction, GET otherwise

header-* Arbitrary HTTP header (header-SOAPAction, header-Content-Type,...)

responseTemplate FreeMarker template for response transformation

useIntegrationAccount Boolean flag indicating whether to execute the request under an integration account

235

Properties for SetupNotifications step type

Property Description

idSelector JSON path expression returning ID of the given entity

entitySelector JSON path expression returning the given entity (use when the message already contains an entity, registration mode
is "first run immediately", and to save subsequent HTTP call(s) to retrieve the entity)

operationName Name of check operation invoked when entity is changed in external system

notifyTemplate FreeMarker template for input message for the check operation

callbackTemplate FreeMarker template for catalog notification

firstRunImmediately Boolean flag saying if the first notification is invoked at registration time

Properties for PerformFtlTransformation step type

Property Description

resultTemplate FreeMarker template for the transformation

Properties for CacheResults step type

Property Description

resultCacheExpiration Specify how long operation result stays in the cache. Value is in seconds.

resultCacheIncludeInputPaths List of paths in input which are used to crate cache key. If another input message comes and all included
paths exactly match to previously cached response, then cached response could be used.

resultCacheIgnoreInputPaths List of paths which are excluded from cache key generation. All not excluded paths are used in this case.

More about BaseOperationExecutor step types

Notes applying to more step types

Message merging

The PerformFtlTransformation step and optionally also SubmitHttpRequest modify the input message by merging a result map into it. The
merging is performed by doing the following for every key of the result map:

If the key is contained in the message and both values are maps then the maps are merged using the same algorithm as the message
and the result map
If the key is contained in the message and both values are lists then the list from the result map is appended to the list from the message
Otherwise, the value from the result map is simply put into the message (overwriting the original value if present.)

Here is an example:

{
 "owner": "paul",
 "approvers": ["john", "marry"],
 "properties": {

"width": 10,
"height": 20

 }
}

236

Assuming the following map results from the transformation in the PerformFtlTransformation step:

{
 "owner": "bob",
 "approvers": ["fred"],
 "properties": {

"height": 25,
"depth": 30

 }
}

The message will look like this:

{
 "owner": "bob",
 "approvers": ["john", "marry", "fred"],
 "properties": {

"width": 10,
"height": 25,
"depth": 30

 }
}

Repeated step execution

If you need to iterate over an array and execute a step repeatedly for each item, use the inputSelector and inputName step properties. The
inputSelector property contains a JSONPath to the array to iterate over. The executor will look up the array, and for each item, it will put the item
under the key specified by inputName to the message, perform one step execution, and remove the key from the message. Here is an example:

{
 "orderInfo": {

"approvers": ["john", "mary"]
 }
}

For an initial message and inputSelector=$.orderInfo.approvers and inputName=approver, then the given step will be executed twice, once
against the following message:

{
 "orderInfo": {

"approvers": ["john", "mary"]
 },
 "approver": "john"
}

And once against this message:

237

{
 "orderInfo": {

"approvers": ["john", "mary"]
 },
 "approver": "mary"
}

FTL transformation

All built-in step types perform FreeMarker transformations. The data model (unless stated otherwise) contains the following default keys:

message: the message (Map<String, Object>) passed to the step
context: the context object (Map<String, Object>) passed to the step
instanceConfig: instance configuration (Map<String, Object>) of the external system passed to the step
infrastructureConfig: infrastructure configuration (Map<String, Object>)
bundle: a resource bundle as copied from the context.bundle (is missing if missing in the context)
executeOperation: a function allowing to execute other operations (<#assign operationResult=executeOperation("operation_name",
{"itemName":"my name", "other_data": object.field})>)
loadConfig: function for loading JSON configuration from file (<#assign outputDescriptorConfig=loadConfig(context.contentStorage,
"sm-r2f/sx/outputDescriptorConfig") />)
writeJson: function for writing an object to JSON string ("outputParameters":
<#noescape>${writeJson(message.outputParameters)}</#noescape>)

The context contains the following keys:

targetInstance: instance name (String) of the external system
configuration: Configuration Spring bean
contentStorage: ContentStorageApi Spring bean

You can also override the beforeOperationExecution() method to add additional keys to the context object.

Here is an example of a template for request URL that can be used in a SubmitHttpRequest step:

${instanceConfig.endpoint}/api/mpp/mpp-request/${message.requestId?url}

PerformFtlTransformation step type

This step type has a single property resultTemplate that refers to a FreeMarker template which is assumed to produce a JSON document. The
step retrieves the template, performs the transformation against a dataModel with the default keys, converts the result to a Java map, and merges
the result into the input message.

SubmitHttpRequest step type

This step leverages a generic HTTP client (- JavaDoc link). You can submitcom.hp.ccue.serviceExchange.http.HttpClient
REST/SOAP requests by using this step. The step is identified as SubmitHttpRequest if it uses the property. In order torequestUrlTemplate
submit an HTTP request one needs to know at least the:

URL
method: defaults to POST for steps with header-SOAPAction property, otherwise GET.

A request might also have a body. The body can be created via or . HTTP headers includingrequestTemplate requestContentSelector
Content-Type can be specified via:

header-* step property, all fields starting with this prefix are put into the request as HTTP headers
requestHeaderTemplate: generated map is put into the request as headers
StepDecorator: a generic advanced concept for setting up step-defaults (JavaDoc link.)

Content-Type in particular can also be specified via setDefaultHttpRequestContentType(String mimeType), for example if you know that your
backend system communicates almost exclusively via JSON. After the request body and headers are built, BaseOperationExecutor calls:

handleProxy (JavaDoc link)
handleAuthentication (JavaDoc link)
beforeHttpRequestSubmit (JavaDoc link.)

238

After the request is submitted and the response is received back, the following methods are called:

afterHttpResponseReceived (JavaDoc link)
recognizeResponseError (JavaDoc link) which calls:

isResponseSuccess (JavaDoc link)
if there is an error, it also calls (JavaDoc link.)getDetailErrorMessage

The response is then transformed via the if specified. The result of the transformation is merged back to the message. If thisresponseTemplate
template is not specified, the HTTP response is merged back into the message as follows:

"result": response body
if the response has no body, this key is missing
if the body is JSON it is automatically converted to map
if it is XML it is converted to freemarker.ext.dom.NodeModel
if it is a zero-length string or a whitespace-only string, the value is null
otherwise the response is put there as is - as one long string

"resultHeaders": result HTTP headers, this key is always present.

NOTE: the gets exactly the same input except that it is nested under the "doc" key in the incoming data model.responseTemplate

SetupNotifications step type

This step is used to set up listening for changes of an entity in an external system. First it extracts the ID of the entity to listen to by resolving the
JSONPath expression in the idSelector step property against the input message. If entitySelector step property is present then it extracts the
entity itself, resolving JSONPath expression in the entitySelector property. Then it retrieves the FreeMarker template referred to by the
notifyTemplate property, performs the transformation against a dataModel with the default keys, and converts the result to a Java map. Finally it
executes the overridable method.

void executeNotificationSetup(
String entityId, Map<String,Object> entity, String

checkOperation, Map<String, Object> checkInputMessage,
String catalogCallbackTemplate, EntityRegistrationMode mode,
Map<String, Object> context, Map<String, Object> stepConfig)

This is done using the following actual parameters:

entityId: the extracted entity id
entity: the extracted entity (can be null)
checkOperation: value of operationName step property
checkOperationInputMessage: map resulting from notifyTemplate transformation
catalogCallbackTemplate: value of callbackTemplate step property
mode: REGISTER_AND_NOTIFY_IMMEDIATELY if the firstRunImmediately step property is set to true, and REGISTER_ONLY
otherwise
context: context object passed to the step
stepConfig: map of step properties.

The semantics of the executeNotificationSetup method is to make sure that subsequent changes of the given entity in the external system will
result in the check operation being executed (with checkOperationInputMessage as input message), and in a catalog notification
subsequently being sent. The catalog notification message will be produced by performing a FreeMarker transformation with a template referred
to by the catalogCallbackTemplate argument against a data model, with the message coming from the check operation under the key "message".
Additionally, if mode is equal to REGISTER_AND_NOTIFY_IMMEDIATELY, a first notification is performed immediately.

CacheResults step type

This step is used to cache results of possibly time extensive operations which doesn't change output frequently. Typical usecase are lists of
values for combo boxes, e.g list of Languages, Catalogs, Urgency values... This should be used as first step of the operation. The step first takes
include and ignore paths from the configuration. It will filter input message somehow, then it is serialized and used as cache key. If cache contains
non expired response under such key, it is immediately returned and thus rest of operation is not executed at all. If result is not available in the
cache operation execution continues as usuall and at the end response is stored into cache for subsequent calls. Results stays in the cache for
amount of seconds specified in mandatory resultCacheExpiration property.

239

"ticketProperty-Urgency":[
 {

"label": "Cache results",
"resultCacheExpiration": 86400,
"resultCacheIgnoreInputPaths": [

"messageHeader.userId",
"recipient"

]
 },
 {

"label":"Get Urgency Property Values"
...

 }
]

Operation above will first strip user information from the message, so response will be cached only once per system. Operation will results will be
stored for one day (86400 seconds).

Appendix C: Support Request operations messages
Overview
General Structures Info

propelRequest
supplierRequest
comments
attachments
actions
propelRequest summary state

Operations doc
createSupportRequestAfterCreateInPropel
getSupportRequestForUpdateInPropel
addCommentsToSupportRequest
addAttachmentToSupportRequest
downloadAttachmentForSupportRequest
performSupportRequestAction
getSupportRequestForCreateInPropel
getSupportRequestsForOnboarding

Overview
The following documents message formats passed to, and returned from, support request operations. These messages are based on requests to
the and resource of . Rest resource classes modify requests into messages documented here./ticket /operation SX REST API

When implementing support request operations FTL templates, use this documentation as a reference on the formats of messages that will be
passed in, and the format that you need to return.

Please note that the current implementation of support request (Ticketing) operations uses access. For example, after supportasynchronous
request creation in the Propel UI, the request is first stored in the Propel database, the operation iscreateSupportRequestAfterCreateInPropel
asynchronously called, and finally the operation is called.getSupportRequestForUpdateInPropel

In general all support request operations get the following message header before being passed to operation execution:

Cache results example

240

"messageHeader" : {
 "backendSystemType" : "${backendSystemType}",
 "userId" : "${userId}",
 "targetInstance" : "${targetInstanceName}"
 }

Your ftl transformations also have access to operation execution context. For details see .Appendix B: Operation executors

General Structures Info
Review the following structure descriptions, as they are used in most operations described below.

propelRequest

Field name Description

summary Summary from Propel request representation; see concrete operation description for needed sub-structure
information

visibleToUsers List (array) of user names that can this Propel (support) requestsee

commentsPermittedForUsers List (array) of user names that can to this Propel (support) requestadd comments

attachmentsPermittedForUsers List (array) of user names that can to this Propel (support) requestadd attachments

flatFields Flattened from request representation (for example, see gparams.form.fields
 operation property). Each entry usually contains etSupportRequestForCreateInPropel propelRequest.fields

, fields. field can be of string or array (list) type (for multi-select values). is of string type.id value value id

comments See detailed description in following sections.

attachment Metadata for one of the attachments.

attachmentStream Input Stream for one of the attachments.

actions See detailed description in following sections.

supplierRequest

Field name Description

catalogItemId Id of catalog item used to create the support request. Can be, for example, your Generic Support Offering id.

revision Optimistic lock revision of request (can be any string)

id Id of support request . Can be any string.as used in connected Supplier system

comments See detailed description in following sections

attachment Metadata for one of the attachments

attachmentStream Input Stream for one of the attachments

comments

Example of comments:

241

{
 "propelRequest": {

"comments": [// comments not yet added to supplier
{

"id": "46461345646",
"body": "blabla"

} //, ...
]

 },
 "supplierRequest": {

"comments": [
{

"id": "C564643213",
"createdBy": "consumer",
"created": 1442313161333,
"body": "blabla"

}
] //, ...

 },
 "commentPropelToSupplierMapping": {

"46461345646": "C564643213"
 }
}

attachments

Attachments structure example:

{
 "propelRequest": {

"attachment": {
"fileName": "Koala.jpg",
"mediaType": "image/jpg"

},
"attachmentStream": null // should be an input stream

 },
 "supplierRequest": {

"attachments": [
{

"id": "A564643213",
"createdBy": "consumer",
"created": 1442313161333,
"fileName": "Koala.jpg"

} //, ...
]

 }
}

actions

Actions object structure example:

242

{
 "propelRequest": {

"action": {
"id": "accept",
"flatFields": [

{
"id": "message",
"value": "I'm ok with it" // can also be an array of strings

}
]

},
"actions": [

{
"id": "accept",
"name": "Accept Solution",
"nameLocalized": {

//...
},
"description": "Invoke to accept the solution",
"descriptionLocalized": {

//...
},
"style": "accept_style",
"visibleToUsers": [

"consumer"
],
"params": {

"form": {
"fields": [

{
"id": "message",
"name": "Message",
"type": "TEXT_AREA",
"constraints": {

"maxLength": 2000,
"requiredExpression": "false"

}
}

]
}

}
} //, ...

]
 }
}

propelRequest summary state

The field, placed in , structures can contain the following values:state propelRequest.summary

Placeholder Possible values

state submitted, in_progress, completed

243

Operations doc

createSupportRequestAfterCreateInPropel

This operation is used to create a support request in a supplier system after its creation in Propel. The support request is first saved from UI entry
to the Propel database, then this operation is called asynchronously to propagate the data and create the support request in the supplier system.

Input:

propelRequest
summary
flatFields

supplierRequest
catalogItemId

Output:

supplierRequest
id

getSupportRequestForUpdateInPropel

This operation is used to propagate a change from the supplier system to Propel. It is called after the first
 operation call (as that operation returns only supplierRequest id) to fetch fresh data from thecreateSupportRequestAfterCreateInPropel

supplier after support request creation, and is called after each change in the supplier support request as well, because of polling.

Input:

propelRequest
flatFields

supplierRequest
id

Output:

propelRequest
summary

name
description
state

visibleToUsers
commentsPermittedForUsers
attachmentsPermittedForUsers
flatFields
actions

supplierRequest
revision
comments
attachments

addCommentsToSupportRequest

This operation is used to propagate the addition of one or more comments from Propel to the supplier.

Input:

 propelRequest
 comments - in order they were added (i.e., newest at the end)

supplierRequest
 id

Output:

commentPropelToSupplierMapping (see previous example in general structure description section)comments

addAttachmentToSupportRequest

This operation is used to propagate the addition of an attachment from Propel to the supplier system.

244

Input:

 propelRequest
attachment
attachmentStream

supplierRequest
id

Output:

supplierRequest
attachment - the added attachment

id

downloadAttachmentForSupportRequest

This operations is used to download attachment data from the supplier system to Propel.

Input:

supplierRequest
id
attachment

id

Output: binary data

performSupportRequestAction

This operation is used to perform an action in the supplier after it has been invoked in Propel (started from UI).

Input:

propelRequest
action

id
flatFields

supplierRequest
id

Output: nothing

getSupportRequestForCreateInPropel

This operation is used to create support requests in Propel based on a support request in the supplier system (import). It is started by the
 operation . This operation will not be able to rely on an existing request representationgetSupportRequestsForOnboarding (description follows)

in Propel. In particular, it will have to reconstruct the form field (property below), which may be difficult.propelRequest.fields

Input:

supplierRequest
id

Output:

propelRequest
summary - containing the following:

name
description
state
created
createdBy

visibleToUsers
commentsPermittedForUsers
attachmentsPermittedForUsers
fields
actions

supplierRequest
revision
catalogItemId
comments
attachments

245

getSupportRequestsForOnboarding

This operation returns a list of support request id's to be on-boarded when a sync action is triggered manually in the UI (e.g., initial
synchronization after a supplier is added, user chooses a date - field - when he wishes to sync the support requests to Propel).lastUpdateTime
The returned list of support request ids modified after .The Propel system then calls the operation lastUpdateTime

 for each found support request id.getSupportRequestForCreateInPropel

Input:

lastUpdateTime
startIndex
pageSize

Output:

idList

Appendix D: Per instance operation definition

Writing custom operations.json files for specific instances
HP SX allows you to change the behavior of any operation for specific instances by overriding operations. You can do this by creating custom

 files. Names of these files need to follow the format: where the isoperations.json operations- .json, {instanceName} instanceName
the name of an instance specified in . Any operation defined in this file will override an operation of the same name from ainstances.json
generic file.operations.json

NOTE: The content of a custom file has exactly the same format as the generic one, and all the FTL files have to be in theoperations.json
same content pack as the custom file.operations.json

The custom file should be in the same directory inside the content pack where the generic file would generaly be, but it does not need to be in
exactly the same content pack as the generic file that the custom file is trying to replace.

Example:
If your for HP SM looks like this:instances.json

{
 "SMInstance01": {

"endpoint": "https://sm01.example.com:13080/SM",
"user": {

"loginName": "admin",
"password": "password"

}
 }

}

And you are using this HP SM instance for managing tickets (using the standard HP SM Ticketing SX content pack), then you can alter the way
HP SX creates comments for tickets in this HP SM instance just by creating the file in a new content pack,operations-SMInstance01.json
containing an override of operation , like this:createTicketComment

{
"createTicketComment":[

{

"label":"Create Custom Comment",

"requestUrlTemplate": "customSmSoapUrl.ftl",

"requestTemplate":"customCreateComment.ftl",

"header-SOAPAction":"Create",

"header-Accept": "text/xml"

}

]
}

246

Appendix E: HP SX operations reference

Overview
Supplier instance configuration

getInstanceForm
Input
Output

Ticketing use case operations
Aggregation use case operations
R2F use case operations

createOrder
Input
Output

checkOrder
Input
Output

getChangedEntitiesForR2f
input
output

approve/deny
input
output

checkSubcription
cancel

input
output

CX use case operations
Incident CX operations

getChangedIncidentsForCx
input
output

retrieveIncident
input
output

convertIncidentToCanonicalModel
cloneIncident, updateLinkedIncident, closeIncident, resolveIncident, reopenIncident, assignOwnershipToIncident,
acceptOwnershipOfIncident, rejectIncident, cancelIncident

input
output

cloneIncident
closeIncident, resolveIncident, reopenIncident, assignOwnershipToIncident,
acceptOwnershipOfIncident, rejectIncident, cancelIncident
updateLinkedIncident

updateLinkedIncidentInfo, deleteLinkedIncidentInfo
input
output

downloadAttachment
input
output

uploadAttachment
input
output

Overview
This document serves as quick reference of operations (file).operations.json

Supplier instance configuration
The following operation must be defined to enable users to configure a backend system ("supplier") instance in SX administration front-end.

Operation Note

getInstanceForm Returns definition of configuration form for supplier instance

247

getInstanceForm

Input

N/A

Output

{
 "fields" : [{
 "id" : "customer",
 "name" : "Customer (Tenant)",
 "help" : "Customer configuration (common for both HMC and v2 APIs)",
 "type" : "FIELDSET",
 "fields" : [{
 "id" : "tenantId",
 "name" : "Customer Id",
 "help" : "",
 "type" : "TEXT_INPUT",
 "constraints" : {
 "requiredExpression" : "true"
 }
 }]
 }, {
 "id" : "hmc",
 "name" : "HMC API (Catalog Connect)",
 "help" : "",
 "type" : "FIELDSET",
 "fields" : [{
 "id" : "endpoint",
 "name" : "Endpoint",
 "help" : "Base url for MPC REST endpoints: http://<host>:<port>",
 "type" : "TEXT_INPUT",
 "constraints" : {
 "format" : "url",
 "requiredExpression" : "true"
 }
 }]
 }, <... other fields definitions ...>]
}

248

Ticketing use case operations

Operation Note

getDefaultSupportOfferingId Returns the id of an offering that was aggregated as default/generic ticket

createTicket Creates a new ticket

retrieveTicket Retrieves a ticket

listTickets Lists tickets matching the given criteria

listTicketAttachments Lists ticket attachments

createTicketAttachment Creates a ticket attachment

retrieveTicketAttachment Retrieves ticket attachment metadata

createTicketComment Creates a comment

closeTicket Closes a ticket

getAggregationFeatures Returns aggregation features. Enable support offerings here.

Detailed description can be found in Appendix C: Support Request operations messages

Aggregation use case operations
Refer to topic for more on operations.Aggregation in HP SX - Aggregation operations

R2F use case operations
For an R2F use case, the set of operation is virtually driven by the specific implementation. It is the OO flow, operations definitions and java code
together that determines the set of operations and their names. A typical set of operations can be performed through the following.

Operation Note

createOrder In an R2F use case there will likely be an operation corresponding to "createOrder " - the name of the operation
being defined in the OO flow.

checkOrder The "checkOrder" operation is defined by the order status notification setup. Order status notification setup is the
last step in the "createOrder" operation. It causes the backend system entity representing the order to be
registered in HP SX so that its changes are notified back to the HP Propel portal. (These notifications are called
catalog notifications in the example sources and javadoc.) The operation name is specified by the

 attribute of the notification step definition. This is true in the majority of cases where the adapteroperationName
uses to execute notification setup.DefaultNotificationSetupExecutor

getChangedEntitiesForR2f "getChangedEntitiesForR2f" represents the operation responsible for getting changed entities representing
orders in the backend system into the periodic polling for changes process. The name of this operation is
specified in the definition. This is true in the case when CompositeChangeObserverpolling command
implementation supplied with the R2fPollingCommand implementation is used. This is the recommended
approach.

approve/deny The approve and deny operations are optional. If you do not need to implement an approval process they can be
omitted. The HP Propel portal will display approve/deny buttons for a request once the approvers are present in
the change notification.

checkSubcription "checkSubcription" is the operation defined by the subscription status notification setup. Subscription status
notification setup is the last step of the "checkOrder" operation, and is implemented only in systems that contain

. The operation name is specified by the attribute of the notification stepsubscription-like entities operationName
definition. This is true in the majority of cases where the adapter uses

 to execute notification setup.DefaultNotificationSetupExecutor

cancel Cancel subscription. Called when cancel subscription is clicked in Propel portal.

249

createOrder

Input

The input for this operation is typically the REST api /request resource payload (your R2F OO flow can modify the structure, but usually you will
just pass it through). The request payload is specified in the . The header of the message can be modifiedAppendix A: Service Exchange - API
by providing an ftl template See javadoc AdapterAbstract.setRequestHeaderTemplate(). In this case the OO flow recieves a message containing
the transformed header.

Output

No specific output format required.

This operation must execute notification setup if your backend system will not push changes to HP SX itself.

checkOrder

NOTE: The following applies only when using DefaultNotitificationSetupExecutor.

Input

The input is the result of the ftl transformation. The transformation result is stored in HP SX at notification setup, i.e., at the lastnotifyTemplate
step of .createOrder

Output

No specific output format needed. The output is used as input to ftl transformation.callbackTemplate

getChangedEntitiesForR2f

NOTE: This applies only when the most advisable approach to change observing is used, i.e., implementationCompositeChangeObserver
supplied with implementation.R2fPollingCommand

input

The time of the last update is provided.

{
 "lastUpdateTime": ${lastUpdateTime}
}

output

No specific output format needed. Your handles the format. See javadoc.PollingCommand

For example:

{
 "entities": [

{
"entityId": "${entity1Id}"

},
 ...
],
}

250

1.

2.

3.

4.

approve/deny

input

Invoked through REST call on /operation resource. See for the format of the message passed in.Appendix A: Service Exchange - API

output

No specific output format required.

checkSubcription

This operation is analogous to the checkOrder operation. The same rules apply.

cancel

input

Invoked through REST call on /operation resource. See for the format passed in.Appendix A: Service Exchange - API

output

No specific output format required.

CX use case operations
The set of operations depends on your CX use case. Some of the operations may not be vallid in your use case, and it is possible that you will
only need to provide an empty implementation to prevent HP SX from failing. Your use case may not need to support all events.

The following summarizes the CX flow in HP SX:

The adapter's polls the backend system for changed CX entities. Usually the changed entities are retrieved using anChangeObserver
implementation of which lists changes using a operation. The name of theCXPollingCommand getChangedEntitiesForCX
operation is not fixed; the command defines the name.
Detected changes are evaluated for events belonging to an event group of , IncidentCaseExchangeEvents

 or . The event evaluation is backend system specific and must beTaskCaseExchangeEvents TaskCaseExchangeIncidentEvents
a part of the adapter implementation.
Event group actions are triggered sequentially:

IncidentCaseExchangeEvents TaskCaseExchangeEvents TaskCaseExchangeIncidentEvents

1. execute operation retrieveIncident execute operation retrieveTask execute operation retrieveIncident

2. execute operation
convertIncidentToCanonicalModel

execute operation
convertTaskToCanonicalModel

execute operation
convertIncidentToCanonicalModelTCX

3. execute OO flow
IncidentCaseExchangeFlow

execute OO flow
IncidentTaskCaseExchangeFlow

execute OO flow
IncidentTaskCaseExchangeFlow

4.

The action result id is passed to the next action. The input to OO flows is the entity in canonical model format.
The OO flow maps CX events to a batch of operations. The following table shows the mapping for . IfIncidentCaseExchangeFlow
you need more details or are interested in IncidentTaskCaseExchangeFlow, use the HP SX content management UI to download the

 content pack which contains the flows .case-exchange

event operations

incidentExternalReferenceCreated cloneIncident,updateLinkedIncidentInfo, ${attachmentOperations}

incidentUpdated updateLinkedIncident, ${attachmentOperations}

incidentClosed closeIncident, updateLinkedIncidentInfo, ${attachmentOperations}

incidentResolved resolveIncident, updateLinkedIncidentInfo, ${attachmentOperations}

251

4.

incidentReopened reopenIncident, updateLinkedIncidentInfo, ${attachmentOperations}

incidentOwnershipAssigned assignOwnershipToIncident, updateLinkedIncidentInfo, ${attachmentOperations}

incidentOwnershipAccepted acceptOwnershipOfIncident, updateLinkedIncidentInfo, ${attachmentOperations}

incidentRejected rejectIncident, deleteLinkedIncidentInfo, ${attachmentOperations}

incidentCancelled cancelIncident, updateLinkedIncidentInfo, ${attachmentOperations}

NOTE: is a pair of and per every single incident attachment.${attachmentOperations} downloadAttachment uploadAttachement

Incident CX operations

The event group defines Incindent case exchange HP SX feature. The set of operations that need to beIncidentCaseExchangeEvents
implemented to support Incident case exchange can be obtained from the above.

Operation Note

"getChangedEntitiesForCX" "getChangedIncidentsForCx" represents the operation responsible for getting changed entities
representing incidents in the backend system into the periodic polling for changes process. The name of
this operation is specified in the definition. This is true when the most advisablepolling command
approach to change observing is used i.e. implementation supplied with CompositeChangeObserver

 implementation.CXPollingCommand

retrieveIncident Retrieves incident; result is parsed by convertIncidentToCanonicalModel operation.

convertIncidentToCanonicalModel Convert incident to canonical HP SX format. See .Case exchange Concepts

cloneIncident Clones incident into linked system

updateLinkedIncidentInfo Updates the event source incident with the info about chages to the linked incident (e.g. the ID of the
incident created by clone operation). This operation is called after second operations like cloneIncident,
closeIncident etc. See above.

updateLinkedIncident Updates the linked incident with changes of the source incident (e. g. changed description)

closeIncident Closes incident

resolveIncident Resolves incident

reopenIncident Reopens incident

assignOwnershipToIncident Assigns ownership of incident

acceptOwnershipOfIncident Accept ownership of incident

rejectIncident Rejects incident

deleteLinkedIncidentInfo Deletes information about linked incident

cancelIncident Cancels incident

downloadAttachment Downloads attachment

uploadAttachment Uploads attachment. This operation needs to be able to decide whether the attachment is already
uploaded or is a new attachment.

getChangedIncidentsForCx

NOTE: This applies only when the most advisable approach to change observing is used, i.e., implementationCompositeChangeObserver
supplied with implementation.CXPollingCommand

input

The time of the last update is provided.

252

{
 "lastUpdateTime": ${lastUpdateTime}
}

output

No specific output format required; your handles the format. See javadoc.PollingCommand

For example:

{
 "entities": [

{
"entityId": "${entity1Id}"

},
 ...
],
}

retrieveIncident

input

{
 "entityChange": {
 "entityId": "${entityId}"
 }
}

entityId is the id in the backend system.

output

The output serves as the input for the operation, and no specification is needed. For example, if yourconvertIncidentToCanonicalModel
backend system returns data in json format, use the format returned.

{
 "entityChange": {
 "entity": {...<any json representation of your entity>..}
 }
}

convertIncidentToCanonicalModel

This is the most complex transformation. See special topic .Case exchange Concepts

cloneIncident, updateLinkedIncident, closeIncident, resolveIncident, reopenIncident,
assignOwnershipToIncident, acceptOwnershipOfIncident, rejectIncident, cancelIncident

input

These operations get input in the following form. It is the canonical model format enriched with header.

253

{
 "messageHeader": {
 "backendSystemType": "${linkedEntity.instanceType}",
 "targetInstance": "${linkedEntity.instance}"
 },
 "args": {
 "event": "${event}",
 "entity": ${entity},
 "linkedEntity": ${linkedEntity}
 }
}

NOTE: and stand for the corresponding structure in canonical model format. See .${entity} ${linkedEntity} Case exchange Concepts

${event} Event that triggered action (e.g. incidentExternalReferenceCreated)

The ${linkedEntity} for cannot contain information as it is to be created. In this case ${linkedEntity} is a structure as shown here:cloneIncident

 ...
"linkedEntity":{
 "instanceType":"${linkedEntity.instanceType}",
 "instance":"${linkedEntity.instance}"
}
...

output

cloneIncident

The following output is required by the next operation (). Add any kind of information needed for yourupdateLinkedIncidentInfo
specific implementation.

{
 "args": {

"linkedEntity": {
"entityType": "Incident",
"entityId": "${incidentID}",
"properties": {

"Status": "${incidentStatus}"
}

}
 }
}

closeIncident, resolveIncident, reopenIncident, assignOwnershipToIncident, acceptOwnershipOfIncident,
rejectIncident, cancelIncident

254

{
 "args": {

"linkedEntity": {
"properties": {

"Status": "${incidentStatus}"
}

}
 }
}

updateLinkedIncident

No specific output format is required.

updateLinkedIncidentInfo, deleteLinkedIncidentInfo

input

Note that the linked entity status must be returned in the previous operation. Additionally, linked entityType and entityId must be returned with
operation cloneIncident.

{
 "messageHeader": {
 "backendSystemType": "${entity.instanceType}",
 "targetInstance": "${entity.instance}"
 },
 "args": {
 "event": "${event}",
 "entity": {

"instanceType": "${entity.instanceType}",
"instance": "${entity.instance}",
"entityType": "${entity.entityType}",
"entityId": "${entity.entityId}"

 },
 "linkedEntity": {

"initiator": false,
"instanceAlias": "${linkedEntity.instanceAlias}",
"instanceType": "${linkedEntity.instanceType}",
"instance": "${linkedEntity.instance}",
"entityType": "${linkedEntity.entityType}",
"entityId": "${linkedEntity.entityId}",
"properties": {

"Status": "${linkedEntityStatus}"
}

 }
 }
}

output

No specific output format required.

downloadAttachment

input

255

{
 "messageHeader": {
 "backendSystemType": "${entity.instanceType}",
 "targetInstance": "${entity.instance}"
 },
 "messageArgs": {
 "entity": ${entity},
 "attachment": ${attachment}
 }
}

NOTE: stands for the corresponding structure in canonical model format. stands for a single attachment structure in${entity} ${attachment}
canonical model format. See .Case exchange Concepts

output

No specific output required. You provide information that enables you to decide in uploadAttachment whether the attachment needs to be
uploaded or has already been uploaded.

uploadAttachment

input

{
 "messageHeader": {
 "backendSystemType": "${linkedEntity.instanceType}",
 "targetInstance": "${linkedEntity.instance}"
 },
 "messageArgs": {
 "entity": ${linkedEntity},
 "attachment": ${attachment}
 }
}

NOTE: stands for the corresponding structure in canonical model format. stands for a single attachment structure${linkedEntity} ${attachment}
in canonical model format. See .Case exchange Concepts

output

No specific output required.

Appendix F: Development UI

Overview
HP SX development UI is a tool that simplifies content customization and development. With HP SX development UI you can:

Browse visualized message flow in HP SX and trace FTL transformation inputs and output.
Edit source code directly on the server and test it immediately by replaying events.
Set breakpoints and observe action execution step by step.

How to access development UI
Development UI can be accessed through the HP SX testing UI. In order to access development UI you need to install the HP SX testing UI. See

 for more information.SDK Overview

256

1.
2.
3.

Message flow visualization

Start event logging by clicking the s button. Once logging is started the following actions in HP SX will be logged:tart log

JMS messages
HTTP calls
HP SX operation execution (FTL transformations)

The logged operations are displayed when r is clicked. The procedure to log and display events is as follows:efresh

Click .start log
Trigger the action that you wish to view outside of development UI (e.g., submit order, create ticket from Propel portal or SX testing UI).
Click (once or as many times needed).refresh

You should see message flows similar to the following:

257

In this image you see failed operation and the steps in this operation. Each step includes the FTL transformations and HTTPcreateOrder,
requests involved. By clicking individual items you can display event details: operation, operation step, or HTTP request, allowing you to track to
the failed event. In this case it is the HTTP request under the step of the operation. Clicking the failed HTTP requestAdd cart item createOrder
item displays the request payload and response as shown in the following.

Modify FTLs and replay events

To modify FTL source code either click in the flow visualization, or find the FTL under the tab.SX Source Editor

258

After you have modified the FTL, save your changes. Go back to your event and replay the event to try your changes. You can immediately see
the results.

Set breakpoints and debug
Breakpoints can be set on the FTL template level.In the tab locate where the in template you want to pause execution, andSX Source Editor
check .Breakpoint

259

Click . A breakpoint will be indicated next to FTL name as shown in the following:save

Click on the tab. When execution stops at the breakpoint, debugging buttons and arestart debugging Flow Visualiser resume event next event
displayed.

	HP_Propel_210_SX_SDK_Cover Page Only2
	HP_Propel_210_SX_SDK_optimized wiki output
	SX SDK Legal Notices
	SDK Overview
	HP Service Exchange Overview
	Adapters in HP SX
	Content packs
	Supplier configuration
	SX HP OO plugin
	Case Exchange
	Overview
	Concepts
	Configuration
	Operations
	OO flows
	Change Detections
	Push Handlers

	Provided content packs
	How to extend HP SX Content (HP SM Problem entity)
	How to develop an adapter (JIRA)
	JIRA Request Support use case
	Case exchange use case
	JIRA Request to fulfill use case

	Aggregation in HP SX
	How to create CX content (HP SM Problem entity)
	Appendix A: Service Exchange - API
	Appendix B: Operation executors
	Appendix C: Support Request operations messages
	Appendix D: Per instance operation definition
	Appendix E: HP SX operations reference
	Appendix F: Development UI

